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Preface to the 
Second Edition 

In the present era of sophisticated machinery, gear technology has evolved to a high degree 
of perfection. Several developments leading to advanced leve! design and manufacture of 
gear and gearing systems have taken place. These developments have prompted me to revise 
the first edition. 

The first edition was a practical reference fulfilling the requirements of design engineers 
and technicians. In the new edition I have updated and broadened the scope of application 
with additional discussions on spiral bevel gear systems, more methods for checking gear- 
tooth and design of gear-tooth profile. 

I have been greatly encouraged by the tremendous response from the professionals from 
the industry and also from academicians based in India and abroad. I take this opportunity 
to thank my friends, colleagues and the readers of the first edition for their appreciation and 
feedback. I will welcome suggestions and constructive criticism on the second edition leading 
to its improvement. 

GITIN M MA~TRA 





Preface to the 
First Edition 

Prima facie, a gear is an  ordinary machine element, yet such is the modern demand and 
importance of this seemingly simple engineering component that  the science and a r t  of gear 
engineering is continuing to develop new, highly efficient and unusual forms of gear systems, 
gear mechanisms and arrangements to meet the exacting and ever-increasing requirements of 
present-day technology. Today gears represent a high level of achievement in engineering 
behind their seemingly simple facade. 

Rapid developmentshave taken placein recent yearsin the design, manufacturingprocesses, 
matsrial, heat-treatment and other strength-improving procedures, inspection, checking and 
control of gears. In  the present era of sophisticated technology, mass production and high-speed 
machinery, gear design has evolved to a high degree of perfection. The design and manufacture 
of precision-cut gears, made from materials of high strength, have made it possible to produce 
gears which are capable of transmitting extremely large loads at extremely high circumferential 
speeds with very little noise, vibration and other undesirable aspects of gear drives. 

It is, therefore, imperative that  students and engineers alike must keep themselves abreast 
of the latest, rapidly changing gear-design techniques. 

While books on gear design are galore in industrially developed countries, there is dearth of 
such books in India which take cognizance of the pragmatic approach towards this subject and 
which conform to the Indian Standards and use the SI units of measurements. The basic 
concepts of gear design and their practical use have been exhaustively dealt with in this book. 
Existing treatises, foreign or indigenous, are normally restricted to sophisticated clientele or are 
too detailed in nature. This book is intended to present the technology of gearing in a lucid 
manner to help the engineering student a s  well a s  the design engineers, technicians and other 
skilled personnel working in the industry, so that  they can 'easily appreciate the underlying 
principles and practice of the subject. During my tenure as  a design engineer in industries at 
home and abroad, 1 have gained considerable experience in the practical side ofgear design and 
this volume is, therefore, written with a n  emphasis and bias towards the practical approach. At 
the same time, it has  been supplemented by a sufficient account of the theoretical aspects. This 
would be profitable for the readers wishing to probe into the justification ofthe design techniques 
involved. 

Since the subject of gear technology is vast, I have felt impelled to discuss the subject in the 
broadest terms within the scope available. Aspects of different types of gears, gearing systems 
and allied subjects which are normally encountered in gear design have been discussed in this 
book. For those readers who wish to  pursue the subject in even greater depth and detail, copious 
references are alluded to at relevant pages. 

Acknowledgements are due mostly to the authors ofthe numerous books and technical papers 
I have consulted while preparing this book, I will be thankful if the errors that  might have crept 
in inadvertently are pointed out. Any suggestions leading to the improvement of the book will 
be gratefully received. 

GITIN M MAITRA 
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1 
Fundamentals of 
Toothed Gearing 

1.1 Introduction 

In  engineering and technology the term “gear”is defined as a machine element used to transmit 
motion and power between rotating shafts by means of progressive engagement of projections 
called teeth. 

Invention of the gear cannot be attributed t o  one individual as the development of the toothed 
gearing system evolved gradually from the primitive form when wooden pins were arranged on 
the periphery of simple, solid, wooden wheels to drive the opposite member of the pair. These 
wheels served the purpose ofgears in those days. Although the operation was neither smooth nor 
quiet, these were not important considerations as the speeds were very low. The motive power 
to run these systems was generally provided by treadmills which were operated by men, animals, 
water wheels or wind-mills. Primitive forms of gear were known to Archimedes before the 
Christian era. Leonard0 da Vinci also used the concept ofa gear system in many of his proposed 
appliances and machines. In  recent times, however, inventors have conceii trated their efforts to  
devise curves for the gear teeth which would provide constant relative velocity of the gear tooth 
faces. The unique property applicable t o  all these curvesis that  the common normal to  the curves 
of the two teeth in contact at their point of contact must pass through the point of contact of the 
two pitch circles of the mating gears. One of such curves, the epicycloid, was proposed by the 
famous Danish astronomer, Olaf Roerner. The involute curve, which is the most common curve 
used today, was presumably first suggested by the celebrated Swiss mathematician, Leonard 
Euler. It was, however, Prof. Robert Willis of Cambridge University who gave a practical shape 
to these curves as applied t o  present-day gear toothing. Charles Camus and Philippe de Lahire 
are also known as the early pioneers in the field of toothed gearing. 

Gears operate in pairs, the smaller of the pair being called the “pinion” and the larger the 
“gear”. Usually the pinion drives the gear, and the system acts as a speed reducer and a torque 
converter. The centre distance between the rotating shafts in a gear drive is normally not too 
large. When the distance is comparatively large, the other power transmitting systems, such as, 
belt drive, chain drive, etc. are resorted to. Now, when the centre distance is not the deciding 
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factor, belt drives are fast becoming out-moded and are being replaced by gearing systems. 
Although belt drives have the inherent advantages of shock, load reaction vibration absorbing 
capacities, their greater space requirements, exposure to surroundings and vulnerability to 
slippage make the gearing systems more preferable because these systems are positively driven, 
can be totally enclosed, require less space and are compact driving arrangements. When two 
smooth cylinders are mounted on shafts with parallel axes and are pressed together lengthwise, 
it is possible to transmit power from one shaft to the other by friction drive. If there is no slippage 
during the contact, such rotating cylinders will ensure a smooth and accurate transmission of 
angular velocity. The angular velocities [in radians per second or revolutions per minute (rpm)] 
of these cylinders are inversely proportional to the diameters of the cylinders. This relation 
applies if the driving and the driven cylinders are perfectly accurate, and the cylinders are said 
to produce “uniform velocity transmission.” 

The above arrangement, however, is impossible to achieve in practice because it does not 
produce a positive drive owing to  the slippage which may be caused by various factors. To 
overcome the problem of slippage, toothed wheels or gears are used which produce positive drive 
with uniform angular velocity ratio. 

Although kinematically the motion of a pair of gear is analogous to that of a pair of two pitch 
cylinders which roll without slip, the action on the meshing teeth consists generally of a 
combination of rolling and sliding motions. This aspect of dual motions will be discussed in the 
relevant section dealing with sliding velocities of gear teeth. 

For mechanical power transmission, gears are generally categorised into three distinct types: 
(a) those transmitting power and motion between parallel shafts, namely, spur and ordinary 
helical gears; (b)  those for shafts with intersecting axes, the angle between the shafts being 
generally go’, e.g. bevel gears; and (c) those where the shafts are neither parallel nor intersecting, 
the axes generally making 90’ (or some other angle) to each other but in different planes, e.g. 
worm and worm-wheel, crossed-helical gears, and hypoid gears. 

