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Trigonometry 

Introduction 
Trigonometery is the study of triangles. “Tri” is Ancient Greek word for three, 
“gon” means side, “metry” measurementtogether they make “measuring 
three sides”. If you know some facts about a triangle, such as the lengths of 
it sides, then using trignometry you can find out other facts about that 
triangleits area, its angles, its center, the size of the largest circle that can be 
drawn inside it. As a consequencethe Ancient Greeks were able to use 
trigonometery to calculate the distance from the Earth to the Moon. 

Trigonometry starts by examining a particularly simplified trianglethe right-
angle triangle. More complex triangles can be built by joining right-angle 
triangles together. More complex shapes, such as squares, hexagons, circles 
and ellipses can be constructed from two or more triangles. Ultimately, the 
universe we live in, can be mapped through the use of triangles. 

Trigonometry is an important, fundamental step in your mathematical 
education. From the seemingly simple shape, the right triangle, we gain tools 
and insight that help us in further practical as well as theoretical endeavors. 
The subtle mathematical relationships between the right triangle, the circle, 
the sine wave, and the exponential curve can only be fully understood with a 
firm basis in trigonometry. 

Trigonometry is a system of mathematics, based generally on circles and 
triangles, that is used to solve complex problems (again, mainly involving 
circles and triangles). Extensions of various algebraic formulas, namely the 
Pythagorean theorem, are utilized. 

 In Review 

Here are some useful formulas that should be learned before delving into 
trigonometry: 

Pythagorean Theorema2 + b2 = c2, in a right triangle where a and b are the two sides, 
and c is the hypotenuse.  

Pythagorean Triples3-4-5 (the two smaller values being the sides, with the larger the 
hypotenuse), 5-12-13, 7-24-25, 8-15-17, and any multiples of these (including 6-8-10, 
10-24-26, etc.)  

 Properties of Special Right Triangles 



In a 45-45-90 right triangle, i.e., an isosceles right triangle, let one leg be x. 

The hypotenuse is then x  In a 30-60-90 right triangle, let the short leg, 
i.e. the leg opposite the 30° angle, be x. The hypotenuse is then equal to 2x 

and the longer leg, i.e. the leg opposite the 60° angle, is equal to x* . 



In simple terms 

Simple introduction 

Introduction to Angles 

If you are unfamiliar with angles, where they come from, and why they are 
actually required, this section will help you develop your understanding. 

 

An angle between two lines in a 2-
dimesional plane 
In two dimensional flat space, two lines that are not parallel lines meet at an 
angle. Suppose you wish to measure the angle between two lines exactly so 
that you can tell a remote friend about itdraw a circle with its center located 
at the meeting of the two lines, making sure that the circle is small enough 
to cross both lines, but large enough for you to measure the distance along 
the circle’s edge, the circumference, between the two cross points. Obviously 
this distance depends on the size of the circle, but as long as you tell your 
friend both the radius of the circle used, and the length along the 
circumference, then your friend will be able to reconstruct the angle exactly. 

 Triangle Definition 

We know that triangles have three sideseach side is a lineif we choose any 
two sides of the triangle, then we have chosen two lines, which must 
therefore meet at an angle. There are three ways that we can pick the two 
sides, so a triangle must have three angleshence tri-angles, shortened to 
triangle. 

This argument does not always work in reverse though. If you give me three 
angles, for example three right angles, I cannot make a triangle from them. 
This is also a problem with sidesI can give you three lengths that do not 
make the sides of a triangleyour height, the height of the nearest tree, the 
distance from the top of the tree to the center of the sun. 



 Triangle Ratios 

Angles are not affected by the length of linesan angle is invariant under 
transformations of scale. Given the three angles of a known triangle, you can 
draw a new triangle that is similar to the old triangle but not necessarily 
congruent. Two triangles are called similar if they have the same angles as 
each other, they are congruent if they have the same size angles and 
matching sides have the same length. Given a pair of similar triangles, if the 
lengths of two matching sides are equal, then the lengths of the other sides 
are also equal, and so the triangles are congruent. More generally, the ratios 
of the lengths of matching pairs of sides between two similar triangles are 
equal. In particular, a triangle can be divided into 4 congruent triangles by 
connecting the mid-points on the sides of the original triangle together, each 
congruent triangle is similar on half scale to the original triangle. 

Consequently, angles are useful for making comparisons between similar 
triangles. 

 Right Angles 

An angle of particular significance is the right-anglethe angle at each corner 
of a square or a rectangle. Indeed, a rectangle can always be divided into 
two triangles by drawing a line through opposing corners of the rectangle. 
This pair of triangles has interesting properties. First, the triangles are 
identical. Second, they each have one angle which is a right-angle. 

Imagine sitting at a table drawing a rectangle on a sheet of paper, and then 
dividing the rectangle into a pair of triangles by drawing a line from one 
corner to another. Perhaps the two triangles are different? A friend could sit 
on the other side of the table and draw the exact same thing by re-using 
your lines. The triangle nearest you has been produced by the exact same 
process as the triangle nearest your friend, therefore the two triangles are 
congruent, that is, identical. Try cutting a rectangle into two triangles to 
check. 

Each triangle of this pair of triangles has one right anglethe rectangle has 
four right-angles, we split two of them by drawing from corner to corner, the 
remaining two were distributed equally to the identical triangles, so each 
triangle got one right-angle. 

Thus every right angled triangle is half a rectangle. 

A rectangle has four sides of two different lengthstwo long sides and two 
short sides. When we split the rectangle into two identical right angled 
triangles, each triangles got a long side and a short side from the rectangle, 



each triangle also got a copy of the split line. The split line has a Greek 
name”hypotenuse”, Trigonometry has been defined as ‘Many cheerful facts 
about the square of the hypotenuse’. 

So the area of a right angled triangle is half the area of the rectangle from 
which it was split. Looking at a right angled triangle we can tell what the long 
and short sides of that rectangle were, they are the sides, the lines, that 
meet at a right angle. The area of the rectangle is the long side times the 
short side. The area of a right angled triangle is therefore half as much. 

 Right Triangles and Measurement 

Given a right angled triangle, we could split the right angle into two equal, 
binary, halves using the following procedureusing a compass, draw a circle 
whose center is where the two right angled sides meet (rememberthe long 
and the short side from the rectangle meet at the right angle), make the 
radius of the circle the same as the length of the short side. Mark where the 
circle crosses the long sidedraw a circle around this mark whose radius is the 
length of the hypotenuse. Draw another circle with radius the length of the 
hypotenuse centered on the point at which the hypotenuse meets the short 
side. These last two circles will meet at two points. Draw a line between 
these two points and observe that the line splits the right angle into two 
equal angles. 

Either of these new equal angles could again be split into two more equal, 
binary, halves using the same procedure. This process can be continued 
indefinately to get angles as small as we like. We can add and subtract these 
new angles together bydrawing a line and marking a point on it, then after 
choosing any two fractions of the right-angle, juxtapositioning each one so 
that its point split from the original right angle point touches the point 
marked on the line and one of its sides lies along the line. The new angle 
formed is a new binary fraction of the right angle. 

So by splitting the right angle and recombining the angles so created, we can 
get a whole new range of angles. In principle we could use these binary 
fractions of the right angle to measure any unknown angle by finding the 
best fitting binary fraction of the right angle. This measure would 
be”Measurement of angles in binary fractions of a right angle” a system for 
measuring the size of angles in which the size of the right-angle is considered 
to be one, just as in measuring length, the size of the Olde King’s foot is 
considered to be one. 



 Introduction to Radian Measure 

Of course, it is equally possible to start with a different sized angle split into 
binary fractions. We might consider the angle made by half a circle to be 
one, or the angle made by a full circle to be one. 

Trigonometry is simplified if we choose the following strange angle as 
oneDraw a circle, draw a radius of the circle, and then from the point where 
the radius meets the circumference of the circle, measure one radius length 
along the circumference of the circle moving counterclockwise and make a 
mark. Draw a line from this mark back to the center of the circle. The angle 
so formed is considered to be of size one in trigonometry; in order to tell 
your friends that this is the method you were using, you would say 
‘measuring in radians’. 

Does it matter what size circle is used to measure in radians? Perhaps in 
large circles using one radius length along the circumference will produce a 
different angle than that produced by a small circle? When measuring out 
one radius length along the circumference of the circle we might proceed as 
followsuse a bit of string of length one radius of the circle, and stick one end 
to the starting point. Stick a small loop on the other end of the string and 
thread it onto the circumference. Move the loop along the circumference until 
the string is pulled tight. The end of the string must reach beyond one 
radian, because the string is now in a straight line with the circumference 
taking a longer path outside. To fix this, find the half way point of the string, 
stick a loop there, thread it onto the circumference of the circle and pull the 
string until it is tight. The end point of the string is now closer to the one 
radian mark because the string follows the circumference more closely, 
although still cutting across, this time in two sections. We can keep on 
improving the fit of the string against the circumference by dividing each new 
section of the string in half, sticking on a loop, threading the loop onto the 
circumference and pulling the string tight. 

If we were to draw lines between neighboring loops where they touch the 
circumference and from each loop to the center of the circle, we would get a 
lot of isoceles triangles whose longest sides were one circle radius in length. 

Now draw a small circle inside the first circle, with the same center, but with 
half the radius. It too has lots of isoceles triangles extending from its center 
to its circumference whose longest sides are one new circle radius. The 
longest sides of the new isoceles triangles are half the size of the matching 
sides in the old isoceles triangles. The old and new isoceles triangles share a 
common apex angle, and because they are isoceles, their other angles must 
also match. Therefore the old and new isoceles triangles are similar with half 
scale. Therefore the short edges of the new isoceles triangles are half the 



size of the old ones. Therefore the total length of the short sides of the new 
triangles is close to half the length of the old radius, that is close to the 
length of the radius of the new circle. Hence the new triangles also delimit an 
angle as close to one radian as we like. Hence the definition of an angle of 
one radian is unaffected by the size of the circle used to define it. 

 Using Radians to Measure Angles 

Once we have an angle of one radian, we can chop it up into binary fractions 
as we did with the right angle to get a vast range of known angles with which 
to measure unknown angles. A protractor is a device which uses this 
technique to measure angles approximately. To measure an angle with a 
protractorplace the marked center of the protractor on the corner of the 
angle to be measure, align the right hand zero radian line with one line of the 
angle, and read off where the other line of the angle crosses the edge of the 
protractor. A protractor is often transparent with angle lines drawn on it to 
help you measure angles made with short linesthis is allowed because angles 
do not depend on the length of the lines from which they are made. 

If we agree to measure angles in radians, it would be useful to know the size 
of some easily defined angles. We could of course simply draw the angles 
and then measure them very accurately, though still approximately, with a 
protractorhowever, then we would then be doing physics, not mathematics. 

The ratio of the length of the circumference of a circle to its radius is defined 
as 2π, where π is an invariant independent of the size of the circle by the 
argument above. Hence if we were to move 2π radii around the 
circumference of a circle from a given point on the circumference of that 
circle, we would arrive back at the starting point. We have to conclude that 
the size of the angle made by one circuit around the circumference of a circle 
is 2π radians. Likewise a half circuit around a circle would be π radians. 
Imagine folding a circle in half along an axis of symmetrythe resulting crease 
will be a diameter, a straight line through the center of the circle. Hence a 
straight line has an angle of size π radians. 

The angles of a triangle add up to a half circle angle, that is, an angle of size 
π radians. To see this, draw any triangle, mark the midpoints of each side 
and connect them with lines to subdivide the original triangles into 4 similar 
copies at half scale. A copy of each of the original triangles three interior 
angles are juxtapositioned at each mid point, demonstrating that for any 
triangle the interior angles sum to a straight line, that is an angle of size π 
radians. This is true in particular for right angled triangles, which always 
have one angle of size π/2 radians, therefore the other two angles must also 
sum to a total size of π - π/2 = π/2 radians. If two sides of a right angled 



triangle have equal lengths, i.e. it is an isoceles right angled triangle, then 
each of the two other angles must be of size ½*π/2 = π/4 radians. 

Folding a half circle in half again produces a quarter circle which must 
therefore have an angle of size π/2 radians. Is a quarter circle a right angle? 
To see that it isdraw a square whose corner points lie on the circumference 
of a circle. Draw the diagonal lines that connect opposing corners of the 
square, by symmetry they will pass through the center of the circle, to 
produce 4 similar triangles. Each such triangle is isoceles, and has an angle 
of size 2π/4 = π/2 radians where the two equal length sides meet at the 
center of the circle. Thus the other two angles of the triangles must be equal 
and sum to π/2 radians, that is each angle must be of size π/4 radians. We 
know that such a triangle is right angled, we must conclude that an angle of 
size π/2 radians is indeed a right angle. 

 Interior Angles of Regular Polygons 

To demonstrate that a square can be drawn so that each of its four corners 
lies on the circumference of a single circleDraw a square and then draw its 
diagonals, calling the point at which they cross the center of the square. The 
center of the square is (by symmetry) the same distance from each corner. 
Consequently a circle whose center is co-incident with the center of the 
square can be drawn through the corners of the square. 

A similar argument can be used to find the interior angles of any regular 
polygon. Consider a polygon of n sides. It will have n corners, through which 
a circle can be drawn. Draw a line from each corner to the center of the circle 
so that n equal apex angled triangles meet at the center, each such triangle 
must have an apex angle of 2π/n radians. Each such triangle is isoceles, so 
its other angles are equal and sum to π - 2π/n radians, that is each other 
angle is (π - 2π/n)/2 radians. Each corner angle of the polygon is split in two 
to form one of these other angles, so each corner of the polygon has 2*(π - 
2π/n)/2 radians, that is π - 2π/n radians. 

This formula predicts that a square, where the number of sides n is 4, will 
have interior angles of π - 2π/4 = π - π/2 = π/2 radians, which agrees with 
the calculation above. 

Likewise, an equilateral triangle with 3 equal sides will have interior angles of 
π - 2π/3 = π/3 radians. 

A hexagon will have interior angles of π - 2π/6 = 4π/6 = 2π/3 radians which 
is twice that of an equilateral trianglethus the hexagon is divided into 
equilateral triangles by the splitting process described above. 



 Summary and Extra Notes 

In summaryit is possible to make deductions about the sizes of angles in 
certain special conditions using geometrical arguments. However, in general, 
geometry alone is not powerful enough to determine the size of unknown 
angles for any arbitrary triangle. To solve such problems we will need the 
help of trigonmetric funcions. 

In principle, all angles and trigonometric functions are defined on the unit circle. The 
term unit in mathematics applies to a single measure of any length. We will later apply 
the principles gleaned from unit measures to a larger (or smaller) scaled problems. All the 
functions we need can be derived from a triangle inscribed in the unit circleit happens to 
be a right-angled triangle.  

 

A Right Triangle 

The center point of the unit circle will be set on a Cartesian plane, with the 
circle’s centre at the origin of the plane — the point (0,0). Thus our circle will 
be divided into four sections, or quadrants. 

Quadrants are always counted counter-clockwise, as is the default rotation of 
angular velocity ω (omega). Now we inscribe a triangle in the first quadrant 
(that is, where the x- and y-axes are assigned positive values) and let one 
leg of the angle be on the x-axis and the other be parallel to the y-axis. (Just 
look at the illustration for clarification). Now we let the hypotenuse (which is 
always 1, the radius of our unit circle) rotate counter-clockwise. You will 
notice that a new triangle is formed as we move into a new quadrant, not 
only because the sum of a triangle’s angles cannot be beyond 180°, but also 
because there is no way on a two-dimensional plane to imagine otherwise. 

 Angle-values simplified 

Imagine the angle to be nothing more than exactly the size of the triangle 
leg that resides on the x-axis (the cosine). So for any given triangle inscribed 
in the unit circle we would have an angle whose value is the distance of the 



triangle-leg on the x-axis. Although this would be possible in principle, it is 
much nicer to have a independent variable, let’s call it phi, which does not 
change sign during the change from one quadrant into another and is easier 
to handle (that means it is not necessarily always a decimal number). 

!!Notice that all sizes and therefore angles in the triangle are mutually 
directly proportional. So for instance if the x-leg of the triangle is short the y-
leg gets long. 

That is all nice and well, but how do we get the actual length then of the 
various legs of the triangle? By using translation tables, represented by a 
function (therefore arbitrary interpolation is possible) that can be composed 
by algorithms such as taylor. Those translation-table-functions (sometimes 
referred to as LUT, Look up tables) are well known to everyone and are 
known as sine, cosine and so on. (Whereas of course all the abovementioned 
latter ones can easily be calculated by using the sine and cosine). 

In fact in history when there weren’t such nifty calculators available, printed 
sine and cosine tables had to be used, and for those who needed interpolated 
data of arbitrary accuracy - taylor was the choice of word. 

So how can I apply my knowledge now to a circle of any scale. Just multiply 
the scaling coefficient with the result of the trigonometric function (which is 
referring to the unit circle). 

And this is also why cos(φ)2 + sin(φ)2 = 1, which is really nothing more than a 
veiled version of the pythagorean theoremcos(φ) = a;sin(φ) = b;a2 + b2 = c2, 
whereas the c = 12 = 1, a peculiarity of most unit constructs. Now you also see 
why it is so comfortable to use all those mathematical unit-circles. 

Another way to interprete an angle-value would beA angle is nothing more 
than a translated ‘directed’-length into which the information of the actual 
quadrant is packed and the applied type of trigonometric function along with 
its sign determines the axis (‘direction’). Thus something like the translation 
of a (x,y)-tuple into polar coordinates is a piece of cake. However due to the 
fact that information such as the actual quadrant is ‘translated’ from the sign 
of x and y into the angular value (a multitude of 90) calculations such as for 
instance the division in polar-form isn’t equal to the steps taken in the non-
polar form. 

Oh and watch out to set the right signs in regard to the number of quadrant 
in which your triangle is located. (But you’ll figure that out easily by 
yourself). 



I hope the magic behind angles and trigonometric functions has disappeared 
entirely by now, and will let you enjoy a more in-depth study with the text 
underneath as your personal tutor. 

 
 Radian and Degree Measure 

 A Definition and Terminology of Angles 

An angle is determined by rotating a ray about its endpoint. The starting 
position of the ray is called the initial side of the angle. The ending position of 
the ray is called the terminal side. The endpoint of the ray is called its vertex. 
Positive angles are generated by counter-clockwise rotation. Negative angles 
are generated by clockwise rotation. Consequently an angle has four partsits 
vertex, its initial side, its terminal side, and its rotation. 

An angle is said to be in standard position when it is drawn in a cartesian 
coordinate system in such a way that its vertex is at the origin and its initial 
side is the positive x-axis. 

 

 The radian measure 

One way to measure angles is in radians. To signify that a given angle is in 
radians, a superscript c, or the abbreviation rad might be used. If no unit is 
given on an angle measure, the angle is assumed to be in radians. 

 

 Defining a radian 



A single radian is defined as the angle formed in the minor sector of a circle, 
where the minor arc length is the same as the radius of the circle. 

 
Defining a radian with respect to the unit circle. 

 

 

 Measuring an angle in radians 

The size of an angle, in radians, is the length of the circle arc s divided by the 
circle radius r. 

 



 

Measuring an Angle in Radians 

We know the circumference of a circle to be equal to 2πr, and it follows that a 
central angle of one full counterclockwise revolution gives an arc length (or 
circumference) of s = 2πr. Thus 2 π radians corresponds to 360°, that is, there 
are 2π radians in a circle. 

