

Handbook of FPGA Design Security

Ted Huffmire � Cynthia Irvine � Thuy D. Nguyen �

Timothy Levin � Ryan Kastner � Timothy Sherwood

Handbook
of FPGA
Design Security

Dr. Ted Huffmire
Department of Computer Science
Naval Postgraduate School
Cunningham Road 1411
93943 Monterey, CA
USA
tdhuffmi@nps.edu

Dr. Cynthia Irvine
Department of Computer Science
Naval Postgraduate School
Cunningham Road 1411
93943 Monterey, CA
USA

Thuy D. Nguyen
Department of Computer Science
Naval Postgraduate School
Cunningham Road 1411
93943 Monterey, CA
USA

Timothy Levin
Department of Computer Science
Naval Postgraduate School
Cunningham Road 1411
93943 Monterey, CA
USA

Dr. Ryan Kastner
Dept. of Computer Science and Eng.
University of California, San Diego
Gilman Drive 9500
92093 La Jolla, CA
USA
kastner@cs.ucsd.edu

Dr. Timothy Sherwood
Department of Computer Science
UC, Santa Barbara
93106 Santa Barbara
USA

ISBN 978-90-481-9156-7 e-ISBN 978-90-481-9157-4
DOI 10.1007/978-90-481-9157-4
Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2010930170

© Springer Science+Business Media B.V. 2010
No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written
permission from the Publisher, with the exception of any material supplied specifically for the purpose
of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

Cover design: eStudio Calamar

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To our teachers

Preface

The purpose of this book is to provide a practical approach to managing security in
FPGA designs for researchers and practitioners in the electronic design automation
(EDA) and FPGA communities, including corporations, industrial and government
research labs, and academics. This book combines theoretical underpinnings with
a practical design approach and worked examples for combating real world threats.
To address the spectrum of lifecycle and operational threats against FPGA systems,
a holistic view of FPGA security is presented, from formal top level specification
to low level policy enforcement mechanisms, which integrates recent advances in
the fields of computer security theory, languages, compilers, and hardware. The
net effect is a diverse set of static and runtime techniques that, working in coopera-
tion, facilitate the composition of robust, dependable, and trustworthy systems using
commodity components.

We wish to acknowledge the many people who helped us ensure the success of
our work on reconfigurable hardware security. In particular, we wish to thank Andrei
Paun and Jason Smith of Louisiana Tech University for providing us with a Linux-
compatible version of Grail+. We also wish to thank those who gave us comments
on drafts of this book, including Marco Platzner of the University of Paderborn, and
Ali Irturk and Jason Oberg of the University of California, San Diego. This research
was funded in part by National Science Foundation Grant CNS-0524771 and NSF
Career Grant CCF-0448654.

Monterey, CA, USA Ted Huffmire
Cynthia Irvine

Thuy D. Nguyen
Timothy Levin

La Jolla, CA, USA Ryan Kastner
Santa Barbara, CA, USA Timothy Sherwood

vii

viii Preface

Ted Huffmire is an assistant professor of computer science at the Naval Postgraduate School in
Monterey, California. His research spans both computer security and computer architecture, fo-
cusing on hardware-oriented security and the development of policy enforcement mechanisms for
application-specific devices. He has a Ph.D. in computer science from the University of California,
Santa Barbara. He is a member of the IEEE and the ACM.

Cynthia Irvine is the director of the Center for Information Systems Security Studies and Research
(CISR) and a professor of computer science at the Naval Postgraduate School in Monterey, Cali-
fornia. Her research interests include high-assurance security. She has a Ph.D. in astronomy from
Case Western Reserve University. She is a member of the IEEE, the ACM, and the Astronomical
Society of the Pacific.

Thuy D. Nguyen is a senior researcher of computer science at the Naval Postgraduate School in
Monterey, California. Her research interests include high-assurance platforms, trusted operating
systems, dynamic security services, multilevel security, security evaluation, and security require-
ments engineering. She has a B.A. in computer science from the University of California, San
Diego.

Timothy Levin is an associate research professor at the Naval Postgraduate School in Monterey,
California. His research interests include design, analysis and verification of high-assurance se-
curity architectures and dynamic security policies. He has a B.S. in computer science from the
University of California, Santa Cruz. He is a member of the IEEE and the ACM.

Ryan Kastner is an associate professor in the Department of Computer Science and Engineering at
the University of California, San Diego. His research interests focus on many aspects of embedded
computing systems, including reconfigurable architectures, digital-signal processing, and security.
He has a Ph.D. in computer science from the University of California, Los Angeles.

Timothy Sherwood is an associate professor in the Department of Computer Science at the Uni-
versity of California, Santa Barbara. His research interests include computer architecture, specifi-
cally in the development of novel high-throughput methods by which systems can be constructed,
monitored, and analyzed. He has a Ph.D. in computer science and engineering from the University
of California, San Diego. He is a member of the IEEE and the ACM.

Contents

1 Introduction and Motivation . 1
1.1 The Growing Reliance on FPGAs 1

1.1.1 FPGAs for Aerospace . 2
1.1.2 FPGAs for Supercomputing 4
1.1.3 FPGAs for Video Analysis 5
1.1.4 FPGAs for High-Throughput Cryptography 5
1.1.5 FPGAs for Intrusion Detection and Prevention 6

1.2 FPGA Architectures . 6
1.2.1 The Attractiveness of Reconfigurable Hardware 7
1.2.2 The Internals of an FPGA 8
1.2.3 Design Flow . 13

1.3 The Many Facets of FPGA Security 16
1.3.1 Security Is Hard . 17
1.3.2 Complexity and Abstraction 18
1.3.3 Baked in Versus Tacked on 19
1.3.4 Separation of FPGA Cores 20

1.4 Organization of This Book . 21
References . 22

2 High Assurance Software Lessons and Techniques 27
2.1 Background . 27
2.2 Malicious Software . 27

2.2.1 Trojan Horses . 28
2.2.2 Subversion . 29

2.3 Assurance . 30
2.4 Commensurate Protection . 31

2.4.1 Threat Model . 32
2.5 Security Policy Enforcement . 34

2.5.1 Types of Policies . 34
2.5.2 Policy Enforcement Mechanisms 39
2.5.3 Composition of Trusted Components 50

ix

x Contents

2.6 Assurance of Policy Enforcement 51
2.6.1 Life Cycle Support . 52
2.6.2 Configuration Management 55
2.6.3 Independent Assessment 56
2.6.4 Dynamic Program Analysis 58
2.6.5 Trusted Distribution . 60
2.6.6 Trusted Recovery . 61
2.6.7 Static Analysis of Program Specifications 62
References . 65

3 Hardware Security Challenges . 71
3.1 Malicious Hardware . 71

3.1.1 Categories of Malicious Hardware 71
3.1.2 Foundry Trust . 72
3.1.3 Physical Attacks . 74

3.2 Covert Channel Definition . 75
3.2.1 The Process Abstraction 76
3.2.2 Equivalence Classes . 76
3.2.3 Formal Definition . 76
3.2.4 Synchronization . 77
3.2.5 Shared Resources . 77
3.2.6 Requirements . 77
3.2.7 Bypass . 78

3.3 Existing Approaches to Limiting Covert and Side Channel Attacks 78
3.3.1 Shared Resource Matrix Methodology 78
3.3.2 Cache Interference . 79
3.3.3 FPGA Masking Schemes 79

3.4 Detecting and Mitigating Covert Channels on FPGAs 80
3.4.1 Design Flows . 80
3.4.2 Spatial Isolation . 80
3.4.3 Memory Protection . 81

3.5 Policy State as a Covert Storage Channel 81
3.5.1 Stateful Policies . 81
3.5.2 Covert Channel Mechanism 81
3.5.3 Encoding Schemes . 82
3.5.4 Covert Storage Channel Detection 83
3.5.5 Covert Channel Mitigation 83
References . 84

4 FPGA Updates and Programmability 87
4.1 Introduction . 87
4.2 Bitstream Encryption and Authentication 87

4.2.1 Key Management . 88
4.2.2 Defeating Bitstream Encryption 89

4.3 Remote Updates . 90

Contents xi

4.3.1 Authentication . 90
4.3.2 Trusted Recovery . 91

4.4 Partial Reconfiguration . 91
4.4.1 Applications of Partial Reconfiguration 91
4.4.2 Hot-Swappable vs. Stop-the-World 92
4.4.3 Internal Configuration Access Port 92
4.4.4 Dynamic Security and Complexity 92
4.4.5 Object Reuse . 93
4.4.6 Integrity Verification . 94
References . 95

5 Memory Protection on FPGAs . 97
5.1 Overview . 97
5.2 Memory Protection on FPGAs 98
5.3 Policy Description and Synthesis 99

5.3.1 Memory Access Policy 99
5.3.2 Hardware Synthesis . 102

5.4 A Higher-Level Specification Language 104
5.5 Example Policies . 106

5.5.1 Controlled Sharing . 106
5.5.2 Access List . 108
5.5.3 Chinese Wall . 109
5.5.4 Bell and LaPadula Confidentiality Model 110
5.5.5 High Water Mark . 111
5.5.6 Biba Integrity Model . 112
5.5.7 Redaction . 113

5.6 System Architecture . 116
5.7 Evaluation . 116
5.8 Using the Policy Compiler . 117
5.9 Constructing Mathematically Precise Policies 120

5.9.1 Cross Product Method . 120
5.9.2 Examples . 121
5.9.3 Monotonic Policy Changes 123
5.9.4 Formal Aspects of Hybrid Policies 124

5.10 Summary . 125
References . 125

6 Spatial Separation with Moats . 127
6.1 Overview . 127
6.2 Separation . 128
6.3 Physical Isolation with Moats . 128
6.4 Constructing Moats . 128

6.4.1 The Gap Method . 129
6.4.2 The Inspection Method 130
6.4.3 Comparing the Gap and Inspection Methods 130

xii Contents

6.5 Secure Interconnect with Drawbridges 132
6.5.1 Drawbridges for Direct Connections 132
6.5.2 Route Tracing with Partial Reconfiguration 135
6.5.3 Drawbridges for Shared Bus Architectures 135

6.6 Protecting the Reference Monitor with Moats 137
References . 138

7 Putting It All Together: A Design Example 139
7.1 A Multi-Core Reconfigurable Embedded System 139
7.2 On-Chip Peripheral Bus . 140
7.3 AES core . 141
7.4 Logical Isolation Compartments 141
7.5 Reference Monitor . 141
7.6 Stateful Policy . 142
7.7 Secure Interconnect Scalability 145
7.8 Covert Channels . 145
7.9 Incorporating Moats and Drawbridges 146
7.10 Implementation and Evaluation 147
7.11 Software Interface . 148
7.12 Security Usability . 148
7.13 More Example Security Architectures 148

7.13.1 Classes of Designs . 148
7.13.2 Topologies . 150

7.14 Summary . 151
References . 152

8 Forward-Looking Problems . 153
8.1 Trustworthy Tools . 153
8.2 Formal Verification of Secure Systems 154
8.3 Security Usability . 155
8.4 Hardware Trust . 155
8.5 Languages . 155
8.6 Configuration Management . 156
8.7 Securing the Supply Chain . 156
8.8 Physical Attacks on FPGAs . 157
8.9 Design Theft and Failure Analysis 157
8.10 Partial Reconfiguration and Dynamic Security 158
8.11 Concluding Remarks . 158

References . 160

A Computer Architecture Fundamentals 161
A.1 What Do Computer Architects Do All Day? 161
A.2 Tradeoffs Between CPUs, FPGAs, and ASICs 162
A.3 Computer Architecture and Computer Science 163
A.4 Program Analysis . 164

A.4.1 The Science of Processor Simulation 164

Contents xiii

A.4.2 On-Chip Profiling Engines 165

A.4.3 Binary Instrumentation 166
A.4.4 Phase Classification . 167

A.5 Novel Computer Architectures 168
A.5.1 The DIVA Architecture 168
A.5.2 The Raw Microprocessor 169
A.5.3 The WaveScalar Architecture 169
A.5.4 Architectures for Medicine 169

A.6 Memory . 170
A.7 Superscalar Processors . 173
A.8 Multithreading . 174

References . 175

Acronyms

ACL Access Control List.
ACM Association for Computing Machinery.
AES Advanced Encryption Standard. A common symmetric crypto algo-

rithm.
API Application Programming Interface.
ASIC Application-Specific Integrated Circuit. An integrated circuit with

“hard-wired” functionality intended for use in one or a limited number
of applications.

BBV Basic Block Vector.
B&L Bell-LaPadula confidentiality model.
BRAM Block Random Access Memory.
C&A Certification and Accreditation.
CAD Computer-Aided Design.
CAP Capability Protection.
CC Common Criteria.
CCEVS Common Criteria Evaluation and Validation Scheme.
CIA Confidentiality-Integrity-Availability triad.
CLB Configuration Logic Block. The basic repeated building block of an

FPGA, usually consisting of LUTs, registers, and other logic.
CM Configuration Management.
CMP Chip Multiprocessor.
COI Conflict-of-Interest Class.
COTS Commercial Off-the-Shelf.
CPU Central Processing Unit. A general-purpose processor.
DARPA Defense Advanced Research Projects Agency.
DFA Deterministic Finite Automaton.
DoS Denial-of-Service.
DRAM Dynamic Random Access Memory.
DSP Digital Signal Processing.
DVI Digital Visual Interface.

xv

xvi Acronyms

EAL Evaluation Assurance Level.
EDK Embedded Development Kit.
EPROM Erasable Programmable Read-Only Memory.
EEPROM Electrically Erasable Programmable Read-Only Memory.
ESL Electronic System Level. ESL Design involves the compilation of a

high-level specification of a system to a low-level hardware implemen-
tation.

FEMA Federal Emergency Management Agency.
FFT Fast Fourier Transform.
FIPS Federal Information Processing Standard.
FPGA Field Programmable Gate Array. A reconfigurable hardware device cre-

ated as an array of logic blocks tied together with a programmable inter-
connect.

FSA Finite State Automaton.
FTLS Formal Top Level Specification. A description of a policy that specifies

the legal sharing of memory among cores on an FPGA.
HDL Hardware Description Language. A language for designing hardware

components.
I&A Identification and Authentication.
IBM International Business Machines.
IC Integrated Circuit.
ICAP Internal Configuration Access Port. An interface to an FPGA for dy-

namic partial reconfiguration.
IDS Intrusion Detection System.
IEEE Institute of Electrical and Electronics Engineers.
I/O Input/Output.
IOB Input/Output Block.
IP Intellectual Property. Hardware modules that are the building blocks of

an embedded design.
ISA Instruction Set Architecture.
ISE Integrated Synthesis Environment.
IT Information Technology.
LCD Liquid Crystal Display.
LED Light-Emitting Diode.
LFU Least Frequently Used.
LPSK Least Privilege Separation Kernel.
LRU Least Recently Used.
LUT Look-Up Table. The smallest FPGA logic component, the LUT can be

programmed to imitate any logic gate by directly storing the truth table
for that gate.

LVS Layout-versus-schematic. Comparison tools recommended by Trim-
berger for detecting subversion in FPGA designs via non-destructive
validation of the equivalence between the original design and the im-
plemented design.

Acronyms xvii

MATLAB Matrix Laboratory. Mathematical software that can be used for develop-
ing DSP algorithms.

MIMO Multiple Input Multiple Output.
MLS Multilevel Security. The science of building systems that can process

data with different security labels (e.g., SECRET and UNCLASSI-
FIED).

NFA Nondeterministic Finite Automaton.
NIAP National Information Assurance Partnership.
NIST National Institute of Standards and Technology.
NP Nondeterministic Polynomial.
NRE Non-Recurring Engineering. The masks used in ASIC fabrication are a

large part of the NRE cost of ASICs.
NSA National Security Agency.
NSTISSP National Security Telecommunications and Information Systems Secu-

rity Policy.
OPB On-chip Peripheral Bus.
PCI Peripheral Component Interconnect.
PKI Public Key Infrastructure.
PUF Physical Unclonable Function. A unique number generated from varia-

tions in the manufacturing process.
RAM Random Access Memory.
RISC Reduced Instruction Set Computer.
RVM Reference Validation Mechanism.
RSA Rivest Shamir Adelman. A common asymmetric key crypto algorithm.
SDK Software Development Kit.
SGI Silicon Graphics, Inc.
SKPP Separation Kernel Protection Profile.
SMP Symmetric Multiprocessor.
SMT Simultaneous Multithreading.
SoC System-on-a-Chip.
SRAM Static Random Access Memory.
SRC Seymour Roger Cray. Founder of SRC Computers.
SSL Secure Sockets Layer.
TCB Trusted Computing Base.
TCSEC Trusted Computer System Evaluation Criteria.
TIC TRUST in Integrated Circuits. A DARPA program concerned with hard-

ware subversion.
TLB Translation Lookaside Buffer.
TOE Target of Evaluation.
TSF TOE Security Functionality. A set consisting of all hardware, software,

and firmware of the TOE that must be relied upon for the correct en-
forcement of the security functional requirements.

USB Universal Serial Bus.
VHDL VHSIC (Very-High-Speed Integrated Circuits) Hardware Description

Language.
VLIW Very Long Instruction Word.

xviii Acronyms

VM Virtual Machine.
VMM Virtual Machine Monitor.
VPN Virtual Private Network.
VPR Versatile Place and Route.
WAP Wireless Access Point.
XPS Xilinx Platform Studio.

Chapter 1
Introduction and Motivation

Abstract From Bluetooth transceivers to the NASA Mars Rover, FPGAs have be-
come one of the mainstays of embedded system design. By merging properties of
hardware and software, reconfigurable devices provide an attractive tradeoff be-
tween the performance of application-specific hardware and the programmability
of CPUs. Although this flexibility allows developers to quickly prototype and de-
ploy embedded systems with performance close to ASICs, this programmability
can also be exploited to disrupt critical functionality, eavesdrop on encrypted com-
munication, or even destroy a chip. Creating systems which are both efficient and
flexible, yet fundamentally sound from a security point of view, is an exceedingly
challenging endeavor for both researchers and practitioners. All too often the se-
curity aspects of a reconfigurable design are not addressed until far too late in the
design process, resulting in systems that are protected only by their obscurity. This
chapter presents an overview of Field Programmable Gate Array (FPGA) technolo-
gies from the viewpoint of security, specifically how and why these devices have
grown in importance over the last decade to become one of the most trusted and
critical elements of modern computer systems. This chapter also discusses their
changing role from a platform for prototyping to a deployable solution, the archi-
tecture of a modern FPGA, the security ramifications of their increased use, and
some of the lessons from the security community that may be applicable in this
domain.

1.1 The Growing Reliance on FPGAs

FPGAs are at the heart of many mission critical devices, silently controlling ev-
erything from wireless access points (WAP) to commercial face recognition sys-
tems. Unlike the sequential execution provided by a general purpose processor,
modern Field Programmable Gate Arrays can perform hundreds of multiplies and
thousands of adds each cycle, giving them the computational power to host many
different logic modules at the same time. For example, an FPGA-hosted Wire-
less Access Point (WAP) may employ a signal processing core, a protocol pro-

T. Huffmire et al., Handbook of FPGA Design Security,
DOI 10.1007/978-90-481-9157-4_1, © Springer Science+Business Media B.V. 2010

1

2 1 Introduction and Motivation

cessing engine, and a packet scheduler, all sharing the same physical silicon. Fur-
thermore, because reconfigurable hardware can be rewritten in both the lab and
in the field, rapid design cycles are possible, and patches can even be down-
loaded to devices already deployed (e.g. bug fixes or functionality enhancements
can be pushed out over the network to cell phones or wireless access points on de-
mand).

Because of this rare combination of computation power and flexibility, recon-
figurable devices are now the workhorses behind a broad variety of performance-
critical embedded systems [9, 15, 19, 40, 51, 62]. In fact, many reconfigurable
machines achieve 100x speedups and 100x performance gain per unit of area as
compared to a similar microprocessor [12, 18, 75]. Satellites, set-top boxes, intru-
sion detection systems, the electrical power grid, cryptography units, aircraft, and
even the Mars Rover all rely on Field Programmable Gate Arrays (FPGAs) to per-
form their respective functions. It is estimated that in 2005 alone there were over
80,000 different commercial FPGA design projects started [53]. The bit-level re-
configurability of these devices can be used to implement highly optimized circuits
for everything from encryption to FFTs, or even entire customized multi-processor
systems. In this section we describe a couple of these different domains and how
FPGAs are used in them.

Design Tip: Benefits of FPGAs. FPGAs are ideal for rapid protyp-
ing of embedded designs and the development of novel computer ar-
chitectures. The increasing cost of ASIC manufacturing, the perfor-
mance advantages of FPGAs over general-purpose processors, and the
narrowing performance gap between FPGAs and ASICs have resulted
in the growing use of FPGAs in real systems. For low-volume seg-
ments of the market, such as highly trustworthy systems, FPGAs provide
both cost and security advantages over ASICs. For example, with FP-
GAs, sensitive designs are never sent to a foundry where they could be
stolen. The parallelism available on FPGAs also makes them an attrac-
tive alternative to general-purpose CPUs for throughput-driven applica-
tions.

1.1.1 FPGAs for Aerospace

Because FPGAs are able to provide a useful balance between performance, cost,
and flexibility, many avionics systems now make use of them. For example, FP-
GAs perform crucial functions in the Joint Strike Fighter [56], the new Boeing 787
Dreamliner [20], and the NASA Mars Rover [23, 57]. In these applications, FPGAs
are used for cockpit displays, flight management, avionics, weapons guidance, and
flight radar [2].

1.1 The Growing Reliance on FPGAs 3

Design Tip: FPGA Basics. A bitstream specifies how to set the con-
figuration bits of the FPGA fabric. A core is a circuit that is used as a
building block of a larger embedded system. An antifuse-based FPGA
uses fuses as the configuration bits; therefore, it can only be programmed
once and is nonvolatile thereafter. An SRAM-based FPGA uses volatile
SRAM cells as the configuration bits. A flash-based FPGA uses EEP-
ROM cells as the configuration bits.

The circuits may be either antifuse-based, flash-based, or SRAM-based. While
fuse-based circuits are write-once devices, SRAM- and flash-based FPGAs can be
written many times, either in the lab or in the field. Flash-based circuits provide low
power advantages.

Design Tip: Choosing an FPGA Type. SRAM-based, flash-based, and
antifuse-based FPGAs have different security properties [76]. Despite the
limitation that it is a write-once technology, an antifuse FPGA offers the
advantage that theft of the design requires a painstaking and destructive
sand-and-scan attack, involving removal of the packaging and the pro-
gressive etching and electron micrography of each layer to create a 3-D
image of the chip. Since the fuses are nonvolatile, the bitstream does not
have to be loaded from off-chip, exposing it to board-level probing at-
tacks and attacks on the bitstream encryption mechanisms. Flash-based
FPGAs also can store the bitstream on-chip, and the design does not
have to be loaded from off-chip. This eliminates one avenue for attack-
ers. However, unlike an antifuse-based FPGA, the design is changeable
since flash memory can be modified. In addition, flash-based FPGAs are
much easier to probe, and probing attacks are much cheaper to carry out
than sand-and-scan attacks. SRAM-based FPGAs must load the bitstream
every time they are powered on, and soft memory errors [28] or flaws
in the implementation of bitstream decryption mechanisms may provide
an opportunity for a well-funded adversary to extract the design. When
powered continuously, SRAM-based FPGAs are similar to non-volatile
FPGAs in that the design does not have to be loaded from non-volatile
off-chip memory.

Consider the example of military avionics, in which a single chip processes both
classified targeting information and unclassified fueling and maintenance informa-
tion. Other multilevel security (MLS) scenarios for avionics include the sensor-
shooter problem, in which the intelligence analysts who decide on targets have
higher clearances than the soldiers ordered to attack those targets. In another MLS
scenario, a coalition member flies in formation with his or her allies, and a policy

4 1 Introduction and Motivation

must specify what information may be shared with each of them. In these multi-
level systems, a CPU can be allocated to handle a particular level (or a range of
levels) of data, and it is assigned a security label (or a security label range). A sep-
arate device for each security level adds too much weight to an aircraft. To mini-
mize weight, a single device that can process data at multiple levels is attractive,
but without careful attention to security, can be dangerous. Keeping the different
levels of information separate requires careful design. Since reconfigurable systems
often lack the memory protection, virtual memory, and other traditional separation
mechanisms available in a general-purpose system, security techniques are needed
to prevent classified data from mixing with unclassified data. In addition, like soft-
ware update mechanisms, it is critical that the process for remotely updating these
devices is very secure to prevent sabotage. Finally, due to the sensitive nature of the
intellectual property, it is very important to keep competitors or enemies from being
able to reverse engineer these systems easily.

1.1.2 FPGAs for Supercomputing

While desktop computers continue to make incredible gains in performance, there
are always problems that lie outside the capabilities of these machines, and sci-
entists and engineers eventually turn to “big iron” when performance is needed.
Many supercomputer companies, including SRC Computers [25, 71], Cray [58], and
SGI [67, 68], have integrated reconfigurable hardware into their systems to improve
performance [10, 16]. A good example of such a system is Cray’s XD1 architecture,
which combines six large Xilinx FPGAs (Virtex-4) with twelve x86 processors in
each chassis. When an application is loaded on the machine, it includes a bitstream
for programming the associated reconfigurable hardware. Although the past genera-
tions of FPGAs were not cost competitive with microprocessors in delivering double
precision floating point [74], they can provide significant improvements (100x) in
integer dominated applications. The current generation of FPGAs includes more in-
tegrated support for floating point. In the supercomputing environment, often the
code and data being run are either sensitive intellectual property or even classified
in nature, requiring a commensurately secure computing environment. Furthermore,
supercomputing centers require strong physical security because they are very high
profile targets for intruders.

The SRC Reconfigurable computer is an example of a system that uses FPGAs to
provide acceleration for programs running on general-purpose processors [25, 71].
Logging into the machine is via a traditional Unix shell interface. A project folder
contains both Verilog and either C or Fortran code. A Makefile invokes a Verilog
compiler for the Verilog code (resulting in a bitstream), and it also invokes a C
compiler for the C code (or a Fortran compiler for the Fortran code). Executing a
program on the SRC requires loading the bitstream onto the reconfigurable hard-
ware and loading the executable program onto the general-purpose hardware. From
a security standpoint, if the host OS, application software, or user account has been

1.1 The Growing Reliance on FPGAs 5

compromised, a malicious bitstream could be loaded onto the reconfigurable hard-
ware. The malicious hardware could interfere with the correct function of the appli-
cation or even damage the hardware. Since FPGAs are part of a larger system, the
security analysis needs to consider the interactions of the CPUs and FPGAs.

1.1.3 FPGAs for Video Analysis

FPGAs also provide a natural fit for complex high speed signal processing applica-
tions such as video analysis and face recognition [59]. These algorithms are most
often dominated by large matrix operations and are throughput-driven, meaning that
parallelism and pipelining are likely to yield large performance gains for these appli-
cations. In terms of the security ramifications of these systems, consider the problem
of video redaction.

Redaction involves removing sensitive information from data such as documents,
songs, and movies. Redaction may be used in the process of making unclassified
portions of a secret document available to the public, or may be used to protect peo-
ple’s privacy. An example of the redaction of video involves blurring the faces of
people captured by surveillance cameras. This is necessary when the system is be-
ing tested or maintained by a person who lacks the necessary authorization to view
faces. IBM has developed such a video privacy system called PeopleVision [65]. To
implement such a system on an FPGA, at least three IP cores are used: a video core
for processing the video, a redaction core for blurring the faces, and an Ethernet
core for transmitting the redacted video to the security guard’s terminal. Each core
requires off-chip memory, and the privacy of data stored in off-chip memory must be
protected. For example, the video core must not be able to bypass the redaction core
and send data directly to the Ethernet core. Since few applications are developed
fully in-house, the trustworthiness of the building blocks of a composed embed-
ded system is a growing concern, particularly since reuse of intellectual property is
common in both software and hardware development.

1.1.4 FPGAs for High-Throughput Cryptography

Implementing crypto on FPGAs offers several advantages. Block ciphers require
many bit-level operations, such as shifting or permuting bits, which can be effi-
ciently implemented on an FPGA. FPGAs also allow algorithm parameters to be
changed easily, or the entire circuit can be replaced completely. For example, if
mathematicians discover a flaw in a cipher, the bitstream can easily be updated with
a patched version. These advantages have been exploited in FPGA implementations
of MD5 [17], SHA-2 [70], and a range of other crypto functions [17, 37, 43, 55, 60,
64, 66, 70, 77]. FPGAs are also useful for public-key crypto, such as RSA, in which
the fundamental operation is modular multiplication, and Elliptic Curve Crypto, in

6 1 Introduction and Motivation

which the fundamental operation is point multiplication [27, 29, 48, 54]. Reconfig-
urable devices are also widely used in network intrusion detection systems (IDS)
because of the ability to search packet streams at high throughput against multiple
rule sets in parallel [4–6, 13, 14, 21, 26, 36, 72].

Most modern symmetric key cryptosystems can be characterized as performing
a repeating series of rounds over a given input. Consider the rotate operation as
an example. A rotate operation shifts the b bits of a word over n positions. The
bit that was at position i before the rotate will now be at position (i + n) mod b.
Implementing this in software requires multiple instructions to shift and wrap the
bits in the word. In contrast, an FPGA can implement this by simply rearranging
the wires so that the bits arrive in their new order. All of this work focuses on
using FPGAs to achieve high speed crypto but does not address the security of the
reconfigurable systems themselves. Since crypto devices naturally handle secrets
(e.g., keys), they are attractive targets for adversaries. A poorly implemented system
will be vulnerable to a variety of timing and side channel attacks, allowing attackers
to obtain secret keys. Ensuring the integrity of systems is also essential to prevent
attackers from modifying the crypto functions to their advantage.

1.1.5 FPGAs for Intrusion Detection and Prevention

Another area related to security where reconfigurable devices are widely employed
are network intrusion detection systems (IDS). Because many IDSs require that ev-
ery byte of every packet be scanned for known attacks or suspicious behavior, intru-
sion detection is a computationally difficult problem. Network speeds now operate
in the realm of gigabits per second, and an intrusion detection scheme must be able
to always keep up with the network load. This worst-case performance requirement,
coupled with the pipelined manner with which analysis is performed, makes FP-
GAs a nearly perfect design choice. In fact, a wide variety of FPGA-based IDSs
have been built [4–6, 13, 14, 21, 26, 36, 72]. It is important that the integrity of
the IDS is maintained and that the IDS cannot be bypassed (for example by routing
communication around the IDS core).

1.2 FPGA Architectures

On a continuum between general-purpose processors and application-specific in-
tegrated circuits (ASICs), FPGAs lie somewhere in the middle. A CPU is a jack-
of-all-trades but a master of none: it can run arbitrary code, but this generality
comes at a large performance cost. While compilers and programming languages
have transformed computer science, making it possible for humans to easily pro-
gram computers, we often forget about the high overhead of generality. ASICs, on
the other hand, can achieve impressive throughput by harnessing parallelism in an
optimized circuit, but they are enormously expensive to fabricate (the cost increases

1.2 FPGA Architectures 7

every year), requiring large capital investments. An ASIC is a master of one trade:
all functions are hard-wired. Reconfigurable hardware, unlike ASICs and CPUs,
offers the opportunity to implement a custom circuit without the expense of fabri-
cating silicon, providing improvements in throughput on the order of one hundred
times when compared with a CPU [12, 18, 75]. This section describes the nuts and
bolts of a typical reconfigurable chip to illustrate its performance advantages and to
provide the background needed to understand the security mechanisms for FPGAs
discussed in this book.

1.2.1 The Attractiveness of Reconfigurable Hardware

The roots of reconfigurable systems can be traced to Gerald Estrin’s work at UCLA
in the 1960s. Estrin’s “fixed plus variable structure computer” [24] consisted of a
standard processor augmented by an array of reconfigurable hardware. His idea was
well ahead of the technology at that time, so he was only able to make a crude
approximation of his vision.

Interest in reconfigurable systems was renewed in the mid-eighties with the emer-
gence of programmable logic devices, which were used almost exclusively as a fast
prototyping device for application specific integrated circuit (ASIC) designers. They
allowed the designer to compile the application to reconfigurable hardware to deter-
mine whether the application exhibited the correct functionality. The prototyping re-
moved the costly step of fabricating the circuit, especially when fabrication yielded
a device that exhibited incorrect functionality (i.e. buggy hardware). Additionally,
the rapid prototyping lessened the need for intense simulation to verify correct-
ness. If the application functioned correctly in the environment when compiled to
an FPGA, it was far more likely to be correct once fabricated. The main drawback
of the FPGA during this era was the performance. The FPGA was far behind the
ASIC in terms of the most important performance aspects, such as latency, power
consumption, etc. An application implemented on an FPGA was synthesized to the
static nature of an ASIC and was not taking into account the dynamic reconfigura-
bility allowed by the FPGA; in this sense, the performance of the FPGA can never
overcome that of an ASIC [40]. However, as ASIC design has become increasingly
expensive, and as the design rules have become significantly more complex, many
of the tricks ASIC designers would use to squeeze all the performance out of their
system have become too costly or error prone to be practical, thus narrowing the gap
in performance between the two [45].

The power of reconfigurable systems lies in their flexibility. This flexibility not
only allows for run-time circuit reorganization based on the input parameters, op-
erating conditions, and updates, it also allows for a single circuit to be fabricated
at incredible volumes. The high volume of FPGAs means that foundries are able to
create them very cheaply (one shared mask, very large production runs, etc.) and
very effectively (FPGAs are often the technology leaders, always available in the
most aggressive lithography and processes, and carefully tuned to minimize varia-
tion and other deep submicron effects).

8 1 Introduction and Motivation

Due to the ability to customize the input data, many applications show speedups
when implemented on reconfigurable systems. Many computing systems are fully
reconfigurable at the logic level, and many devices are reconfigurable at the archi-
tectural level. In addition, reconfigurable cores are increasingly being used as com-
ponents in embedded systems (e.g. microprocessors coupled with a reconfigurable
component) as well as ASICs coupled with a reconfigurable component. Because
of this, reconfigurable computing systems have emerged as an important organiza-
tional structure for implementing computations [9, 15, 19, 40, 51, 62]. They com-
bine the generality of CPUs with the spatial computational style of hardware [19].
Reconfigurable systems use programmability and a regular fabric to reduce system
complexity, cost, and development time.

1.2.2 The Internals of an FPGA

While there are many types of reconfigurable devices, FPGAs are the most common.
FPGAs are configured by reprogramming logic at the gate-level, meaning that the
device can be configured to look like any arbitrary set of interconnected logic gates.
If a digital circuit schematic can be drawn for a design, then an FPGA is capable of
emulating it. Physically, an FPGA is a collection of programmable gates embedded
in a flexible interconnect, as shown in Fig. 1.1. These gates are implemented using
lookup tables (LUTs) for computational units, flip-flops for timing, switchable in-
terconnect for routing, and I/O blocks (IOB) for transferring data into and out of
the device. Since any logic gate has a corresponding truth table, a circuit can be
mapped to an FPGA by configuring the LUTs with the appropriate truth tables and
by configuring bits in the switchboxes that specify which wires should be connected
using pass transistors.1 The data specifying how the LUTs and switchboxes should
be programmed is referred to as a configuration bitstream.

The configuration of the FPGA may be stored in any number of ways. For ex-
ample, FPGAs may use EPROM/EEPROM or antifuses (which are write-once tech-
nologies, meaning that the fuses are set and can never be unset). While many archi-
tectures make use of these write-once technologies, most architectures use SRAM
as a programming point. The SRAM makes the FPGA volatile, meaning that it must
be programmed every time that it is started up. Most importantly, SRAM allows for
reconfiguration, which is the essence of reconfigurable computing. The SRAM pro-
gramming bits are distributed across the entire FPGA, stored locally with the LUTs
and switchable interconnects. While the large size of the internal configuration data
may increase the amount of time required for reconfiguration, this has been partially
mitigated through configuration caching and compression [33, 50].

Static RAM (SRAM) cells are built using two inverters and a couple of pass
transistors (see Fig. 1.1). Data is stored or read from the SRAM cell as long as the

1A transistor in which an input is not only applied to the gate but also to the drain. This technology
reduces the number of transistors required to implement certain kinds of logic.

1.2 FPGA Architectures 9

Fig. 1.1 Architecture of a typical FPGA. Multiple Configuration Logic Blocks (CLBs) are islands
surrounded by a sea of interconnect. Each CLB contains a Lookup Table (LUT) that is configured
to implement a primitive logic gate. The interconnect is also configurable, and it connects CLBs
together so that more complicated circuits can be composed from the primitive logic gates. The
FPGA bitstream specifies the configuration of both the CLBs and the interconnect

Fig. 1.2 This two-input LUT
is configured to implement an
AND gate

cell is powered. Without power, the SRAM cell loses its value. LUTs use SRAM
cells as programming bits. A LUT is very generic because it can implement any
logic gate: an N -input LUT can implement any N -input function. Although 2N bits
are required to describe a LUT, it can implement 22N

possible functions. Figure 1.2

10 1 Introduction and Motivation

Fig. 1.3 FPGA interconnect architecture. Each CLB implements a primitive logic gate. More com-
plex circuits are composed from primitive gates by connecting CLBs. The interconnect does the
job of connecting the CLBs. Switch matrices are designed carefully because a full crossbar imple-
mentation would require N2 connections. Implementing memory logic in reconfigurable hardware
is inefficient because memories, which can take on any value, require switch matrices that are
full crossbars. For this reason, FPGAs embed hard-wired memory and even processors among the
reconfigurable logic

shows an example of a LUT. The size of SRAM cells limits the number of inputs
that a LUT may have. LUTs typically have 4–5 inputs, based on extensive empirical
work on optimal size and other aspects of FPGA architecture [7]. Modern FPGA
architectures are organized into larger regions known as configurable logic blocks
(CLBs). A CLB is a complex block consisting of LUTs, multiplexers, and flip-flops.
In addition, these CLBs may contain custom logic to help the most common circuit
patterns (e.g., the carry chains in ripple carry adders) increase the performance of
these particular circuits. While in recent years these CLBs have continued to grow
slowly, the granularity of these blocks is still much smaller than even the smallest
microprocessor.

To connect the small computational blocks together, FPGAs employ an island
style routing architecture. The generic island style architecture consists of two sep-
arate components for the routing architecture. The routing channel is a set of pass
transistors that provide programmable connections into and out of the CLB. The
switchbox provides point-to-point connections between neighboring routing chan-
nels, as shown in Figs. 1.3 and 1.4. Figure 1.5 shows how interconnect tracks are
grouped into channels. Routing channels often contain longlines, which are used
to span multiple CLBs in a row or column. The longlines create fast global con-
nections between CLBs, which would otherwise have to pass through multiple, ex-
tremely slow switchboxes, as shown in Fig. 1.6. Figure 1.7 shows a switchbox with
six pass transistors per switchbox interconnect point. A HARP switchbox is a dif-
ferent kind of switchbox that combines Hard-wired and Re-Programmable switches
to increase routability [69]. Since resistance and capacitance increase quadratically
in the length of the segment, longer routing segments are often driven by tri-state
buffers, as shown in Fig. 1.8. The routing architecture is the major factor in both

1.2 FPGA Architectures 11

Fig. 1.4 Mapping the very simple circuit above to the FPGA fabric below. App1 consists of an
AND gate and an OR gate, which are each mapped to a CLB. App2 consists of a NOR gate and an
AND gate, which are each mapped to a CLB. The interconnect is configured such that the output
of the AND gate of App1 is an input to the OR gate of App1; the output of the NOR gate of App2
is an input to the AND gate of App2; and the output of the OR gate of App1 is an input to the NOR
gate of App2

delay and area of the FPGA. Approximately 90% of the area of a typical FPGA is
used for interconnect (the space is required for both the physical wires themselves,
and the configuration bits necessary to connect those wires together to emulate arbi-
trary interconnection networks). While this interconnect is critical to configurabil-
ity, it also complicates the building of a secure reconfigurable infrastructure, as later
chapters will describe.

An FPGA is programmed using a bitstream: in many ways the bitstream is anal-
ogous to a binary executable in a traditional microprocessor system. The FPGA
is configured with this binary data to perform a particular function. The bitstream

12 1 Introduction and Motivation

Fig. 1.5 Each logic element outputs one data bit, and the interconnect is programmable between
elements. Interconnect tracks are grouped into channels

Fig. 1.6 Long segments only need switchbox connections at the end, therefore reducing the num-
ber of switches and therefore area

Fig. 1.7 A switchbox with
six pass transistors per
switchbox interconnect point.
Pass transistors act as
programmable switches, and
pass transistor gates are
driven by configuration
memory cells. To implement
a full crossbar would have
required sixteen pass
transistors

holds all parameters used to configure the FPGA, including the connections for the
switchboxes and the data for the LUTs. Every bit in the bitstream corresponds to
an SRAM configuration bit on the FPGA. To get a feel for the size of a typical bit-
stream, consider the Xilinx XC2V6000. It requires roughly one million bits to pro-
gram the LUTs, and fifteen million configuration bits that control the interconnect
structure plus various control functions. Programming this device takes between one
to three seconds, depending on the specific configuration interface (e.g., JTAG) and
the internal clock cycle that the device supports, and programming can happen when
the developers specify. Because the FPGA stores these bits in volatile memory, it is
necessary to read this bitstream each and every time the device is powered up. As
later chapters will describe, this is an attractive target for those looking to subvert the

1.2 FPGA Architectures 13

Fig. 1.8 In the design of the FPGA fabric itself, buffers are often used with longer segments
because resistance and capacitance increase quadratically in the length of the segment

FPGA-based system. Modifications to this bitstream will allow arbitrary changes to
the implemented circuitry, and if the bitstream can be read directly, an unscrupulous
person can simply copy the bitstream into another FPGA, giving them the ability to
clone hardware at a very low cost.

1.2.3 Design Flow

Usually when designing an FPGA-based system, the design flow is made to be very
similar to that of a more traditional ASIC. The designs are typically developed in a
hardware description language (such as VHDL or Verilog). These descriptions are
then translated to a set of Boolean gates with the appropriate interconnect to route
signals between them, at which point the design is typically tested with a variety of
inputs. The CAD tools then translate these gates, packing them together into larger
blocks, to logic functions which can map to the LUTs of the CLBs. The tools then
determine the best place to locate these functional blocks across the chip (a step
known simply as placement), and the routing between these blocks is calculated
(known simply as routing). The design is then further analyzed to ensure that it
is still correct and that it meets all the timing requirements. If there are problems
with the functionality or timing, changes to the design or to the parameters given
to the tools may be required. While this process has been used for a long time,
ensuring correctness for large designs is a time-consuming endeavor. As such, most
designs rely heavily on proprietary, intellectual property (IP) cores, which provide
well-tested libraries that can be wired together to meet the demands of the specific
application.

Code reuse, common in software engineering, is also used in designing recon-
figurable systems in order to achieve cost savings and to reduce time to market.
Designing a full system from scratch is not commonly done due to the high cost and
development time. A commonly reused module is a soft CPU core, like the Micro-
Blaze. A soft-processor is a bitstream that implements a general-purpose processor’s
functionality on an FPGA. An example of composing a reconfigurable system would
be to combine a soft-processor with other hard or soft IP cores, such as an AES core
for crypto and an Ethernet core for networking.2 The provenance of a core has im-

2Companies protect their intellectual property fiercely due to the high cost of designing hardware
modules. Later chapters discuss several schemes to prevent the theft of IP cores from FPGAs.

14 1 Introduction and Motivation

portant security implications: was it developed in-house or purchased from a third
party? Was it generated by a tool such as Base System Builder or downloaded from
an open-source web site like opencores.org? While formal verification of crypto
cores is a useful technique [49], determining whether an arbitrary hardware module
is malicious is a non-computable problem, as it is with arbitrary software programs.
For example, a core created by a malicious hardware designer or compromised de-
sign tool flow can exploit low-level hardware mechanisms to snoop on or disrupt
system logic. Since a typical design contains millions of logic gates and ten times
as many connections, designers need a way to compose trustworthy systems using
multiple commodity cores on a single device without having to design each core
from scratch (building everything from scratch is no guarantee of success either).
Formal verification of the security of a large, complex design is a rigorous, expen-
sive process, requiring access to the blueprints (e.g., HDL source) of all of the cores
used in the design. Access to the HDL source might not be possible if it is a trade
secret. Furthermore, formal verification is no silver bullet because of scalability is-
sues. In addition, there can be a flaw in the mathematical model of the system, and
there can even be a flaw in the mathematical proof applied to the model. Beware of
claims that a system is provably secure. Flaws are frequently discovered in crypto
ciphers that mathematicians “proved” to be secure [8].

Design Tip: Tools and Cores. An important aspect of reconfigurable
system development is considering the provenance of design tools and
IP, especially tools and cores downloaded from public web sites. It is
a good idea to assess the security of development machines and code
repositories. Later chapters will cover configuration control.

A typical FPGA-based embedded system consists of distinct cores residing on the
same chip. Reconfigurable logic, hard-wired computational cores, and hard-wired
SRAM and BRAM all reside on the same FPGA and can share the same off-chip
memory. In many cases, cores must not be able to interfere with each other or snoop
on each other via shared resources such as off-chip memory and on-chip memory
and busses. As a result, the secure design of an FPGA system is challenging.

Figure 1.9 shows four possible embedded system design flows that can occur on
the same FPGA:

• Logic synthesis transforms HDL code to a netlist, which is then converted to a
bitstream by a process called place and route.

• An Electronic System Level (ESL) design tool like Celoxica transforms code
written in C, a high-level programming language, to a soft processor core.

• Another ESL design flow uses AccelDSP [34] from Xilinx to convert MAT-
LAB [52] algorithms to HDL, which can be converted to a custom DSP core.

• A C compiler translates code written in a high-level programming language to an
executable, which is executed on a hard-wired processor core.

1.2 FPGA Architectures 15

Fig. 1.9 A Modern FPGA-based Embedded System: Distinct cores with varying provenance re-
side on the same chip. Complex tool chains are used to generate cores. An AES core can be the
result of transforming HDL code to a netlist to a bitstream. A DSP core can be result of trans-
forming a DSP application to MATLAB algorithms to HDL to a netlist to a bitstream. This is an
example of Electronic System Level (ESL) Design. Celoxica is another ESL design flow that trans-
forms C code to a soft processor core. Finally, a C compiler such as gcc can transform C code to
an executable, which can run on a hard-wired processor core

These tool chains represent difficult security vulnerabilities because tools are de-
signed by many different companies and individuals. In addition to the provenance
of tools, the provenance of soft IP cores, such as an AES crypto core, are also a
major and challenging security concern. Cores can come in the form of HDL (e.g.,
Verilog), netlist,3 or bitstream. They can be designed by a person or generated by
tools.

The Xilinx ML507 evaluation platform is a real-world example of a development
board that comes with a DVD of tools representing multiple types of design flows.

3A list of logical gates and their interconnections.

16 1 Introduction and Motivation

The ML507 has a Virtex-5 FXT FPGA with both reconfigurable logic and a hard-
wired PowerPC processor core on the same chip, and Xilinx provides an Integrated
Synthesis Environment (ISE) tool for generating bitstreams from HDL. The Embed-
ded Development Kit (EDK) [78] tool is used to create a custom processor, allowing
designers to connect their own hardware modules or other peripherals to a proces-
sor. The EDK also allows designers to configure the processor (e.g., by changing
the frequency, cache size, etc.) The EDK also provides an integrated Eclipse-based
Software Development Kit (SDK) for compiling and debugging the software to be
run on the hard-wired PowerPC core or even on a soft MicroBlaze processor core.

Since these various design flows generate a design consisting of multiple inter-
acting cores, the resulting embedded system may only be as trustworthy as the least
trustworthy design flow, depending on the security architecture. For example, pro-
tection primitives are needed to isolate crypto cores so that secret keys cannot be
compromised. Just as a subverted compiler can produce malicious code, subversion
of hardware design tools can produce malicious hardware modules. Widely used
design tools (e.g., Xilinx, Altera, and Actel) lack the ability to ensure that their out-
put does not include malicious functionality. Furthermore, proving that a compiler
or hardware design tool does not introduce malicious functionality is an open prob-
lem, at least as difficult as determining whether an arbitrary computer program or
hardware module does something malicious.

