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INTRODUCTION

Physics is the paradigm of all scientific knowledge. Over the centuries it has evolved to a complexity that has
resulted in a separation into various subfields, always connected with one another and very difficult to single
out. Freeman Dyson, in his beautiful book ‘Infinite in All Directions’, distinguishes two aspects of physics and
two types of physicists: the unifiers and the diversifiers. The unifiers look for the most general laws of nature,
like the universal attraction between masses and electric charges, the laws of motion, relativity principles, the
simplest elementary particles, the unification of all forces, symmetry violation and so on. The diversifiers
consider the immense variety of natural phenomena, infinite in their extension, try to explain them on the basis
of known general principles, and generate new phenomena and devices that do not exist in nature. Even at the
beginning of modern science Galileo Galilei, besides studying the laws of motion and laying down the principle
of relativity, was interested in the phenomenon of fluorescence and disproved the theories put forward at his
time. He was both a unifier and a diversifier. The full explanation of fluorescence had to await the advent of
quantum mechanics, as did the explanation of other basic phenomena like electrical conductivity and
Spectroscopy.

The past century witnessed an explosive expansion in both aspects of physics. Relativity and quantum
mechanics were discovered and the greatest of the unifiers, Albert Einstein, became convinced that all reality
could be comprehended with a simple set of equations. On the other hand a wide range of complex phenomena
was explained and numerous new phenomena were discovered. One of the great diversifiers, John Bardeen,
explained superconductivity and invented the transistor.

In physics today we encounter complex phenomena in the behavior of both natural and artificial complex
systems, in matter constituted by many particles such as interacting atoms, in crystals, in classical and quantum
fluids as well as in semiconductors and nanostructured materials. Furthermore, the complexity of biological
matter and biological phenomena are now major areas of study as well as climate prediction on a global scale.
All of this has evolved into what we now call “condensed matter physics”. This is a more comprehensive term
than “solid state physics” from which, when the electronic properties of crystals began to be understood in the
thirties, it originated in some way. Condensed matter physics also includes aspects of atomic physics,
particularly when the atoms are manipulated, as in Bose-Einstein condensation. It is now the largest part of
physics and it is where the greatest number of physicists work. Furthermore, it is enhanced through its
connections with technology and industry. In condensed matter physics new phenomena, new devices, and new
principles, such as the quantum Hall effect, are constantly emerging. For this reason we think that condensed
matter is now the liveliest subfield of physics, and have decided to address it in the present Encyclopedia. Our
focus is to provide some definitive articles for graduate students who need a guide through this impenetrable
forest, researchers who want a broader view into subjects related to their own, engineers who are interested in
emerging and new technologies together with biologists who require a deeper insight into this fascinating and
complex field that augments theirs.

In this Encyclopedia we have selected key topics in the field of condensed matter physics, provided historical
background to some of the major areas and directed the reader, through detailed references, to further reading
resources. Authors were sought from those who have made major contributions and worked actively in the
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area of the topic. We are aware that completeness in such an infinite domain is an unattainable dream and have
decided to limit our effort to a six-volume work covering only the main aspects of the field, not all of them in
comparable depth.

A significant part of the Encyclopedia is devoted to the basic methods of quantum mechanics, as applied to
crystals and other condensed matter. Semiconductors in particular are extensively described because of their
importance in the modern information highways. Nanostructured materials are included because the ability to
produce substances which do not exist in nature offers intriguing opportunities, not least because their
properties can be tailored to obtain specific devices like microcavities for light concentration, special lasers, or
photonic band gap materials. For the same reasons optical properties are given special attention. We have not,
however, neglected foundation aspects of the field (such as mechanical properties) that are basic for all material
applications, microscopy which now allows one to see and to manipulate individual atoms, and materials
processing which is necessary to produce new devices and components. Attention is also devoted to the ever-
expanding role of organic materials, in particular polymers. Specific effort has been made to include biological
materials, which after the discovery of DNA and its properties are now being understood in physical terms.
Neuroscience is also included, in conjunction with biological phenomena and other areas of the field.
Computational physics and mathematical methods are included owing to their expanding role in all of
condensed matter physics and their potential in numerous areas of study including applications in the study of
proteins and drug design. Many articles deal with the description of specific devices like electron and positron
sources, radiation sources, optoelectronic devices, micro and nanoelectronics. Also, articles covering essential
techniques such as optical and electron microscopy, a variety of spectroscopes, x-ray and electron scattering
and nuclear and electron spin resonance have been included to provide a foundation for the characterization
aspect of condensed matter physics.

We are aware of the wealth of topics that have been incompletely treated or left out, but we hope that by
concentrating on the foundation and emerging aspects of the infinite extension of condensed matter physics
these volumes will be generally useful.

We wish to acknowledge the fruitful collaboration of the members of the scientific editorial board and of the
Elsevier editorial staff.

Special thanks are due to Giuseppe Grosso, Giuseppe La Rocca, Keith Bowman, Jurgen Honig, Roberto
Colella, Michael McElfresh, Jaap Franse, and Louis Jansen for their generous help.

Franco Bassani, Peter Wyder, and Gerald L Liedl
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Introduction

For many condensed matter systems, including lig-
uids as well as solids, acoustic measurements provide
a crucial probe of important and fundamental phys-
ics of the system. In the case of solids, one of the first
fundamental properties to be determined would be
the atomic structure, defined by the minimum in the
free energy with respect to the positions of the atoms.
The next fundamental characteristic of interest might
be the curvature of the free energy in the vicinity of
the minimum, and this would be manifest in the
elastic constants for the material. As derivatives of
the free energy, elastic constants are closely connect-
ed to thermodynamic properties of the material; they
can be related to specific heat, Debye temperature,
the Gruneisen parameter, and they can be used to
check theoretical models. Extensive quantitative con-
nections may be made if the elastic constants are
known as functions of temperature and pressure.
Acoustic measurements not only probe lattice prop-
erties, they are also sensitive probes of the environm-
ent in which all interactions take place, and may be
used to study electronic and magnetic properties
(e.g., through magnetostriction effects). As will be
discussed later, acoustic measurements involve tensor
quantities, and thus can probe anisotropic properties
of crystals. The damping of elastic waves provides
information on anharmonicity and on coupling with
electrons and other relaxation mechanisms. One of
the most important features of acoustic measure-
ments is that they provide a sensitive probe of phase
transitions and critical phenomena; important exam-
ples, in addition to the obvious example of structural
transitions in solids, include the superconducting
transition and the superfluid transition. Indeed, one
of the most impressive successes in critical phenom-
ena has been the use of acoustics to study the lambda

line of liquid helium. For the field of supercon-
ductivity, a paper on acoustic attenuation was in-
cluded as one of the relatively small number of
selected reprints on superconductivity published by
the American Institute of Physics. Acoustic measure-
ments are among the first performed whenever a
material involving novel physics is discovered. Mod-
ern acoustic techniques, discussed below, can probe
the properties of samples only a few hundred microns
in size and nanoscale thin films, and may be utilized
in practical applications such as micro-electro-me-
chanical systems (MEMS). Acoustic measurements
provide significant information about condensed
matter systems, and their accurate and precise meas-
urement is certainly important.

Acoustics in Solids

For solids, acoustic phenomena reflect the elastic
properties of the material. Interest in elasticity dates
back to Galileo and other philosophers in the seven-
teenth century, who were interested in the static
equilibrium of bending beams. With the basic physics
introduced by Hooke in 1660, the development of
the theory of elasticity followed the development of
the necessary mathematics, with contributions from
Euler, Lagrange, Poisson, Green, etc., and the result-
ing theory was summarized in the treatise by A E H
Love in 1927.