In recent times, the gear design has become a highly complicated and comprehensive subject. 
A designer of a modern gear drive system must remember that the main objective of a gear drive 
is to transmit higher power with comparatively smaller overall dimensions of the driving system 
which can be constructed with minimum possible manufacturing cost, runs reasonably free of 
noise and vibration, and which requires little maintenance. He has to  satisfy, among others, the 
above conditions and design accordingly, so that  the design is sound as  well as economically 
viable. 

Although the types and the modalities of gear design vary widely, the following data can be 
used as guidelines. 

Spur and helical gear drives The usual reduction ratios in spur and helical gear drives are: 
1 : 8 (max. 1 : 20) for single stage, 1 : 45 (max. up to 1 : 60) for double stage, and 1 : 200 (max. up 
to 1 : 300) for triple stage. 

Depending on the number of stages, type of design and size, this type of gearing can have 
output up to 18000 kW, speed up to  100000 rpm and circumferential velocity up to 200 metre/ 
second, overall efficiency generally up to 96-99%. Planetary gear drives using spur and helical 
gears usually have reduction ratio up to 8 with a max. value of around 13. Efficiency is about 
98-99%, power output up to 7500 kW and speed up to 40000 rpm. 

Worm and worm-wheel drives Thereduction ratio in these drives is usually up to 60, but it can 
be increased up to and over 100 depending on the numbers of stages. Efficiency ranges from 97% 
decreasing to 45% with increasing reduction ratios and slower slidingvelocity. Output is usually 
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up to 750 kW, output torque up t o  250,000 Nm, speed up to 30000 rpm, and circumferential 
velocity up to 70 m/s. The worm and worm-wheel drive produce lesser noise and vibration than 
any other kind of gear drive. I t  is also comparatively cheaper and is recommended for those cases 
where a self-actuated reversal of power flow must not occur, i.e. it can ensure irreversibility when 
desired. 

Bevel gear drives The reduction ratio is usually up t o  6, in bevel gear drive, but still higher 
values are possible in some cases. For higher service requirements and operational conditions, 
hardened spiral bevel gears are usually specified. 

Selection of the right kind of gear for the right kind of application is an  open issue and there 
is no ready method which can be specified for the purpose. Generalisations can, of course, be made 
which can lead to the selection of process of manufacture to be adopted and the type of gear to 
be specified for specific purposes. Final decision, however, will depend entirely on the discretion 
and technical skill of the designer who will weigh the merits and demerits of the several choices 
available before making the final selection. As regards applications, the following guidelines are 
of relevance. 

Gears used in machine tools must be accurate and rugged. The gear teeth are finish-machined 
by one of the precision-producing methods employed. Alloy steels with good machinability are 
used for hardness of Brinell Hardness Number 2500 to 3500 N/mm2. With the introduction of 
carbide-tipped tools, higher cutting speeds are involved which in turn necessitates harder and 
more precise gears. The hardness can go up to  60 Rockwell Hardness C or even higher in certain 
specific applications. 

In  case of automobiles, which use spur, helical as well as bevel gears for transmission gear 
boxes and differentials, gears are generally cut from low-alloy steel forgings which after teeth 
cutting are heat-treated to the desired hardness. The gear teeth should be very accurate in the 
initial stage itselfas no post-hardening tooth-correcting processes are employed. Case hardened 
automobile gears usually have a surface hardness of around 60 HRC and core hardness of around 
30 HRC. This imparts the gears the properties of wear-resistance, strength, plus the shock 
absorbing capabilities. 

Gears used in marine applications are very large, powerful and run a t  high speeds. Herring- 
bone gears are usually employed. As high circumferential velocities and load carryingcapacities 
are required, extreme accuracy in tooth-spacing is essential. 

Aclass ofgears, called control gears areused as  timing gears in machines and as setting gears 
for guns in ships and aeroplanes, etc. Here, the main objective is transmitting precise angular 
motion, transmission of power being secondary. Backlash is extremely small, being practically 
zero in certain applications. 

For household gadgets medium-carbon steel gears, sintered metal, non-metallic, laminated 
gears are commonly used. Die-cast gears of non-ferrous metals are often used for their low cost. 
Punched gears and moulded-plastic gears are also widely used in domestic applications and 
appliances. 

Terminology, symbols and notation for toothedgearing It has been the practice with different 
authors to  use various symbols to represent gear parameters according t o  their own choice. To 
avoid confusion and t o  promote international usage, the International Organisation for Stan- 
dardisation (ISO) has issued the following recommendations in this regard. 

TheISO recommendation No. 888 entitled “InternationalVocabulary of Gears” lays down the 
nomenclatures, and the IS0 Recommendation R 701 entitled “International Gear Notation, 
Symbols for Geometrical Data” lays down the relevant notations. 



1.4 Handbook of Gear Design 

The terminology and the notations for toothed gearings are also covered by the Indian 
Standard Specifications IS: 2458 and IS: 2467 which broadly tally with the IS0  Recommenda- 
tions. 

In this book, the same symbols, notations and subscripts have been used with a few minor 
exceptions. 

1.2 General Classification of Gears 

Depending upon the relation between the axes, shape of the solid on which the teeth are 
developed, curvature ofthe tooth-trace and any other special features, gears are categorised into 
the following types. 

Spur gears In a pair of mating spur gears, the axes of the component gears are parallel, that 
is, they are mounted on shafts which are parallel to  each other. The reference or the pitch solid 
is a cylinder. The gear teeth are straight along the length and are parallel t o  the axis. A rack is 
a straight-sided gear and can be thought of as a spur gear of infinite diameter. 

Parallel helicalgeurs In thesegears also the axes are parallel and the pitch solidis cylindrical. 
The tooth-traces or  the elements of teeth are helices and these helices may be left-handed or 
right-handed. (In this connection, it may be mentioned that some authors designate the spur 
gears as straight spur gears and the helical gears as helical spur gears. This practice will not be 
followed in this book.) 

Herringbone geeurs Also known as double-helical gears, these gears are actually two helical 
gears ofopposite hands, placed side by side and cut on the same blank to obtain a composite unit. 

Straight bevel gears In this type of gearing, the axes are intersecting. The angle between the 
two axes, known as the shaft angle, is usually go', but it can be ofother value also. The gear blank 
is a cone on which teeth are generated. The teeth are straight, but the height of teeth gradbally 
decreases and the sides of teeth are tapered so that all lines, when extended, meet at a common 
point called the pitch cone apex. In case where the bevel gears are required to have uniform 
clearance throughout the length of the teeth, only the pitch cones of the two gears intersect at 
the apex point. Bevel gears having straight teeth but mounted on non-interesecting axes are 
known as skew gedrs. After the advent of hypoid gears, these gears are seldom used. 

Spiral bevel gears In this type of bevel gears, the tooth elements are curved in the shape of a 
spiral so that the contact between the inter-meshing teeth begins gradually and continues 
smoothly from one end to the other. The contour of the spiral depends on the particular make, 
e.g. circular arc for Gleason system, involute for Klingelnberg system, etc. Also, the lengthwise 
tooth height may be tapered towards the apex or it may be uniform throughout its length. 

Zero bevelgears These are spiral bevel gears where the spiral angle is zero. It  is apatenteditem 
of the Gleason Works of USA. 