1.3 The Many Facets of FPGA Security

As economics drives the growing use of FPGAs in critical systems, designers are
forced to consider security, but practitioners currently lack a set of design practices
to follow. In addition, providing security is made more difficult by the resource
constraints in embedded systems [44]. In addition to applications of reconfigurable
devices to security processing, researchers are beginning to think about the security
of reconfigurable systems themselves. Since hardware designs can be copied from
fielded systems, industry has invested heavily in developing methods to protect their
intellectual property [11, 42, 47] and to ensure that FPGAs can only be updated
by authorized parties [1, 31, 32]. However, only a few researchers have thought
about malicious hardware modules on FPGAs [30]. Both Thomas Wollinger and
Saar Drimer have written excellent, thorough survey papers on the subject of FPGA
design security [22, 76]. Our survey papers were published in [35, 39]. Chapter 4
discusses bitstream encryption and authentication in greater detail.

A variety of attacks against FPGAs are possible. In a covert channel attack,
a shared resource is used as a means of illicit communication. For example, power
consumption can be modulated by a malicious core in order to send secrets to an-
other core that observes these fluctuations [73]. Some FPGAs support remote up-
dates of the bit-stream, and it is essential that only authorized parties be allowed to
apply these updates. Otherwise, attackers could upload malicious logic that mod-
ifies the system’s behavior or damages the chip by configuring the FPGA with a

1.3 The Many Facets of FPGA Security 17

short-circuit [30]. While encryption [11, 41, 42], fingerprinting, [46], and water-
marking [47] help to prevent IP theft, more is needed to counter covert channel
attacks, side channel attacks, and to understand malicious hardware.

1.3.1 Security Is Hard

Computer security is a hard problem. Every year, the number of attacks increases
despite increased spending on security. Commodity operating systems typically use
a frustrating penetrate-and-patch approach, an endless cycle in which hackers com-
promise machines, vendors release a patch, and the hackers find and exploit new
vulnerabilities. Ideally, systems should be built to be secure from the beginning,
but designing a large, complex, highly trustworthy system is extremely challenging.
There are no silver bullets: each security technique has its unique advantages and
disadvantages. A principle-driven design and implementation strategy uses multiple
complementary security concepts and techniques in concert. The goal is to increase
the risk and cost for the adversary and to make attackers work hard to compromise
each machine individually. Otherwise, systems can fall like dominoes once one is
compromised. Relying on a single technique is akin to a Maginot Line of defense:
attackers will simply take the path of least resistance to go around the Line. Systems
that overly rely on the notion of a single method to create a security perimeter will
encounter serious problems when the perimeter is violated. System designers should
also beware of assuming that resources are safe within the perimeter.

Cryptography is a prime example of a security technique with advantages and
limitations. Using crypto does not necessarily make a system secure: crypto needs
to be used properly. Key length needs to be sufficiently long to resist a brute-force
attack. Crypto processors must be designed carefully so that attackers cannot easily
determine the key using a side channel attack. Keys need to be managed properly
and stored securely. Ciphertext and plaintext must never mix. Flaws are occasionally
found in the crypto algorithms, despite mathematical proofs of their security.

Design Tip: Apply Comprehensive Security Principles. Don’t rely on
a single security strategy. Each technique has advantages and limitations.
Don’t assume that attackers will not be able to breach arbitrary security
perimeters. Just because a system uses crypto doesn’t mean it’s secure:
keys need to be managed properly, keys need to have sufficient entropy,
and the crypto mechanisms must be implemented correctly. The history
of code making and code breaking tells us that there is no such thing as
an unbreakable cipher. Keys that are sufficiently long today may not be
sufficient in the future. Don’t assume that just because data is encrypted
that it will never be decrypted in the future. Finally, don’t assume that you
can protect your system by combining several weak security mechanisms.

18 1 Introduction and Motivation

1.3.2 Complexity and Abstraction

One reason that security is very difficult is the size and complexity of systems.
Formal security analysis works best when applied to small, simple components. As
complexity increases, so does the effort required for security analysis. This growth
in complexity can be exponential in the size of the target of analysis. Furthermore,
two components that are secure independently might not be secure when combined.
One approach to get a grip on this complexity is to use abstraction. Another way
to manage complexity is to limit what the user can do. For example, an ATM has
a limited interface with a small number of buttons: every possible combination of
keystrokes can be analyzed to determine whether they lead to an insecure state. Even
so, ATM security has been repeatedly breached in the past [3].

A holistic approach to system security considers how the FPGA fits into a larger
system. A large, complex system is composed at several different layers of abstrac-
tion: the chip level includes the components on a single FPGA device, and the board
level includes the chips soldered onto a circuit board. Larger systems (e.g., a per-
sonal computer) can be composed of multiple circuit boards connected by a moth-
erboard, which in turn can be connected by a computer network (e.g., Ethernet)
to form systems-of-systems. The composition problem refers to the fact that two
systems that behave in a secure manner by themselves do not necessarily behave
securely when put together. This is especially frustrating for large design projects
that must build systems from both trusted components and commercial off-the-shelf
(COTS) components: reuse of commodity components is an important aspect of
building large, complex systems. A security architecture is a technique for reason-
ing at a high level of abstraction about the composition of system elements, includ-
ing computational and security components. A system can be designed to enforce a
security policy by organizing the components using a security architecture, config-
uring the security mechanisms properly, and ensuring that all components conform
to a well-defined interface.

To illustrate the difference between chip level, board level, and network level,
take the example of the Xilinx ML507 evaluation platform, a development board in
which CPUs interact with reconfigurable hardware. This development board has a
Virtex-V FXT FPGA with a hard-wired PowerPC processor together with reconfig-
urable logic. Software running on the PowerPC interacts with soft processor cores
implemented in reconfigurable hardware, all on a single chip. The FPGA chip inter-
acts with other chips and components on the board, including DRAM, push buttons,
LEDs, an LCD screen, USB, RS-232, Ethernet, DVI, etc. System security analysis
must take into account all these interactions, at the chip level, at the board level, and
at the network level (the ML507 can communicate to other computers via Ethernet
and can even implement a web server). For example, it is possible to boot BlueCat
Linux on the ML507, either running on the hard-wired PowerPC or on a soft Mi-
croBlaze processor core in reconfigurable hardware. A flaw in the OS, application
software, or MicroBlaze soft processor could be exploited by an attacker.

The reference monitor concept, discussed in Chap. 2, is another useful abstrac-
tion. The abstraction describes a perfect security mechanism that is a small, self-
protecting, continuously invoked, security-critical piece of a system. It decides

1.3 The Many Facets of FPGA Security 19

whether subjects (a.k.a. principals) in the system can access resources, according
to a policy. Its small size allows the application of formal and complete security
analysis. It is non-bypassable: no subject can get around it, and there is a well-
defined interface to the reference monitor that all subjects must obey. Finally, it is
tamper-proof: subjects must not be able to interfere with its functionality. This is
why the reference monitor must be self-protecting.

Unfortunately, even formal methods are not a cure-all. The formal verification
of secure systems requires the specification of a mathematical model of the system,
and all proofs are constructed around this model. If there is a flaw in the model or a
flaw in the proof, the system will not be secure. Formal verification is just one tool
in the arsenal of designers of secure systems. Furthermore, the translation between
formalization and implementation poses a problem.

Design Tip: Security Architecture. To manage complexity, develop a
security architecture for your design that describes the organization of
computational and security components. Think about the policy that you
want your security architecture to enforce. Protect the security-critical
parts of the design. Think about how the FPGA fits in with the rest of the
system and how it interacts with other components. Beware of absolute
claims that a system is secure because it uses cryptography or formal
methods like theorem proving or model checking.

1.3.3 Baked in Versus Tacked on

Building a “high assurance” system that is resistant to attack by determined adver-
saries is extremely challenging and expensive. Security must be considered during
all phases of the system lifecycle (i.e., “baked in”) rather than an afterthought (i.e.,
“tacked on”). Lifecycle includes specification, design, implementation, configura-
tion, operation, and updates. Security policies must be correctly specified. Security
techniques must be easy for developers to use, and security mechanisms must be
easy for end users to operate. Users must be trained in the correct operation of the
system. System components must be engineered correctly. Design tools, hardware
intellectual property, and software libraries must not be compromised.

Design Tip: Build it in. Consider security throughout all phases of the
product cycle, including design, implementation, configuration, opera-
tion, and updates. You cannot tack it on at the end. Beware of claims that
a fielded system is secure because it underwent penetration testing, a step
that typically occurs at the end of the development cycle.

20 1 Introduction and Motivation

Despite the enormous challenges, people have known how to build highly trust-
worthy systems for decades. The Multics system, a predecessor of Unix, used sev-
eral features to avoid common vulnerabilities such as buffer overflows which are still
a problem today [38]. These features included a high-level programming language
called PL/I, hardware permission bits, segmented virtual addresses, stacks that grow
in the positive direction, and a rigorous development methodology. It was designed
for mainframe computers, and it predated today’s personal computers which operate
in a hostile network environment. Although Multics wasn’t perfect, today’s operat-
ing system vendors have yet to apply many of its lessons, and trustworthy operating
systems are not widely available.

Even in early time-sharing computers, users were uncomfortable with commit-
ting sensitive information to the care of a system in which there was little assur-
ance of correct functional behavior [63]. This unease helped to clarify the need to
understand exactly what these machines were doing and led to the articulation of
principles and techniques for the construction of high assurance systems.

1.3.4 Separation of FPGA Cores

Separation is a foundational computer security concept that combines the ideas of
isolation and controlled sharing. Cryptographic systems such as encryption devices
were among the first to necessitate the development of strong isolation, since clas-
sified plaintext which we are envisioning being carried over red wires must be sep-
arated from ciphertext carried over black wires. Saltzer and Schroeder define com-
plete isolation as a “protection system that separates principals into compartments
between which no flow of information or control is possible” [61]. Since systems
have limited functionality if all of their compartments are totally isolated, a tech-
nique is needed to facilitate the controlled sharing of data among components.

When FPGA modules are mapped to a physical device, their logic and inter-
connections may overlap significantly. This creates the possibility that an adversary
may craft a module that intercepts or even corrupts intra-module communication in
the same way that a network card can intercept Ethernet traffic. Even worse, the de-
vice can be physically destroyed if short-circuit configurations are downloaded. To
securely manage an FPGA, the modules must be compartmented by placing them
in distinct spatial regions on the chip. Establishing compartments also requires that
interconnections between modules (e.g., busses) are carefully designed.

Moore’s law has resulted in chips with one billion transistors, enough to fit hun-
dreds of RISC processors. Computer architects cannot make uniprocessors any big-
ger without running into fundamental limits, and industry has placed its hopes (and
fortunes) in multi-core architectures. Greater integration is also the reality for recon-
figurable systems, and some FPGAs can fit as many as eight full-blown PowerPC
soft processor cores. Many FPGAs have hard-wired processor cores in addition to
the reconfigurable logic that can implement application-specific functionality. Re-
configurable systems-on-a-chip (SoCs) also have hard-wired multiplier units and

1.4 Organization of This Book 21

blocks of SRAM and BRAM memory because certain circuits, especially memory,
are much less efficient when implemented in reconfigurable hardware than when
they are hard-wired. System complexity makes it challenging to provide security
for these embedded systems. It is essential to isolate the system components to pre-
vent a vulnerability in one component from threatening the entire system. For this,
engineers of highly integrated reconfigurable systems need protection primitives for
isolating the components while allowing components to interact and communicate
in a controlled manner.

Managing shared resources such as off-chip memory is crucial for ensuring sep-
aration. While a CPU in a general-purpose system uses virtual memory to provide
memory protection, FPGAs typically have a flat memory hierarchy and lack op-
erating system support for virtual memory. Without these mechanisms, hardware
modules can read and modify the memory of other modules. Furthermore, even if
standard memory protection primitives were available, their designs generally as-
sume the presence of an OS to ensure that the primitives are used securely. This
situation calls for some way of enforcing a security policy on the embedded system.
Chapter 5 presents a method that builds a mechanism in reconfigurable hardware to
enforce a memory access policy that specifies the allowed sharing of memory be-
tween cores of an FPGA, a technique that is applicable to both on-chip and off-chip
memory. Chapter 6 presents a method that exploits the spatial nature of FPGAs to
enforce a policy that specifies the separation of cores: both the isolation of cores
as well as their controlled interaction. Unlike the ASIC world, where incorporating
novel security mechanisms is very costly (e.g., industry is often reluctant to incorpo-
rate security techniques devised by academics into commercial processor designs),
it is easy to incorporate security primitives into FPGA designs. A wide variety of se-
curity mechanisms can be built on FPGAs, and the reconfigurable nature of FPGAs
can be seen as both an asset and liability with respect to security.

1.4 Organization of This Book

The purpose of this book is to provide a practical approach to managing security
in FPGA designs for researchers and practitioners in the electronic design automa-
tion (EDA) and FPGA communities, including corporations, industrial and govern-
ment research labs, and academics. This book combines theoretical underpinnings
with a practical design approach and worked examples for combating real world
threats. To address the spectrum of lifecycle and operational threats against FPGA
systems, a holistic view of FPGA security is presented, from formal top level spec-
ification to low level policy enforcement mechanisms. This perspective integrates
recent advances in the fields of computer security theory, languages, compilers, and
hardware. The net effect is a diverse set of static and runtime techniques that, work-
ing in cooperation, facilitate the composition of robust, dependable, and trustworthy
systems using commodity components.

Chapter 2 begins with the fundamentals of security by presenting lessons from
decades of computer security research in the high assurance software domain. Chap-
ter 3 explains hardware security challenges, including malicious hardware, foundry

22 1 Introduction and Motivation

trust, physical attacks, and the detection and mitigation of a specific type of covert
storage channels on FPGAs. Chapter 4 describes the security issues related to dy-
namic partial reconfiguration of FPGAs and techniques for managing security in
designs that employ partial reconfiguration. Chapter 5 explains a memory protec-
tion technique for preventing off-chip memory from being used to facilitate illegal
information flow between FPGA cores. Chapter 6 explains a spatial separation tech-
nique for preventing FPGA cores from interfering with each other and describes a
method for preventing illegal information flow between FPGA cores via the bus and
direct connections. Chapter 7 provides a design example that incorporates the secu-
rity primitives from earlier chapters. Finally, Chapter 8 describes forward-looking
problems.

References

1. A. Abraham, It is I: an authentication system for a reconfigurable radio. M.S. thesis, Virginia
Tech, August 2002

2. Actel Corporation, FPGAs for military, avionics, and high-reliability applications. White Pa-
per, Actel Corporation, 2008

3. R. Anderson, Why cryptosystems fail, in Proceedings of the 1st ACM Conference on Computer
and Communications Security, Fairfax, VA, November 1993, pp. 215–227

4. M. Attig, S. Dharmapurikar, J. Lockwood, Implementation results of bloom filters for string
matching, in Proceedings of the Field-Programmable Custom Computing Machines, 12th An-
nual IEEE Symposium on (FCCM’04) (IEEE Comput. Soc., Los Alamitos, 2004), pp. 322–
323

5. Z.K. Baker, V.K. Prasanna, A methodology for synthesis of efficient intrusion detection sys-
tems on FPGAs, in Proceedings of the Field-Programmable Custom Computing Machines,
12th Annual IEEE Symposium on (FCCM’04) (IEEE Comput. Soc., Los Alamitos, 2004), pp.
135–144

6. Z.K. Baker, V.K. Prasanna, Time and area efficient pattern matching on FPGAs, in Proceeding
of the 2004 ACM/SIGDA 12th International Symposium on Field Programmable Gate Arrays
(ACM, New York, 2004), pp. 223–232

7. V. Betz, J.S. Rose, A. Marquardt, Architecture and CAD for Deep-Submicron FPGAs (Kluwer
Academic, Dordrecht, 1999)

8. A. Biryukov, O. Dunkelman, N. Keller, D. Khovratovich, A. Shamir, Key recovery attacks of
practical complexity on AES variants with up to 10 rounds. IARC ePrint Report 2009/374,
August 2009

9. K. Bondalapati, V.K. Prasanna, Reconfigurable computing systems. Proc. IEEE 90(7), 1201–
1217 (2002)

10. U. Bondhugula, A. Devulapalli, J. Fernando, P. Wyckoff, P. Sadayappan, Parallel FPGA-based
all-pairs shortest-paths in a directed graph, in Proceedings of the 20th IEEE International
Parallel and Distributed Processing Symposium (IPDPS’06), April 2006

11. L. Bossuet, G. Gogniat, W. Burleson, Dynamically configurable security for SRAM FPGA
bitstreams, in Proceedings of the 18th International Parallel and Distributed Processing Sym-
posium (IPDPS’04), Santa Fe, NM, April 2004

12. D.A. Buell, K.L. Pocek, Custom computing machines: an introduction. J. Supercomput. 9(3),
219–29 (1995)

13. Y.H. Cho, S. Navab, W.H. Mangione-Smith, Specialized hardware for deep network packet
filtering, in 12th International Conference on Field-Programmable Logic and Applications,
2002

References 23

14. C.R. Clark, D.E. Schimmel, Efficient reconfigurable logic circuits for matching complex net-
work intrusion detection patterns, in Proceedings of FPL, Lisbon, Portugal, 2003

15. K. Compton, S. Hauck, Reconfigurable computing: a survey of systems and software. ACM
Comput. Surv. (CSUR) 34(2), 171–210 (2002)

16. S. Craven, P. Athanas, Examining the viability of FPGA supercomputing. EURASIP J. Em-
bed. Syst. 2007(1) (2007)

17. J. Deepakumara, H.M. Heys, R. Venkatesan, FPGA implementation of MD5 hash algorithm,
in Canadian Conference on Electrical and Computer Engineering, 2001

18. A. DeHon, Comparing computing machines, in SPIE-Int. Soc. Opt. Eng. Proceedings of
SPIE—the International Society for Optical Engineering, vol. 3526, pp. 124–33, 1998

19. A. DeHon, J. Wawrzynek, Reconfigurable computing: what, why, and implications for design
automation, in Proceedings of the 36th ACM/IEEE Conference on Design Automation, New
Orleans, LA, June 1999

20. Design and Reuse Magazine, TTP controller IP in Altera’s low-cost cyclone FPGA Families
for Aerospace Applications, in Design and Reuse Magazine, 23 October 2007

21. S. Dharmapurikar, M. Attig, J. Lockwood, Deep packet inspection using parallel bloom filters.
IEEE Micro 24(1), 52–61 (2004)

22. S. Drimer, Volatile FPGA design security: a survey. Unpublished, Cambridge University, April
2008

23. Electronic Design Magazine, Actel FPGAs in Mars Rover, in Electronic Design Magazine, 6
August 2007

24. G. Estrin, Reconfigurable computer origins: the UCLA fixed-plus-variable (F + V) structure
computer. IEEE Ann. Hist. Comput. 24(4), 3–9 (2002)

25. O.D. Fidanci, D. Poznanovic, K. Gaj, T. El-Ghazawi, N. Alxeandridis, Performance and over-
head in a hybrid reconfigurable computer, in Proceedings of the 2003 International Parallel
and Distributed Processing Symposium (IPDPS), Nice, France, April 2003

26. M. Gokhale, D. Dubois, A. Dubois, M. Boorman, S. Poole, V. Hogsett, Granidt: towards giga-
bit rate network intrusion detection technology, in Proceedings of the Reconfigurable Comput-
ing Is Going Mainstream, 12th International Conference on Field-Programmable Logic and
Applications (Springer, Berlin, 2002), pp. 404–413

27. J. Goodman, A.P. Chandrakasan, An energy-efficient reconfigurable public-key cryptography
processor. IEEE J. Solid-State Circuits 36(11), 1808–1820 (2001)

28. S. Govindavajhala, A. Appel, Using memory errors to attack a virtual machine, in Proceedings
of the 2003 IEEE Symposium on Security and Privacy, Oakland, CA, May 2003

29. C. Grabbe, M. Bednara, J. von zur Gathen, J. Shokrollahi, J. Teich, A high performance
VLIW processor for finite field arithmetic, in Proceedings of the International Parallel and
Distributed Processing Symposium, 2003

30. I. Hadzic, S. Udani, J. Smith, FPGA viruses, in Proceedings of the Ninth International Work-
shop on Field-Programmable Logic and Applications (FPL’99), Glasgow, UK, August 1999

31. S. Harper, P. Athanas, A security policy based upon hardware encryption, in Proceedings of
the 37th Hawaii International Conference on System Sciences, 2004

32. S. Harper, R. Fong, P. Athanas, A versatile framework for FPGA field updates: an application
of partial self-reconfiguration, in Proceedings of the 14th IEEE International Workshop on
Rapid System Prototyping, June 2003

33. S. Hauck, L. Zhiyuan, E. Schwabe, Configuration compression for the Xilinx XC6200 FPGA,
in Proceedings of Symposium on FPGAs for Custom Computing Machines, 1998, pp. 138–46

34. T. Hill, AccelDSP synthesis tool floating-point to fixed-point conversion of MATLAB algo-
rithms targeting FPGAs. White Paper, Xilinx Inc., San Jose, CA, April 2006

35. T. Huffmire, B. Brotherton, T. Sherwood, R. Kastner, T. Levin, T. Nguyen, C. Irvine, Man-
aging security in FPGA-based embedded systems. IEEE Des. Test Comput. 25(6), 590–598
(2008)

36. B.L. Hutchings, R. Franklin, D. Carver, Assisting network intrusion detection with reconfig-
urable hardware, in Proceedings of the 10th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM’02) (IEEE Comput. Soc., Los Alamitos, 2002), p. 111

24 1 Introduction and Motivation

37. Y.K. Kang, D.W. Kim, T.W. Kwon, J.R. Choi, An efficient implementation of hash function
processor for IPsec, in Proceedings of the Third IEEE Asia-Pacific Conference on ASICs,
2002

38. P.A. Karger, R.R. Schell, Multics security evaluation: vulnerability analysis. Tech. Rep. ESD-
TR-74-193, vol. II, HQ Electronic Systems Division, Air Force Systems Command, Hanscom
Field, Bedford, MA 01731, June 1974

39. R. Kastner, T. Huffmire, Threats and challenges in reconfigurable hardware security, in Inter-
national Conference on Engineering of Reconfigurable Systems and Algorithms (ERSA), Las
Vegas, NV, July 2008, pp. 334–345

40. R. Kastner, A. Kaplan, M. Sarrafzadeh, Synthesis Techniques and Optimizations for Reconfig-
urable Systems (Kluwer Academic, Dordrecht, 2004)

41. T. Kean, Secure configuration of field programmable gate arrays, in Proceedings of the 11th
International Conference on Field Programmable Logic and Applications (FPL’01), Belfast,
UK, August 2001

42. T. Kean, Cryptographic rights management of FPGA intellectual property cores, in Tenth ACM
International Symposium on Field-Programmable Gate Arrays (FPGA’02), Monterey, CA,
February 2002

43. P. Kitsos, O. Koufopavlou, Efficient architecture and hardware implementation of the
Whirlpool hash function. IEEE Trans. Consum. Electron. 50(1), 208–313 (2004)

44. P. Kocher, R. Lee, G. McGraw, A. Raghunathan, S. Ravi, Security as a new dimension in em-
bedded system design, in Proceedings of the 41st Design Automation Conference (DAC’04),
San Diego, CA, June 2004

45. I. Kuon, J. Rose, Measuring the Gap between FPGAs and ASICs, in Proceedings of the Inter-
national Symposium on FPGAs, Monterey, CA, February 2006

46. J. Lach, W. Mangione-Smith, M. Potkonjak, FPGA fingerprinting techniques for protecting
intellectual property, in Proceedings of the 1999 IEEE Custom Integrated Circuits Conference,
San Diego, CA, May 1999

47. J. Lach, W. Mangione-Smith, M. Potkonjak, Robust FPGA intellectual property protection
through multiple small watermarks, in Proceedings of the 36th ACM/IEEE Conference on
Design Automation (DAC’99), New Orleans, LA, June 1999

48. P.H.W. Leong, I.K.H. Leung, A microcoded elliptic curve processor using FPGA technology.
IEEE Trans. VLSI Syst. 10(5), 550–559 (2002)

49. J.R. Lewis, B. Martin, Cryptol: High assurance, retargetable crypto development and valida-
tion, in IEEE Military Communications Conference (MILCOM), Boston, MA, October 2003

50. Z. Li, K. Compton, S. Hauck, Configuration caching management techniques for reconfig-
urable computing, in Proceedings of Symposium on Field-Programmable Custom Computing
Machines, 2000, pp. 22–36

51. W.H. Mangione-Smith, B. Hutchings, D. Andrews, A. DeHon, C. Ebeling, R. Hartenstein,
O. Mencer, J. Morris, K. Palem, V.K. Prasanna, H.A.E. Spaanenburg, Seeking solutions in
configurable computing. Computer 30(12), 38–43 (1997)

52. The Math Works Inc. MATLAB user’s guide. White Paper, The Math Works Inc., Natick, MA,
2006

53. D. McGrath, Gartner Dataquest analyst gives ASIC, FPGA markets clean bill of health. EE
Times, 13 June 2005

54. C. McIvor, M. McLoone, J.V. McCanny, Fast Montgomery modular multiplication and RSA
cryptographic processor architectures, in 37th IEEE Asilomar Conference on Signals, Systems,
and Computers, 2003

55. M. McLoone, J.V. McCanny, A single-chip IPsec cryptographic processor, in IEEE Workshop
on Signal Processing Systems, 2002

56. Military and Aerospace Electronics, F-35 Joint Strike Fighter uses Actel FPGAs for engine
electronics, in Military and Aerospace Electronics, 1 September 2004

57. Military and Aerospace Electronics, FPGA processors keep Mars Rovers moving, in Military
and Aerospace Electronics, 11 January 2005

58. K. Morris, Cray goes FPGA, in FPGA and Structured ASIC Journal, 5 April 2005

References 25

59. H. Ngo, R. Gottumukkal, V. Asari, A flexible and efficient hardware architecture for real-time
face recognition based on Eigenface, in Proceedings of the IEEE Computer Society Annual
Symposium on VLSI, 2005

60. C. Paar, B. Chetwynd, T. Connor, S.Y. Deng, S. Marchang, An algorithm-agile cryptographic
co-processor based on FPGAs, in SPIE’s Symposium on Voice, Video, and Data Communica-
tions, 1999

61. J. Saltzer, M. Schroeder, The protection of information in computer systems. Commun. ACM
17(7), 388–402 (1974)

62. P. Schaumont, I. Verbauwhede, K. Keutzer, M. Sarrafzadeh, A quick safari through the recon-
figuration jungle, in Proceedings of the Design Automation Conference, 2001, pp. 172–177

63. R. Schell, Computer security: the Achilles heel of the electronic Air Force? Air Univ. Rev.
30(2), 16–33 (1979)

64. G. Selimis, N. Sklavos, O. Koufopavlou, VLSI implementation of the keyed-hash message
authentication code for the wireless application protocol, in IEEE International Conference
on Electronics, Circuits, and Systems, 2003

65. A. Senior, S. Pankanti, A. Hampapur, L. Brown, Y.-L. Tian, A. Ekin, Blinkering surveillance:
enabling video privacy through computer vision. Technical Report RC22886, IBM, 2003

66. Z. Shi, R.B. Lee, Bit permutation instructions for accelerating software cryptography, in Proc.
of the IEEE International Conference on Application-specific Systems, Architectures and Pro-
cessors, 2000

67. Silicon Graphics, Inc., Extraordinary acceleration of workflows with reconfigurable
application-specific computing from SGI. White Paper, Silicon Graphics, Inc., 2004

68. Silicon Graphics Inc., SGI builds world’s largest FPGA supercomputer, boosts nucleotide
query performance by more than 900 times over 68-node cluster. White Paper, Silicon Graph-
ics, Inc., 8 November 2007

69. S. Sivaswamy, G. Wang, C. Ababei, K. Bazargan, R. Kaster, E. Bozorgzadeh, HARP: Hard-
wired routing pattern FPGAs, in Proceedings of the International Symposium on FPGAs,
Monterey, CA, February 2005

70. N. Sklavos, O. Koufopavlou, On the hardware implementations of the SHA-2 (256, 384, 512)
hash functions, in Proceedings of IEEE International Symposium on Circuits and Systems,
2003

71. M.C. Smith, J.S. Vetter, X. Liang, Accelerating scientific applications with the SRC-6 recon-
figurable computer: methodologies and analysis, in Proceedings of the 19th IEEE Parallel and
Distributed Processing Symposium (IPDPS), Denver, CO, April 2005

72. I. Sourdis, D. Pnevmatikatos, Pre-decoded CAMs for efficient and high-speed NIDS pattern
matching, in Proceedings of the Field-Programmable Custom Computing Machines, 12th An-
nual IEEE Symposium on (FCCM’04) (IEEE Comput. Soc., Los Alamitos, 2004), pp. 258–
267

73. F. Standaert, L. Oldenzeel, D. Samyde, J. Quisquater, Power analysis of FPGAs: how practical
is the attack? Field-Program. Logic Appl. 2778(2003), 701–711 (2003)

74. K. Underwood, FPGAs vs. CPUs: trends in peak floating-point performance, in Proceedings
of the 2004 ACM/SIGDA 12th International Symposium on Field Programmable Gate Arrays,
Monterey, CA, February 2004

75. J.E. Vuillemin, P. Bertin, D. Roncin, M. Shand, H.H. Touati, P. Boucard, Programmable active
memories: reconfigurable systems come of age. IEEE Trans. Very Large Scale Integr. (VLSI)
Syst. 4(1), 56–69 (1996)

76. T. Wollinger, J. Guajardo, C. Paar, Security on FPGAs: State-of-the-art implementations and
attacks. ACM Trans. Embed. Comput. Syst. 3(3), 534–574 (2004)

77. L. Wu, C. Weaver, T. Austin, Cryptomaniac: a fast flexible architecture for secure communi-
cation, in International Symposium on Computer Architecture, 2001

78. Xilinx Inc., Getting started with the Embedded Development Kit (EDK). White Paper, Xilinx
Inc., San Jose, CA, 2006

Chapter 2
High Assurance Software Lessons and
Techniques

Abstract To understand the principles needed to manage security in FPGA designs,
this chapter presents lessons learned from the development of high assurance sys-
tems. These principles include risk assessment, threat models, policy enforcement,
lifecycle management, assessment criteria, configuration control, and development
environments.

2.1 Background

Since the early 1960s system developers have been concerned with problems caused
by unspecified functionality. This can include errors introduced in the development
process and extra features added by industrious engineers. Sometimes extra features
are relatively benign. In other cases, the unspecified functionality is malicious.

Engineers tend to trust hardware more than software. Sometimes engineers as-
sume the hardware to be trusted; however, most malware can be implemented in
hardware. The objective of this chapter is to introduce some of the lessons learned
about avoiding mistakes in system implementations.

2.2 Malicious Software

Malicious software is functionality intended to violate the security policy of the sys-
tem. The taxonomy of malicious software and the vulnerabilities such software ex-
ploits is vast: a 2007 report from the Common Vulnerabilities and Exposures project
listed 41 different system vulnerabilities ranging from weak authentication to cross-
site scripting attacks [18]. The focus of this chapter is on high assurance software
lessons learned, and the discussion will be limited to two types of malicious soft-
ware: that which executes in unprivileged domains and that which executes in priv-
ileged domains.

T. Huffmire et al., Handbook of FPGA Design Security,
DOI 10.1007/978-90-481-9157-4_2, © Springer Science+Business Media B.V. 2010

27

28 2 High Assurance Software Lessons and Techniques

2.2.1 Trojan Horses

School children know the story of the fall of Troy to the Greeks [37]. Despite nine
years of fighting, the Greeks were unable to breach the walls of Troy and conquer
the city. Odysseus devised a plan to give the Trojans a present and pretend to retreat.
Taking their gift, a large wooden horse, within the city walls, the Trojans celebrated
until the Greeks emerged from the horse to sack and burn the city. The Trojan Horse
was the vehicle for violation of the Trojan security policy: no Greeks within the city
walls. When the Trojans found the Horse, it was on the beach: it was the Trojans
who dragged it into the city and then “activated” it by celebrating.

In terms of computer systems, a Trojan Horse is hidden functionality within soft-
ware, where the latter provides some other desired service. So if a user downloads
or otherwise installs an application or functionality of unknown provenance, a Tro-
jan Horse may accompany it. When a Trojan Horse executes in the context of a user
application, it is generally constrained by the privileges granted to that executable,
which are derived from the privileges accorded the user. The adversary has no con-
trol over when the malware will execute: if the user never invokes the application
that contains the Trojan Horse, then it may never execute.

Despite these constraints, in most systems a Trojan Horse can wreak havoc on
confidentiality, integrity and availability objectives. Consider the situation illus-
trated in Fig. 2.1. Kathy has a file containing information that Sean should not
access. She has set the access controls on her file so that Sean will not be able
to access the information directly. Unfortunately, Kathy is executing an application
that contains a Trojan Horse devised by Sean and his nefarious gang. Although the
legitimate application may make legitimate use of Kathy’s file, the Trojan Horse
writes her information into Sean’s file. She has no idea that this is occurring.

Modern Trojan Horses may not exhibit behavior as simplistic as that illustrated
in Fig. 2.1. Instead they may send information to remote sites. The activities of these
applications are often rather complex, and the mechanism used to transmit may not
be visible to kernel-level auditing mechanisms.

As will be seen in Sect. 2.5.1.2, the activities of Trojan Horses can be confined
when mandatory policies are enforced.

Fig. 2.1 Although Sean has no access to Kathy’s file, the Trojan Horse in Kathy’s process can
write all of her information to Sean’s file

2.2 Malicious Software 29

2.2.2 Subversion

A well known example of subversion is the simple flight simulator in early ver-
sions of the Excel spreadsheet [100]. It was activated by a set of conditions that
were highly unlikely to occur during typical use of the spreadsheet. It allowed the
user to fly around over a gloomy landscape that featured a tombstone upon which
credits scrolled, presumably containing the names of members of the development
team. A less benign example of unspecified functionality is a hypothetical backdoor
inserted into an operating system by its compiler [53, 101]. Anderson provides a
worked example of system subversion [4]. Although no attempt is made to obfus-
cate the artifact, it consists of a total of eleven lines of code and allows the attacker
undetected access to the entire Linux file system. Because the attacker may not know
the exact nature of the ideal attack when a trapdoor is installed, it may be prudent
to develop a chained subversion that consists of a toehold for subsequent system
exploitation, a loader for putting the malicious payload in place, and the payload
itself for the attack du jour [58, 72, 81].

Subversion differs from a Trojan horse in the following ways. First, a subver-
sion can be activated by the adversary at will, whereas a Trojan horse requires the
cooperation of the victim. A corollary is that the adversary can choose the time of
activation, usually via triggered activation and deactivation, but, for a Trojan Horse,
the time of activation depends upon the victim’s use of the software. Third, a low-
level subversion will bypass the security controls, and, in contrast, a Trojan horse
will be constrained by the controls placed upon the victim executing it. Finally, Tro-
jan Horses generally execute in the application domain, whereas the ideal execution
domain for a subversion is the operating system.

Attackers can choose a number of system lifecycle phases, both developmen-
tal and operational, during which to target a subversion attack. The objective is to
implant an artifice in the system that can execute with unlimited privileges. My-
ers identifies a number of lifecycle opportunities for subversion [74]. A system’s
lifecycle can be divided into three major stages: development, operation, and retire-
ment. Developmental threats result in the incorrect construction of the system such
that the high level policy and specifications are not faithfully reflected in the system
implementation. Both unintentional errors and intentionally inserted or unspecified
functionality fall into this category.

Operational threats can expose information assets to a variety of attacks. Im-
precise interface specifications involving groundless assumptions can be exploited.
Exploitable flaws may result from poor design and implementation. Chained attacks
may allow attackers access to critical information. If the system is constructed in a
way that permits its operational state to be manipulated, covert channels [60] may
be possible. In the case of hardware, it may be possible to extract information using
side channel attacks involving power or timing analysis, e.g. [56].

After further subdividing these phases, Myers identifies subversion threats for
each phase and recommends rigorous design and development methodologies ap-
plied to people, processes and tools, accompanied by lifecycle assurance as a holis-
tic approach to the mitigation of these threats. Table 2.1 extends this analysis to
include system retirement.

30 2 High Assurance Software Lessons and Techniques

Table 2.1 Lifecycle opportunities for subversion

Phase Threat

Design Inclusion by high-level designers of exploitable design elements

Implementation Introduction of flaws and artifices in code base

Distribution Additions to product and bogus updates

Installation Untrusted installers insert artifices or misconfigure the system

Operation Exploit flaws to install trap doors

Retirement Analyze system and media to extract information

Subversion of an FPGA can occur at many levels ranging from developmental
attacks on the hardware and software to operational attacks. Of course, the devices
can be subverted at the IC level; however, given that the IC manufacturer does not
know the use to which the base array will be applied, such attacks are probabilistic
and lack the guarantees desired for a well designed subversion. As posited by both
Karger and Schell [53] and Thompson [101], the tools used to construct the FPGA
offer a vector for developmental subversion. Trimberger [102] describes some of the
challenges associated with non-destructive validation of the equivalence between
the original design and the implemented design. He recommends the use of layout-
versus-schematic (LVS) comparison tools as a means to detect subversion. Despite
the finite nature of the systems, such detection schemes are extremely challenging.
Techniques that may be considered for countering subversion in FPGAs include:
testing and validation of design tools, verification of design flows, and static analysis
of HDL code.

2.3 Assurance

A system’s functional security mechanisms are those that implement the access con-
trol rules, the login mechanism, the audit trail, and various security administrator
functions. In contrast, assurance relates to the trustworthiness of the system. Just
because a user might trust a system does not mean that it merits that trust: it must be
trustworthy. This maps to a confidence that the system is doing what it is supposed
to do and nothing extra. If the system contains errors or is implemented in a way that
permits unintended use of its interfaces, then it contains unspecified functionality.
In addition, a system might contain functionality that is intentionally inserted by a
malicious adversary.

It is up to system owners to determine the adequate amount of assurance. The
trustworthiness or assurance of systems is elevated through careful lifecycle man-
agement from the elicitation of requirements through retirement. At any step along
the way, an adversary may try to enter the system to add some special functional-
ity. Careful system security engineering, configuration management, trusted deliv-
ery mechanisms, testing, both internal and external reviews, and the application of
formal methods contribute to system trustworthiness.

2.4 Commensurate Protection 31

Design Tip: Assurance Requirements. Security is not for free. Spend
your security dollars wisely. Your analysis should consider the assets that
require protection and the resources available to the adversary. A higher
level of trustworthiness requires greater effort to properly design, imple-
ment, test, deliver, configure, operate, and audit. While formal methods
may be necessary for high assurance, they are not sufficient, in and of
themselves.

2.4 Commensurate Protection

In early work with shared computer systems, when various conceptual models for
computer processing (e.g., processes and scheduling) and information protection
were formed, vendors presented different approaches as secure, and the comput-
ing community in ad hoc or organized [53] efforts would discover and report the
incompleteness or incorrectness of the system’s protection features. Today, the rela-
tionship between computer vendors and their customers remains largely the same,
although many vendors may no longer assert that their systems are “fit” for security
purposes [119], lest they be held liable for the product’s adequacy [27]. A vendor
releases a product; users discover and report some of its vulnerabilities; the vendors
patch the vulnerabilities and add new features; and the vendor releases the product
anew. The patches and new features, especially in combination, may add new vul-
nerabilities. While this penetrate-and-patch approach is not a satisfactory process, it
avoids the up-front cost of building in security. Since vendors have found that users
are willing to put up with vulnerable products, the cycle continues.

Security is expensive to build into a product, as it increases the design, documen-
tation, configuration management, and testing efforts. While this careful approach
to development (see Sect. 2.3) may reduce the overall cost of product maintenance,
those long-term savings may not be persuasive to vendors who compete on a “first-
to-market” basis. In any event, since security is not free, the question arises for data
owners as to how much security is enough.

Common wisdom about the protection of any property is that one should not
spend more on protection than the value of that which is protected. Another maxim
is to not gamble (i.e., leave unprotected) that which you cannot afford to lose. Cost-
benefit and risk analysis methods can be used to quantify the level of protection
required based on the value of the information: i.e., the damage to the owner if the
information is violated (compromised, corrupted, or made unavailable [61]). FEMA
[50] uses the following generic formula to calculate financial risk, assuming that
threat and vulnerability ratings range from 0 to 1:

Risk = Asset Value × Threat Rating × Vulnerability Rating

With respect to information protection, other risk factors may include the pro-
portion of the Asset Value that will be lost if the information is violated, the value

32 2 High Assurance Software Lessons and Techniques

of the information to potential attackers (which may be different than the value to
the owner), and mitigations to vulnerabilities. The combination of a computing sys-
tem’s vulnerabilities and its mitigations to those vulnerabilities can be viewed as
the inverse of the protection it provides with respect to defined assets and threats.
Various approaches have been presented for measuring the protection provided by
IT systems, including different evaluation criteria [14, 110].

Assets protected by IT systems may include people, the valuation of which can
include factors such as life and liberty, which may have a subjective relationship
to their monetary value. The threats to assets can also be difficult to quantify, as
discussed next.

2.4.1 Threat Model

Looking at the FEMA risk formula, enough protection (i.e., mitigation to vulner-
ability) must be provided to keep risk to the assets within acceptable limits, given
the perceived or defined threats. If there is no threat (e.g., if one has assets that no
one else wants to attack), or the protection system has no vulnerability (assets are
protected completely and continuously), there is no risk. However, a conservative as-
sumption is that attackers’ motivation and resources are proportional to the value of
the information resources: highly valued information requires high assurance of pro-
tection. A threat model provides a more systematic evaluation of threat [57, 66, 73],
including factors such as:

• The nature of the asset—whether its value derives from its confidentiality, in-
tegrity, and/or availability; and if there is a temporal quality to the value (e.g.,
some intellectual property or strategic military data may need to be secured for
decades).

• The potentially vulnerable components or interfaces of the system through which
assets can be accessed; and the attacks known to be pertinent to each type of the
component or interface throughout the product life-cycle (e.g., design, develop-
ment, delivery, and maintenance).

• The adversary’s motivations, including monetary, competitive advantage, indus-
trial espionage, revenge, prestige, and notoriety. This can be related to the nature
of the assets.

• The adversary’s capabilities—technical expertise, access to the protected system,
and the availability of funding and other resources such as computer time and
exploitation tools.

In addition to the primary IT access control features, potential attack surfaces
include the procedural as well as the automated instantiation of various design as-
sumptions and supporting policies, including: identification, authentication, audit,
physical security, and the education and vetting of users. For example, the most cost
effective means of attacking a system could be through the use of social engineering
and bribes.

2.4 Commensurate Protection 33

A threat model is useful for the assessment of components and products as well
as for system deployment environments, which can be more specific regarding the
characterization of threats, assets and adversaries. The following relates threats to
components and products.

2.4.1.1 FPGA Interfaces

For FPGA components, a threat model should consider both internal and external
interfaces. Cores may be connected directly or by a bus. Network interfaces may
include malicious traffic. The FPGA reconfiguration interface must be considered—
e.g., some FPGAs can be remotely updated in the field—as well as interfaces to
shared computing resources such as system and cache memory.

2.4.1.2 FPGA Assets

General classes of information assets on FPGAs include: cryptographic keys, private
information, and proprietary logic designs.

2.4.1.3 FPGA Attacks

For systems that allow untrusted modules or applications to share the processing en-
vironment, it must be assumed that they are malicious. Attack analysis must include
those attacks related to system design vulnerabilities (if any) that are described in
the product security evaluation and the open literature. Other potential FPGA attacks
include:

• Uploading a malicious design through the FPGA reconfiguration interface. A ma-
licious design could actually melt parts of the FPGA by causing a short-
circuit [41].

• Exploiting the effects of using or contending for shared resources. For example,
if one core can measure the effects caused by the use of a computing resource
(e.g., delay in access to cache memory, change in temperature of the device, or
change in the use of electrical power) by another core, a covert channel or side
channel can result.

2.4.1.4 Other Threat Model Elements

Physical attacks, e.g., to read or destroy cryptographic keys, may require tamper
protection, detection, and response techniques at the system, board, or chip level,
depending on the value of the assets protected. Also, FPGA manufacturing and de-
velopment tools are an attack vector in which the tools are subverted to weaken the
FPGA designs they produce, as a second order effect. Chapter 3 discusses physical
attacks in greater detail.

34 2 High Assurance Software Lessons and Techniques

2.5 Security Policy Enforcement

Security requires the specification of a policy for a system and the translation of that
policy to a system implementation that enforces the policy.

2.5.1 Types of Policies

When constructing a secure system it is essential to establish what secure means.
Assuming that resources managed by the system must be protected, it is necessary
to understand the kinds of protection that should be established. Security is always
understood with respect to a policy. Information assurance is generally defined as a
set of measures intended to protect and defend information and information systems.
The five pillars of information assurance provide a way to categorize overarching
objectives:

• Confidentiality—information is accessible only to those who need it and pro-
tected from unauthorized disclosure.

• Integrity—information is modified only by those with appropriate authorization
and is protected from corruption.

• Availability—information is usable when needed in a reliable and consistent
form.

• Authenticity—the recipient of information has knowledge of its genuine sender
or source.

• Non-repudiation—irrefutable evidence of message transmission from its sender
and receipt by its receiver can be provided.

The first three can be associated with system resources, whereas the last two are
related to communications and are supported by well-designed protocols and the
enforcement of some combination of the first three. For this reason we will focus
only on the first three objectives. Sterne [99] describes an organizational security
policy as one that may be stated in very general terms. Its translation to a system
implementation results in an automated security policy. The automated policy is
usually a subset of the overall policy, since policies related to physical and personnel
security are beyond the scope of the computer system implementations.

We understand IT systems to be secure in the context of the policies regarding
the confidentiality, integrity, and availability of the information resources. Different
system security policies may combine confidentiality, integrity, and availability in
different ways. For example, in a real-time control system the availability of high-
priority events will be paramount, and the confidentiality of information may be
secondary. A system intended to manage corporate financial records may focus on
integrity and associated accountability controls. Finally, a system designed to pro-
tect state secrets will ensure that confidentiality policies are enforced. Other exam-
ples include voting systems, health record systems, and employee payroll systems.
Security engineers often find a tension in the CIA triad: all three policies cannot

2.5 Security Policy Enforcement 35

be perfectly enforced simultaneously! The existence of a tension between availabil-
ity and both confidentiality and integrity is most evident, for example in military
real-time systems that must manage both classified and unclassified information.

Before continuing with a more detailed discussion of policy enforcement, it
is necessary to introduce certain terminology that has proved useful for several
decades.

The underlying policy enforcement mechanism controls resources, and a subset
of those resources will be exported at the mechanism interface in the form of abstract
data types. These may include both active and passive entities. Those resources that
can be read from or written to contain information and are called objects. The active
entities in the system are called subjects and may be surrogates for typical users or
for system owners. A typical example of the former might be an ordinary application
process, and an example of the latter might be a service process [59].

Early pioneers in system security developed models to characterize policy en-
forcement mechanisms. For example, Graham and Denning [40] developed a tabular
model that described the rights of each subject to objects. As depicted in Fig. 2.2,
each cell in the matrix contains the access modes with which the corresponding
subject is permitted to access the corresponding object.

The parameters used in these checks come from policy-relevant metadata asso-
ciated with both the subjects and the objects. The nature of the metadata will be
determined by the kind of policy being enforced. Any policy can fall into one of
two major categories: discretionary and mandatory. So, in some systems enforcing
discretionary access controls, user names or groups may be bound to subjects, and
some metadata, such as a list of allowed users, may be associated with the object.
In a system enforcing mandatory access control policies, the metadata may consist
of sensitivity labels associated with both the subjects and objects. The most familiar
types of labels are those used by the military to classify information, e.g. CONFI-
DENTIAL, SECRET, etc.

An interesting consequence of access control systems with interfaces that per-
mit policy modification is that it is impossible to develop an algorithm to decide
for an arbitrary protection system whether or not information will leak in an unin-
tended manner [42]. Considerable research has explored the precise characterization
of protection models that are decidable [2, 86, 87].