 Converting from Radians to Degrees 

Because there are 2π radians in a circle: 

To convert degrees to radians: 

 

To convert radians to degrees: 

 

 Exercises 

 Exercise 1 

Convert the following angle measurements from degrees to radians. Express 
your answer exactly (in terms of π). 

a) 180 degrees 

b) 90 degrees 

c) 45 degrees 

d) 137 degrees 

 Exercise 2 



Convert the following angle measurements from radians to degrees. 

5.  

6.  

7.  

8.  

 Answers 

 Exercise 1 

a) π 

b)  

c)  

d)  

 Exercise 2 

a) 60° 

b) 30° 

c) 420° 

d) 135° 

The Unit Circle 
The Unit Circle is a circle with its center at the origin (0,0) and a radius of 
one unit. 



 

The Unit Circle 

Angles are always measured from the positive x-axis (also called the “right 
horizon”). Angles measured counterclockwise have positive values; angles 
measured clockwise have negative values. 

A unit circle with certain exact values marked on it is available at Wikipedia. 
It is well worth the effort to memorize the values of sine and cosine on the 
unit circle (cosine is equal to x while sine is equal to y) included in this link. 

 
 

 



Trigonometric-Angular 
Functions 

 Geometrically defining sine and cosine 

In the unit circle shown here, a unit-length radius has been drawn from the 
origin to a point (x,y) on the circle. 

Image:Defining sine and cosine.png  
Defining sine and cosine 

A line perpendicular to the x-axis, drawn through the point (x,y), intersects 
the x-axis at the point with the abscissa x. Similarly, a line perpendicular to 
the y-axis intersects the y-axis at the point with the ordinate y. The angle 
between the x-axis and the radius is α. 

We define the basic trigonometric functions of any angle α as follows: 

 

tanθ can be algebraically defined. 

 

 

These three trigonometric functions can be used whether the angle is 
measured in degrees or radians as long as it specified which, when 
calculating trigonometric functions from angles or vice versa. 

 Geometrically defining tangent 

In the previous section, we algebraically defined tangent, and this is the 
definition that we will use most in the future. It can, however, be helpful to 
understand the tangent function from a geometric perspective. 



 
Geometrically defining tangent 

A line is drawn at a tangent to the circlex = 1. Another line is drawn from the 
point on the radius of the circle where the given angle falls, through the 
origin, to a point on the drawn tangent. The ordinate of this point is called 
the tangent of the angle. 

 Domain and range of circular functions 

Any size angle can be the input to sine or cosine — the result will be as if the 
largest multiple of 2π (or 360°) were subtracted from the angle. The output 
of the two functions is limited by the absolute value of the radius of the unit 
circle, | 1 | . 

 

R represents the set of all real numbers. 

No such restrictions apply to the tangent, however, as can be seen in the 
diagram in the preceding section. The only restriction on the domain of 



tangent is that odd integer multiples of are undefined, as a line parallel to 
the tangent will never intersect it. 

 

 Applying the trigonometric functions to a 
right-angled triangle 

If you redefine the variables as follows to correspond to the sides of a right 
triangle: 
- x = a (adjacent) 
- y = o (opposite) 
- a = h (hypotenuse) 



Right Angle Trigonometry 

Construction of Right Triangles 
Right triangles are easily constructed: 

1. Construct a diameter of a circle. Call the points where the diameter 
cuts the circle a and b.  

2. Choose a distinct point c on the circle.  
3. Construct line segments connecting these three points.  

Then ∆abc is a right triangle. This right triangle can be further divided into 
two isosceles triangles by adding a line segment from c to the center of the 
circle. 

To simplify the following discussion, we specify that the circle has diameter 1 
and is oriented such that the diameter drawn above runs left to right. We 
shall denote the angle of the triangle at the right θ and that at the left φ. The 
sides of the right triangle will be labeled, starting on the right, a, b, c, so that 
a is the rightmost side, b the leftmost, and c the diameter. We know from 
earlier that side c is opposite the right angle and is called the hypotenuse. 
Side a is opposite angle φ, while side b is opposite angle θ. We reiterate that 
the diameter, now called c, shall be assumed to have length 1 except where 
otherwise noted. 

By constructing a right angle to the diameter at one of the points where it 
crosses the circle and then using the method outlined earlier for producing 
binary fractions of the right angle, we can construct one of the angles, say θ, 
as an angle of known measure between 0 and π / 2. The measure of the 
other angle φ is then π - π/2 - θ = π/2 - θ, the complement of angle θ. 
Likewise, we can bisect the diameter of the circle to produce lengths which 
are binary fractions of the length of the diameter. Using a compass, a binary 
fractional length of the diameter can be used to construct side a (or b) 
having a known size (with regard to the diameter c) from which side b can be 
constructed. 

Using Right Triangles to find 
Unknown Sides 



Finding unknown sides from two other 
sides 

From the Theorem of Pythagoras, we know that: 

 

, c has been defined as of length one, so that: 

 

and we can calculate the length of b squared. It may happen that b squared 
is a fraction such as 1/4 for which a square root can be explicitly found, in 
this case as 1/2, alternatively, we could use Newton's Method to find an 
approximate value for b. It often happens that b squared is what we want to 
find; it is not always necessary to find the exact value of the square root. 

Finding unknown sides from a side and a 
(non-right) angle 

As we can construct an uncountably large number of known angles for θ, and 
likewise an uncountably large number of sides a of known length, it would 
seem plausible that some of these known angles and known lengths should 
coincide in the same right angled triangle so that we could construct a 
convenient table relating the size of θ to the length of sides a and c for known 
values of θ and a with c assumed to be of length one. Even better would be a 
function, we will call it cos, which for any value of θ, gave the corresponding 

value of a, that is, a function which would save us the work of 
constructing angles and lengths and making difficult deductions from them. 

Of course, given an angle θ, we could construct a right angled triangle using 
ruler and compass that had θ as one of its angles, we could then measure the 
length of the side that corresponds to a to evaluate the cos function. Such 
measurements would necessarily be in-exact; it would be a problem in 
physics to see how accurately such measurements can be made; using 
trigonometry we can make precise predictions with which the results of these 
physical measurements can be compared. 

Some explicit values for the cos function are known. For θ = 0, sides a and c 

are coincidental , so cos0 = 1. For , sides b and c are 



coincidental and of length 1, and side a is of zero length, consequently a = 0, c 

= 1. and . 

The simplest right angle triangle we can draw is the isoceles right angled 

triangle, it has a pair of angles of size radians, and if its hypotenuse is 

considered to be of length one, then the sides a and b are of length as 
can be verified by the theorem of Pythagoras. If the side a is chosen to be 
the same length as the radius of the circle containing the right angled 
triangle, then the right hand isoceles triangle obtained by splitting the right 
angled triangle from the circumference of the circle to its center is an 

equilateral triangle, so θ must be , and φ must be and b2 must be 

. 



Properties of the cosine and 
sine functions 

 Period 

Adding an integer multiple of 2π to θ moves the point at which the right 
angle touches the circumference of the circle adds an integral number of full 
circles to the point arrving back at the same position. So cos(θ+2πn) = 
cos(θ). 

Half Angle and Double Angle Formulas 

We can derive a formula for cos(θ/2) in terms of cos(θ) which allows us to 
find the value of the cos() function for many more angles. To derive the 
formula, draw an isoceles triangle, draw a circle through its corners, connect 
the center of the circle with radii to each corner of the isoceles triangle, 
extend the radius through the apex of the isoceles triangle into a diameter of 
the circle and connect the point where the diameter crosses the other side of 
the circle with lines to the other corners of the isoceles triangle. 

Therefore: 

 

which gives a method of calculating the cos() of half an angle in terms of the 
cos() of the original angle. For this reason * is called the "Cosine Half Angle 
Formula". 

The half angle formula can be applied to split the newly discovered angle 
which in turn can be split again ad infinitum. Of course, each new split 
involves finding the square root of a term with a square root, so this cannot 
be recommended as an effective procedure for computing values of the cos() 
function. 

Equation * can be inverted to find cos(θ) in terms of cos(θ)/2: 

 



=>     cos(θ/2)**2 - 1/2 = cos(θ)/2)   

=> 2 * cos(θ/2)**2 - 1   = cos(θ) 

substituting δ = θ/2 gives: 

  2 * cos(δ)**2 - 1     = cos(2δ) 

that is a formula for the cos() of double an angle in terms of the cos() of the 
original angle, and is called the "cosine double angle sum formula". 

Angle Addition and Subtraction formulas 

To find a formula for cos(θ1 + θ2) in terms of cosθ1 and cosθ2construct two 
different right angle triangles each drawn with side c having the same length 

of one, but with , and therefore angle . Scale up triangle 
two so that side a2 is the same length as side c1. Place the triangles so that 
side c1 is coincidental with side a2, and the angles θ1 and θ2 are juxtaposed to 
form angle θ3 = θ1 + θ2 at the origin. The circumference of the circle within 
which triangle two is imbedded (circle 2) crosses side a1 at point g, allowing a 
third right angle to be drawn from angle to point g . Now reset the scale 
of the entire figure so that side c2 is considered to be of length 1. Side a2 
coincidental with side c1 will then be of length cosθ1, and so side a1 will be of 
length in which length lies point g. Draw a line parallel to line a1 
through the right angle of triangle two to produce a fourth right angle 
triangle, this one imbedded in triangle two. Triangle 4 is a scaled copy of 
triangle 1, because: 

 (1) it is right angled, and  

 (2) .  

The length of side b4 is cos(φ2)cos(φ4) = cos(φ2)cos(φ1) as θ4 = θ1 Thus 
point g is located at length: 

 cos(θ1+θ2) = cos(θ1)cos(θ2) - cos(φ1)cos(φ2), where θ1+φ1 = θ2+φ2 = π/2 

giving us the "Cosine Angle Sum Formula". 



 Proof that angle sum formula and double angle formula 
are consistent 

We can apply this formula immediately to sum two equal angles: 

   cos(2θ) = cos(θ+θ) = cos(θ)cos(θ) - cos(φ)cos(φ) where θ+φ = π/2 
           = cos(θ)**2 - cos(φ)**2           (I) 

From the theorem of Pythagoras we know that: 

   a**2 + b**2 = c**2 

in this case: 

   cos(θ)**2 + cos(φ)**2  = 1**2                  where θ+φ = π/2 
 =>            cos(φ)**2  = 1 - cos(θ)**2 

Substituting into (I) gives: 

   cos(2θ)   = cos(θ)**2 -      cos(φ)**2         where θ+φ = π/2  
             = cos(θ)**2 - (1 - cos(θ)**2) 
             = 2 * cos(θ)**2 - 1 

which is identical to the "Cosine Double Angle Sum Formula": 

   2 * cos(δ)**2 - 1 = cos(2δ) 

Derivative of the Cosine Function 

We are now in a position to evaluate the expression: 

 cos(θ+δθ)/ δθ = (cos(θ)cos(δθ) - cos(δθ)cos(δφ)) /δθ   where θ+φ = δθ+δφ = π/2. 

If we let δθ tend to zero we get an increasingly accurate expression for the 
rate at which cos(θ) varies with θ. If we let δθ tend to zero, cos(δθ) will tend 
to one, δφ will tend to π/2, cos(δφ) will tend to zero, and cos(δφ)/δθ will 
tend to oneallowing us to write in the limit: 



 (cos(θ+δθ) - cos(θ))/δθ = (cos(θ)cos(δθ)-cos(φ)cos(δφ)-cos(θ)) /δθ   where θ+φ = δθ+δφ = 
π/2. 
                         = (cos(θ) * 1   -cos(φ) * δθ  -cos(θ)) /δθ  
                         = -cos(φ) * δθ /δθ  
                         = -cos(φ)                                    where θ+φ = π/2. 

                         = -cos(π/2 - θ) 

The function cos(π/2 - θ) occurs with such prevalence that it has been given 
a special name: 

 sin(θ) = cos(π/2 - θ)  
        = cos(φ) where θ+φ = π/2. 

"sin" is pronounced "sine". 

The above result can now be stated more succinctly: 

 (cos(θ+δθ) - cos(θ))/δθ = -sin(θ) 

often further abbreviated to: 

 d cos(θ)/δθ = -sin(θ) 

or in wordsthe rate of chage of cos(θ) with θ is -sin(θ). 

Pythagorean identity 

Armed with this definition of the sin() function, we can restate the Theorem 
of Pythagoras for a right angled triangle with side c of length one, from: 

    cos(θ)**2 + cos(φ)**2 = 1**2  where θ+φ = π/2 

to: 

    cos(θ)**2 + sin(θ)**2 = 1. 

We can also restate the "Cosine Angle Sum Formula" from: 



 cos(θ1+θ2) = cos(θ1)cos(θ2) - cos(φ1)cos(φ2), where θ1+φ1 = θ2+φ2 = π/2 

to: 

 cos(θ1+θ2) = cos(θ1)cos(θ2) - sin(θ1)sin(θ2) 

Sine Formulas 

The price we have to pay for the notational convenince of this new function 
sin() is that we now have to answer questions likeIs there a "Sine Angle Sum 
Formula". Such questions can always be answered by taking the cos() form 
and selectively replacing cos(θ)**2 by 1 - sin(θ)**2 and then using algebra 
to simplify the resulting equation. Applying this technique to the "Cosine 
Angle Sum Formula" produces: 

   cos(θ1+θ2)        =      cos(θ1)cos(θ2) - sin(θ1)sin(θ2) 
=> cos(θ1+θ2)**2     =     (cos(θ1)cos(θ2) - sin(θ1)sin(θ2))**2 
=> 1 - cos(θ1+θ2)**2 = 1 - (cos(θ1)cos(θ2) - sin(θ1)sin(θ2))**2 
=> sin(θ1+θ2)**2     = 1 - (cos(θ1)**2*cos(θ2)**2 + sin(θ1)**2*sin(θ2)**2 - 
2*cos(θ1)cos(θ2)sin(θ1)sin(θ2))   -- Pythagoras on left, multiply out right hand side 
                     = 1 - (cos(θ1)**2*(1-sin(θ2)**2) + sin(θ1)**2*(1-cos(θ2)**2) - 
2*cos(θ1)cos(θ2)sin(θ1)sin(θ2)) -- Carefully selected Pythagoras again on the left hand 
side 
                     = 1 - (cos(θ1)**2-cos(θ1)**2*sin(θ2)**2 + sin(θ1)**2-
sin(θ1)**2*cos(θ2)**2 - 2*cos(θ1)cos(θ2)sin(θ1)sin(θ2)) -- Multiplied out 
                     = 1 - (1         -cos(θ1)**2*sin(θ2)**2             -
sin(θ1)**2*cos(θ2)**2 - 2*cos(θ1)cos(θ2)sin(θ1)sin(θ2)) -- Carefully selected Pythagoras  
                     =                 cos(θ1)**2*sin(θ2)**2              
sin(θ1)**2*cos(θ2)**2 + 2*cos(θ1)cos(θ2)sin(θ1)sin(θ2)) -- Algebraic simplification 
                     =                (cos(θ1)sin(θ2)                   
+sin(θ1)cos(θ2))**2 

taking the square root of both sides produces the the "Sine Angle Sum 
Formula" 

=> sin(θ1+θ2) = cos(θ1)sin(θ2) + sin(θ1)*cos(θ2) 

We can use a similar technique to find the "Sine Half Angle Formula" from 
the "Cosine Half Angle Formula": 

cos(θ/2) = squareRoot(1/2 + cos(θ)/2). 

We know that 1 - cos(θ/2)**2 = sin(θ/2) **2, so squaring both sides of the 
"Cosine Half Angle Formula" and subtracting from one: 



 => (1 - cos(θ/2)**2) =       1 - (1/2 + cos(θ)/2)       
 =>      sin(θ/2)**2  =            1/2 - cos(θ)/2       
 =>      sin(θ/2)     = squareRoot(1/2 - cos(θ)/2)       

So far so good, but we still have a cos(θ/2) to get rid of. Use Pythagoras 
again to get the "Sine Half Angle Formula": 

         sin(θ/2)     = squareRoot(1/2 - squareRoot(1 - sin(θ)**2)/2)   

or perhaps a little more legibly as: 

         sin(θ/2)     = squareRoot(1/2)*squareRoot(1 - squareRoot(1 - sin(θ)**2))   

On the Use of Computers for 
Algebraic Manipuation 
The algebra to perform such manipulations tends to be horrendousthe 
horrors can be reduced by using automated symbolic algebraic manipulation 
software to confirm that each line of the derivation has been carried out 
correctly. However, such software is unable, in of itself, to perform the set of 
deductions above without human interventionyou will note that at various 
points in the above sequence, the Theorem of Pythagoras was cunningly 
applied for reasons that only became obvious towards the end of the 
derivation. 

Alternatively, one can draw a plausible geometric diagram, make careful 
deductions about unknown sides and angles from known sides and angles. 
Again, software can check that each inference is consistent with the known 
facts, however, such software cannot decide which diagram to draw in the 
first place, nor which are the significant inferences to be made. You will no 
doubt have experienced the alarming feeling when manipulating such 
equations or diagrams that the numbers of terms in the equations, or the 
numbers of lines, sides and circles on the diagram, are doubling after each 
possible inference, multiplying exponentially beyond your control, with no 
solution in sight. Undirected software rapidly looses itself in this exponential 
maze despite the protestations of the salaried scientists held captive by 
Microsoft at Cambridge University, who protest, I think too much, that Alan 
Turing and Kurt Godell were wrong, and that "Machines can do Mathematics" 
if only they are given enouigh time to program (that is direct) them, to do 
so. Fortunately, the most that machines can do, isassist humans with the 



tedious but necessary task of verifying each logical deduction. Machines 
cannot see the beauty of geometry, nor find directions to solve equations. 

As is possible to define many other ratios of sides in an right angled triangle, 
the ratio of side b to side a for example. There will surely be relationships 
between these newly defined auxillary trigonometric functions - it would be 
very odd if there were not. However, all such subsidary functions can be 
dealt with by the properties of the cos() function alone; any newly defined 
functions must earn their keep by reducing complexity, not increasing ittheir 
existence often creates more definitions to learn without generating any 
significantly new knowledge. Mathematics should be derivable from as few 
ideas as possible, that is from quality without quantity. Those of you, other 
than the physics students liberated by Feynmann in Brazil, who are facing 
exams produced at the behest of tyrannical governments will be reduced to 
the tedium of learning the many intricate relationships between these 
auxillary functions, so that a bureaucrat with a fetish for metrics can kowtow 
to public opinionplease keep in mind that quantity and quality are not 
necessarily the same in mathematics; that increasing the number of auxillary 
functions and their interrelationships merely aggrevates the number of 
possibilities in each step of the solution space, without offering you any 
useful guidance as to which would be the most to use. 

Sine derivative 
We discovered earlier that the rate of change of cos(θ) with θ is -cos(φ) 
where θ+φ = π/2, or in the new fangled notation introduced above-sin(θ). If 
we increase θ by δθ, we reduce φ by δθ, that is the rate of change of φ with 
θ is -1, 

 => dφ / dθ = -1, => -dθ / dφ = 1. 

We have also proved above that 

 d cos(θ)/dθ = -sin(θ) 

And we know from the definition that: 

 cos(θ) = sin(φ) 



Putting these knowns together we can find the rate of change of sin(θ) with 
θ: 

 d sin(θ)/dθ = d cos(φ)/dθ = d cos(φ)/dθ * -dθ/dφ = -1* d cos(φ)/dφ = -1* -cos(θ) = 
cos(θ) 

that is the rate of change of sin(θ) with is cos(θ). To summarize: 

d  sin(θ) / dθ =  cos(θ) 
d  cos(θ) / dθ = -sin(θ) 
d -sin(θ) / dθ = -cos(θ) 
d -cos(θ) / dθ =  sin(θ) 

We are going round in circles! Notice that we have to apply the rate of 
change operation 4 times to get back to where we started. 