Hypoid gears These are similar to spiral bevel gears, but have non-intersecting axes, i.e. the 
axis of the pinion is off-set relative to the gear axis. However, the planes containing the two axes 
are usually at right angles to each other. If the off-set is sufficient so that the two shafts can pass 
one another with adequate clearance, the straddle mounting on bearingsfor both the pinion and 
gear is possible. In such cases, obviously the component gears need not be overhung. The blanks 
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of hypoid gears are hyperboloids of revolution. Hence the name. 
Crossed helicalgears These are cylindrical helical gears, but their axes are at an  angle when 
in mesh and do not intersect. Crossed helical gears are also sometimes termed as“spira1 gears” 
and “screw gears’’ but such names are discouraged as they are rather confusing. 

Worm and worm-wheel In this system of gearing, the axes are non-intersecting and the planes 
containing the axes are normally at right angles to  each other. The tooth elements of both the 
components are helices. The system can be single-enveloping or  double-enveloping types. 

The above mentioned types are the major classes of gears commonly in use. There are other 
special types such as coniflex bevel gears, crown or face gears, spiroid gears, beveloid gears, 
helicon gears, planoid gears, and revacycle bevel gears. Most of these special types are patented 
items bearing registered trade names of different manufacturing companies, such a s  Gleason 
Works, Vinco Corporation, Michigan Tool Co., Illinios Tool Works. De Lava1 Holroyd Co. 

Fig 1.2 Rack and pinion 

1.1 Spur gear 

The characteristics and uses of each of the types of gears which are commonly in use will be 
discussed in detail in the relevant chapters and sections later. The different types of gears 
described above have been illustrated in Figs 1.1-1.10. 

1.3 Principles of Transmission and Conjugate Action 

When a pair of mating gear teeth act against each other, rotary motion is produced which is 
transmitted from the driver to the driven gear. If such a pair of gears have tooth profiles which 
are so designed that a constant angular velocity ratio is produced and maintained during 
meshing, the two gears are said to have conjugate action and the tooth profiles are said to have 
conjugate curves. In  other words, conjugate action is assured if 

0 1  - = constant 
0 2  

- where m1 = Angular velocity ofthe driver component of the matingpair, generally called pinion, 
in radians per second 
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If the 
of the 

Fig 1.5 Herringbone gear 

Fig. 1.4 Helical gear 

ig. 1.7 Spiral bevel gear 

Fig. 1.6 Straight bevel gear 
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Fig. 1.8 Hypoid gear 

see later that the most 

Fig. 1.9 Crossed helical gear 

and cycloidal curves. 
Figure 1.11 shows two curved body-surfaces which are in contact with each other. Body 1, with 

centre at 0, and hav inganyla r  velocity of al, is pushing body 2 of which the centre is at 0,. This 
produces rotary motion and body 2 rotates with an angular velocity of a2. The point of contact 
at this instant is at Q where the two surfaces are tangent to each other. The common tangent to 
the curvesis 2'-Tand the transmission of forces takes place along the common normal N-N which 
is also called the line of action. The line of actionN-Nintersects the line of centres 0, 0, at  P which 
is called the pitch point. Circles drawn through P, having centres at 0, and 0,, are termed as pitch 
circles. The diameters of these circles, called pitch circles diameters (PCD), are the represent 
ative parameters of the two gears. 

that the law of gearing is satisfied. This law states that: 
For producing a constant velocity ratio, the curved profiles of the mating teeth must be such 

In  order to have a constant angular velocity ratio, the tooth curves must be so shaped that  the 
common normal to the tooth profiles at the point of contact will always pass through the pitch 
point, irrespective of the position of the point of contact during the course of action. 
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\ 
/ k'' 

Fig. 1.1 1 Transmission of motion and conjugate action 
Based on Grundzuege der Verzahnung, Thomas, 1957 Edition, 
Fig. No. 5.2, p. 28. Carl Hanser Verlag, Munich, Germany. 
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For a constant angular velocity ratio, the pitch point must remain stationary at a fixed point. 
Every line of action for every instantaneous point of contact must pass through the pitch point 
P.  

If the teeth have cycloidal profiles, the lines of action vary in position at different points of 
contact during the course of action, although each line passes through the pitch point, thus 
observing the law of gearing. In  other words, the path of contact formed by joining the different 
points of contact at different positions of the inter-meshing teeth is curvilinear. This is a 
disadvantage ofthe cycloidal curve as will be seen in the section dealing with cycloidal toothing. 

I n  case of involute profile, however, all points of contact take place on the same straight line 
(IineN-Nin Fig. 1.11)-which means that the point Q, which is the instantaneous point of contact 
at any position, moves up and down along the line N-N. And since all the normals to the tooth 
profiles at any point of contact during action coincide with the line N-N , the law of gearing is 
obviously maintained. This aspect will be discussed in detail in the section dealing with the 
properties of involute toothing. 

The condition that for a constant angular velocity ratio, the common normal must intersect 
the line of centres at a fixed point can be proved as given below. 

Gear teeth move with a combination of rolling and sliding motion during the period of 
engagement. The sliding does not affect the transmission of motion at a constant velocity ratio 
because the motion at the pitch point P is one of pure rolling. This will be discussed in detail in 
the section on the slidingphenomenon of gear teeth. In  this connection, it must be remembered 
that  the pitch circles are the representative circles of the gears, and the pitch cylinders are 
analogous to two smooth cylindrical bodies, one of which drives the other through friction- 
contact, thus producing pure rolling action. 

In  Fig. 1.11, the lines &MI and QM, represent the linear velocity vectors of the two gears at 
the instantaneous point Q. Since u = w.r,u being the circumferential velocity at radius r,  these 
velocity vectors can be easily laid, knowing q, uz, and the instantaneous radii 0, Q and 0, Q. 
And since the two bodies are rigid, the common point Q can have only one velocity component on 
the line of action N-N and this is represented by the line Qn. When resolved, QM, and QM, have 
components Qt, and Qtz respectively on the common tangent T-T. The vector difference of Qtl and 
Qt, gives the magnitude of the relative sliding velocity which will be treated in Sec. 2.6. 

When the contact takes place at the pitch point P, the vectors QM, and QiM, will be equal and 
in the same direction. Since the tangential components must also be equal and in the same 
direction, the vector difference t ,  t ,  vanishes. Consequently the relative velocity of sliding 
becomes zero and the two gears have pure rolling motion. Therefore, we come to the important 
conclusion that  for pure rolling motion, the point of contact must lie on the line of centres. 

Now, the following relations can be established from Fig. 1.11. 

- QM, 0,Q and - - - QM, u, = - QMI , u p = -  
01 Q 0 2 8  a, 0,Q QM, 

From similar triangles QM, n and 0, QR, we have 

Qn 
OiQ OiR 

From similar triangles Q M p  and O,QS, we have 

% = -  Qn 
QQ 02s 
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Therefore 

w ,  0,s Qn 0,s 
Again, 0,PR and ORS are similar triangles, from which we have 

O,R 0,P r1 6% 

w,  0,s 02P r2 
(1.1) - - = - -  _ -  - -  

From the above discussions, we come, therefore, to the following important inferences. 
1. When a pair of curved surfaces are in direct contact transmitting conjugate motion, the 

angular velocities of the two bodies are inversely proportional to the segments into which 
the line of centres is cut by the common normal. 
To produce constant angular velocity ratio, the common normal must intersect the line of 
centres at a particular, immovable point. 

2. 

Thus the law of gearing and conjugate action are satisfied. 

1.4 Characteristics of the Involute Curve 

I t  has been stated in Sec. 1.3 that to satisfy thelaw of gearing, that is, to maintain a constant 
velocity ratio in a pair of inter-meshing gears, the tooth curves are to be so designed that the 
common normal to  the tooth profiles at the point of contact will always pass through the pitch 
point. The curves satisfying such a condition are termed as conjugate curves. 