2.5.1.1 Discretionary Policies

A discretionary policy is dynamic and can be modified by unprivileged subjects
during runtime, whereas a mandatory policy is immutable to those subjects. A non-
technical example of each can be found in sentencing guidelines of the criminal
justice system. For many crimes, the presiding judge is able to weigh a variety of
factors associated with a particular case and can determine a punishment that fits the
crime. Alternatively, judicial discretion might be constrained through the passage of
a variety of sentencing mandates, such as three strikes laws. Where such constraints
are in place, the sentencing judge has no choice regarding the punishment: there is
no discretion.

36 2 High Assurance Software Lessons and Techniques

Fig. 2.2 The Graham-Denning model described access control in terms of a matrix where the
rights of a subject to an object were given in the cell associated with the subject and object

In systems that enforce discretionary policies, an interface is provided that allows
applications or users to modify the policy. Figure 2.3 illustrates how this can be a
problem. Kathy’s subject is executing a program that contains a Trojan Horse. As
the Trojan Horse code is executed, Kathy’s subject will use the runtime API to
change the Access Control List (ACL) on her file to grant access to Sean. At this
point, Sean’s subject can read her information and store it for later use. Because the
discretionary policy is ad hoc, it is impossible for Kathy to protect her information
from access by Sean.

2.5.1.2 Mandatory Policies

In addition to being immutable, a mandatory policy is one that is both global and
persistent: the policy is the same everywhere, and it does not change depending upon
various conditions. If Jim’s secret barbeque sauce is secret in Texas, it is also secret

2.5 Security Policy Enforcement 37

Fig. 2.3 A change to the ACL on Kathy’s file permits Sean to read and store her information

in Berlin. In addition, Jim does not allow the recipe for the sauce to be available on
Tuesdays from nine to ten o’clock in the morning: once the recipe is available, it
is impossible to make it secret again. These global and persistent policies separate
information and those who can access them into a lattice of partially ordered equiva-
lence classes [30]. A well-understood mandatory policy is that of the military, which
requires the classification of information based upon the harm its disclosure would
cause to the nation. Typical military information classifications are: TOP-SECRET,
SECRET, and UNCLASSIFIED. Individuals cleared for TOP-SECRET may access
TOP-SECRET, SECRET, and UNCLASSIFIED; those cleared for SECRET may
access SECRET and UNCLASSIFIED; and uncleared individuals may only read
UNCLASSIFIED information. Because these classifications can be hierarchically
ordered, this is called a multilevel security policy. However, as Denning pointed
out, a partial ordering may have non-comparable equivalence classes, so sets of in-
formation may be organized in a MLS policy as well, as illustrated in Fig. 2.4. The
arrows show the direction of information flow. Thus the reader must possess either
a label of {b, c} or {a, b, c} to read information labeled b, c.

Two state machine models capture the intent of mandatory confidentiality and
integrity policies respectively. The Bell and LaPadula model [7, 8] describes the
secure state of a system and includes three properties: the simple security property,
the *-property, and the discretionary property. In this chapter, only the first two
properties are of interest. If a system exhibits the simple security property, then an
entity will only be able to read information at and below its confidentiality level.
Another way of stating this is that it reflects typical confidentiality policies that
prohibit individuals from reading information at a higher classification level than
that for which they are cleared. The second property that must hold for the system is
the *-property, which accidentally has this unfortunate name. It is often also referred
to as the confinement property to reflect the notion of information confinement [60],
and accounts for the challenge posed by Trojan Horses in user applications. As a
result of confinement, it is impossible for an entity at a high confidentiality level to
write to an information repository at a lower confidentiality level.

In the context of mandatory policies, integrity forms a dual of confidential-
ity. High integrity information should only be modified by high integrity entities,

38 2 High Assurance Software Lessons and Techniques

Fig. 2.4 A hierarchical
ordering is shown in the
lattice on the left, and a lattice
of sets is shown on the right

whereas high integrity information should be accessible to entities at all integrity
levels, even the lowest. Thus the Biba model [9] includes properties that constrain
observation, modification and invocation.

2.5.1.3 Least Privilege and Its Policies

The Principle of Least Privilege is one of the cornerstones of secure system design,
implementation, and management. It appeared in a codified form in the seminal pa-
per by Saltzer and Schroeder [85] in which they described eight design principles
that can guide the construction of secure systems. Their definition of least privi-
lege stated that “every program and every user of the system should operate using
the least set of privileges necessary to complete the job. Primarily, this principle
limits the damage that can result from an accident or error. It also reduces the num-
ber of potential interactions among privileged programs to the minimum for correct
operation, so that unintentional, unwanted, or improper uses of privilege are less
likely to occur.” Hardware mechanisms can create protection modes within a sys-
tem that limit the privileges of applications with respect to those of the kernel (see
Sect. 2.5.2.1).

Least privilege will be reflected in system design and implementation through
the use of layering, modularity, and information hiding, all of which are constructive
techniques that, when applied to the internal architecture of a system, improve the
system’s resistance to penetration. The system interface can export access control
and fine-grained execution domains such that subjects may only perform authorized
tasks.

2.5 Security Policy Enforcement 39

2.5.2 Policy Enforcement Mechanisms

To enforce an access control policy, a mechanism must be in place that checks the
access of the subjects to objects.

Since its introduction, the Reference Monitor Concept [3] has served as a useful
abstract model for systems enforcing security policies. As an idealization of such
systems, it can be used as a standard of perfection against which those designing
protection mechanisms can measure their implementations.

The Reference Monitor Concept does not refer to any particular policy to be
enforced by a system, nor does it address any particular implementation. Instead it
articulates three properties of an ideal access mediation mechanism:

• The access mediation mechanism is always invoked: every access is mediated.
If this were not the case, then it would be possible for an entity to bypass the
mechanism and violate the policy.

• The access mediation mechanism is tamperproof. Thus, it is impossible for a
penetrator to attack this ideal access mediation mechanism so as to disable the
required access checks.

• The access mediation mechanism itself “must be small enough to be subject to
analysis and tests, the completeness of which can be assured” [3]. This means that
the mechanism must be understandable. It is necessary to ensure that it is doing
what it is supposed to do and no more.

This articulation of a mechanism has met the test of time and continues to be
an effective tool for describing the abstract requirements that drive secure system
design and implementation. No viable alternative has been introduced, and it has
proven effective, even under close scrutiny.

The minimal requirements for protecting the most privileged system elements
from less privileged applications were described by Saltzer and Schroeder [85].
They include privilege bits, a memory management mechanism, controlled entry
points to privileged functions, and a trusted way to bind user attributes to those of
the active entities executing on behalf of the user. Each of these requirements will
be discussed in greater detail in the next sections.

2.5.2.1 Privileged Instructions, Rings, and Gates

Systems are organized in terms of privilege. Hardware resources are managed by
the most privileged software components, which organize and export abstract data
types at an interface used by the next less privileged components. The simplest
privilege hierarchy is that of a two-state processor that provides two privilege do-
mains. The privileged domain is used by the operating system or kernel, and ap-
plications occupy the unprivileged domain. More elaborate hardware architectures
support several hierarchical privilege domains, such as those of the Intel x86 family
of processors, which has four hardware privilege levels [47].

40 2 High Assurance Software Lessons and Techniques

Fig. 2.5 Hardware instructions may be exported directly at the kernel interface, virtualized and
exported as new abstract data types, or reserved for the exclusive use of the kernel

The ability of the processor to check the privilege level of an active entity within
a task when attempts are made to access resources, transfer to a different privilege
domain, or execute selected instructions, is an essential element of the overall pro-
tection mechanism provided by the hardware. Privileged instructions will only be
executable by entities in the most privileged domain; if an application attempts to
execute a privileged instruction, the hardware will issue a protection exception, and
processing may be forced into an exception handler. Instructions that affect the state
of the processor such as those to manage hardware memory resources, manage con-
trol and other registers, halt the processor, and perform a limited number of other
critical functions will be privileged.

For performance reasons, most instructions are directly accessible by all privilege
domains. Certain privileged instructions may be virtualized such that abstract data
types are exported at the kernel interface. For example, the kernel may export an
abstraction of the memory subsystem in the form of files, segment handles, or other
objects. Finally, certain instructions will be reserved for kernel use alone, e.g. the
halt instruction. Figure 2.5 illustrates these instruction differences.

2.5.2.2 Memory Protection, Process Address Space and Virtual Memory

To protect itself and protect processes from each other, the kernel must manage
memory. Exclusive access to the memory management instructions ensures that the
kernel can allocate memory for its own use and for the processes it creates. Depend-
ing upon the processor, this may involve management of segments, page tables,

2.5 Security Policy Enforcement 41

or both. Obviously, the address space accessible to the kernel is that of the entire
processor, whereas that of the non-kernel applications is limited. When memory is
accessed, the hardware checks the privilege level associated with the memory with
that of the executing entity. For the memory access to be valid, the address must be
within the address space of the process and must be accessible by the privilege level
making the access. A kernel handler can return an exception if the address is not
part of the valid address space.

Virtual memory adds another level of complexity to address space management.
Virtual memory allows processes to have the appearance of an address space larger
than the physical memory resources available in hardware. The virtual memory of
each process is divided into small, equal-sized pages. Secondary storage, called
swap space, is used to maintain the pages while the process is executing, and pages
are swapped into and out of primary memory as needed. A process may only ac-
cess pages that have been allocated to it. To maximize performance, this virtual-to-
physical address space mapping is managed using combinations of hardware and
software support. Detailed descriptions of virtual memory can be found in many
articles, texts and manuals [29, 43, 47, 95].

2.5.2.3 Object Reuse Mechanisms

One way for adversaries to obtain information is through data scavenging. Although
rummaging through the garbage to find papers that might contain sensitive informa-
tion is a classic form of scavenging in the real world, digital data scavenging is
an attractive corollary. Thus, no matter what policy is enforced, it is necessary to
ensure that resources that may be reallocated to different processes are purged of
information associated with their previous usage.

Objects encompass all information containers in a system, and the general term
for this aspect of secure system implementation is object reuse. Because objects
are pervasive elements in systems and are often shared, many techniques for ensur-
ing their reusability have been developed [76]. Examples of memories that must be
purged between use by different processes include primary memory, caches, sec-
ondary storage, buffers used by I/O devices, and various registers: essentially any-
thing that could contain residual information from its use by a different process.

Ensuring that the objects to be purged are identified and managed correctly re-
quires a systematic methodology, such as that discussed by Wichers [116]. Consid-
eration must be given to how information objects are implemented in terms of com-
binations of initialization, allocation, deallocation and protection of the resource
pool from which objects are created. For example, purging can be systematically
performed before each new allocation of a resource, or after each deallocation. To
determine the completeness of the object reuse implementation, a careful study of
the system should be conducted. It should be noted that object reuse analysis differs
from covert channel analysis because objects exported by and directly accessible via
the system interface are intended as containers for information that must be shared
or confined according to the security policy, whereas the system metadata used to
establish covert channels are not intended to be accessible information containers.

42 2 High Assurance Software Lessons and Techniques

2.5.2.4 Controlled Entry Points

If applications could invoke kernel functions arbitrarily, then the resource manage-
ment services provided by the kernel would be obviated. Chaos would ensue: pro-
cess isolation could not be guaranteed, and the kernel’s internal resources could not
be protected from manipulation by applications. Any hope of security policy en-
forcement would evaporate. To encapsulate the kernel and ensure that the use of
the function is allowed and that only intended kernel functions are invoked by non-
kernel entities, the kernel must provide a mechanism so that all calls to it can be
controlled.

Hardware support is needed to accomplish this task. In the simplest case, a spe-
cial instruction is invoked by the application layer that causes control to transfer to
a special location in the kernel. There, the kernel will examine a predefined location
for the parameter list. In addition to the usual parameters, an identifier for the de-
sired function will be provided. The kernel should validate the parameters to ensure
that pointers and address ranges are associated with the domain of the application
and not that of the kernel. The kernel may then transfer control to the function that
will process the call.

The mechanisms just described are sufficient for systems that have only two priv-
ilege domains, but a problem arises if the system has multiple privilege domains. If
all the kernel can tell is that it has been invoked from a less privileged domain, then
it is impossible to determine whether intermediate privilege domains are being pro-
tected from accidental or intentional abuse by even less privileged domains. An ele-
gant solution to this problem of controlling inward calls is to use a gate mechanism
[77], e.g. call gates [47]. These gates are placed at the boundary of each domain and
control the transfer of execution from a less privileged domain to a more privileged
one. They can be set up so that all calls into more privileged domains must cascade
through a series of gates or so that a call can skip intermediate domains. This allows
each domain to export its functions to selected lower privilege layers in the system.
For example, the kernel may export certain kernel management functions only to
the next most privileged layer and not to those with lesser privilege, thus providing
the capability for the system builder to provide trusted code external to the kernel
for management activities. In contrast, less trusted applications would be unable to
invoke the kernel management functions. Intermediate domains may export abstract
data types and the gates needed to invoke the type managers at the domain interface.

2.5.2.5 User Attribute Binding: The Trusted Path

Since the attributes bound to subjects acting on behalf of users are the basis for
access control decisions, it is clear that a well-defined user identification and au-
thentication policy is essential for secure systems. It was this observation that led
Saltzer and Schroeder to include a trustworthy technique for identification and au-
thentication in their list of fundamental requirements for protection [85].

Assuming that both the user and the identification and authentication mechanism
are trustworthy, how can the user be sure that security-critical information being

2.5 Security Policy Enforcement 43

entered is not captured between the human interface and the I&A mechanism by a
man-in-the-middle or some other malicious entity? An unforgeable connection that
assures protected user communication with a trusted system mechanism is required.
This is called a trusted path. Users invoke the trusted path using a secure attention
key: a single key or special combination of keys or other input device intended solely
for the purpose of establishing a trusted path. The secure attention key signal is
received by the system’s trusted mechanisms, and the I&A interface is displayed in
a trustworthy manner to the user. Subsequent interaction is protected, and users have
confidence that passwords and other critical authentication information is protected.

It is worth noting that a trusted path need not be restricted to the input of pass-
words: other critical information might require similar protection. The entry of bank
account and credit card numbers, on-line confirmation of large financial transac-
tions, electronic access to certain health records, or other high-value activities con-
stitute examples where a trusted path provides enabling technology to organizations.

On a single platform, a trusted path requires that the interface presented to the
user be constructed such that it depends only upon trustworthy mechanisms. This
means that the use of large graphical user interface libraries of unknown or ques-
tionable provenance should not be within the dependency hierarchy of the trusted
path mechanism. As a part of the system’s overall security architecture, the trusted
path must be as trustworthy as the components enforcing critical security policies.

A trusted path always refers to the interface between the user and the machine.
Of course, in distributed systems, trusted communications between systems is also
necessary. The term trusted channel is used to describe the protection of inter-
system communications. In distributed systems, both trusted paths and trusted chan-
nels may require the use of cryptography. Care must be taken to ensure that the
cryptographic functions and key management mechanisms are trustworthy.

User authentication to the system can be based upon any of three types of at-
tributes: physical characteristics of the individual, something the individual knows,
or something the individual has. Biometrics encompasses the use of physical char-
acteristics for user authentication based upon physical characteristics. These include
a number of modalities, common examples of which include fingerprints, voice
recognition, retinal scans, iris scans, and facial recognition. Use of biometrics for
access control requires that an initial biometric be enrolled. The template of the
biometric of a claimant is compared to the enrolled template. Because of variations
associated with biometric collection, an exact match of the two is extremely im-
probable, and statistical methods are used to determine whether to accept or reject
a match. A number of significant research challenges, such as security, scalability,
privacy, interoperability, and social aspects, need to be addressed to enable confident
use of biometric technology for verifying identities [35, 49]. Passwords are some-
thing that the user knows and presents to the system to obtain access. Passwords do
not suffer from the variations in collection described above, but they are vulnera-
ble to guessing and brute-force attacks. A balance between the complexity of the
password and user acceptability must be achieved. An example of an authentica-
tion mechanism involving something a user has is a physical token such as an ID
card that may be presented to the system. Because tokens are susceptible to loss or

44 2 High Assurance Software Lessons and Techniques

theft, their use is often coupled with a second authentication mechanism. To provide
higher confidence that only valid authentications occur and to limit the complexity
of the individual mechanisms used, organizations often choose to combine authen-
tication techniques. When two different methods are used to authenticate users, this
is called dual-factor authentication, which naturally leads to multi-factor authenti-
cation, where the number of attributes is further expanded.

A wide range of authentication mechanisms is available, so system developers
need to consider the effectiveness of the technical mechanisms against their usabil-
ity, the context in which they will be employed, their cost, and their maintainability
from both a physical and technical perspective.

If a user has one password for access to all systems, then the compromise of
that single password renders the information being protected in all of the sys-
tems vulnerable. To mitigate this threat, it is recommended that users have differ-
ent passwords for each different account. As the number of accounts proliferates,
users must memorize an increasing number of passwords. A second problem may
be encountered in enterprise systems where users may have to authenticate many
times to access various services during a given session. In such cases, user frustra-
tion can be addressed through the implementation of single sign-on mechanisms.
However, single sign-on has both advantages (e.g., fewer passwords to remem-
ber and enter) and disadvantages (e.g., greater damage if credentials are compro-
mised).

2.5.2.6 Discretionary Policy Enforcement Mechanisms

Discretionary access controls are enforced by two kinds of mechanisms: access con-
trol lists and capabilities.

Access control lists (ACLs) itemize the access permissions of subjects to ob-
jects, such as files, directories, or devices. Each ACL entry consists of the name
representing an entity, such as an individual user or group, and the rights accorded
to that entity. Groups are convenient because access control lists for a large num-
ber of similar users (for example, all students enrolled in Psychology 101) can be
simplified, thus reducing the possibility of administrator error. The largest possi-
ble group is everyone, which in many systems is termed public. Extremely simple
ACLs are found in UNIX [5] and its descendant systems, such as Linux, where
only a short set of permission bits are used to determine access to a file: owner,
group, and public. For decades, systems intended for commercial use have had more
sophisticated ACLs in which the permissions of particular individuals may be de-
fined.

Not only can ACLs be used to permit access, but they may support the ability
to deny access to particular subjects. Consider a file that provides answers to the
exam to students following an exam. If Andy was out of town and must take the
exam this week, the professor can explicitly deny Andy access to the answers until
after he has completed the test. Thus the ACL may contain read permission for the
group consisting of all members of the class and an additional entry that denys Andy

2.5 Security Policy Enforcement 45

access. The astute reader may have noticed that Andy as a member of the group class
has been given access to the answers, so rules must be established regarding the
precedence of the ACL permissions. In this case, the intent of the instructor is met
if the ACL entries associated with individuals take precedence over the permissions
accorded groups. Issues to be considered when determining ACL precedence rules
are discussed by Lunt [68].

The simplest permissions found in ACLs may be merely read, write, and execute.
Thus various users and groups will have one or more of these access rights to the
object. Because discretionary access controls are often implemented for sophisti-
cated applications, other types of access permission may be created. For example,
it may be useful to allow certain users only append access to a file, for example a
log file. In this case, writes are restricted to the end of the file. To implement ap-
pend access, the underlying protection system will use a combination of both read
and write. Without the user’s knowledge, the system will open the log file, set the
write pointer to the end of the file, and then write the next log record to the file. It
is possible that the system or application programming interface will allow neither
read nor write access explicitly to the user.

If ACLs contain the permissions to the objects, how are the permissions to the
ACLs managed? This question is important because the runtime interface that per-
mits modification of ACLs is what distinguishes them as elements of a discretionary
access control mechanism. It is possible to associate control access rights with
ACLs. The users or groups with control access to the object may be designated
and will determine who can grant or deny permission for other access rights. These
control access rights may be highly granular; for example, a particular individual
might be given the ability to control a particular access right, e.g. read, within the
ACL. Furthermore, the concept of control can be extended upward one more level so
that certain individuals have control-of-control access rights. This rich set of access
rights allows organizations to tailor discretionary access controls to meet specific
requirements.

When new objects are created, it is important to ensure that the initial value of
each ACL reflects the intended security policy. In some systems a template may
be used to associate a default ACL with each new object. Such defaults may be
system-wide or may be determined with higher granularity, for example, in the case
of files, on a per-directory basis. Lunt [68] provided an analysis of discretionary
control defaults, which can range from no access (i.e., minimized access) to com-
plete access. In the context of least privilege, a default of limited or no access is a
wise choice.

ACLs are attractive because all permissions associated with a particular object
are localized. This allows policies to be managed easily. It is worth noting, how-
ever, that policy changes are not effective immediately. ACLs are used to check
access permissions once the object is opened, prior to the actual read or write.
The results of the access check are cached, and as long as the subject keeps the
object open, the rights obtained at that first access are retained. Thus, revoca-
tion of access is not immediate and will only be effective the next time the user
attempts to first access the object unless more sophisticated mechanisms are in
place.

46 2 High Assurance Software Lessons and Techniques

2.5.2.7 Capability Systems

Capabilities provide another way to implement discretionary access controls. In
capability-based systems, which were first described by Dennis and van Horn [32],
the list of access rights to objects are associated with the subjects, rather than the
objects. In addition to defining access rights, capabilities provide a way to name
objects, thus providing the basis for capability-based addressing [36]. For example,
when a user logs onto the system, an initial set of capabilities is bound to the subject
executing on the user’s behalf. As execution progresses, subjects may accumulate
additional capabilities. When a subject attempts to access an object, the RVM checks
the access rights in the capability, and permission is granted if the requested access is
included in those rights. Thus, once a subject possesses a capability for a particular
object, that object may be accessed with the rights specified in the capability; all
the subject needs to do is present the capability. A detailed discussion of capability
systems is provided by Levy [65]. A notable implementation of a highly granular
capability mechanism in an operating system was found in the CAP system [117].

Because a capability-based system distributes the access rights to each object
among the subjects and since the rights may be stored as initialization data for each
subject, revocation presents challenges. In addition, if subjects are able to copy and
store capabilities, the revocation problem is further exacerbated. Also, there is no
central location that can be inspected to determine which subjects have potential
access to a particular object. Instead, the capability list for each subject must be
inspected. If one decided to revoke access to an object, potentially every capability
list in the system would require inspection to ensure that the revocation was com-
plete. Again, as with ACLs, revocation would not take effect if the subject were
already actively accessing the object. An approach to solve the revocation problem
was proposed by Redell [80]. Capabilities can be particularly troubling in systems
where mandatory policies are to be enforced because, in typical capability systems,
no distinction is made between the access right and the ability to grant that access
right [10]. The extension of capability systems to support lattice-based security poli-
cies was explored by Karger and Herbert [51, 52].

Although capability systems can be implemented, they are notoriously complex,
and their lack of a conceptually simple policy-enforcement mechanism caused this
approach to be eclipsed in terms of high assurance approaches. However, capability
systems continue to be of interest, e.g. [92, 118].

2.5.2.8 Mandatory Security Policy Enforcement Mechanisms

Separation of domains requires the isolation of subsystems as well as mechanisms
to allow controlled sharing between these domains.

2.5.2.9 Types of Mandatory Mechanisms

A security kernel binds internal sensitivity labels to exported resources and me-
diates access by subjects to other resources according to a partial ordering of the

2.5 Security Policy Enforcement 47

labels defined in an internal policy module [88]. The label space may support con-
fidentiality and integrity policies as well as non-hierarchical categories [69]. A se-
curity kernel usually provides a hardware-supported ring abstraction [91, 93] and
can host trusted subjects [89]. The rings can separate processes within a privilege
level. Thus, a subject is a process-ring pair. All high assurance security kernels to
date have utilized segmented memory, which provides persistent hardware based
process-local memory-protection attributes [33, 38, 89, 90] as opposed to dynamic,
global, hardware attributes based on memory paging mechanisms.

The security kernel mediates external communication via network devices that
are each dedicated to a given sensitivity level, or via multilevel devices, in which a
sensitivity label is bound to each network protocol data entity (e.g., datagram). Se-
curity kernels generally support full resource and resource-allocation configurability
during runtime.

A separation kernel [83], which is sometimes referred to as a partitioning ker-
nel [67], maps its set of exported resources onto partitions:

resource_map : resource → partition

Multiple subject resources and object resources may be mapped to a given par-
tition, but a partition is an abstraction and is not itself a subject. Resources in a
given partition are treated equivalently with respect to the inter-partition flow pol-
icy, and subjects in one partition can be allowed to access resources in another par-
tition. Separation kernels enforce the separation of partitions and allow subjects in
those partitions to cause flows, each of which, when projected to partition space
(per the resource_map function), comprises a flow between partitions (which may
be between different or identical partitions). The allowed inter-partition flows can
be modeled as a partition flow matrix whose entries indicate the mode of the flow,
similar to that of Fig. 2.2, discussed earlier

partition_ flow : partition × partition → mode

The mode indicates the direction of the flow, so that

partition_ flow(P1,P2) = W

means that subjects in P1 are allowed to write to any resource in P2. The assign-
ment of resources to partitions and the access control or flow rules are passed to the
separation kernel in the form of configuration data that the kernel interprets during
system initialization. Since configuration data correctness is critical for the enforce-
ment of the intended security policy, a configuration tool is often described for the
construction of flow rules. Although not part of the kernel itself, this tool can help
the security administrator or system integrator to organize and visualize complex
data. This helps to ensure that user inputs reflect the intended policy.

Least privilege separation kernels (LPSKs) provide two important enforcement
benefits beyond basic partitioning kernels. First, LPSKs increase the granularity of
privileges accorded subjects as described in the Separation Kernel Protection Profile
(SKPP) [46]. Second, unlike a partitioning kernel, an LPSK extends reference mon-
itor features so that it is the locus of control for all inter-partition flows. In addition

48 2 High Assurance Software Lessons and Techniques

to the resource_map and partition_ flow functions of a partitioning kernel, an LPSK
supports the principle of least privilege in a manner than can be represented as a
subject-resource flow matrix,

subj_res_ flow : subject × resource → mode

It is possible to allow the subject-resource flow matrix to override the rules of the
partition flow matrix [46]; however, a more restrictive interpretation, where a given
flow is allowed by the LPSK only if both matrices allow it, is more intuitive and
ultimately more likely to be correctly configured in system implementations [63]:

allow_ flow(subject, resource,mode)

→ mode ∈ subj_res_ flow(subject, resource) &

mode ∈ partition_ flow(subject.partition, resource.partition)

The SKPP requires that

1. each secure configuration include an identification of a base partial ordering of
flows between partitions to identify the strict MLS policy, and

2. subjects allowed to cause flows between partitions in addition to those base flows
are treated as trusted subjects.

Figure 2.6 shows how the granularity of an MLS security policy can be refined
through the application of the two policies. The baseline partial ordering appears
in (a) and illustrates the partial ordering of the partitions: information may flow,
as shown by the heavy arrows, from P1 to P2 and from P2 to P3, where the sub-
jects within a partition are the entities that cause the flow. Least privilege is illus-
trated in (b). In this context, only certain subjects may cause flows, designated by
lightweight arrows, to and from particular resources. For example, S2,2 can only
read from both O21 and O22. A trusted subject, perhaps a specialized tool that down-
grades only certain information, is shown in (c). It is permitted to cause a flow from
O32 to O12. As is the case for all trusted subjects, it is trusted to honor the intent of
the system security policy and is thus shaded and has a dashed arrow to indicate a
flow in opposition to those articulated in the base policy. Depending on the policy,
an explicit partition rule allowing flow from P3 to P1 may be required for the S32 to
O12 flow to be allowed.

A review of the relative merits of these three approaches is provided by Levin
et al. [64].

2.5.2.10 Audit Mechanisms

A record of security-relevant events can be provided by an audit mechanism. If it
includes dynamic rule-checking, the audit mechanism may provide alerts of im-
pending security violations. Policies must be established to determine what should
be audited. For example, audit might include: only accesses to a particular object;
all activity on the system; the activities of subjects at a particular sensitivity level;

2.5 Security Policy Enforcement 49

Fig. 2.6 SKPP policies. The partition_ flow policy is shown in (a), the more granular sub-
ject_resource policy in (b), and (c) illustrates a trusted subject

the use of selected system calls; etc. Because the security administrator and other
trusted individuals engage in security-critical activities, an audit of their activities
should be maintained. Also, good audit reduction tools are needed, otherwise volu-
minous audit records are not likely to be particularly useful.

Intrusion detection systems (IDS) constitute a dynamic form of auditing. Sug-
gested by Anderson in 1980 [19], the next work on intrusion detection systems,
published in 1987, provides a general IDS model [31]. Since that time, a wide vari-
ety of systems have been developed for network intrusion detection, e.g. Snort [96]
and Bro [79], as well as host-based intrusion detection, e.g. Tripwire [55]. In the
Snort and Bro systems, network traffic is closely monitored for patterns that would
indicate the prelude to or initial steps of an intrusion, whereas the latter systems
introspectively observe the activities on a single platform in an attempt to catch
malicious activity prior to the completion of an attack. A fundamental limitation
associated with intrusion detection systems is that they detect only what they are
encoded to look for. Thus, however artful the encoding, the adversary can find a
way around it. Security administrators are often presented with a choice between
the reduction of false positives and the reduction of false negatives. IDSs can be
thought of in terms of the following dichotomies: host-based vs. network based;

50 2 High Assurance Software Lessons and Techniques

after-the-fact vs. real-time vs. predictive; and modeling misbehavior/detecting sim-
ilarities vs. modeling good behavior/detecting deviations.

2.5.3 Composition of Trusted Components

To reduce costs in the construction of large systems, it is desirable to use existing
commercial components as much as possible. In the parlance of FPGAs, this trans-
lates to the reuse of exiting IP. Composing secure embedded systems from multiple
components presents several challenges.

2.5.3.1 Composition Problems

A classic example of problems introduced by composition is illustrated by the cas-
cade problem [71]. The problem can be described as follows. Consider an MLS
system where labels are linearly ordered by a comparison operator (≥), and two
labels are adjoining if there is not a label between them in the ordering. If a compo-
nent enforces the security policy sufficiently to keep separate the information in two
adjoining sensitivity levels, Si and Sj , but no more, the component is said to have a
level of trustworthiness of Ttwo. Let there be two Ttwo components, C1 and C2. Sup-
pose that the organizational security policy requires the separation of three adjoining
sensitivity levels: S1, S2 and S3. The trustworthiness required for this separation is
Tthree. If C1 separates S1 and S2 and C2 separates S2 and S3, the architecture can
be considered sufficiently trustworthy. However, if the components C1 and C2 are
subsequently connected at the S2 level as shown in Fig. 2.7, their combination forms
a system—a virtual component—that spans three levels and yet has only Ttwo trust-
worthiness. Trustworthiness is not additive, so two serially linked Ttwo components
are insufficient for a network policy that requires the separation of three sensitivity
levels with a Tthree level of trustworthiness.

Fig. 2.7 The cascade problem. Separately the components are sufficiently trustworthy, yet when
combined, their level of trustworthiness is insufficient

2.6 Assurance of Policy Enforcement 51

Analysis of the cascade problem shows that the algorithmic identification of a
cascade within a network involves a time complexity of O(an3) and space com-
plexity of O(an2), where a is the number of security levels and n is the number of
nodes in the network [45]. Furthermore, the cost of calculating a correction (i.e., a
policy-preserving reorganization of the network) is NP-Complete [45]. While reor-
ganizing a network may only be a one-time cost, the conclusion to be drawn from
this analysis is that it is better to avoid cascades in the first place.

An approach to avoiding the ad hoc nature of the composition problem is to pro-
vide a framework of rules under which pre-analyzed conjunctions of components
may safely occur. For example, under TCB subsets [94], the system security pol-
icy is decomposed into a set of monitors, each of which enforces a subset of the
overall policy. For example, one monitor might enforce the mandatory confidential-
ity policy, another the mandatory integrity policy, and yet another the discretionary
confidentiality policy. A subject’s access to objects is granted only when access is
permitted by all three of the monitors. If the system can be subdivided such that
separate components contain the monitors, then through appropriate engineering of
a strict set of design and interface requirements, it may be possible to construct an
architecture of these subset components that will generally satisfy the overall system
policy. The goal, here, is to make it possible to construct the TCB subsets such that
they may be evaluated independently, yet their composition results in enforcement
of the larger system policy [75]. The result has been called a partitioned TCB.

Design Tip: Composition. Trustworthiness is not additive and may in
certain circumstances be degenerative. Two components that are individ-
ually trustworthy are not necessarily trustworthy when put together. The
TCB subset abstraction involves decomposing the security policy into
a set of enforcement mechanisms, each of which enforces a subset of
the overall policy. All subpolicies must be in agreement for access to be
granted. However, the general result of evaluation by parts is still a hard
problem because unintended behavior can seep out of the box.

2.6 Assurance of Policy Enforcement

Software and configurable hardware have many similarities as one examines assur-
ance and lifecycle management practices employed for each class of technologies
over a product’s lifecycle.

An FPGA contains a set of logic elements that perform a specific function, and
the programmable nature of an FPGA requires a means to specify the logic that
defines the FPGA’s behavior. Just as in software, which is defined in terms of a pro-
gram expressed in a programming language, logic elements of the FPGA are typ-
ically expressed in a hardware description language. Furthermore, common FPGA

52 2 High Assurance Software Lessons and Techniques

logic elements may be expressed in libraries that are combined to produce progres-
sively more complex functions. In this regard, an FPGA image may be considered
a persistent and statically loaded program. Such a program can and should be sub-
ject to all the same analysis and assurance practices that are routinely applied to
software.

Not unlike the offensive line on a football team, assurance is an often overlooked,
but vital, element of maintaining a product through its entire lifecycle. Just as the
line consistently performs the complex and unglamorous dirty work that allows the
quarterback, running backs and receivers to be lauded for advancing the team down
the field, the consistent, rigorous and successful application of sound assurance
practices that result in a successful development effort is rarely recognized. Con-
versely, just as the offensive line often receives attention only when the quarterback
gets sacked, assurance and configuration management practices typically receive the
most scrutiny when flaws are uncovered.

But those knowledgeable about the sport know that the offense’s success starts
with the ability of the line to consistently open holes in the defense and provide
the pass protection that allows the team to advance. The same is true of the assur-
ance and configuration management processes that must be applied throughout the
lifecycle of a robust and sound product.

2.6.1 Life Cycle Support

Life cycle management is an indispensable set of development and maintenance dis-
ciplines that helps define the assurance of a product, and thus the core competency
of the manufacturer. Well-defined and efficiently managed life cycle models are the
cornerstone to achieving design security for large and complex software projects.
The actual life cycle processes vary among different organizations and depend on
the product type (hardware versus software) and desired level of protection (high
assurance versus low assurance). Nevertheless, these processes should apply the
cradle-to-grave security principles during the entire life cycle of a product, viz. re-
quirements engineering, design, development, manufacturing, testing, distribution,
remediation and end-of-life disposal [108]. Although it is not a traditional focus of
life cycle management and is often neglected, requirements engineering is an im-
portant aspect of security. Both functional and assurance (non-functional) security
requirements must be correctly defined to avoid providing the wrong functionality
or protecting the right functionality wrongly.

2.6.1.1 Assessment Criteria

The Common Criteria (CC), an internationally-recognized security evaluation
framework, emphasizes the fundamental aspect of requirements engineering and
prescribes a security requirements derivation methodology that is centered on a

2.6 Assurance of Policy Enforcement 53

thorough analysis of both real and perceived threats to be mitigated by the end
product [23]. Life cycle support plays an important role in the CC paradigm as
evidenced by the large number of requirements devoted to life cycle modeling,
configuration management (CM), secure delivery, developmental security, and flaw
remediation [25]. Life cycle security issues related to programmable integrated cir-
cuits (e.g., FPGAs) are further addressed in a CC supplementary document [22]
which provides guidance on how to apply the base CC evaluation methodology to
hardware IC products that must be evaluated under the CC. In the US, all national
security systems are mandated to be evaluated in accordance with the CC or NIST
Federal Information Processing Standard (FIPS) validation program by the over-
arching National Security Telecommunications and Information Systems Security
Policy No. 11 [20]. These systems often include programmable circuitry.

In the case of commercially available hardware cryptographic modules to be used
in sensitive but unclassified environments, FIPS Publication 140-2 [104] is presently
the official evaluation criteria which levies similar life cycle (albeit somewhat mis-
labeled as design assurance) requirements, i.e., configuration management, secure
delivery and installation, developmental evidence, and operational guidance. FIPS
140-2 defines four hierarchical levels of security and explicitly refers to the CC for
security requirements levied on trusted software used in the target crypto modules.
This tie to the CC has been removed in the current draft FIPS 140-3 [107] which
has been in a public review phase since July 2007. In this draft, design assurance
was renamed to life cycle assurance, which includes additional requirements on the
use of an automated CM system, vendor testing, and more rigorous development
processes, e.g., the use of a high-level HDL for custom ICs starting at Security
Level 2 [107].

2.6.1.2 Use of Trustworthy Tools

The draft FIPS 140-3 also requires that if software is included in the crypto module
then information about the compilers, configuration settings, and methods used to
generate the executable code must be provided, even at the lowest Security Level 1.
This relates to the vexing trustworthy tools problem, i.e., how users can ascertain the
correctness of the tools used to create executable code or to fabricate hardware cir-
cuits. For FPGAs, the problem is exacerbated due to the complexity of the tools used
to design, manufacture, assemble, test, and distribute FPGA products. These tools
are typically made by different vendors (both foreign and domestic), and there are
no standardized metrics or criteria to assess the integrity of their implementation.
In theory, formally verifying every tool would provide a high level of confidence
that the end product is not subverted by the tools, but in practice, doing so would
be prohibitively expensive. These challenges and other issues related to the trust-
worthiness of integrated circuits (both ASIC and FPGA) have been investigated and
documented in the Defense Science Board study on High-Performance Microchip
Supply [113]. This report had prompted DARPA to issue the Trust in Integrated
Circuits research solicitation in 2007 [114], which focuses on “developing tech-
nologies that offer rigorous validation of IC hardware and its design regardless of

54 2 High Assurance Software Lessons and Techniques

where the design or manufacturing processes take place.” The article entitled The
Hunt for the Kill Switch [1] highlights the Trojan Horse attack and summarizes
myriad vulnerabilities that are inherent in today’s highly sophisticated hardware.

For secure software development, a best practices approach includes the follow-
ing steps: (1) carefully selecting the tools based on common empirical analyses of
quality factors such as provenance, maturity, stability and wide use, (2) performing
a thorough black-box testing and security analysis of the tools’ functional inter-
faces, and (3) maintaining the tools under strict configuration control. This process,
if implemented properly, can help mitigate the threats of malicious subversion and
accidental misuse. The testing and analysis results provide evidence to support the
assertion that the selected tools do not introduce malicious functionality. Chapter 8
discusses as future work the application of this idea to the FPGA design, using
a similar process to pick and manage the tools used in the different stages of the
FPGA design flow (e.g., logic synthesis, place & route, etc.).

2.6.1.3 Applying Security Principles to Life Cycle Process

An effective life cycle methodology should incorporate the following high assurance
software security principles as part of a defense-in-depth strategy:

• Audit
• Least privilege
• Separation of duties

Audit is a discipline of continuous inspection and assessment for accountabil-
ity purposes. To detect security violations and deter penetration attempts, an audit
framework should include both automated technical measures and manual actions.
When applied to life cycle management, audit can ensure that all design and manu-
facturing activities conform to the life cycle control policies and procedures which
can subsequently help offset the impacts of security breaches committed by mali-
cious insiders. Deterrence is an effective risk management mechanism, and employ-
ing an audit policy that requires both random and periodic audit actions in all phases
of a system’s life cycle can also discourage potential adversaries from launching
attacks. Configuration management (discussed below) is one form of auditing. It
addresses the control of developmental and operational configuration changes that
could affect the assurance disposition of a system.

Adherence to security principles such as least privilege and separation of duties
that were suggested by Saltzer and Schroeder in their seminal work on protection
of information [85] also affords additional protection and damage control. They de-
fined least privilege as a design restriction that can limit the damages caused by
both programmatic and operational errors, and separation of privileges (i.e., duties)
as a protection mechanism that can reduce the risk of being compromised by collud-
ing and maligned entities. The FPGA design and manufacturing flow is a complex
series of different activities involving many actors and interdependencies, and veri-
fying that the implementation of various components (e.g., netlist) has not deviated

2.6 Assurance of Policy Enforcement 55

from the intended design (e.g., HDL design files) is a daunting task. While the use
of cryptographic techniques can protect some parts of this flow [102], procedural
safeguards based on the principles of least privilege and separation (i.e., isolating
critical steps, enforcing distinct roles, and restricting privileges to the task at hand)
can help strengthen the assurance posture of the end product.

2.6.2 Configuration Management

Technology is constantly evolving, and changes are unavoidable. Configuration
management (CM) is a well-established practice to control changes that should be
assimilated early in the life cycle for both software and hardware products. CM
retrofitting (viz. adding CM as an after-thought) is costly and can severely impact a
product’s integrity since maintaining a complete and unmodified change history for
traceability purposes is the bedrock of CM. CM can be viewed as an active defense
mechanism that, when implemented properly, can help to mitigate inherent security
risks associated with evolutionary changes.

Most developers are aware of CM, mostly as a versioning control mechanism,
but they often choose to either ignore or marginalize the importance of CM for fear
of being burdened by the CM controls and procedures. It is exactly those rigorous
safeguards that, if properly practiced, could enable the establishment of the initial
baselines of hardware and software components and the subsequent change control
of those components. Change control plays a critical role in CM as its main objective
is to prevent unauthorized modifications (including accidental errors) to the baseline
configuration items. For high assurance software development, a thorough security
analysis of the proposed changes (e.g., modifications of existing components and
additions of new components) to assess the security impact on other parts of the
system must be performed and reviewed prior to the approval of the change request.
A system of checks and balances must be employed to deter collusion, e.g., clear
separation of CM and the development environment, and to ensure the validity of the
security analysis, e.g., to ensure that the analysis is performed by a trained security
analyst and that the review is done by a Change Control Board. For FPGA devel-
opment, the same CM objectives and requirements apply, especially for complex
FPGA implementations that contain a large amount of code developed and main-
tained by a multitude of principals (core designer, system developer, manufacturer,
etc.).

Configuration change control is important but is not enough. NIST has defined a
set of CM requirements (i.e., security controls) that addresses a wide range of con-
cerns ranging from establishing CM policy and procedures to maintaining a current
inventory of the components used in a system [106]. Different combinations of these
requirements are levied on information systems based on the system’s potential im-
pacts on an organization in the event of a security compromise. FIPS Publication
199 defines three levels of potential impacts—low, moderate, and high—based on
the severity of the effect on the operations and assets of the organization, i.e., limited

56 2 High Assurance Software Lessons and Techniques

for low impact, serious for moderate impact, and severe or catastrophic for high im-
pact [105]. NIST Special Publication 800-53 recommends the following eight CM
requirement categories for moderate-impact and high-impact systems [106]:

• Configuration Management Policy and Procedures
• Baseline Configuration
• Configuration Change Control
• Monitoring Configuration Changes
• Access Restrictions for Change
• Configuration Settings
• Least Functionality
• Information System Component Inventory

These requirements cover all life cycle phases, i.e., planning, development and
deployment, and they apply to all components of a system, including FPGAs. In
other words, besides its effect on the developmental assurance of individual prod-
ucts, CM also contributes to a system’s mission assurance if its use is included in
the system’s security strategy and plans. The security posture of a system is par-
tially based on a set of approved configuration settings that, if changed without
proper analysis and traceability, would invalidate the system’s accreditation, i.e.,
license to operate. This is also true for FPGA-based embedded systems. Changes
to a bitstream file in the field may have detrimental effects on both performance
and security of a system; thus, CM policy and processes should be established and
enforced to minimize the risks associated with bitstream reconfiguration.

2.6.3 Independent Assessment

Accountability and transparency are central elements in building and sustaining
trust. Juvenal’s poignant observation about trust1 has been used over the years to
emphasize the need for having external oversight to provide greater accountability
in governance. It is easy to draw a parallel between this need for transparency and
the need for security evaluation in secure product development since the security
posture of a product could be strengthened if the product underwent an independent
security assessment.

To be credible, the security evaluation of a product should be performed by an ob-
jective third party, preferably a government-sanctioned organization. This is because
impartiality and independence are essential to guard against bias and collusion, re-
spectively. In general, user confidence will increase if a vendor could demonstrate
that their product passed the scrutiny of official organizations with legal oversight
responsibility. For example, doctors and patients in the US would feel safer if the
prescribed medicines for a life-threatening condition were approved by the Food and
Drug Administration. Similarly, security-minded IT users in the US would be more

1“Quis custodiet ipsos custodies?” (“Who guards the guardians?”)—Juvenal, Satires VI.347.

2.6 Assurance of Policy Enforcement 57

inclined to use security products that have been validated by official evaluation au-
thorities such as the National Information Assurance Partnership (NIAP) Common
Criteria Evaluation and Validation Scheme (CCEVS) and NIST.

CCEVS oversees and validates the evaluation of security products by CCEVS-
approved commercial testing laboratories that are accredited by NIST [12]. The
CC testing labs evaluate security products in accordance with the CC and NIAP-
recognized Protection Profiles [13]. The CC is an international standard, and there
are different evaluation schemes in other countries that provide the same CC eval-
uation oversight as CCEVS. In the US, the evaluation of cryptographic modules is
performed by NIST, not CCEVS. NIST oversees the Cryptographic Module Val-
idation Program (jointly with the Communications Security Establishment of the
Government of Canada) which validates cryptographic modules in accordance with
FIPS cryptographic standards, e.g., FIPS 140-2 [103].

Product evaluation authorities such as CCEVS and NIST only assess the trust-
worthiness of individual products (e.g., operating system, firewall, web server), not
the trustworthiness of the end systems that use evaluated products. From a system
acquisition viewpoint, independent security evaluation of individual products is a
critical part of the technical due diligence which, when properly exercised, can help
mitigate risks throughout the system’s life cycle. However, a system that is com-
posed of different evaluated products is not necessarily secure since the interactions
among security functions provided by the evaluated products may result in new vul-
nerabilities. Product evaluation is performed based on security assumptions (e.g.,
physical and personnel security) and threats of specific operating environments for
which a product is intended to be used. When integrated into an end system with a
different threat model, the evaluated protection mechanisms may be inadequate to
mitigate the threats manifested at the system level.

An independent critical examination of the integrated protection mechanisms at
different dimensions of implementation (e.g., hardware, operating system, applica-
tion software) could help identify adverse emergent behaviors prior to deploying
the composed system for operational use. In the federal government, the process
that federal agencies use for security and risk assessment before authorizing a sys-
tem for operation is known as certification and accreditation (C&A). When there is
a change in the functionality of an authorized system or its operational environment,
subsequent C&A activities might ensue, depending on the organizational C&A pol-
icy, to determine and mitigate risks resulting from the change.

Although the complexity of the FPGA design in a product is typically hidden
(encapsulated) in higher level functional components (e.g., processor cores and de-
vice controllers), it is important to not overlook the malleability of FPGAs in the
security assessment of the overall system. The use of FPGAs should be inspected
with the same depth and rigor that are used to assess the security of critical software
in a product. Dynamic reconfiguration is an inherent benefit of using FPGAs, but it
is also a double-edged sword. When FPGA-based products are used in a mission-
critical system, it would be prudent to include, as part the system’s C&A process,
system-level architectural and design analyses to look for unintended side effects
caused by poor, incorrect, or unanticipated use of FPGA-based components.

58 2 High Assurance Software Lessons and Techniques

2.6.4 Dynamic Program Analysis

Dynamic program analysis generally refers to the testing and analysis of a program
under execution. A target program is subjected to a specifically constructed set of in-
put data, and instrumentation is used to examine and validate the program behavior.
Input data may be constructed and instrumentation applied to:

• test for functional behavior
• test for performance
• test for timing constraints
• test for resource usage

Functional testing may be considered a common form of dynamic program anal-
ysis in which a program is subjected to a set of input data designed to exercise every
interface of a program and validate all outputs in terms of effects, errors and ex-
ceptions. Functional testing is often conducted in conjunction with code coverage
analysis to ensure that all program code gets exercised by the input data. The input
data set is driven by code coverage and specifically designed to stimulate specific
responses from the program.