Acoustic and elastic properties of solids are quan-
tified in a set of elastic constants. These constants are
like spring constants, relating forces, and displace-
ments, and they may be measured with a static tech-
nique, in which a displacement is measured as a
linear response to a small applied force. However, it
was long ago learned that a better method is to
measure an elastic vibration, as found, for example,
in a propagating sound wave. Most existing com-
plete sets of elastic constants for materials have been
determined by measuring the time of flight of sound
pulses. Recently, a relatively new method, resonant
ultrasound spectroscopy (RUS), is being used. In the
RUS method, rather than measuring sound velocities,
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one measures the natural frequencies of elastic vib-
ration for a number of normal modes of a sample,
and processes these in a computer, along with the
shape and mass of the sample. With a proper con-
figuration, a single measurement yields enough fre-
quencies to determine all of the elastic constants for a
material (as many as 21 for a crystal with low sym-
metry). Samples may be prepared in a wide variety of
shapes, including rectangular, spherical, etc., and it is
not necessary to orient crystalline samples. A com-
pelling reason for using RUS has to do with the na-
ture of samples of new materials. Whenever a new
material is developed, initial single crystal samples
are often relatively small, perhaps on the order of a
fraction of a millimeter in size. Also, with new
developments in nanotechnology and the possibility
of applications in the microelectronics industry, there
is a great interest in systems which are very small in
one or more dimensions, such as thin films and one-
dimensional wires. For such small systems, pulse
measurements are difficult, if not impossible, but
RUS methods may be readily used.

Physical Principles for Acoustics in Solids

To begin a theory for acoustics in solids, one may
imagine a spring, extended with some initial tension,
and consider two points at positions x, and x + dx. If
one applies an additional local tension, or stress, o,
then the spring stretches and the two points are dis-
placed by ¥(x), and y(x + dx) respectively. The sep-
aration between the two points will have changed by
dy, and the fractional change in the separation, de-
fined as the strain, is ¢ = dyy/dx. Hooke’s law for the
spring takes the form ¢ = c¢, where ¢ is a one-dimen-
sional elastic constant. For a three-dimensional elastic
solid, one may use indices (i, j, etc.) which can take on
the values 1, 2, and 3, referring to the x, y, and z
coordinate directions, and generalize the strain to

_1(oy; oW
V= 5(3967' " 3_x:> .

The symmetric form of &; avoids pure rotations,
which do not involve stress. The stress is generalized
to ¢, a force per unit area acting on a surface ele-
ment, where the first index refers to the coordinate
direction of a component of the force, and the second
index refers to the coordinate direction of the unit
normal to the surface element. Hooke’s law becomes

Gij = Cijkiekl 2]

where ¢z is the 3 x3 x 3 x3 (81 element) elastic
tensor, and where a summation over repeated indices
is implied. For a small volume element, the net force

in the i-direction is dgj;/dx;, and Newton’s law may
be written as
80’1',' —p 82%
6x,- or?

(3]

where p is the mass density.

The symmetric nature of the definitions, and the
assumption that the elastic energy must be quadratic
in the strains, reduces the number of independent
elements of ¢;; from 81 to 21. A basic symmetry has
c;jrr invariant if the indices are exchanged in the first
pair or second pair of the four subscripts (cjik; = cjji,
etc.); thus a reduced system of indices may be used:
11-1,2252,33-3,23-4,13—5, 1256, so that
Cijkl = Cuv- The reduced system is used when tabulat-
ing values of elastic constants; however, the full four-
index tensor must be used in calculations. Additional
symmetries of a particular crystal group will reduce
the number of independent elastic constants further
below 21; for example, orthorhombic crystals have
nine independent elastic constants, cubic crystals
have three, and isotropic solids have only two.

Later, the case of an isotropic elastic solid will be
useful for the purposes of illustration. In this case,
one has ¢11 = ¢ = €33, C44 = C55 = Ce6, C12 = C13 =
€3 = c11 — 2c44, and all other elements of the
elastic tensor are zero. The two independent elastic
constants may be taken as ¢y; and c44, but other
combinations, such as Young’s modulus Y =
ca4(3c11 —4caa)/(c11 — cas) and the bulk modulus
B = c¢11 —4c44/3 are also used. The bulk modulus
appears in an important thermodynamic identity
involving 7y, the ratio of the specific heat at constant
pressure ¢, to that at constant volume, c,:

TB*B

cy pCp

4]

Here T is the temperature and f is the thermal ex-
pansion coefficient (TEC).

Anharmonic Effects

The basic formulation of acoustics in solids involves
the expansion of energy minima about equilibrium to
second order, or equivalently, assuming a harmonic
potential, quadratic in strain. However, there are a
number of effects which require going beyond second
order. Some effects are related to exceeding “small
displacements” from equilibrium, such as in quan-
tum solids with large zero-point motion, and solids
at high temperatures (near melting) where thermal
motions are large. Other effects occur in equilibrium
at normal or low temperatures; these include thermal
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expansion, lattice thermal conductivity, and acoustic
dissipation.

The relationship between anharmonic effects and
thermal expansion is worth discussing. As tempera-
ture is increased, the amplitude of atomic oscillations
increases, or equivalently the occupation of higher
quantized energy levels increases. If the potential
energy was exactly quadratic in displacements, then
the center of oscillation, or the expectation value of
displacement, would remain the same. With the same
average positions for the atoms, the system would
not expand with increasing temperature, and the
TEC f would be zero. From the thermodynamic
identity in eqn [4], one would also have ¢, = ¢,. On
the other hand, when potentials are anharmonic, one
may have (in the typical case) a stiffer repulsion at
short interatomic distances, and weaker attractive
forces at larger distances. The result is that at higher
energy levels, the “center” position between classical
turning points moves to larger distances, and the
system thermally expands. This situation is illustrat-
ed in Figure 1.

Anharmonicity and thermal expansion can also be
readily related to nonlinear acoustics in fluids. For
fluid acoustics, nonlinear effects are proportional to a
dimensionless second order parameter (p/v)(dv/0p),
where v is the sound speed, and the derivative is at
constant entropy. For gases, this parameter is (y — 1),
which by the thermodynamic identity in eqn [4], is
proportional to the thermal expansion coefficient f3.
Thus the absence of nonlinear acoustic effects coin-
cides with a vanishing thermal expansion.

That an anharmonic potential results in acoustic
dissipation and lattice thermal conductivity may be
understood by noting that with a harmonic potential,
one gets a linear second-order wave equation, whose

Atomic position

Potential energy

Figure 1 lllustration of the relationship between a nonquadratic
potential energy curve (and nonlinear acoustics) and the phe-
nomenon of thermal expansion.

wave solutions can superimpose and pass through
one another with no effect. An anharmonic potential
allows sound waves (lattice vibrations) to interact
and scatter from one another, permitting the transfer
of energy from an ordered to a disordered form
(acoustic dissipation), and allowing a change in dis-
tribution functions in passing from one location to
another (lattice thermal conductivity).

Anharmonic effects may be probed with acoustic
experiments by measuring the changes in the elastic
constants as the sample is subjected to increasing
uniaxial or uniform hydrostatic pressure. The coef-
ficients which relate the changes to the pressure are
referred to as “third-order elastic constants.” How
elastic constants themselves are determined with
acoustic measurements is discussed next.

Determining Elastic Properties Experimentally

To determine the nature of sound propagation in sol-
ids, one must solve eqns [1] through [3] with some
specified boundary conditions. Because of the tensor
nature of the equations, the relation between particle
displacement and the direction of wave propagation
is quite complicated. To tackle the complexity and
make a connection between ultrasound measure-
ments and the elastic constants, two approaches may
be taken. The first approach, used in conventional
pulse ultrasound, is to note that if one had a sample
with a large (infinite) plane surface which is perpen-
dicular to one of the principle axes of the elastic ten-
sor, and if a plane wave could be launched from that
surface, then the tensor equations would uncouple,
and a longitudinal wave or one of two transverse
waves could propagate independently. In this case, for
each wave, the relationship between the sound velo-
city and the independent elastic constants is fairly
straightforward. While the determination of the prin-
ciple axes and the relationships between the three
sound speeds and the relevant elastic constants may
be done analytically, the manipulations are compli-
cated and must be done on a case-by-case basis; there
is no elucidating general formula. The simplest case
of an isotropic elastic solid will be presented here for
purposes of illustration. In this case, Newton’s law
may be written in terms of the two independent elas-
tic constants, cy1 and c44:

2
p‘;—t'f =11 VA — sV x (V x §) 5]
= caaV2Y + (c11 — ca)V(V-y) 6]

where the two equations are related by an identity for
the V operator. If one has V x i = 0, then the first
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equation becomes a simple wave equation for a
longitudinal wave with speed v; = \/c11/p, and if one
has V- = 0, then the second equation becomes a
simple wave equation for transverse waves with speed
Uy = £/ Caa/p.