We shall see that one such curve is the involute curve and its relation ois-a-vis the 
maintenance of conjugate action and the law of gearing will be treated in Sec. 1.5. The 
characteristics of the cycloid curve will be discussed later. 

The involute of a circle is defined as the curve which is generated by the end point of a cord 
which is kept taut while being unwound from a circle. Any other point on the cord will also 
generate a similar involute curve as the cord is progressively unwrapped from the circle. The 
geometrical construction of the involute curve is shown in the Appendix A. 

The involute is a spiral beginning from the periphery of a circle called the "base circle" which 
is the heart of the involute. Afamily of involute curves which are generated from points at equal 
distances on the same base circle is equidistant. 

Some important relations of the involute curve which are relevant to gearing are given 
below. 

From Fig. 1.12 it can be seen that the base circle radius r,, is given by 

rh = r cos a o r  r = - l h  = rb sec a 
cos a 

Using polar coordinates and the theorem from calculus, we have 
d @  d @  d a  

d r  d a  dr 
tans = r - = - - r 

(1.2) 

(1.3) 

where $I is the angle subtended at the centre by the radius vector r,  and the reference axis from 
where the involute is generated (in this case, the y-axis). 

From Eq. 1.2, by differentiating we get 

(1.4) dr 1 sin a rb sin a - = r,, sec a tan a = rb- - = 
d a  cos a cos a cos a 2 
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From Eq. 1.3, 
1 dr 1 sin a 

(from Eq. 1.4) d @  - = t a n a-  - = t a n a-  rb 7 
d a  r d a  r cos a 

1 sin a sin a 2 = tan a -  r cos a - = t a n a  -- - tan a 
2 r cos a cos a 

By integrating and solving, we get 

I d @  = I t a n ' a  d a  
or 

The quantity Q has been termed as involute a or inv a. 
.. inv a= tan a - a (1.5) 

The length of the involute curve for any portion can be determined as follows. This length is 
sometimes required in shops for laying out templates or for copying machines. Using the usual 
parametric equations of the involute curve, we have. 

x = rJsin 0 - @cos 0) (1.6) 

@ = tan a - a (a in radian) 

y = rb (cos 0 + 8 sin 0) 1.7) 

Usingthegeneralformulaforfindingoutthelengthofacurve, we have, lengthl ,  ofinvolute from 
point A to point P is given by: 

or 
dL2 = dx2 -+ dy2 = rf 8'd8' 

dL  = rb 8d0 

e2  tan2 (Y 
whence 

0 d 0  = rb- = rb- (1.8) 
2 2 

Note that 8 = tan a and the radius of curvature R a t  the point P is given by 

R = rb 13 = rb tan a (1.9) 
Since by definition, an  involute curve is generated by the point of a cord which is unwound from 
the periphery of a circle and which is a1 ways held stiff, i t  naturally follows that the instantaneous 
radius of curvature of a point on the involute thus generated is the same as the stiff length 
of the cord which spans that point to the point on the circle from where the cord has  just  been 
unwrapped. Equation 1.9, however, can be established mathematically: 

From calculus we know that  the radius of curvature of any point on a curve is given by 
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a = pressure angle at P 

8 = roll angle at P 

BP 
inv a = B - a = - - a = -  

'b OB 

Arc AB 
-a 

= Wrb - a = tan a- a 
(all angles in radians) 

Fig. 1.12 Involute curve 

By differentiating we get from Eqs 1.6 and 1.7 
dx - = rb cos8 - rb cos 8 + rb 8 sin8 = rb8 sin8 
d 8  

d 'x - = rb 8 cos8 + rb sin8 
d 8' 

- -  - - rb sin 8 + rb sin8 + rb 8 cos 8 = rb 8 cos8 
dY 

d 8  
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rb BcosO (rb 8 cos8 + rb sine) - rb8sin8 (rb cos 8 - rb @sin 8 )  

Thus, the radius of curvature of the involute varies continuously as Ovaries. The radius is zero 
at the base circle where the tracing point of the cord just leaves the base circle. 

Referring to Eq. 1.8 since L is directly proportional to  the square of tan a, the length of the 
involute increases rapidly with equal increment of a. Another important conclusion to be drawn 
from the above mathematical treatment is that the radius of curvature R of the involute curve 
increases as the generating point P proceeds farther away from the base circle. In other words, 
the curvature of the curve (which is the reciprocal ofR) decreases, resultingin increased flattened 
shape of curve. This fact is of relevance in case of (positively) corrected gear teeth as they are 
made offlatter portions ofthe involute curve as compared to the portionsused by the uncorrected, 
normal gear teeth. This aspect with its implication has been dealt with in sections on corrected 
gears. 

1.5 Involute Curve and Gear Tooth Profile 

We have seen in Sec. 1.3 that to satisfy the conditions of conjugate action and the law of gearing, 
the tooth profiles of a pair of mating gears must be made of curves shaped to meet the 
requirements of the above conditions. It was also stated that two curves are generally used-the 
involute and the cycloidal curves. Of the two, the involute curve is the basis of nearly all tooth 
profiles in general use now. How the involute curve meets the requirements for use as the gear 
tooth profile is discussed below: 

In Fig. 1.13 (a) two pulleys of radii rpl and rm have been shown of which pulley 1 drives pulley 
2 by means of a crossed cord. From the above arrangement, we can easily see that: 

1. the pulleys rotate in opposite direction; 
2. the ratio of angular velocities ol and a,, that is ol : wz, will be constant if no slippage is 

assured; 
3. the ratio of the angular velocities is inversely proportional to the ratio of diameters of the 

pulleys, remembering that the linear velocity u of the cord is equal to the circumferential 
velocities of the two pulleys, so that 

u = o,rp, = 02rp2 

whence 
o,/o, = rdrpl  

4. the ratio of angular velocities is independent of the centre distance O,O, and consequently 

Now refer to Fig. 1.13 (b). One side of the cord has been removed (to facilitate clarity of 
explanation) and apiece ofcard-board has been attached rigidly underneath pulley 1. Fix a pencil 
at any point Q on the cord and rotate pulley 2 counter-clockwise, always keeping the cord in taut 
condition. We see the following two developments: 

1. As the pulleys rotate during the course of action from the beginning a t  pulley 1 to the end 

it will not change when the centre distance is altered and it remains unaffected. 
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at pulley 2, point Q will trace a straight line on the plane of paper (disregarding the card- 
board for the moment) on which the drawing has been made. This straight line is the 
common tangent to the circles representing the two pulleys. 

2. Since during the process pulley 1 turns clockwise, it progressively unwraps the cord which 
is always kept taut. And as the pencil point moves towards pulley 2, it traces an  involute 
on the rotating card-board, remembering the fact that from the very definition of the 
involute curve, the same effect would have been produced had the cord been cut at Q and 
the portion of the cord, initially wound on pulley 1 from point a' to a, unwrapped keeping 
the unwrapped portion of the cord always rigid as the unwrapping process progressively 
proceeded. Obviously, arc a'u = straight line Qa. 

The above process is repeated on pulley 2 and we have an involute on the card-board of pulley 
2 as shown in Fig. 1.13 (c). Imagine now that the above two individual processes are merged 
together. The result will be that the pencil point will now trace both the involutes simultaneously 
on the two rotating card-boards as point Q moves up and down the length of the cord shown. 