In many environments, thorough testing of functional interfaces may be consid-
ered sufficient because properties such as performance, timing constraints or re-
source usage are not particularly demanding or may not be specified at all. Towards
the other end of the spectrum are embedded, real-time systems in which resource
and/or timing constraints may be absolute, severe and critical to the proper operation
of the program. It is often difficult to know a priori how a program will behave in
terms of performance or resource usage. In these environments, dynamic program
analysis is applied to ensure the program behaves properly in response to a range of
real world and pathological conditions.

2.6.4.1 Testing

Testing occurs in various contexts and at different phases during the development
and certification of a software product. Unit and integration testing is typically
conducted during development by the developers themselves. The rigor applied by
developer-implemented testing can vary widely across organizations.

Once an overall software product is developed, it is subjected to a system test,
typically conducted by a distinct Quality Assurance group. The test requirements are
derived from a specification that completely describes the interface to the product.
Testing procedures at this level are generally recognized to include:

• Thoroughly and completely exercising all interfaces to the program.
• Validating behavior under all externally visible states and conditions.
• Testing for both successful and unsuccessful conditions, including generation of

all errors and exceptions.

2.6 Assurance of Policy Enforcement 59

If a product is subject to certification, then an evaluator may conduct additional
testing. The examination and testing of a product can vary widely depending on the
nature of the certification [26, 109]. Such testing may be comprised of simply run-
ning a defined test suite against the product to verify compliant functional behavior.
However, often the certification also seeks to assess the compliance of a product
at not just a single point it time, but over the lifetime of the product. Under this
type of requirement, the certification process must examine not only the product it-
self but also all the software development practices applied to develop and maintain
the product. Often the evaluator cannot examine, much less repeat, all the testing
conducted by the developer. Instead, the evaluator examines testing processes, test
records, documentation, and other materials that demonstrate software lifecycle as-
surance.

While testing is recognized as a vital process in software development, it is often
compartmentalized to discrete phases within the development lifecycle, typically
after a software unit or even a complete program has been coded.

The quality of a software product can be greatly improved by addressing testing
requirements throughout the development lifecycle, not only by conducting testing
at appropriate points within the development process, but also by actively consid-
ering testing impacts during the design and implementation of a program. A design
for test strategy includes both application of design principles that promote simple
and appropriately constructed interfaces and application of coding techniques that
facilitate testing.

Application of design principles, including developing a sound abstraction and
creating an appropriately modular architecture, tend to promote more intuitive and
simpler programs that are thus easier to test. Interestingly, while principles of ab-
straction and modularization might not be easily grasped, more rote examination of
an implementation can yield equally valuable feedback. For example, an interface
regarded as hard to test or having too many test cases suggests an interface that
might be unnecessarily complex given an understanding of a particular functional
requirement.

Application of techniques that facilitate testing can enable development of exten-
sive unit and integration test suites that may be used to support initial development
and regression testing. Unit tests are typically conducted using a test driver that can
exercise the unit under test by not only invoking the interfaces exposed by the soft-
ware unit but also by applying code practices that allow one to selectively expose
and control the internal state of the software unit.

Similar to the traditional software development process, the FPGA development
process typically involves several iterative steps in which the output of each pro-
gressive step of development is fed back to verify the functional behavior of the
circuit. To support this iterative model, the FPGA development tools have evolved
to support sophisticated hardware description languages and testing techniques that
can be used to construct test fixtures to exercise implementation logic and interfaces
of an HDL circuit description at each stage of the FPGA design flow.

60 2 High Assurance Software Lessons and Techniques

2.6.5 Trusted Distribution

It is important that the delivery of trusted products is protected against counterfeiting
and subversion during transit from the vendor site to the user site. The user must
have the following guarantees on the received product:

• It is of the correct version as specified by the vendor. If the product had been
evaluated, the distributed version must also match the evaluated configuration.

• It comes from the vendor, not from a fraudulent source, and
• It arrives unmodified.

This type of assurance requirements is characterized in evaluation criteria as
trusted distribution [110] and secure delivery [25], respectively.2 The need for these
requirements stems from the fact that any unauthorized changes to a product’s se-
curity mechanisms during its life cycle could have an adverse effect on the system’s
ability to enforce its security policy. While configuration management provides pro-
tection against subversion during the development phase, trusted distribution ad-
dresses threats of subversion and forgery during the distribution phase.

In TCSEC, trusted distribution requirements are only levied on Class A1 prod-
ucts since it was considered too costly for lower assurance classes to provide assur-
ance measures for ensuring secure delivery [111]. Specifically, the TCSEC requires
the vendor to implement a distribution system that can ensure the integrity of the
delivered product and to provide procedures for users to validate that the received
version is the same as the distribution master’s version [110]. These requirements
apply to both the initial delivery and subsequent updates of a product. Accompa-
nying the TCSEC is a series of technical guidelines whose purpose is to clarify the
TCSEC requirements and to provide implementation guidance. A Guide to Under-
standing Trusted Distribution in Trusted Systems [111] is one such document. This
guide explains why trusted distribution is an important life cycle assurance measure
and provides insights on different approaches to implementing an effective trusted
distribution mechanism.

The Common Criteria, on the other hand, imposes trusted distribution require-
ments starting at Evaluation Assurance Level 2 (EAL2), the second lowest level
of a seven-level assurance scale. In previous CC versions (Version 2.3 and older),
trusted distribution requirements were grouped into one family (ADO_DEL) and
expressed in terms of delivery procedures (EAL2 and EAL3), detection of modifi-
cation (EAL4 through EAL6), and prevention of modification (EAL7) [21]. These
categories are linearly hierarchical, i.e., detection of modification requires delivery
procedures, and prevention of modification requires both detection of modification
and delivery procedures. These requirements are similar to the TCSEC requirements
in that they focus on the use of the vendor’s master copy and address both proce-
dures and technical measures employed at both ends of the delivery channel.

In the current CC Version 3.1, trusted distribution requirements are expressed
in terms of delivery procedures and preparative procedures [25]. The former re-

2For the purpose of this discussion, the two terms are considered to be equivalent.

2.6 Assurance of Policy Enforcement 61

quires the vendor to document and use the delivery procedures for distributing the
product. The latter requires the vendor to provide acceptance procedures for users
at the user site. The CC assurance requirements underwent a major rewrite after
Version 2.3, and trusted distribution requirements are now defined as two separate
families (ALC_DEL and AGD_PRE), making it harder for CC novices to follow.
Anti-subversion and anti-counterfeit safeguards that were explicitly specified in the
previous trusted distribution requirements have been made into application notes
which are not normative in the CC paradigm.

Although the trusted distribution requirements in the TCSEC and CC are differ-
ent in scope and form, they all have the same objective of protecting the product
against post-development subversion and theft. Similar threats also exist in FPGAs,
and just as in high assurance software, stringent delivery mechanisms should be em-
ployed to mitigate these threats at different development stages of an FPGA-based
system.

2.6.6 Trusted Recovery

A secure system (implementing a state-machine model) must ensure that each state
transition after an initial secure state results in another secure state [8]. Although the
definition of secure state depends on a system’s security policy model, in general a
secure state can be viewed as a system state in which the system data is consistent
and uncorrupted, and the system can correctly enforce the security policy repre-
sented by the its security model [46].

When a system detects that it is no longer in a secure state, it must attempt to
self-recover to a secure state without further protection compromise while recovery
is in progress. The concept of recovering in the presence of abnormity while en-
suring continuity of protection is known as trusted recovery. The TCSEC and CC
further characterize these exceptions as either failure or discontinuity of operations.
A failure can be an error condition in the system’s security functionality3 that causes
the system to behave incorrectly (e.g., inconsistent values in system data structures
caused by transient hardware failure) or a media failure (e.g., a disk crash). A dis-
continuity of operation, on the other hand, is an error caused by inappropriate human
actions, e.g., inappropriate shutdown of a system [24, 112].

While a system is running (as opposed to halted), it can be in one of two modes:
operational or maintenance. Trusted recovery mechanisms must be supported in
both modes [46]. These mechanisms must be able to determine whether the cur-
rent system state is secure or not and to initiate mode-specific recovery actions to
repair the system if the system is not in a secure state. Certain error conditions can
be recovered by automated mechanisms (e.g., remapping of a bad disk sector) while

3The term security functionality is based on the term TOE Security Functionality (TSF) which is
defined in the CC as a set consisting of all hardware, software, and firmware of the TOE that must
be relied upon for the correct enforcement of the security functional requirements [23].

62 2 High Assurance Software Lessons and Techniques

others require manual recovery actions (e.g., system crash due to an unexpected er-
ror). Recovery methods also vary depending on the operational environment of the
system. For example, the recovery method used in an embedded real-time system
would require more complex processing than the method used in a traditional com-
puter due to resource constraints of the embedded system (e.g., processor overhead
and response time) [62].

Although self-testing is a system integrity requirement, it is also relevant to
trusted recovery. Its use during system initialization and normal operation can detect
abnormal conditions that require recovery. Moreover, self-tests can be invoked by
an automated recovery mechanism as part of the recovery process or performed by
an administrator to verify that the system is indeed in a secure state after completing
a recovery action.

Regarding life cycle assurance, recovery mechanisms must meet the same de-
velopment assurance requirements levied on other security-relevant functions, since
they are parts of the system’s security functionality. Their design and implemen-
tation must be critically reviewed to ensure that architectural properties such as
self-protection, least privilege, modularity and minimization are upheld, and that
no Trojan horses or trap doors exist in the code. Furthermore, security testing and
vulnerability analysis must be performed to determine potential vulnerabilities that
could be exploited to bypass security enforcement during recovery [26].

Recovering from certain failures may require complex administrative actions.
Since administrative users typically have more privileges than regular users, the
principle of least privilege should be applied to the assignment of recovery privi-
leges such that only authorized administrative users (e.g., the security administrator,
not the system operator) can perform recovery functions. The operational guidance
documentation must describe all types of failure conditions, recovery procedures,
and tools, and for each type of failure, specific guidance on how best to recover
from the failure. It is paramount that user documentation on recovery is complete
and correct; otherwise, misuse of recovery functions may affect the system’s ability
to fail securely, resulting in compromised protection.

2.6.7 Static Analysis of Program Specifications

As opposed to testing the properties of a program4 in execution, static analysis
provides assurance of the properties of a program based on an objective examination
of some specification of the program.

Programs can be specified at different levels of abstraction, for example, user
manuals, design specs, source code, and executable code are different abstractions
of a program, and different forms of static analysis examine different levels of ab-
straction. Often, the term static analysis is used to refer specifically to the analysis
of source code [17], but in this context, it is used more broadly.

4Where program could be a module, component, monolithic system, or distributed system.

2.6 Assurance of Policy Enforcement 63

2.6.7.1 Code Reviews and Bug Checking

A basic form of static analysis occurs during code reviews, in which program au-
thors along with peers, designers, managers, and customers, etc., look at source
code. A code review can focus on properties such as elegance, faithfulness to a
higher level specification, and coding errors like buffer overflows. Automated static
analysis tools [6, 15, 16, 28] can perform some of these analyses of specifications,
as long as the properties in question can be defined in terms of an effective procedure
(e.g., a rule) understandable by the tool. For example, while a tool might be able to
search for a well-defined buffer overflow, many concepts of program elegance are
subjective and beyond the scope of current tools. Some source code properties that
are statically checked by automated tools include: correct syntax and format, mem-
ory leakage, improper stack or general-memory access, memory leaks, overuse of
privilege, buffer overflow, unused or duplicate functions, unused variables, uninitial-
ized variables, lack of encapsulation/data-hiding, and time-of-check to time-of-use
errors.

Automated code reviews and bug checking, like automated testing, may not pro-
vide adequate assurance that a property is completely or correctly implemented in
a given program (the theoretical difficulty of writing a program to understand other
programs is related to the halting problem [11]). The use of formal methods, dis-
cussed next, can lead to greater assurance of program security.

2.6.7.2 Formal Methods

Human languages lend themselves to ambiguity and lack of precision, whereas
mathematics provides a basis for clear and precise description and reasoning about
those descriptions. Formal methods is not, itself, a formally-defined or standardized
term of art in computer science, but in general, it refers to the application of mathe-
matics in various aspects of the software and hardware system development process.
In particular, the use of formal methods to verify security properties is required for
high assurance or high robustness [14] product ratings.

Some formal methods are:

• general mathematical models of
– computation and processing [44]
– security [8, 9]

• specification languages [84, 97, 98] with precise semantics that can express:
– system behavior
– security properties
– refinement relationships between specifications
– theorems of conformance to properties
– theorems of conformance to more abstract specifications

• executable security languages with precise semantics:
– in which security properties such as correct MLS flow can be described with

first order language constructs

64 2 High Assurance Software Lessons and Techniques

– successful compilation of a program guarantees that it conforms to the proper-
ties that it includes [30, 115]

• automated systems for manipulating the logic of formal specifications, such as:
– automatic or interactive theorem provers [54, 78, 84]
– model checkers, model executers, and SAT solvers [48]
– tools that automatically generate theorems based on properties in a formal

specification [34]
• information flow analysis tools [34]

2.6.7.3 Refinement and Preservation of Properties

Formal verification of a secure system includes formalization of key specifications,
at different levels of abstraction, as well as a series of correspondence demonstra-
tions showing that each specification preserves the security properties of the next
most abstract level—resulting in a transitive argument that the implementation pre-
serves the security policy (see Fig. 2.8). The more the elements of this chain are
formalized, the more formal the resulting argument. The particularization of a given
specification to one that is more concrete (i.e., less abstract) is called refinement;
whereas the translation of a concrete specification to one that is more general is
called abstraction.

The prevalent criteria for high assurance verification [14, 110] have required sev-
eral items in common: a formal specification of both the security policy model and
the top level functional specification (an interface specification that includes the in-
puts, outputs, processing, and internal effects of each interface); a proof that the
formal model is consistent with its own security properties; and a proof that the for-
mal specification preserves the properties of the model. Formal methods may also
be used in the analysis of covert channels and in the demonstration that the source
code is consistent with the formal top level specification.

The usual expectation is that the natural language security policy and the secu-
rity policy model are simple enough that their consistency can be ensured through
inspection, with a high degree of confidence. The security policy model is often a

Fig. 2.8 Formal verification
chain of evidence

References 65

refinement of the security policy, where an organizational-level policy that is “inde-
pendent of the use of a computer” [110] is interpreted in the computer technology
domain—i.e., the security policy model helps to transition between the security pol-
icy and the formal specifications. On the other hand, verified translation of source
code to machine code (i.e., trusted compilers) and the automatic translation of for-
mal functional specifications to source or machine code [97] are topics of current
research.

In what has been called the refinement paradox, [70, 82] it has been shown that
the refinement of an information flow model [39] does not, in general, preserve the
security properties of the model—e.g., the addition of detail (viz., in the formal
specification) may introduce flows not included in the abstract formal model. In this
case, covert channel analysis can be performed to ensure that the information flow
in the refined specification is correct. Similarly, if an access control model [8] is
used, a covert channel analysis of the formal specification ensures that information
flow that is extraneous to the model does not violate the security policy.

The correct correspondence of source code to the formal specification can be
demonstrated through exhaustive enumeration of the source code, in which each
element of code is mapped to its representation in the formal specification and is
accompanied by a rationale as to why the semantics of the formal specification are
preserved in the refinement. One of the goals of research to provide verified auto-
matic translation of the formal specification to source code is to avoid the arduous
manual code-correspondence task as well as to reduce the error rates associated with
manual coding.

References

1. S. Adee, The hunt for the kill switch. IEEE Spectrum 45(5), 34–39 (2008)
2. P. Ammann, R.S. Sandhu, The extended schematic protection model. J. Comput. Secur.

1(3, 4), 335–385 (1992)
3. J.P. Anderson, Computer security technology planning study. Tech. Rep. ESD-TR-73-51, Air

Force Electronic Systems Division, Hanscom AFB, Bedford, MA, 1972. Also available as
vol. I, DITCAD-758206. Vol. II, DITCAD-772806

4. E.A. Anderson, C.E. Irvine, R.R. Schell, Subversion as a threat in information warfare. J.
Inf. Warfare 3(2), 52–65 (2004)

5. M.J. Bach, The Design of the UNIX Operating System (Prentice Hall, Inc., Englewood Cliffs,
1986)

6. T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey, B. Ondrusek, S.K.R.
Jamani, A. Ustuner, Thorough static analysis of device drivers. SIGOPS Oper. Syst. Rev.
40(4), 73–85 (2006)

7. D.E. Bell, L. LaPadula, Secure computer system: unified exposition and multics interpreta-
tion. Tech. Rep. ESD-TR-75-306, MITRE Corp., Hanscom AFB, MA, 1975

8. D.E. Bell, L. LaPadula, Secure computer systems: mathematical foundations and model.
Tech. Rep. M74-244, MITRE Corp., Bedford, MA, 1973

9. K.J. Biba, Integrity considerations for secure computer systems. Tech. Rep. ESD-TR-76-372,
MITRE Corp., 1977

10. E.W. Bobert, On the inability of an unmodified capability machine to enforce the *-property,
in Proceedings DoD/NBS Computer Security Conference, September 1984, pp. 291–293

66 2 High Assurance Software Lessons and Techniques

11. G. Boolos, R. Jeffrey, Computability and Logic (Cambridge University Press, Cambridge,
1974)

12. CCEVS, Publication #4: guidance to CCEVS approved Common Criteria testing laborato-
ries, version 2.0. National Information Assurance Partnership Common Criteria Evaluation
and Validation Scheme, September 2008

13. CCEVS, Publication #1: organization, management and concept of operations, version 2.0.
National Information Assurance Partnership Common Criteria Evaluation and Validation
Scheme, September 2008

14. CCMB, Common Criteria for information technology security evaluation, revision 3.1, revi-
sion 1, no. CCMB-2006-09-001. Common Criteria Maintenance Board, September 2006

15. B.E. Chelf, S.A. Hallem, A.C. Chou, Systems and methods for performing static analysis on
source code. US Patent 7,340,726, Coverity, Inc., 2008

16. H. Chen, D. Wagner, MOPS: an infrastructure for examining security properties of software,
in Proc. 9th ACM Conf. Computer and Communications Security (CCS 02)

17. B. Chess, G. McGraw, Static analysis for security. IEEE Secur. Priv. 2, 76–79 (2004)
18. S. Christy, R.A. Martin, Vulnerability type distributions in CVE. http://cve.mitre.org/docs/

vuln-trends/index.html, May 2007
19. J.P.A. Co, Computer security threat monitoring and surveillance. Tech. Rep., James P. An-

derson Co., Fort Washington, PA 19034, February 1980
20. Committee on National Security Systems, NSTISSP no. 11, revised fact sheet. National In-

formation Assurance Acquisition Policy, July 2003
21. Common Criteria Maintenance Board, Common Criteria for information technology security

evaluation, part 3: security assurance components, version 2.3, CCMB-2005-08-003. Com-
mon Criteria Maintenance Board, August 2005

22. Common Criteria Development Board, The application of CC to integrated circuits, version
2.0, revision 1, CCDB-2006-04-003. Supporting document, mandatory technical document.
Common Criteria Development Board, April 2006

23. Common Criteria Maintenance Board, Common Criteria for information technology security
evaluation, part 1: introduction and general model, version 3.1, revision 1, CCMB-2006-09-
001. Common Criteria Maintenance Board, September 2006

24. Common Criteria Maintenance Board, Common Criteria for information technology security
evaluation, part 2: security functional components, version 3.1, revision 2, CCMB-2007-09-
002. Common Criteria Maintenance Board, September 2007

25. Common Criteria Maintenance Board, Common Criteria for information technology security
evaluation, part 3: security assurance components, version 3.1, revision 2, CCMB-2007-09-
003. Common Criteria Maintenance Board, September 2007

26. Common Criteria Maintenance Board, Common Criteria for information technology security
evaluation, evaluation methodology, version 3.1, revision 2, CCMB-2007-09-004. Common
Criteria Maintenance Board, September 2007

27. M.A. Cusumano, Who is liable for bugs and security flaws in software? Commun. ACM 47,
25–27 (2004)

28. M. Das, S. Lerner, M. Seigle, ESP: path-sensitive program verification in polynomial time,
in PLDI 02: Programming Language Design and Implementation, June 2002, pp. 57–68

29. P.J. Denning, Virtual memory. ACM Comput. Surv. 2(3), 153–189 (1970)
30. D.E. Denning, A lattice model of secure information flow. Commun. ACM 19(5), 236–243

(1976)
31. D.E. Denning, An intrusion-detection model. IEEE Trans. Softw. Eng. 13, 222–232 (1987)
32. J.B. Dennis, E.C.V. Horn, Programming semantics for multiprogrammed computations.

Commun. ACM 9(3), 143–155 (1966)
33. DigitalNet Government Solutions, Security target version 1.7 for XTS-6.0.E, March 2004
34. P. Eggert, D. Cooper, S. Eckmann, J. Gingerich, S. Holtsberg, N. Kelem, R. Martin, FDM

user guide. No. TM-8486/000/04, Reston, VA: Unisys Corporation, June 1992
35. European Commission, Biometrics at the frontiers: assessing the impact on society. Tech.

Rep., European Commission Joint Research Center (DG JRC), Institute for Prospective Tech-
nological Studies, 2005

References 67

36. R. Fabry, Capability-based addressing. Commun. ACM 17, 403–412 (1974)
37. R. Fitzgerald, trans. Homer: The Odyssey (Vintage, New York, 1961)
38. L.J. Fraim, Scomp: a solution to the multilevel security problem. Computer 16, 26–34 (1983)
39. J. Goguen, J. Meseguer, Security policies and security models, in Proc. of 1982 IEEE Sym-

posium on Security and Privacy, Oakland, CA (IEEE Comput. Soc., Los Alamitos, 1982),
pp. 11–20

40. G.S. Graham, P.J. Denning, Protection—principles and practice, in Proceedings of the Spring
Joint Computer Conference, May 1972, pp. 417–429

41. I. Hadzic, S. Udani, J. Smith. FPGA viruses, in Proceedings of the Ninth International Work-
shop on Field-Programmable Logic and Applications (FPL’99), Glasgow, UK, August 1999

42. M. Harrison, W. Ruzzo, J. Ullman, Protection in operating systems. Commun. ACM 19(8),
461–471 (1976)

43. J.L. Hennessy, D.A. Patterson, Computer Architecture: A Quantitative Approach, 4th edn.
(Morgan Kaufmann, San Mateo, 2006)

44. C.A.R. Hoare, Communicating sequential processes. Commun. ACM 21(8), 666–677 (1978)
45. J. Horton, R. Harland, E. Ashby, R.H. Cooper, W.F. Hyslop, B. Nickerson, W.M. Stewart,

O. Ward, The cascade vulnerability problem, in Proceedings IEEE Symposium on Research
in Security and Privacy, Oakland, CA, May 1993, pp. 110–116

46. IAD (Information Assurance Directorate), US Government protection profile for separation
kernels in environments requiring high robustness. National Information Assurance Partner-
ship, version 1.03 edn., 29 June 2007

47. Intel, Intel 64 and IA32 architectures software developer’s manual, vol. 3A: system program-
ming guide, part 1. Intel Corporation, Denver, CO, 253668-022us edn., November 2006

48. D. Jackson, Software Abstractions: Logic, Language, and Analysis (MIT Press, Cambridge,
2006)

49. A.K. Jain, S. Pankanti, S. Prabhakar, L. Hong, A. Ross, J.L. Wayman, Biometrics: a grand
challenge, in Proceedings of the 17th International Conference on Pattern Recognition, Au-
gust 2004, pp. 935–942

50. M.J. Kaminskas, Risk Assessment/Risk Management. Building Design for Homeland Se-
curity, vol. 5. FEMA, Risk Management Series ed. (2007). http://www.fema.gov/library/
viewRecord.do?id=1939

51. P.A. Karger, Improving security performance for capability systems. Ph.D. thesis, University
of Cambridge, Cambridge, England, 1988

52. P. Karger, A.J. Herbert, An augmented capability architecture to support lattice security and
traceability of access, in Proceedings 1984 IEEE Symposium on Security and Privacy, Oak-
land, CA (IEEE Comput. Soc., Los Alamitos, 1984), pp. 2–12

53. P.A. Karger, R.R. Schell, Multics security evaluation: vulnerability analysis. Tech. Rep.
ESD-TR-74-193, vol. II, HQ Electronic Systems Division, Air Force Systems Command,
Hanscom Field, Bedford, MA 01731, June 1974

54. M. Kaufmann, J. Moore, An industrial strength theorem prover for a logic based on common
Lisp. IEEE Trans. Softw. Eng. 23(4), 203–213 (1997)

55. G.H. Kim, E.H. Spafford, The design and implementation of Tripwire: a file system integrity
checker, in Proceedings of the 2nd ACM Conference on Computing and Communications
Security (CCS), Fairfax, VA, November 1994

56. P. Kocher, Timing attacks on implementations of Diffie-Hellman, RSA, DSS and other sys-
tems, in Proceedings of the 16th Annual International Cryptology Conference (CRYPTO),
Santa Barbara, CA, August 1996

57. M. Kurdziel, J. Fitton, Baseline requirements for government and military encryption algo-
rithms, in MILCOM, vol. 2, Oct. 2002, pp. 1491–1497

58. L. Lack, Using the bootstrap concept to build an adaptable and compact subversion artifice.
Master’s thesis, Naval Postgraduate School, Monterey, CA, June 2003

59. B.W. Lampson, Protection, in Proc. 5th Princeton Conf. on Information Sciences and Sys-
tems, Princeton, NJ, 1971

60. B.W. Lampson, A note on the confinement problem. Commun. ACM 16(10), 613–615
(1973)

68 2 High Assurance Software Lessons and Techniques

61. C.E. Landwehr, Formal models for computer security. ACM Comput. Surv. 13(3), 247–278
(1981)

62. K. Lee, L. Sha, Process resurrection: a fast recovery mechanism for real-time embedded
systems, in Proceedings of 11th IEEE Real Time and Embedded Technology and Applications
Symposium 2005 (RTAS 2005), March 2005, pp. 292–301

63. T.E. Levin, C.E. Irvine, T.D. Nguyen, Least privilege in separation kernels, in E-business
and Telecommunication Networks; Third International Conference, ed. by J. Filipe, M.S.
Obaidat. ICETE 2006, Set’ubal, Portugal, 7–10 August 2006. Communications in Computer
and Information Science, vol. 9 (Springer, Berlin, 2008)

64. T.E. Levin, C.E. Irvine, C. Weissman, T.D. Nguyen, Analysis of three multilevel security
architectures, in Proceedings 1st Computer Security Architecture Workshop, Fairfax, VA,
November 2007, pp. 37–46

65. H.M. Levy, Capability-based Computer Systems (Digital Press, Bedford, 1984)
66. S. Lipner, The trustworthy computing security development lifecycle, in Proceedings 20th

Annual Computer Security Applications Conference (IEEE Comput. Soc., Los Alamitos,
2004), pp. 2–13

67. Lockheed-Martin/The Open Group, Protection Profile for PKS in environments requiring
high robustness. Draft Version 1.3, submittal for NSA approval, 09 June 2003. http://www.
csds.uidaho.edu/pp/PKPP1_3.pdf. Last accessed: 15 March 2009

68. T.F. Lunt, Access control policies: some unanswered questions. Comput. Secur. 8, 43–54
(1989)

69. T.F. Lunt, P.G. Neumann, D.E. Denning, R.R. Schell, M. Heckman, W.R. Shockley, Secure
distributed data views security policy and interpretation for DMBS for a Class A1 DBMS.
Tech. Rep. RADC-TR-89-313, vol. I, Rome Air Development Center, Griffiss, Air Force
Base, NY, December 1989

70. J. McLean, Security models and information flow, in Proceedings of the IEEE Symposium
on Security and Privacy (IEEE Comput. Soc., Los Alamitos, 1990), pp. 180–189

71. J. Millen, The cascading problem for interconnected networks, in Fourth Aerospace Com-
puter Security Applications Conference, 1988, pp. 269–273

72. J. Murray, An exfiltration subversion demonstration. Master’s thesis, Naval Postgraduate
School, Monterey, CA, June 2003

73. S. Myagmar, A. Lee, W. Yurcik, Threat modeling as a basis for security requirements, in
Proc. Symp. Requirements Engineering for Information Security (SREIS 05), 2005

74. P. Myers, Subversion: the neglected aspect of computer security. M.S. thesis, Naval Post-
graduate School, Monterey, CA, 1980

75. National Computer Security Center, Trusted network interpretation of the trusted computer
system evaluation criteria, NCSC-TG-005, July 1987

76. National Computer Security Center, A guide to understanding object reuse in trusted systems.
Tech. Rep. NCSC TG-018, National Computer Security Center, Fort George G. Meade, MD,
1991

77. E.I. Organick, The Multics System: An Examination of Its Structure (MIT Press, Cambridge,
1972)

78. L.C. Paulson, Isabelle: A Generic Theorem Prover. LNCS, vol. 828 (Springer, Berlin, 1994)
79. V. Paxon, Bro: a system for detecting network intruders in real-time. Comput. Netw.

31(23–24), 2435–2463 (1999)
80. D. Redell, R. Fabry, Selective Revocation of Capabilities, International Workshop on Pro-

tection in Operating Systems, IRIA, 1974
81. D. Rogers, A framework for dynamic subversion. Master’s thesis, Naval Postgraduate

School, Monterey, CA, June 2003
82. A. Roscoe, CSP and determinism in security modelling, in Proceedings of the IEEE Sympo-

sium on Security and Privacy (IEEE Comput. Soc., Los Alamitos, 1995), pp. 114–127
83. J. Rushby, Design and verification of secure systems. ACM SIGOPS Operating Systems Re-

view, vol. 15, December 1981, p. 12
84. J. Rushby, S. Owre, N. Shankar, Subtypes for specifications: predicate subtyping in PVS.

IEEE Trans. Softw. Eng. 24(9), 709–720 (1998)

References 69

85. J.H. Saltzer, M.D. Schroeder, The protection of information in computer systems. Proc. IEEE
63(9), 1278–1308 (1975)

86. R. Sandu, Analysis of acyclic attenuating systems for the SSR protection model, in Proceed-
ings of the 1985 IEEE Symposium on Security and Privacy, April 1985, pp. 197–206

87. R.S. Sandhu, The schematic protection model: its definition and analysis for acyclic attenu-
ating schemes. J. ACM 35, 404–432 (1988)

88. R.R. Schell, P.J. Downey, G.J. Popek, Preliminary notes on the design of secure military
computer systems. Tech. Rep. MCI-73-1, Electronic Systems Division, Air Force Systems
Command, Hanscom AFB, Bedford, MA, 73

89. R. Schell, T.F. Tao, M. Heckman, Designing the GEMSOS security kernel for security and
performance, in Proceedings 8th DoD/NBS Computer Security Conference, 1985, pp. 108–
119

90. D.D. Schnackenberg, Development of a multilevel secure local area network, in Proceedings
of the 8th National Computer Security Conference, October 1985, pp. 97–101

91. M.D. Schroeder, J.H. Saltzer, A hardware architecture for implementing protection rings.
Commun. ACM 15(3), 157–170 (1972)

92. J.S. Shapiro, J.M. Smith, D.J. Farber, EROS: a fast capability system, in SOSP’99: Proceed-
ings of the Seventeenth ACM Symposium on Operating Systems Principles (ACM, New York,
1999), pp. 170–185

93. L.J. Shirley, R.R. Schell, Mechanism sufficiency validation by assignment, in Proceedings
1981 IEEE Symposium on Security and Privacy, Oakland (IEEE Comput. Soc., Los Alami-
tos, 1981), pp. 26–32

94. W.R. Shockley, R.R. Schell, TCB subsets for incremental evaluation, in Proceedings Third
AIAA Conference on Computer Security, December 1987, pp. 131–139

95. A. Silberschatz, P.B. Galvin, G. Gagne, Operating System Concepts, 7th edn. (Wiley, New
York, 2005)

96. Snort.org, Snort. http://www.snort.org/, last referenced 22 March 2009
97. Specware 4.2 Manual, Kestrel Technology, http://www.specware.org/documentation/4.2/

languagemanual/SpecwareLanguageManual.pdf, 3 November 2008
98. J.M. Spivey, Understanding Z: A Specification Language and Its Formal Semantics (Cam-

bridge University Press, Cambridge, 1988)
99. D.F. Sterne, On the buzzword “security policy”, in Proceedings of the IEEE Symposium on

Research on Security and Privacy, Oakland, CA (IEEE Comput. Soc., Los Alamitos, 1991),
pp. 219–230

100. The Easter Egg Archive, Excel Easter Egg—Excel 97 flight to credits. http://www.eeggs.
com/items/718.html, last accessed 19 February 2009

101. K. Thompson, Reflections on trusting trust. Commun. ACM 27(8), 761–763 (1984)
102. S. Trimberger, Trusted design in FPGAs, in Proceedings of the 44th Design Automation

Conference, San Diego, CA, June 2007
103. US Department of Commerce and Communications Security Establishment of the Govern-

ment of Canada, Implementation guidance for FIPS PUB 140-2 and the cryptographic mod-
ule validation program, initial release: 28 March 2003, last update: 10 March 2009. National
Institute of Standards and Technology, Gaithersburg, MD, March 2009

104. US Department of Commerce, Security requirements for cryptographic modules, Federal In-
formation Processing Standards Publication 140-2. National Institute of Standards and Tech-
nology, Gaithersburg, MD, May 2001

105. US Department of Commerce, Standards for security categorization of federal information
and information systems, Federal Information Processing Standards Publication 199. Na-
tional Institute of Standards and Technology, Gaithersburg, MD, February 2004

106. US Department of Commerce, Recommended security controls for federal information sys-
tems, NIST Special Publication 800-53 Revision 2. National Institute of Standards and Tech-
nology, Gaithersburg, MD, December 2007

107. US Department of Commerce, Security requirements for cryptographic modules, Federal
Information Processing Standards Publication 140-3 (Draft: 07-13-2007). National Institute
of Standards and Technology, Gaithersburg, MD, July 2007

70 2 High Assurance Software Lessons and Techniques

108. US Department of Commerce, Security considerations in the system development life cycle,
NIST Special Publication 800-64 Revision 2. National Institute of Standards and Technology,
Gaithersburg, MD, October 2008

109. US Department of Commerce, Derived test requirements for FIPS PUB 140-2, Secu-
rity requirements for cryptographic modules, 24 March 2004, Draft, CMVP program
staff (NIST, CSE and CMVP laboratories). National Institute of Standards and Tech-
nology, Gaithersburg, MD. http://csrc.nist.gov/groups/STM/cmvp/documents/fips140-2/
fips1402DTR.pdf. Cited 7 April 2009

110. US Department of Defense, Trusted computer systems evaluation criteria (Orange Book)
5200.28-STD. National Computer Security Center, Fort Meade, MD, Dec. 1985

111. US Department of Defense, A guide to understanding trusted distribution in trusted systems,
version 2, NCSC-TG-008. National Computer Security Center, Fort Meade, MD, December
1988

112. US Department of Defense, A guide to understanding trusted recovery in trusted systems,
version 1, NCSC-TG-022. National Computer Security Center, Fort Meade, MD, December
1991

113. US Department of Defense, Defense Science Board task force on high performance mi-
crochip supply. Office of the Under Secretary of Defense For Acquisition, Technology, and
Logistics, Washington, DC, February 2005

114. US Department of Defense, TRUST in integrated circuits, presolicitation notice, solicitation
number: BAA07-24. Defense Advanced Research Project Agency, Microsystems Technol-
ogy Office, Arlington, VA, March 2007. http://www.darpa.mil/mto/solicitations/baa07-24/
index.html, cited 27 Mar 2009

115. D. Volpano, C. Irvine, Secure flow typing. Comput. Secur. 16(2), 137–144 (1997)
116. D.R. Wichers, Conducting an object reuse study, in Proceedings of the 13th National Com-

puter Security Conference, October 1990, pp. 738–747
117. M.V. Wilkes, R.M. Needham, The Cambridge model distributed system. ACM SIGOPS

Oper. Syst. Rev. 14(1), 21–29 (1980)
118. E. Witchel, J. Cates, K. Asanovic, Mondrian memory protection, in Tenth International

Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-X), San Jose, CA, October 2002

119. C. Zymaris, A comparison of the GPL and the Microsoft EULA. 2003. Cyber-
source. Retrieved 15 September 2008, from http://www.cybersource.com.au/cyber/about/
comparing_the_gpl_to_eula.pdf

Chapter 3
Hardware Security Challenges

Abstract This chapter discusses the problem of malicious hardware, or gateware,
on FPGAs. Categories of malicious hardware, the problem of foundry trust, and
attacks facilitated by malicious inclusions are presented. This chapter also explains
the problem of covert channels on FPGAs, with a formal definition of a covert chan-
nel in general and a description of the specific case of covert channels on FPGAs.
Methods for detecting and mitigating these covert channels are also described.

3.1 Malicious Hardware

Chapter 2 described results from the world of high assurance software that can also
be applied to FPGA designs. Beginning with software makes sense because of the
vast body of work on computer security as it relates to software. Because the modern
FPGA design process resembles software development in several aspects (hardware
description languages vs. high-level programming languages, reuse of intellectual
property, etc.), the term gateware has been coined to describe circuit designs that
are loaded into the gates of an FPGA.

The history of malicious hardware can be traced to the Cold War when the Amer-
icans and the Russians spied on each other and continues to the present day. Rus-
sia intercepted typewriters destined for America and inserted keylogger functional-
ity [23]. The Europeans may have added a kill switch to a processor that prevented
Syrian radar from detecting an Israeli attack [5].

3.1.1 Categories of Malicious Hardware

A malicious function can be implemented in either software or hardware. Malicious
hardware has many of the properties of malicious software, and lessons learned from
the categorization of malicious software into taxonomies can be applied to malicious
hardware as well. Countering malicious hardware is difficult because determining

T. Huffmire et al., Handbook of FPGA Design Security,
DOI 10.1007/978-90-481-9157-4_3, © Springer Science+Business Media B.V. 2010

71

72 3 Hardware Security Challenges

the trustworthiness of an arbitrary computer program (or hardware module) is not
decidable in the general case, since such analysis is equivalent to the halting prob-
lem, according to Rice’s theorem [31]. Mitigation of malicious hardware requires
secure design practices, including mandatory access control mechanisms, formal
verification of secure systems, and configuration management.

A backdoor or trapdoor allows unauthorized users to access a system. They can
be installed during system development or during the installation of system up-
dates.

A kill switch is a type of subversive artifact that allows the attacker to disable
the functionality of hardware or software [5]. Like a trap door, a kill switch can be
installed during system development or during maintenance, but instead of enabling
illicit access, it can cause denial-of-service (DoS). A kill switch can be installed as
part of a bitstream, or it can be put onto the chip by third-party development tools
or malicious insiders at an overseas foundry.

FPGA viruses have been demonstrated that can configure the FPGA to short-
circuit, resulting in melting the device [11]. Viruses can spread via software (ma-
licious software code with a malicious FPGA configuration payload) or hardware
replication (much more difficult than software). Although FPGA viruses are not
common in the wild, for sensitive applications, the possibility of even an unlikely
event must be considered. The same can be said about successfully reverse engi-
neering an FPGA bitstream: it is difficult but must be considered in certain circum-
stances.

A Hardware Trojan is a term of art in the hardware security community refer-
ring to malicious alterations and inclusions in ICs [38]. Wang, Tehranipoor, and
Plusquellic have developed a framework for the classification of malicious alter-
ations to ICs, a taxonomy that is useful for evaluating methods for their detec-
tion [38]. Wang et al. classify hardware Trojans based on their physical, activa-
tion, and action characteristics. Physical traits can be divided into type (realized by
adding or deleting transistors or gates), size (number of added, deleted, or compro-
mised chip components), distribution (location in the physical layout of the chip,
either close together or dispersed), and structure. The taxonomy of Wang et al. uses
four physical attributes, one activation attribute, and one action attribute, for a to-
tal of six attributes [38]. Hardware Trojans can either be activated externally or
internally. Trojan action is classified into modification of the chip’s function, modi-
fication of the chip’s parametric properties (e.g., delay), and transmitting key infor-
mation to an adversary. Detecting and mitigating hardware Trojans is an active area
of research.

3.1.2 Foundry Trust

In the world of hardware trust, the Defense Advanced Research Projects Agency
(DARPA) has created a program called TRUST in Integrated Circuits (TIC) to de-
tect malicious inclusions in ASIC chips using both invasive (e.g., sand-and-scan)

3.1 Malicious Hardware 73

and non-invasive (e.g., X-ray) detection techniques [32]. The TRUST program is
also concerned with the security of FPGAs and the protection of third-party in-
tellectual property (IP). The US Department of Defense and the National Security
Agency (NSA) have begun the Trusted Foundry Program to address concerns about
the security of chips used in sensitive government systems, and a few foundries have
received certification [9, 23].

TIC was established by government officials concerned with the problem that
it is impractical to manufacture every chip used in critical systems in a trusted
foundry. A fighter jet, for example, can have on the order of a hundred proces-
sors. Since the military has to save money, the use of commodity components
cannot be avoided in the real world. The TRUST program is divided into sev-
eral groups, or teams, and each group consists of a partnership between industry
and academia [32]. The Government Support Teams consist of the Red Team, the
Test Article Generation Team, and the Metrics Team. The Test Article Genera-
tion Team, led by the University of Southern California Information Sciences In-
stitute (USC-ISI), uses MOSIS to fabricate the test chips in commercial foundries.
The Red Team, led by MIT Lincoln Lab, identifies various types of malicious cir-
cuits and develops methods of inserting these circuits into some of the test chips.
Three Performer Teams attempt to detect the malicious inclusions: Xradia’s spe-
cialty is nondestructive X-ray techniques; Luna’s specialty is antitamper features
for FPGAs; and Raytheon’s specialty is hardware and logic testing [5]. The Met-
rics Team, based at the Johns Hopkins University Applied Physics Laboratory,
establishes metrics for judging the outcome of the experiments (i.e., to measure
success). To stay in the program, the performer teams must meet strict detection
rate and false positive rate goals. In addition to the problem of malicious IC in-
sertion in military systems, the TRUST program is also concerned with ASIC and
FPGA design flows [32], which may use third-party IP, which poses a thorny prob-
lem.

Trimberger discusses the trusted foundry problem as it relates to FPGAs [36].
Since the foundry has no idea which chip will be delivered to which customer,
application-specific attacks are difficult to execute. Furthermore, since the FPGA
is programmed after manufacturing, the foundry has no idea what design will be
loaded onto the device. The fine granularity of the programmability of the FPGA
makes it difficult for the foundry to gain knowledge about the design. For exam-
ple, CPUs, which have less granularity of programmability than FPGAs, are an
easier target for attackers because much is known about how CPUs execute pro-
grams and about how CPUs are structured. Attackers can target certain parts of
the CPU, and only around one thousand gates are needed to give an attacker full
control of the system [17]. FPGAs, on the other hand, are arrays of programmable
logic, and a malicious person at the foundry cannot predict how the application will
map to the FPGA, increasing the difficulty of an attack. However, there are parts
of an FPGA that are dedicated to specific functionality, and these may be the tar-
get of subversion. For example, hard-wired CPUs, hard-wired SRAM and BRAM
blocks, and standard functions for I/O, for loading bitstreams, or for crypto key
storage.

74 3 Hardware Security Challenges

Reconfigurability is useful to defenders who can move data and cores around the
chip to make it even harder for attackers. Defenders can use redundancy to their
advantage by forcing attackers to modify all redundant versions of the design in
precisely the same way. Clearly, some of these ideas resemble security through ob-
scurity, and the security of a system should not rest solely on its blueprints being
secret. However, when used in conjunction with more formally sound methods, they
can increase the cost of attacking the system.

Design Tip: Security Through Obscurity. Don’t base the security of a
system solely on the secrecy of its blueprints. Assume that the enemy may
be able to obtain the blueprints or reverse engineer your system. Cryp-
tosystems require the secrecy of the keys, but the ciphers are published
so that the worldwide crypto community can scrutinize them. Study the
blueprints of your FPGA’s security mechanisms. If they are trade secrets,
consider alternative manufacturers if the security of the system depends
too much on the confidentiality of the mechanisms.

3.1.3 Physical Attacks

The intentional insertion of malicious inclusions into circuits makes it possible
to subsequently mount attacks on those circuits (vulnerabilities may also exist in
hardware due to unintentional design flaws). In a physical attack, the attacker has
physical control of the device. Attacks may be sorted into one of three categories:
non-invasive, semi-invasive, and invasive, which describe the degree of physical in-
trusion to the target system. For example, if the attacker has physical control over
a smart card terminal, a non-invasive side channel attack against a smart card in
the terminal is possible. Such an attack may use simple power analysis, differential
power analysis, or fault injection against the crypto circuitry to obtain crypto keys,
since the smart card relies on the power supplied by the terminal. Power analysis
attacks are also possible on FPGAs [34]. Side channel attacks that involve remov-
ing the packing but not physically altering or damaging the chip are considered to
be semi-invasive attacks. Removing the packaging can make it easier to analyze
the electromatic radiation emitted by the chip. An example of an invasive attack
is the sand-and-scan attack in which the passivation layers of an integrated circuit
are systematically removed and scanned by an electron microscope [7]. Chemicals,
lasers, or focused ion beams can be used to remove the layers. Another example of
an invasive physical attack is the use of chemical solvents to remove the packaging
from a smart card and then using a probing station to probe the bus traffic. A very
sophisticated physical attack involves the use of a focused ion beam workstation to
chemically drill through the potting material surrounding a smart card and then lay-
ing down metal shunts to probe a processor without disturbing the tamper-resistant
mesh surrounding it.

3.2 Covert Channel Definition 75

Design Tip: Tamper Resistance, Bitstream Encryption, and Deter-
mined Adversaries. Given sufficient resources, an adversary can over-
come tamper resistance techniques. Amateurs learned how to defeat smart
card tamper resistance mechanisms in order to watch satellite TV for
free [6]. Your risk assessment should consider differential power analysis
attacks against the bitstream detection mechanism. A thorough security
evaluation of the bitstream decryption mechanisms of different vendors
is useful information when selecting an FPGA platform.

The sand-and-scan attack is the quintessential example of a device-level or chip-
level attack, in contrast to the relatively easy board-level attack, which probes the
metal pins of a circuit board. Security architects often define a logical security
perimeter or boundary around some or all of the components that fit on a chip,
such as the processor and caches for the purpose of analysis and documentation.
For example, a hardware design may encrypt data before it leaves the secure area of
the chip and decrypt it when it enters the area; it also may perform integrity checks
on the data when it enters the secure area [18, 22, 24, 25, 39].

Design Tip: Security Perimeters. Beware of establishing a logical se-
curity perimeter or boundary and then assuming that everything within
that perimeter is secure. Assume that a determined adversary will be able
to breach any such Maginot line, given sufficient resources.

Mitigating physical attacks is extremely difficult, and a threat model that takes
into account the resources available to the adversary is essential. While some physi-
cal attacks can be carried out by amateurs with equipment from the hardware store,
some attacks require highly specialized knowledge and equipment. For example,
the focused ion beam station, used in the semiconductor industry for legitimate pur-
poses, is also useful for some types of physical attacks and costs millions of dollars
for the attacker to obtain. Working with nanometer feature sizes also increases the
challenge for the adversary. Many techniques developed for CPUs and ASICs are
also applicable to FPGAs, such as the tamper resistance mechanisms developed for
the IBM 4758, which is surrounded by a tamper-sensitive wire mesh and epoxy
potting material [33].

3.2 Covert Channel Definition

A first order requirement for the enforcement of most security policies is the iso-
lation of active entities like processes and cores, such that specific communication

76 3 Hardware Security Challenges

between them can be allowed and controlled in an orderly manner. Isolation is sup-
ported in part by virtualization of various shared physical resources, which provides
each process or core with a distinct virtual resource that cannot be interfered with
by other entities.