Relationships-between 
exponential function and 
trigonometric functions 
A similar function is the exponential function e(θ) which is defined by the 
statementthe rate of change of e(θ)is e(θ) and the value of e(0) is 1. Here 
we only have to apply the rate of change operator once to get back where we 
started. Explicitly: 

 (e(θ+δθ)-e(θ)) / δθ tends to e(θ) as δθ tends to zero. 

which can be rewritten replacing θ by iθ where i is any constant number, to 
get: 

 (e(iθ+δiθ)-e(iθ)) / δiθ tends to e(iθ) as δθ tends to zero. 

because i is a constant, δiθ = iδθ, performing this subsitution, we get: 

    (e(iθ+iδθ)-e(iθ))  / iδθ tends to e(iθ) as δθ tends to zero. 
=>  (e(i(θ+δθ))-e(iθ)) / iδθ tends to e(iθ) as δθ tends to zero. 
=>  d e(iθ) / dθ  = i*e(iθ) 



That is, the rate of change of e(iθ) with θ is i*e(iθ). We can continue this 
process to find the rate of change of i*e(iθ) with θ: 

  d i*e(iθ) / dθ                                    is the limit of 
  (i* e(i(θ+δθ))-i*e(iθ)) / δθ as δθ tends to zero, which is the same as: 
   i*(e(i(θ+δθ))-  e(iθ)) / δθ as δθ tends to zero, which is: 
   i* d e(iθ) / dθ = i*i*e(iθ). 

Performing this 4 time sucessively yields and comparing with the same action 
on the cos() function: 

   d       e(iθ) / dθ  =       i*e(iθ)               d   cos(θ) / dθ  = - sin(θ) 
   d     i*e(iθ) / dθ  =     i*i*e(iθ)               d - sin(θ) / dθ  = - cos(θ) 
   d   i*i*e(iθ) / dθ  =   i*i*i*e(iθ)               d - cos(θ) / dθ  =   sin(θ) 
   d i*i*i*e(iθ) / dθ  = i*i*i*i*e(iθ)               d   sin(θ) / dθ  =   cos(θ) 

If only there was a number i, such that i*i = -1, and hence i*i * i*i = -1 * -1 
= 1, then we could relate the function cos() to the function e(). Fortunately, 
there is a number that will workthe square roots of -1. From here on i will 
denote a square root of -1. -i*-i = (-1)*i*(-1)*i = (-1)*(-1)*i*i = (1)*(-1)=-
1 is also a solution. We can expect then that cos(θ) is some linear 
combination of e(iθ) and e(-iθ), perhaps: 

 cos(θ) = A*e(iθ)+B*e(-iθ) 

We know that cos(0) = 1, so: 

 cos(0) = 1 = A*e(i*0)+B*e(-i*0) = A*e(0)+B*e(0) = A + B 

Finding the rate of change with θ: 

=> d cos(θ) / dθ = d (A*e(iθ)) / dθ +d  (B*e(-iθ))/dθ  
=> - sin(θ)      =  i*A*e(iθ)       + -i*B*e(-iθ) = - cos(π/2-θ) 

setting θ = 0, remembering that cos(π/2) = 0 

=> 0 = iA - iB = i(A-B) => A = B 

So now we know that A+B = 1 and A = B, so A+A = 1, so A = 1/2 and B = 
1/2. 



To summarize what we know so far: 

cos(θ) = e(iθ)/2 + e(-iθ)/2   where θ is in radians and i is a square root of -1. 

Replacing θ by -θ gives conversly: 

cos(-θ) = e(-iθ)/2 + e(iθ)/2, the same formula, so we must have that cos(θ) =  cos(-θ). 

Given: 

cos(θ) = e(iθ)/2 + e(-iθ)/2  

We can find the rate of change with θ of both sides to fined the sin() in terms 
of e() 

    -sin(θ)  =  i+e( iθ)/2 - i*e(-iθ)/2 
 =>  sin(θ)  =  i*e(-iθ)/2 - i*e( iθ)/2 

Substituting -θ for θ gives: 

     sin(-θ)  =  i*e(iθ)/2 - i*e(-iθ)/2 = -sin(θ) 

thus sin() is an odd function, compare this to cos() which is an even function 
because cos(θ) = cos(-θ). 

We can find the function e() in terms of cos() and sin(): 

 cos(θ) + i * sin(θ)  =  e(iθ)/2 + e(-iθ)/2 + i*i*e(-iθ)/2 - i*i*e(iθ)/2 
                      =  e(iθ)/2 + e(-iθ)/2 -     e(-iθ)/2 +     e(iθ)/2 
                      =  e(iθ) 

This is called "Euler's Formula". 

From the "Cosine Double Angle Formula", we know that: 

cos(2θ) = 2 * cos(θ)**2 - 1 

Let θ = π/2, so that cos(π/2) = 0, then: 



   cos(2π/2) = 2 * cos(π/2)**2 - 1 

=> cos (π)   = 2 * 0**2        - 1 

=> cos (π)   = - 1 

By Pythagoras: 

   sin(π)**2 + cos(π)**2 = 1 
=> sin(π)**2 + -1**2     = 1 
=> sin(π)**2             = 0 
=> sin(π)                = 0 

Consequently, we can evaluate e(iπ) as: 

 e(iπ) = cos(π) + i * sin(π) = -1 + i * 0 = -1; 

Similarily, we can evaluate e(-iθ) from e(iθ): 

   e( iθ) = cos( θ) + i * sin( θ) 
=> e(-iθ) = cos(-θ) + i * sin(-θ) 
=> e(-iθ) = cos(θ)  - i * sin( θ)  as cos() is even, sin() is odd 
 

This result allows us to evaluate e(iθ)e(-iθ): 

   e(iθ)e(-iθ) = (cos(θ) + i * sin(θ))(cos(θ) - i * sin(θ)) 
               = (cos(θ)**2 - i*i*sin(θ)**2) 
               =  cos(θ)**2 +     sin(θ)**2         as i*i = -1 
               =  1                                 Pythagoras 

Starting again from the "Cosine Double Angle Formula", we know that: 

cos(2θ) = 2 * cos(θ)**2 - 1 

Replace cos() by its formulation in e(): 

cos(θ) = e(iθ)/2 + e(-iθ)/2  

to get: 



e(2iθ)/2 + e(-2iθ)/2 = 2 * (e(iθ)/2 + e(-iθ)/2)**2                     - 1   
                     = 2 * (e(iθ)/2)**2+(e(-iθ)/2)**2 +2e(iθ)e(-iθ)/4) - 1 

                     =     (e(iθ)**2)/2+(e(-iθ)**2)/2 + e(iθ)e(-iθ)    - 1 

But 

e(iθ)e(-iθ) = 1 

so we continue the algrebraic simplification to get: 

 e(2iθ)/2 + e(-2iθ)/2 =     (e(iθ)**2)/2+(e(-iθ)**2)/2 + e(iθ)e(-iθ)    - 1 
                      =     (e(iθ)**2)/2+(e(-iθ)**2)/2 + 1              - 1 
                      =     (e(iθ)**2)/2+(e(-iθ)**2)/2  

Again 

e(iθ)e(-iθ) = 1 

so we are forced to conclude that 

 e( 2iθ) = e( iθ)**2  and 
 e(-2iθ) = e(-iθ)**2   for any angle θ. 

The e() function is behaving like exponeniation, that is we can write: 

 e(iθ) = e**iθ 

where e is some number whose value is as yet unknown, which is the 
solution to the equation: 

 e**iπ = -1 

As the e() function behaves like an exponential: 

e(i*θ1) * e(i*θ2) = e**(i*θ1) * e** (i*θ2) = e**(i*(θ1+θ2)) = e(i(θ1+θ2)) 



In particular: 

 (cos(θ) + i * sin(θ))**n =  e(iθ)**n  
                          = (e**iθ)**n 
                          =  e**inθ  
                          =  e(inθ) 
                          = (cos(nθ) + i * sin(nθ)) 

Lets try this formula out with n = 2: 

  (cos(θ) + i * sin(θ))**2                       = cos(2θ) + i * sin(2θ) 

=> (cos(θ)**2 - sin(θ))**2 + 2 * i * cos(θ)sin(θ) = cos(2θ) + i * sin(2θ) 

Now, the number i is manifestly not a real number, as no real number is a 
solution to the equation i*i = -1, yet both the cos() and sin() functions 
produce real numbered results, they are, after all, just the ratios of the 
lengths of the sides of triangles. Consequently in the above we can equate 
the parts of the equations which are separated by being multiplied by i to get 
two equations: 

  cos(2θ) = cos(θ)**2 - sin(θ))**2 
  sin(2θ) = 2*cos(θ)*sin(θ) 

Recall the "Cosine Angle Sum Formula" of: 

  cos(θ1+θ2) = cos(θ1)cos(θ2) - sin(θ1)sin(θ2) 

Set θ = θ1 = θ2 to get the identical result: 

  cos(θ+θ) = cos(2θ) = cos(θ)cos(θ) - sin(θ)sin(θ) 

Likewise the Recall the "Sine Angle Sum Formula" of: 

  sin(θ1+θ2) = cos(θ1)sin(θ2) + sin(θ1)cos(θ2) 

Set θ = θ1 = θ2 to get the identical result: 

  sin(θ+θ) = sin(2θ) = cos(θ)sin(θ) + sin(θ)cos(θ) = 2*sin(θ)cos(θ) 



Using Cosine and Sine Angle Sum Formulae and equating parts, we can 
deduce that: 

  e(i*θ1) * e(i*θ2)) 
   = (cos(θ1) + i * sin(θ1)) * (cos(θ2) + i * sin(θ2)) 
   = (cos(θ1)*cos(θ2) - sin(θ1)*sin(θ2) + i(cos(θ1)sin(θ2)) + cos(θ2)sin(θ1)) 
   =  cos(θ1 + θ2) + isin(θ1 + θ2)    
   =  e(i(θ1+θ2)) 

wherein the e() function demonstrates its exponential nature to perfection. 

The ability of i to partition single equations into two orthogonal simultaneous 
equations makes expressions of the form e(iθ), and hence trigonometery, 
invaluable in such diverse applications as electronicssimultaneously 
representing current and voltage in the same equation; and quantum 
mechanics, where it is necessary to represent position and momentum, or 
time and energy as pairs of variables partitioned by the uncertainty principle. 



Taylor series approximations 
for the trig. functions 
Having learnt a good deal about the properties of the cos() function, it might 
be helpful to know how to calculate cos(θ) for a given θ. We know that cos() 
can be defined in terms of the e() function which has the remarkable 
property that d e(θ) / dθ = e(θ), and e(0) = 1. Perhaps it is possible to 
represent e() by an infinite polynomial: 

e(θ) = a0 + a1*θ + a2*θ**2 + a3*θ**3 + ...  an*θ**n +  .... 

in which case evaluating at θ = 0 yields a0 = 1. To find the rate of change 
with θ of the n'th term: 

d an*θ**n / dθ = (an*(θ+δθ)**n - an*(θ)**n)           / δθ as δθ tends to zero 
               = an *((θ+δθ)**n - θ**n)               / δθ as δθ tends to zero 
               = an *((θ**n+n*δθ*θ**(n-1)+... - θ**n) / δθ as δθ tends to zero 
               = an *(n*δθ*θ**(n-1)+...)              / δθ as δθ tends to zero 
               = an * n*θ*(n-1)+... 

where the ... represent terms multiplied by at least δθ**2, and which 
therefore tend to zero as δθ tends to zero. 

Finding the rate of change with respect to θ of the polynomial representing 
e(θ) produces: 

e(θ) = a1*θ + 2 * a2*θ**1 + 3 * a3*θ**2 + ...  n * an*θ**(n-1) +  .... 

Again evaluating at θ = 0, we get a1 = 1 

Repeating the whole process, we get: 

e(θ) = 2 * a2 + 3 * 2* a3*θ + ...  n * (n-1) * an*θ**(n-2) +  .... 

and evaluating at θ = 0, we get a2 = 1/2, and in general, an = 1/n!, wher n! 
means n*(n-1)*(n-2)*...3*2*1. 

Putting these results together, we get: 



e(θ) = 1 + θ + θ**2/(2*1) + θ**3/(3*2*1)2 + ... θ**n / n! +  .... 

Recalling that e(θ) = e**θ, and thus that e(1) = e**1 = e, we find e to be: 

e = 1+1+1/2+1/6+1/24+.... 1/n!+ ... 

which is approximately equal to 2.71828183 

To calculate cos(θ), we would apply the formula: 

   2*cos(θ) = e(iθ)+e(-iθ) 
            = 1 + iθ - θ**2/2 - iθ**3/6 + θ**4/24 + ...    
            + 1 +-iθ - θ**2/2 --iθ**3/6 + θ**4/24 + ... 
            = 2      -2θ**2/2           +2θ**4/24 + ... 
 => cos(θ)  = 1 - θ**2/2 + θ**4/24 + ... (-1)**n*θ**(2n)/((2n)!)+ ... 

in which the odd terms cancel out and the even terms double and alternate 
in sign. Substituting -θ for θ does not change the result as θ occurs with 
even powers, hence the earlier phrase that cos() is an even function. 

 Using the Taylor series to calculate π 

Having calculated, e and cos(), lets see if we can calculate π. Draw a circle 
with radius of length one, and draw diameters to divide the circle up into n 
segments of equal area, and hence equal angles θ; connect the ends of each 
diameter to its neighbors to get a regular polygon of n equal length sides. 
Each segment of the polygon is an isoceles triangle imbedded within a 
segment of the circle. The length of the sides og the polygon is less than the 
distance along the circumference of the circle between each corner of the 
polygon, the circumference length is exactly θ because we are using radians 
to measure angles within a circle of radius of length one. We can bisect each 
side of the polygon to construct a regular polygon with 2*n equal sides,the 
angle between each diameter is now θ/2 - lets us call the angle between 
diameters the interior angle. As the interior angle gets smaller and smaller, 
the lengths measured between two adjacent corners of the polygon, 
measured first along the side of the polygon, the choord length, and secondly 
along the circumference of the circle, the arc length, agree more and more 
closely. We can get this agreement as close as we might like by dividing the 
interior angle often enough, although to get eact agreement we would have 
to divide the interior angle an infinte number of times, clearly impossible in 
the real world of physics, but within the realm of mathematics it is possible 
to contemplate such an infinite process. 



We have already defined the length of the circumference of a circle of 
diameter of length one as having the value π, so now all we need to do is 
find the total length of the sides of the polygons we are using to approximate 
π and then extrapolate as the number of sides approaches infinity to get an 
estimate for the value of π. 

Let us start the process off using a polygon of 4 sides, a square, which has 
an interior angle of a right angle, that is, π/2. Draw a square, then draw its 
diagonals, and a circle through the corners of the square, to get 4 chords and 
4 arcs. Scale the drawing so that the radius of the circle drawn is exactly 1/2. 
Each chord is the base of isoceles triangle which can be bisected into two 
identical right angled triangles. The hypotenuse or side c of of each of these 
right angle triangles is a radius, we have scaled the drawing above so that 
each such radius will be of length 1/2. The angle θ of each such right angle 
triangle is 1/2*π/2 = π/4. The length of side b in each such right angle 
triangle has length 1/2*sin(π/4) = 1/2*sin(2π/8). If we bisect each interior 
angle of the square we get a total of 8 of these right angled triangles, hence 
our first approximation to the length of the circumference of a circle of 
diameter of length one which is defined to be π, is 8 * the length of side b: 

    π = 8 * 1/2 * sin(2*π/8) 
=> 2π = n * sin(2*π/n) where n = 8. 

If we extend each side a of each of the each such right angle triangles to 
meet the circumference of the circle at points, and then draw lines from each 
of these points to the points neighboring points where the diagonals of the 
square cross the circumference we will construct the octogon - a polygon 
with 8 equal sides - twice the number of the square, with interior angles of 
π/4, half that of the square. The argument used above to calculate the 
lengths of the sides of the square can be applied to the octogon. When this 
argument was first applied to the square it seems unnecessarily 
complicatedit would have been easier to notice that diagonals of the square 
conveniently meet at right angles allowing us to apply Pythagoras 
immediately to calculate the length of the side of a square drawn in a circle 
of radius of length 1/2 as squareRoot(1/2**2+1/2**2) = 
squareRoot(1/4+1/4) = squareRoot(1/2). While this answer is perfectly 
correct for a square, it does not work for any other polygon as their 
diagonals do not meet at such a convenient angle, while the formula: 

=> 2π = n * sin(2*π/n)  

works for any value of n. 



All we need now is the value of the sin() function for polygions with many 
sides, that is with very small interior angles, or more specifically, with n 
large. We do know the sin() function for one angle: 

sin(π/2) = sin(2π/4) = 1 

The "Sine Half Angle Formula" lets us calculate the value of the sin() finction 
for half angle of known angles: 

    sin(θ/2)      = squareRoot(1/2)*squareRoot(1 - squareRoot(1 - sin(θ)**2))   
   
 => sin(2π/8)     = squareRoot(1/2)*squareRoot(1 - squareRoot(1 - 1**2))       
                  = squareRoot(1/2)       
 => sin(2π/16)    = squareRoot(1/2)*squareRoot(1 - squareRoot(1 - squareRoot(1/2)**2))       
                  = squareRoot(1/2)*squareRoot(1 - squareRoot(1 - 1/2))       
                  = squareRoot(1/2 - 1/2*squareRoot(1/2))       
 => sin(2π/32)    = squareRoot(1/2)*squareRoot(1 - squareRoot(1 - (squareRoot(1/2 - 
1/2*squareRoot(1/2)))**2))   
                  = squareRoot(1/2)*squareRoot(1 - squareRoot(1 - 1/2 + 
1/2*squareRoot(1/2)))   
                  = squareRoot(1/2)*squareRoot(1 - squareRoot(1/2 + 1/2*squareRoot(1/2)))   
                  = squareRoot(1/2 - 1/2*squareRoot(1/2 + 1/2*squareRoot(1/2)))   

Its easy to guess from this pattern that: 

 => sin(2π/64)    = squareRoot(1/2 - 1/2*squareRoot(1/2 + 1/2*squareRoot(1/2 + 
1/2*squareRoot(1/2)))) 

and so on. This formula does give an approximate value for π, an 8 digit 
calculator produced a value of 3.13 which is within 1% of the true value. 
However, this formula cannot be ergarded as an efficient way of calculating π 
accuartely to many digitsthe constant need to take square roots insures a 
continual loss of precision. 

We have now built up some basic trigonometric results. 

Trigonometric defintitions 
We have defined the sine, cosine, and tangent functions using the unit circle. 
Now we can apply them to a right triangle. 



 

This triangle has sides A and B. The angle between them, c, is a right angle. 
The third side, C, is the hypotenuse. Side A is opposite angle a, and side B is 
adjacent to angle a. 

Applying the definitions of the functions, we arrive at these useful formulas: 

   sin(a) = A / C  or opposite side over hypotenuse 
   cos(a) = B / C  or adjacent side over hypotenuse 
   tan(a) = A / B  or opposite side over adjacent side  

This can be memorized using the mnenomic 'SOHCAHTOA' (sin = opposite 
over hypothenuse, cosine = adjacent over hypotenuse, tangent = opposite 
over adjacent). 

Exercises(Draw a diagram!) 

1. A right triangle has side A = 3, B = 4, and C = 5. Calculate the following: 

sin(a), cos(a), tan(a) 

2. A different right triangle has side C = 6 and sin(a) = 0.5 . Calculate side A. 

 

Graphs of Sine and Cosine 
Functions 
The graph of the sine function looks like this: 



 

Careful analysis of this graph will show that the graph corresponds to the 
unit circle. X is essentially the degree measure(in radians), while Y is the 
value of the sine function. 