If now the two card-boards are cut along the two curves thus generated and discarding the 
cord, the curves are made to  come in contact, then the involute curve on pulley 1 can now be used 
to push the involute on pulley 2 to have a positively driven arrangement to transmit motion and 
force. This has been shown in Fig. 1.13 (d). We can further come to  the following important 
conclusions: 

1. The line of action is the same as the cord on which the point of contact Q ofthe two involutes 
moves. 

2. This line is always normal to both the involutes at the point of contact Q wherever its 
instantaneous position may be along the line T,T,. 

3. This line cuts the line of centres O,O, at a fixed point P, dividing the line of centres into 
segments 0,P and 0, P. 

4. As in the case of the pulleys with crossed cord, the angular velocity ratio remains inversely 
proportional to the diameters of the pulleys. 

5. If circles (known as the pitch circles) are now drawn through P with 0, and 0, as centres, 
their diameters 0,P (= d,) and O$ (= d,) will also bear the same relation with the angular 
velocity ratio as d, and d, are proportional to the diameters of pulleys 1 and 2 repectively. 

In other words, 

where n, and n2 are the speeds in rpm of the two pulleys respectively. 
From the above discussion it follows that the stipulations of the conjugate action and the law 

ofgearing are satisfied and therefore, the involute curve is suitable for the purpose. Another very 
important conclusion we can draw from the above discussion, a characteristic which is typical 
of the involute curve, is that if the centre distance is changed, involute 1 will still drive involute 
2. Only, this time the different portions of the two involutes will be in contact from the portions 
which were in action originally. It is obvious that the angular velocity ratio remainsunchanged, 
so long as the diameters of the pulleys (from which the involute curves originate) remain 
unchanged. This property, i.e. the maintenance of the constant velocity ratio remaining 
unaffected in spite of the alteration in the centre distance, is a great advantage of the involute 
curve over the cycloidal curves and is one ofthe reasons why this curve has replaced the cycloidal 
curves in most of the gearing systems. The mathematical treatment of the above aspect is given 
in Sec. 2.13. 

In Fig. 1.13 (d) T, and T, are the points of tangency of the line of action to the two base 
circles, that is, the circles from which the involute curves have originated. The portions T,Q 

wJo2 = Diameter of pulley miame te r  of pulley 1 
= dJdl = nln, 



Fundamentals of Toothed Gearing 1.15 

(4 

Fig. 1.13 Involute curve and law of gearing 
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subtends a n  angle aQat the centre 0,. This is known as the “pressure angle” and is a parameter 
of the point Q on the involute at the point of contact. Angle aQ is peculiar to the point Q only and 
varies as Q moves on the involute. This angle must not be confused with what is  commonly known 
as the “pressure angle” in gear terminology. This latter angle is the pressure angle only of the 
pitch point P when the two involutes of the contacting gears are in mesh at that  point, its value 
being normally 20’. Ahob or any other generating type ofgear cutter of“bui1t-in”pressure angle 
or “cutting“ pressure angle of 20” will generate conjugate gears which will normally mate with 
each other and have a pressure angle of 20”. Later on, we will see that  the pressure angle of an  
individual point (say, Q) will vary along the involute. Also, in case of two normal 20” pressure 
angle gears, the “working pressure angle” awis a function of the actual centre distance when the 
two mating gears are mounted on the gear box and also of the addendum modification or 
“correction” which may be imparted to the gears. 

All these aspects will be explained in detail in the sections on “correction” of gears in  
Chap. 2. 

1.6 Characteristics of the Cycloidal Curves 

We have seen in the previous sections that to maintain a constant velocity ratio for a pair of 
mating gears the profiles of the meshing teeth must be so chosen that  the common normals to 
the profiles at all the points of contact must pass through a fixed point on the line joining the 
centres ofthe matinggears. This fixed point, called the “pitch point”, is the common centre ofthe 
system. 

The above condition defines the law of gearing and any two curves which satisfy this law are 
known as “conjugate curves”. This has already been discussed in Sec. 1.3. Theoretically, if one 
curve of the two contacting surfaces is chosen, it is possible to construct the shape of the mating 
curve so as to conform to the above-stated law ofgearing. Amethod of constructing the conjugate 
profile, when one profile is given, is shown in the Appendix C. 

In practice, however, this method is not followed for gearing system and is studied for 
academic interest only. Mathematically, i t  has  been established that  the two families of curves, 
the involutes and the cycloids, satisfy the law kinematically and these curves are adopted for all 
practicalpurposes. Ofthese two curves, the involutehas been universally adoptedforpractically 
all types of applications, except a few cases. The properties of involute have been dealt with in 
the previous sections. For power transmission, involute gears have completelyreplaced cycloidal 
gears. In  some cases, however, cast cycloidal gears are still in use for load transmission. 

The cycloidal family of curves was the first correct form to be adopted for gearing. The 
advantages of the involute curve, however, are so numerous that apart  from the applications 
where the unique characteristics of the cycloidal curves are of particular relevance, the gear teeth 
having involute profiles are almost exclusively used. 

We know from mathematics that  the family of cycloidal curves is produced by rolling a circle 
called the “generating” or  “rolling” circle. When the circle rolls on a straight line, a point on the 
circumference of the circle generates a cycloid. The same circle while rolling on the outside of 
another circle or inside ofanother circle gives rise t o  a n  epicycloid or a hypocycloid respectively 
in the same manner.The profile of a basic rack in the cycloidal system i s  formed by parts of a 
cycloid curve. But on a gear of finite diameter, the face of the gear tooth has the outline of an  
epicycloid while the flank has  that  of a hypocycloid as will be shown in Sec. 1.7. The profile of a 
cycloidal tooth, therefore, is of“doub1e curvature”, which is unlike the profile ofan involute tooth, 

, 
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It has been stated before that, except for certain special cases, the involute curve is almost 
exclusively used in modern gearing systems. The advantages of this curve over the cycloidal 
system has been summarised below. 

1. Si] .e the rack in an  involute system has  straight sides and since the generating cutters 
usually have rack profiles, these cutters can be easily manufactured. A hob cutter for the 
cycloidal gear is not as easily made. Consequently, involute gears can be produced more 
accurately and at a lesser cost. 

2. While the cycloidal tooth profile has double curvature, an involute tooth has single 
curvature which facilitates ease of manufacture. 

3. For effective conjugate action, i.e. for maintaininga constant velocity ratio, it is imperative 
that the pitch circles of cycloidal gears must be exactly tangent. In other words, for a mating 
pair ofthese gears thereis onlyone theoretically correct centre distance for which these will 
transmit motion maintaining a constant angular velocity ratio. In case of involute gearing 
system, the centre distance can be changed without affecting the angular velocity ratio (see 
Sec. 1.5). This advantage of the involute system is of prime importance as  most of the 
modern gears are corrected ones having extended centres (see sections on corrected gears). 
Also, even in case of a gearing system having standard centre distance, it is practically not 
possible to  accurately achieve or maintain that  distance due to  mounting inaccuracies, 
misalignment and a number of other diverse factors involved. 

4. In involute gearing as the path of contact is a straight line and the pressure angle is 
constant, there is a constant force acting on  the axes. In cycloidal gears, the pressure angle 
continuously changes (see Sec. 1.7 on cycloidal gears). This results in separating force of 
variable magnitude which in turn gives rise t o  unquiet operation, jerky running and 
consequently shorter life. 