3.2.1 The Process Abstraction

For general-purpose processors, the process abstraction simplifies software develop-
ment by unifying various processing elements, such as registers, threads, program
counters, code segments, and program data segments, as an entity for reasoning
about behavior within the computer. Processes can be comprised of multiple threads
and rings, each of which has distinct security characteristics; therefore, the subject
abstraction (e.g., a process/ring pair) is often used to more precisely reason about
active entities with respect to security. Similarly, a dedicated single-purpose core on
a multi-core processor could be considered to be a subject.

3.2.2 Equivalence Classes

Another simplifying technique for secure system design is to group like entities
into a domain or equivalence class, so that there are fewer things to keep track of.
Multi-domain security policies partition system subjects and objects into equiva-
lence classes by binding each subject to a sensitivity label. Virtual machines and
multi-core processors can be configured to partition computer resources into equiv-
alence classes, such that all of the processes with similar security attributes are as-
signed to the same VM or core, or multiple cores are assigned to the same equiva-
lence class with respect to the policy. This allows the designer of an access control
mechanism to focus on the actions of subjects that cross equivalence class bound-
aries.

Design Tip: Equivalence Classes. The equivalence class abstraction
can help make your design more secure and efficient. Grouping similar
subjects and objects into domains reduces policy complexity, decreases
enforcement mechanism overhead, and simplifies security analysis.

3.2.3 Formal Definition

A covert channel is a means to transfer information between subjects in a manner
that is not intended for information transfer and is not allowed by the system se-
curity policy [15]. Incomplete virtualization of a resource, in which contention for

3.2 Covert Channel Definition 77

the resource is visible to different subjects—for example, whether or not the disk
is full, or the processor is occupied—provides a point of interference around which
a covert channel can be constructed. The manner in which the covert channel re-
ceiver detects the interference differentiates covert storage channels (the receiver
is provided different system call status messages) from covert timing channels (the
receiver views changes to the relative timing of events).

3.2.4 Synchronization

To stream data via a covert channel usually requires precise synchronization on
both the sending (high in terms of mandatory confidentiality policies) and receiving
(low) side to repeat the interference event. Covert channels that do not require high
side synchronization—that is, the low side essentially eavesdrops on the high side’s
behavior without cooperation of a malicious or Trojan horse high-side subject—are
called side channels. Since synchronization of the unauthorized transmission of data
is not available in this scenario, side channels are usually specific to a fixed-sized
datum such as a cryptographic key.

3.2.5 Shared Resources

To enhance performance, modern processors attempt full utilization of their re-
sources (such as instruction cache, data cache, the floating point arithmetic unit,
and the branch prediction unit) [1–4, 14] by sharing them at the micro-architectural
level between threads, cores, and processors. It is up to the OS to virtualize these
resources to prevent interference between subjects of different equivalence classes.
For example, even if the L1 and L2 caches are logically isolated, the L3 cache may
provide a point of interference if the virtualization is incomplete. In a cache side-
channel, one subject’s use of a given cache line increases the response time of the
next subject that uses it, even if the two subjects use the cache line for different
memory addresses; this can disclose the data used for encryption and eventually the
encryption key. Alternatively, if use of the floating point unit is mutually exclusive,
one subject can experience a delay if another subject is using it.

3.2.6 Requirements

In general, a covert channel (with many variations in the literature) is based on
several factors:

1. The victim and receiver are in different equivalence classes (as above).

78 3 Hardware Security Challenges

2. Use of a shared resource by a victim (the sender) and the attacker (the receiver)—
e.g., a set of cache lines.

3. A means to initiate and synchronize sender and receiver actions—often the at-
tacker can initiate sender actions at will, as in the case of an enterprise’s end-
to-end VPN. With a side channel, the sender could be completely unaware and
provide no synchronization.

4. A means to detect if another subject is using or has used the resource—a differ-
ence in response time when the attacker reads memory via that cache line.

5. Interpretation of the information in a side channel may require knowledge of the
relationship between the key and the victim’s use of a memory structure in a
cryptographic function such as an S-box.

3.2.7 Bypass

In addition to covert channels and side channels, there are also direct channels, also
known as overt channels or bypass. A direct channel simply means that security
mechanisms do not exist (or are not applied) to prevent communication between two
entities (subjects) in the system [21]. Direct channels often have high bandwidth.
For example, in a system that has no memory protection mechanism, two cores can
communicate with each other via external memory by writing to and reading from
a specific shared memory region. Another example of a direct channel is a system
that does have a memory protection mechanism, but two cores can communicate via
external memory by bypassing the memory protection mechanism. Another exam-
ple of a direct channel is a system with multiple cores communicating over a shared
bus, if that bus has no arbitration mechanism to prevent illegal communication.

3.3 Existing Approaches to Limiting Covert and Side Channel
Attacks

The design of micro-architectural shared resources, without corresponding ISA
primitives to secure that sharing (e.g., the task and segment management features
of the Intel iAPX86 processor come to mind as examples with such primitives),
puts operating system designers, who must design mechanisms to manage hardware
in a secure manner, in a difficult situation. Previous software approaches have been
to either ignore the problem or to employ a heavyweight strategy that has an onerous
performance impact.

3.3.1 Shared Resource Matrix Methodology

Kemmerer [15, 16, 21] has devised a shared resource matrix method of identifying
covert storage and timing channels in computer systems. All shared resources that

3.3 Existing Approaches to Limiting Covert and Side Channel Attacks 79

can be referenced or modified by a subject are enumerated, and each resource is
carefully examined to detect whether it can be used to transfer information from
one subject to another covertly. The rows of the shared resource matrix represent
all shared resources and the attributes of those resources that are visible to subjects.
There is a column for each operation. The analysis determines the entries of the ma-
trix by identifying the operations that reference or modify the attributes. The matrix
reveals when the sender and receiver have access to the same attribute of a shared
object, the sender can modify it, and the receiver can reference it. As discussed
above, a covert channel also requires a mechanism for initiating the processes of
both sender and receiver and sequencing their accesses.

3.3.2 Cache Interference

Cache interference on uni-processors has often been dealt with by normalizing the
cache (e.g., evicting all cache lines) between execution of different security do-
mains (i.e., during process context switches). It is very time consuming to replenish
the cache from off-chip memory, and various techniques have been developed to
avoid doing so unnecessarily [12]. However, this approach is ineffective for pro-
cessors supporting concurrent execution—chip multi-processors (CMPs), as well
as single-core computers with simultaneous multithreading (SMT), and symmetric
multiprocessor (SMP) systems with cache coherency mechanisms—as access to the
cache is interleaved at a far more granular level than process switching. In these
systems, micro-architectural interference has been a significant challenge since its
efficient solution appears to lie beyond the capability of the usual operating system
virtualization techniques. Recent research has responded with mixed results. For ex-
ample, the cache can be physically or logically partitioned per policy equivalence
class (if virtual cache support is available in hardware) [30, 37], which requires
modification to the processor in the case of physical partitioning and reduces the ef-
fective cache size in both physical and logical partitioning. Various forms of cache
disablement are possible, ranging from turning it off, to turning it off for certain
cores or processes [28], all of which result in response time penalties. Lowering the
bandwidth of the cache channel [29, 30, 35] may leave the design open to future ex-
ploitations as this approach does not eliminate the covert channel’s essential point of
interference. Application-level mitigations against features of specific cryptographic
algorithms suffer from the same problem [1].

3.3.3 FPGA Masking Schemes

Although there is much prior work on timing, power, and electromagnetic side chan-
nels [10, 19, 20], some of which is applicable to FPGAs, techniques for making
ASICs resistant to side channel attacks do not necessary work on FPGAs because

80 3 Hardware Security Challenges

of the differences in the way that FPGAs and ASICs implement logic gates and cir-
cuits. Yu and Schaumont have developed a technique for creating FPGA designs that
are resistant to side channels [40]. Their technique involves building a complemen-
tary, symmetrical circuit that masks the power consumption of its dual. Chen and
Schaumont also present a hardware masking scheme that uses algorithmic mask-
ing with multi-bit masks to make it more challenging for attackers to successfully
estimate the secret internal random mask bit in circuit-level masking [8].

3.4 Detecting and Mitigating Covert Channels on FPGAs

Today’s FPGAs are very powerful: undergraduate students can use commodity
FPGA development boards and design tools to build embedded systems-on-chip
(SoCs). A typical design has multiple Intellectual Property (IP) cores, and each core
performs a specific function. As in the case of software, hardware may have security
flaws, and a vulnerable core could leak information.

3.4.1 Design Flows

Covert channels, side channels, and direct channels can be introduced during the
design phase by subverting the design tools (similar to subverting a compiler) or by
subverting the IP cores (similar to subverting a shared library). As in the software
world, FPGA design involves many stages, and each stage is very complex. There
are many possible design flows involving different combinations of individual tools,
and one tool is often just one stage of a larger design flow. As is true in software,
code reuse is essential to managing design cost, and IP cores are often reused in
many designs. Designing every component of a system from scratch is not feasible,
given the scale and complexity of today’s design projects.

3.4.2 Spatial Isolation

The solutions proposed in this book to the problem of covert channels on FPGAs
exploit the reconfigurable nature of FPGAs, which allows the designer to build in
reconfigurable hardware whatever security mechanisms are needed. These solutions
also exploit the spatial nature of FPGAs, which allows the designer to place cores in
specific regions of the FPGA. Chapter 6 describes a technique that spatially isolates
cores during the layout portion of the design phase in order to prevent cores from
interfering with each other. With this moats and drawbridges technique, the moats
provide isolation, and the drawbridges provide controlled sharing in a well-defined
manner. Chapter 6 also describes the specific example of a covert timing channel
in multi-core systems that communicate via a shared bus and proposes a solution to
this problem that incorporates a TDMA bus arbitration mechanism.

3.5 Policy State as a Covert Storage Channel 81

3.4.3 Memory Protection

Chapter 5 describes a memory protection technique for preventing cores from inter-
fering with each other. Specifically, a reference validation mechanism in reconfig-
urable hardware enforces a security policy that specifies the legal sharing of memory
among cores. The reference monitor denies all illegal memory access requests by
cores, which prevents the off-chip memory from being used as a means of commu-
nication between cores. A precisely defined language for expressing memory access
policies is used in conjunction with a design flow for compiling a policy directly to
a reconfigurable reference monitor circuit that enforces the policy.

3.5 Policy State as a Covert Storage Channel

As Chap. 5 will explain formally, a reference monitor decides to either grant or deny
a particular memory access request according to the policy it enforces. There are two
kinds of policies: stateless policies that only have one state, and stateful policies
that have two or more, with transitions between them. With certain stateful policies,
the internal state of the reference monitor could be used as a shared resource in a
covert storage channel attack. A high sender core can send information to a low
receiver core by changing the internal state of the reference monitor in a way that
the receiver core can observe. The ability to reference and modify the internal state
of the reference monitor facilitates illegal communication [13].

3.5.1 Stateful Policies

A stateful policy can be represented as a directed graph, which contains transitions
(directed edges) between multiple states (nodes). The graphs of some stateful poli-
cies have cycles, and if certain conditions are met, a cycle may represent a possible
covert channel. The most conservative course of action is to revise the policy in or-
der to eliminate the cycle. However, if such revisions are not feasible, one technique
for coping with the covert channel is to monitor its rate of usage and if the rate ex-
ceeds a specified threshold, over time, take corrective action. The rate is measured
with a counter which is incremented every time the cycle completes, indicating that
one bit of information can flow. Several options for corrective action are discussed
later in this section.

3.5.2 Covert Channel Mechanism

Every covert channel has a sender and a receiver, and in an MLS system the sender
has a higher confidentiality label than the receiver. On an FPGA supporting an MLS

82 3 Hardware Security Challenges

Fig. 3.1 A stateful policy can
be represented as a directed
graph, which contains
transitions (directed edges)
between multiple states
(nodes). This graph has a
cycle that indicates a possible
covert channel. The sender
can alternate between the two
states at will, and the receiver
can observe the difference
between the two states

policy where individual cores are allocated to different security levels, the sender
and receiver are cores. The sender alternates the internal state of the reference mon-
itor by making access requests that cause transitions between the states of the policy.
The receiver can observe this change if the receiver is permitted to perform an ac-
cess in one state but is not permitted in the other state. In other words, the two states
differ with respect to the operations allowed to the receiver. Since the transmission
alphabet has two characters (white and black states in Fig. 3.1) this provides one bit
of information to flow from the sender to the receiver. Construction of a stream of
information based on this interference event requires there to be a cycle in the graph
involving two or more states. Every time the cycle completes, one bit of informa-
tion can flow, and the state is reset to enable the next cycle. Ideally, the cycle only
has two states, and the sender can cause both transitions of the cycle, as shown in
Fig. 3.1. Even if the cycle is large and has many states, the sender only has to be
able to cause one of the transitions in the cycle to occur—the sender just has to wait
a sufficient length of time for the other transitions to occur and for the cycle to come
around again. It is even better if the receiver can cause some of the other transitions
in the cycle. Even in a large cycle, only two of the states of the cycle have to differ
with respect to the receiver.

3.5.3 Encoding Schemes

There are several ways of encoding the data to be sent. One way is to keep one of
the states stable for a fixed number of clock ticks and use the length of time between
state changes as the signalling alphabet. Another way is to treat one complete cycle
as a bit, similar to a Morse code pulse. It is possible to calculate the bandwidth of
the covert channel in terms of the number of possible encodings of the data and
the likelihood of each symbol over time [26, 27]. It is important to note that not all
possible covert channels can be exploited at runtime, and further analysis may be
needed to eliminate false positives.

3.5 Policy State as a Covert Storage Channel 83

3.5.4 Covert Storage Channel Detection

A straightforward static technique for analyzing the policy to detect possible covert
storage channels involves first using a topological sort to determine if the graph has
any cycles. Any core that can cause a transition in the cycle is a possible sender,
and any core that can observe a difference between any two nodes is a possible re-
ceiver. This detector has proven itself on a wide range of policies, and the following
pseudocode describes the detection algorithm:

Procedure DetectChannels (Graph G)
{
Array of Lists Senders
Array of Lists Receivers
If (Topological_Sort(G) == False)
Output ‘‘Graph G Contains No Cycles.’’
Return
C = Recursively_Trace_Graph_to_Find_Cycles(G)
For (All Cycles C)
For (All Edges E in C)
M = Module that causes transition E
Add M to Senders[C]
For (All Vertices V in C)
For (All Vertices V’ in C) if V’ != V then
For (All Rows r)
For (All Columns c)
If (Matrix(V)[r][c] != Matrix(V’)[r][c])
Add c to Receivers[C]

Output ‘‘Possible Covert Channels:’’
For (All Cycles C Found)
Output Cross_Product(Senders[C], Receivers[C])
Return
}

Matrix(V) is the access matrix at node V . Senders[C] is a list of modules that
can cause transition E to occur within cycle C. Receivers[C] is a list of modules
that are able to observe a difference between the access matrices of any two nodes
V and V ′ within cycle C.

3.5.5 Covert Channel Mitigation

Once a possible covert channel is identified at the policy level, the best option in
terms of reducing risk is to revise the policy to eliminate the problematic cycle.
If this is not feasible (for example, if critical services would have to be disabled),
the system designer can limit the bandwidth of the channel by measuring it with

84 3 Hardware Security Challenges

a counter that keeps track of the number of times the cycle occurs within a slid-
ing window of time. If the bandwidth exceeds a threshold during the measurement
window, the system changes to a policy that does not have the problematic cycle.
If needed, the system can revert to the old policy after a period of time. Another
option is to add delays to transitions between states to throttle the bandwidth of the
channel.

References

1. O. Aciíçmez, Yet another microarchitectural attack: exploiting I-cache, in Proceedings of the
First Computer Security Architecture Workshop (CSAW), Fairfax, VA, November 2007

2. O. Aciíçmez, S. Gueron, J.P. Seifert, New branch prediction vulnerabilities in OpenSSL and
necessary software countermeasures. IACR Cryptology ePrint Archive, Report 039, 2007

3. O. Aciíçmez, J.P. Seifert, Cheap hardware parallelism implies cheap security, in Proceedings
of the Fourth Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), Vienna,
Austria, September 2007

4. O. Aciíçmez, J.P. Seifert, C.K. Koc, Micro-architectural cryptanalysis. IEEE Secur. Priv. 5(4),
62–64 (2007)

5. S. Adee, The hunt for the kill switch. IEEE Spectrum 45(5), 35–39 (2008)
6. R. Anderson, Security Engineering: A Guide to Building Dependable Distributed Systems

(Wiley, New York, 2001)
7. R. Anderson, M. Kuhn, Tamper resistance: a cautionary note, in Proceedings of the Second

USENIX Workshop on Electronic Commerce, Oakland, CA, November 1996
8. Z. Chen, P. Schaumont, Slicing up a perfect hardware masking scheme, in Proceedings of the

2008 IEEE International Workshop on Hardware-Oriented Security and Trust (HOST-2008),
Anaheim, CA, June 2008

9. Defense Science Board, High performance microchip supply. White Paper, February 2005
10. K. Gandolfi, C. Mourtel, F. Olivier, Electromagnetic analysis: concrete results, in Proceed-

ings of the Third International Workshop on Cryptographic Hardware and Embedded Systems
(CHES), Paris, France, May 2001

11. I. Hadzic, S. Udani, J. Smith, FPGA viruses, in Proceedings of the Ninth International Work-
shop on Field-Programmable Logic and Applications (FPL’99), Glasgow, UK, August 1999

12. W.M. Hu, Lattice scheduling and covert channels, in Proceedings of the 1992 IEEE Sympo-
sium on Security and Privacy, Oakland, CA, May 1992

13. T. Huffmire, T. Sherwood, R. Kastner, T. Levin, Enforcing memory policy specifications in
reconfigurable hardware. Comput. Secur. 27(5–6), 197–215 (2008)

14. J. Kelsey, B. Schneier, C. Hall, D. Wagner, Side channel cryptanalysis of product ciphers.
J. Comput. Secur. 8(2–3), 141–158 (2000)

15. R.A. Kemmerer, Shared resource matrix methodology: an approach to identifying storage and
timing channels, in ACM Transactions on Computer Systems, 1983

16. R.A. Kemmerer, A practical approach to identifying storage and timing channels: twenty years
later, in Proceedings of the 18th Annual Computer Security Applications Conference (ACSAC),
Las Vegas, Nevada, USA, December 2002

17. S.T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang, Y. Zhou, Designing and implementing
malicious hardware, in Proceedings of the First Usenix Workshop on Large-Scale Exploits
and Emergent Threats (LEET), San Francisco, CA, April 2008

18. D. Kirovski, M. Drinic, M. Potkonjak, Enabling trusted software integrity, in Tenth Inter-
national Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-X), San Jose, CA, October 2002

19. P. Kocher, Timing attacks on implementations of Diffie-Hellman, RSA, DSS and other sys-
tems, in Proceedings of the 16th Annual International Cryptology Conference (CRYPTO),
Santa Barbara, CA, August 1996

References 85

20. P. Kocher, J. Jaffe, B. Jun, Differential power analysis, in Proceedings of the 19th Annual
International Cryptology Conference (CRYPTO), Santa Barbara, CA, August 1999

21. B.W. Lampson, A note on the confinement problem. Commun. ACM 16(10), 613–615 (1973)
22. D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell, M. Horowitz, Architec-

tural support for copy and tamper resistant software, in Eighth International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS-IX), San
Jose, CA, October 2000

23. J.I. Lieberman, National security aspects of the global migration of the US semiconductor
industry. White Paper, June 2003

24. J. Lotspiech, S. Nusser, F. Pestoni, Broadcast encryption’s bright future. IEEE Comput. 35(8),
57–63 (2002)

25. J.P. McGregor, R.P. Lee, Protecting cryptographic keys and computations via virtual secure
coprocessing, in Workshop on Architectural Support for Security and Antivirus (WASSA) Held
in Conjunction with the Eleventh International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS-XI), Boston, MA, October 2004

26. J.K. Millen, Covert channel capacity, in Proceedings of the 1987 IEEE Symposium on Security
and Privacy, Oakland, CA, USA, April 1987

27. J.K. Millen, Finite-state noiseless covert channels, in Proceedings of the Computer Security
Foundations Workshop II, Franconia, NH, USA, June 1989

28. D.A. Osvik, A. Shamir, E. Tromer, Cache attacks and countermeasures: the case of AES
(extended version). Technical Report, Department of Computer Science and Applied Mathe-
matics, Weizmann Institute of Science, Rehovot 76100, Israel, October 2005

29. D. Page, Theoretical use of cache memory as a cryptanalytic side-channel. Technical Report
CSTR-02-003, Department of Computer Science, University of Bristol, June 2002

30. D. Page, Partitioned cache architecture as a side channel defense mechanism. Cryptology
ePrint Archive, Report 2005/280, 2005

31. H.G. Rice, Classes of recursively enumerable sets and their decision problems. Trans. Am.
Math. Soc. 74, 358–366 (1953)

32. B. Sharkey, TRUST in integrated circuits program: briefing to industry, 26 March 2007.
http://www.darpa.mil/MTO/solicitations/baa07-24/Industry_Day_Brief_Final.pdf

33. S.W. Smith, S.H. Weingart, Building a high-performance, programmable secure coprocessor.
Comput. Netw. Int. J. Comput. Telecommun. Netw. (Spec. Issue Comput. Netw. Secur.) 31(9),
831–860 (1999)

34. F. Standaert, L. Oldenzeel, D. Samyde, J. Quisquater, Power analysis of FPGAs: how practical
is the attack? Field-Program. Log. Appl. 2778(2003), 701–711 (2003)

35. N. Topham, A. Gonzalez, Randomized cache placement for eliminating conflicts. IEEETC:
IEEE Trans. Comput. 48, 185–192 (1999)

36. S. Trimberger, Trusted design in FPGAs, in Proceedings of the 44th Design Automation Con-
ference, San Diego, CA, USA

37. Z. Wang, R. Lee, New cache designs for thwarting cache-based side channel attacks, in Pro-
ceedings of the 34th International Symposium on Computer Architecture (ISCA), San Diego,
CA, June 2007

38. X. Wang, M. Tehranipoor, J. Plusquellic, Detecting malicious inclusions in secure hard-
ware: challenges and solutions, in IEEE Workshop on Hardware Oriented Security and Trust
(HOST), Anaheim, CA, June 2008

39. J. Yang, Y. Zhang, L. Gao, Fast secure processor for inhibiting software piracy and tampering,
in Proceedings of the Thirty-Sixth International Symposium on Microarchitecture (MICRO-
36), San Diego, CA, December 2003

40. P. Yu, P. Schaumont, Secure FPGA circuits using controlled placement and routing, in Pro-
ceedings of the 2007 International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS’07), Salzburg, Austria, October 2007

Chapter 4
FPGA Updates and Programmability

Abstract This chapter explains the security issues related to the programmability
of FPGAs. FPGAs have the ability to change part or all of their configuration dur-
ing runtime in the field. This chapter also explains how to prevent attackers from
exploiting these features.

4.1 Introduction

Unlike an ASIC, an SRAM FPGA can change its logic configuration after it has
been manufactured. The bitstream defining that logic is stored in non-volatile off-
chip memory and is loaded onto the FPGA when the FPGA is powered on. This is
useful because if a mistake is found in the logic design, the flawed bitstream can be
replaced with a new bitstream at a small cost relative to fabricating an entirely new
chip. In addition, it is not necessary to put sensitive intellectual property (referred to
here simply as IP) at risk by sending it to a foundry that may not be entirely trusted.
Instead, the bitstream may be loaded onto the FPGA in a secure facility after the
FPGA has been manufactured.

4.2 Bitstream Encryption and Authentication

Storing a proprietary bitstream in non-volatile off-chip memory poses a security
problem. The FPGA industry has invested considerable effort to develop bitstream
encryption mechanisms to prevent the design from being extracted from the non-
volatile memory. A symmetric cipher is used to encrypt the bitstream to be stored
in the non-volatile memory. This prevents a board-level probing attack to read the
bitstream as it travels over a bus from the non-volatile memory to the FPGA. The
decryption process occurs on the FPGA. In theory, stealing the design would re-
quire an expensive, invasive sand-and-scan attack that involves physical methods to
reverse engineer the chip [1].

T. Huffmire et al., Handbook of FPGA Design Security,
DOI 10.1007/978-90-481-9157-4_4, © Springer Science+Business Media B.V. 2010

87

88 4 FPGA Updates and Programmability

First proposed in a patent by Austin [2], bitstream encryption relies on a cipher
and a key to encrypt the bitstream and store it in non-volatile off-chip memory. Also,
digital watermarking embeds a hidden signature that can be used to substantiate
claims of design theft. One watermarking scheme for FPGAs works at the physical
level by manipulating unused parts of the bitstream [8]. Another option for protect-
ing the bitstream is to provide continuous power to a fielded SRAM FPGA after
programming it in a secure facility. Removing the power will erase the secret keys
used to encrypt the bitstream. Although it eliminates the need for bitstream encryp-
tion, continuous power is expensive, and reprogramming is not an option. Antifuse
FPGAs, which are nonvolatile, do not require continuous power, although they can-
not be reprogrammed. Flash-based FPGAs do not require continuous power, but
they can be reprogrammed.

In addition to encryption, authentication is needed to prove the identity of the
author of a bitstream or the identity of the person uploading a bitstream to a fielded
device. Authentication can also be used to prevent IP from running on unauthorized
FPGAs. Physical unclonable functions (PUFs) [13] are the basis of one scheme for
the mutual authentication of IP and hardware [11]. The PUFs are used to generate a
unique key for each chip by exploiting the slight manufacturing variations between
chips. A third party uses the PUF and the identity of the author of the IP core to
initiate a protocol for authenticating the hardware and software.

4.2.1 Key Management

In practice, however, key management is a significant concern. The key that is used
to decrypt the bitstream needs to be stored somewhere. If it is hard-wired into the
chip during manufacture then there are two possibilities: every chip that comes off
the assembly line has the same key, or every device has a unique key. If they all have
the same key, management of the keys introduces complexity, and it is possible to
compromise every device by compromising one chip. If every device has a unique
hard-wired key, then the database of keys for all of the devices will be a high priority
target for attackers. The design choices include the following:

• Does each device have a unique key?
• Can the key be changed?
• What storage technology is used to store the key (EEPROM, battery-backed

SRAM, etc.)?
• If a fixed key is compromised, is there a reserve key available, or does the device

need to be discarded?
• Is they key symmetric or asymmetric? What cipher is used?
• What is the entropy of the key?
• Is there a key management infrastructure?
• How is the bitstream encryption mechanism implemented on the device? Where

is it located?
• Is the decryption module susceptible to power analysis or timing analysis attacks?

4.2 Bitstream Encryption and Authentication 89

Some devices have a unique key that can be set once after manufacture. Another
option is to use Physical Unclonable Functions (PUFs). However, it is challenging
to implement PUFs to reliably generate a sufficiently long key.

The Actel 60RS family of SRAM FPGAs employed an unfortunate scheme in
which all devices shared the same key [9]. A fixed key was added to the FPGA
during fabrication. While it protected against reverse-engineering of the design, it
did not prevent cloning. Furthermore, discovery of the key affected all designs, and
key information was embedded in the CAD tools. The Xilinx Virtex II family stored
the key in continuously powered volatile memory, but each device had a unique key.
Since the register containing the key was small, a battery could last for years [15].
The Virtex family disables readback, prevents reading and writing of the key, and
checks the integrity of the bitstream.

Design Tip: Key Management. Just because a design uses crypto
doesn’t mean that it is secure. Keys must have sufficient entropy, and
they must be managed properly. Your security analysis should take into
account the key management infrastructure, whether it’s a public key in-
frastructure (PKI) based on digital certificates or something more basic,
such as a hard-wired symmetric key. Flaws in the crypto protocols or in
the implementation of the PKI can be exploited by attackers. The analysis
should take into account how the specific FPGA version being used im-
plements bitstream encryption, since a flaw in this implementation can be
exploited by adversaries. What cipher is used? Where is the decryption
mechanism located? Does every device have the same key, do classes of
devices share a key, or does every device have a unique key? Is the key
hard-wired, is it stored in battery-powered volatile memory, is it stored in
non-volatile memory, or is it based on a PUF? What is the entropy of the
key? How difficult is it to perform a timing or power analysis attack on the
decryption module? Is the decryption module hard-wired or implemented
in reconfigurable logic?

4.2.2 Defeating Bitstream Encryption

Another concern is power analysis attacks on the bitstream decryption mechanism
in the FPGA. This attack analyzes the power consumption of the crypto circuitry
in order to systematically determine the key. This can be countered by adding a
complementary circuit that masks the power consumption of the crypto circuit. Of
course, another option for circumventing the bitstream encryption mechanisms is to
use a social engineering attack to bribe an employee of one of the FPGA compa-
nies to divulge the keys or details of the security mechanisms. Protecting high-value
data against determined adversaries requires consideration of the strength of the

90 4 FPGA Updates and Programmability

bit-stream encryption mechanisms, which may be strong enough for common com-
mercial use but might not be sufficient for systems that handle high-value data. For
these applications, anti-fuse FPGAs may be a better alternative than SRAM FPGAs,
since bitstream encryption is not required because the logic never leaves the device.

4.3 Remote Updates

The ability to remotely apply patches and upgrades to the bitstreams of fielded FP-
GAs poses similar security problems to applying software patches to networked
PCs. Many of the information security issues are very similar, such as replay attacks
and man-in-the-middle attacks.

4.3.1 Authentication

In the software world, an attacker who gains control of an organization’s software
update mechanism can insert malicious software into a large number of systems.
Denial-of-service (DoS) attacks can also occur if the attacker reprograms, turns off,
or destroys an FPGA serving as a network router. Although an FPGA can be pro-
grammed locally, some FPGAs can be updated remotely through the network. FP-
GAs with remote update capability must have authentication mechanisms to ensure
that only authorized administrators can change the configuration of the FPGA, and
the updates must be delivered securely.

Authentication schemes include passwords, biometrics, and tokens (here, we
echo the well-known notion of something you know, something you are, or some-
thing you have). Since each scheme has its advantages and limitations, selection of
a scheme for the authentication of the administrator of a remotely-updated FPGA
should consider which scheme best protects the system against unauthorized up-
dates. For example, if a password-based scheme is used, attackers will exploit the
fact that many users select passwords that are easy to guess. Furthermore, if an
administrator uses the same username and password for multiple FPGAs, compro-
mising one device compromises them all. Protecting the salted hash value of the
administrator’s password is essential to prevent a password cracking attack. Bio-
metrics, on the other hand, require physical access to the system, add cost, and must
strike a balance between false positives and false negatives, as well as addressing
replay vulnerabilities.

Design Tip: Passwords. Users, developers, and administrators must
select passwords of sufficient entropy, and they should be required to
change passwords periodically. User accounts must be managed prop-
erly, and unusual behavior, such as multiple failed login attempts, should
result in an appropriate response.

4.4 Partial Reconfiguration 91

Design Tip: Authentication. Authentication for remote updates re-
quires careful consideration. Think about using more than one authen-
tication scheme, and analyze their tradeoffs. Given their relative costs,
what is the best allocation of security dollars for authentication? What
are the design, implementation, testing, development, configuration, op-
eration, maintenance, and audit requirements?

4.3.2 Trusted Recovery

For systems that protect high-value data, the benefits of remote updates must be
weighed against the risks. If a system were compromised by attacking this update
mechanism, it will be necessary to implement a trusted recovery mechanism to re-
store the system to a secure state. Accomplishing this in a timely and efficient man-
ner will be necessary to ensure the availability of critical services.

4.4 Partial Reconfiguration

Some FPGAs have the ability to change part of their configuration during runtime.
This dynamic partial reconfiguration (a.k.a. partial reconfiguration) ability allows
for the logic of one core to be swapped out and replaced with the logic of an entirely
different core. This space-saving feature is useful for designs in which area is a
major constraint.

4.4.1 Applications of Partial Reconfiguration

Since swapping cores in and out increases the complexity and design cost, it is
not widely used—Moore’s Law doubles the area budget every two years anyway.
However, there are a few exceptions, such as a reconfigurable crossbar switch [10].
Building a full crossbar on a single chip that connects N nodes to each other requires
an amount of area proportional to N2. However, if at any given time only a subset
of the nodes need to be connected, then dynamic reconfiguration can be used to
implement the equivalent of a full crossbar with less area.

Design Tip: Partial Reconfiguration. In general, partial reconfigura-
tion increases design complexity, which makes security analysis more
challenging.

92 4 FPGA Updates and Programmability

4.4.2 Hot-Swappable vs. Stop-the-World

Systems that use partial reconfiguration can be divided into two categories: those
that stop running when a core is swapped out for a different core and those that
continue to operate during the swap. The second category of systems is referred
to as hot-swappable. Hot-swappable systems are even more difficult to engineer
because of the problem of mapping the old data and state to the new core. Typically,
hot-swappable systems require two cores—one is the active core that runs while
the inactive core is updating. Once the update is complete, the system immediately
switches over, and the inactive core becomes the active core.

4.4.3 Internal Configuration Access Port

Partial reconfiguration uses the Internal Configuration Access Port (ICAP). One
frame or row of the FPGA’s configuration is read out from the ICAP. Part of this
frame is then modified before being written back through the ICAP. This process can
be driven by a processor core. Clearly, an attacker could obtain the entire bitstream
just by reading it out of the ICAP. Therefore, most FPGAs disable bitstream decryp-
tion when partial reconfiguration is used so that an attacker cannot read the bitstream
in the clear. Designers must consider the details of these mechanisms when design-
ing systems that will process high-value data.

Design Tip: ICAP. Although enabling partial reconfiguration disables
bitstream decryption mechanisms to prevent the theft of an encrypted bit-
stream via the ICAP interface, a reconfigurable crypto core can be used
together with the ICAP interface to protect the bitstream [6].

4.4.4 Dynamic Security and Complexity

Clearly, partial reconfiguration makes the engineering analysis more complex. In
addition, the security analysis becomes more challenging as well, since partial re-
configuration increases the complexity of the system, especially when that can be
used to change the security policy of the system. Building a system that enforces a
single static policy is challenging enough, but a system that can change policies is a
lot more complicated. The key design factors in dynamic security are:

• The number of policies from which the system can choose.
• Whether the policies are ad hoc (determined at runtime) or are predetermined and

pre-validated.
• The frequency of policy changes.

4.4 Partial Reconfiguration 93

• Whether it is possible to return to an earlier policy or to a secure state.
• Whether the system always transitions to a monotonically less restrictive policy.

Design Tip: Hybrid Policies. Policy changes require proper sanitiza-
tion of cores in case there are lingering remnants of data or state to which
a core should no longer have access. If your system requires dynamic se-
curity, make sure that only a trusted module can perform a policy change.
Other key design factors include:

• The number of policies the system can choose from (limit this to min-
imize complexity). Significant analysis is required to ensure that the
system maintains a secure state. As the number of possible policies
increases, the amount of analysis increases.

• Whether the policies are predetermined (predetermined is preferable in
order to simplify the security analysis).

• The frequency of policy changes (lower is better due to the risk of
covert channels).

• Whether it is possible to return to an earlier policy (no is better in order
to minimize the risk of covert channels).

• Whether the system always transitions to a monotonically less restric-
tive policy (yes is better due to the risk of data remanence).

4.4.5 Object Reuse

If a system changes to a more restrictive policy, it is necessary to scrub the memory
and state of the system to remove any remnants of the data that has suddenly become
illegal. Secure object reuse describes the secure reassignment of system resources
to a processing element (e.g., a core) in a manner that prevents the new processing
element from scavenging residual information inadvertently retained in the recycled
resources.

In FPGAs that support partial reconfiguration, the designer doesn’t want rem-
nants of the previous core to linger because this could introduce unintended effects
that could be exploited by an adversary. The use of a soft MicroBlaze processor core
to read the configuration bitstream via the Xilinx ICAP interface one frame at a time
is described in [7]. After reading in a frame, which spans the height of the device,
part of the frame is erased, and the modified frame is written back to the device.
This process can be done efficiently across a variety of devices. For an ICAP speed
of 50 MHz, a single frame can be reconfigured on the order of ten microseconds,
depending on the size of the device. Total reconfiguration time is proportional to the
number of frames to be reconfigured.

Data Remanence occurs when attempts to achieve secure object reuse fail.
Causes include the storage device’s physical properties or removal operations that

94 4 FPGA Updates and Programmability

are incomplete. For example, DRAM cells retain their state for seconds to minutes
after power is removed, even at room temperature. In a cold boot attack, compressed
air is used to freeze the DRAM so that it can be removed from the motherboard and
inserted into the attacker’s computer, who then reads its contents (an example of a
physical attack that calls for anti-tamper mechanisms like wire mesh) [5]. An exam-
ple of data remanence involving incomplete removal operations is file deletion. Even
when deleted, a file may remain on the hard drive until overwritten. Sensitive infor-
mation may be compromised if a malicious party obtains the device. Techniques for
dealing with data remanence on a disk include overwriting multiple times, degauss-
ing, encryption, and physically destroying the device.

Data remanence in FPGAs is dependent on the design and the data since bits
discharge at different rates depending on whether the value is one or zero [16].
Remanence also depends on whether the bits are related to logic or interconnect,
since these two types have different supply voltages. Just like the cold boot example,
FPGAs also retain charge longer at lower temperatures. Even when powered off,
FPGAs can retain their bitstreams for up to two minutes. Analysis of the remanence
of the bits makes it possible for attackers to obtain information about the plaintext
bitstream. By grounding the power supply, remanence time can be reduced, and
20% information loss can occur within one millisecond [12].

4.4.6 Integrity Verification

Benjamin Glas et al. have developed a runtime method of checking the integrity of
designs that use partial reconfiguration [4]. They use a special form of cryptographic
hash functions called incremental hashing [3] to ensure that the FPGA configuration
never enters a bad state. Incremental hashing solves the following problem: suppose
Alice wants to compute the hash of a thousand page book. Alice’s crypto hash func-
tion has to receive the entire book as input in order to compute the hash value. Now

Fig. 4.1 Secure Incremental Hashing is a way to keep a cryptographically secure hash of an arbi-
trarily long buffer H(B), without requiring that the entire buffer be reexamined after a modification.
Modifications are instead applied to the hash and the buffer at the same time. The hash of the orig-
inal chunk is subtracted from H(B), and then the hash of the modified chunk is added to yield the
new hash value H(B′)

References 95

suppose that Alice only changes one page of the book. Incremental hashing sub-
tracts the hash of the old version of that page then adds in the hash of the modified
version of that page. The resulting hash value is equal to the hash of the modified
book, but Alice didn’t have to read in the other 999 pages again. Figure 4.1 shows
the incremental hashing process. Although not very useful for banking, there are a
few examples of its use in computer architecture, including memory integrity veri-
fication in secure processors [14]. Glas et al. subtract the hash of the swapped out
core and add in the hash of the swapped in core. They make sure that the hash value
always belongs to the set of known good hash values. If the configuration enters a
bad state, the system can mount a response.

Design Tip: Dynamic Bitstream Integrity Verification. Cryptographic
hash functions can be used as the basis of schemes that verify the in-
tegrity of a bitstream, or parts of a bitstream, at runtime. One way to do
this is to use a MicroBlaze soft processor core together with partial re-
configuration to drive the process. Bits of the configuration are read from
the ICAP one frame of the time, and the hash value is computed on part
or all of the bitstream. Since use of partial reconfiguration disables bit-
stream decryption, you will need to implement the bitstream decryption
yourself [6]. Think carefully about whether this increase in design com-
plexity is worth the cost. Does it expose the design to greater risk? How
might an attacker defeat such an integrity verification scheme?

References

1. R. Anderson, M. Kuhn, Tamper resistance: a cautionary note, in Proceedings of the Second
USENIX Workshop on Electronic Commerce, Oakland, CA, November 1996

2. K. Austin, Data security arrangements for semiconductor programmable devices. US Patent
5,388,157, February 1995

3. M. Bellare, D. Micciancio, A new paradigm for collision-free hashing: incrementality at re-
duced cost, in Proceedings of Eurocrypt’97, Konstanz, Germany, May 1997

4. B. Glas, A. Klimm, O. Sander, K. Müller-Glaser, J. Becker, A system architecture for recon-
figurable trusted platforms, in Proceedings of the 2008 Conference on Design Automation and
Test in Europe (DATE’08), Munich, Germany, March 2008

5. J.A. Halderman, S.D. Schoen, N. Heninger, W. Clarkson, W. Paul, J.A. Calandrino, A.J. Feld-
man, J. Appelbaum, E.W. Felten, Lest we remember: cold boot attacks on encryption keys, in
Usenix Security Symposium, San Jose, CA, July 2008

6. S. Harper, R. Fong, P. Athanas, A versatile framework for FPGA field updates: an application
of partial self-reconfiguration, in Proceedings of the 14th IEEE International Workshop on
Rapid System Prototyping, June 2003

7. T. Huffmire, B. Brotherton, G. Wang, T. Sherwood, R. Kastner, Moats drawbridges: an iso-
lation primitive for reconfigurable hardware based systems, in Proceedings of the 2007 IEEE
Symposium on Security and Privacy, Oakland, CA, USA, May 2007

8. A.B. Kahng, J. Lach, W.H. Mangione-Smith, S. Mantik, I.L. Markov, M. Potkonjak, P. Tucker,
H. Wang, G. Wolfe, Constraint-based watermarking techniques for design IP protection. IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst. 20(10), 1236–1252 (2001)

96 4 FPGA Updates and Programmability

9. T. Kean, Secure configuration of field programmable gate arrays, in Proceedings of the 11th
International Conference on Field Programmable Logic and Applications (FPL’01), Belfast,
UK, August 2001

10. P. Lysaght, D. Levi, Of gates and wires, in Proceedings of the 18th International Parallel and
Distributed Processing Symposium, Santa Fe, NM, April 2004

11. E. Simpson, P. Schaumont, Offline HW/SW authentication for reconfigurable platforms, in
Workshop on Cryptographic Hardware and Embedded Systems (CHES), Lausanne, Switzer-
land, September 2006

12. S. Skorobogatov, Low temperature data remanence in static RAM, Cambridge University
Technical Report UCAM-CL-TR-536, ISSN 1476-2986, June 2002

13. G.E. Suh, S. Devadas, Physical unclonable functions for device authentication and secret key
generation, in Design Automation Conference (DAC), San Diego, CA, June 2007

14. G.E. Suh, B. Gassend, M. van Dijk, S. Devedas, Efficient memory integrity verification and
encryption for secure processors, in Proceedings of the 36th Annual International Symposium
on Microarchitecture (MICRO-36), San Diego, CA, December 2003

15. S. Trimberger, Method and apparatus for protecting proprietary configuration data for pro-
grammable logic. US Patent 6,654,889, 2003

16. T. Tuan, T. Strader, S. Trimberger, Analysis of data remanence in a 90 nm FPGA, in Proceed-
ings of the IEEE Custom Integrated Circuits Conference (CICC), San Jose, CA, September
2007

Chapter 5
Memory Protection on FPGAs

Abstract This chapter describes a memory access policy language (Huffmire et al.,
Proceedings of the European Symposium on Research in Computer Security (ES-
ORICS), Hamburg, Germany, September 2006), based on formal regular languages,
and demonstrates how this language can express classical security policies, includ-
ing isolation, controlled sharing, and Chinese wall. This chapter also describes a
policy compiler (Huffmire et al., Proceedings of the European Symposium on Re-
search in Computer Security (ESORICS), Hamburg, Germany, September 2006)
that translates an access policy expressed in this language into a synthesizeable
hardware module.

5.1 Overview

Managing external resources such as off-chip DRAM is essential to providing sep-
aration of the IP cores on an FPGA. Although general-purpose processor based
systems often have virtual memory mechanisms with which to provide memory
protection, FPGAs typically have a flat physical address space and a flat program
structure that lacks control support (e.g., from an operating system). This condition
makes it possible for a core to interfere with other cores by reading from or writing
to their memory, whether from mistake or malice. To mitigate this problem, a mem-
ory access policy that all cores must obey is needed. The reconfigurability of FPGAs
can be exploited to build a mechanism for enforcing these policies.

A memory access policy describes what memory accesses are legal or illegal
(different policies take the negative vs. the positive approach), and a specialized
language is used to formally describe the access policy. Being formally grounded
facilitates the reasoning about policy soundness and the automatic refining of poli-
cies. A set of tools can automatically transform and synthesize the policy description
to a circuit that functions as a monitor. This reference monitor bit-stream is loaded
onto the FPGA along with the other cores, and it enforces the memory access policy
by monitoring every memory access of every core and, based on its policy, allowing
or disallowing each access.

T. Huffmire et al., Handbook of FPGA Design Security,
DOI 10.1007/978-90-481-9157-4_5, © Springer Science+Business Media B.V. 2010

97

98 5 Memory Protection on FPGAs

The memory protection techniques presented in this chapter are steps towards
a cohesive strategy for building trustworthy FPGA-based systems. For the embed-
ded design community to accept this methodology, the design flow must generate
high performance circuits that use the FPGA fabric efficiently. To pass muster with
the security community, the resulting logic must enforce the policy faithfully and
dependably. Finally, the techniques must be usable and understandable to both com-
munities.

Design Tip: Hardware Mechanisms for Policy Enforcement. Not only
must the enforcement mechanisms themselves be efficient in terms of
area and timing, but they also must have minimal impact on overall sys-
tem performance. Not only must the mechanisms faithfully and depend-
ably enforce the policy locally, but the policy itself must also be correct.
Usable and understandable tools for policy construction are helpful in
ensuring policy correctness.

5.2 Memory Protection on FPGAs

A prototypical policy is that each core of an embedded system must be prevented
from referencing or modifying memory belonging to another core without permis-
sion. There are several different kinds of memory, including on-chip block RAM,
off-chip DRAM, and on- or off-chip backing-store such as Flash, all requiring effi-
cient, flexible, and protected allocation and sharing. On general-purpose processor
based systems, memory protection is generally based on page tables and Trans-
lation Lookaside Buffers (TLBs), and very large memory pages called Superpages
have been proposed to give the TLB a lower miss rate [15]. However, providing
per-process memory protection via global attributes is inefficient. In contrast, Seg-
mented Memory [18] and the finer-grained Mondrian Memory Protection [22] as-
sociate each process with distinct permissions on the same memory region.

On modern FPGAs, which employ simple linear addressing, the memory is un-
protected by hardware mechanisms. Even TLBs, a basic method of protection, are
rarely found in embedded processors or reconfigurable devices. Although a TLB
may speed up page table accesses, this comes at the cost of reduced system perfor-
mance and more associative memory.

Memory protection is critical to preventing both errors and security attacks. Un-
fortunately, managing memory in software is not simple, and some subtle memory
errors can be very difficult to detect. To provide memory protection for multiple
concurrent hardware modules requires a different approach that borrows some key
ideas from separation kernels. A separation kernel [17] uses virtualization to pro-
vide separation of software processes that is equivalent to physical separation. All
resources are divided into partitions, which are isolated unless an explicit commu-
nication channel is created. In multilevel systems, each partition is assigned a level,

5.3 Policy Description and Synthesis 99

and communication between partitions must obey the flow rules of the MLS-label
lattice [7] projected onto the set of partitions.

This separation concept is applied to FPGAs by treating the cores and mem-
ory regions as partitions of a separation kernel. As Chap. 6 will discuss, the moats
technique isolates the cores, and the drawbridges technique controls the interaction
between cores securely [10]. To efficiently check every memory access, a reference
monitor that recognizes a language of legal accesses is built in reconfigurable hard-
ware, and all off-chip memory accesses are routed through it. Placing the enforce-
ment module on the chip results in lower latency than placing it in a separate hard-
ware module off-chip. In addition to protecting cores, the moats and drawbridges
technique can provide isolation of the enforcement module and can also prevent it
from being bypassed.

5.3 Policy Description and Synthesis

Although typical reconfigurable systems lack standard memory protection mecha-
nisms, efficient memory protection mechanisms can be incorporated by exploiting
the fine grain programmable properties of FPGAs. A compiler translates a memory
access policy directly to a circuit that provides word-level stateful memory protec-
tion.

This section explains the memory access policy language and shows how to ex-
press a policy and compile it down to a synthesizeable description of a hardware
module. In addition to describing the formal top level specification (FTLS), this
section also explains the design flow that converts the policy into an enforcement
module.