The graph of the cosine function looks like this: 

 

As with the sine function, analysis of the cosine function will show that the 
graph corresponds to the unit circle. One of the most important differences 



between the sine and cosine functions is that sine is an odd function while 
cosine is an even function. 

Sine and cosine are periodic functions; that is, the above is repeated for 
preceding and following intervals with length 2π. 

 

Graphs of Other Trigonometric 
Functions 

A graph of tan(x). tan(x) is defined as . 

 

A graph of csc(x). csc(x) is defined as . 



 

A graph of sec(x). sec(x) is defined as . 

 



A graph of cot(x). cot(x) is defined as or . 

 

Note that tan(x), sec(x), and csc(x) are unbounded. 



Inverse-Trigonometric 
Functions 

 The Inverse Functions, Restrictions, and 
Notation 

While it might seem that inverse trigonometric functions should be 
relatively self defining, some caution is necessary to get an inverse function 
since the trigonometric functions are not one-to-one. To deal with this issue, 
some texts have adopted the convention of allowing sin − 1x, cos − 1x, and tan − 1x 
(all with lower-case initial letters) to indicate the inverse relations for the 
trigonometric functions and defining new functions Sinx, Cosx, and Tanx (all 
with initial capitals) to equal the original functions but with restricted domain, 
thus creating one-to-one functions with the inverses Sin − 1x, Cos − 1x, and Tan − 

1x. For clarity, we will use this convention. Another common notation used for 
the inverse functions is the "arcfunction" notationSin − 1x = arcsinx, Cos − 1x = 
arccosx, and Tan − 1x = arctanx (the arcfunctions are sometimes also capitalized to 
distinguish the inverse functions from the inverse relations). The arcfunctions 
may be so named because of the relationship between radian measure of 
angles and arclength--the arcfunctions yeild arc lengths on a unit circle. 

The restrictions necessary to allow the inverses to be functions are 

standardSin − 1x has range ; Cos − 1x has range ; and Tan − 1x has 

range (these restricted ranges for the inverses are the restricted 
domains of the capital-letter trigonometric functions). For each inverse 
function, the restricted range includes first-quadrant angles as well as an 
adjacent quadrant that completes the domain of the inverse function and 
maintains the range as a single interval. 

It is important to note that because of the restricted ranges, the inverse 
trigonometric functions do not necessarily behave as one might expect an 
inverse function to behave. While 

(following the expected 

), ! For the inverse 

trigonometric functions, only when x is in the range of the 
inverse function. The other direction, however, is less 

tricky for all x to which we can apply the inverse function. 

 



 The Inverse Relations 

For the sake of completeness, here are definitions of the inverse 
trigonometric relations based on the inverse trigonometric functions: 

 
(the sine function has period 2π, but within any given period may have 

two solutions and )  

 (the cosine function has 
period 2π, but within any given period may have two solutions and 

cosine is even-- )  

 (the tangent function has period 
π and is one-to-one within any given period)  

 
 



Applications and Models 

Simple harmonic motion 

 
Simple harmonic motion. Notice that the position of the dot matches that of 
the sine wave. 

Simple harmonic motion (SHM) is the motion of an object which can be 
modeled by the following function: 

 

or 

 
where c1 = A sin φ and c2 = A cos φ.  

In the above functions, A is the amplitude of the motion, ω is the angular 
velocity, and φ is the phase. 

The velocity of an object in SHM is 

 

The acceleration is 

 

 Springs and Hooke's Law 

An application of this is the motion of a weight hanging on a spring. The 
motion of a spring can be modeled approximately by Hooke's Law: 

F = -kx  

where F is the force the spring exerts, x is the position of the end of the 
spring, and k is a constant characterizing the spring (the stronger the spring, 
the higher the constant). 



 Calculus-based derivation 

From Newton's laws we know that F = ma where m is the mass of the 
weight, and a is its acceleration. Substituting this into Hooke's Law, we get 

ma = -kx  

Dividing through by m: 

 

The calculus definition of acceleration gives us 

 

 

Thus we have a second-order differential equation. Solving it gives us 

(2)  

with an independent variable t for time. 

 
We can change this equation into a simpler form. By lettting c1 and c2 be the 
legs of a right triangle, with angle φ adjacent to c2, we get 

 

 

and 

 

 

Substituting into (2), we get 



 

Using a trigonometric identity, we get: 

(3)  

Let and . Substituting this into (3) gives 

 

Analytic Trigonometry 

Using Fundamental Identities 
Some of the fundamental trigometric identities are those derived from the 
Pythagorean Theorem. These are defined using a right triangle: 

 

By the Pythagorean Theorem, 



A2 + B2 = C2 {1}  

Dividing through by C2 gives 

{2}  

We have already defined the sine of a in this case as A/C and the cosine of a 
as B/C. Thus we can substitute these into {2} to get 

sin2a + cos2a = 1  

Related identities include: 

sin2a = 1 − cos2a or cos2a = 1 − sin2a  
tan2a + 1 = sec2a or tan2a = sec2a − 1  
1 + cot2a = csc2a or cot2a = csc2a − 1  

Other Fundamental Identities include the Reciprocal, Ratio, and Co-
function identities 

Reciprocal identities 

 

Ratio identities 

 

Co-function identities (in radians) 

 



Verifying-Trigonometric 
Identities 
To verify an identity means to make sure that the equation is true by setting 
both sides equal to one another. 

There is no set method that can be applied to verifying identities; there are, 
however, a few different ways to start based on the identity which is to be 
verified. 

Introduction 

Trigonometric identities are used in both course texts and in real life 
applications to abbreviate trigonometric expressions. It is important to 
remember that merely verifying an identity or altering an expression is not 
an end in itself, but rather that identities are used to simplify expressions 
according to the task at hand. Trigonometric expressions can always be 
reduced to sines and cosines, which are more managable than their inverse 
counterparts. 

To verify an identity: 

1) Always try to reduce the larger side first. 

2) Sometimes getting all trigonometric functions on one side can help. 

3) Remember to use and manipulate already existing identities. The 
Pythagorean identities are usually the most useful in simplifying. 

4) Remember to factor if needed. 

5) Whenever you have a squared trigonometric function such as Sin^2(t), 
always go to your pythagorean identities, which deal with squared functions. 

Easy example 1 / cot(t) = sin(t) / cos(t) 

1/cot(t)= tan(t) ,so tan(t) = sin(t) / cos(t) 

tan(t) is the same as sint(t)/cos(t) and therefore can be rewritten as sin(t) / 
cos(t) = sin(t) / cos(t) 

Identity verified 



Solving-Trigonometric 
Equations 
Trigonometric equations involve finding an unknown which is an argument 
to a trigonometric function. 

Basic trigonometric equations 

 sin x = n 

  

 
 

  

  

  

  

The equation sinx = n has solutions only when n is within the interval [-1; 1]. If 
n is within this interval, then we need to find an α such that: 

 



The solutions are then: 

 
 

Where k is an integer. 

In the cases when n equals 1, 0 or -1 these solutions have simpler forms 
which are summarizied in the table on the right. 

For example, to solve: 

 

First find α: 

 

Then substitute in the formulae above: 

 

 

Solving these linear equations for x gives the final answer: 

 

 

Where k is an integer. 

 cos x = n 



  

 
 

  

  

  

  

Like the sine equation, an equation of the form cosx = n only has solutions 
when n is in the interval [-1; 1]. To solve such an equation we first find the 
angle α such that: 

 

Then the solutions for x are: 

 

Where k is an integer. 

Simpler cases with n equal to 1, 0 or -1 are summarized in the table on the 
right. 

 tan x = n 



  

General 
case  

  

  

  

An equation of the form tanx = n has solutions for any real n. To find them we 
must first find an angle α such that: 

 

After finding α, the solutions for x are: 

 

When n equals 1, 0 or -1 the solutions have simpler forms which are shown 
in the table on the right. 

 cot x = n 



  

General 
case  

  

  

  

The equation cotx = n has solutions for any real n. To find them we must first 
find an angle α such that: 

 

After finding α, the solutions for x are: 

 

When n equals 1, 0 or -1 the solutions have simpler forms which are shown 
in the table on the right. 

 csc x = n and sec x = n 

The trigonometric equations csc x = n and sec x = n can be solved by 
transforming them to other basic equations: 

 



 

 Further examples 

Generally, to solve trigonometric equations we must first transform them to a 
basic trigonometric equation using the trigonometric identities. This sections 
lists some common examples. 

 a sin x + b cos x = c 

To solve this equation we will use the identity: 

 

 

The equation becomes: 

 

 

This equation is of the form sinx = n and can be solved with the formulae given 
above. 

For example we will solve: 

 

In this case we have: 

 

 

 

Apply the identity: 

 



 

So using the formulae for sinx = n the solutions to the equation are: 

 

 

Where k is an integer. 

  



Sum and Difference Formulas 

 Cosine Formulas 

 
 

 

 

 Sine Formulas 

 

 

 

 

 Tangent Formulas 

 

 

 

 

 Derivations 

 cos(a + b) = cos a cos b - sin a sin b  
 cos(a - b) = cos a cos b + sin a sin b  

Using cos(a + b) and the fact that cosine is even and sine is odd, we have 



            cos(a + (-b)) = cos a cos (-b) - sin a sin (-b) 
                          = cos a cos b - sin a (-sin b) 
                          = cos a cos b + sin a sin b 

 sin(a + b) = sin a cos b + cos a sin b  

Using cofunctions we know that sin a = cos (90 - a). Use the formula for 
cos(a - b) and cofunctions we can write 

         sin(a + b) = cos(90 - (a + b)) 
                    = cos((90 - a) - b) 
                    = cos(90 -a)cos b + sin(90 - a)sin b 
                    = sin a cos b + cos a sin b 

 sin(a - b) = sin a cos b - cos a sin b  

Having derived sin(a + b) we replace b with "-b" and use the fact that cosine 
is even and sine is odd. 

      sin(a + (-b)) = sin a cos (-b) + cos a sin (-b)  
                    = sin a cos b + cos a (-sin b) 
                    = sin a cos b - cos a sin b 

Multiple-Angle and Product-to-sum Formulas 

 Multiple-Angle Formulas 

 sin(2a) = 2 sin a cos a  
 cos(2a) = cos2 a - sin2 a = 1 - 2 sin2 a = 2 cos2 a - 1  
 tan(2a) = (2 tan a)/(1 - tan2 a)  

 Proofs for Double Angle Formulas 

Recall that: 
cos(a + b) = cos(a)cos(b) − sin(a)sin(b) 

Using a = b in the above formula yields: 

  cos(2a) = cos(a + a) = cos(a)cos(a) − sin(a)sin(a) = cos2(a) − sin2(a) 

From the last (rightmost) term, two more identities may be derived. One 
containing only a sine: 



  cos(2a) = cos2(a) − sin2(a) = cos2(a) − sin2(a) + 0 = cos2(a) − sin2(a) + [sin2(a) − sin2(a)] = [cos2(a) + sin2(a)] − 2sin2(a) = 1 − 
2sin2(a) 

And one containing only a cosine: 

  cos(2a) = cos2(a) − sin2(a) = cos2(a) − sin2(a) + 0 = cos2(a) − sin2(a) + [cos2(a) − cos2(a)] = 2cos2(a) − [cos2(a) + sin2(a)] = 2cos2(a) 
− 1 

 

sin(a + b) = sin(a)cos(b) + sin(b)cos(a) ; a = b for sin(2a) 

  sin(a)cos(a) + sin(a)cos(a) = 2cos(a)sin(a) = sin(2a) 

  



Additional-Topics in 
Trigonometry 

Law of Sines 
Consider this triangle: 

 

It has three sides 

 A, length A, opposite angle a at vertex a  
 B, length B, opposite angle b at vertex b  
 C, length C, opposite angle c at vertex c  

The perpendicular, oc, from line ab to vertex c has length h 

The Law of Sines states that: 

 

The law can also be written as the reciprocal: 

 

 Proof 



The perpendicular, oc, splits this triangle into two right-angled triangles. This 
lets us calculate h in two different ways 

 Using the triangle cao gives  

 

 Using the triangle cbo gives  

 

 Eliminate h from these two equations  

 

 Rearrange  

 

By using the other two perpendiculars the full law of sines can be proved. 

 Law of Cosines 
Consider this triangle: 

 

It has three sides 

 a, length a, opposite angle A at vertex A  



 b, length b, opposite angle B at vertex B  
 c, length c, opposite angle C at vertex C  

The perpendicular, oc, from line ab to vertex c has length h 

The Law of Cosines states that: 

 
 
 

 Proof 

The perpendicular, oc, divides this triangle into two right angled triangles, 
aco and bco. 

First we will find the length of the other two sides of triangle aco in terms of 
known quantities, using triangle bco. 

h=a sin B  

Side c is split into two segments, total length c. 

ob, length c cos B  
ao, length c - a cos B  

Now we can use Pythagoras to find b, since b2 = ao2 + h2 

 

The corresponding expressions for a and c can be proved similarly. 



Solving Triangles 
One of the most common applications of trigonometry is solving triangles—
finding missing sides and/or angles given some information about a triangle. 
The process of solving triangles can be broken down into a number of cases. 

 Given a Right Triangle 

If we know the triangle is a right triangle, one side and one of the non-right 
angles or two sides uniquely determine the triangle. (It is also worth noting 
that if we are given a triangle not specified to be a right triangle, but two 
given angles are complementary, then the third angle must be a right angle, 
so we have a right triangle.) Use right triangle trigonometry to find any 
missing information. 

 Given Three Sides (SSS) 

Given three sides of a triangle, we can use the Law of Cosines to find any of 

the missing angles (the alternate form may be helpful 
here). 

 Given Two Sides and the Included Angle 
(SAS) 

Given two sides and the angle included by the two given sides, we can apply 
the Law of Cosines to find the missing side, then procede as above to find 
the missing angles. 

 Given Two Angles and a Side (AAS or 
ASA) 

Given two angles, we can find the third angle (since the sum of the measures 
of the three angles in a triangle is a straight angle). Knowing all three angles 
and one side, we can use the Law of Sines to find the missing sides. 



 Given Two Sides and an Angle Not 
Included by the Two Sides (SSA or the 
Ambiguous Case) 

Here, we run into trouble—the given information may not uniquely determine 
a triangle. One of the two given sides is opposite the given angle, so we can 
apply the Law of Sines to try to find the angle opposite the other given side. 
When we do this (given sides a and b and angle A), we'll have 

and there are three possibilitiessinB > 1, sinB = 1, or sinB < 1. 

If sinB > 1, then there is no angle B that meets the given information, so no 
triangle can be formed with the given sides and angle. 

If sinB = 1, then we have a right triangle with right angle at B and we can 
proceed as above for right triangles. 

If sinB < 1, then there are two possible measures for angle B, one accute (the 
inverse sine of the value of sinB) and one obtuse (the supplement of the 
accute one). The accute angle will give a triangle and we can find the missing 
information as above now that we have two angles. The obtuse angle may or 
may not give a triangle--when we attempt to compute the third angle, it may 
be that A + B is more than a straight angle, leaving no room for angle C. If 
there is room for an angle C, then there is a second possible triangle 
determined by the given information and we can find the last missing length 
as above. 

  



Vectors in the Plane 
In practice, one of the most useful applications of trigonometry is in 
calculations related to vectors, which are frequently used in Physics. A vector 
is a quantity which has both magnitude (such as three or eight) and direction 
(such as north or 30 degrees south of east). It is represented in diagrams by 
an arrow, often pointing from the origin to a specific point. 

A plane vector can be expressed in two ways -- as the sum of a horizontal 
vector of magnitude Ax and a vertical vector of magnitude Ay, or in terms of 

its angle θ and magnitude (or simply A). These two methods are called 
"rectangular" and "polar" respectively. 

 Rectangular to Polar conversion 

For simplicity, assume is in the first quadrant and has x-component Ax and 
y-component Ay. Given these components, we want to find the angle θ and 
the magnitude A. 

If we draw all three of these vectors, they form a right triangle. It is easy to 

see that , or (A vector with an angle of zero is 
defined to be pointing directly to the right.) Furthermore, by the Pythagorean 

Theorem, , or . 

 Polar to Rectangular conversion 

This is essentially the same problem as above, but in reverse. Here, θ and A 
are known and we want to calculate the values of Ax and Ay. 

Using the same triangle as above, we can see that , or Ax = Acosθ. 

Also, , or Ay = Asinθ. 

 Review of conversions 

  



  
 Ax = Acosθ  
 Ay = Asinθ  

 Vectors and Dot Products 
< Trigonometry 

Consider the vectors U and V (with respective magnitudes |U| and |V|). If 
those vectors enclose an angle θ then the dot product of those vectors can 
be written as: 

 

 

If the vectors can be written as: 

 

 

then the dot product is given by: 

 

For example, 

 

and 

 

We can interpret the last case by noting that the product is zero because the 
angle between the two vectors is 90 degrees. 

 Trigonometric Form of the 
Complex Number 

 

where 



 i is the Imaginary Number  

 the modulus  

 the argument is the angle formed by the complex number 
on a polar graph with one real axis and one imaginary axis. This can 
be found using the right angle trigonometry for the trigonometric 
functions.  

This is sometimes abbreviated as and it is also 

the case that (provided that φ is in radians). 

 

 Trigonometry References 

 Trigonometric Unit Circle and 
Graph Reference 
The Unit Circle 

The unit circle is a commonly used tool in trigonometry because it helps the 
user to remember the special angles and their trigonometric functions. The 
unit circle is a circle drawn with its center at the origin of a graph(0,0), and 
with a radius of 1. All angles are measured starting from the x-axis in 
quadrant one and may go around the unit circle any number of degrees. 
points on the outside of the circle that are in line with the terminal(ending) 
sides of the angles are very useful to know, as they give the trigonometric 
function of the angle through their coordinants. The format is (cos, sin). 

 Trigonometric Formula 
Reference 
The principal identities in trigonometry are: 

sin2θ + cos2θ = 1 

 



Four trigonometric functions are 2π periodic: 

sinθ = sin(θ + 2π) 

cosθ = cos(θ + 2π) 

cscθ = csc(θ + 2π) 

secθ = sec(θ + 2π) 

Two trigonometric functions are π periodic: 

tanθ = tan(θ + π) 

cotθ = cot(θ + π) 

Formulas involving sums of angles are as follows: 

sin(α + β) = sinαcosβ + cosαsinβ 

cos(α + β) = cosαcosβ − sinαsinβ 

Substituting β = α gives the double angle formulae 

sin(2α) = 2sinαcosα 

cos(2α) = cos2α − sin2α 

Substituting sin2α + cos2α = 1 gives 

cos(2α) = 2cos2α − 1 

cos(2α) = 1 − 2sin2α 

  



Trigonometric Identities 
Reference 

 Pythagoras 

1. sin2(x) + cos2(x) = 1  
2. 1 + tan2(x) = sec2(x)  
3. 1 + cot2(x) = csc2(x)  

These are all direct consequences of Pythagoras's theorem. 

 Sum/Difference of angles 

1.  

2.  

3.  

 Product to Sum 

1. 2sin(x)sin(y) = cos(x - y) - cos(x + y)  
2. 2cos(x)cos(y) = cos(x - y) + cos(x + y)  
3. 2sin(x)cos(y) = sin(x - y) + sin(x + y)  

 Sum and difference to product 

1. Asin(x) + Bcos(x) = Csin(x + y)  

where  

1.  

2.  