5. The number of cutters required is less in case of involute gearing system t o  produce 
complete sets of interchangeable gears of any particular pitch. 

1. Cycloidal gears do not have interference and problems thereof. 
2. Acycloidal tooth is stronger than a standard involute tooth. This is because it has spreading 

flanks whereas an involute tooth has radial flanks. Consequently, there is more material 
a t  the root portion of a cycloidal tooth as compared to  an involute tooth (see Fig. 2.7). 

3. Cycloidal teeth have less sliding action and hence wear less due to  rubbing. 
4. Since there is no problem of interference, pinions having number of teeth as low as 6 or 

7 are possible in the cycloidal system. I t  can even be 3 or 4 in certain special cases. This is 
the reason why these gears are extensively used in clocks, watches and similar instruments 
where a low number of teeth combined with adequate strength is necessary. It is also 
possible to  have a low number of teeth in case of involute toothing system, but this calls for 
a large amount of profile correction which may lead to  “peakinf, and if i t  is not corrected, 
the teeth may become heavily “undercut”. This has been elaborated in sections on profile 
correction of gears. 

The cycloidal system, however, has the following advantages: 

1.7 Cycloidal Gears 

In  Sec. 1.6 properties of the cycloidal curves have been discussed. Appendix B gives the method 
of construction of cycloidal curves. In this section we will see how these curves can be adopted 
in gearing systems. 
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It has been pointed out that among the many advantages of the involute gears over the 
cycloidal gears, the one which is of vital importance from the practical point of view is that  a n  
involute gearing system remains unaffected by changes in the centre distance between the 
mating gears. In  case of a cycloidal gearing system, however, the theoretical centre distance 
must be strictly maintained in the mounted condition. In other words, the pitch circle must be 
exactly tangent to each other in order to satisfy the law of gearing. 

The cycloidal family of curves was the first to be used in gearing since the cycloidal curves can 
be made to satisfy the law of gearing. In Sec. 1.6 it was stated that  when a circle, called the 
generating or the rolling circle, rolls over a straight line or on the outside or the inside of another 
circle, the curves thus generated are called cycloid, epicycloid or hypocycloid, respectively. "he 
profile of a rack tooth in the cycloidal system consists of two separate portions-the face and the 
flank-both being portions of a cycloid. This is clearly illustrated in Fig. 1.14. 

PITCH 

ROLLING CIRCLE 
FOR FACE 

"\ ROLLING CIRCLE 
FOR FLANK 

Fig. 1.14 Formation of cycloid rack 

It can be seen that  the profile is of double curvature and there is no smooth point oftransition. 

"he following points should be noted carefully in case of two cycloidal gears offinite diameters 

1. The face of a cycloidal gear consists of a portion of an epicycloid and the flank consists of 
a portion of a hypocycloid. 

2. The epicycloid and the hypocycloid are generated by a rolling circle which rolls on the 
outside or inside of a circle called the pitch or directing circle. The form of a cycloidal gear 
tooth depends upon the ratio: d,ld, where d, is the rolling circle diameter and d is the pitch 
or directing circle diameter. I t  is desirable to  construct the tooth-form with the biggest 
possible rolling circle. Normally, the generating or rolling circles, used for producing gear 
tooth profiles, bear the following relation with the pitch circles: 

I t  may be recalled that  the profile of an  involute rack is a straight line. 

mating with each other: 

dcl = 0.33 to 0.4 d, 

d,, = 0.33 to 0.4 d, 

where d,, and dc2 are the generating circle diameters of the pitch circle diameters d, and d,, 
respectively. 

3. To satisfy the law of gearing, the flank and face of two gears in contact must be generated 
by the same rolling circles. In other words, (a) the generating circle G, generates the flank 
(hypocycloid) of gear 1 and the face (epicycloid) of gear 2 and (b> the generating circle G, 
generates the flank (hypocycloid) of gear 2 and the face (epicycloid) of gear 1. 
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Since the flank of gear 1 mates with face of gear 2, both the curves in contact are produced by 
the same rolling circles, viz G1 and G2. The construction has been represented in Fig. 1.15. 

CIRCLE HOLCING G , * m  

--\--A ) EPICYCLOID A 
TOOTH 

H Y  I’OCYCLOID 

\ 

Fig. 1.15 Formation of cycloidal tooth 

Action of Cycloidal Teeth 

Referring to Fig. 1.16 the hypocycloid P-m has been generated byrollingG1 inside the pitch circle 
of gear 1. The flank of a tooth of gear 1 is formed by a portion of P-m, suitably placed. The 
epicycloid P-s is obtained by rolling G1 on the outside of the pitch circle of G2. Part ofP-s forms 
the face of the tooth of gear 2. Thus the flank of the tooth of gear 1 and the face of the tooth of gear 
2 are both generated by the same rolling circle, G1. These two curves mate with each other. In 
a similar manner, the rolling circle G2 forms P-n for the flank of the tooth of gear 2 and P-r for 
the face of the tooth of gear 1, respectively. These two portions also mate in a similar way during 
the course of action. 

The two pitch circle d, and d, meet at the pitch point P. The beginning of tooth contact takes 
place at point A which is the point of intersection of the generating circle G1 and the tip circle 
or the addendum circle of gear 2. From A the flank A-d of gear 1 and the face A-c of gear 2 have 
been generated as described earlier. 

We shall now examine whether the law of gearing is satisfied. From books on mechanism, we 
know that the point P is the instantaneous centre of rotation (or centro) of the circle G1. This 
is true irrespective of whether G1 is rolling inside the pitch circle of gear 1 or on the outside of 
the pitch circle of gear 2. Under such circumstances each point on G1 is moving in a direction 
perpendicular to the line joining that point with P. Obviously point A, which lies on G1, also 
moves in a direction perpendicular to  its straight line distance from P. In other words, the velo- 
city vector of pointA at this particular instant, is normal to the line A-P. And sinceA is the point 
of contact at this particular instant and as such it is a common point t o  both the curves, and since 
the common normal t o  both the profile-curves. i.e. A-d and A-c, a t  the point of contactA passes 
through the pitch point P, the law of gearing is satisfied. I t  can be seen that the same reasoning 
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0, OFQEAR-1 \ 

UM 
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HYPOCYCLOID 
OFGEAR 2 

I 0, 
Fig. 1.16 Cycloidal tooth in action 

is applicable for other points of contact also. In this connection, the following points should be 
clearly understood: 

1. The points of contact always lie on the generating circles during the course of action. 
2. The line of action or the path of contact is not rectilinear as in the case of involute toothing. 

It is curvilinear and is denoted by the curveA-P-B. Here B is the end point of contact where 
the tip circle of driver (gear 1) cuts the line of action. 

3. The pressure angle varies at each point of contact, unlike that  in the case of involute 
toothing where it is the same, no matter where the contact takes place. The pressure angle 
has the maximum values a t  A and B. It is zero at P. The consequences of this varying 
pressure angle have been discussed in Sec. 1.6. Note that  the pressure angle a, and ab are 
different. Consequently, the directions of the normal tooth forces along T,P and PT, are also 
different. 

4. It has  been pointed out that the faces and the flanks of teeth which come in contact during 
tooth action must be generated by the rolling circle of the same size. One consequence 
of this condition is that  if any particular cycloidal gearing set is meant to be interchange- 
able, then all the faces and flanks of teeth are to be generated by the rolling circle of the 
same size. 