5.3.1 Memory Access Policy

A formal top level specification of a memory-access reference validation mecha-
nism is based on system requirements and the organizational security policy [21].
The enforcement mechanisms described in this chapter are members of the Exe-
cution Monitoring (EM) class of enforcement mechanisms [19]. Members of this
class monitor the execution of a target. On an FPGA, the target is the set of cores,
as shown by the example in Fig. 5.1. Since the enforcement mechanism is a Ref-
erence Validation Mechanism (RVM), it must be protected, non-bypassable, and
verifiable [3].

The formal top level specification precisely describes the set of legal memory
access patterns to be recognized. This reference monitor must be able to track ar-
bitrary size memory ranges, allowing only legal accesses and prohibiting all others.
The language for the FTLS must be able to describe classical security policies, in-
cluding isolation and controlled sharing, with a high level of clarity. This allows an
engineer to express a policy in the language and to use a compiler to transform it to a

100 5 Memory Protection on FPGAs

Fig. 5.1 An FPGA with two CPU cores and an AES crypto core, together with a reference vali-
dation mechanism (RVM), reside on an FPGA

regular expression. Applying regular languages provides a readable way to express
policies. Established techniques can be applied for converting regular expressions
to state machines and hardware [1]: thus automatically translating a high-level spec-
ification into an executable artifact.

We have developed two meta languages, a low-level meta language and a high-
level meta-language. In the low-level meta language we recommend, the Accessing
Modules (M) are the IDs of the cores on the chip. In security terminology, modules
can also be referred to as subjects or principals. The Access Methods (A) describe
permissions, which are the operations that a module can perform on an object, such
as read, write, zero, etc. In the low-level language, the memory is partitioned into
address ranges, which are the objects. The Memory Range Specifier (R) is the set of
ranges that can be assigned a discrete permission value. Other ranges are reserved
(e.g., for use by the RVM). The low-level language uses grammatical productions
to describe an access policy, and each production specifies a relationship between
modules (M), access rights (A), and ranges (R), where the element on the left-hand
side of the arrow (→) is to be replaced by the expression on the right-hand side.

The low-level language uses memory access descriptors to specify a module’s
access right(s) to a range. These are the terminals of the productions of the low-level
language, and they are tuples of the form (M,A,R). Although a memory access
(M,A,k) involves a single address k, each memory access descriptor (M′,A′,R)

is defined for a range of addresses. (M,A,k) is contained in (M ′,A′,R) if and only
if M = M ′, A = A′, and Rlow ≤ k ≤ Rhigh.

The space of all possible descriptor tuples is the cross product Σ = M × A × R.
The formal definition of a memory access policy is a regular language, L ⊆ Σ , that
defines a subset of possible descriptors and can be either finite or infinite. Enforcing
the policy on an FPGA requires the ability to precisely define a policy notation

5.3 Policy Description and Synthesis 101

for expressing L, an automatic way of generating a circuit that can recognize legal
memory access sequences, and a way to prevent illegal accesses.

A simple example of an isolation policy helps to describe the recommended pol-
icy notation. Suppose that a system design has two modules, and each module may
only access memory in its own specific range. For this scenario, the following pro-
ductions illustrate the use of the low-level language:

rw → r|w;
Range1 → [0x8e7b008,0x8e7b00f];
Range2 → [0x8e7b018,0x8e7b01b];
Access1 → {Module1, rw, Range1};
Access2 → {Module2, rw, Range2};
Policy → (Access1|Access2)

∗;

Policy is a non-terminal that defines the access policy (L) in terms of Access1
and Access2, which in turn are defined in the preceding productions. Although in
this example Access1 and Access2 are very simple, using a formal grammar makes
it possible to precisely compose more complex policies in a hierarchical fashion,
with more complex sets of memory accesses.

The low-level language must be regular so that its sentences (those actions al-
lowed by the policy) can be recognized by FSAs [14], which are efficient to imple-
ment in hardware. To make the job of constructing policies easier, it is not required
that policies be expressed in right-linear or left-linear form. The compiler simply
converts the policy from an extended regular grammar into a strictly regular gram-
mar so that the notion of ranges can be expressed easily.

Address ranges can have arbitrary granularity, ranging from a unit of enforcement
of a single word to the entire address space. This is very helpful for establishing
shared control words that modules can use for secure coordination. Ranges are not
allowed to overlap, and a static check verifies this. Despite the simplicity of the low-
level language, it is versatile enough to express a wide variety of classical security
policies, including isolation and Chinese wall. Now that the policy definition format
has been described, the next section shows how a memory access policy can be
automatically transformed into an efficient reconfigurable hardware module.

Design Tip: Constructing a Policy. The first step of policy construc-
tion is to specify the ranges. Next, specify the memory access descriptors.
Each Accessi can specify one or more access descriptors separated by the
OR symbol (|). Finally, specify the policy in terms of the memory ac-
cess descriptors. A Policy with only one state (i.e., a stateless policy) can
simply be written as (Access1|Access2|Access3| . . . |Accessn)

∗. A state-
ful policy with more than one state requires the specification of Trigger
events (special terminals recognized by the language) that cause a tran-
sition from one state to another. Several examples of both stateful and
stateless policies appear later in this chapter.

102 5 Memory Protection on FPGAs

5.3.2 Hardware Synthesis

The policy compiler converts the grammar of an access policy into a circuit that
is loaded onto the FPGA to enforce the policy at runtime. This circuit is divided
into two parts: range detection hardware that identifies the range to which a given
address belongs and the state machine that recognizes the language. The design flow
consists of the following steps:

• The engineer writes the access policy, which is the input to the compiler.
• The compiler performs the following actions:

– Constructs a syntax tree from the policy.
– Converts the syntax tree to an expanded intermediate form.
– Expands Policy to a regular expression.
– Transforms the regular expression to a non-deterministic finite automaton

(NFA).
– Converts the NFA to a minimized deterministic finite automaton (DFA).
– Converts each range into a covering set of aligned power of two ranges.
– Outputs the range detection and state machine logic as Synthesizeable Verilog.

• Vendor synthesis tools (e.g., the Altera Quartus software) take the Verilog hard-
ware description as input and synthesize, place, and route the circuit.

• The bit-stream loader loads the bit-stream onto the FPGA.
• During runtime, subject requests are allowed if their corresponding descriptor is

accepted by the DFA.

5.3.2.1 Design Flow Details

Access Policy To illustrate how a simple policy is transformed to a circuit, recall
that the isolation policy described earlier has two modules, and each module may
only access its own range. The same policy can be expressed more concisely as
follows:

Access → {Module1, rw, Range1}|{Module2, rw, Range2};
Policy → (Access)∗;

Parse Tree Construction and Transformation Next, the compiler uses Lex [13]
and Yacc [12] to build a parse tree from the policy, shown in Fig. 5.2.

Next, the compiler substitutes the left hand side of each production with its right
hand side, iteratively replacing all of the non-terminals. Figure 5.3 shows the trans-
formed parse tree, from which the compiler can generate a regular expression.

Generating the Regular Expression Next, the compiler traverses the subtree cor-
responding to Policy to generate the regular expression. While in this simple exam-
ple, it appears that the regular expression could easily be generated directly from the
grammar, more complex policies require careful construction of the expanded parse
tree:

(({Module1, rw, Range1})|({Module2, rw, Range2}))∗

5.3 Policy Description and Synthesis 103

Fig. 5.2 Parse tree of the
simple policy. AND is the root
node, and each of its two
children is a subtree
corresponding to the two
rules of the policy. The right
arrow symbol is the root node
of each of these subtrees

Fig. 5.3 Expanded parse
tree. The right subtree
corresponding to the second
rule in the policy is shaded,
and Access has been replaced
with {Module1, rw, Range1}
|{Module2, rw, Range2}

Fig. 5.4 NFA derived from the regular expression. Four epsilon transitions (top middle, closest to
{M1, rw, R1} and {M2, rw, R2}) are required for the OR. The other four epsilon transitions are
for the Kleene star operation

NFA Construction Next, the compiler constructs an NFA from the regular ex-
pression using Thompson’s Algorithm [1]. Figure 5.4 shows the NFA for the policy.

Converting the NFA to a DFA Next, the compiler uses subset construction to
convert the NFA to a DFA [1]. Then, the compiler applies Hopcroft’s Partitioning
Algorithm [1] as implemented by Grail [16] to minimize the DFA. Figure 5.5 shows
the minimized DFA for the policy.

104 5 Memory Protection on FPGAs

Fig. 5.5 NFA converted to a
minimized DFA. Since this
DFA only has one state, the
policy that it enforces is
referred to as a stateless
policy

Processing the Ranges The compiler must process the ranges by converting them
to a format that allows the circuit to efficiently compute the range containing a
given address, searching the entire set of ranges in parallel. Using don’t care bits,
only the most significant bits need to be checked. For example, 10XX corresponds
to 1000, 1001, 1010, and 1011, or [8, 11]. To check if 9 (1001) falls in this range,
the hardware takes the bit-wise XOR of the first two bits of 1001 and 10XX. Since
10 XOR 10 is 00, 9 indeed falls in the interval [8, 11].

Any range whose size is a power of two can be described using don’t care bits.
The compiler must convert each range whose size is not a power of two into a
covering set of O(log2 |range|) ranges whose size is a power of two, where |range|
is the number of addresses in the range. For example, the range [7, 12] (0111, 1000,
1001, 1010, 1011, 1100) can be converted to the following set of ranges: {[7, 7],
[8, 11], [12, 12]} (or {0111|10XX|1100}).

Conversion of the DFA to Verilog Because state machines are a very common
hardware primitive, there are well-established methods of translating a DFA into a
hardware description language such as Verilog. Figure 5.6 shows the architecture
of the enforcement module. The inputs are the module ID, op, and address of the
memory access, and the output is a single bit, 1 (grant) or 0 (deny). First, the hard-
ware determines the range corresponding to the input address by checking all the
ranges in parallel. Next, the DFA processes the request. If the DFA transitions to an
accepting state, the output is 1, but if the DFA transitions to a rejecting state, the
output is 0. If the DFA does not recognize the access request, the DFA transitions to
the rejecting state. This is needed to prevent attackers from using undefined inputs
as a way to cause the output to be 1.

State Machine Synthesis Finally, the Verilog code describing the enforcement
module is converted to a bit-stream, which is loaded onto the FPGA along with the
other cores. Vendor synthesis tools (e.g., the Altera Quartus design tools) synthe-
size, optimize, and perform place-and-route. Testing is required to verify the correct
operation of the circuit.

5.4 A Higher-Level Specification Language

A policy enforcement mechanism such as a reference monitor is only as good as
the policy it enforces. The meta language described in Sect. 5.3.1 is somewhat low-

5.4 A Higher-Level Specification Language 105

Fig. 5.6 The enforcement module takes three inputs: module ID, op, and address. A parallel search
determines the range ID. The module ID, op, and range ID bit vector form an access descriptor,
which the state machine logic uses to determine the output: 1 (grant) or 0 (deny)

level, requiring the embedded system designer to ponder complex regular expres-
sions stated in terms of modules and ranges. A higher-level language will provide
better usability by enabling policies to be expressed in terms of higher-level security
concepts, reducing the risk of human error during the process of policy construction.

Research has shown that usability is critical to system security [23]. Security
policies can be expressed at different layers of abstraction [21]. At the highest level
is the organizational security policy [20], which is a document written in English that
describes the security requirements of the organization. On the other hand, computer
systems have specifications for, and mechanisms that enforce policies expressed at a
much lower level of abstraction. Currently, completely ensuring the faithful transla-
tion from a high-level organizational security policy to lower-level implementations
is an open problem (techniques for this are discussed in Sect. 2.6.7.3.

A higher-level language for expressing memory access policies increases the us-
ability of the design flow. In this approach, an intermediate compiler translates a pol-
icy expressed in this higher-level language into the lower-level language described
earlier in this chapter. Policies expressed in the higher-level language are signifi-
cantly less complicated, especially for stateful policies such as Chinese wall, high
water mark, and low water mark, which have exponential growth rates in the policy
parameters (e.g., the number of conflict-of-interest classes, the size of the security
label space, etc.) Expressing a high water mark or low water mark policy in the
higher-level language only requires specifying the security labels of each module
and range, and expressing a Chinese wall policy only requires specifying the ele-
ments of each conflict-of-interest class. Although the current implementation of our

106 5 Memory Protection on FPGAs

compiler has undergone some testing by the developer, further systematic testing
will be required in order for the compiler to be production-grade. In other words,
the implementation has a few bugs, and we inspect the output of each tool prior to
using it in a design. Specifically, we simulate the circuit, applying a set of test in-
puts and validating the corresponding outputs before incorporating the circuit into a
design. The higher-level language supports a variety of policies:

• Isolation
• Controlled sharing
• Access list
• Chinese wall
• Redaction
• Bell and LaPadula
• High water mark
• Biba
• Low water mark

The example isolation policy would be expressed as follows:

Isolation;
Compartment1 → Module1;
Compartment1 → Range1;
Compartment2 → Module2;
Compartment2 → Range2;

Notice that the first line of the file specifies the type of policy. In the higher-
level language, the engineer specifies a set of compartments, and each compartment
contains one or more modules and one or more ranges. A compartment with multiple
modules is an equivalence class where the elements of the equivalence class are
treated the same with respect to the policy.

5.5 Example Policies

Now that an isolation policy has been demonstrated, this section shows how to ex-
press other kinds of policies, including stateful policies involving revocation or con-
ditional access. See [11] and [9] for more examples.

5.5.1 Controlled Sharing

Although the isolation policy prevents unintended flows of information between
cores, sometimes cores need to be able to communicate with each other. The high-
and low-level policy languages enable us to specify that one core can securely trans-
fer data directly to another core without the need for intermediate communication
buffers or multiple copies of the data. Instead, access to a specific range of data is

5.5 Example Policies 107

transferred from one core to the next in a manner that prevents simultaneous access
to or partial transfer of the data. For example, if Module1 wants to securely transfer
some data to Module2, an access policy can synchronize the transition of permis-
sion to access a shared buffer. This policy is expressed in the lower-level language
as follows:

Access1 → {Module1, rw, Range1|Range3}|{Module2, rw,Range2};
Access2 → {Module1, rw, Range1}|{Module2, rw,Range2|Range3};
Trigger → {Module1, rw,Range4};
Policy → (Access1)

∗(ε|Trigger(Access2)
∗);

Design Tip: Regular Expressions with Epsilon Term(s). Specifying the
Policy expression is trickier for stateful policies. The ε term, which rep-
resents the empty string, is required because the policy might never make
the transition (Trigger) to Access2, instead happily staying in Access1
forever.

At first, Module1 can access both Range1 and Range3 (the exchange buffer),
but Module2 can only access Range2. Module1 accesses Range4 (the control word),
indicating to the monitor that it is ready for the transition of permissions. This trigger
event deactivates Access1, revoking Module1’s permissions to access Range3. The
trigger event also gives Module2 exclusive access to Range3.

In the higher-level language, the engineer specifies the From module, the To mod-
ule, the exchange Buffer, and the ControlWord. Since controlled sharing has been
implemented within the context of isolation, the engineer also specifies the com-
partments. The semantics of the higher-level language CS policy are that before the
from module accesses the control word, only it can access the buffer, and after that,
only the to module can access the buffer (in rw mode in both cases):

CS;
From → Module1;
To → Module2;
Buffer → Range3;
ControlWord → Range4;
Compartment1 → Module1;
Compartment1 → Range1;
Compartment2 → Module2;
Compartment2 → Range2;

Figure 5.7 shows the DFA that enforces this controlled sharing policy.

108 5 Memory Protection on FPGAs

Fig. 5.7 The DFA
corresponding to the
controlled sharing policy

5.5.2 Access List

Sometimes a long list of subjects must have access to the same object. The access
list policy is an isolation policy in which one or more modules belong to a list. The
subjects in the policy are expressed in terms of lists rather than individual modules,
much like a role or group. In the higher-level language, the designer first specifies
the modules belonging to each list, and then expresses the policy in terms of these
lists:

AL;
List1 → Module1;
List1 → Module2;
List1 → Module3;
List1 → Module4;
List2 → Module3;
List2 → Module4;
Compartment1 → List1;
Compartment1 → Range1;
Compartment2 → List2;
Compartment2 → Range2;

The higher-level specification above is translated to the following lower-level
specification:

Access1 → {Module1, rw, Range1}|{Module2, rw, Range1}
|{Module3, rw, Range1}|{Module4, rw, Range1};

Access2 → {Module3, rw, Range2}|{Module4, rw, Range2};
Policy → (Access1|Access2)

∗;

Figure 5.8 shows the DFA that enforces this access list policy.

5.5 Example Policies 109

Fig. 5.8 The DFA
corresponding to the access
list policy

Fig. 5.9 This Venn Diagram shows two conflict-of-interest (COI) classes, one for soda companies
and one for car companies. An attorney working on the Brand A Cola case cannot work on the
Brand B cola case but may work on either the Brand C Auto case or the Brand D Auto case. To
generalize this, e.g., in an embedded system, replace Brand A Cola, Brand B Cola, Brand C Auto,
and Brand D Auto with Range1, Range2, Range3, and Range4

5.5.3 Chinese Wall

Another security scenario that can be efficiently expressed using the policy language
is Chinese wall [6]. Suppose that Company1 and Company2 are competitors. They
are said to belong to the same conflict-of-interest (COI) class. If a lawyer views
the set of documents of Company1, he or she should not view Company2’s files.
However, if Company3 belongs to a different COI class than Company1, the lawyer
may view Company3’s files. A Venn diagram illustrating this situation is shown
in Fig. 5.9. In this example policy, Module1 corresponds to the lawyer, and each
range corresponds to a company:

Access1 → {Module1, rw, (Range1|Range3)}∗;
Access2 → {Module1, rw, (Range1|Range4)}∗;
Access3 → {Module1, rw, (Range2|Range3)}∗;
Access4 → {Module1, rw, (Range2|Range4)}∗;
Policy → Access1|Access2|Access3|Access4;

This Chinese wall policy has two COI classes: one that contains Range1 and
Range2 and another that contains Range3 and Range4. Figure 5.10 shows the DFA
that enforces this policy.

A Chinese wall policy is expressed in the higher-level language by specifying
the ranges that belong to each Conflict-of-Interest class (Class1 or Class2) as well
as the module that is the subject in the policy:

110 5 Memory Protection on FPGAs

Fig. 5.10 This DFA enforces a Chinese wall policy. A core that accesses Range1 (white) is sub-
sequently prohibited from accessing Range2 (light gray), but the core may access either Range3
(dark gray) or Range4 (black), which belong to a different conflict-of-interest class

Chinese;
Class1 → Range1;
Class1 → Range2;
Class2 → Range3;
Class2 → Range4;
Subject → Module1;

5.5.4 Bell and LaPadula Confidentiality Model

The Bell and LaPadula (B&L) Model is a formal model of multilevel security in
which a subject may not read an object with a higher security label (no read-up), and
a subject may not write to an object with a lower security label (no write-down) [4].
This model is designed to protect the confidentiality of classified information. As-
sume that there are four labels in the label space: TOP SECRET (TS), SECRET
(S), CLASSIFIED (C), and UNCLASSIFIED (U). The designer expresses a B&L
policy in the higher-level language by specifying the security labels of each module
and range:

B&L;
Module1 → TS;
Module2 → U ;
Range1 → U ;
Range2 → U ;
Range3 → TS;

5.5 Example Policies 111

Fig. 5.11 The DFA
corresponding to the B&L
policy

The higher-level specification above is translated to the following lower-level
specification:

Policy → ({Module1, r, Range1}|{Module1, r, Range2}
|{Module1, rw, Range3}|{Module2, rw, Range1}
|{Module2, rw, Range2}|{Module2, w, Range3})∗;

Figure 5.11 shows the DFA that enforces this B&L policy.

5.5.5 High Water Mark

The high water mark model is an extension to B&L. High water mark is identi-
cal to B&L in that no read-up is permitted, but write-down is allowed in high wa-
ter mark. Following a write-down, the security label of the object written to must
change to the label of the subject that performed the write. Unlike B&L, high wa-
ter mark policies are stateful. The designer expresses a high water mark policy
in the higher-level language by specifying the security labels of each module and
range:

High;
Module1 → TS;
Module2 → U ;
Range1 → U ;
Range2 → U ;
Range3 → TS;

The higher-level specification above is translated to the following lower-level
specification:

Trigger1 → {Module1, w, Range1};
Trigger2 → {Module1, w, Range2};
Access0 → ({Module1, r, Range1}|{Module1, r, Range2}

|{Module1, rw, Range3}|{Module2, rw, Range1}
|{Module2, rw, Range2}|{Module2, w, Range3})∗;

112 5 Memory Protection on FPGAs

Access1 → ({Module1, rw, Range1}|{Module1, r, Range2}
|{Module1, rw, Range3}|{Module2, w, Range1}
|{Module2, rw, Range2}|{Module2, w, Range3})∗;

Access12 → ({Module1, rw, Range1}|{Module1, rw, Range2}
|{Module1, rw, Range3}|{Module2, w, Range1}
|{Module2, w, Range2}|{Module2, w, Range3})∗;

Access2 → ({Module1, r, Range1}|{Module1, rw, Range2}
|{Module1, rw, Range3}|{Module2, rw, Range1}
|{Module2, w, Range2}|{Module2, w, Range3})∗;

Access21 → Access12;
Path1 → (ε|Trigger1Access1

∗(ε|Trigger2Access12
∗));

Path2 → (ε|Trigger2Access2
∗(ε|Trigger1Access21

∗));
Policy → Access0

∗(ε|Path1|Path2);

Design Tip: Regular Expressions with Path Expression(s). This is a
stateful policy with a diamond shape. There are two possible paths from
the top of the diamond to the bottom: either through the right half of the
diamond (Path1) or through the left half of the diamond (Path2).

Figure 5.12 shows the DFA that enforces this high water mark policy.

5.5.6 Biba Integrity Model

The Biba model is the dual of the Bell-LaPadula model [5]. Since Biba is designed
to protect the integrity of data, both read-down and write-up are prohibited in Biba.
One expresses a Biba policy in the higher-level language by specifying the integrity
labels of each module and range:

Biba;
Module1 → TS;
Module2 → U ;
Range1 → U ;
Range2 → U ;
Range3 → TS;

Here, TS is high integrity, and U is low integrity. The higher-level specification
above is translated to the following lower-level specification:

Policy → ({Module1, w, Range1}|{Module1, w, Range2}
|{Module1, rw, Range3}|{Module2, rw, Range1}
|{Module2, rw, Range2}|{Module2, r, Range3})∗;

Figure 5.13 shows the DFA that enforces this Biba policy.

5.5 Example Policies 113

Fig. 5.12 The DFA
corresponding to the high
water mark policy

Fig. 5.13 The DFA
corresponding to the Biba
policy

5.5.7 Redaction

Redaction is the process of removing sensitive portions of a document so that some-
one with a lower clearance can read it. Consider the example of an FPGA system
with three cores shown in Fig. 5.14 In this scenario, a multilevel database con-
tains both classified and unclassified information. One core (Module1) can read and
write classified information and can read unclassified information. Another core
(Module2) is only cleared to read and write unclassified information, and a third
core (Module3) acts as a trusted server, retrieving information from the database in
response to queries, performing redaction if necessary, and writing the data to a spe-
cific range of memory (Range3). Module1 and Module2 perform database queries
by writing to a control word (Module4). If Module1 performs a database query,
Module2 must be temporarily blocked from accessing Range3 because classified in-

114 5 Memory Protection on FPGAs

Fig. 5.14 Architecture of the redaction scenario

formation can be written there in response to the query. Module2 must wait until
the trusted server (Module3) zeroes out Range3. This policy consists of two states: a
liberal state, in which Module2 can access Range3, and a restrictive state, in which
Module2 cannot access Range3. When Module1 performs a database query by writ-
ing to Range4, this trigger event causes a change from the liberal to the restrictive
state. When Module3 zeroes out Range3, this trigger event causes a change from the
restrictive state back to the liberal state. In this example, redaction has been imple-
mented in the context of isolation, so that only Module1 may read from or write to
Range1, and only Module2 may read from or write to Range2. In the higher-level
language, one specifies the liberal and restrictive policies, the trigger event, and the
clear event:

Redaction;
Restrictive → {Module1, rw, Range1}|{Module1, r, Range3}

|{Module2, rw, Range2}|{Module2, w, Range4}
|{Module3, rw, Range3};

5.5 Example Policies 115

Fig. 5.15 The DFA
corresponding to the
redaction policy

Liberal → Restrictive|{Module2, r, Range3};
Trigger → {Module1, w, Range4};
Clear → {Module3, z, Range3};

The higher-level specification above is translated to the following lower-level
specification:

Access1 → {Module1, rw, Range1}|{Module1, r, Range3}
|{Module2, rw, Range2}|{Module2, w, Range4}
|{Module3, rw, Range3};

Access2 → Access1|{Module2, r, Range3};
Trigger → {Module1, w, Range4};
Clear → {Module3, z, Range3};
SteadyState → (Access1|Clear Access2

∗ Trigger)∗;
Policy → ε|Access2

∗|Access2
∗ Trigger SteadyState

|Access2
∗Trigger SteadyState Clear Access2

∗;

Design Tip: Simplifying Regular Expressions. Since this DFA has cy-
cles, a complex regular expression is required. To simplify the regular ex-
pression, common subexpressions can be substituted with nonterminals,
such as SteadyState in this example.

Figure 5.15 shows the DFA that enforces this redaction policy.

116 5 Memory Protection on FPGAs

5.6 System Architecture

The reference monitor must be placed strategically in the architecture in order to
help provide the properties of nonbypassability and self-protection, as well as to
minimize its impact on memory system performance. Systems vary widely in the
number of cores, the manner in which the system elements communicate (direct
connection, bus, or network), and the kinds of resources to be protected (on-chip
BRAM and SRAM, off-chip DRAM, etc.) In a dual-core system in which modules
access off-chip DRAM via a bus, a naive designer might put the enforcement mech-
anism between the bus and the memory, requiring every memory access to wait for
the enforcement mechanism’s approval before going to memory. The resulting de-
lay is the sum of the memory latency and the time to approve the access. A smarter
approach would be to have the enforcement mechanism snoop on the bus so that
the memory access can occur in parallel with the task of approval. A buffer holds
the data retrieved until approval is granted. For writes, the buffer stores the data
to be written until approval is granted, although this does not alleviate the latency
and approval time, unless a roll-back scheme is used. While both strategies provide
the necessary isolation, they offer a tradeoff between performance and complex-
ity.

An arbitration mechanism is needed to prevent modules from accessing the bus
simultaneously. A simple approach would be to place an arbiter between each mod-
ule and the bus, and the arbiters would restrict each core’s use of the bus to its as-
signed time slice. Chapter 7 describes a multi-core embedded system that integrates
both the arbiter and reference monitor into the bus. This design example consists of
two MicroBlaze processors whose sharing of an AES encryption core is governed
by a stateful policy.

Design Tip: Placement of Enforcement Mechanisms. The decision of
where to place policy enforcement mechanisms not only affects security
but also impacts performance, especially if the entire system has to wait
for the reference monitor’s decision before proceeding. Techniques for
alleviating the delays, such as concurrency and pipelining, also introduce
additional complexity.

5.7 Evaluation

Research [9] and [11] shows that the FPGA reference monitor is efficient in terms
of area and performance. Circuit complexity depends on a combination of the num-
ber of memory ranges and the number of DFA states and transitions. To study the
impact of the range detection task on system performance, an experiment involved
varying the number of ranges in the isolation policy and synthesizing the resulting
enforcement modules using Altera’s Quartus synthesis tool [2]. The results of the

5.8 Using the Policy Compiler 117

experiment demonstrated a linear relationship between the size of the circuit and
the number of ranges. The setup time to perform the range detection task also grows
nearly linearly with the number of ranges, but this can be reduced with pipelining.
On the Altera Stratix target device used in the experiment, the setup time varied
from just over one cycle for a policy with a handful of ranges to six cycles for a
policy with several hundred ranges. The cycle time for one DFA transition is nearly
constant with the number of ranges. The average cycle time was approximately 6 ns,
which is very close to the maximum speed of the target device.

FPGAs do not operate at a high clock rate, and 200 MHz is a common frequency
that might not sound very impressive. Instead, they exploit computational paral-
lelism to achieve high performance. Applications such as DSPs, face recognition,
computer vision, and intrusion detection can exploit parallelism well, and they are
not very sensitive to latency because they are throughput-driven. Since a 200 MHz
FPGA has a cycle time of 5 ns, the reference monitor only adds a delay that is less
than two cycles.

Design Tip: Area, Setup Time, Cycle Time, and Throughput. Setup time
is the amount of time required to perform range detection, and cycle time
is the amount of time for a single DFA transition. There is a linear re-
lationship between the complexity of the policy and both the area and
setup time of the reference monitor. Policy complexity does not affect cy-
cle time, which is always around one cycle. Throughput, not latency, is
the key performance metric of FPGA systems.

5.8 Using the Policy Compiler

Applying the design flow to a simple isolation policy illustrates its use. The first step
is to create a file toy.policy with the following contents:

Isolation;
Compartment1->Module1;
Compartment1->Range1;
Compartment2->Module2;
Compartment2->Range2;

Note that the isolation policy has been expressed in the higher-level language.
Specifying the ranges: Ranges are specified in the file ranges as follows:

0000000 000000f
0000010 000001f
...

The first line of the file specifies Range1, the second line of the file specifies
Range2, and so on. Each line of the file has the starting and ending address of the

118 5 Memory Protection on FPGAs

range separated by a space. Each range must be an aligned power of two. The next
step is to use the compiler on this policy:

% ./run.sh toy
not found
0 is a start state
There are 1 unique states
This graph does NOT contain a cycle.

The script run.sh performs the following steps:

• run.sh processes the ranges.
• run.sh creates a file toy.p (the lower-level policy specification) from toy.policy

(the higher-level policy specification).
• run.sh runs toy.p through the parser.
• The resulting regular expression is fed as input to RegEx, which creates a file

grail_machine, which is a DFA expressed in Grail format. RegEx is an implemen-
tation of Thompson’s Algorithm and subset construction by Gerzic [8], modified
to output state machines in a format that is compatible with Grail.

• run.sh runs grail_machine through Grail to produce a file gm_toy, which is the
minimized DFA. A slight modification to Grail allows it to handle unsigned long
integers.

• run.sh creates from gm_toy a file toy.v, which is a Verilog HDL description of
the reference monitor that enforces the policy.

• run.sh checks to see whether the DFA has any possible covert channels.
• run.sh creates a file toy.dot, which expresses the DFA in Graphviz format.
• run.sh runs toy.dot through Graphviz, resulting in a file toy.ps, which is a

PostScript version of the DFA that can be printed or displayed on the screen.
Figure 5.16 shows this graph.

The file toy.p is the lower-level policy specification generated from toy.policy,
the higher-level policy specification:

Access0->{Module1,rw,Range1};
Access1->{Module2,rw,Range2};
Policy->(Access0|Access1)*;

The file toy.v is the Verilog HDL description of the reference monitor that en-
forces toy.policy:

Fig. 5.16 The DFA
corresponding to a toy
isolation policy for
demonstrating the design flow

5.8 Using the Policy Compiler 119

module State_Machine(clock,
reset,
module_id,
op,
address,
is_legal);

input clock, reset;
input [4:0] module_id;
input [1:0] op;
input [31:0] address;
output is_legal;
reg is_legal;
reg[0:0] state;
parameter s0 = ’d0;
parameter s1 = ’d1;
wire r0;
wire r1;
assign r0=(address[31:4]==28’d1)?1’b1:1’b0;
assign r1=(address[31:4]==28’d2)?1’b1:1’b0;

always @(state)
begin

case (state)
s0:

is_legal=1’b1;
s1:

is_legal = 1’b0;
default:

is_legal = 1’b0;
endcase

end
always @(posedge clock or posedge reset)
if (reset) state = s0;
else

case (state)
s0:

case({module_id,op,r0,r1})
9’b000101101: //2 3 1

state = s0;
9’b000011110: //1 3 0

state = s0;
default:

state = s1;
endcase

s1:

120 5 Memory Protection on FPGAs

state = s1;
default:

state = s1;
endcase

endmodule

The reference monitor expressed in the above Verilog code has three inputs
(module_id, op, and address) and one output (is_legal). It uses exactly one cy-
cle to make a decision as to the legality of the requested memory access accord-
ing to the policy. op has four possible values: 00 for neither read nor write, 01
for read only, 10 for write only, and 11 for both read and write. The assign state-
ments check the ranges in parallel to determine the range of address. The expression
{module_id,op, r0, r1} concatenates module_id, op, r0, and r1 to form a single
transition symbol. The first case statement determines the value of is_legal accord-
ing to whether the state is accepting or rejecting. The second case statement deter-
mines the next state according to the current state and the transition character.

5.9 Constructing Mathematically Precise Policies

In order for a policy to be precise, it must accept all legal behavior and reject all
illegal behavior. An automatic method is needed to check that the policy reflects the
intent of the designer. Although this is a hard problem, the higher-level specification
language helps to mitigate this problem, and this section describes how to check for
conflicts in the policy between legal and illegal behavior.

5.9.1 Cross Product Method

One requirement of a correct policy is that the same behavior cannot be both le-
gal and illegal. The result of taking the intersection between the language of legal
accesses and the language of illegal accesses should be the empty set. Otherwise
(if there is any overlap), it is necessary to notify the designer so that he or she can
make corrections. Computing the intersection of two policies requires simply taking
the cross product of their state machines using Grail (specifically the fmcross com-
mand). The cost of this computation is quadratic in the size of the state machines.
The Venn diagram in Fig. 5.17 shows the basic idea.

Figure 5.18 is a Venn diagram showing an incremental approach of constructing
policies. A rough draft of a specification of legal accesses is checked for any overlap
between specific instances of known illegal behavior. This automated process can
test a large space of known illegal behavior and notify the designer when there is
any overlap.

5.9 Constructing Mathematically Precise Policies 121

Fig. 5.17 A Venn diagram
showing an incorrect policy
where legal and illegal
behavior incorrectly intersect

Fig. 5.18 A Venn diagram
showing an automated
approach to the incremental
construction of policies.
Several examples of known
illegal behavior can be
automatically checked against
a rough draft specification of
legal accesses to determine
whether there is any
intersection

Fig. 5.19 DFA that
recognizes the language
(A|B|C)∗. An input of either
D or E causes this DFA to
transition to the rejecting
state (State 1)

5.9.2 Examples

Consider the simple example of a language of legal behavior LLegal = (A|B|C)∗
over the alphabet A, B , C, D, E. Figure 5.19 shows the DFA that accepts LLegal.
Suppose also that there is a language of illegal behavior LIllegal = (C|D|E)∗. Fig-
ure 5.20 shows that DFA that accepts LIllegal. Figure 5.21 shows the DFA that ac-
cepts LLegal × LIllegal, which is C∗.

The same method can be used to compute the intersection of the B&L and Biba
policies. Figure 5.22 shows the DFA for the B&L policy, except now the two extra
transitions to the rejecting state (State 1) are explicitly shown. Figure 5.23 shows

122 5 Memory Protection on FPGAs

Fig. 5.20 DFA that
recognizes the language
(C|D|E)∗. An input of either
A or B causes this DFA to
transition to the rejecting
state (State 1)

Fig. 5.21 DFA that
recognizes the language C∗

Fig. 5.22 This is the DFA for
the B&L policy from
Sect. 5.5.4. An input of
{Module1, w, Range1} or
{Module1, w, Range2}
causes this DFA to transition
to the rejecting state (State 1)

the DFA for the Biba policy, except now the two extra transitions to the rejecting
state (State 1) are explicitly shown. Figure 5.24 shows the DFA that recognizes the
intersection of the B&L and Biba policies, and it is computed by taking the cross
product of their respective DFAs.

5.9 Constructing Mathematically Precise Policies 123

Fig. 5.23 This is the DFA for
the Biba policy from
Sect. 5.5.6. An input of
{Module1, r, Range2} or
{Module2, r, Range2} causes
this DFA to transition to the
rejecting state (State 1)

Fig. 5.24 This DFA
recognizes the intersection
B&L and Biba policies, such
that they are both enforced,
and it is computing by taking
the cross product of their
respective DFAs

5.9.3 Monotonic Policy Changes

The ability to determine the intersection of two policies is also useful for dynamic
policies. In a system with the ability to switch policies dynamically, the cross prod-
uct method can ensure that all policy changes are monotonic. For example, if the
system changes from a less restrictive policy to a more restrictive policy, a core
could retain sensitive information in its local memory after the new policy becomes
effective. Although access to this data was legal under the old policy, the new policy
prohibits it. A naive solution would be to sanitize all of the cores in the system fol-
lowing a policy change, but this is costly and could disrupt critical services. Another
solution is to always change to a less restrictive policy. In a system that only allows
changes to monotonically less restrictive policies, each policy is a superset of the
previous policy. In other words, the intersection of Policyi and Policyi+1 is identical
to Policyi . Suppose that a set of policies {Policy1, Policy2, Policy3, . . . , PolicyN }
is available in a dynamic policy system. To determine which policy changes are
monotonic, the designer takes the intersection of every (Policyi , Policyj) pair and
checks if the result is identical to Policyi . If so, a change from Policyi to Policyj is
monotonically less restrictive.

124 5 Memory Protection on FPGAs

Fig. 5.25 FPGA Memory
Control. An FPGA system
consists of several processing
cores (two in this example),
each with local memory. The
system also has global
memory and interconnections
between processing and
memory elements.
A reference monitor controls
which global memory regions
(a, b, c, d, e, f) that each core
may access, as well as the
mode of access: read or write

5.9.4 Formal Aspects of Hybrid Policies

As shown in Fig. 5.25, an FPGA system consists of several processing cores, each
with local memory. The system also has on-chip global memory, off-chip global
memory, and interconnections between processing and memory elements. A refer-
ence monitor controls which global memory regions that each core may access, as
well as the mode of access: read and write. The governing security policy can be
viewed as a table of rules.

The policy rules may change in response to a system event. Additionally, some
organizational security policies include state changes triggered by actions of users,
which result in the change of one or more rules. One problem with rule changes is
that a core may have access to information in local memory that is acceptable to the
current policy, but this access will be prohibited by the next policy. Since the ref-
erence monitor does not control access to local memory, a means of mitigating this
kind of prohibited access is needed. One approach is to zero out the local memory
of a problematic core as part of a policy change; another approach is to prohibit the
type of policy changes that would cause the problem. Both of these require a pre-
cise understanding of what the problem is. The problem is stated in terms of global
properties, which may be violated by a policy change.

The policy table P consists of a set of rules, R = {s, o, a}, indicating the allowed
accesses, where s is an element from the set of subjects (i.e., cores), o is from the
set of memory regions, and a is from the enumeration of access modes: null, read,
write, read and write. Various operations are allowed on global and local memory
regions. The primary operation on global memory will be abstractly represented as
g_mem_acc(s, o, a). For example, g_mem_acc(s, o, r) transfers a global memory
region into the local state (e.g., a register) of the subjects(s) (note that memory can
easily be characterized at a more granular level, such as bytes, rather than regions).

5.10 Summary 125

Local memory is represented as local(s). The read operation is represented this
way, where the new value of a variable is indicated with the prime (′) symbol, and
individual elements are indicated with subscripts.

g_mem_acc(s1, o1, r) ⇒ local′(s1) = local(s1) ∪ o1 (5.1)

We assume that a read results in the data becoming part of local memory, because
the subject may modify local memory based on the value of the data, even if it does
not write the data directly to its local memory (alternatively, local memory could be
modeled to include local registers).

The global security property we are interested in is:

∀s : subject, o : object, a : (access(g_mem_acc(s, o, a)) ⇒ [s, o, a] ∈ P) (5.2)

I.e., the subject can perform only the allowed accesses on global memory. A pol-
icy change is represented as:

P _change(new : table) ⇒ P ′ = new (5.3)

We need to ensure that whenever P ′ �= P , the property (5.2) still holds. The
following relationships will suffice (corresponding to the two approaches described
above):

P ′ �= P ⇒ [∀s : subject, o : object,

a : access([s, o, a] ∈ P → [s, o, a] ∈ P ′|local′(s) = ∅)] (5.4)

I.e., if the policy changes then each access in the old policy is in the new policy, or
the local memory of all subjects is cleared.

5.10 Summary

To prevent improper memory sharing and to contain memory bugs, this chapter has
described a method and language for specifying access policies that can be automati-
cally synthesized to a reconfigurable hardware enforcement module. The policy lan-
guage facilitates the expression of policies of arbitrary granularity. To evaluate the
efficiency of these techniques, experiments involved generating a variety of policies
and using the design flow to synthesize hardware modules from the policies. These
methods are efficient and scalable in the number of ranges that must be recognized.
The next chapter shows how the architecture ensures that the enforcement module
is both protected and invoked for every memory access.

References

1. A. Aho, R. Sethi, J. Ullman, Compilers: Principles, Techniques, and Tools (Addison Wesley,
Reading, 1988)

2. Altera Inc, Quartus II Manual, 2004

126 5 Memory Protection on FPGAs

3. J.P. Anderson, Computer security technology planning study. Technical Report ESD-TR-73-
51, ESD/AFSC, Hanscorn AFB, Bedford, MA, 1972

4. D.E. Bell, L.J. LaPadula, Secure computer systems: mathematical foundations and model. The
MITRE Corporation, Bedford, MA, USA, May 1973

5. K.J. Biba, Integrity considerations for secure computer systems. Technical Report ESD-TR-
76-372, USAF Electronic Systems Division, Bedford, MA, 1977

6. D.F.C. Brewer, M.J. Nash, The Chinese wall security policy, in Proceedings of the 1989 IEEE
Symposium on Security and Privacy, 1989

7. D.E. Denning, A lattice model of secure information flow. Commun. ACM 19(5), 236–243
(1976)

8. A. Gerzic, CodeGuru: write your own regular expression parser, November 2003, http://www.
codeguru.com/

9. T. Huffmire, S. Prasad, T. Sherwood, R. Kastner, Policy-driven memory protection for re-
configurable hardware, in Proceedings of the European Symposium on Research in Computer
Security (ESORICS), Hamburg, Germany, September 2006

10. T. Huffmire, B. Brotherton, G. Wang, T. Sherwood, R. Kastner, Moats and drawbridges: an
isolation primitive for reconfigurable hardware based systems, in Proceedings of the 2007
IEEE Symposium on Security and Privacy, Oakland, CA, USA, May 2007

11. T. Huffmire, T. Sherwood, R. Kastner, T. Levin, Enforcing memory policy specifications in
reconfigurable hardware. Comput. Secur. 27(5–6), 197–215 (2008)

12. S. Johnson, Yacc: yet another compiler-compiler. Technical Report CSTR-32, Bell Laborato-
ries, Murray Hill, NJ, 1975

13. M. Lesk, E. Schmidt, Lex: a lexical analyzer generator. Technical Report 39, Bell Laborato-
ries, Murray Hill, NJ, October 1975

14. P. Linz, An Introduction to Formal Languages and Automata (Jones and Bartlett, Sudbury,
2001)

15. J. Navarro, S. Iyer, P. Druschel, A. Cox, Practical, transparent operating system support for Su-
perpages, in Fifth Symposium on Operating Systems Design and Implementation (OSDI’02),
Boston, MA, December 2002

16. D. Raymond, D. Wood, Grail: A C++ library for automata and expressions. J. Symb. Comput.
11, 341–350 (1995)

17. J. Rushby, A trusted computing base for embedded systems, in Proceedings 7th DoD/NBS
Computer Security Conference, September 1984, pp. 294–311

18. J. Saltzer, Protection and the control of information sharing in Multics. Commun. ACM 17(7),
388–402 (1974)

19. F.B. Schneider, Enforceable security policies. ACM Trans. Inform. Syst. Secur. 3(1), 30–50
(2000)

20. G.W. Smith, R.B. Newton, A taxonomy of organisational security policies, in Proceedings of
the 23rd National Information Systems Security Conference, Baltimore, MD, USA, October
2000

21. D.F. Sterne, On the buzzword “security policy”, in Proceedings of the 1991 IEEE Symposium
on Security and Privacy, Oakland, CA, 1991, pp. 219–230

22. E. Witchel, J. Cates, K. Asanovic, Mondrian memory protection, in Tenth International
Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-X), San Jose, CA, October 2002

23. M.E. Zurko, R.T. Simon, User-centered security, in Proceedings of the 1996 Workshop on New
Security Paradigms, Lake Arrowhead, CA, September 1996

Chapter 6
Spatial Separation with Moats

Abstract This chapter describes moats and drawbridges (Huffmire et al., Proceed-
ings of the 2007 IEEE Symposium on Security and Privacy, Oakland, CA, USA,
May 2007), a method for separating multiple cores on a single reconfigurable chip.
Moats provide logical isolation by placing cores into distinct areas of the chip in a
verifiable manner. Drawbridges use interconnect tracing to statically verify that only
legal connections between system elements are allowed and that interfaces carrying
sensitive data have not been tapped or routed to other cores or I/O pads. To facilitate
legal communication between cores, two alternative communication architectures
are compared.

6.1 Overview

Consider an FPGA system consisting of two processor cores and a shared AES en-
cryption core, all on the same FPGA device. Further details about this system can
be found in Chap. 7. Each of three cores requires access to off-chip memory to store
and retrieve data. How is it possible to ensure that one processor’s encryption key
cannot be stolen by the other processor by reading the key from external memory
or directly from the encryption core? These systems lack virtual memory, and the
circuit produced by the CAD tool is an entangled labyrinth of gates and wires. To
prevent theft of the key from the encryption core, a technique is needed to isolate
the encryption engine from the other cores at the gate level. Protecting the key in
external memory requires implementing a memory protection module as described
in Chap. 5. In addition, it is also necessary to ensure that every memory access
goes through the reference monitor and that the reference monitor is isolated and
protected. It is also necessary to ensure that cores may only communicate through
specified interfaces to prevent unauthorized access to the key in the encryption core
and to prevent snooping on interconnections. A minor change to one of the last
stages of the design flow constrains the placement of system elements. The tech-
niques presented in this chapter are steps towards a cohesive reconfigurable system
design methodology that facilitates the composition of systems using cores with
different trust levels on a single chip.

T. Huffmire et al., Handbook of FPGA Design Security,
DOI 10.1007/978-90-481-9157-4_6, © Springer Science+Business Media B.V. 2010

127

128 6 Spatial Separation with Moats

Fig. 6.1 A simple two-core
system mapped onto a small
FPGA. Each gray or black
square represents an
individual switchbox with
high wiring complexity.
Constraints must be imposed
on the design tools to prevent
cores from overlapping,
which would increase the risk
of unintended information
flows. These constraints are
also needed to make the task
of statically analyzing a large
design computationally
feasible

6.2 Separation

Separation is a fundamental computer security concept that combines the ideas of
isolation and controlled sharing. Cryptographic systems such as encryption devices
were among the first to necessitate the development of strong isolation, since clas-
sified plaintext that is carried over red wires must be segregated from ciphertext
carried over black wires. Saltzer and Schroeder define complete isolation as a “pro-
tection system that separates principals into compartments between which no flow of
information or control is possible” [7]. Since the functionality of systems is greatly
reduced if all of their components are totally isolated, a technique is needed to fa-
cilitate the controlled sharing of data among components. A solution for achieving
controlled sharing in FPGA systems employs moats to provide the isolation and
drawbridges to provide a means of precise sharing.

6.3 Physical Isolation with Moats

Since synthesis tools optimize a design’s layout using performance as an objec-
tive function, the resulting circuit’s logical elements and interconnections are entan-
gled, as shown in Fig. 6.1. Each square represents a single switchbox, the associated
LUTs, and associated routing. For an FPGA with 30K switchboxes, the task of static
analysis of the bitstream is computationally infeasible. To protect a core’s data and
to prevent interference with a core’s operation, the following section describes the
use of moats to ensure isolation of the cores.