3.  

4.  



 Double angle 

1. cos(2x) = cos2(x) − sin2(x) = 2cos2(x) − 1 = 1 − 2sin2(x)  
2. sin(2x) = 2sin(x)cos(x)  

3.  

These are all direct consequences of the sum/difference formulae 

 Half angle 

1.  

2.  

3.  

In cases with , the sign of the result must be determined from the value of 

. These derive from the cos(2x) formulae. 

 Power Reduction 

1.  

2.  

3.  

 Even/Odd 

1. sin( − θ) = − sin(θ)  
2. cos( − θ) = cos(θ)  
3. tan( − θ) = − tan(θ)  
4. csc( − θ) = − csc(θ)  
5. sec( − θ) = sec(θ)  
6. cot( − θ) = − cot(θ)  



 Calculus 

1.  

2.  

3.  

4.  

5.  

6.  

 Natural Trigonometric 
Functions of Primary Angles 
NoteSome values in the table are given in forms that include a radical in the 
denominator — this is done both to simplify recognition of reciprocal pairs 
and because the form given in the table is simpler in some sense. 

(radians)       (degrees) 
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   undefined  undefined   

    
 

 
 

 

   
     

    
 

 
  

    undefined  undefined  

    
 

 
  

   
     

    
 

 
 

 

 
  undefined  undefined   



    
 

 
 

 

   
     

    
 

 
  

    undefined  undefined  

Notice that for certain values of X, the tangent, secant, cosecant, and 
cotangent functions are undefined. This is because these functions are 

defined as , , , and , respectively. Since an 
expression is undefined if it is divided by zero, the functions are therefore 
undefined at angle measures where the denominator (the sine or cosine of X, 
depending on the trigonometric function) is equal to zero. Take, for example, 

the tangent function. If the tangent function is analyzed at 90 degrees (  

radians), the function is then equivalent to , or , which is an 
undefined value. 



Trigonometry (from the Greek trigonon = three angles and metron = measure ) is a 
branch of mathematics which deals with triangles, particularly triangles in a plane where 
one angle of the triangle is 90 degrees (right triangles). Triangles on a sphere are also 
studied, in spherical trigonometry. Trigonometry specifically deals with the relationships 
between the sides and the angles of triangles, that is, the trigonometric functions, and 
with calculations based on these functions. 

 
This robotic arm on the International Space Station is operated by controlling the angles 
of its joints. Calculating the final position of the astronaut at the end of the arm requires 
repeated use of the trigonometric functions of those angles. 

Trigonometry has important applications in many branches of pure mathematics as well 
as of applied mathematics and, consequently, much of science. 

Overview 

Basic definitions 

 
In this right trianglesin(A) = a/c; cos(A) = b/c; tan(A) = a/b. 

The shape of a right triangle is completely determined, up to similarity, by the value of 
either of the other two angles. This means that once one of the other angles is known, the 
ratios of the various sides are always the same regardless of the size of the triangle. These 
ratios are traditionally described by the following trigonometric functions of the known 
angle: 



• The sine function (sin), defined as the ratio of the leg opposite the angle to the 
hypotenuse.  

• The cosine function (cos), defined as the ratio of the adjacent leg to the 
hypotenuse.  

• The tangent function (tan), defined as the ratio of the opposite leg to the adjacent 
leg.  

The adjacent leg is the side of the angle that is not the hypotenuse. The hypotenuse is 
the side opposite to the 90 degree angle in a right triangle; it is the longest side of the 
triangle. 

The reciprocals of these functions are named the cosecant (csc), secant (sec) and 
cotangent (cot), respectively. The inverse functions are called the arcsine, arccosine, 
and arctangent, respectively. There are arithmetic relations between these functions, 
which are known as trigonometric identities. 

With these functions one can answer virtually all questions about arbitrary triangles, by 
using the law of sines and the law of cosines. These laws can be used to compute the 
remaining angles and sides of any triangle as soon as two sides and an angle or two 
angles and a side or three sides are known. These laws are useful in all branches of 
geometry since every polygon may be described as a finite combination of triangles. 

Extending the definitions 

 
Graphs of the functions sin(x) and cos(x), where the angle x is measured in radians. 

The above definitions apply to angles between 0 and 90 degrees (0 and π/2 radians) only. 
Using the unit circle, one may extend them to all positive and negative arguments (see 
trigonometric function). The trigonometric functions are periodic, with a period of 360 
degrees or 2π radians. That means their values repeat at those intervals. 



The trigonometric functions can be defined in other ways besides the geometrical 
definitions above, using tools from calculus or infinite series. With these definitions the 
trigonometric functions can be defined for complex numbers. The complex function cis is 
particularly useful 

 

See Euler’s formula. 

Mnemonics 

The sine, cosine and tangent ratios in right triangles can be remembered by 
SOH CAH TOA (sine-opposite-hypotenuse cosine-adjacent-hypotenuse tangent-
opposite-adjacent). It is commonly referred to as “Sohcahtoa” by some American 
mathematics teachers, who liken it to a (nonexistent) Native American girl’s name. See 
trigonometry mnemonics for other memory aids. 

Calculating trigonometric functions 

Generating trigonometric tables 

Trigonometric functions were among the earliest uses for mathematical tables. Such 
tables were incorporated into mathematics textbooks and students were taught to look up 
values and how to interpolate between the values listed to get higher accuracy. Slide rules 
had special scales for trigonometric functions. 

Today scientific calculators have buttons for calculating the main trigonometric functions 
(sin, cos, tan and sometimes cis) and their inverses. Most allow a choice of angle 
measurement methods, degrees, radians and, sometimes, grad. Most computer 
programming languages provide function libraries that include the trigonometric 
functions. The floating point unit hardware incorporated into the microprocessor chips 
used in most personal computers have built in instructions for calculating trigonometric 
functions. 

Early history of trigonometry 



 

Table of Trigonometry, 1728 Cyclopaedia 



The origins of trigonometry can be traced to the civilizations of ancient Egypt, 
Mesopotamia and the Indus Valley, more than 4000 years agoThe common practice of 
measuring angles in degrees, minutes and seconds comes from the Babylonian’s base 
sixty system of numeration. 

Some experts believe that trigonometry was originally invented to calculate sundials, a 
traditional exercise in the oldest books. 

The first recorded use of trigonometry came from the Hellenistic mathematician 
Hipparchus circa 150 BC, who compiled a trigonometric table using the sine for solving 
triangles. Ptolemy further developed trigonometric calculations circa 100 AD. 

The Sulba Sutras written in India, between 800 BC and 500 BC, correctly compute the 
sine of π/4 (45°) as 1/√2 in a procedure for circling the square (the opposite of squaring 
the circle). 

The ancient Sinhalese, when constructing reservoirs in the Anuradhapura kingdom, used 
trigonometry to calculate the gradient of the water flow. 

The Indian mathematician Aryabhata in 499, gave tables of half chords which are now 
known as sine tables, along with cosine tables. He used zya for sine, kotizya for cosine, 
and otkram zya for inverse sine, and also introduced the versine. 

Another Indian mathematician, Brahmagupta in 628, used an interpolation formula to 
compute values of sines, up to the second order of the Newton-Stirling interpolation 
formula. 

In the 10th century, the Persian mathematician and astronomer Abul Wáfa introduced the 
tangent function and improved methods of calculating trigonometry tables. He 
established the angle addition identities, e.g. sin (a + b), and discovered the sine formula 
for spherical geometry: 

 

Also in the late 10th and early 11th centuries, the Egyptian astronomer Ibn Yunus 
performed many careful trigonometric calculations and demonstrated the formula 
cos(a)cos(b) = 1 / 2[cos(a + b) + cos(a − b)]. 

Indian mathematicians were the pioneers of variable computations algebra for use in 
astronomical calculations along with trigonometry. Lagadha (circa 1350-1200 BC) is the 
first person thought to have used geometry and trigonometry for astronomy, in his 
Vedanga Jyotisha. 

Persian mathematician Omar Khayyám (1048-1131) combined trigonometry and 
approximation theory to provide methods of solving algebraic equations by geometrical 



means. Khayyam solved the cubic equation x3 + 200x = 20x2 + 2000 and found a positive 
root of this cubic by considering the intersection of a rectangular hyperbola and a circle. 
An approximate numerical solution was then found by interpolation in trigonometric 
tables. 

Detailed methods for constructing a table of sines for any angle were given by the Indian 
mathematician Bhaskara in 1150, along with some sine and cosine formulae. Bhaskara 
also developed spherical trigonometry. 

The 13th century Persian mathematician Nasir al-Din Tusi, along with Bhaskara, was 
probably the first to treat trigonometry as a distinct mathematical discipline. Nasir al-Din 
Tusi in his Treatise on the Quadrilateral was the first to list the six distinct cases of a 
right angled triangle in spherical trigonometry. 

In the 14th century, Persian mathematician al-Kashi and Timurid mathematician Ulugh 
Beg (grandson of Timur) produced tables of trigonometric functions as part of their 
studies of astronomy. 

The mathematician Bartholemaeus Pitiscus published an influential work on 
trigonometry in 1595 which may have coined the word “trigonometry”. 

Applications of trigonometry 

 
Marine sextants like this are used to measure the angle of the sun or stars with respect to 
the horizon. Using trigonometry and an accurate clock, the position of the ship can then 
be determined from several such measurements. 

There are an enormous number of applications of trigonometry and trigonometric 
functions. For instance, the technique of triangulation is used in astronomy to measure 
the distance to nearby stars, in geography to measure distances between landmarks, and 
in satellite navigation systems. The sine and cosine functions are fundamental to the 
theory of periodic functions such as those that describe sound and light waves. 

Fields which make use of trigonometry or trigonometric functions include astronomy 
(especially, for locating the apparent positions of celestial objects, in which spherical 



trigonometry is essential) and hence navigation (on the oceans, in aircraft, and in space), 
music theory, acoustics, optics, analysis of financial markets, electronics, probability 
theory, statistics, biology, medical imaging (CAT scans and ultrasound), pharmacy, 
chemistry, number theory (and hence cryptology), seismology, meteorology, 
oceanography, many physical sciences, land surveying and geodesy, architecture, 
phonetics, economics, electrical engineering, mechanical engineering, civil engineering, 
computer graphics, cartography, crystallography and game development. 



Common formulae 
Trigonometric identity 
Trigonometric function 

Certain equations involving trigonometric functions are true for all angles and are known 
as trigonometric identities. Many express important geometric relationships. For 
example, the Pythagorean identities are an expression of the Pythagorean Theorem. Here 
are some of the more commonly used identities, as well as the most important formulae 
connecting angles and sides of an arbitrary triangle. For more identities see trigonometric 
identity. 

Trigonometric identities 

Pythagorean identities 

Sum and difference identities 

 
 

 
   

 
 

 

Double-angle identities 

 

 

 

Half-angle identities 

Note that in these formulae does not mean both are correct, it means it may be either 
one, depending on the value of A/2. 



 

 

 

Triangle identities 

Law of sines 

The law of sines for an arbitrary triangle states: 

 

or equivalently: 

 

Law of cosines 

The law of cosines (also known as the cosine formula) is an extension of the Pythagorean 
theorem to arbitrary triangles: 

c2 = a2 + b2 − 2abcosC,  

or equivalently: 

 

Law of tangents 

The law of tangents: 

 

Trigonometric function 



“Sine” redirects here. For other uses, see Sine (disambiguation). 

 
All of the trigonometric functions of an angle θ can be constructed geometrically in terms 
of a unit circle centered at O. 

In mathematics, the trigonometric functions are functions of an angle; they are 
important when studying triangles and modeling periodic phenomena, among many other 
applications. They are commonly defined as ratios of two sides of a right triangle 
containing the angle, and can equivalently be defined as the lengths of various line 
segments from a unit circle. More modern definitions express them as infinite series or as 
solutions of certain differential equations, allowing their extension to positive and 
negative values and even to complex numbers. All of these approaches will be presented 
below. 

The study of trigonometric functions dates back to Babylonian times, and a considerable 
amount of fundamental work was done by Persian and Greek mathematicians. 

In modern usage, there are six basic trigonometric functions, which are tabulated below 
along with equations relating them to one another. Especially in the case of the last four, 
these relations are often taken as the definitions of those functions, but one can define 
them equally well geometrically or by other means and then derive these relations. A few 
other functions were common historically (and appeared in the earliest tables), but are 
now seldom used, such as the versine (1 − cos θ) and the exsecant (sec θ − 1). Many more 
relations between these functions are listed in the article about trigonometric identities. 

Function Abbreviation Relation 

Sine sin 
 

Cosine cos 
 

Tangent tan 
 



Cotangent cot 
 

Secant sec 
 

Cosecant csc 
(or cosec)  

 

History 

History of trigonometric functions 

The earliest use of sine appears in the Sulba Sutras written in ancient India from the 8th 
century BC to the 6th century BC. Trigonometric functions were later studied by 
Hipparchus of Nicaea (180-125 BC), Ptolemy, Aryabhata (476–550), Varahamihira, 
Brahmagupta, Muḥammad ibn Mūsā al-Ḵwārizmī, Abu’l-Wafa, Omar Khayyam, 
Bhaskara II, Nasir al-Din Tusi, Ghiyath al-Kashi (14th century), Ulugh Beg (14th century), 
Regiomontanus (1464), Rheticus, and Rheticus’ student Valentin Otho. Madhava (c. 
1400) made early strides in the analysis of trigonometric functions in terms of infinite 
series. Leonhard Euler’s Introductio in analysin infinitorum (1748) was mostly 
responsible for establishing the analytic treatment of trigonometric functions in Europe, 
also defining them as infinite series and presenting “Euler’s formula”, as well as the near-
modern abbreviations sin., cos., tang., cot., sec., and cosec. 

The notion that there should be some standard correspondence between the length of the 
sides of a triangle and the angles of the triangle comes as soon as one recognises that 
similar triangles maintain the same ratios between their sides. That is, for any similar 
triangle the ratio of the hypotenuse (for example) and another of the sides remains the 
same. If the hypotenuse is twice as long, so are the sides. It is just these ratios that the 
trig. functions express. 

Right triangle definitions 



 
A right triangle always includes a 90° (π/2 radians) angle, here labeled C. Angles A and 
B may vary. Trigonometric functions specify the relationships between side lengths and 
interior angles of a right triangle. 

In order to define the trigonometric functions for the angle A, start with an arbitrary right 
triangle that contains the angle A: 

We use the following names for the sides of the triangle: 

• The hypotenuse is the side opposite the right angle, or defined as the longest side 
of a right-angled triangle, in this case h.  

• The opposite side is the side opposite to the angle we are interested in, in this case 
a.  

• The adjacent side is the side that is in contact with the angle we are interested in 
and the right angle, hence its name. In this case the adjacent side is b.  

All triangles are taken to exist in the Euclidean plane so that the inside angles of each 
triangle sum to π radians (or 180°); therefore, for a right triangle the two non-right angles 
are between zero and π/2 radians. The reader should note that the following definitions, 
strictly speaking, only define the trigonometric functions for angles in this range. We 
extend them to the full set of real arguments by using the unit circle, or by requiring 
certain symmetries and that they be periodic functions. 

1) The sine of an angle is the ratio of the length of the opposite side to the length of the 
hypotenuse. In our case 

 

Note that this ratio does not depend on the particular right triangle chosen, as long as it 
contains the angle A, since all those triangles are similar. 

The set of zeroes of sine is 

 



2) The cosine of an angle is the ratio of the length of the adjacent side to the length of the 
hypotenuse. In our case 

 

The set of zeroes of cosine is 

 

3) The tangent of an angle is the ratio of the length of the opposite side to the length of 
the adjacent side. In our case 

 

The set of zeroes of tangent is 

 

The same set of the sine function since 

 

The remaining three functions are best defined using the above three functions. 

4) The cosecant csc(A) is the multiplicative inverse of sin(A), i.e. the ratio of the length 
of the hypotenuse to the length of the opposite side: 

.  

5) The secant sec(A) is the multiplicative inverse of cos(A), i.e. the ratio of the length of 
the hypotenuse to the length of the adjacent side: 

.  

6) The cotangent cot(A) is the multiplicative inverse of tan(A), i.e. the ratio of the length 
of the adjacent side to the length of the opposite side: 



.  

Mnemonics 

There are a number of mnemonics for the above definitions, for example SOHCAHTOA 
(sounds like “soak a toe-a” or “sock-a toe-a” depending upon the use of American 
English or British English, or even “soccer tour”). It means: 

• SOH ... sin = opposite/hypotenuse  
• CAH ... cos = adjacent/hypotenuse  
• TOA ... tan = opposite/adjacent.  

Many other such words and phrases have been contrived. For more see mnemonic. 

Slope definitions 

Equivalent to the right-triangle definitions, the trigonometric functions can be defined in 
terms of the rise, run, and slope of a line segment relative to some horizontal line. The 
slope is commonly taught as “rise over run” or rise/run. The three main trigonometric 
functions are commonly taught in the order sine, cosine, tangent. With a unit circle, this 
gives rise to the following matchings: 

1. Sine is first, rise is first. Sine takes an angle and tells the rise.  
2. Cosine is second, run is second. Cosine takes an angle and tells the run.  
3. Tangent is the slope formula that combines the rise and run. Tangent takes an 

angle and tells the slope.  

This shows the main use of tangent and arctangentconverting between the two ways of 
telling the slant of a line, i.e., angles and slopes. (Note that the arctangent or “inverse 
tangent” is not to be confused with the cotangent, which is 1 divided by the tangent.) 

While the radius of the circle makes no difference for the slope (the slope doesn’t depend 
on the length of the slanted line), it does affect rise and run. To adjust and find the actual 
rise and run, just multiply the sine and cosine by the radius. For instance, if the circle has 
radius 5, the run at an angle of 1 is 5 cos(1). 

Unit-circle definitions 



 

The unit circle 

The six trigonometric functions can also be defined in terms of the unit circle, the circle 
of radius one centered at the origin. The unit circle definition provides little in the way of 
practical calculation; indeed it relies on right triangles for most angles. The unit circle 
definition does, however, permit the definition of the trigonometric functions for all 
positive and negative arguments, not just for angles between 0 and π/2 radians. It also 
provides a single visual picture that encapsulates at once all the important triangles used 
so far. The equation for the unit circle is: 

 

In the picture, some common angles, measured in radians, are given. Measurements in 
the counter clockwise direction are positive angles and measurements in the clockwise 
direction are negative angles. Let a line making an angle of θ with the positive half of the 
x-axis intersect the unit circle. The x- and y-coordinates of this point of intersection are 
equal to cos θ and sin θ, respectively. The triangle in the graphic enforces the formula; 
the radius is equal to the hypotenuse and has length 1, so we have sin θ = y/1 and cos θ = 
x/1. The unit circle can be thought of as a way of looking at an infinite number of 
triangles by varying the lengths of their legs but keeping the lengths of their hypotenuses 
equal to 1. 



 
The f(x) = sin(x) and f(x) = cos(x) functions graphed on the cartesian plane. 

 
A sin(x) animation which shows the connection between circle and sine. 

For angles greater than 2π or less than −2π, simply continue to rotate around the circle. In 
this way, sine and cosine become periodic functions with period 2π: 

 
 

for any angle θ and any integer k. 

The smallest positive period of a periodic function is called the primitive period of the 
function. The primitive period of the sine, cosine, secant, or cosecant is a full circle, i.e. 
2π radians or 360 degrees; the primitive period of the tangent or cotangent is only a half-
circle, i.e. π radians or 180 degrees. Above, only sine and cosine were defined directly by 
the unit circle, but the other four trigonometric functions can be defined by: 

 

 



 
The f(x) = tan(x) function graphed on the cartesian plane. 