Although the pulse ultrasound method has been
used extensively in the past, it has a number of di-
sadvantages, including problems with transducer ring-
ing, beam diffraction, and side-wall scattering, and the
inconvenience that the sample must be recut, repol-
ished, and reattached to a transducer if one wants
more than the three elastic constants accessible with
one measurement. The second approach to determi-
ning elastic constants avoids all of the disadvantages.

The second approach is the one described earlier as
RUS, which involves the use of a computer to nu-
merically solve the elastic constants given a set of
measured natural frequencies for a solid with a given
shape and boundary conditions (usually stress-free
conditions). The computer processing involves sol-
ving a “forward problem” (finding the natural fre-
quencies in terms of the elastic constants) first and
then inverting. Unlike the conventional pulse ultra-
sound approach, the forward problem does not
provide a simple relationship between the modes of
vibration and the elastic constants; the displacements
in the various modes involve all of the elastic con-
stants in a complicated manner, and a numerical
computation is required to sort it all out.

The forward problem may be posed as the min-
imization of a Lagrangian L given by

L= ///(pwzw,w,- — Cijuitijers) AV [7]

The minimization is accomplished numerically with
a Rayleigh—-Ritz method, and the results yield dis-
crete resonance frequencies, f, = 2nw,, given the
elastic constants, ¢;;. For the RUS technique, what is
needed is the inverse. In most cases, there will be
more measured frequencies than independent elastic
constants; so what is required is to find a set of in-
dependent elastic constants which best fits the meas-
ured frequencies, usually in a least squares sense.
Furthermore, when there are more measured fre-
quencies than independent elastic constants, then
other parameters may be varied in order to best fit
the measured frequencies. Such parameters may in-
clude the shape and dimensions of the sample (al-
though one known length is necessary), and the
orientation of the crystallographic axes relative to
the faces of the sample. In any case, it is not neces-
sary that crystallographic axes be oriented with re-
spect to faces of a sample, although computations are
greatly simplified if they are oriented.

Experimental Methods for Acoustic Measurements
in Solids

Acoustic measurements with the pulse method are
fairly straightforward; emphasis is on careful bond-
ing of transducers to samples and the use of suitable
high-frequency pulse electronics. The RUS method
is less well known, and can be briefly described as
follows.

In a general RUS measurement, the natural fre-
quencies of a sample with stress-free boundary con-
ditions are determined by measuring the resonance
frequencies of the sample when held (lightly, with no
bonding agents, at two positions on the sample sur-
face) between two transducers. One transducer acts
as a drive to excite vibrations in the sample at a
tunable frequency, and the second measures the
amplitude (and possibly the phase) of the response
of the sample; as the frequency of the drive is swept,
a sequence of resonance peaks may be recorded. The
positions of the peaks will determine the natural
frequencies f,, (and hence the elastic constants), and
the quality factors (Q’s, given by f,, divided by the
full width of a peak at its half-power points) will
provide information about the dissipation of elastic
energy.

RUS may also be used to measure the properties of
thin films on a substrate, to determine the effects of
induced strain from lattice mismatch, etc. In this
case, the natural frequencies of the substrate alone
are measured, then the same sample is again meas-
ured with the film in place. From the shifts in the
natural frequencies, the properties of the film may be
determined.

A simple apparatus for making RUS measure-
ments is illustrated in Figure 2. In the illustration, a
rectangular parallelepiped sample is supported by
transducers at diametrically opposite corners. Cor-
ners are used for contact because they provide elas-
tically weak coupling to the transducers, greatly
reducing loading, and because the corners are al-
ways elastically active (i.e., they are never nodes),
and thus can be used to couple to all of the normal
modes of vibration.

Acoustics in Fluids

The thermo-hydrodynamic state of a fluid may be
specified with five fields, which may be taken as the
mass density p(r, ), the pressure p(#, t), and the mean
flow velocity u(r, t). The five equations needed to
determine the five fields are conservation of mass,
Newton’s law for the motion of the center of mass of
a fluid element (three components), and conservation
of energy for motion about the center of mass. These
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Electrical leads
to transducer

Sample

Transducer
active area

Adjustable
transducer mount

Transducer
tensioning

Figure 2 An apparatus for measuring elastic constants and acoustic attenuation with RUS.

equations are respectively:

o
- g(v u)* + %V -(kVT)  [10]

where S is entropy, e;; = (0u;/Ox; + Ou;/0x;)/2, n and
¢ are the shear and bulk viscosity, and  is the thermal
conductivity. The transport terms (involving 5, £, and
k) give rise to dispersion and dissipation. If these
terms are dropped, then the last equation simply gives
S =constant, and the first two (for small displace-
ments from equilibrium) are easily combined to give a
wave equation with a sound speed given by (dp/dp)s.

Superfluids are modeled as having a superfluid
component (in a macroscopic quantum ground state)
and a normal-fluid component (a gas of excitations
above the ground state). With two fluid components,
nine fields are required to specify the state of the
system; in addition to the ones for a classical fluid,
one also has the mass density and the mean flow
velocity for the superfluid component alone. Now
the linearized equations admit two sound speeds
for the unconstrained fluid, and two more sound
speeds when the normal fluid component is held

fixed through its viscosity, and the inviscid superfluid
component is still free to flow. The four sound modes
are (1) a pressure wave with the two components
moving together (referred to as “first sound”), (2) a
temperature wave with the two components moving
in counterflow (“second sound”), (3) a pressure wave
with the normal fluid clamped (“fourth sound”), and
(4) a temperature wave with the normal fluid
clamped (“fifth sound”). An illustration of these
modes is presented in Figure 3. “Third sound” is a
surface wave which propagates on a thin film of su-
perfluid; it is not a fundamental sound mode because
its restoring force is not intrinsic to the superfluid,
but rather is determined by the substrate on which
the superfluid film is formed. With both mechanical
and thermal properties represented in the sound
modes, the sound speeds, measured as functions of
temperature and pressure, may be used to determine
all of the thermodynamics of the superfluid.

Applications of Acoustics in Condensed
Matter Physics

In areas of condensed matter physics which involve
the development of exotic materials, it is often of
great value to use acoustics simply to measure and
tabulate sound speeds or elastic constants. This is the
case for such materials as alloys, composites, porous
materials, sintered materials, polymers (plastics,
epoxies, elastomers, etc.), cements, piezoelectrics,
viscoelastic and non-Newtonian fluids, and fluid
mixtures. In some cases, it is of significant benefit
to use acoustics to monitor systems which evolve in
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First Second
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Figure 3 An illustration of the basic sound modes in superfluid
helium. The “n” and “s” lines indicate the motion of the normal
fluid and superfluid components, respectively. The dots indicate
that the normal fluid has been clamped by its viscosity. The
dashed lines indicate motion under “pressure release” conditions.

time, as during the curing of epoxy, the hardening of
cement, the progress of chemical reactions, etc. Other
special condensed matter systems which benefit from
basic acoustic measurements are quantum solids, su-
perfluids, quasicrystals, granular media, foams,
rocks, etc. High amplitude acoustic fields are used
as driving mechanisms in sonochemistry, cavitation
studies (including cavitation in quantum fluids),
acoustic levitation (facilitating noncontact sample
manipulation), and sonoluminescence, in which a
collapsing bubble creates such extreme conditions
that light may be emitted. Acoustic emission, where
signals are generated by the system itself, is impor-
tant in studies of cracks, fracture, earthquakes, etc.

A particular application of acoustic measurements
in solid state physics is the determination of the con-
tribution of lattice acoustic modes to the specific
heat, ci,.. This is given by

n T\? [O/T xierdx
=92k (— eI gy
w=s()uley) [ h

where 7 is the number of lattice sites per unit volume,
kg is Boltzmann’s constant, and ®p is the Debye tem-
perature. It is the Debye temperature which may be
expressed in terms of acoustic parameters, as follows:

-1/3
h 1 do 1
@D = k—B 187'527’1 Xs: / Evs(é):; [12]

Here the sum in s is over the three different acoustic
modes in a particular direction k, which have sound
speeds v,(k). For isotropic solids, the average of 1/v3
is (1/v} +2/03).