5. In  a system of interchangeable cycloidal gears, the common rollingcircle should be the one 
which corresponds to the smallest gear ofthe set, that  is, the teeth of all the gears belonging 
to that set must be generated by the rolling circle of the same size which is relevant in case 
of the smallest gear. Normally, in such a system, the smallest number of teeth taken in 
practice is 11 and the diameter of this rolling circle is taken to be half of that  of the pitch 
circle. That is 

m . 2  11 m or rG = 2.75 m, 2 r  - r = - -  _ -  
2 2 G -  

where rc = radius of the rolling circle 

r = radius of the pitch circle, 

m = module,and 

z = numberofteeth. 

A cycloidal tooth has been shown in Fig. B.2, Appendix B. 
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1.8 Gear Materials, their Properties and Treatment 

J 

In  recent years selection of the proper gear materials and their treatment commensurate with 
the service conditions they are subjected to has become a highly sophisticated procedure. Besides 
other factors, the satisfactory performance ofa gear is a direct function of the material i t  is made 
of as well a s  the treatment thereof. Ultimately, it is the designer's responsibility to  specify the 
material andits  appropriate treatment. Hence, the designer has to delvedeepinto the subject and 
acquire a thorough knowledge ofthe different materials available, their treatment, types ofuses, 
probable causes ofmaterial failure, machineabili ty, strength, operational characteristics and all 
the other allied subjects. Proper selection of material and other data is a pre-requisite for an  
efficient gear design. In Appendix E a table showing the strength values, other data and use of 
common gear materials has  been given. This table will be made use of in the appropriate section 
of this book. Gear materials and their properties are also given in tables contained in Sec. 2.25 
dealing with the strength calculations and power ratings of gears. In this section the relevant 
properties of the different types of gear materials are discussed. 

Before an  elaborate description is given on the individual materials, i t  will be useful to  remem- 
ber the following guidelines for material selection: 

1. Cast iron as a gear material is used where the stress conditions are light in nature. 
2. Structural steels and steel castings are meant for light to medium duty gears. 
3. When the stress demands are high and exacting, hardened and tempered steels a s  well as 

case-hardened steels should be used. 
4. For different special properties, such as resistance to corrosion, heat or wear, etc. various 

alloy steels, including stainless steels, are available. Some of these combine maximum 
ductility with high tensile strengths-a property not found in common carbon steels. 

5. Bronzes as well as some aluminium and zinc alloys display high strength combined with 
good sliding properties. They are normally intended for worm-wheels and similar toothed 
gearing. 

I 

6. Non-metallic materials offer good operational properties and noiseless running. 
Normally, the teeth of a pinion is more frequently stressed than the teeth of the matinggear 

during the course of service. While selecting the material, unhardened pinion and gear having 
the same hardness values should not be paired. In general, in such cases the material for the 
pinion should be so chosen that  its strength is around 50 N/mm2 higher than that of the material 
for the gear. In  other words, since the ultimate tensile strength for carbon steels is about 0.36 
times the Brinell Hardness, we can write: 

HB P,man = HBGea, + 150 N/mni2 

The above rule, however, is not applicable t o  gears of cast iron or  to hardened gears. Guidelines 
for typical piniodgear hardness combinations are given i n  Table 1.1. The pinion, having lesser 
number of teeth than the gear, is more prone to  be used up as it has to do more work than gear 
during any specified time. I t  follows, therefore, that  it is prudent to make the pinion harderthan 
the gear. The difference in hardness serves to  equalise the rate of wear. In the case of case- 
hardened steels, the depth of hardness of the case is of prime importance. A very rough rule is: 

- .  1 
6 

Depth of the case = - x root thickness of the tooth .. 
A relation regarding this aspect is given in Table 1.2. The maximum load carrying capacity is 
attained by the hardened gears. Such gears find application, among others, in heavy vehicles, 
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aircrafts, machine tools. For big gears used in rolling mill drives and turbine drives ring gears 
made of heat-treatable for hardened steel and shrink-fitted on suitable hubs are quite common. 

Table 1.1 Pinion and gear hardness combinations for heat-treated steel gears 

1800 2100 2250 2550 2700 2850 3000 3350 3500 3750 

2200 2500 2650 2950 3100 3250 3400 3750 3900 4150 
Gear 

-----------------------I-------- 

Hardness Range in HRC 

55 58 

60 63 
Pinion 

55 58 
Gear 

Table 1.2 Relation between depth of case, case-hardening processand module, m 
--------------I----------------- , 

Case-hardening process 

Case carburising 

Depth of hardness (mm) 

0.25 rntor rn = 1.5 to 4, 

0 . 5 r m  far m = 4 to 30. 

--------------------I----------- 

Induction and flame hardening 0.3 rn 

Nitriding 0.1 to 0.6 

Soft nitriding 0.0 15 

Based on Maschinenelemente, Niemann, Vol. 11, 1965 edition, p. 75. Springer Verlag, Heidelberg. 

Guidelines for selection ofmaterials, their properties, areas of probable uses, heat-treatment 
and other relevant data will now be discussed. 

Steel 
.. 

The different kinds of steels are the most commonly used gear material because of their 
versatility to meet a whole gamut of a variety of divergent specifications along with their easy 
availability and their ability to combine greater strength per unit volume coupled with low cost 
per kilogram. A wide variety of steels are in use, ranging from carbon steels to high-alloy steels. 
Again, carbon steels used also vary in carbon content-from low to high carbon. The ultimate 
choice, of course, will depend upon such factors as  strength values, required size of gear, service 
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conditions and other design criteria. 
The single most important factor for designing a gear-set is the hardness of the component 

gears comprising the set. By changingfrom gears with low hardness values t o  full-hardened ones 
alone, it is possible t o  reduce the main dimensions of a power-transmitting gear-box by half, 
which means an eight-fold reduction in weight, resultingin a compact design and thus effecting 
considerable saving in money, material and space requirements. For example, a gear-set having 
normally hardened gears of Brinell Hardness Number (BHN of 2000N/mm2 can be replaced by 
a set havingfull-hardened gears of BHN 6000 N/mm2, both sets delivering the same power, but 
the second set weighing only one-eighth of the first one. 

As far as the hardness is concerned, gear steels can be divided into two broad categories: those 
meant for surface-hardening and those for through-hardening. Surface hardening produces a 
hard case on the tooth surface, leaving the core comparatively soft. Surface hardening can be 
achieved by the common case-hardening processes, such as, case carburising, nitriding, induc- 
tion and flame-hardening. We will discuss later in Ch. 2 that one of the most important factors 
for such calculation is the contact stress or Hertz stress. The power rating of a gearing depends 
mainly on what is known as the “surface durability”. Surface durability, also called surface 
endurance or wear strength is a measure of the ability of the gear surface to resist fatigue type 
oftooth-surface failure known as “pitting” caused by contact stress. This aspect will be discussed 
in detail in Ch. 2. 

Surface durability is a function of the compressive strength which in turn is almost directly 
proportional to  hardness. The compressive stress developed between two contacting tooth 
surfaces is proportional to the square root of the tooth-load. It  follows, therefore, that higher 
compressive strength greatly enhances the load capacity because the allowable load on the teeth 
variesas the square of the compressive strength. Hence, we can conclude that as the compressive 
strength is proportional to hardness and as greater surface durability is ensured by having 
higher compressive strength, the designer should strive for higher hardness. Certain limita- 
tions, however, impose restrictions on this rule-carbon content of the steel sets a practical top 
limit to  the achievable hardness, material becomes brittle and notch sensitive a t  very high 
hardness levels, thereby rendering the teeth weaker in beam strength. The designer should, 
therefore, endeavour to strike a balance between these two aspects, i.e. greater hardness 
combined with adequate beam strength. (See also Fig. 1.17.) 