6.4 Constructing Moats

By imposing minor constraints on the design tools, moats are able to spatially isolate
cores to enhance security. Design tools such as Xilinx’s PlanAhead facilitate this

6.4 Constructing Moats 129

Fig. 6.2 The gap method surrounds each core with a dead area. This example restricts the fabric
to only use routing segments that can span one switchbox. Under this constraint, the moat must
have a width of at least one. Since the switchboxes shown in black are disabled, single length
connections cannot be used to go from Core 1 to Core 2. However, a routing segment of length two
could bridge the moat

process by giving designers fine grain control over the placement of cores. This
section describes two methods for constructing moats, both of which place the cores
in physically distinct regions:

• The gap method involves surrounding each core with a dead area (i.e., a moat).
Then, if only routing segments that are shorter than the size of the moat are used
in the design, the area inside the moat is completely isolated.

• The inspection method methodically checks the routing segments close to a core’s
border to ensure that no segments cross into the interior of the core, making it
possible to reduce or eliminate the dead zone and to loosen the restrictions on
the use of routing segments. Segments near a core’s border are subject to greater
restrictions than segments that are far from the edge.

For both methods, a core can only communicate with the world outside the moat
via a precisely defined path called a drawbridge. While the gap method uses spatial
isolation, the inspection method uses logical isolation.

6.4.1 The Gap Method

The gap method surrounds each core with a physical moat, which is a region in
which the switchboxes have been disabled except for precisely defined paths for
inter-core communication (drawbridges, discussed later). The Xilinx Virtex family
of FPGAs uses routing segments that span either 1, 2, or 6 Configuration Logic
Blocks (CLBs). Longline segments span an entire row or column. The ability to by-
pass intermediate switchboxes greatly improves performance because each switch-
box introduces delay. The gap method sacrifies the performance gains of using
longer segments in order to achieve spatial isolation.

130 6 Spatial Separation with Moats

Figure 6.2 shows the gap technique of constructing moats. To extend this exam-
ple, if the design tools are constrained to only use routing segments of length one
and two, the moat must have a minimum size of two to prevent signals from cross-
ing the moat. In general, a moat needs to have a width of at least w if the design is
restricted to never use routing segments longer than w. Static verification of these
properties is straightforward. If all of the routing transistors in a switchbox are set
to be disconnected, the switchbox belongs to a moat. It is also necessary to verify
that all switches connecting to segments longer than w are off. Performing this ver-
ification requires some information about the bitstream, including the location of
each switch’s configuration bit. Since the JBits API can provide this information,
these methods are applicable to any architecture supported by the JBits API [3], and
extending JBits to other architectures is straightforward for vendors who are willing
to do so.

6.4.2 The Inspection Method

The use of methodical checking makes it possible to reduce or even eliminate the
moat. A seamless moat is one for which there is no gap at all (i.e., no disabled
switchboxes). The key idea is to allow the use of segments longer than w if they are
sufficiently far from the border. For example, even if w is 2, a hex segment could be
used in the middle of a core that is 20×20 square. Clearly, it is very important to use
static analysis to make sure that segments do not cross the border, but only a subset
of the connections within a core must be checked. Progressively less checking is
required further from the border towards the center of the core, which makes the job
easier, as shown in Fig. 6.3. For example, for a seamless moat, checking segments
of length one is unnecessary at least one CLB from the border. Segments of length
two need not be checked at least two CLBs from the border. Checking longlines is
always necessary because they span the entire row or column.

The depth d in CLBs to which a segment must be searched depends on the seg-
ment length l (1, 2, or 6) and the moat width w:

d(l,w) =
{

0 if l < w,

l − w if l ≥ w.
(6.1)

This equation demonstrates that if w is 1, there is no need to check segments of
length one inside the core since such a segment cannot cross the moat. Even a seg-
ment on the border must utilize another connection inside the moat to escape, which
will be detected during verification.

6.4.3 Comparing the Gap and Inspection Methods

For the gap method, analysis of the trade-off between circuit performance and moat
area finds that small moats result in worse performance than large moats [5]. Re-

6.4 Constructing Moats 131

Fig. 6.3 The inspection
method of moat construction
allows for a smaller gap or no
gap at all, called a seamless
moat. Design tools must
perform static checking for
segments that cross the
border. Progressively less
checking is needed
proceeding from the border
towards the center of the core

stricting a design to use only short segments forces connections to pass through
more switchboxes, each contributing some delay. It also requires more demand for
switchbox resources, increasing circuit area. The first experiment restricts several
benchmark circuits to use only segments of length one. The second experiment then
compares this to the result of restricting the same circuits to use only segments of
length one and two. A third experiment restricts the circuits to use only segments
of length one, two, and six (i.e., no longlines). The results of these three experi-
ments are then compared to the unconstrained baseline, which may use all segment
lengths.

After using VPR to place and route the circuits, the area and critical path per-
formance are measured. Although eliminating longlines has little effect, eliminat-
ing hex lines hurts area and performance significantly, and eliminating segments of
length two furthers the degradation. To better understand the relationship of useful
logic, inflation, and dead space, and their impact on area, an effective utilization
metric is used. Effective utilization is simply the ratio of unrestricted logic to the
sum of restricted logic and moat area. Assuming uniform rectangular cores, a moat
size of two has the highest effective utilization, unless the number of cores is very
large (>100) or very small (1). There is no need for a moat if there is only one
core.

Analysis of the inspection method finds that small moats have better perfor-
mance than large moats because the restriction on using longer routing segments
is relaxed. An experiment applied the inspection method to three systems, includ-
ing a dual-processor system-on-chip [6], a Multiple Input Multiple Output (MIMO)
transceiver, and a JPEG encoder. For each system, the area and performance were
compared for moat sizes of six, two, one, zero, and a baseline of no moat. As ex-
pected, systems with smaller moats use much less area but require more checking.
However, the additional overhead of static checking is a small one-time-only cost.
The impact on performance of moats constructed using the inspection method is
minimal. Although seamless moats use the least area, using a nonzero moat size is
often beneficial because the moat area can serve as a communication channel for

132 6 Spatial Separation with Moats

the routing of drawbridge traffic. The next section discusses drawbridges, which are
precisely defined paths for signals between cores and I/O pins.

6.5 Secure Interconnect with Drawbridges

Although moats isolate the cores, the cores must be able to communicate with each
other in a controlled way. A drawbridge provides a precisely defined path for com-
munication from one core to another core or I/O pad. It is necessary to specify in
advance the location of the cores and the connections to be allowed. The drawbridge
technique is applicable to multiple interconnection architectures, including direct
connections and shared bus. Future work will extend drawbridges to networks-on-
chip [2].

6.5.1 Drawbridges for Direct Connections

The system designer must first specify the legal connections so that the design
can be statically analyzed for adherence to the specification. The route tracing
tool described in [5] operates on the bitstream and a file that specifies the mod-
ules and interconnects, and it does not require design details of the cores, such
as HDL, which may be proprietary and therefore unavailable. Checking at the
very end of the design flow helps find illegal connections introduced in an earlier
stage.

Moats allow the precise specification of the location of each core as well as the
valid connections. The specification is simply a text file that defines all cores and
I/O pins, including their location and a list of legal connections. Interconnect trac-
ing involves bitstream analysis to determine the status of the switchboxes in or-
der to trace the path along which a connection is routed. This mitigates the risk
of illegal connections in the design, which will be detected by the tracing proce-
dure.

The route tracing tool takes two inputs: a bitstream file and the specification file
described above. Connections are specified in terms of a source (pin or module) and
destination (pin or module). The tracing algorithm starts with a list of input and
output pins (some pins may be able to do both) that can enter or leave a CLB. Af-
ter performing a trace on all the input pins, it next traces all outgoing connections
from all the CLBs in the modules. Finally, it performs a reverse trace on all outgo-
ing connections from the modules. If the design is correct, this final step will not
find any connections because the previous steps should have found them. The route
tracing algorithm is a simple breadth first search with a few modifications: it main-
tains a list of every pin it has visited to prevent searching the same path twice. The
search is terminated once another module is reached. The tracing program outputs
all the connections it finds, and it can optionally display the route tree showing the

6.5 Secure Interconnect with Drawbridges 133

entire path of a connection. When finished, it outputs whether or not the design was
successfully verified. The following pseudocode describes the tracing process:

RouteTree trace(pin, module) {
add pin to routeTree
for all sinks of wire this pin is on {

if sink is connected to pin
if sink has already been searched

return
if sink is in another module

check if connection is valid
return

add sink to list of searched pins
trace(sink, module)

}
}

Route Tracing Tool Input File Format. The first line of the input file
to the route tracing tool starts with the letter D and specifies the device
type:

D XC2V6000 FF1517

The next line of the file begins with the letter N and specifies the
number of modules, pins, and connections:

N 4 5 12

The next lines of the file begin with the letter M and specify the mod-
ule names as well as their xmin, xmax, ymin, and ymax coordinates:

M MB1 11 35 57 80
M MB2 11 35 13 35
M MB3 54 78 57 80
M MB4 54 78 13 35

The next lines of the file begin with the letter P and specify the pin
names and whether they are input, output, or reset pins:

P B25 rst #Reset
P C36 in #rs_232_rx_pin
P J30 out #rs_232_tx_pin
P C8 in #rs_232_rx2_pin
P C9 out #rs_232_tx2_pin

134 6 Spatial Separation with Moats

The next lines of the file begin with the letter C and specify the con-
nections: source, destination, and width:

C B25 MB1 1
C C36 MB1 1
C MB1 J30 1
C B25 MB2 1
C MB1 MB2 32
C MB2 MB1 32
C B25 MB3 1
C MB3 C9 1
C C8 MB3 1
C B25 MB4 1
C MB4 MB3 32
C MB3 MB4 32

Figure 6.4 shows the route tracing process. The black line shows a route connect-
ing two parts of the design. The route tracing tool follows this route progressively
from its beginning at the upper left of the figure to its end at the bottom right of the
figure.

Fig. 6.4 Route tracing. The black line shows a route from the light gray region in the upper left
consisting of two CLBs and two Switch Matrices (SMs) to the light gray region in the lower right.
The route tracing tool follows this route progressively from beginning to end

6.5 Secure Interconnect with Drawbridges 135

Fig. 6.5 Route tracing with partial reconfiguration. Only pins that enter or leave the reconfigurable
portion of the design (the middle region shown in light gray) need to be searched, leading to a much
faster tracing process

6.5.2 Route Tracing with Partial Reconfiguration

Figure 6.5 shows the route tracing process with partial reconfiguration. Partial re-
configuration makes the route tracing process much more efficient because it is only
necessary to store two pins for each connection that passes through the reconfig-
urable portion of the design. Connections that enter but do not leave the area only
require storing one pin and its direction (in or out). Only connections that enter or
leave the reconfigurable portion of the design need to be searched. The cost of this
efficiency gain is a small additional overhead of the initial tracing. Figure 6.6 shows
the FPGA Editor view of a design that uses partial reconfiguration.

6.5.3 Drawbridges for Shared Bus Architectures

In addition to direct connections, cores can also communicate via a shared bus.
However, the shared nature of a bus presents a security problem because a compro-
mised core can snoop on the bus traffic. Even if all bus traffic is encrypted, the bus
can be used to carry out a covert timing channel attack in which a high core sends

136 6 Spatial Separation with Moats

Fig. 6.6 FPGA Editor view of a design that uses partial reconfiguration

data to a low core. The high core modulates its bus references, and the low core ob-
serves this modulation. To address these problems, an arbiter imposes time division
multiplexing on the bus. Each core may only access the bus during its assigned time
slice. Dividing the time equally among the cores eliminates covert timing channels
on the bus, although it certainly limits the performance of the bus.

To mitigate the performance penalty of time division multiplexing, Hu proposes
the idea of allowing a low core to donate time to a higher core [4]. The round
robin begins with the lowest core and proceeds in order to the highest core. On the
transition from the highest core to the lowest core, some housekeeping is needed,
including using up donated time and clearing the cache.

An ordered round robin scheme can be used to provide even more flexibility than
the donation scheme and can also provide the higher confidentiality processes the
opportunity to use more of the CPU than their fixed time slice. In this approach, each
equivalence class of processes is allocated a fixed, nominal time slice. Equivalence
classes are placed in the circular scheduling queue according to the ordering of
their labels, so that lower level processes execute before higher ones, except for the
transition from highest to lowest. Figure 6.7 shows one round. Each class can use
up to its nominal time slice and may give up the processor before then.

Additionally, with this ordered round robin scheme, after the lowest class, each
equivalence class in turn has the opportunity to use up any slack time [1] donated
by the lower level classes. When the highest equivalence class is scheduled, it is
obligated to use up all of the donated time that remains for that round. Thus, the
lowest class sees no variation in the amount of CPU time that higher classes use,
and higher classes see only variations caused by lower classes. The intermediate

6.6 Protecting the Reference Monitor with Moats 137

Fig. 6.7 Ordered round robin
scheduling

classes can be regulated to ensure that the highest classes will have some donated
time, if any exists, for example by restricting their use of donated time to a given
percentage. If the percentage is incrementally increased for each of the higher levels,
the result is somewhat akin to providing higher access classes with greater priority.

The fixed round-robin approach to secure MLS scheduling is to provide each
equivalence class with a fixed time-slice in a round-robin scheduling scheme. How-
ever, this may waste resources when a process does not need all of its time slice.
An ordered priority scheduling scheme can be used when the MLS labels are to-
tally ordered, as long as the order of time slice assignments is inversely proportional
to the MLS labels. This presents a problem in systems that need to provide higher
confidentiality processes with higher priority. Additionally, if there are one or more
non-hierarchical label components combined with a hierarchical label component
(i.e., there is a partial ordering of labels), all processes with that hierarchical level
must be assigned equal priorities (or equal time-slices in an ordered round-robin
scheme)—an equivalence class.

In addition to covert channels, snooping must also be prevented. Placing an ar-
biter between each core and the bus limits each core’s use of the bus to its time slice.
Connecting the bus to memory requires the reference monitor technique described
in Chap. 5. Each core can have its own arbiter (which requires a central timing
multiplexer to handle scheduling), or a single arbiter can serve all the cores. Re-
search [5] determined that a single arbiter is actually more efficient, and the arbiter
can be integrated into the on-board peripheral bus (OPB) [6].

6.6 Protecting the Reference Monitor with Moats

The reference monitor described in Chap. 5 must be isolated, non-bypassable, and
verifiable. To protect the reference monitor from tampering, it can be isolated with

138 6 Spatial Separation with Moats

a moat. To prevent the reference monitor from being bypassed, drawbridges can be
used to prevent a core from directly accessing the memory, snooping on the memory
bus, or establishing an illegal connection with another core. Interconnect tracing
ensures that the memory I/O blocks are only connected to the reference monitor.

References

1. A. Bavier, L. Peterson, D. Mosberger, BERT: a scheduler for best effort and realtime tasks.
Princeton University Technical Report TR-602-99, Princeton, NJ, March 1999

2. S. Bourduas, Modeling, evaluation, and implementation of ring-based interconnects for
network-on-chip. Ph.D. Dissertation, McGill University, Dept. of Electrical and Computer
Engineering, Montreal, Canada, May 2008

3. S. Guccione, D. Levi, P. Sundararajan, JBits: Java-based interface for reconfigurable comput-
ing, in Proceedings of the Second Annual Conference on Military and Aerospace Applications
of Programmable Logic Devices and Technologies (MAPLD), Laurel, MD, USA

4. W.M. Hu, Lattice scheduling and covert channels, in Proceedings of the 1992 IEEE Sympo-
sium on Security and Privacy, Oakland, CA, May 1992

5. T. Huffmire, B. Brotherton, G. Wang, T. Sherwood, R. Kastner, Moats and drawbridges: an
isolation primitive for reconfigurable hardware based systems, in Proceedings of the 2007
IEEE Symposium on Security and Privacy, Oakland, CA, USA, May 2007

6. T. Huffmire, B. Brotherton, N. Callegari, J. Valamehr, J. White, R. Kastner, T. Sherwood,
Designing secure systems on reconfigurable hardware. ACM Trans. Des. Automat. Electron.
Syst. (TODAES) 13(3), 44 (2008)

7. J. Saltzer, M. Schroeder, The protection of information in computer systems. Proc. IEEE
63(9), 1278–1308 (1975)

Chapter 7
Putting It All Together: A Design Example

Abstract This chapter describes a design example that incorporates the security
primitives from the earlier chapters. This embedded system is connected to two
separate networks that require encryption. It consists of two processor cores and a
shared AES encryption core, all on the same device. Further details about a similar
system can be found in Huffmire et al. (ACM Transact. Des. Automat. Electron.
Syst. (TODAES) 13(3):44, 2008).

A worked example of an embedded design is essential to understanding the practical
issues of applying the security techniques described in the previous chapters. A real
systems example also demonstrates how to design realistic policies. The example
system is also useful for analyzing the usability of the security techniques as well
as their impact on system performance and complexity. Specifically, this chapter
describes the application of the reference monitor technique from Chap. 5, the moats
and drawbridges technique from Chap. 6, and the covert channel analysis technique
from Chap. 3 to a multi-core reconfigurable embedded system.

7.1 A Multi-Core Reconfigurable Embedded System

Figure 7.1 shows the design example, an embedded system connected to two sepa-
rate networks, each labeled at a specific level, where data on both networks must be
encrypted. The system consists of two MicroBlaze soft CPU cores, a shared AES
crypto core, and two Ethernet interfaces, all running on a single FPGA device. Inte-
grating multiple modules on a single device saves power, cost, and area. The system
also includes off-chip DRAM. These components are organized into two compart-
ments: a gray compartment consisting of one of the CPU cores and one of the Eth-
ernet interfaces, and a black compartment consisting of the other CPU core and the
other Ethernet interface. Each compartment needs to communicate with a network
that is labeled at its own level. The components are connected to each other via

T. Huffmire et al., Handbook of FPGA Design Security,
DOI 10.1007/978-90-481-9157-4_7, © Springer Science+Business Media B.V. 2010

139

140 7 Putting It All Together: A Design Example

Fig. 7.1 A system consisting
of two processors, a shared
AES encryption core, two
Ethernet interfaces, and
shared external memory, all
connected via a shared bus.
Both a reference monitor and
arbitration logic are
integrated into this On-chip
Peripheral Bus (OPB)

an On-chip Peripheral Bus (OPB), which contains arbitration logic and a reference
monitor.

In order to avoid duplicating the crypto module (due to space constraints), it is
shared between the gray and black compartments. Except for the AES engine, the
two compartments must not share resources; one compartment must not be able to
access the AES module when another compartment is using it, as that might allow
information leakage between compartments; and the AES module must be purged
between use by different domains. Effectively, the level of the AES module changes
depending on who is using it: it is a single-level-at-a-time or periods processing
device [6]. Periods processing is a term of art that refers to the process of sanitizing a
shared resource after each classified job prior to its use by the next user. Sanitization
is accomplished by destroying all memory residue of the prior job.

To satisfy these design requirements, moats spatially isolate all of the cores in
this reconfigurable design, and the reference monitor enforces a temporal policy
so that the two compartments can periods process the AES module in a manner
that ensures the separation of the compartments. After each policy period, the AES
engine is purged of data.

7.2 On-Chip Peripheral Bus

Since the job of a traditional shared bus is to connect multiple components together,
not to separate them, it is necessary to modify the bus to facilitate controlled shar-
ing between modules. The on-chip peripheral bus (OPB) is a soft IP core available
in the Xilinx Embedded Development Kit (EDK) for connecting peripherals in an
embedded system. The OPB was modified to incorporate a reference monitor that

7.3 AES core 141

enforces a policy that logically separates the gray and black compartments. The two
CPU cores are master devices, and the crypto core, Ethernet interfaces, and DRAM
are slave devices.

7.3 AES core

A custom controller allows the AES crypto core to be controlled via shared memory.
A processor requiring encryption or decryption places the plaintext to be encrypted
or decrypted into a shared DDR SDRAM buffer in the processor’s compartment.
Then, the processor gives a signal to the AES core by writing to specific control
words. This signal includes whether to encrypt or decrypt, the location of the data,
and the size of the data. Upon completion of the transformation, the AES core writes
the ciphertext or plaintext to the shared memory buffer and signals the processor via
a control word. Finally, the initiating processor copies the transformed data from the
shared buffer.

Since the AES core is effectively a shared device, access to it must be controlled
by the reference monitor. Each buffer is located in the memory region of the ini-
tiating processor. This prevents processors from reading each other’s plaintext. In
addition, the reference monitor enforces a stateful periods processing policy [1, 5]
that ensures that only one processor can use the AES core at a time.

7.4 Logical Isolation Compartments

Figure 7.1 shows the gray and black compartments of the embedded system. The
gray compartment contains one of the MicroBlaze processors and one of the Eth-
ernet interfaces. The black compartment contains the other MicroBlaze processor
and the other Ethernet interface. The two compartments periods process the AES
core, and the DRAM is partitioned among the compartments and the AES core.
Separation of the gray and black compartments is essential because the gray and
black networks operate at different levels. To achieve this separation, moats provide
spatial isolation of cores, and the reference monitor provides temporal separation of
system components.

7.5 Reference Monitor

In this embedded system, the reference monitor, which is integrated with the bus,
mediates access to peripheral components, on-chip memory, and off-chip memory.
The reference monitor either grants or denies memory access requests, and it can
arbitrate access to any component connected to the OPB. An arbitration mechanism
ensures that two cores cannot use the bus at the same time.

142 7 Putting It All Together: A Design Example

Using memory mapped I/O makes it possible to use the reference monitor to me-
diate access to the I/O devices and the shared memory, and it also makes it possible
to scale up to larger numbers of master devices.

7.6 Stateful Policy

The formal top-level specification for the stateful policy is expressed using the low-
level policy language described in Chap. 5. Module1 corresponds to μBlaze0, and
Module2 corresponds to μBlaze1. The policy compiler translates this specification
directly to a hardware description of a reference monitor that enforces the policy.
The reference monitor is capable of enforcing a resource sharing policy because
each component of the system besides the MicroBlaze processors is assigned a spe-
cific address range, expressed in the following productions:

Range1 → [0x28000010, 0x28000777]; (AES1)

Range2 → [0x28000800, 0x28000fff]; (AES2)

Range3 → [0x24000000, 0x24777777]; (DRAM1)

Range4 → [0x24800000, 0x24ffffff]; (DRAM2)

Range5 → [0x40600000, 0x4060ffff]; (Ethernet1)
Range6 → [0x40c00000, 0x40c0ffff]; (Ethernet2)
Range7 → [0x28000004, 0x28000007]; (Ctrl_Word1)

Range8 → [0x28000008, 0x2800000f]; (Ctrl_Word2)

Range9 → [0x28000000, 0x28000003]; (Ctrl_WordAES)

AES1 is the shared DDR SDRAM buffer in the gray compartment, and AES2 is
the shared DDR SDRAM buffer in the black compartment. One state of the pol-
icy (Access0) corresponds to the case when neither Module1 nor Module2 is using
the AES core. This is the initial state of the system. Another state (Access1) cor-
responds to the case when Module1 is using the AES core. A third state (Access2)
corresponds to the case when Module2 is using the AES core. A processor gains
access to the AES core by writing to Ctrl_Word1 (Range7), which triggers a state
transition (Trigger1 for Module1 or Trigger3 for Module2). A processor releases the
AES core by writing to Ctrl_Word2 (Range8), triggering another transition (Trigger2
for Module1 or Trigger4 for Module2). The following productions specify the three
states Access0, Access1, and Access2:

Access0 → {Module1, rw, Range5}|{Module2, rw, Range6}
|{Module1, rw, Range3}|{Module2, rw, Range4}

Access1 → Access0|{Module1, rw, Range1}|{Module1, rw, Range9};
Access2 → Access0|{Module2, rw, Range2}|{Module2, rw, Range9};

The following productions specify the transitions between the states, Trigger1,
Trigger2, Trigger3, and Trigger4:

Trigger1 → {Module1, w, Range7};
Trigger2 → {Module1, w, Range8};

7.6 Stateful Policy 143

Trigger3 → {Module2, w, Range7};
Trigger4 → {Module2, w, Range8};

The following productions use some rather complicated regular expressions to
specify the structure of the state machine that enforces the policy:

Expr1 → Access0|Trigger3Access2
∗Trigger4;

Expr2 → Access1|Trigger2Expr1
∗Trigger1;

Expr3 → Expr1
∗Trigger1Expr2

∗;
Policy → Expr1

∗|Expr1
∗Trigger3Access2

∗
|Expr3Trigger2Expr1

∗Trigger3Access2
∗

|Expr3Trigger2Expr1
∗|Expr3|ε;

Building this policy demonstrated a limitation of the low-level language. In this
case, due to the complexity of the regular expressions, it is easier to specify the state
machine and generate the regular expressions using Grail [4], which can convert
state machines to regular expressions using the fmtore (finite state machine to reg-
ular expression) program. The first step is to specify the basic structure of the DFA
using the Grail language in a file called grail_machine:

(START) |- 0
0 A 0
1 B 1
2 C 2
0 D 1
1 E 0
0 F 2
2 G 0
0 -| (FINAL)
1 -| (FINAL)
2 -| (FINAL)

Figure 7.2 shows this DFA. Next, the fmtore program generates the regular ex-
pression from the finite state machine:

Fig. 7.2 In this case, a little
help from Grail is needed to
generate the regular
expression

144 7 Putting It All Together: A Design Example

Fig. 7.3 The DFA that
enforces the stateful policy
for the embedded system

% ./fmtore grail_machine
(A+FC*G)*
+(A+FC*G)*FC*
+((A+FC*G)*D(B+E(A+FC*G)*D)*)E(A+FC*G)*FC*
+((A+FC*G)*D(B+E(A+FC*G)*D)*)E(A+FC*G)*
+((A+FC*G)*D(B+E(A+FC*G)*D)*)
+""

Note that A corresponds to Access0, B corresponds to Access1, C corresponds to
Access2, D corresponds to Trigger1, E corresponds to Trigger2, F corresponds to
Trigger3, and G corresponds to Trigger4.

Solutions to this problem include extending the higher-level language described
in Chap. 5 to handle a wider variety of stateful policies or providing the engineer
with a tool that has a user interface for constructing policies, which are then gener-
ated automatically.

Figure 7.3 shows the DFA for the stateful policy. The design flow automatically
generates a hardware description of a reference monitor from the policy specifica-
tion. In the initial state of the system, neither core may use the AES core. This is the
state pointed to by init, and the access matrix for Access0 is shown. Module1 obtains
access to the AES core by writing to control_word1, causing the transition to the
state in the lower left, which shows the access matrix for Access1. Since Module1
can access control_wordAES and AES1, it can copy plaintext or ciphertext into its
portion of the AES core’s memory (AES1) and signal the AES core appropriately

7.7 Secure Interconnect Scalability 145

via control_wordAES. Upon completion of the encryption or decryption, the AES
core signals Module1 via control_wordAES, and Module1 copies the transformed
data from the shared buffer. Then, Module1 releases the AES core by writing to
control_word2, triggering a transition back to the initial state. Module2 obtains and
releases access to the AES core in a similar fashion. The reference monitor prevents
both Module1 and Module2 from using the AES core at the same time. This scheme
encodes the policy rules into the hardware so that the hardware enforces the policy
by design.

7.7 Secure Interconnect Scalability

Systems with large numbers of cores will require a more sophisticated strategy for
managing the communication between the cores in an efficient and secure man-
ner than a single bus with a single reference monitor. Depending on the choice of
interconnect, distributed reference monitors may be needed. For some stateful poli-
cies, synchronization of the state of multiple reference monitors can be a challenge.
A security architecture can minimize the synchronization overhead by reducing the
number of reference monitors required. For example, cores can be organized into
spatially isolated equivalence classes, and cores within a group only communicate
with each other via local interconnect. The reference monitor only needs to mediate
communication that crosses the boundaries between equivalence classes.

Future embedded systems-on-a-chip will use advanced interconnect technology,
including network-on-chip grids [2]. Managing security in these designs will require
integrating enforcement mechanisms into the on-chip routers.

7.8 Covert Channels

In the example from Fig. 7.3, a covert channel analysis technique such as that from
Chap. 3 provides analysis of possible covert channels from Module1 to Module2

(from the gray processor to the black processor). In other words, the gray proces-
sor could send information to the black processor by using the internal state of the
reference monitor as a covert storage channel. Several covert channels are possible.
One is based on interference in access to the bus. Another is based on the ability
of the gray processor to modulate the system between policy Access1 and Access0,
and for the black processor to detect those changes. The bandwidth of this covert
channel depends on how frequently the gray processor grabs the AES core. One so-
lution involves enforcing a time division multiple access (TDMA) sharing scheme.
In other words, the gray compartment uses the AES core for a fixed amount of time,
then the black compartment, and so on. The system can also require that the AES
core be used for a sufficiently long time that the bandwidth of the covert channel
is low enough. The system can also measure the number of times the gray core

146 7 Putting It All Together: A Design Example

grabs the AES core and raise an alarm if this activity exceeds a threshold. The sys-
tem can also introduce noise into the covert channel by randomly varying system
events.

To address the problem of the internal state of the AES core itself from being used
to send information from the gray core to the black core, an object reuse mechanism
is needed. A very heavy-handed approach is to use dynamic partial reconfiguration
to erase the entire contents of the moat-bounded region in which the AES core
resides and then reload a fresh AES core’s configuration into that space. A smarter
object reuse technique would only erase the stateful elements of the AES core, but
this finer-grained approach requires rigorous analysis. How do you know that you
erased everything and that nothing was left behind?

7.9 Incorporating Moats and Drawbridges

Incorporating moats and drawbridges into the design provides spatial separation and
simplifies the job of verification. Moats protect the reference monitor by providing
spatial isolation of the system components, including the reference monitor itself.
Proper configuration of drawbridges prevents the reference monitor from being by-
passed by detecting any illegal connections between system components. Specifi-
cally, the tracing algorithm detects connections from cores and memory that bypass
the reference monitor. It also detects illegal connections between cores that bypass
the reference monitor and illegal connections that allow cores to snoop on each
other’s memory traffic.

Xilinx PlanAhead [7] is used to construct the moats. As shown in Figs. 7.4
and 7.5, PlanAhead provides a visual interface for placing cores on the chip, and
the designer can leave a gap between cores. The output of PlanAhead is a user
constraints file that is used in the synthesis step. The synthesis tool calculates the
optimal layout for each core within its confined region.

The design is separated into seven distinct regions, one for each of the compo-
nents. Determining the optimal placement of the cores, which significantly impacts

Fig. 7.4 Constructing moats
with the PlanAhead tool for
an example design with four
MicroBlaze processor cores

7.10 Implementation and Evaluation 147

Fig. 7.5 Layout of the
system in PlanAhead after
partitioning into seven
moated cores

system performance, requires some trial and error. Cores that need to communi-
cate with each other should be placed close together, and other cores should also be
placed close to the I/O pins. Multipass place and route is used to compare various
layouts.

7.10 Implementation and Evaluation

The Xilinx Platform Studio (XPS) software is used to assemble the embedded de-
sign, and Modelsim is used to test the cores and the custom OPB on a set of test
inputs. The policy complier generates the Verilog description of the reference mon-
itor. XPS is also used to develop the software that runs on the FPGA, driving the
MicroBlaze processors. The Xilinx Microprocessor Debugger (XMD) is used to
debug this software. Using the inspection method of constructing seamless moats,
experiments find negligible impact on performance and no impact on area [3].

148 7 Putting It All Together: A Design Example

7.11 Software Interface

Continuing with the gray/black example, a programmatic interface allows an appli-
cation running on a PC or laptop to send data and keys to the device and to receive
the resulting ciphertext or plaintext programmatically. The user interface, imple-
mented in C++, specifies the operation (encryption or decryption), the input data
file, the key file, and where to save the result. In a typical configuration, a gray
laptop connects to the FPGA board via one of the Ethernet interfaces, and a black
laptop connects to the FPGA board via the other Ethernet interface.

7.12 Security Usability

Security techniques are useless unless designers can easily make use of them. The
experience of building this embedded system shows that moats are a simple yet
effective type of floor planning and are straightforward to implement. Determining
the floor plan with the optimal performance requires some trail and error, but this is
also straightforward for experienced designers. Incorporating the reference monitor
is facilitated by the OPB framework provided by Xilinx. The policy compiler also
facilitates the integration of the reference monitor because modifying the policy
merely requires recompiling. However, experience also shows that a custom tool
such as we describe is needed for constructing policies without requiring that the
designer be a regular expressions guru.

7.13 More Example Security Architectures

In a system that conforms to a Bell and LaPadula information flow policy, the com-
putational resources are partially ordered. For example, information can flow from
a C core to a S or TS core, but not from a C core to a U core. If there are many
cores and many direct connections, the number of rules in the policy implemented
as a table will become large, which will make the reference monitor large. Making
many copies of the reference monitor for each direct connection will also waste re-
sources. Instead of a reference monitor for every direct connection, something akin
to a diode, which only allows information flow in one direction, can be placed on di-
rect connections. Using diodes between compartments that have been isolated with
moats greatly reduces the arbitration/reference monitor resources needed to mediate
communication. This simplicity comes at the cost of less granularity of enforcement.

7.13.1 Classes of Designs

The design space of security architectures for FPGA systems can be divided into
two classes: Monolithic and Cores + Memory.

7.13 More Example Security Architectures 149

Fig. 7.6 This system has
four security compartments
that are isolated using moats.
Each compartment contains a
CPU core. The four
compartments are arranged in
a mesh configuration, and
diodes ensure the proper flow
of information between
compartments. Data can flow
from the U compartment to
the C compartment; from U
to S; from U to TS; from C to
S; from C to TS; and from S
to TS. This design class does
not take memory into account

7.13.1.1 Monolithic

This design class is only concerned about monolithic computing resources and does
not consider memory. Figure 7.6 shows an example of this class.

7.13.1.2 Cores + Memory

This design class takes memory into account, and memory is partitioned into ranges.
Each range is assigned a security label, and the same set of labels is also used for the
cores, which establishes compartments or partitions. Since memory can reside either
on the chip or off the chip, this design class can be further divided into those security
architectures that consider on-chip memory, off-chip memory, or both. An on-chip
reconfigurable reference monitor provides memory protection for both the on-chip
SRAM and off-chip DRAM. Moats provide protection for the on-chip Block RAM
(BRAM). Figure 7.7 shows an example of this design class.

The reference monitor enforces a policy that specifies which cores may access
which memory ranges. The DRAM is partitioned into ranges, and each range is
assigned a security label. The same set of labels is used for both the cores and the
ranges. To conform to a Bell and LaPadula information flow policy, the reference
monitor must not allow a core to write to a range with a lower label or read a range
with a higher label.

150 7 Putting It All Together: A Design Example

Fig. 7.7 This system is a representative of a class of security architectures that takes both on-chip
and off-chip memory into account. Each compartment contains a CPU core and two Block RAM
(BRAM) blocks that are isolated using a moat. A reference monitor provides memory protection
for both on-chip SRAM and off-chip DRAM

7.13.2 Topologies

Topologies are different arrangements of cores. Figure 7.8 shows a variety of com-
munication topologies arranged in a hierarchical fashion. Dividing the computing
resources into compartments in an intelligent manner can greatly reduce the com-
plexity and area of the policy enforcement mechanisms. Clever placement of the
reference monitor and the use of diodes also can reduce the complexity of the mech-
anism that enforces the intended policy. As advances are made in silicon fabrica-
tion, more and more cores can fit on a chip. Since the number of possible direct
connections between cores grows as the square of the number of cores, manag-
ing all this communication in an efficient and secure manner becomes very impor-
tant.

Diodes are an ideal enforcement tool for some direct connections because direc-
tional connections are very simple to build in hardware and are much smaller than a
reference monitor. All that is needed is a way to check that diodes are placed where
they are needed and that they point in the right direction, according to the policy.
However, there may be cases where a reference monitor is preferable to a diode,
such as a stateful policy in which it is necessary to temporarily disallow a particular
communication link.

7.14 Summary 151

Fig. 7.8 This figure shows a variety of communication topologies arranged in a hierarchical fash-
ion. The TS compartment has four cores arranged in a grid. The S compartment has four cores
connected via a bus. The C compartment has four cores arranged in a star configuration, with a
reference monitor that accounts for least privilege. The U compartment has four cores arranged in
a mesh configuration. Diodes ensure that data can only flow from U to TS; from U to C; and from
C to S. A reference monitor is located on the connection between TS and S in order to enforce a
more nuanced policy (e.g., flow from S to TS only under certain circumstances)

7.14 Summary

Security must become a first-class design constraint for embedded systems, which
are often incorrectly assumed to be secure. This design example demonstrates the
application of the security primitives described in this book. The experience of
building this system also shows that a custom utility is useful to facilitate the con-
struction of stateful policies involving complicated regular expressions. There are
many possibilities for future work, including integrating the reference monitor into
the direct memory access (DMA) controller in an efficient manner and designing
policies for systems that use a DMA controller. The problem of denial-of-service
is left to future work, specifically the problem of a malicious core making repeated
illegal requests.

152 7 Putting It All Together: A Design Example

References

1. J.P. Anderson, Computer security technology planning study. Technical Report ESD-TR-73-
51, ESD/AFSC, Hanscorn AFB, Bedford, MA, 1972

2. S. Bourduas, Modeling, evaluation, and implementation of ring-based interconnects for
network-on-chip. Ph.D. dissertation, McGill University, Dept. of Electrical and Computer En-
gineering, Montreal, Canada, May 2008

3. T. Huffmire, B. Brotherton, N. Callegari, J. Valamehr, J. White, R. Kastner, T. Sherwood, De-
signing secure systems on reconfigurable hardware. ACM Transact. Des. Automat. Electron.
Syst. (TODAES) 13(3), 44 (2008)

4. D. Raymond, D. Wood, Grail: A C++ library for automata and expressions. J. Symb. Comput.
11, 341–350 (1995)

5. US Department of Defense, National Industrial Security Program Operating Manual (NIS-
POM), 28 February 2006

6. C. Weissman, Secure computer operation with virtual machine partitioning, in Proceedings of
the National Computer Conference and Exposition, Anaheim, CA, May 1975

7. Xilinx Inc., PlanAhead Methodology Guide, San Jose, CA, 2006

Chapter 8
Forward-Looking Problems

Abstract This chapter considers forward looking problems, including trustwor-
thy tools, formal verification of hardware designs, configuration management, lan-
guages, physical attacks, design theft, and securing the entire manufacturing supply
chain.

8.1 Trustworthy Tools

Creating hardware designs that are free of covert channels remains a difficult prob-
lem. Future research is needed to develop trustworthy design flows, and this will
likely represent a large long-term research effort. For example, FPGA design tools
are very large and complex, with many features such as optimization functionality.
Tools also have a proprietary nature, and vendors are continually adding new fea-
tures. A full installation of the FPGA design tools can consume tens of gigabytes
of hard drive storage. However, it may be possible to design a much smaller design
flow with an essential subset of functions. This design flow can be developed by a
small group of people and subjected to rigorous formal security analysis to provide
a greater level of trustworthiness than the full-blown version of the tools. In the case
where synthesis optimizations are removed, performance concerns may require that
only part of the design can undergo trustworthy compilation (e.g., security mecha-
nisms). However, the limited nature of this stripped-down design flow tool will not
necessarily mean that the resulting security-critical hardware modules will be less
efficient than those generated by the full commercial tool chain.

It will not be easy to develop a stripped-down, trustworthy design flow. In the
software world, Thompson’s famous paper describes the difficulty of detecting sub-
version of a compiler [10]. In addition, analyzing an IP core or a computer program
to determine whether it is malicious is not decidable in the general case, since such
analysis is equivalent to the halting problem, according to Rice’s theorem [7].

Another key aspect of trust is that the output of each stage of the hardware design
flow faithfully implements the input to that stage. The application of existing com-
piler verification techniques should be investigated [3]. Complete physical isolation

T. Huffmire et al., Handbook of FPGA Design Security,
DOI 10.1007/978-90-481-9157-4_8, © Springer Science+Business Media B.V. 2010

153

154 8 Forward-Looking Problems

of certain modules of the design assists formal verification because those modules
that are not being tested can be masked out from the analysis. Assuming that the
correct behavior of each isolated component is well-defined, each component can
be tested separately to ensure that the output of the design flow is correct. In the case
where modules interact during runtime, their composed behavior must be tested, in
general. In addition to static analysis, runtime mechanisms should be developed to
verify the correct operation of the circuit and to verify the integrity of the circuit.

8.2 Formal Verification of Secure Systems

Research is needed to determine how well-understood techniques for software secu-
rity can be efficiently translated to the hardware realm [5]. Applying formal meth-
ods to the software design process involves using established techniques such as
theorem proving and model checking to ensure that the software satisfies security
requirements. Specifically, the code is checked against a formal top level specifica-
tion (FTLS). Unfortunately, theorem proving and model checking are not a silver
bullet because there may be a flaw in the model, the proof, the implementation of
the specification, or the physical deployment environment. In addition, scalability
can be a problem for model checking because of the growth in the complexity of
the security analysis with the size of the code under analysis. Although theorem
proving is more scalable than model checking in that regard, it is time-consuming
and requires experienced people to develop models and to guide the theorem prover.
While automatic theorem proving is an NP-complete problem, we look forward to
advances utilizing techniques such as have been used in model checking to reduce
extremely large yet partitionable search spaces.

Using the Common Criteria for system evaluation has many practical limitations.
A common critique is that the Common Criteria simply evaluates the Target of Eval-
uation against the Protection Profile, but if the Protection Profile is flawed, the eval-
uation is not necessarily useful. Both formal methods and the Common Criteria can
be difficult to adapt to the reality that systems are developed in an iterative manner.
When the end product differs substantially from the system at the beginning of the
project, a change to the specification can significantly impact both formal methods
analysis and Common Criteria evaluation. Research is needed to reduce this prob-
lem.

Given the lack of tools and theory with which to construct trusted systems, de-
signers should pay particular attention to the security-critical components and inter-
faces in any design. In a complex system with many requirements, no single security
technique by itself may be able to provide adequate security. Multiple complemen-
tary mechanisms must work together, requiring a holistic view of the entire system.
These include a coherent security architecture for runtime enforcement, static analy-
sis, formal methods, cryptography, security usability, user training, and many others.
Although perfect security does not exist in the real world, systems must be engi-
neered as perfectly as possible so that the adversary must work hard to attack each
individual machine, rather than letting multiple systems fall like dominoes after one
of them is compromised [6].

8.3 Security Usability 155

8.3 Security Usability

Good security needs to consider users: end users, administrators, and developers.
Developers must be able to easily adopt security techniques if they are to be incor-
porated into real designs. End users must be trained on the proper use, configuration,
management, and update of systems, and they must be aware of the risk of social
engineering attacks. Sound policies for users must be created and implemented, in-
cluding intrusion detection and audit policies to address insider attacks. Security
analysis should consider the assumptions regarding personnel and the environment.
Development machines and tools should be controlled and protected, and trusted de-
livery of components from the factory should be adopted. Policies must be expressed
in a clear, intuitive way so that they can be designed correctly by developers.

8.4 Hardware Trust

While the reconfigurable reference monitor technique is a first step in applying rig-
orous design and analysis to FPGA design security, more work is needed. Another
opportunity for future work is the development of a secure form of virtual memory
to provide resource arbitration for FPGAs. Research is also needed to ensure that
the FPGA manufacturer has not inserted malicious circuitry into the FPGA fabric
via a developmental insider attack. Although the attacker does not know what de-
sign will eventually be loaded onto the device, for highly trusted applications, even
the remote possibility of such an attack succeeding is a serious concern. Ideally, an
attacker attempting to insert a fault into the fabric should not be able to do any better
than random chance (i.e., cause a random fault). The application of existing proces-
sor design verification techniques [4] to the FPGA fabric should be investigated.

8.5 Languages

Applying formal methods with respect to formally defined properties of hardware
designs and hardware design flows would be another very useful long-term research
project. For example, formal methods could be applied to Hardware Description
Language (HDL) code such as Verilog or VHDL [2, 8]. Formal methods could also
be used to verify that the output of an HDL compiler faithfully implements the input.
Translation of a high-level specification to a low-level implementation remains an
open research challenge.

Another opportunity for future work is to develop enhancements for HDLs that
make it easier for designers to improve the security of their designs. For example,
HDLs could incorporate the notion of safety with respect to information flow, as has
been done for specialized programming languages. For example, the security label
of a wire could be specified in HDL. These language enhancements could be used in
conjunction with static analysis techniques that analyze the HDL for conformance

156 8 Forward-Looking Problems

with safety properties, or with runtime techniques that make use of the language
enhancements using runtime mechanisms. In addition, configuration management
techniques could be applied to HDL code as has already been applied to software
code.

In Chap. 5, we describe the use of a customized language for expressing a for-
mal top level specification (FTLS). The FTLS describes a policy that specifies the
legal sharing of memory among cores on an FPGA. A compiler translates the pol-
icy directly to a hardware description of a circuit that enforces the policy. Applying
formal methods to ensure the correctness of the HDL description of the circuit or
that the circuit faithfully implements the HDL description is left to future work. The
scope of such a project is enormous, since the design space of embedded systems
that can be loaded onto an FPGA is infinite, and a proof only applies to one system.
The scope must also consider the level of system abstraction at which a proof is
constructed (e.g., chip level, board level, system level) as well as whether the proof
is applied to the FPGA fabric itself, the bitstream encryption mechanisms, the bit-
stream containing the reconfigurable design, or the software running on top of the
reconfigurable hardware. In addition, the policy language could be enhanced with
features that make it impossible to compose a flawed FLTS that results in the covert
storage channel described in Sect. 3.5.

8.6 Configuration Management

Even so, designers should apply configuration management techniques from the
software discipline to the hardware discipline. For example, software configuration
management (CM) establishes a repository of specific versions of tools (e.g., com-
pilers) that have a good reputation. A specific version of a tool must earn its repu-
tation in the design community. Prior to installing the tool, an engineer can verify
the cryptographic checksum of the downloaded archive or disk image. In addition,
the output of the design tools should be analyzed with respect to known test cases.
Finally, just as software CM can be applied to specific versions of open-source soft-
ware libraries (e.g., the GNU C Library), hardware CM should be applied to specific
versions of open-source cores (e.g., an Ethernet core available at opencores.org).

8.7 Securing the Supply Chain

In addition to trusted design kits, tool flows, and design libraries, securing the entire
semiconductor manufacturing supply chain will require trusted packaging, assem-
bly, and delivery. To mitigate malicious hardware viruses, research is needed to un-
derstand, categorize, and analyze malicious hardware so that it can be detected. For
example, how can we prevent a denial-of-service attack by a malicious core? Pene-
tration testing and other forms of dynamic analysis, if used properly, can be useful

8.8 Physical Attacks on FPGAs 157

for detecting specific vulnerabilities, although it certainly cannot detect all subver-
sions. Although developers perform functional testing, to be most effective, both
developers and external testers should perform penetration testing. Specific criteria
are needed regarding who does the testing and the extent of testing to be performed.
Both will be determined based on how critical the system is. Understanding the
differences between penetration testing of software and hardware is also needed.
Results from research on malicious software, including discoveries about the theo-
retical limits of detecting subversion in software [9], will also apply to hardware.

8.8 Physical Attacks on FPGAs

Preventing physical attacks on FPGAs will require analysis of specific models of
FPGAs to identify vulnerabilities to physical attacks, including probing, power anal-
ysis, thermal channels (using variations in temperature to encode information), elec-
tromagnetic radiation analysis, timing analysis, and sand-and-scan attacks. Results
of this analysis can be used to incorporate mitigations (e.g., masking) into the FPGA
itself, the design loaded onto the FPGA, or both (e.g., tamper-sensing mesh and
epoxy potting material). Side channel attacks can compromise not only the keys
and data being processed by the FPGA but also the keys used to encrypt the bit-
stream, making it possible to thwart bitstream encryption schemes, which vary from
vendor to vendor and from model to model. Since traditional masking techniques
have theoretical limits according to results from information theory, total elimina-
tion of side channels is an open problem. Lowering the bandwidth of these channels
is the best that current techniques can achieve. System designers should consider
this fact during risk analysis.

A specific attack that merits further investigation is a malicious FPGA core that
configures itself to act like a radio transmitter. It may also be possible to build a
crude antenna in reconfigurable hardware, and the receiver could be another re-
configurable core, another chip on the board, or another device in the same room.
In addition to reconfigurable radios, small radios, both transmitters and receivers,
could also be added to the chip itself in silicon by malicious insiders in the foundry.
A malicious reconfigurable core could then connect to this hard-wired radio. Re-
searchers have already considered the problem of the temperature of the FPGA as a
covert channel medium [1].