As mentioned in the introduction, an important
application of acoustics is in the study of phase tran-
sitions. Acoustic studies are typically used in con-
junction with a model of the transition, for example,
a Landau expansion in the case of second-order
transitions. In this case the free energy F, including

elastic strain energy, may be expressed as a fourth-
order equation in some order parameter V:

F=Jcoe® +3a1(T — TOW? + jar¥* + Jase¥®  [13]

where ¢y and ¢ are some nominal elastic constant and
strain (ignoring the tensor nature), T, is the critical
temperature, and aq, d, and a3 are constants. The
effective elastic constant is (9?F/9¢?). Minimizing
the free energy with respect to the order parameter
gives the result that the effective elastic constant is ¢
when T>T,, and is (co — a3/2a,) when T<T.. Thus
an experimentally measured jump in an elastic con-
stant at a second-order phase transition gives access
to the parameters in a Landau expansion.

An extensive application of RUS has been in geo-
physics, where the measurement of the thermody-
namic properties and anharmonic effects of materials
at high temperatures (exceeding twice the Debye
temperature) are a high priority. Elastic data can
check theoretical models and their extension to
high temperature and pressure, where some asymp-
totic behavior may be convenient for other geophys-
ical calculations and for extrapolations to even
higher temperatures. Anharmonic effects are evident
in the Gruneisen relation and in the departure of
heat capacity from the Law of Dulong and Petit,

Clat = 3(n/p)kB
Acoustic Dissipation

Acoustic dissipation may be discussed with two basic
pictures. In one picture, energy in an ordered form in
the acoustic field is lost to some disordered form, so
that the amplitude of a sound wave decreases with
distance x as e ¥, where « is the attenuation coef-
ficient. From the functional form e ~**, the attenu-
ation coefficient o may be considered as an imaginary
part of a complex wave vector, k = k + iz. Acoustic
dissipation in this picture is typically modeled with a
coupling term in a Hamiltonian between phonons
and some other system into which energy is lost
(electrons, magnetic spins, etc.).

In the second picture, one notes that changes in
stress (or strain) are not immediately followed by
changes in strain (or stress), and there is a time lag,
with a characteristic relaxation time, between energy
being stored in kinetic and potential forms. If there
were no time lag, then acoustic variations would os-
cillate back and forth along a single path (typically an
isentrope) in the stress—strain plane. If there is a time
lag, then the path opens up into a loop, and acoustic
energy would be dissipated as “lost work” equal to the
nonzero area of the loop. The time lag may be rep-
resented with a time dependence f(t) = (1 —e*/7),
where 7 is the characteristic relaxation time from a
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sudden change. The time lag is incorporated in the
equations of motion with additional time derivatives;
however, the equations may be analyzed by Fourier
transforming in time, and the result involves the
Fourier transform of f{¢), proportional to f(w) given by

A 1 Wt

flo) = 1+ (w1)? i 1+ (w7)

5 [14]

The real part gives rise to dispersion in sound
propagation, and the imaginary part results in atten-
uation; the effective attenuation coefficient is
% = omax207/(1 + w?1?), where the attenuation peak
Omax OCcurs when wt = 1.

For fluids, the “time lag” derivatives are already in
place in eqns [8]-[10]. If the terms containing the
transport coefficients #, &, and k are not dropped,
and the equations are solved to first order in these
coefficients, then solutions will involve a complex
wave vector k = k + io, with the attenuation coeffi-
cient « given by

s=rs (Grre)+ 0-n] s

For solids, forms of acoustic dissipation which are
most readily analyzed with the first picture include
electron—-phonon scattering and phonon—phonon
scattering. The picture for electron—phonon scatter-
ing is particularly important for studying Bardeen—
Cooper-Schrieffer (BCS) superconductors; as more
electrons pair and enter the superconducting state,
the phonon interaction gets used up in the pairing
interaction, and part of the electron—phonon scatter-
ing no longer contributes to acoustic attenuation.
Thus, a measured drop in acoustic attenuation tracks
the number of paired electrons.

Forms of acoustic dissipation which are most read-
ily analyzed with the second picture include time lags
for energy transfer to magnetic spin systems, electric
dipole systems, defect and impurity motion (mechan-
ical diffusion or viscosity), other forms of energy
storage (thermal diffusion), etc. Models based on the
second picture are particularly useful in analyzing
acoustic attenuation measurements in glasses, “two-
level” systems, impurity doped systems, etc.

The list of mechanisms related to acoustic attenu-
ation just presented is by no means exhaustive. In-
deed, the broad range of interacting mechanisms
make acoustic attenuation one of the most widespread
applications of acoustics in condensed matter physics.

See also: Crystal Symmetry; Crystal Tensors: Applications;
Lattice Dynamics: Anharmonic Effects; Lattice Dynamics:
Aperiodic Crystals; Lattice Dynamics: Structural Instability

and Soft Modes; Lattice Dynamics: Vibrational Modes;
Mechanical Properties: Anelasticity; Mechanical Proper-
ties: Elastic Behavior; Specific Heat; Thin Films, Mechan-
ical Behavior of.

PACS: 43.20. —f; 43.25.—x; 43.35.—c; 43.58.+z;
62.65. + k; 62.20.Dc; 62.80. +f; 74.25.Ld
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Nomenclature

B bulk modulus (Pa)

c elastic constant (Pa)

Clat lattice specific heat (Jkg = 'K~ ")

I specific heat at constant pressure
(Jkg 'K~ ")

¢, specific heat at constant volume
(Jkg 'K~

F free energy per unit mass (J kg~ ')

k wave vector (m~ ')

ky Boltzmann’s constant (JK 1)

L Lagrangian (])

n number of lattice sites per unit volume
(m~?)
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entropy per unit mass (Jkg 'K 1)
time (s)

temperature (K)

fluid element velocity (ms 1)
sound speed (ms 1)

volume (m?)

spatial coordinate (m)

attenuation coefficient (m 1)
thermal expansion coefficient (K~ 1)
specific heat ratio (dimensionless)

TR R <R g,
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The thermodynamic origins of allotropy and poly-
morphism are presented. Allotropy and polymorph-
ism are, respectively, the ability of elements and of
chemical compounds to have stable existences in
more than one crystal form. The allotropies of iron,
carbon, and sulfur, and the polymorphisms of silica
and zirconia are discussed.

Introduction

A chemical element exhibits allotropy when it can
have a stable existence in more than one crystal form.
Polymorphism is the same phenomenon exhibited by
a chemical compound. When a range of possible
states of existence is available to an element or com-
pound, the stable state is that which has the lowest
molar Gibbs free energy at the constant values
of pressure and temperature of interest. The molar
Gibbs free energy, G, in turn, is determined by the
molar enthalpy, H, the molar entropy, S, and the
temperature (in kelvins), T, as

G=H-TS

Low values of G are obtained with low values of
H and high values of S. As only changes in enthalpy
can be measured by the transfer of thermal energy
between a thermodynamic system and a thermosta-
ting reservoir, the enthalpy H does not have a definite
value and thus, also, G does not. In contrast, S,
which is a measure of the thermal and configura-
tional disorder in a thermodynamic system, does
have a definite value. Consequently, changes in the

strain (dimensionless)
shear viscosity (Nsm ™
Debye temperature (K)
bulk viscosity (N'sm ~?)

thermal conductivity (Wm 'K~ 1)
mass density (kgm ~°)

stress (Pa)

relaxation time (s)

displacement (m)

angular frequency (s~ "')

%)

o)

ST D AP @

molar Gibbs free energy which accompany phase
transformations or chemical reactions can be ob-
tained from the corresponding changes in H and
S as

AG =AH —TAS

The molar enthalpy of an element, relative to that of
the state in which the atoms are at infinite distances
from one another, is the thermal energy transferred
to a thermostat when the atoms come together and
occupy the sites in a regularly arrayed crystal lattice.
The relative enthalpy is then a measure of the
bonding energy in the crystal.