To the right is an image that displays a noticeably different graph of the trigonometric 
function f(θ)= tan(θ) graphed on the cartesian plane. Note that its x-intercepts correspond 
to that of sin(θ) while its undefined values correspond to the x-intercepts of the cos(θ). 
Observe that the function’s results change slowly around angles of kπ, but change rapidly 
at angles close to (k/2)π. The graph of the tangent function also has a vertical asymptote 
at θ = kπ/2. This is the case because the function approaches infinity as θ approaches k/π 
from the left and minus infinity as it approaches k/π from the right. 

 
All of the trigonometric functions can be constructed geometrically in terms of a unit 
circle centered at O. 

Alternatively, all of the basic trigonometric functions can be defined in terms of a unit 
circle centered at O (shown at right), and similar such geometric definitions were used 
historically. In particular, for a chord AB of the circle, where θ is half of the subtended 
angle, sin(θ) is AC (half of the chord), a definition introduced in India (see above). cos(θ) 
is the horizontal distance OC, and versin(θ) = 1 − cos(θ) is CD. tan(θ) is the length of the 
segment AE of the tangent line through A, hence the word tangent for this function. cot(θ) 
is another tangent segment, AF. sec(θ) = OE and csc(θ) = OF are segments of secant lines 
(intersecting the circle at two points), and can also be viewed as projections of OA along 
the tangent at A to the horizontal and vertical axes, respectively. DE is exsec(θ) = sec(θ) 
− 1 (the portion of the secant outside, or ex, the circle). From these constructions, it is 
easy to see that the secant and tangent functions diverge as θ approaches π/2 (90 degrees) 



and that the cosecant and cotangent diverge as θ approaches zero. (Many similar 
constructions are possible, and the basic trigonometric identities can also be proven 
graphically.) 

Series definitions 

 
The sine function (blue) is closely approximated by its Taylor polynomial of degree 7 
(pink) for a full cycle centered on the origin. 

Using only geometry and properties of limits, it can be shown that the derivative of sine 
is cosine and the derivative of cosine is the negative of sine. (Here, and generally in 
calculus, all angles are measured in radians; see also the significance of radians below.) 
One can then use the theory of Taylor series to show that the following identities hold for 
all real numbers x: 

 

 

These identities are often taken as the definitions of the sine and cosine function. They 
are often used as the starting point in a rigorous treatment of trigonometric functions and 
their applications (e.g., in Fourier series), since the theory of infinite series can be 
developed from the foundations of the real number system, independent of any geometric 
considerations. The differentiability and continuity of these functions are then established 
from the series definitions alone. 

Other series can be found: 

 
 



 
 

 
 

 
where 

is the nth up/down number,  
is the nth Bernoulli number, and  
(below) is the nth Euler number.  

When this is expressed in a form in which the denominators are the corresponding 
factorials, and the numerators, called the “tangent numbers”, have a combinatorial 
interpretationthey enumerate alternating permutations of finite sets of odd cardinality. 

 
 

 
 

 
 

 
 

When this is expressed in a form in which the denominators are the corresponding 
factorials, the numerators, called the “secant numbers”, have a combinatorial 
interpretationthey enumerate alternating permutations of finite sets of even cardinality. 

 
 

 
 

From a theorem in complex analysis, there is a unique analytic extension of this real 
function to the complex numbers. They have the same Taylor series, and so the 
trigonometric functions are defined on the complex numbers using the Taylor series 
above. 



Relationship to exponential function and complex numbers 

It can be shown from the series definitions that the sine and cosine functions are the 
imaginary and real parts, respectively, of the complex exponential function when its 
argument is purely imaginary: 

 

This relationship was first noted by Euler and the identity is called Euler’s formula. In 
this way, trigonometric functions become essential in the geometric interpretation of 
complex analysis. For example, with the above identity, if one considers the unit circle in 
the complex plane, defined by eix, and as above, we can parametrize this circle in terms of 
cosines and sines, the relationship between the complex exponential and the 
trigonometric functions becomes more apparent. 

Furthermore, this allows for the definition of the trigonometric functions for complex 
arguments z: 

 

 

where i2 = −1. Also, for purely real x, 

 
 

It is also known that exponential processes are intimately linked to periodic behavior. 

Definitions via differential equations 

Both the sine and cosine functions satisfy the differential equation 

 

That is to say, each is the additive inverse of its own second derivative. Within the 2-
dimensional vector space V consisting of all solutions of this equation, the sine function 
is the unique solution satisfying the initial conditions y(0) = 0 and y′(0) = 1, and the 
cosine function is the unique solution satisfying the initial conditions y(0) = 1 and y′(0) = 
0. Since the sine and cosine functions are linearly independent, together they form a basis 
of V. This method of defining the sine and cosine functions is essentially equivalent to 
using Euler’s formula. (See linear differential equation.) It turns out that this differential 



equation can be used not only to define the sine and cosine functions but also to prove the 
trigonometric identities for the sine and cosine functions. 

The tangent function is the unique solution of the nonlinear differential equation 

 
satisfying the initial condition y(0) = 0. There is a very interesting visual proof that the 
tangent function satisfies this differential equation; see Needham’s Visual Complex 
Analysis. 

The significance of radians 

Radians specify an angle by measuring the length around the path of the circle and 
constitute a special argument to the sine and cosine functions. In particular, only those 
sines and cosines which map radians to ratios satisfy the differential equations which 
classically describe them. If an argument to sine or cosine in radians is scaled by 
frequency, 

 

then the derivatives will scale by amplitude. 

.  

Here, k is a constant that represents a mapping between units. If x is in degrees, then 

 

This means that the second derivative of a sine in degrees satisfies not the differential 
equation 

,  

but 

;  

similarly for cosine. 

This means that these sines and cosines are different functions, and that the fourth 
derivative of sine will be sine again only if the argument is in radians. 

Identities 



List of trigonometric identities.  

Many identities exist which interrelate the trigonometric functions. Among the most 
frequently used is the Pythagorean identity, which states that for any angle, the square 
of the sine plus the square of the cosine is always 1. This is easy to see by studying a 
right triangle of hypotenuse 1 and applying the Pythagorean theorem. In symbolic form, 
the Pythagorean identity reads, 

 

which is more commonly written in the following way: 

sin2x + cos2x = 1.  

Other key relationships are the sum and difference formulas, which give the sine and 
cosine of the sum and difference of two angles in terms of sines and cosines of the angles 
themselves. These can be derived geometrically, using arguments which go back to 
Ptolemy; one can also produce them algebraically using Euler’s formula. 

When the two angles are equal, the sum formulas reduce to simpler equations known as 
the double-angle formulas. 

For integrals and derivatives of trigonometric functions, see the relevant sections of table 
of derivatives, table of integrals, and list of integrals of trigonometric functions. 

Definitions using functional equations 

In mathematical analysis, one can define the trigonometric functions using functional 
equations based on properties like the sum and difference formulas. Taking as given these 
formulas and the Pythagorean identity, for example, one can prove that only two real 
functions satisfy those conditions. Symbolically, we say that there exists exactly one pair 
of real functions s and c such that for all real numbers x and y, the following equations 
hold: 

 
 
 

with the added condition that 

 



Other derivations, starting from other functional equations, are also possible, and such 
derivations can be extended to the complex numbers. As an example, this derivation can 
be used to define trigonometry in Galois fields. 

Computation 

The computation of trigonometric functions is a complicated subject, which can today be 
avoided by most people because of the widespread availability of computers and 
scientific calculators that provide built-in trigonometric functions for any angle. In this 
section, however, we describe more details of their computation in three important 
contextsthe historical use of trigonometric tables, the modern techniques used by 
computers, and a few “important” angles where simple exact values are easily found. 
(Below, it suffices to consider a small range of angles, say 0 to π/2, since all other angles 
can be reduced to this range by the periodicity and symmetries of the trigonometric 
functions.) 

Generating trigonometric tables 

Prior to computers, people typically evaluated trigonometric functions by interpolating 
from a detailed table of their values, calculated to many significant figures. Such tables 
have been available for as long as trigonometric functions have been described (see 
History above), and were typically generated by repeated application of the half-angle 
and angle-addition identities starting from a known value (such as sin(π/2)=1). 

Modern computers use a variety of techniques.One common method, especially on 
higher-end processors with floating point units, is to combine a polynomial 
approximation (such as a Taylor series or a rational function) with a table lookup — they 
first look up the closest angle in a small table, and then use the polynomial to compute 
the correction. On simpler devices that lack hardware multipliers, there is an algorithm 
called CORDIC (as well as related techniques) that is more efficient, since it uses only 
shifts and additions. All of these methods are commonly implemented in hardware for 
performance reasons. 

Exact trigonometric constants 

Finally, for some simple angles, the values can be easily computed by hand using the 
Pythagorean theorem, as in the following examples. In fact, the sine, cosine and tangent 
of any integer multiple of π/60 radians (three degrees) can be found exactly by hand. 

Consider a right triangle where the two other angles are equal, and therefore are both π/4 
radians (45 degrees). Then the length of side b and the length of side a are equal; we can 
choose a = b = 1. The values of sine, cosine and tangent of an angle of π/4 radians (45 
degrees) can then be found using the Pythagorean theorem: 



 

Therefore: 

 

 

To determine the trigonometric functions for angles of π/3 radians (60 degrees) and π/6 
radians (30 degrees), we start with an equilateral triangle of side length 1. All its angles 
are π/3 radians (60 degrees). By dividing it into two, we obtain a right triangle with π/6 
radians (30 degrees) and π/3 radians (60 degrees) angles. For this triangle, the shortest 
side = ½, the next largest side =(√3)/2 and the hypotenuse = 1. This yields: 

 

 

 

Inverse functions 
inverse trigonometric function 

The trigonometric functions are periodic, so we must restrict their domains before we are 
able to define a unique inverse. In the following, the functions on the left are defined by 
the equation on the right; these are not proved identities. The principal inverses are 
usually defined as: 



 

For inverse trigonometric functions, the notations sin−1 and cos−1 are often used for arcsin 
and arccos, etc. When this notation is used, the inverse functions are sometimes confused 
with the multiplicative inverses of the functions. The notation using the “arc-“ prefix 
avoids such confusion, though “arcsec” may occasionally be confused with “arcsecond”. 

Just like the sine and cosine, the inverse trigonometric functions can also be defined in 
terms of infinite series. For example, 

 

These functions may also be defined by proving that they are antiderivatives of other 
functions. The arcsine, for example, can be written as the following integral: 

 

Analogous formulas for the other functions can be found at Inverse trigonometric 
function. Using the complex logarithm, one can generalize all these functions to complex 
arguments: 

 

 

 

Properties and applications 



Uses of trigonometry 

 
The trigonometric functions, as the name suggests, are of crucial importance in 
trigonometry, mainly because of the following two results. 

Law of sines 

The law of sines for an arbitrary triangle states: 

 

also known as: 

 

 
A Lissajous curve, a figure formed with a trigonometry-based function. 

It can be proven by dividing the triangle into two right ones and using the above 
definition of sine. The common number (sinA)/a occurring in the theorem is the 
reciprocal of the diameter of the circle through the three points A, B and C. The law of 
sines is useful for computing the lengths of the unknown sides in a triangle if two angles 
and one side are known. This is a common situation occurring in triangulation, a 
technique to determine unknown distances by measuring two angles and an accessible 
enclosed distance. 

Law of cosines 

The law of cosines (also known as the cosine formula) is an extension of the Pythagorean 
theorem: 

 

also known as: 



 

Again, this theorem can be proven by dividing the triangle into two right ones. The law of 
cosines is useful to determine the unknown data of a triangle if two sides and an angle are 
known. 

If the angle is not contained between the two sides, the triangle may not be unique. Be 
aware of this ambiguous case of the Cosine law. 

Other useful properties 

There is also a law of tangents: 

 

Periodic functions 

 
Animation of the additive synthesis of a square wave with an increasing number of 
harmonics 

The sine and the cosine functions also appear when describing a simple harmonic motion, 
another important concept in physics. In this context the sine and cosine functions are 
used to describe one dimension projections of the uniform circular motion, the mass in a 
string movement, and a small angle approximation of the mass on a pendulum 
movement. 

The trigonometric functions are also important outside of the study of triangles. They are 
periodic functions with characteristic wave patterns as graphs, useful for modelling 
recurring phenomena such as sound or light waves. Every signal can be written as a 
(typically infinite) sum of sine and cosine functions of different frequencies; this is the 
basic idea of Fourier analysis, where trigonometric series are used to solve a variety of 
boundary-value problems in partial differential equations. For example the square wave, 
can be written as the Fourier series 



 

Generating trigonometric tables 
In mathematics, tables of trigonometric functions are useful in a number of areas. Before 
the existence of pocket calculators, trigonometric tables were essential for navigation, 
science and engineering. The calculation of mathematical tables was an important area of 
study, which led to the development of the first mechanical computing devices. 

Modern computers and pocket calculators now generate trigonometric function values on 
demand, using special libraries of mathematical code. Often, these libraries use pre-
calculated tables internally, and compute the required value by using an appropriate 
interpolation method. 

Interpolation of simple look-up tables of trigonometric functions are still used in 
computer graphics, where accurate calculations are either not needed, or cannot be made 
fast enough. 

Another important application of trigonometric tables and generation schemes is for fast 
Fourier transform (FFT) algorithms, where the same trigonometric function values 
(called twiddle factors) must be evaluated many times in a given transform, especially in 
the common case where many transforms of the same size are computed. In this case, 
calling generic library routines every time is unacceptably slow. One option is to call the 
library routines once, to build up a table of those trigonometric values that will be 
needed, but this requires significant memory to store the table. The other possibility, 
since a regular sequence of values is required, is to use a recurrence formula to compute 
the trigonometric values on the fly. Significant research has been devoted to finding 
accurate, stable recurrence schemes in order to preserve the accuracy of the FFT (which 
is very sensitive to trigonometric errors). 

Half-angle and angle-addition formulas 

Historically, the earliest method by which trigonometric tables were computed, and 
probably the most common until the advent of computers, was to repeatedly apply the 
half-angle and angle-addition trigonometric identities starting from a known value (such 
as sin(π/2)=1, cos(π/2)=0). The relevant identities, the first recorded derivation of which 
is by Ptolemy, are: 

 



 
 
 

Various other permutations on these identities are possible (for example, the earliest 
trigonometric tables used not sine and cosine, but sine and versine). 

A quick, but inaccurate, approximation 

A quick, but inaccurate, algorithm for calculating a table of N approximations sn for 
sin(2πn/N) and cn for cos(2πn/N) is: 

s0 = 0  
c0 = 1  
sn+1 = sn + d × cn  
cn+1 = cn − d × sn  

for n = 0,...,N-1, where d = 2π/N. 

This is simply the Euler method for integrating the differential equation: 

ds / dt = c  
dc / dt = − s  

with initial conditions s(0) = 0 and c(0) = 1, whose analytical solution is s = sin(t) and c = 
cos(t). 

Unfortunately, this is not a useful algorithm for generating sine tables because it has a 
significant error, proportional to 1/N. 

For example, for N = 256 the maximum error in the sine values is ~0.061 (s202 = −1.0368 
instead of −0.9757). For N = 1024, the maximum error in the sine values is ~0.015 (s803 = 
−0.99321 instead of −0.97832), about 4 times smaller. If the sine and cosine values 
obtained were to be plotted, this algorithm would draw a logarithmic spiral rather than a 
circle. 

A better, but still imperfect, recurrence formula 

A simple recurrence formula to generate trigonometric tables is based on Euler’s formula 
and the relation: 

 



This leads to the following recurrence to compute trigonometric values sn and cn as 
above: 

c0 = 1  
s0 = 0  
cn+1 = wr cn − wi sn  
sn+1 = wi cn + wr sn  

for n = 0, ..., N − 1, where wr = cos(2π/N) and wi = sin(2π/N). These two starting 
trigonometric values are usually computed using existing library functions (but could also 
be found e.g. by employing Newton’s method in the complex plane to solve for the 
primitive root of zN − 1). 

This method would produce an exact table in exact arithmetic, but has errors in finite-
precision floating-point arithmetic. In fact, the errors grow as O(ε N) (in both the worst 
and average cases), where ε is the floating-point precision. 

A significant improvement is to use the following modification to the above, a trick (due 
to Singleton) often used to generate trigonometric values for FFT implementations: 

c0 = 1  
s0 = 0  
cn+1 = cn − (αcn + β sn)  
sn+1 = sn + (β cn − α sn)  

where α = 2 sin2(π/N) and β = sin(2π/N). The errors of this method are much smaller, O(ε 
√N) on average and O(ε N) in the worst case, but this is still large enough to substantially 
degrade the accuracy of FFTs of large sizes. 

Numerical analysis 
Numerical analysis is the study of approximate methods for the problems of continuous 
mathematics (as distinguished from discrete mathematics). 

For thousands of years, man has used mathematics for construction, warfare, engineering, 
accounting and many other puposes. The earliest mathematical writing is perhaps the 
famous Babylonian tablet Plimpton 322, dating from approximately 1800 BC. On it one 
can read a list of pythagorean triplestriples of numbers, like (3,4,5), which are the lengths 
of the sides of a right-angle triangle. The Babylonian tablet YBC 7289 gives an 
approximation of , which is the length of the diagonal of a square whose side 
measures one unit of length. Being able to compute the sides of a triangle (and hence, 
being able to compute square roots) is extremely important, for instance, in carpentry and 
construction. If the roof of a house makes a right angle isosceles triangle whose side is 3 
meters long, then the central support beam must be meters longer than 
the side beams. 



Numerical analysis continues this long tradition of practical mathematical calculations. 
Much like the Babylonian approximation to , modern numerical analysis does not 
seek exact answers, because exact answers are impossible to obtain in practice. Instead, 
much of numerical analysis is concerned with obtaining approximate solutions while 
maintaining reasonable bounds on errors. 

Numerical analysis naturally finds applications in all fields of engineering and the 
physical sciences, but in the 21st century, the life sciences and even the arts have adopted 
elements of scientific computations. Ordinary differential equations appear in the 
movement of heavenly bodies (planets, stars and galaxies); optimization occurs in 
portfolio management; numerical linear algebra is essential to quantitative psychology; 
stochastic differential equations and Markov chains are essential in simulating living cells 
for medicine and biology. 

General introduction 
We will now outline several important themes of numerical analysis. The overall goal is 
the design and analysis of techniques to give approximate solutions to hard problems. To 
fix ideas, the reader might consider the following problems and methods: 

• If a company wants to put a toothpaste commercial on television, it might produce 
five commercials and then choose the best one by testing each one on a focus 
group. This would be an example of a Monte Carlo optimization method.  

• To send a rocket to the moon, rocket scientists will need a rocket simulator. This 
simulator will essentially be an integrator for an ordinary differential equation.  

• Car companies can improve the crash safety of their vehicles by using computer 
simulations of car crashes. These simulations are essentially solving partial 
differential equations numerically.  

• Hedge funds (secretive financial companies) use tools from all fields of numerical 
analysis to calculate the value of stocks and derivatives more precisely than other 
market participants.  

• Airlines use sophisticated optimization algorithms to decide ticket prices, airplane 
and crew assignments and fuel needs. This field is also called operations research.  

Direct and iterative methods 

Direct vs iterative methods 

Consider the problem of 
solving 

3x3 + 4 = 28  



Some problems can be solved exactly by an algorithm. 
These algorithms are called direct methods. Examples are 
Gaussian elimination for solving systems of linear 
equations and the simplex method in linear programming. 