8.9 Design Theft and Failure Analysis

Although industry has invested heavily in the research and development of bitstream
encryption and authentication, these mechanisms are not yet strong enough to resist
attacks by determined, well-funded, state-sponsored adversaries. Infiltration or brib-
ing of employees of FPGA manufacturers can easily bypass the current protection
technology. Bitstream encryption and authentication mechanisms require many of

158 8 Forward-Looking Problems

the same kinds of secure engineering approaches (security architectures, key man-
agement, vulnerability analysis, formal verification, tamper resistance, side channel
mitigation, etc.) as the designs that they are supposed to protect. Although PUFs are
a promising way for generating unique keys, more work is needed to generate PUFs
with sufficient entropy in a reliable way, and to generate them on FPGAs.

In order to build highly trustworthy systems on FPGAs, it will be necessary to
conduct a comprehensive analysis of the failure modes (if they exist) of the specific
FPGA(s) to be used in the design. For example, in response to a given fault, a system
may simply halt, fail secure, continue to run, operate in a reduced functionality or
maintenance mode, or recover. Therefore, an analysis of all of the states and tran-
sitions is needed. Such an analysis could show, for example, whether it is possible
to transition from maintenance mode to system halt. Furthermore, it is necessary to
understand how the larger system is informed of the failure of an individual com-
ponent. The selection of the specific model of FPGA to be used in the design is a
very important design consideration because security features such as IP protection
mechanisms differ across vendors (Xilinx, Altera, Actel), FPGA types (antifuse,
flash, SRAM), and specific models of FPGA (Virtex 4, Virtex 5, Virtex 6, Stratix II,
Stratix III, etc.).

8.10 Partial Reconfiguration and Dynamic Security

Further research is needed to apply the results of dynamic security research to FPGA
systems that use partial reconfiguration. For example, whether a system allows the
policy to change, which subject changes the policy, the frequency of policy changes,
whether the policies are predetermined or generated at runtime, whether it is possi-
ble to return to an earlier policy, whether the system always transitions to a mono-
tonically more restrictive policy, whether security mechanisms can be reconfigured
in addition to cores, and whether the system is hot-swappable should be considered
with respect to their impact on the security and performance of partial reconfig-
uration. Research is also needed to allow partial reconfiguration to work without
disabling encryption and to protect the ICAP interface.

8.11 Concluding Remarks

The widespread use of reconfigurable hardware in critical systems forces the FPGA
community to adopt design practices that give a high priority to security. Implicitly
trusting the hardware ignores the fact that hardware can behave maliciously. Design-
ing a reconfigurable hardware based embedded system resembles software design
in many ways, including the use of complex tool flows and the reuse of source code.
Flaws in design tools and IP cores can be exploited to attack systems.

A wide variety of attacks against FPGAs are possible. The goals of these attacks
include theft of intellectual property, theft of confidential data and keys, unautho-
rized modification of the hardware, and denial of service. At the foundry, malicious

8.11 Concluding Remarks 159

employees can introduce extra functionality or steal the design. Luckily, FPGAs
mitigate this problem, since the design is loaded onto the chip after fabrication in
a secure facility. To prevent the theft of the design after the programming of the
FPGA, manufacturers have incorporated bitstream decryption mechanisms so that
the design can be stored in encrypted form when the device is powered off. Despite
significant effort to develop bitstream protection mechanisms, determined attackers
will still try to circumvent them by performing attacks on the decryption mecha-
nisms themselves in order to obtain the key. Preventing a determined adversary from
performing a physical attack on a device is extremely difficult and costly, as decades
of experience attempting to build tamper-proof hardware has shown. In addition to
physical attacks, adversaries can attempt to circumvent authentication mechanisms
that are supposed to prevent unauthorized parties from updating an FPGA’s config-
uration remotely.

To minimize the damage that a flawed software program can inflict, general-
purpose systems employ protection mechanisms to logically separate software pro-
cesses, including rings, process address space, memory protection, virtual memory,
and separation kernels. To minimize the damage that a flawed hardware core can
inflict, this book has described a strategy of physical isolation of cores using moats,
together with drawbridges as a means of controlled sharing between cores. Moats
are implemented by constraining the placement of cores during the layout phase of
design. Drawbridges are implemented by statically tracing the reconfigurable de-
sign. An on-chip reference monitor also provides separation of cores with respect
to memory by enforcing a policy expressed in a specialized language. The refer-
ence monitor design flow resembles Electronic System Level (ESL) Design in that
a high-level policy specification is automatically translated to a low-level hardware
implementation. Policy enforcement mechanisms must be scalable in the complex-
ity of the policy they enforce and must also be efficient in terms of area, cycle
time, and overall system performance. Therefore, these methods were evaluated on
a multi-core embedded design consisting of two domains that share an AES encryp-
tion core.

Proper security analysis must take a holistic view of how the FPGA fits within the
larger system. This book has introduced several abstractions for managing complex-
ity to facilitate security analysis. The reference monitor abstraction separates func-
tional components from security components, which must be small, tamperproof,
and non-bypassable. A security architecture specifies the organization of security
and functional components for enforcing a specific policy. The policy abstraction is
a means of specifying the subjects and objects of the system as well as the conditions
under which certain subjects may access certain objects. Multiple complementary
security techniques should be used, since each technique has its unique advantages
and limitations, although multiple weak security mechanisms combined together do
not necessarily form a stronger security mechanism. Secure systems engineering
requires vigilance throughout the entire lifecycle of the system, including require-
ments analysis, design, implementation, testing, delivery, configuration, operation,
maintenance, and audit. Security methods must be usable to both system designers
and end users.

160 8 Forward-Looking Problems

Future research is needed to improve the security of design flows and IP cores,
including the development of small, trusted tools and configuration management
of tools and cores. Research is also needed to analyze the security properties of
hardware modules in a disciplined manner, to apply anomaly detection to hardware
behavior, to formally analyze HDL specifications of IP cores, to detect and mitigate
covert channels in FPGA designs, and to perform rigorous formal security analysis
of bitstream protection mechanisms.

Many of the design techniques for improving security for FPGA systems can
also improve the security of ASIC systems. In fact, FPGAs provide an ideal evalu-
ation platform for prototyping novel hardware security techniques. Since hardware
manufacturers are often reluctant to incorporate security methods developed by re-
searchers, the FPGA provides a proving ground for these enhancements. FPGAs can
now hold as many as eight full PowerPC soft processor cores, making them ideal
for conducting experiments on security enhancements for chip multi-processors.

Two fundamental questions for any hardware-oriented security design are: what
policy should be enforced on the chip, and how to enforce that policy. Cores can
be arranged into equivalence classes, and a security architecture can specify which
cores belong to which equivalence classes. Policy enforcement mechanisms ensure
that cores belonging to different domains cannot interfere with each other. Proces-
sors with large numbers of cores are already on the drawing board, and manag-
ing communication in these designs in an efficient and secure manner is essential.
Communication resources will dominate the area of the chip, and adapting the draw-
bridge technique to future interconnect designs will enable the controlled sharing of
large numbers of cores.

References

1. J. Brouchier, T. Kean, C. Marsh, D. Naccache, Temperature attacks. IEEE Secur. Priv. 7(2),
79–82 (2009)

2. M. Gordon, Validating the PSL/Sugar specification language using automated reasoning.
Form. Asp. Comput. 15(4), 406–421 (2003)

3. J. Hannan, F. Pfenning, Compiler verification in LF, in Proceedings of the 7th Annual IEEE
Symposium on Logic in Computer Science (LICS), Santa Cruz, CA, June 1992

4. W.A. Hunt, Microprocessor design verification. J. Autom. Reason. 5(4), 429–460 (1989)
5. C.E. Irvine, K. Levitt, Trusted hardware: can it be trustworthy?, in Proceedings of the 44th

Annual Design Automation Conference (DAC), San Diego, CA, June 2007
6. T.E. Levin, C.E. Irvine, T.V. Benzel, G. Bhaskara, P.C. Clark, T.D. Nguyen, Design princi-

ples and guidelines for security. NPS Technical Report NPS-CS-07-014, Naval Postgraduate
School, Monterey, CA, 21 November 2007

7. H.G. Rice, Classes of recursively enumerable sets and their decision problems. Trans. Am.
Math. Soc. 74, 358–366 (1953)

8. H. Sasaki, A formal semantics for Verilog-VHDL simulation interoperability by abstract
state machine, in Proceedings of the Conference on Design, Automation, and Test in Europe
(DATE), Munich, Germany, March 1999

9. D. Spinellis, Reliable identification of bounded-length viruses is NP-complete. IEEE Trans.
Inf. Theory 49(1), 280–284 (2003)

10. K. Thompson, Reflections on trusting trust. Commun. ACM 27(8), 761–763 (1984)

Appendix A
Computer Architecture Fundamentals

Abstract No book dealing with FPGAs and embedded systems would be complete
without a discussion of computer architecture. To better understand the hardware-
oriented security methods presented in this book, this appendix discusses the funda-
mental concepts of computer architecture that are applicable to FPGAs, ASICs, and
CPUs.

A.1 What Do Computer Architects Do All Day?

Computer architects map applications to physical devices, and the requirements
of the application dictate the design of the architecture. For some applications,
a general-purpose CPU architecture is adequate, and the application can be imple-
mented in software. However, sometimes a generic CPU is not enough, and custom
hardware is required to deliver the necessary performance or other requirements.
Examples of applications requiring custom hardware include networking and graph-
ics, which have high throughput requirements. In addition, embedded systems often
require custom hardware due to their resource-constrained nature. It is the com-
puter architect’s job to determine the optimal architecture for a particular application
by balancing tradeoffs. Among the many tools in the computer architect’s arsenal
are measurement and metrics, cost-benefit analysis, simulation, standard programs
called benchmarks, and logical analysis. Computer architects perform experiments
that vary the parameters of the design. Since the list of possible experiments to try is
always much larger than the available time, the computer architect must determine
the most important parameters of the design and strip away all others.

Although designing custom hardware is hard work, large performance gains
over general-purpose systems can be realized. Custom designs can be developed
for many disciplines, including machine learning and neuroscience, biometrics,
medicine [17, 18], cryptography [29], security, networks, computer vision, and pro-
gram analysis. For a particular application, the computer architect performs analysis
to determine the most common operations and then optimizes them. Understanding
the structure of the problem makes it possible to extract parallelism from the appli-
cation by performing common operations on multiple hardware units in parallel.

T. Huffmire et al., Handbook of FPGA Design Security,
DOI 10.1007/978-90-481-9157-4, © Springer Science+Business Media B.V. 2010

161

162 A Computer Architecture Fundamentals

It is an exciting time to be a computer architect. In the words of Mark Oskin,
“Seven years ago, when I started as a young assistant professor, my computer sci-
ence colleagues felt computer architecture was a solved problem. Words like ‘in-
cremental’ and ‘narrow’ were often used to describe research under way in the
field. . . . From the perspective of the rest of computer science, architecture was a
solved problem” [19] (p. 70). However, there is renewed hope for the future of the
field. Techniques for improving performance that have worked in the past have run
into technical “brick walls,” including the “Power Wall,” the “Memory Wall,” and
the “ILP Wall” [1]. In addition, design complexity and reliability for large, out-of-
order processors presents challenges for implementation and verification. Industry
has embraced chip multi-processors (CMPs) to address these problems, but devel-
oping multithreaded software that can achieve performance gains by making use of
the multicore hardware has been a hard problem for decades. As researchers from
the Berkeley Par Lab explain, “Industry needs help from the research community
to succeed in its recent dramatic shift to parallel computing” [2] (p. 56). Rather
than trying to parallelize existing scalar software code, one sensible strategy is to
think about the problem from the standpoint of what can I do with all of these cores
that cannot be done with unicore mechanisms? Making it easy for programmers to
exploit multicore hardware is an open research challenge [7]. In addition to the pro-
gramming problem, realistic multicore benchmarks for evaluation are also needed.
Oskin concludes, “In my lifetime, this is the most exciting time for computer archi-
tecture research; indeed, people far older and wiser than me contend this is the most
exciting time for architecture since the invention of the computer” [19] (p. 78).

A.2 Tradeoffs Between CPUs, FPGAs, and ASICs

Figure A.1 shows the relative generality of CPUs, FPGAs, and ASICs. There are
several tradeoffs between CPUs, FPGAs, and ASICs, including software vs. hard-
ware, generality vs. performance, cost vs. performance, and generality vs. security.
CPUs run software, which is relatively inexpensive to program but comes with high
overhead. ASICs are custom hardware, they have relatively high performance, and
they are relatively expensive. FPGAs are more difficult to program than CPUs, but
they are less expensive than ASICs. In addition, FPGAs can achieve higher through-
put than CPUs but not as high as ASICs. The gap between FPGAs and ASICs
is narrowing because FPGAs can be built more economically in the latest feature
size, while lower-volume ASICs are sometimes fabricated with larger feature sizes,
which are cheaper.

Fig. A.1 On a continuum of
generality, CPUs are the most
programmable, and ASICs
are the least

A.3 Computer Architecture and Computer Science 163

The tradeoff between generality and security is more complex than the other
tradeoffs. Attackers like generality because they can run malware on general-
purpose systems. However, this doesn’t mean that ASICs are free of security prob-
lems. If that were the case, application-specific hardware would solve the world’s
security problems. If a device is hard-wired to do only one thing, how can it be
hacked? Sadly, this type of thinking is an example of security through obscurity.
Application-specific devices are useful to the security community, and limiting the
functionality of a system can benefit security. However, a system’s security should
not rest entirely upon the fact that a system has been designed to perform a limited
number of functions or that the design is kept secret.

Another aspect of the tradeoff between generality and security involves the
trusted foundry problem. An ASIC’s intellectual property is vulnerable to theft and
malicious inclusions because the design is typically sent to a third-party foundry.
CPUs and FPGAs, on the other hand, are programmed after fabrication. However,
one problem is replaced by another because of the risk that the hardware design may
be stolen from a fielded FPGA (by circumventing the bitstream decryption mech-
anisms) or that the software may be stolen from a fielded general-purpose system.
Stealing the design from a fielded ASIC is a much more expensive task, requiring
reverse-engineering and physical sand-and-scan attacks.

A.3 Computer Architecture and Computer Science

Computer architecture spans all of computer science, and it is just as essential as
theory, algorithms, languages, operating systems, networking, and security. Many of
the performance gains in processors are the result of progress in algorithm develop-
ment, not just the ability to fit more and more transistors on a single die. Transistors
are only able to compute when they are arranged in a large-scale, correct, efficient,
and fault-tolerant computer architecture. With the number of transistors on a sin-
gle chip approaching and even exceeding one billion, the orchestration of such a
large number of individual elements requires complex algorithms for optimization,
scheduling, placement, routing, verification, branch prediction, cache replacement,
instruction prefetching, control, pipelining, parallelism, concurrency, multithread-
ing, hyperthreading, multiprocessing, speculation, simulation, profiling, coherence,
and out-of-order execution, to name a few. Understanding how processors are de-
signed and what is inside a modern processor are fundamental questions of computer
architecture.

Processors are the most complicated things that humans build. Complexity is the
reason that a majority of engineers at chip manufacturing companies are verification
engineers, with the design engineers making up a minority. With the increasing non-
recurring engineering (NRE) cost of chip manufacturing for smaller and smaller
feature sizes, a mistake in the design of a chip can be fatal for even a large company.
Since the number of possible states for a billion transistor design is astronomical,
verification requires advanced algorithms, and its difficulty is proportional to design
complexity.

164 A Computer Architecture Fundamentals

A.4 Program Analysis

Computer architects study the question of what makes computers go fast. To write
fast programs, it is necessary to profile what is going on inside the processor. In a
modern processor, a huge number of events occur every second, on the order of one
billion, and analyzing these events in real time is no small task.

A.4.1 The Science of Processor Simulation

Simulation is an essential program analysis technique, and processor simulation en-
compasses an entire field of study. Computer architects consume a lot of time and
processor cycles running simulations. Not only is simulation useful for analyzing
the performance of a processor as it runs a program, but simulating the processor is
also necessary to verify its correctness. Just as an architect must create blueprints
before breaking ground, a processor must be simulated prior to fabricating a chip.
In between simulation and fabrication, the additional step of prototyping and testing
the design on an FPGA is often taken. Simulation of the design should always be
performed prior to FPGA implementation (due to the large effort required to pro-
totype a design on an FPGA) and chip fabrication (due to the high NRE cost of
fabrication).

The choice of simulation technique depends on the problem that needs to be
solved. Simulation at a fine level of granularity is computationally intensive. For
example, cycle-level simulation, in which events at the granularity of a single clock
tick are duplicated by a software program running in a different hardware envi-
ronment, is very detailed and therefore computationally intensive. Instruction-level
simulation (a.k.a. emulation), in which events at the granularity of an instruction
are represented in another processing environmet, is less expensive than cycle-level
simulation but is less accurate. Emulation is useful for narrowing in on a good idea
because it is fast and simple but less useful for deeper analysis because it is less
accurate. For example, emulation is useful for determining the number of memory
accesses and cache misses for a particular benchmark program. All simulators, both
cycle-level and instruction-level, run at a much lower speed than the processors they
simulate.

A key simulation parameter is how long and what to simulate. Since it is usu-
ally infeasible to simulate every event of a long-running program, it is necessary to
choose a sample that represents the most pertinent behavior of the program. Taking
this sample from the very beginning of the program may be a bad idea because com-
puter programs usually begin by zeroing out arrays. Often, the critical action occurs
towards the middle of the program. A sample size on the order of one hundred mil-
lion instructions is common with instruction-level simulation. For cycle-level sim-
ulation, a smaller sample size is needed. Another key simulation parameter is the
baseline or benchmark used for the experiment. Benchmarks are standard programs
for comparing processors. The program is run by the processor being simulated.

A.4 Program Analysis 165

It is extremely important to document the simulation parameters when describing
the methodology of the experiment in order to understand the meaning of the re-
sults.

To study the effects of changing various aspects of the processor being simu-
lated, computer architects modify the source code of the simulator so that the new
behavior can be observed. One way of accomplishing this observation is to generate
trace files and then analyze them later offline, an approach called trace-driven sim-
ulation. In trace-driven simulation, the simulator is modified to write specific events
to a trace file. Trace files can get very large, on the order of gigabytes for one second
of program execution, and writing to trace files slows down the simulation further.
After the trace file is generated, the computer architect uses a different program to
analyze the trace file off-line. For example, this program could determine the op-
timal cache replacement policy for a simulation that exercised different memory
management strategies. Alternatively, it could determine the optimal branch predic-
tion technique for a simulation of branch events. However, trace-driven simulation
is limited by the fact that it is static, which is not useful for studying behaviors that
involve significant speculative execution [30].

SimpleScalar is a suite of uni-processor simulators and tools for compilation [4].
The suite consists of SIM–FAST , a functional simulator that provides no timing,
SIM–OUTORDER, a functional and timing simulator with a detailed timing model,
SIM–CACHESIM, for simulating memory behavior, and SIM–BPRED, for simulat-
ing branch prediction. SimpleScalar can run programs with different ISAs, where
the MACHINE.DEF file specifies the ISA, which can be Pisa, Alpha, Arm, or x86.
Pisa is a made-up architecture based on MIPS, and a specific version of gcc will
produce Pisa code. A real compiler and a set of binaries is available for Alpha. Arm
is primarily used in embedded systems, and x86 is ubiquitous. SIM–MAIN is the
main simulator loop.

A.4.2 On-Chip Profiling Engines

Because simulation typically slows down execution by at least one order of magni-
tude, capturing and analyzing events in real-time using on-chip profiling hardware
is very useful for computer architecture research. An on-chip profiling module can
capture and analyze events in real time and at high bandwidth without the need for
dumping every event to a trace file on the hard disk. Although some processors have
profiling features such as special profiling registers, more full-featured profiling en-
gines desired by computer architecture researchers are rare because of economic
priorities. Chip manufacturers have their hands full verifying the processor design
itself without the extra task of designing and verifying a profiling module, and most
end users will never use the profiling module, not being computer architecture re-
searchers.

To overcome this problem, one option is to employ a co-processor for off-loading
computationally-intensive analysis tasks. The co-processor can be a chip on the

166 A Computer Architecture Fundamentals

Fig. A.2 Online program analysis architecture. Computationally-intensive program analysis tasks
can be off-loaded to an FPGA co-processor

same board as the main processor, or it can be an FPGA board that is connected
to the Peripheral Component Interconnect (PCI) interface of the motherboard, as
shown in Fig. A.2. As the processor executes the program, software instrumen-
tation gathers profile data, which is batched in a buffer. Rather than performing
computationally-intensive analysis of the profile data in software on the host CPU,
the data is then written to the PCI driver. Next, the FPGA analysis module pro-
cesses the profile data, and the output is used by an optimizer, a human oper-
ator, a display, or a remote monitoring unit. Clearly, this online program anal-
ysis architecture has lower bandwidth than an on-chip profiling module. An ap-
proach that can achieve higher bandwidth applies 3-D integration, an established
technology in which a commodity integrated circuit is enhanced with a separate
chip after fabrication [15, 16]. This additional integrated circuit contains a profil-
ing module for analyzing events on the commodity chip. The application of 3-D
Integration to security has also been proposed [14]. In this approach, specialized
security functions reside in one IC, called the 3-D control plane, which moni-
tors and enforces a security policy on the commodity IC, called the computation
plane.

A.4.3 Binary Instrumentation

Binary instrumentation is another useful program analysis technique [12] and is
used by itself or, for example, as a component of on-chip profiling engines, as shown
in Fig. A.2. An unmodified binary can be instrumented with calls to custom func-
tions in response to specific events. These software functions can perform analysis
of the event or simply write specific details of the event to a trace file. Like sim-

A.4 Program Analysis 167

Fig. A.3 A plot of the cache behavior of Firefox over fifty million instructions as it loads a web
page. The x-axis is time, and the y-axis is a function of the address of the memory access. Each
vertical slice, or interval, represents one million instructions. The top band shows L1 cache hits, the
middle band shows L1 cache misses, and the bottom band shows L2 misses. Intervals are colored
according to the wavelet-based phase classification algorithm [13]

ulation, there is at least one order of magnitude slowdown, and writing to trace
files slows things down even further. However, binary instrumentation provides the
opportunity to study the complex, multi-threaded behavior of applications like web
browsers, word processors, and graphics editing programs. Specific features of these
applications can be invoked by interacting with the user interface (e.g., invoking
menu commands, dialog boxes, etc.)

A.4.4 Phase Classification

Phase analysis is another useful tool in the computer architect’s arsenal [21, 22].
Computer programs exhibit repeating behaviors over the course of their execution.
Identifying these phases, which are time intervals that share similar behavior, pro-
vides several opportunities for guiding run-time optimizations and reducing simula-
tion time [8, 9, 20, 23]. Phase classification works by counting the frequency each

168 A Computer Architecture Fundamentals

basic block1 is executed during each time interval. A Basic Block Vector (BBV) is
simply an array with one entry for each basic block that stores the frequency that
each basic block is executed, weighted by the number of instructions in the basic
block and normalized by the total number of basic blocks executed during the in-
terval. A similarity metric called Manhattan Distance is used to compare BBVs,
and it is the sum of the absolute value of the difference between each element of
two BBVs. Random Projection is used to reduce the dimensionality of the data, and
k-means clustering is used to group the BBVs into clusters. All BBVs in a clus-
ter belong to the same phase. Other structures for phase classification include those
that capture memory access stride, structures that employ the notion of working sets,
and even structures that use wavelet coefficients [13]. Figure A.3 shows the mem-
ory behavior of Firefox over fifty million instructions as it loads a web page, where
intervals are colored according to the wavelet-based phase classification algorithm.

A.5 Novel Computer Architectures

Making effective use of billions of transistors and a multitude of cores on a single
chip is the goal of next-generation processor design proposals. The key to success is
managing complexity by using robust design abstractions that do not hide the tech-
nical nuances. Computation will become less expensive, but communication will
become more expensive. Interconnection networks that manage the communication
among large numbers of cores will likely consume a large portion of the on-chip
resources. Just as processors use a hierarchy of memories, it is likely that future
processors will use a hierarchy of interconnect.

A.5.1 The DIVA Architecture

The DIVA architecture [3] is an attempt to manage complexity. Verification of pro-
cessors that use speculative execution is very computationally intensive. The key
idea is that verifying the correctness of the result of a computation is less computa-
tionally demanding than computing that result. Therefore, the runtime correctness
of a complex processor that uses out-of-order execution can be verified by a smaller
checker hardware module. This checker unit’s small size makes it much easier to
verify. The checker unit resides on the chip along with the more complex processor
that uses speculation. There are several parallels between the DIVA concept and the
reference monitor concept. Both are small, making them easier to verify, both help
to manage complexity, and both are run-time mechanisms that reside on the chip.

1A basic block is a straight-line sequence of code with one entry point, one exit point, and no jump
instructions.

A.5 Novel Computer Architectures 169

A.5.2 The Raw Microprocessor

To manage complexity, future processors will likely employ large numbers of com-
putational cores. These cores will need to communicate in an efficient manner,
requiring alternatives to traditional bus interconnect. A shift from computation-
centric to communication-centric design is underway. The idea of networks-on-a-
chip (NoC) has been around for a while [6], but few NoCs have been realized due
to their complexity. Implementation of a network-on-chip requires building scaled-
down networking routers that are located throughout the chip. The chip is divided
into tiles, where each tile has a computational core, a network interface (NI), and
a switch. Various topologies have been studied, such as the hierarchical ring-based
interconnect [5], although realistic evaluation benchmarks, network traffic models,
and simulation environments are currently lacking. While the primary application of
NoCs is embedded systems, Intel’s technology roadmap for future interconnect calls
for a scaled-down network protocol stack for on-chip interconnection networks [11].
The Raw Microprocessor Architecture, developed at MIT, uses both static and dy-
namic routing [25, 28]. Tilera is a company that has developed a 64-core processor
aimed at the embedded market. Tilera’s processor is called TILE64 and is based on
the MIT Raw Architecture.

A.5.3 The WaveScalar Architecture

WaveScalar [24] is a dataflow architecture that is an alternative to the von Neu-
mann architecture. The problem with the von Neumann architecture is that all of the
data, including data residing in low levels of the memory hierarchy (e.g., off-chip
DRAM), has to be brought into a central location (the CPU) to be processed, be-
fore being sent back out to memory. The key idea of WaveScalar is to execute the
program in place in the memory system. Whenever a variable’s value changes, this
automatically triggers the recalculation of the values of other variables that are de-
pendent on it. WaveScalar exploits the principle of locality, meaning that if the pro-
gram accesses a memory value at location i, it is likely that the program will access
one of i’s neighbors in the near future. The basic building block of the WaveScalar
processor is the WaveCache, consisting of both memory and processing elements.

A.5.4 Architectures for Medicine

There are many medical applications of computer architecture. For example, sub-
threshold voltage processors in medical devices can be used to prevent blind-
ness [17, 18]. Subthreshold voltage processors trade processor performance for en-
ergy savings. The device uses a subthreshold voltage processor to measure intraoc-
ular pressure to delay the onset of blindness in glaucoma and diabetes patients.

170 A Computer Architecture Fundamentals

Fig. A.4 Memory is arranged into banks, with row decoders and column decoders

“The system is designed to grip the inner surface (vitreous) of the eyeball. The
system will be installed via out-patient surgery, and it will provide patients with
real-time feedback on the interior eye pressure. Recent medical studies have shown
that careful monitoring and subsequent control of intra-ocular pressure can delay
the onset of blindness in glaucoma and diabetes patients. The intra-ocular pressure
measurement system includes a subthreshold sensor processor, 384 bytes of mem-
ory, 1024 bytes of ROM, a MEMOS-based pressure sensor, a Peltier-based energy
scavenging mechanism which utilizes temperature gradients within the eyeball to
produce electricity, and a communication system based on inductive coupling” [18].

A group at Stanford is working on a retinal prosthesis implant that is placed
behind the retina and has an array of tiny solar cells, and other groups send power
to their devices via RF signals [10].

A.6 Memory

A good analogy to the memory hierarchy of a computer is a kitchen. When the cook
needs an ingredient, the first place to look is the refrigerator. The refrigerator is like
a cache: finding the needed ingredient is analogous to a cache hit, and not finding
it is analogous to a cache miss. If the ingredient is not in the refrigerator, it is nec-
essary to check the pantry. The pantry is analogous to an L2 cache. If the required
ingredient is not in the pantry, this is analogous to an L2 cache miss, and a trip to
the supermarket is required. The supermarket is analogous to off-chip memory be-
cause of the relatively large number of clock cycles required to perform an access to
off-chip memory. Fetching an item from the pantry takes progressively longer than
fetching an item from the refrigerator in the kitchen, and driving to the supermarket
takes progressively longer than fetching the ingredient from the pantry.

A.6 Memory 171

Fig. A.5 An SRAM cell stores a single bit. Feedback between two NOT gates, which enter a
stable equilibrium, is the storage mechanism

Fig. A.6 Another stable equilibrium of an SRAM cell

Memory is arranged into banks, as shown in Fig. A.4. A memory address must
specify which bank along with the row and column of the desired location within
that bank. A row decoder and a column decoder select the row and column spec-
ified in the address. The bit is stored at the junction of the row and column. Fig-
ure A.5 shows how a bit is stored in an SRAM cell. Feedback between two NOT
gates, which enter a stable equilibrium, is the storage mechanism. Figure A.6 shows
another stable equilibrium. Six transistors are needed for each SRAM cell: two for
each NOT gate, and two additional transistors. Figure A.7 shows a multi-port SRAM

172 A Computer Architecture Fundamentals

Fig. A.7 A Multi-port
SRAM cell allowing multiple
simultaneous access

Fig. A.8 A DRAM cell

cell that allows multiple simultaneous access, which is useful for video cards that
read and write at the same time or perform multiple accesses to the same location.

Despite its large power and area requirements, SRAM is used for on-chip L1
caches and registers, where high performance is needed. Off-chip DRAM, on the
other hand, uses fewer transistors per bit, reducing the power and area for each bit.
This makes it possible to build memories very densely but also reduces the perfor-
mance (1 ns for SRAM and 100 ns for DRAM). A DRAM cell uses a capacitor,
which is a bucket of electrons. A write to DRAM involves either charging or dis-
charging, but a read is more tricky. Since the capacitor leaks slowly, buckets that
have the value one need to be refilled. The currents involved are tiny, with just one
hundred electrons representing a single bit. Figure A.8 shows a DRAM cell, where
the capacitor is drawn in the lower right portion of the figure.

Due to the growing gap between processor and memory performance, system
designers employ a hierarchy of memories, a concept devised by von Neumann
in 1946. To capture spatial locality, caches are broken up into blocks. In a fully
associative cache, a block can go anywhere in the cache. This requires a system

A.7 Superscalar Processors 173

of tags in order to know which pieces of memory reside in the cache, and parallel
searches of all slots are required. At the other extreme is a direct mapped cache,
which works like a hash table because a block can only go to one location. Direct
mapped caches are very fast but may have collisions of addresses to the same slot.
In between the two extremes is a set associative cache, which allows a block to go
to a set of possible locations. Cache replacement policies include least recently used
(LRU), least frequently used (LFU), random, and oracle, which makes a prediction
about which pieces of memory will be used in the future.

A common program optimization technique is to change the way that a program
accesses memory in order to reduce the number of cache misses. The program is
redesigned so that needed data fits into the cache better and can be prefetched more
effectively.

A.7 Superscalar Processors

Analysis of the dependencies of code determine when more resources (e.g., adders)
are needed in order to execute multiple instructions in parallel. Multiple issue pro-
cessors include Very Long Instruction Word (VLIW) machines and superscalar ma-
chines. In a Very Long Instruction Word (VLIW) machine, two instructions can
be glued together to form one big instruction, and the compiler does the schedul-
ing. In a superscalar machine, the processor hardware schedules the instructions.
More things are being done by the hardware these days rather than the compiler.
For example, out-of-order execution, in which the hardware dynamically rearranges
instructions, is becoming common.

Tomasulo’s Algorithm is a distributed, scalable algorithm for finding paral-
lelism [26]. For data dependencies, out-of-order execution adapts dynamically to
the data flow graph. In a sense, the data flow graph is sucked through a straw, and
since there are finite resources on the chip, sometimes there is a miss. Tomasulo’s
Algorithm uses dynamic loop unrolling, mix & match, and reservation stations. In-
structions wait at the reservation stations until they have what they need. After ex-
ecuting, the fact that they now have what they need is broadcast over the broadcast
bus. Tomasulo’s algorithm was implemented on the IBM 360/91, which was a com-
mercial flop. It had four floating point registers and little compiler support. In the
case of an add, the instruction waits for the two operands it needs, checking the
register file. The result is broadcast everywhere over a common data bus. The reser-
vation station scheme requires entries for the operation (e.g., addition, subtraction),
the operands, the names of the reservation station of origin, and whether the reser-
vation station is occupied.

Problems with Tomasulo’s Algorithm include broadcasting to everybody over
the common data bus. Since order matters, arbitration is needed to prioritize the
communication. Since overloading the bus is a problem, multiple busses may be
necessary or a cross bar network of point-to-point interconnection. Complexity is
another problem with Tomasoulo’s Algorithm. Tomasulo’s Algorithm teaches us
that good solutions are a compromise. An alternative scheduling scheme to Toma-
sulo’s Algorithm is just in time scheduling used by the Pentium 4.

174 A Computer Architecture Fundamentals

For name dependencies, the hardware implementing Tomasulo’s Algorithm uses
register renaming. While the user and the compiler can only see a small number
of architectural registers (e.g., 32), the set of physical registers can be larger (e.g.,
256), and register renaming maps the smaller set onto the larger set. This register
renaming contributes to the complexity of the design and verification of Tomasulo’s
Algorithm.

A.8 Multithreading

Figure A.9 shows two threads executing on a superscalar processor and illustrates
the problem of vertical waste, in which redundant hardware resources often go un-
used [27]. Tullsen et al. define empty issue slots as vertical waste when the processor
issues no instructions in a cycle; horizontal waste occurs when all of the available
issue slots cannot be filled in a cycle [27]. At one point in Fig. A.9, Thread 2 is not
able to use any of the hardware resources. To mitigate this problem, one might try to
interleave both threads, a scheme called fine-grained multithreading, but this does

Fig. A.9 Superscalar
machines exhibit vertical
waste

Fig. A.10 Fine-grained
multithreading machines
exhibit horizontal waste

References 175

Fig. A.11 A Simultaneous
Multithreading (SMT)
Machine interleaves
instructions every cycle,
performing them
simultaneously. This
approach does a good job of
packing the instructions in
and more fully utilizing
redundant hardware resources

not eliminate the horizontal waste of resources, as shown in Fig. A.10. Although in-
terleaving has solved the vertical waste problem, there are still times when all of the
hardware resources are not being utilized fully. Simultaneous Multithreading (SMT)
machines interleave instructions every cycle, performing them at the same time, as
shown in Fig. A.11. SMT machines do a good job of packing the instructions in.
Technical issues of SMT machines include:

• page tables and TLBs (a TLB is a cache for the page table)
• register assignments (separate registers are required)
• multiple stacks
• the memory hierarchy (one thread might overwrite the cache)
• separate branch predictors
• parallel instruction issue logic
• sharing one structure between threads

References

1. K. Asanovic, R. Bodik, B.C. Catanzaro, J.J. Gebis, P. Husbands, K. Keutzer, D.A. Patterson,
W.L. Plishker, J. Shalf, S.W. Williams, K.A. Yelick, The landscape of parallel computing
research: a view from Berkeley. Technical Report No. UCB/EECS-2006-183, University of
California, Berkeley, 18 December 2006

2. K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz, N. Morgan,
D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, K. Yelick, A view of the parallel computing
landscape. Commun. ACM 52(10), 56–67 (2009)

3. T.M. Austin, DIVA: a reliable substrate for deep submicron microarchitecture design, in Pro-
ceedings of the 32nd International Symposium on Microarchitecture (MICRO-32), Haifa, Is-
rael, November 1999

4. T. Austin, E. Larson, D. Ernst, SimpleScalar: an infrastructure for computer system modeling.
IEEE Comput. 35(2), 59–67 (2002)

5. S. Bourduas, Modeling, evaluation, and implementation of ring-based interconnects for
network-on-chip. Ph.D. dissertation, McGill University, Dept. of Electrical and Computer En-
gineering, Montreal, Canada, May 2008

6. W.J. Dally, B. Towles, Route packets, not wires: on-chip interconnection networks, in Pro-
ceedings of the 37th Design Automation Conference (DAC), Las Vegas, NV, June 2001

176 A Computer Architecture Fundamentals

7. J. Dean, S. Ghemawat, MapReduce: simplified data processing on large clusters. Commun.
ACM 51(1), 107–113 (2008)

8. L. Eeckhout, R.H. Bell Jr., B. Stougie, K. De Bosschere, L.K. John, Control flow modeling in
statistical simulation for accurate and efficient processor design studies, in Proceedings of the
31st Annual International Symposium on Computer Architecture (ISCA), Munich, Germany,
June 2004

9. L. Eeckhout, J. Sampson, B. Calder, Exploiting program microarchitecture independent char-
acteristics and phase behavior for reduced benchmark suite simulation, in Proceedings of the
IEEE International Symposium on Workload Characterization (IISWC’05), Austin, TX, Oc-
tober 2005

10. W.D. Jones, A form-fitting photovoltaic artificial retina. IEEE Spectrum, 46(12), December
2009. http://spectrum.ieee.org/biomedical/bionics/a-formfitting-photovoltaic-artificial-retina

11. D. Kanter, The Common System Interface: Intel’s future interconnect. White Paper, Real
World Technologies, August 2007

12. C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V.J. Reddi, K. Hazel-
wood, Pin: building customized program analysis tools with dynamic instrumentation, in Pro-
ceedings of the 2005 ACM/SIGPLAN Conference on Programming Language Design and Im-
plementation, Chicago, IL, June 2005

13. T. Huffmire, T. Sherwood, Wavelet-based phase classification, in Proceedings of the Fifteenth
International Conference on Parallel Architectures and Compilation Techniques (PACT), Seat-
tle, WA, September 2006

14. T. Huffmire, J. Valamehr, T. Sherwood, R. Kastner, T. Levin, T.D. Nguyen, T. Sherwood,
Trustworthy system security through 3-D integrated hardware, in Proceedings of the 2008
IEEE International Workshop on Hardware-Oriented Security and Trust (HOST), Anaheim,
CA, June 2008

15. S. Mysore, B. Agrawal, S.-C. Lin, N. Srivastava, K. Banerjee, T. Sherwood, Introspective 3D
chips, in Proceedings of the Twelfth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), San Jose, CA, October 2006

16. S. Mysore, B. Agrawal, S.-C. Lin, N. Srivastava, K. Banerjee, T. Sherwood, 3-D integration
for introspection, in IEEE Micro: Micro’s Top Picks from Computer Architecture Conferences,
January–February 2007

17. L. Nazhandali, B. Zhai, J. Olson, A. Reeves, M. Minuth, R. Helfand, S. Pant, T. Austin,
D. Blaauw, Energy optimization of subthreshold-voltage sensor network processors, in Pro-
ceedings of the 32nd Annual International Symposium on Computer Architecture (ISCA),
Madison, WI, June 2005

18. L. Nazhandali, M. Minuth, B. Zhai, J. Olson, T. Austin, D. Blaauw, A second-generation
sensor network processor with application-driven memory optimizations and out-of-order ex-
ecution, in Proceedings of the International Conference on Compilers, Architectures, and Syn-
thesis for Embedded Systems (CASES), San Francisco, CA, September 2005

19. M. Oskin, The revolution inside the box. Commun. ACM 51(7), 70–78 (2008)
20. E. Perelman, G. Hamerly, M. Van Biesbrouck, T. Sherwood, B. Calder, Using SimPoint for

accurate and efficient simulation, in International Conference on Measurement and Modeling
of Computer Systems, San Diego, CA, June 2003

21. T. Sherwood, E. Perelman, G. Hamerly, B. Calder, Automatically characterizing large scale
program behavior, in Proceedings of the Tenth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS), San Jose, CA, October
2002

22. T. Sherwood, E. Perelman, G. Hamerly, S. Sair, B. Calder, Discovering and exploiting pro-
gram phases, in IEEE Micro: Micro’s Top Picks from Computer Architecture Conferences,
November–December 2003

23. R. Srinivasan, J. Cook, S. Cooper, Fast, accurate microarchitecture simulation using statistical
phase detection, in IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS’05), Austin, TX, March 2005

24. S. Swanson, K. Michelson, A. Schwerin, M. Oskin, WaveScalar, in Proceedings of the 36th
International Symposium on Microarchitecture (MICRO), San Diego, CA, December 2003

References 177

25. M.B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H. Hoffman, P. John-
son, J.-W. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski, N. Shnidman, V. Strumpen, M. Frank,
S. Amarasinghe, A. Agarwal, The RAW microprocessor: a computational fabric for software
circuits and general-purpose programs. IEEE Micro 22(2), 25–35 (2002)

26. R.M. Tomasulo, An efficient algorithm for exploiting multiple arithmetic units. IBM J. Res.
Develop. 11(1), 25 (1967)

27. D.M. Tullsen, S.J. Eggers, H.M. Levy, Simultaneous multithreading: maximizing on-chip par-
allelism, in Proceedings of the 22nd Annual International Symposium on Computer Architec-
ture, Santa Margherita Ligure, Italy, 1995

28. E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim, M. Frank, P. Finch,
R. Barua, J. Babb, S. Amarasinghe, A. Agarwal, Baring it all to software: RAW machines.
IEEE Comput. 30(9), 86–93 (1997)

29. L. Wu, C. Weaver, T. Austin, CryptoManiac: a fast flexible architecture for secure communi-
cation, in Proceedings of the 28th Annual International Symposium on Computer Architecture
(ISCA), Gothenburg, Sweden, July 2001

30. C. Zilles, G. Sohi, Master/slave speculative parallelization, in Proceedings of the 35th Inter-
national Symposium on Microarchitecture (MICRO), Istanbul, Turkey, November 2002

	Cover
	Handbookof FPGADesign Security
	ISBN 9048191564
	Preface
	Contents
	Acronyms
	Chapter 1Introduction and Motivation
	The Growing Reliance on FPGAs
	FPGAs for Aerospace
	FPGAs for Supercomputing
	FPGAs for Video Analysis
	FPGAs for High-Throughput Cryptography
	FPGAs for Intrusion Detection and Prevention

	FPGA Architectures
	The Attractiveness of Reconfigurable Hardware
	The Internals of an FPGA
	Design Flow

	The Many Facets of FPGA Security
	Security Is Hard
	Complexity and Abstraction
	Baked in Versus Tacked on
	Separation of FPGA Cores

	Organization of This Book
	References

	Chapter 2High Assurance Software Lessons andTechniques
	Background
	Malicious Software
	Trojan Horses
	Subversion

	 Assurance
	Commensurate Protection
	Threat Model
	FPGA Interfaces
	FPGA Assets
	FPGA Attacks
	Other Threat Model Elements

	Security Policy Enforcement
	Types of Policies
	Discretionary Policies
	Mandatory Policies
	Least Privilege and Its Policies

	Policy Enforcement Mechanisms
	Privileged Instructions, Rings, and Gates
	Memory Protection, Process Address Space and Virtual Memory
	Object Reuse Mechanisms
	Controlled Entry Points
	User Attribute Binding: The Trusted Path
	Discretionary Policy Enforcement Mechanisms
	Capability Systems
	Mandatory Security Policy Enforcement Mechanisms
	Types of Mandatory Mechanisms
	Audit Mechanisms

	Composition of Trusted Components
	Composition Problems

	Assurance of Policy Enforcement
	Life Cycle Support
	Assessment Criteria
	Use of Trustworthy Tools
	Applying Security Principles to Life Cycle Process

	Configuration Management
	Independent Assessment
	Dynamic Program Analysis
	Testing

	Trusted Distribution
	Trusted Recovery
	Static Analysis of Program Specifications
	Code Reviews and Bug Checking
	Formal Methods
	Refinement and Preservation of Properties

	References

	Chapter 3Hardware Security Challenges
	Malicious Hardware
	Categories of Malicious Hardware
	Foundry Trust
	Physical Attacks

	Covert Channel Definition
	The Process Abstraction
	Equivalence Classes
	Formal Definition
	Synchronization
	Shared Resources
	Requirements
	Bypass

	Existing Approaches to Limiting Covert and Side Channel Attacks
	Shared Resource Matrix Methodology
	Cache Interference
	FPGA Masking Schemes

	Detecting and Mitigating Covert Channels on FPGAs
	Design Flows
	Spatial Isolation
	Memory Protection

	Policy State as a Covert Storage Channel
	Stateful Policies
	Covert Channel Mechanism
	Encoding Schemes
	Covert Storage Channel Detection
	Covert Channel Mitigation

	References

	Chapter 4FPGA Updates and Programmability
	Introduction
	Bitstream Encryption and Authentication
	Key Management
	Defeating Bitstream Encryption

	Remote Updates
	Authentication
	Trusted Recovery

	Partial Reconfiguration
	Applications of Partial Reconfiguration
	Hot-Swappable vs. Stop-the-World
	Internal Configuration Access Port
	Dynamic Security and Complexity
	Object Reuse
	Integrity Verification

	References

	Chapter 5Memory Protection on FPGAs
	Overview
	Memory Protection on FPGAs
	Policy Description and Synthesis
	Memory Access Policy
	Hardware Synthesis
	Design Flow Details
	Access Policy
	Parse Tree Construction and Transformation
	Generating the Regular Expression
	NFA Construction
	Converting the NFA to a DFA
	Processing the Ranges
	Conversion of the DFA to Verilog
	State Machine Synthesis

	A Higher-Level Specification Language
	Example Policies
	Controlled Sharing
	Access List
	Chinese Wall
	Bell and LaPadula Confidentiality Model
	High Water Mark
	Biba Integrity Model
	Redaction

	System Architecture
	Evaluation
	Using the Policy Compiler
	Constructing Mathematically Precise Policies
	Cross Product Method
	Examples
	Monotonic Policy Changes
	Formal Aspects of Hybrid Policies

	Summary
	References

	Chapter 6Spatial Separation with Moats
	Overview
	Separation
	Physical Isolation with Moats
	Constructing Moats
	The Gap Method
	The Inspection Method
	Comparing the Gap and Inspection Methods

	Secure Interconnect with Drawbridges
	Drawbridges for Direct Connections
	Route Tracing with Partial Reconfiguration
	Drawbridges for Shared Bus Architectures

	Protecting the Reference Monitor with Moats
	References

	Chapter 7Putting It All Together: A Design Example
	A Multi-Core Reconfigurable Embedded System
	On-Chip Peripheral Bus
	AES core
	Logical Isolation Compartments
	Reference Monitor
	Stateful Policy
	Secure Interconnect Scalability
	Covert Channels
	Incorporating Moats and Drawbridges
	Implementation and Evaluation
	Software Interface
	Security Usability
	More Example Security Architectures
	Classes of Designs
	Monolithic
	Cores + Memory

	Topologies

	Summary
	References

	Chapter 8Forward-Looking Problems
	Trustworthy Tools
	Formal Verification of Secure Systems
	Security Usability
	Hardware Trust
	Languages
	Configuration Management
	Securing the Supply Chain
	Physical Attacks on FPGAs
	Design Theft and Failure Analysis
	Partial Reconfiguration and Dynamic Security
	Concluding Remarks
	References

	Appendix A Computer Architecture Fundamentals
	What Do Computer Architects Do All Day?
	Tradeoffs Between CPUs, FPGAs, and ASICs
	Computer Architecture and Computer Science
	Program Analysis
	The Science of Processor Simulation
	On-Chip Profiling Engines
	Binary Instrumentation
	Phase Classification

	Novel Computer Architectures
	The DIVA Architecture
	The Raw Microprocessor
	The WaveScalar Architecture
	Architectures for Medicine

	Memory
	Superscalar Processors
	Multithreading
	References