The Allotropy of Iron

Iron has two allotropes: a face-centered cubic (f.c.c.)
crystal form and a body-centered cubic (b.c.c.) crys-
tal form. In the former, the unit cell has atoms lo-
cated at each of the eight corners, each one of which
contributes one-eighth of an atom to the unit cell.
Atoms located at the centers of each of the six faces
of the cell, each contribute one-half of an atom to the
unit cell, to give a total of four atoms per unit cell.
Alternatively, the f.c.c. crystal structure can be con-
sidered to consist of planes of close-packed atoms
stacked in the sequence ABCABC. The b.c.c. unit cell
has atoms located at each of the eight corners of the
unit cell and one atom located at the center of the
cell, giving two atoms per unit cell.

The variations, with temperature at a constant
pressure of 1atm, of the molar Gibbs free energies of
the f.c.c. and b.c.c. allotropes of iron are shown
schematically in Figure 1a. In Figure 1a

oG
(a—T>; -
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Figure 1 (a) The variations, with temperature, of the molar

Gibbs free energies of b.c.c. Fe and f.c.c. Fe (schematic). (b) The
variations, with temperature, of the saturated vapor pressures of
b.c.c. Fe andf.c.c. Fe. (c) The variations, with temperature, of the
relative molar enthalpies of b.c.c. Fe and f.c.c. Fe.

and
PG\ _ o
a12),” T

where ¢, is the constant pressure molar heat capacity
of the phase. This quantity is formally defined as

A

that is, it is the ratio of the heat absorbed by a mole
of substance, at constant pressure, to the consequent
increase in temperature.

The shapes of the curves in Figure 1la are deter-
mined by the constant pressure molar heat capacities
and the molar entropy of the two crystal forms. In
the temperature range 1100-1700K, the value of ¢,
for b.c.c. Fe is 7.9 K™, larger than that for f.c.c. Fe
and the highly ordered f.c.c. crystal structure has a
lower molar entropy than that of the b.c.c. structure.
Thus, in Figure 1, since the rate of decrease of G with
increasing temperature for the b.c.c. Fe is greater
than that for the f.c.c. Fe and the second derivative of
the line for b.c.c. Fe is greater than that of the f.c.c.
line, the lines intersect twice at 1187 and 1664 K.
Thus, the b.c.c. form is stable at temperatures lower
than 1187 K and at temperatures from 1664 K to the
melting temperature of 1809K. The f.c.c. form is
stable in the range of temperature 1187-1664 K. The
low-temperature b.c.c. form is referred to as a-Fe, the
f.c.c. form is referred to as y-Fe and the high-tem-
perature b.c.c. form is referred to as o-Fe. The
original assignment of f-Fe to the low-temperature
b.c.c. form, between the Curie temperature of 1033
and 1187K, is no longer used.

Figure 1b shows the variations, with temperature,
of the saturated vapor pressures exerted by b.c.c. Fe
and f.c.c. Fe in the range of temperature 1100~
1700 K. The saturated vapor pressures are related to
the difference between the Gibbs free energies of the
two crystal forms by

0
p '},’
H0

o

AG(o—7y) =RT In

A negative value of AG(x—7y) makes the p? value
lower than the p? value.

As has been stated, the constant pressure molar
heat capacity of b.c.c. Fe is 7.9 JK™! larger than that
of f.c.c. Fe. Consequently, from eqn [1], the rate of
increase of the molar enthalpy of b.c.c. Fe is greater
than that of f.c.c. Fe. The variations, with temper-
ature, of the relative molar enthalpies of the two
crystal forms are shown in Figure 1c, in which the
reference state is chosen as b.c.c. Fe at 1100 K. Inc-
reasing the temperature from 1100 to 1187 K causes
the molar enthalpy to increase along the b.c.c. Fe
line. At 1187K, the b.c.c. form transforms to the
f.c.c. form with the required increase in enthalpy
(the latent heat of the transformation). Further hea-
ting causes the enthalpy to increase along the f.c.c.
Fe line (which intersects with the metastable b.c.c.
Fe line at 1397K) and, at 1664 K, the f.c.c. Fe trans-
forms back to the b.c.c. Fe, again with the required
increase in enthalpy.

The combination of the allotropy of iron and
Henry Bessemer’s patent no. 356, dated 12 February
1856 “On the Manufacture of Malleable Iron and
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Steel without Fuel,” gave rise to the Industrial
Revolution. Carbon, which is the alloying element
in plain carbon steel, occupies interstitial sites in the
f.c.c. Fe and b.c.c. Fe lattices. The solution of carbon
in f.c.c. Fe produces a phase called austenite, and its
solution in b.c.c. Fe produces a low-temperature
phase called a-ferrite and a high-temperature phase
called o-ferrite. As the interstitial sites in f.c.c. Fe are
larger than those in b.c.c. Fe, the solubility of carbon
in austenite is larger than in a-ferrite and d-ferrite.
Thus, carbon is an “austenite stabilizer.” Figure 2,
which is the phase diagram for the system Fe-Fe;C,
shows the extent of the austenite phase field which
terminates at the eutectoid point (0.78 wt.% C,
723°C). When the temperature of austenite of this
composition is decreased to a value lower than
723°C, the austenite undergoes a eutectoid decom-
position to produce a structure consisting of alter-
nating layers of ferrite and cementite (the metastable
iron carbide, Fe5C). This structure is called pearlite
and the fineness of the structure is determined by the
rate of cooling of the eutectoid austenite through the
eutectoid temperature. The coarseness of the micro-
structure increases with decreasing cooling rate.
With increasing rate of cooling a limit is reached,
beyond which nucleation of the ferrite and the ce-
mentite from the austenite is inhibited. The austenite
transforms to a metastable body-centered tetragonal
phase by means of a diffusionless shear mechanism.
This very hard and brittle structure is called mar-
tensite and, in it, the shear stresses which cause the
brittleness are relieved by tempering at some tem-
perature less than 723°C. The occurrence of allot-
ropy in iron allows the mechanical properties of
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Figure 2 The phase diagram for the system Fe—Fe3C.

plain carbon steels to be manipulated by a choice of
carbon content and heat treatment. Thus, steels can
be produced, which, at one extreme, are soft enough
to be plastically deformed to the shape of a paper
clip, or, at the other extreme, hard and tough enough
to be used as a bearing material.

Nickel, which has the f.c.c. crystal structure,
forms substitutional solid solutions with iron and
hence stabilizes the f.c.c. structure. Under equilibri-
um conditions, a 7-Fe,Ni containing 53 wt.% Ni
undergoes a eutectoid decomposition to a-Fe and
FeNij at 345°C. However, as nucleation and growth
of a-Fe from y-Fe,Ni requires significant diffusion by
migration of vacant lattice sites, the presence of a
few percent Ni in solid solution in the y-Fe,Ni
produces a metastable y-Fe,Ni phase at room tem-
perature. In contrast, chromium, which has the
b.c.c. structure, also forms substitutional solid solu-
tions with iron and thus stabilizes the b.c.c. struc-
ture. This causes the formation of a “y-loop” shown
in Figure 3. At the minimum temperature of the
y-loop (7wt.% Cr, 831°C), the y-Fe and «-Fe,Cr
phases have the same composition. In Fe-Cr solid
solutions containing less than 12wt.% Cr, the
product of oxidation is the highly defective spinel
FeO - Cr,O3. With Cr contents greater than 12 wt.%,
the oxide Cr,0j3 is the product of oxidation. Thus, a
“stainless” steel can be produced by having sufficient
Ni in solid solution in Fe to give a single-phased f.c.c.
structure at room temperature and by having suffi-
cient Cr in solid solution to produce a protective
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Figure 3 The iron-rich end of the Fe—Cr phase diagram.
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coating of Cr,O3 on the surface of the alloy. Such
an alloy is type 304 stainless steel (or 18-8 stain-
less steel) which is Fe containing 18 wt.% Cr and
8 wt.% Ni.