However, no direct methods exist for most problems. In 
such cases it is sometimes possible to use an iterative 
method. Such a method starts from a guess and finds 
successive approximations that hopefully converge to the 
solution. Even when a direct method does exist, an 
iterative method may be preferable if it is more efficient 
or more stable. 

Discretization 

for the unknown quantity x. 

Direct Method 

 3x3 + 4 = 
28. 

Subtract 4 3x3 = 24. 
Divide by 3 x3 = 8. 
Take cube 
roots x = 2. 

For the iterative method, 
apply the bisection method to 
f(x) = 3x3 + 24. The initial 
values are a = 0,b = 3,f(a) = 
4,f(b) = 85. 

Iterative Method 
a b mid f(mid) 
0 3 1.5 14.125
1.5 3 2.25 38.17...
1.5 2.25 1.875 23.77...
1.875 2.25 2.0625 30.32...

We conclude from this table 
that the solution is between 
1.875 and 2.0625. The 
algorithm might return any 
number in that range with an 
error less than 0.2. 

A discretization example 

A race car drives along a 
track for two hours. What 
distance has it covered? 

If we know that the race car 
was going at 150Km/h after 
one hour, we might guess that 
the total distance travelled is 
300Km. If we know in 
addition that the car was 
travelling at 140Km/h at the 
20 minutes mark, and at 
180Km/h at the 1:40 mark, 
then we can divide the two 
hours into three blocks of 40 
minutes. In the first block of 
40 minutes, the car travelled 
roughly 93.3Km, in the 
interval between 0:40 and 
1:20 the car travelled roughly 
100Km, and in the interval 
from 1:20 to 2:00, the car 
travelled roughly 120Km, for 
a total of 313.3Km. 

Essentially, we have taken the 
continuously varying speed 



Furthermore, continuous problems must sometimes be 
replaced by a discrete problem whose solution is known 
to approximate that of the continuous problem; this 
process is called discretization. For example, the 
solution of a differential equation is a function. This 
function must be represented by a finite amount of data, 
for instance by its value at a finite number of points at 
its domain, even though this domain is a continuum. 

The generation and propagation of errors 

The study of errors forms an important part of numerical analysis. There are several ways 
in which error can be introduced in the solution of the problem. 

Round-off 

Round-off errors arise because it is impossible to represent all real numbers exactly on a 
finite-state machine (which is what all practical digital computers are). 

On a pocket calculator, if one enters 0.0000000000001 (or the maximum number of zeros 
possible), then a +, and then 100000000000000 (again, the maximum number of zeros 
possible), one will obtain the number 100000000000000 again, and not 
100000000000000.0000000000001. The calculator's answer is incorrect because of 
roundoff in the calculation. 

Truncation and discretization error 

Truncation errors are committed when an iterative method is terminated and the 
approximate solution differs from the exact solution. Similarly, discretization induces a 
discretization error because the solution of the discrete problem does not coincide with 
the solution of the continuous problem. For instance, in the iteration above to compute 
the solution of 3x3 + 4 = 28, after 10 or so iterations, we conclude that the root is roughly 
1.99 (for example). We therefore have a truncation error of 0.01. 

Once an error is generated, it will generally propagate through the calculation. For 
instance, we have already noted that the operation + on a calculator (or a computer) is 
inexact. It follows that a calculation of the type a+b+c+d+e is even more inexact. 

Numerical stability and well posedness 

v(t) and approximated it using 

a speed which is 
constant on each of the three 
intervals of 40 minutes. 

 
How far is Schumacher 
driving? 

Numerical stability and well 
posedness 

Ill posed problemTake the function 
f(x) = 1 / (x − 1). The data is x and the 



output is f(x). Note that f(1.1) = 10 
and f(1.001) = 1000. So a change in x 
of less than 0.1 turns into a change in 
f(x) of nearly 1000. Evaluating f(x) 
near x = 1 is an ill-posed (or ill-
conditioned) problem. 

Well-posed problemBy contrast, the 

function is continuous 
so the problem of computing is 
well-posed. 

Numerically unstable methodStill, 
some algorithms which are meant to 
compute are fallible. Consider 
the following iterationStart with x1 an 
approximation of (for instance, 
take x1 = 1.4) and then use the 
iteration 

Then 
the iterates are 

 x1 = 1.4 
 x2 = 1.4016 
 x3 = 1.4028614885... 
 x4 = 1.403884186... 
 x1000000 = 1.414213437... 

On the other hand, if we start from x1 
= 1.42, we obtain the iterates 

 x2 = 1.42026896 
 x3 = 1.42056... 
 x20 = 1.445069... 
 x27 = 9.34181... 
 x28 = 7280.2284... 

and the iteration diverges. Because 
this algorithm fails for certain initial 
guesses near , we say that it is 
numerically unstable. 

Numerically stable methodThe 



This leads to the notion of numerical stabilityan 
algorithm is numerically stable if an error, once it 
is generated, does not grow too much during the 
calculation. This is only possible if the problem is 
well-conditioned, meaning that the solution 
changes by only a small amount if the problem 
data are changed by a small amount. Indeed, if a 
problem is ill-conditioned, then any error in the 
data will grow a lot. 

However, an algorithm that solves a well-
conditioned problem may or may not be 
numerically stable. An art of numerical analysis is 
to find a stable algorithm for solving a well-posed 
mathematical problem. 

Areas of study 

The field of numerical analysis is divided in 
different disciplines according to the problem that 
is to be solved. 

Computing values of functions 

One of the simplest problems is the evaluation of a function at a given point. The most 
straightforward approach, of just plugging in the number in the formula is sometimes not 
very efficient. For polynomials, a better approach is using the Horner scheme, since it 
reduces the necessary number of multiplications and additions. Generally, it is important 
to estimate and control round-off errors arising from the use of floating point arithmetic. 

Interpolation, extrapolation and 
regression 

Newton method for is x1 = 1 

and and is 
extremely stable. The first few 
iterations for a = 2 are 

x1 = 1 
x2 = 1.5 
x3 = 1.416... 
x4 = 1.414215... 
x5 = 1.41421356237469... 
x6 = 1.41421356237309..., 

which is essentially exact to the last 
displayed digit. The method will 
work well even if we change a, x1 
and/or introduce small errors at every 
step of the computation.  

Examples of Interpolation, 
extrapolation and regression 

InterpolationIf the temperature at 
noon was 20 degrees centigrade and 
at 2pm we observe that the 
temperature is 14 degrees centigrade, 
we might guess that at 1pm the 
temparature was in fact the average 
of 14 and 20, which is 17 degrees 
centigrade. This would correspond to 
a linear interpolation of the 



Interpolation solves the following problemgiven 
the value of some unknown function at a 
number of points, what value does that function 
have at some other point between the given 
points? A very simple method is to use linear 
interpolation, which assumes that the unknown 
function is linear between every pair of 
successive points. This can be generalized to 
polynomial interpolation, which is sometimes 
more accurate but suffers from Runge's 
phenomenon. Other interpolation methods use 
localized functions like splines or wavelets. 

Extrapolation is very similar to interpolation, 
except that now we want to find the value of the 
unknown function at a point which is outside 
the given points. 

 
Regression is also similar, but it takes into 
account that the data is imprecise. Given some 
points, and a measurement of the value of some 
function at these points (with an error), we want 
to determine the unknown function. The least 
squares-method is one popular way to achieve 
this. 

Solving equations and systems of 
equations 

Another fundamental problem is computing the 
solution of some given equation. Two cases are commonly distinguished, depending on 
whether the equation is linear or not. For instance, the equation 2x + 5 = 3 is linear while 
2x2 + 5 = 3 is not. 

Much effort has been put in the development of methods for solving systems of linear 
equations. Standard direct methods i.e. methods that use some matrix decomposition are 
Gaussian elimination, LU decomposition, Cholesky decomposition for symmetric (or 
hermitian) and positive-definite matrix, and QR decomposition for non-square matrices. 
Iterative methods such as the Jacobi method, Gauss-Seidel method, successive over-
relaxation and conjugate gradient method are usually preferred for large systems. 

Root-finding algorithms are used to solve nonlinear equations (they are so named since a 
root of a function is an argument for which the function yields zero). If the function is 

temperature between the times of 
noon and 2pm. 

ExtrapolationIf the gross domestic 
product of a country has been 
growing an average of 5% per year 
and was 100 billion dollars last year, 
we might extrapolate that it will be 
105 billion dollars this year. 

RegressionGiven two points on a 
piece of paper, there is a line that 
goes through both points. Given 
twenty points on a piece of paper, 
what is the line that goes through 
them? In most cases, there is no 
straight line going through the twenty 
points. In linear regression, given n 
points, we compute a line that passes 
as close as possible to those n points. 

 
A line through 20 points? 



differentiable and the derivative is known, then Newton's method is a popular choice. 
Linearization is another technique for solving nonlinear equations. 

Solving eigenvalue or singular value problems 

Several important problems can be phrased in terms of eigenvalue decompositions or 
singular value decompositions. For instance, the spectral image compression algorithm is 
based on the singular value decomposition. The corresponding tool in statistics is called 
principal component analysis. One application is to automatically find the 100 top 
subjects of discussion on the web, and to then classify each web page according to which 
subject it belongs to. 

Optimization 

Optimization (mathematics) 
Optimization, differential 

equations 

 

OptimizationSay you sell lemonade 
at a lemonade stand, and notice that 
at 1$, you can sell 197 glasses of 
lemonade per day, and that for each 
increase of 0.01$, you will sell one 
less lemonade per day. The 
optimization problem is to find the 
price of lemonade at which your 
profit per day is largest possible, 
ignoring production costs. If you 
could charge 1.485$, you would 
maximize your profit, but due to the 
constraint of having to charge a 
whole cent amount, charging 1.49$ 
per glass will yield the maximum 
profit of 220.52$ per day. 



Optimization problems ask for the point at which 
a given function is maximized (or minimized). 
Often, the point also has to satisfy some 
constraints. 

The field of optimization is further split in several 
subfields, depending on the form of the objective 
function and the constraint. For instance, linear 
programming deals with the case that both the 
objective function and the constraints are linear. A 
famous method in linear programming is the 
simplex method. 

The method of Lagrange multipliers can be used 
to reduce optimization problems with constraints 
to unconstrained optimization problems. 

Evaluating integrals 

Numeric
al 
integrati
on 

 

Differential equationIf you set up 
100 fans to blow air from one end of 
the room to the other and then you 
drop a feather into the wind, what 
happens? The feather will follow the 
air currents, which may be very 
complex. One approximation is to 
measure the speed at which the air is 
blowing near the feather every 
second, and advance the simulated 
feather as if it were moving in a 
straight line at that same speed for 
one second, before measuring the 
wind speed again. This is called the 
Euler method for solving an ordinary 
differential equation. 

Numerical integration 

How much paint would you need to 
give the Statue of Liberty a fresh 
coat? She is 151 feet tall and her 
waist is 35' across,so a first 
approximation is that it would require 
the same amount of paint you would 
need to paint a 151x35x35 room. 
Counting the four walls and the 
ceiling, that would make a surface 
area of 22,365 square feet. One 
gallon of paint covers about 350 
square feet, so by this estimate, we 
might require 64 gallons of paint. 



Numerical integration, in some instances also 
known as numerical quadrature, asks for the 
value of a definite integral. Popular methods 
use one of the Newton-Cotes formulas (like the 
midpoint rule or Simpson's rule) or Gaussian 
quadrature. These methods rely on a "divide 
and conquer" strategy, whereby an integral on a 
relatively large set is broken down into integrals 
on smaller sets. In higher dimensions, where 
these methods become prohibitively expensive 
in terms of computational effort, one may use 
Monte Carlo or quasi-Monte Carlo methods, or, 
in modestly large dimensions, the method of 
sparse grids. 

Differential equations 

sNumerical ordinary differential equations, 
Numerical partial differential equations.  

Numerical analysis is also concerned with 
computing (in an approximate way) the solution 
of differential equations, both ordinary 
differential equations and partial differential 
equations. 

Partial differential equations are solved by first 
discretizing the equation, bringing it into a 
finite-dimensional subspace. This can be done 
by a finite element method, a finite difference 
method, or (particularly in engineering) a finite 
volume method. The theoretical justification of 

these methods often involves theorems from functional analysis. This reduces the 
problem to the solution of an algebraic equation. 

Software 
List of numerical analysis software 

Since the late twentieth century, most algorithms are implemented and run on a 
computer. The Netlib repository contains various collections of software routines for 
numerical problems, mostly in Fortran and C. Commercial products implementing many 
different numerical algorithms include the IMSL and NAG libraries; a free alternative is 
the GNU Scientific Library. 

 

However, it may be more precise to 
estimate each piece on its own. We 
can approximate the parts below the 
neck with a 95 feet tall cylinder 
whose radius is 17 feet. The head is 
roughly a sphere of radius 15 feet. 
The arm is another 42' long cylinder 
with a radius of 6', the tablet is a 
24'x14'x2' box. Adding all the surface 
areas gives roughly 15385 square 
feet, which requires an approximate 
44 gallons of paint. 

To further improve our estimate, we 
would measure the folds in her cloth, 
how non-spherical her head really is 
and so on. This process is called 
numerical integration. 



MATLAB is a popular commercial programming language for numerical scientific 
calculations, but there are commercial alternatives such as S-PLUS and IDL, as well as 
free and open source alternatives such as FreeMat, GNU Octave (similar to Matlab), R 
(similar to S-PLUS) and certain variants of Python. Performance varies widelywhile 
vector and matrix operations are usually fast, scalar loops vary in speed by more than an 
order of magnitude.  

Many computer algebra systems such as Mathematica or Maple (free software systems 
include SAGE, Maxima, Axiom, calc and Yacas), can also be used for numerical 
computations. However, their strength typically lies in symbolic computations. Also, any 
spreadsheet software can be used to solve simple problems relating to numerical analysis. 

 



Exact trigonometric constants 
Exact constant expressions for trigonometric expressions are sometimes useful, 
mainly for simplifying solutions into radical forms which allow further simplification. 

All values of sine, cosine, and tangent of angles with 3° increments are derivable using 
identitiesHalf-angle, Double-angle, Addition/subtraction and values for 0°, 30°, 36° and 
45°. Note that 1° = π/180 radians. 

This article is incomplete in at least two senses. First, it is always possible to apply a half-
angle formula and find an exact expression for the cosine of one-half the smallest angle 
on the list. Second, this article exploits only the first two of five known Fermat primes3 
and 5. One could in principle write down formulae involving the angles 2π/17, 2π/257, or 
2π/65537, but they would be too unwieldy for most applications. In practice, all values of 
sine, cosine, and tangent not found in this article are approximated using the techniques 
described at Generating trigonometric tables. 

Table of constants 

Values outside [0°,45°] angle range are trivially extracted from circle axis reflection 
symmetry from these values. (See Trigonometric identity) 

0° Fundamental 

 
 
 

3° - 60-sided polygon 

 

 

 

 



6° - 30-sided polygon 

 

 

 

 

9° - 20-sided polygon 

 

 

 

 

12° - 15-sided polygon 

 

 

 

 

15° - 12-sided polygon 



 

 

 

 

18° - 10-sided polygon 

 

 

 

 

21° - Sum 9° + 12° 

 

 

 

 

22.5° - Octagon 

 



 

 

 

24° - Sum 12° + 12° 

 

 

 

 

27° - Sum 12° + 15° 

 

 

 

 

30° - Hexagon 

 

 

 



 

33° - Sum 15° + 18° 

 

 

 

 

36° - Pentagon 

 

 

 

 

39° - Sum 18°+ 21° 

 

 

 



 

42° - Sum 21° + 21° 

 

 

 

 

45° - Square 

 

 

 

 

Notes 

Uses for constants 

As an example of the use of these constants, consider a dodecahedron with the following 
volume, where e is the length of an edge: 

 

Using 



 

 

this can be simplified to: 

 

Derivation triangles 

 
Regular polygon (N-sided) and its fundamental right triangle. Anglea = 180/N ° 

The derivation of sine, cosine, and tangent constants into radial forms is based upon the 
constructability of right triangles. 

Here are right triangles made from symmetry sections of regular polygons are used to 
calculate fundamental trigonometric ratios. Each right triangle represents three points in a 
regular polygona vertex, an edge center containing that vertex, and the polygon center. A 
N-gon can be divided into 2N right triangle with angles of {180/N, 90−180/N, 90} 
degrees, for N = 3, 4, 5, ... 

Constructibility of 3, 4, 5, and 15 sided polygons are the basis, and angle bisectors allow 
multiples of two to also be derived. 

• Constructible  
o 3×2X-sided regular polygons, X = 0, 1, 2, 3, ...  

 30°-60°-90° triangle - triangle (3 sided)  
 60°-30°-90° triangle - hexagon (6-sided)  
 75°-15°-90° triangle - dodecagon (12-sided)  
 82.5°-7.5°-90° triangle - icosikaitetragon (24-sided)  
 86.25°-3.75°-90° triangle - tetracontakaioctagon (48-sided)  

 ...  
o 4×2X-sided  



 45°-45°-90° triangle - square (4-sided)  
 67.5°-22.5°-90° triangle - octagon (8-sided)  
 88.75°-11.25°-90° triangle - hexakaidecagon (16-sided)  

 ...  
o 5×2X-sided  

 54°-36°-90° triangle - pentagon (5-sided)  
 72°-18°-90° triangle - decagon (10-sided)  
 81°-9°-90° triangle - icosagon (20-sided)  
 85.5°-4.5°-90° triangle - tetracontagon (40-sided)  
 87.75°-2.25°-90° triangle - octacontagon (80-sided)  

 ...  
o 15×2X-sided  

 78°-12°-90° triangle - pentakaidecagon (15-sided)  
 84°-6°-90° triangle - tricontagon (30-sided)  
 87°-3°-90° triangle - hexacontagon (60-sided)  
 88.5°-1.5°-90° triangle - hectoicosagon (120-sided)  
 89.25°-0.75°-90° triangle - dihectotetracontagon (240-sided)  

o ... (Higher constructible regular polygons don’t make whole degree 
angles17, 51, 85, 255, 257...)  

• Nonconstructable (with whole or half degree angles) - No finite radical 
expressions involving real numbers for these triangle edge ratios are possible 
because of Casus Irreducibilis.  

o 9×2X-sided  
 70°-20°-90° triangle - enneagon (9-sided)  
 80°-10°-90° triangle - octakaidecagon (18-sided)  
 85°-5°-90° triangle - triacontakaihexagon (36-sided)  
 87.5°-2.5°-90° triangle - heptacontakaidigon (72-sided)  

 ...  
o 45×2X-sided  

 86°-4°-90° triangle - tetracontakaipentagon (45-sided)  
 88°-2°-90° triangle - enneacontagon (90-sided)  
 89°-1°-90° triangle - hectaoctacontagon (180-sided)  
 89.5°-0.5°-90° triangle - trihectohexacontagon (360-sided)  

 ...  

How can the trig values for sin and cos be calculated? 

The trivial ones 

In degree format0, 90, 45, 30 and 60 can be calculated from their triangles, using 
the pythagorean theorem.  

n π over 10 



The multiple angle formulas for functions of 5x, where x = {18, 36, 54, 72, 90} 
and 5x = {90, 180, 270, 360, 540}, can be solved for the functions of x, since we 
know the function values of 5x. The multiple angle formulas are 
sin5x = 16sin5x − 20sin3x + 5sinx  
cos5x = 16cos5x − 20cos3x + 5cosx  

• When sin 5x = 0 or 
cos 5x = 0, we let y 
= sin x or y = cos x 
and solve for y 

16y5 − 20y3 + 5y = 0  
One solution is zero, and the resulting 4th degree equation can be solved as a 
quadratic in y-squared.  

• When sin 5x = 1 or 
cos 5x = 1, we again 
let y = sin x or y = 
cos x and solve for y 

16y5 − 20y3 + 5y − 1 = 0  
which factors into  
(y − 1)(4y2 + 2y − 1)2 = 0  

n π over 20 

9° is 45 - 36, and 27° is 45 - 18; so we use the subtraction formulas for sin and 
cos.  

n π over 30 

6° is 36 - 30, 12° is 30 - 18, 24° is 54 - 30, and 42° is 60 - 18; so we use the 
subtraction formulas for sin and cos.  

n π over 60 

3° is 18 - 15, 21° is 36 - 15, 33° is 18 + 15, and 39° is 54 - 15, so we use the 
subtraction (or addition) formulas for sin and cos.  

How can the trig values for tan and cot be calculated? 
Tangent is sine divided by cosine, and cotangent is cosine divided by sine.  
Set up each fraction and simplify.  

Plans for simplifying 



Rationalize the denominator 

If the denominator is a square root, multiply the numerator and denominator by 
that radical.  
If the denominator is the sum or difference of two terms, multiply the numerator 
and denominator by the conjugate of the denominator. The conjugate is the 
identical, except the sign between the terms is changed.  
Sometimes you need to rationalize the denominator more than once.  

Split a fraction in two 

Sometimes it helps to split the fraction into the sum of two fractions and then 
simplify both separately.  

Squaring and square rooting 

If there is a complicated term, with only one kind of radical in a term, this plan 
may help. Square the term, combine like terms, and take the square root. This may 
leave a big radical with a smaller radical inside, but it is often better than the 
original.  

Simplification of nested radical expressions 

Nested radicals  

In general nested radicals cannot be reduced. 

But if for , 

is rational,  

and both and are rational, 

with the appropriate choice of the four signs, 

then  

Example: 

 



Pythagorean theorem 
In mathematics, the Pythagorean theorem or Pythagoras’ theorem is a relation in 
Euclidean geometry among the three sides of a right triangle. The theorem is named after 
the Greek mathematician Pythagoras, who by tradition is credited with its 
discovery,although knowledge of the theorem almost certainly predates him. 

The theorem is as follows: 

In any right triangle, the area of the square whose side is the hypotenuse (the side of 
a right triangle opposite the right angle) is equal to the sum of areas of the squares 
whose sides are the two legs (i.e. the two sides other than the hypotenuse).  

If we let c be the length of the hypotenuse and a and b be the lengths of the other two 
sides, the theorem can be expressed as the equation 

 

This equation provides a simple relation among the three sides of a right triangle so that if 
the lengths of any two sides are known, the length of the third side can be found. A 
generalization of this theorem is the law of cosines, which allows the computation of the 
length of the third side of any triangle, given the lengths of two sides and the size of the 
angle between them. 

This theorem may have more known proofs than any other. The Pythagorean 
Proposition, a book published in 1940, contains 370 proofs of Pythagoras’ theorem, 
including one by American President James Garfield. 

The converse of the theorem is also true:- 

For any three positive numbers a, b, and c such that a² + b² = c², there exists a 
triangle with sides a, b and c, and every such triangle has a right angle between the 
sides of lengths a and b.  



 
Visual proof for the (3, 4, 5) triangle as in the Chou Pei Suan Ching 500–200 BC 

History 

The history of the theorem can be divided into three partsknowledge of Pythagorean 
triples, knowledge of the relationship between the sides of a right triangle, and proofs of 
the theorem. 

Megalithic monuments from 4000 BC in Egypt, and in the British Isles from circa 2500 
BC, incorporate right triangles with integer sidesbut the builders did not necessarily 
understand the theorem. Bartel Leendert van der Waerden conjectures that these 
Pythagorean triples were discovered algebraically  

Written between 2000–1786 BC, the Middle Kingdom Egyptian papyrus Berlin 6619 
includes a problem, whose solution is a Pythagorean triple. 

During the reign of Hammurabi, the Mesopotamian tablet Plimpton 322, written between 
1790 and 1750 BC, contains many entries closely related to Pythagorean triples. 

The Baudhayana Sulba Sutra, written in the 8th century BC in India, contains a list of 
Pythagorean triples discovered algebraically, a statement of the Pythagorean theorem, 
and a geometrical proof of the Pythagorean theorem for an isosceles right triangle. 

The Apastamba Sulba Sutra (circa 600 BC) contains a numerical proof of the general 
Pythagorean theorem, using an area computation. Van der Waerden believes that “it was 
certainly based on earlier traditions”. According to Albert Bŭrk, this is the original proof 
of the theorem, and Pythagoras copied it on his visit to India. Many scholars find van der 
Waerden and Bŭrk’s claims unsubstantiated. 

Pythagoras, whose dates are commonly given as 569–475 BC, used algebraic methods to 
construct Pythagorean triples, according to Proklos’s commentary on Euclid. Proklos, 
however, wrote between 410 and 485 AD. According to Sir Thomas L. Heath, there is no 
attribution of the theorem to Pythagoras for five centuries after Pythagoras lived. 
However, when authors such as Plutarch and Cicero attributed the theorem to Pythagoras, 
they did so in a way which suggests that the attribution was widely known and 
undoubted. 



Around 400 BC, according to Proklos, Plato gave a method for finding Pythagorean 
triples that combined algebra and geometry. Circa 300 BC, in Euclid’s Elements, the 
oldest extant axiomatic proof of the theorem is presented. 

Written sometime between 500 BC and 200 AD, the Chinese text Chou Pei Suan Ching 
(����), (The Arithmetical Classic of the Gnomon and the Circular Paths of Heaven) 
gives a visual proof of the Pythagorean theorem — in China it is called the “Gougu 
Theorem” (����) — for the (3, 4, 5) triangle. During the Han Dynasty, from 200 BC 
to 200 AD, Pythagorean triples appear in The Nine Chapters on the Mathematical Art, 
together with a mention of right triangles. 

There is much debate on whether the Pythagorean theorem was discovered once or many 
times. B.L. van der Waerden asserts a single discovery, by someone in Neolithic Britain, 
knowledge of which then spread to Mesopotamia circa 2000 BC, and from there to India, 
China, and Greece by 600 BC. Most scholars disagree however, and favor independent 
discovery. 

More recently, Shri Bharati Krishna Tirthaji in his book Vedic Mathematics claimed 
ancient Indian Hindu Vedic proofs for the Pythagoras Theorem. 

Proofs 

This theorem may have more known proofs than any other (the law of quadratic 
reciprocity being also a contender for that distinction); the book Pythagorean 
Proposition, by Elisha Scott Loomis, contains over 350 proofs. James Garfield, who later 
became President of the United States, devised an original proof of the Pythagorean 
theorem in 1876. The external links below provide a sampling of the many proofs of the 
Pythagorean theorem. 

Some arguments based on trigonometric identities (such as Taylor series for sine and 
cosine) have been proposed as proofs for the theorem. However, since all the 
fundamental trigonometric identities are proved using the Pythagorean theorem, there 
cannot be any trigonometric proof. (See also begging the question.) 

For similar reasons, no proof can be based on analytic geometry or calculus. 

Geometrical proof 

 



Proof using similar triangles 
Like many of the proofs of the Pythagorean theorem, this one is based on the 
proportionality of the sides of two similar triangles. 

Let ABC represent a right triangle, with the right angle located at C, as shown on the 
figure. We draw the altitude from point C, and call H its intersection with the side AB. 
The new triangle ACH is similar to our triangle ABC, because they both have a right 
angle (by definition of the altitude), and they share the angle at A, meaning that the third 
angle will be the same in both triangles as well. By a similar reasoning, the triangle CBH 
is also similar to ABC. The similarities lead to the two ratios: 

 

These can be written as: 

and  

Summing these two equalities, we obtain: 

 

In other words, the Pythagorean theorem: 

 

Euclid’s proof 

 

Proof in Euclid’s Elements 



In Euclid’s Elements, the Pythagorean theorem is proved by an argument along the 
following lines. Let P, Q, R be the vertices of a right triangle, with a right angle at Q. 
Drop a perpendicular from Q to the side opposite the hypotenuse in the square on the 
hypotenuse. That line divides the square on the hypotenuse into two rectangles, each 
having the same area as one of the two squares on the legs. 
 

Visual proof 

 

Proof using area subtraction 

A visual proof is given by this illustration. The area of each large square is (a + b)². In 
both, the area of four identical triangles is removed. The remaining areas, a² + b² and c², 
are equal. Q.E.D. 

This proof is indeed very simple, but it is not elementary, in the sense that it does not 
depend solely upon the most basic axioms and theorems of Euclidean geometry. In 
particular, while it is quite easy to give a formula for area of triangles and squares, it is 
not as easy to prove that the area of a square is the sum of areas of its pieces. In fact, 
proving the necessary properties is harder than proving the Pythagorean theorem itself. 
For this reason, axiomatic introductions to geometry usually employ another proof based 
on the similarity of triangles (see above). 
 

 

Proof using rearrangement 

A second graphic illustration of the Pythagorean theorem fits parts of the sides’ squares 
into the hypotenuse’s square. A related proof would show that the repositioned parts are 
identical with the originals and, since the sum of equals are equal, that the corresponding 



areas are equal. To show that a square is the result one must show that the length of the 
new sides equals c. 

 
 

Algebraic proof 

 
A square created by aligning four right angle triangles and a large square. 

A more algebraic variant of this proof is provided by the following reasoning. Looking at 
the illustration, the area of each of the four red, yellow, green and pink right-angled 
triangles is given by: 

 

The blue square in the middle has side length c, so its area is c2. Thus the area of 
everything together is given by: 

 

However, as the large square has sides of length a+b, we can also calculate its area as 
(a+b)², which expands to a²+2ab+b². This can be shown by considering the angles. 

Proof by differential equations 

One can arrive at the Pythagorean theorem by studying how changes in a side produce a 
change in the hypotenuse in the following diagram and employing a little calculus. 



 
Proof using differential equations 

As a result of a change in side a, 

 

by similar triangles and for differential changes. So 

 

upon separation of variables. A more general result is 

 

which results from adding a second term for changes in side b. 

Integrating gives 

 
 

So 

 

As can be seen, the squares are due to the particular proportion between the changes and 
the sides while the sum is a result of the independent contributions of the changes in the 
sides which is not evident from the geometric proofs. From the proportion given it can be 
shown that the changes in the sides are inversely proportional to the sides. The 
differential equation suggests that the theorem is due to relative changes and its 
derivation is nearly equivalent to computing a line integral. A simpler derivation would 
leave fixed and then observe that 

 

It is doubtful that the Pythagoreans would have been able to do the above proof but they 
knew how to compute the area of a triangle and were familiar with figurate numbers and 



the gnomon, a segment added onto a geometrical figure. All of these ideas predate 
calculus and are an alternative for the integral. 

The proportional relation between the changes and their sides is at best an approximation, 
so how can one justify its use? The answer is the approximation gets better for smaller 
changes since the arc of the circle which cuts off c more closely approaches the tangent to 
the circle. As for the sides and triangles, no matter how many segments they are divided 
into the sum of these segments is always the same. The Pythagoreans were trying to 
understand change and motion and this led them to realize that the number line was 
infinitely divisible. Could they have discovered the approximation for the changes in the 
sides? One only has to observe that the motion of the shadow of a sundial produces the 
hypotenuses of the triangles to derive the figure shown. 

Rational trigonometry 

For a proof by the methods of rational trigonometry, see Pythagoras’ theorem proof 
(rational trigonometry). 

Proof of the converse 

For any three positive numbers a, b, and c such that a2 + b2 = c2, there exists a 
triangle with sides a, b and c, and every such triangle has a right angle between the 
sides of lengths a and b.  

This converse also appears in Euclid’s Elements. It can be proven using the law of 
cosines (see below under Generalizations), or by the following proof: 

Let ABC be a triangle with side lengths a, b, and c, with a2 + b2 = c2. We need to prove 
that the angle between the a and b sides is a right angle. We construct another triangle 
with a right angle between sides of lengths a and b. By the Pythagorean theorem, it 
follows that the hypotenuse of this triangle also has length c. Since both triangles have 
the same side lengths a, b and c, they are congruent, and so they must have the same 
angles. Therefore, the angle between the side of lengths a and b in our original triangle is 
a right angle. 

Consequences and uses of the theorem 

Pythagorean triples 

Pythagorean triple 

A Pythagorean triple consists of three positive integers a, b, and c, such that a2 + b2 = c2. 
In other words, a Pythagorean triple represents the lengths of the sides of a right triangle 
where all three sides have integer lengths. Evidence from megalithic monuments on the 



British Isles shows that such triples were known before the discovery of writing. Such a 
triple is commonly written (a, b, c), and a well-known example is (3, 4, 5). 

A Pythagorean triple is primitive if a, b, and c have no common divisor other than 1. 
There are infinitely many primitive triples, and all Pythagorean triples can be explicitly 
generated using the following formulachoose two integers m and n with m > n, and let a 
= m2 − n2, b = 2mn, c = m2 + n2. Then we have a2 + b2 = c2. Also, any multiple of a 
Pythagorean triple is again a Pythagorean triple. 

Pythagorean triples allow the construction of right angles. The fact that the lengths of the 
sides are integers means that, for example, tying knots at equal intervals along a string 
allows the string to be stretched into a triangle with sides of length three, four, and five, 
in which case the largest angle will be a right angle. This methods was used to step masts 
at sea and by the Egyptians in construction work. 

A generalization of the concept of Pythagorean triples is a triple of positive integers a, b, 
and c, such that an + bn = cn, for some n strictly greater than 2. Pierre de Fermat in 1637 
claimed that no such triple exists, a claim that came to be known as Fermat’s last 
theorem. The first proof was given by Andrew Wiles in 1994. 

The existence of irrational numbers 

One of the consequences of the Pythagorean theorem is that irrational numbers, such as 
the square root of two, can be constructed. A right triangle with legs both equal to one 
unit has hypotenuse length square root of two. The Pythagoreans proved that the square 
root of two is irrational, and this proof has come down to us even though it flew in the 
face of their cherished belief that everything was rational. According to the legend, 
Hippasus, who first proved the irrationality of the square root of two, was drowned at sea 
as a consequence. 

Distance in Cartesian coordinates 

The distance formula in Cartesian coordinates is derived from the Pythagorean theorem. 
If (x0, y0) and (x1, y1) are points in the plane, then the distance between them, also called 
the Euclidean distance, is given by 

 

More generally, in Euclidean n-space, the Euclidean distance between two points 

and , is defined, using the 
Pythagorean theorem, as: 



 

Generalizations 

The Pythagorean theorem was generalised by Euclid in his Elements: 

If one erects similar figures (see Euclidean geometry) on the sides of a right triangle, 
then the sum of the areas of the two smaller ones equals the area of the larger one.  

The Pythagorean theorem is a special case of the more general theorem relating the 
lengths of sides in any triangle, the law of cosines: 

 
where θ is the angle between sides a and b.  

When θ is 90 degrees, then cos(θ) = 0, so the formula reduces to the usual 
Pythagorean theorem.  

Given two vectors v and w in a complex inner product space, the Pythagorean theorem 
takes the following form: 

 

In particular, ||v + w||2 = ||v||2 + ||w||2 if and only if v and w are orthogonal. 

Using mathematical induction, the previous result can be extended to any finite number 
of pairwise orthogonal vectors. Let v1, v2,..., vn be vectors in an inner product space such 
that <vi, vj> = 0 for 1 ≤ i < j ≤ n. Then 

 

The generalisation of this result to infinite-dimensional real inner product spaces is 
known as Parseval’s identity. 

When the theorem above about vectors is rewritten in terms of solid geometry, it 
becomes the following theorem. If lines AB and BC form a right angle at B, and lines BC 
and CD form a right angle at C, and if CD is perpendicular to the plane containing lines 
AB and BC, then the sum of the squares of the lengths of AB, BC, and CD is equal to the 
square of AD. The proof is trivial. 



Another generalization of the Pythagorean theorem to three dimensions is de Gua’s 
theorem, named for Jean Paul de Gua de MalvesIf a tetrahedron has a right angle corner 
(a corner like a cube), then the square of the area of the face opposite the right angle 
corner is the sum of the squares of the areas of the other three faces. 

There are also analogs of these theorems in dimensions four and higher. 

In a triangle with three acute angles, α + β > γ holds. Therefore, a2 + b2 > c2 holds. 

In a triangle with an obtuse angle, α + β < γ holds. Therefore, a2 + b2 < c2 holds. 

Edsger Dijkstra has stated this proposition about acute, right, and obstuse triangles in this 
language: 

sgn(α + β − γ) = sgn(a2 + b2 − c2)  

where α is the angle opposite to side a, β is the angle opposite to side b and γ is the angle 
opposite to side c. 

The Pythagorean theorem in non-Euclidean geometry 

The Pythagorean theorem is derived from the axioms of Euclidean geometry, and in fact, 
the Euclidean form of the Pythagorean theorem given above does not hold in non-
Euclidean geometry. (It has been shown in fact to be equivalent to Euclid’s Parallel 
(Fifth) Postulate.) For example, in spherical geometry, all three sides of the right triangle 
bounding an octant of the unit sphere have length equal to π / 2; this violates the 

Euclidean Pythagorean theorem because . However, in 
hyperbolic geometry, the Pythagorean theorem does hold in the limit of small distances. 

This means that in non-Euclidean geometry, the Pythagorean theorem must necessarily 
take a different form from the Euclidean theorem. There are two cases to consider—
spherical geometry and hyperbolic plane geometry; in each case, as in the Euclidean case, 
the result follows from the appropriate law of cosines: 

For any right triangle on a sphere of radius R, the Pythagorean theorem takes the form 

 

By using the Maclaurin series for the cosine function, it can be shown that as the radius R 
approaches infinity, the spherical form of the Pythagorean theorem approaches the 
Euclidean form. 

For any triangle in the hyperbolic plane (with Gaussian curvature −1), the Pythagorean 
theorem takes the form 



 
where cosh is the hyperbolic cosine.  

By using the Maclaurin series for this function, it can be shown that as a hyperbolic 
triangle becomes very small (i.e., as a, b, and c all approach zero), the hyperbolic form of 
the Pythagorean theorem approaches the Euclidean form. 

Pythagoras’s theorem and complex numbers 

This proof is only valid if a and b are real. If a and/or b have imaginary parts, 
Pythagoras’s theorem breaks down because the concept of areas loses its meaning 
because in the complex plane loci of the type y = f(x) (which includes straight lines) 
cannot separate an inside from an outside because there they are 2-dimensional (y, iy) in a 
4-dimensional space (x, ix, y, iy). 

Cultural references to the Pythagorean theorem 

• In The Wizard of Oz, when the Scarecrow receives his diploma from the Wizard, 
he immediately exhibits his “knowledge” by reciting a mangled and incorrect 
version of the theorem”The sum of the square roots of any two sides of an 
isosceles triangle is equal to the square root of the remaining side. Oh, joy, oh, 
rapture. I’ve got a brain!”  

• In an episode of The Simpsons, homage is paid to the Oz Scarecrow’s quote, thus 
turning the theorem into a cultural reference to a cultural reference. After finding 
a pair of Henry Kissinger’s glasses at the Springfield Nuclear Power Plant, Homer 
puts them on and quotes the scarecrow verbatim. A man in a nearby toilet stall 
then yells out “That’s a right triangle, you idiot!”  

• In 2000, Uganda released a coin with the shape of a right triangle. The tail has an 
image of Pythagoras and the Pythagorean theorem, accompanied with the mention 
“Pythagoras Millennium”.  
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