The Allotropy of Carbon

Carbon (element number 6), located at the top of
group four in the periodic chart of the elements, has
the electron configuration 2s'2s*2p%, which would
indicate that it has a valence of 2. However, hybrid-
ization of the electron orbits of the carbon atom gives
rise to the occurrence of the familiar allotropes, dia-
mond, and graphite. In sp® hybridization, one of the
2s electrons is promoted to the 2p orbital and the
four electrons in the second shell undergo hybridiza-
tion to produce four energetically equivalent elec-
trons. The 272kJmol™ required to promote the
electron from the 2s to the 2p shell is more than
compensated for by the decrease in energy which oc-
curs upon hybridization. The mutual repulsion be-
tween the hybrid orbitals causes them to point
toward the corners of a tetrahedron, as shown in
Figure 4. The unit cell for the diamond cubic crystal
structure, which is shown in Figure 5, can be
regarded as being based on the f.c.c. unit cell con-
taining eight subcubes. Carbon atoms occupy the
upper-back-left, upper-front-right subcubes, the low-
er-front-left and lower-back-right subcubes with the
bond length being 15.4 nm.The rigidity of the bonds
between the atoms makes diamond the hardest ma-
terial in existence (number 10 on the Moh scale of
hardness). It has a high melting temperature, 3800°C,
and a large latent heat of melting, 105 k] mol™ at a
pressure of 48 kbar. Also, it has a high index of
refraction, 2.417, making it a desirable gem stone. In
1913, the determination of the structure of diamond
was one of the early successes of X-ray analysis.

109.47¢,

Figure 4 Lines directed to the corners of a tetrahedron.

The crystal structure of graphite is determined by
sp* hybridization in which a 2s electron is promoted
to the 2p, orbital and the remaining 2s and the 2p,
and 2p, orbitals form a trigonal hybrid containing
three energetically equivalent orbitals which lie in a
plane, forming angles of 120° with their neighboring
orbitals. The crystal structure of graphite, which is
shown in Figure 6, consists of sheets of g-bonded
atoms in the xy-plane, arranged in hexagons which
are bonded to one another in the z-direction by
n-bonds formed by overlap of the p, orbitals. The
lengths of the ¢-bonds and the =-bonds are, re-
spectively, 14.2 and 34 nm. As the n-bonds are much
weaker than the o-bonds, this property facilitates
easy shearing of the sheets of hexagons and makes
graphite a good lubricating material.

e

Q/ C

Figure 5 The unit cell for the diamond cubic crystal structure.

/Y

e
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Figure 6 The crystal structure of graphite. The lines join atoms
in successive sheets which are aligned vertically.
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Figure 7 The phase diagram for carbon.

The phase diagram for carbon, presented as Figure
7, shows that a third allotrope, solid II, exists at
pressures in excess of 1000 atm, and that diamond is
metastable at low pressures. Diamonds are formed
under conditions of high pressure experienced in clay
pipes in the earth’s crust. It exists in the metastable
state at room temperature and pressure because of
the extensive rearrangement of atoms required for
the transformation from the diamond structure
to the graphite structure. At lower pressures, the
melting temperature of graphite increases with inc-
reasing pressure, and at higher pressure it decreases
with increasing temperature. Thus, at lower pres-
sures, the molar volume of graphite is lower than
that of liquid carbon and, at higher pressures, the
reverse is the case. At the “nose” of the melting
curve, the molar volumes of graphite and liquid have
the same value. The densities of diamond and grap-
hite at 298K and 1atm pressure are, respectively,
3.515 and 2.2 gem™.

The Allotropy of Sulfur

The phase diagram for sulfur, presented as Figure 8,
shows that sulfur can exist in a rhombic crystal struc-
ture and in a monoclinic crystal structure. The unit
cell of the rhombic form contains 128 atoms, existing
as 16 puckered rings of eight atoms which form Sg
molecules. Sulfur melts to form a translucent liquid,
which, when heated above 200°C, transforms to a
red, highly viscous form produced by the breaking
of the rings and the entanglement of the chains
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Figure 8 The phase diagram for sulfur.

produced. Amorphous or “plastic” sulfur can be ob-
tained by fast cooling of the crystalline form and this
amorphous phase also has a helical structure with
eight atoms per spiral. Sulfur is soluble in carbon di-
sulfide and is insoluble in water.

The complexity of rhombic sulfur allows easy
supercooling of the monoclinic form and has been
used as a means of providing experimental evi-
dence to substantiate Nernst’s heat theorem, also
known as the third law of thermodynamics. This
states that, at 0K, the entropy of any homogeneous
substance, which is in complete internal equilibrium,
can be taken as being zero. Summation of the in-
crease in molar entropy of rhombic sulfur when
heated from 0K to the temperature of transforma-
tion (38.86 JK™'), the molar entropy of transfor-
mation of rhombic to monoclinic sulfur at this
temperature (1.09 JK™!), and the change in the
molar entropy of monoclinic sulfur when cooled
from the transformation temperature to 0K (—37.8
J K1) gives the molar transformation of rhombic to
monoclinic sulfur at 0K as 0.15JK™'. This is less
than the experimental error involved and, thus, is
taken as an experimental verification of Nernst’s heat
theorem.
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The Polymorphism of Silica

Silicon, occurring below carbon in group 4 in the
periodic chart of the elements, undergoes sp® hy-
bridization of the 3s and 3p electrons to produce
energetically equivalent electron orbitals, which
point to the corners of a tetrahedron. In the crystal
structure of silica (SiO,), the sp® orbitals of
neighboring silicon atoms form bonds with oxygen
atoms, such that each silicon atom is tetrahedrally
coordinated by four oxygen atoms and each oxygen
atom is bonded to two silicons. The basic building
block in the silica structure is thus a tetrahedron, at
the center of which is a silicon atom with oxygen
atoms located at the four corners. The polymorphism
of silica arises from the number of ways in which
tetrahedra can be arranged to fill space and one such
arrangement is shown in Figure 9. The phase
diagram for silica, presented as Figure 10, shows
that, at pressures less than 10*atm, the polymorphs
are low quartz, high quartz, tridymite, and cristoba-
lite. At pressures between 10* and 10°atm, silica
exists as the polymorph coesite (first described by

Figure 9 The arrangement of SiO, tetrahedra.

L Coes, Jr. in 1953) and at pressures higher than
10° atm, stishovite is the polymorph. Stishovite dif-
fers from the other polymorphs, in that the silicon is
in octahedral coordination with oxygen. This poly-
morph was discovered in meteorites found in Russia
by Stishov. It is believed that the high force exerted
on the meteorite by contact with the surface of the
earth caused the tetrahedral coordination in silica to
transform to an octahedral coordination.

The differences in standard free energies of for-
mation, A(AG®), among the various polymorphs of
silica, using cristobalite as the reference state, are
shown in Figure 11. The relatively small differences
in the standard free energies among the polymorphs
arise because the enthalpies of formation (the —Si—-O-
Si— bond energies) of the polymorphs and the con-
figurational entropies of packing SiO4 tetrahedra
together are similar.

Figure 11 shows another representation of the po-
lymorphism of silica. The horizontal arrows represent
reconstructive transformations, which require bond
breaking and complete rearrangement of the SiO4
tetrahedra. Thus, although the differences in the
standard free energies of formation of the poly-
morphs, shown in Figure 11, are small, the high
energies of activation for these transformations are
such that the high-temperature polymorphs can be
undercooled easily. Used extensively in laboratory
and medical applications, silica glass is obtained by
supercooling liquid silica to form a metastable amor-
phous phase. The vertical arrows in Figure 12 rep-
resent displacive transformations, which do not
involve the breaking of bonds and, consequently, oc-
cur at relatively high rates. The sequence of transfor-
mations during gradual heating of f-quartz depends
on the purity of the quartz. When high-purity quartz
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Figure 10 The phase diagram for silica.
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Figure 12 Phase transformations in silica.

(<102 wt.% impurities) is heated, the p-quartz
transforms rapidly into a-quartz at 573°C. The o-
quartz is stable to ~1025°C, at which temperature it
transforms into a-cristobalite. However, if the quartz
contains impurities in solid solution, a-quartz trans-
forms to a-tridymite at ~870°C, which, on further
heating, transforms into a-cristobalite at 1470°C.
The observation of the influence of impurities
and the fact that most of the laboratory studies of
phase equilibria in silica were conducted under hy-
drothermal conditions cast doubt on the validity of
the phase relations shown in Figure 10. Evidence,
which suggests that tridymite is not a stable phase in
pure silica, but owes its existence to the presence of
impurity ions in the structure, has been provided.
This would make tridymite a polytype (same struc-
ture, different composition) rather than a poly-
morph. Two opinions have been expressed on this
topic. One suggests the elimination of the tridymite

1723°C
-~

1470°C

<«—»> -Cristobalite Melt

200-270°C

p-Cristobalite

phase and places the temperature of equilibrium be-
tween quartz and cristobalite at ~1025°C. The other
suggests that a sharp polymorphic transformation
exists between stable tridymite (designated “tridy-
mite-S”) and stable cristobalite at 1470°C and that
quartz and stable tridymite coexist at ~870°C. The
latter opinion is in accordance with the “classical”
picture shown as Figure 10.

The precious mineral opal, which has the for-
mula SiO, -#H,0, is a form of silica that is wholly
amorphous.

The Polymorphism of Zirconia

Zirconia, ZrQO,, has three polymorphs at atmospheric
pressure: a high-temperature cubic structure which
exists from 2370°C to the melting temperature of
2680°C, a low-temperature monoclinic structure
which exists at temperatures lower than 1174°C,
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and an intermediate tetragonal structure which is sta-
ble between 1174°C and 2370°C. The high-temper-
ature cubic form has the fluorite, CaF,, structure
shown in Figure 13. In this structure, the Zr*" cat-
ions occupy the corner and face-centered positions in
the f.c.c. lattice and the O?~ anions occur at the cen-
ters of the eight subcells described in Figure 5. The
unit cell, thus, contains four Zr** and eight O>~ ions.
The intermediate tetragonal form is a slightly de-
formed fluorite structure, and the low-temperature
monoclinic form, which occurs naturally as the min-
eral baddeleyite, has a structure in which Zr ion is

Figure 13 The unit cell for the zirconia cubic (fluorite) crystal
structure. The solid and white circles represent Zr and O,
respectively.

Figure 14 The crystal structure of monoclinic zirconia (bad-
deleyite). The solid and white circles represent Zr and O,
respectively.

coordinated by seven oxygen ions. This structure is
shown in Figure 14. The densities and specific
volumes of the three polymorphs are listed in Table 1.

The 4.6% decrease in density accompanying the
tetragonal to monoclinic transformation cannot be
sustained and the solid exfoliates by means of a
martensite shearing mechanism. The temperature at
which this transformation occurs on cooling decreas-
es with decreasing particle size. However, the high-
temperature cubic form can be stabilized to room
temperature by the substitution, for Zr**, of appro-
priately sized cations of valence less than 4. The
cations Ca?" and Y>' are used to produce lime-
stabilized zirconia (LSZ) and vyttria-stabilized zir-
conia (YSZ). LSZ is considerably less expensive than
YSZ. Several versions of the phase diagram for the
system ZrO,—CaO have been proposed and two of
them are shown in Figures 15 and 16.

Figure 15 shows the existence of the three poly-
morphs of ZrO, and contains the line compound
CaO -4ZrO,, which undergoes incongruent decom-
position at 1310°C. Figure 15 also shows that the

Table 1 The densities and specific volumes of the polymorphs
of zirconia

Polymorph p (kgm®) V(m’kg ")
Cubic 6090 0.00163
Tetragonal 6100 0.001 64
Monoclinic 5830 0.00172
3000 T T T T
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3
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Figure 15 One version of the phase diagram for ZrO,—CaO.
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Figure 16 Another version of the phase diagram for the system ZrO,—CaO.

substitution of Ca " ions for Zr* ™ in cubic zirconia
stabilizes the cubic structure only to 1140°C, at which
temperature it undergoes a eutectoid decomposition
to tetragonal zirconia and CaO -4ZrO,. It is known
that the substitution of Ca for Zr stabilizes the cubic
structure to room temperature, but it is unlikely that
supercooled cubic zirconia will maintain a metasta-
ble existence at temperatures near 700°C, at which it
is used as an oxygen sensing device. On the other
hand, Figure 16 shows the existence of lime-stabi-
lized-cubic zirconia at room temperature, but does
not show the existence of cubic zirconia in the pure
state. Figure 17 shows the phase diagram for the
system ZrO,-YOq s, in which it is seen that the sub-
stitution of Zr" ions for Zr** ions stabilizes the cu-
bic phase at room temperature.

Stabilized cubic zirconia is a practical ceramic ma-
terial used as the solid-state electrolyte in a cell used
for measuring the partial pressure (or thermodynam-
ic activity) of oxygen in a gaseous or liquid medium.
Electroneutrality requires that the substitution of a
Ca”* ion for a Zr*" ion in cubic zirconia be accom-
panied by the formation of a vacant site of the
oxygen anion sublattice. Hence, x moles of CaO +
(I —x) moles of ZrO; contain (x + 2 — 2x) = (2 — x)
moles of O®™ and x moles of vacant sites. Thus, the
fraction of vacant sites is x/(2 —x+x) = 0.5x.
Figure 16 shows that the percent of vacant oxygen
sites in stabilized cubic zirconia can be as high as

3000 T T T

2500

2000

1500
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0 5 10 15 20
ZrO, YO, 5 (mol. %)

Figure 17 The phase diagram for the system ZrO,—YOq s.

12-13%. This high percentage of vacant sites
imparts high diffusivity of oxygen in cubic zirconia
at elevated temperatures. The working of a lime-
stabilized cubic zirconia EMF cell is illustrated in
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Figure 18 The working of an LSZ solid-state oxygen sensor.

Figure 18. The half-cell reaction at the cathode is
%Oz(gas) +2e” -0

and the half-cell reaction at the anode is
0% 52e™ + 10 (g)

This gives the cell reaction as Oy(P = Py, T)=
O, (P = Pjyy, T) for which

AG = RT In Do
Phigh
and as
AG = —2FE = RT In D22
02(high)
then
E_ KT Pouw
4F pol(hlgh)

where E is the measured EMF of the cell, F is
Faraday’s constant, and z is the number of electrons
transferred by the electrochemical cell reaction. In the
use of the oxygen sensor where the value of one of the
oxygen pressures is known, measurement of the EMF
of the cell and the temperature allows the unknown
oxygen pressure to be determined. The oxygen
content of liquid steel is measured routinely by im-
mersion of a disposable LSZ cell in the steel bath in
the converter.

Stabilized cubic zirconia is also used as an elec-
trolyte in a hydrogen generator, in which water vapor
is decomposed to produce hydrogen gas at the cath-
ode and oxygen gas at the anode. Also, it is used in a
fuel cell in which electric power is produced by the
oxidation of CO or H, at the anode and the reduc-
tion of oxygen gas at the cathode.

See also: Alloys: Iron; Alloys: Overview; Ceramic Mate-
rials; Electronic Structure (Theory): Molecules; Irrever-
sible Thermodynamics and Basic Transport Theory in
Solids; Molecular Crystallography; Phase Transformation;
Phases and Phase Equilibrium; Thermodynamic Proper-
ties, General.

PACS: 82.60.Fa;
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81.30.Bx; 81.30.Dz; 61.50.Ks;
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Nomenclature

constant pressure molar heat capacity
gK)

electromotive force (V)

Faraday’s constant = 96 487 Cmol ™!
molar Gibbs free energy (J)

molar enthalpy (])

pressure (atm or Pa)

saturated vapor pressure (atm or Pa)
universal gas constant (8.3144JK™!
mol™)

molar entropy (JK™)

temperature (K)

specific volume (m?®kg™)

number of electrons transferred in an
electrochemical reaction

specific density (kgm™)
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Introduction

Aluminum is the third most abundant element in the
earth’s crust but because it is so reactive with other
elements it is not found in the native state. Hans
Christian Oersted (1777-1851), a Danish physicist
and chemist, was successful in isolating aluminum in
a pure form in 1835. Sir Humphrey Davy (1778-
1829) had previously been unsuccessful at such at-
tempts, but it was Davy who named the element
“aluminum,” the name used in the US. The rest of the
world uses the term “aluminium.” Until 1886 a
chemical process was used to produce aluminum,
which employed crystals of corundum that were
chemically converted to aluminum chloride and then
reduced with metallic sodium to form salt and me-
tallic aluminum. From 1825 to 1886, aluminum was
primarily used for jewelry and as expensive table-
ware due to the difficulty and cost of extracting it
from its ore. During the construction of the
Washington Monument, the world’s tallest structure
of that period, a material was needed to top off the
structure and to serve as a lightning rod. A cast
aluminum pyramid was produced by William
Frishmuth in 1884 and mounted on the top. It was
the largest aluminum casting ever produced and was
the first architectural application of this metal.

In 1886, Charles Martin Hall (1863-1914) in the
US and Paul-Louis Toussaint Héroult (1863-1914) in
France simultaneously developed an economical
electrochemical method of producing aluminum,
which ultimately led to its widespread use through-
out the world. Their invention replaced the chemical
reduction process and lowered the metal’s cost from
$15/pound in 1884 to $0.50/pound in 1890. The
versatility of aluminum has resulted in it replacing
many older, more established materials, and it is now
consumed, on a volumetric basis, more than all other
nonferrous metals combined, including copper, lead,
and zinc.

Aluminum is light, ductile, has good electrical and
thermal conductivity, and can be made strong by al-
loying. It has a low density of 2.7gcm ~* compared
to that of iron (7.9 gcm ?) due to its low atomic
mass of 27. The ductility and formability of alumi-
num is due to the high symmetry and thermodyic
stability of the face-centered cubic (f.c.c.) lattice
and its high stacking-fault energy. In the pure form,

aluminum has a low stiffness, E, of 70 GPa compared
to 211 GPa for iron, and low tensile strength,
80 MPa, compared to 300 MPa for iron. However,
its specific modulus, that is, modulus divided by
density, is almost equal to that for iron, titanium, and
magnesium. An advantageous chemical property of
aluminum is its reactivity with oxygen, which leads
to the formation of a dense layer of Al,O3 on the
surface, which shields the base metal from further
environmental interactions.

Pure aluminum is not used commercially because
of its low strength, but this property can be improved
by alloying elements. A major metallurgical
development occurred in 1906 when Alfred Wilm
(1869-1937) discovered the process of “age harden-
ing” in aluminum alloys. Wilm was conducting re-
search directed toward improving the strength of
aluminum alloys. He knew that steel could be
strengthened if the right compositions were cooled
fast enough from high temperatures, so following
this recipe he heated some alloys of aluminum con-
taining 3.5-5.5wt.% copper, plus less than 1%
magnesium and manganese, to a high temperature
and quenched them in water. To his frustration,
many of the alloys he tested were softer after quench-
ing than before the heat treatment. However, after a
few days he found that their hardness and tensile
properties had increased considerably. One of the
alloys, designated Duralumin, is still in use today.
Much later, in 1919, Merica, Waltenberg, and Scott
explained the phenomenon, which is due to nano-
sized clustering and precipitation of solute atoms
from the supersaturated solid solution. However,
these nano-microstructural features are too small to
be resolved by optical microscopy and were only in-
ferred by the X-ray diffraction studies of Guinier and
Preston in 1938. Direct proof was not obtained until
the development of transmission electron microscopy
in 1959. Duralumin is probably the first example of a
nanostructured material developed by humans.

Aluminum alloys are classified as heat-treatable or
non-heat-treatable, depending on whether or not
they undergo precipitation (age) hardening. There
are also two different product forms of aluminum
alloys; wrought alloys that have been worked or de-
formed after casting and casting alloys, which are
used in the “as-cast” condition. Wrought aluminum
alloys are normally designated by a four-digit nu-
merical system developed by the Aluminum Associ-
ation. The nomenclature has now been accepted by
most countries and is called the International Alloy
Designation System (IADS). The system used for
wrought alloys is slightly different from that used for
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cast alloys; however, the first digit designates the al-
loy group and is essentially the same for both
wrought and cast alloys. The alloy group is associ-
ated with the major alloy addition and the second
digit indicates modification of the original alloy or
impurity limits. The last two digits identify the spe-
cific aluminum alloy. Experimental alloys also use
this system, but are indicated as experimental by the
prefix X. The 1XXX alloys contain a minimum of
99% aluminum. The major alloying addition in the
2XXX series is copper; it is manganese for 3XXX,
silicon for 4XXX, magnesium for 5XXX, magne-
sium and silicon for 6XXX, zinc for 7XXX, and
8XXX is used for others (tin for casting alloys). A
first digit of 9 is not used for wrought alloys but is
used for other alloy additions for casting alloys.

The designation system is slightly different for
casting alloys although, as mentioned, the first digit
still refers to the major alloying element. The second
and third digits serve to identify a particular com-
position. These three digits are followed by a decimal
point, which is followed by a zero to indicate a cas-
ting. Often, a letter prefix is used to denote either an
impurity level or the presence of a secondary alloying
element. These letters are assigned in alphabetical
sequence starting with A but omitting I, O, Q, and X.
X is reserved for experimental alloys. For example,
A201.0 has a higher purity than the original 201.0.

The heat-treatment or temper-nomenclature sys-
tem developed by the Aluminum Association has also
been adopted as part of the IADS by most countries.
It is used for all forms of wrought and cast aluminum
alloys with the exception of ingot. The system is
based on the treatments used to develop the various
tempers and takes the form of letters added as suf-
fixes to the alloy number. One or more digits fol-
lowing the letter indicate subdivisions of the tempers,
when they significantly influence the characteristics
of the alloy. Alloys supplied in the as-fabricated or
annealed condition are designated with the suffixes F
and O, respectively. The letter W designates those
supplied in the solution heat-treated condition.
Alloys supplied in the strain-hardened condition are
designated with the letter H and those in the heat-
treated condition with the letter T. Digits following
H represent the degree of strain hardening and those
following T the type of aging treatment.

Processing of Aluminum Alloys

In fabricating aluminum alloy products, the alumi-
num alloy composition is made by adding the alloy-
ing elements to molten aluminum, usually in the form
of a concentrated hardener or master alloy, with the
requisite purity. Two types of alloying elements are

normally added: those for strength and those to
control the grain structures that precipitate as “di-
spersoids.” During solidification of the ingot, some of
the alloying elements and impurities may precipitate
out of the aluminum, forming coarse “constituent”
particles within the ingot. For wrought products,
additional precipitation of the alloying elements may
occur as the ingot is worked down to the final prod-
uct form (such as sheet or plate).

The “constituent” particles potentially impair the
properties of the final product in several ways. By
tying up alloying elements that are added on purpose
to develop the desired properties, these elements are
not available to impart strength and other beneficial
properties to the aluminum alloy. In addition, the
constituent particles are more brittle than the sur-
rounding aluminum and, by fracturing under stress,
form and promote the growth of cracks and hence
impair beneficial mechanical properties. One typical
goal of aluminum alloy processing is to reduce the
size and amount of the constituent particles in the
aluminum alloy product.

Beginning with the as-cast ingot, conventional
processing includes a homogenization treatment. This
is the stage where dispersoids normally form. For al-
loys used in the as-cast condition, homogenization
may be the final treatment for non-heat-treatable al-
loys, but for age-hardenable alloys further heat treat-
ments will be required. For wrought alloys, hot
working follows the homogenization for ingot break-
down and shape change to the appropriate product
form. Since aluminum and its alloys have high stack-
ing-fault energy, sufficient dynamic recovery normal-
ly occurs during hot deformation to give rise to a
stable polygonized substructure, an example of which
is shown in the transmission electron micrograph of
Figure 1. The grains elongate in the direction of metal
flow and do not recrystallize. An example of the grain
structure of a hot-worked aluminum-alloy plate is
shown in Figure 2. The dispersoids, and any constit-
uents and primary phases that may be present, are
strung out in the working direction; their spacing in-
creases in the working direction and decreases nor-
mal to the working direction. In some cases large
constituent phases, if present, are broken up during
the working operation. The fine distribution of di-
spersoids associated with Cr, Mn, or Zr additions
delays or prevents static recrystallization and aids in
retaining the elongated or “pancake-shaped” grains
during subsequent processing. After processing for
shape change, non-heat-treatable alloys may then be
cold worked and/or annealed to develop the desired
strength, and heat-treatable alloys may be solution-
ized, quenched, in some cases stretched to remove
residual stresses developed during quenching or for
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Figure 1 Subgrain structure in a hot-rolled Al-Cu-Mg-Li—Zr
alloy.

Fig