In general, case-hardened gears can withstand higher loads than through hardened ones, but 
the through hardened gears are quieter in operation in  normal cases, have high endurance limit 
and cost less. However, since through-hardened gears are vulnerable to distortion due to heat- 
treatment, they are not recommended for high speed drives. Moreover, unless grinding of gear 
teeth is practicable, through-hardened gears should not be used in applications where accuracy 
is ofutmostimportance. These gearshave higher core strength because of higher carbon content, 
but are less ductile and less resistant to  wear. Hardness normally varies from HRC 30 t o  55. 
These gears are generally suitable for moderate strength and impact resistance. 

As a post-treatment, hardened gear steels are sometimes tempered to  permitmachiningofthe 
teeth. Hardness is somewhat sacrificed thereby, but other properties are marginally altered. 

Due to  its comparative softness at  the core, the case-hardened gears possess interior 
toughness. This in turn imparts shock or impact resisting capability to these gears. There are 
different case-hardening processes in practice which will now be briefly discussed. 

Case Carhurising Case carburising is by far the most widely used process for hardening gear 
teeth surfaces. Heavy duty transmission gears are generally all case carburised. In these process, 
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Fig. 1.17 Hardness of carbon steels after hardening in relation to carbon content 
Based on MAAG Taschenbuch of M/s. M U G  Zahnraeder AG. Zurich, Switzerland, Fig. No. 13.01, page 649. 

the common practice is to begin with a low carbon steel. Steel having a carbon content of 0.10 to 
0.25% is heated in a medium which is enriched in carbon. The surface soaks up carbon and 
becomes hard after quenching. The carbon content of the carburised surface should be carefully 
controlled to obtain the appropriate case. Best results are achieved when it lies around 0.80 to 
0.90%. A case which is too thin results in unsatisfactory tooth strength and wear resistance. On 
the other hand, an unnecessary deeper depth renders the tooth to  be too brittle. Too much carbon 
in the outer case may lead to  "spalling" which is a kind of gear tooth failure described later in 
Ch. 8. Again, too little carbon in the carburising medium will not develop the desirable results 
of hardness and wear resistivity. For best load carrying capacity, hardness of the case should be 
around HRC 55 to 60 and that of the core around 30 to 40. 

Nitriding The case properties of nitriding steels are practically the same as in the case of 
carburising steels, except that these steels are more suitable for high temperature services. In 
this process, the hardening agents are nitrides formed on the surface of gear teeth due to 

1 

? 
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absorption of nitrogen when the gears are treated in a nitrogenous medium like ammonia gas. 
Like carburising, nitriding is a diffusion process, but it takes longer time to  form a nitrided case. 
Nitrided gears can resist "scoring" and abrasion better than other types due to their high 
hardness which can go as high as HRC 65 to 70, though the case obtained may be rather shallow. 

Induction Hardening By this process, special steels can develop hardness around HRC 60 but 
the process involves considerable technical skill. High frequency alternating current is used to 
heat up the gear surfaces locally. Hardness is obtained after subsequent quenching. 

Flame Hardening "hi; process is similar to induction hardening. Only, the heat required in 
this case is provided by an oxy-acetylene flame. Flame hardening can be used to  harden the tooth 
surface layers as well as the whole tooth, if necessary. 

Steel Castingsfor Gears When gears are to be made ofcast steel, the steel used should conform 
to the requirements and chemical composition as laid down in the relevant codes for steels meant 
for cast gears. Usually, such steel is made in open hearth or electric furnaces. Converter steel is 
not considered suitable. Special care should be taken to  thoroughly normalise or anneal all steel 
castings meant for gears. The temperature and the time for heat-treatment should be properly 
chosen so that the characteristic grain structures of untreated castings are totally eliminated. 

So far we have discussed carbon steels only. Among alloy steels, high manganese-nickel steels 
offer high resistance t o  heat, wear and bending stresses. Martensitic stainless steels are used for 
gears when requirements include high degree of resistance to  corrosion combined with excellent 
mechanical properties. When a gear oflarge section needs hardening, alloy steels are sometimes 
recommended as the alloy content provides the necessary hardenability due to the fact that alloy 
steels are more amenable to proper heat-treatment procedures than carbon steels without 
detrimental result in case of gears with certain shapes and sections. 

For industrial use ingeneral, heat-treated plain carbon steels are far more common than alloy 
steels, the reason being that although the heat-treated alloy steels have superior properties, 
most of the design considerations and service conditions do not warrant their use because of the 
additional cost involved. Plain carbon steels are quite satisfactory and economical for most of the 
industrial applications. If, however, the advantages gained by using these steels over the plain 
carbon steels off-set the additional cost, then it is justified. When compared to  the heat-treated 
plain carbon steels, the heat-treated alloy steels offer the following advantages. 

1. Carbon content and quench being the same, alloy steels can produce greater surface 

2. Alloy steels have higher yield point, elongation and reduction of area. Toughness is, 

3. A lower quenching temperature may produce the same surface hardness. Hence, parts of 

4. Grain size is finer, resistance to impact and to wear is more. 
5. Better machinability at  higher hardness than that offered by plain carbon steels. 
Various alloying elements impart different properties on steels meant for gears. The charac- 

teristics of these elements are indicated below in brief. The properties of these alloy steels vis- 
a-vis those of the plain carbon steels are understood t o  be applicable in the cases where both the 
kinds of steelshave the same carbon content. In other words, carbon percentage being the same, 
the properties are functions of the alloying elements only. 

. 

hardness and depth. 

therefore, greater. 

alloy steels are less liable to  distortion. 

Nickel-Nickel increases hardness and strength, the reduction of ductility is marginal. 
Chromium-Hardness and strength are increased more than those obtained by alloyingwith 

nickel, but the reduction in ductility is more. 
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Vanadium-It increases hardness, strength and toughness. Impact strength of the alloy is 

Manganese-Its effects are similar to vanadium. 
Molybdenum-It increases strength but does not affect ductility. I t  imparts excellent impact 

properties to the alloy. 
Chrome-Nickel'I'his combination produces properties of high strength, greater ductility 

and wear-resistance. However, machinability is not good and heat-treatment is difficult. 
Chrome-Vanadium-This has the same tensile properties as Cr-Ni steels. Hardenability, 

impact strength and wear-resistance properties are better. 
Chrome-Molybdenum-Properties are practically the same as plain molybdenum steel but 

the depth of hardness can be greater and wear-resistance is increased. Good machinability and 
heat-treatment are assured. 

Nickel-Molybdenum-Properties of Ni-Mo steels are similar to Cr-Mo steels. Toughness is 
greater but machinability is not very good. 

high but machining is difficult. 

Cast Iron 

Cast iron gears are cheap and have good damping capacity. When gears are to be of complicated 
shape, cast iron may well be the only choice in certain cases. The material is used in applications 
where strength is not the main criterion of material selection, as cast iron is relatively weak and 
brittle compared to  steel. A large amount of graphite is present in cast iron parts and this acts 
as a lubricant, hindering wear of teeth. If increased load capacity and resistance to  contact 
stresses are desired, then spheroidal graphite or pearlitic malleable cast iron may be used. In 
recent years, sintered iron gears made by the powder metallurgical processes from iron powder 
are much usedin low cost machineries where strength requirements are small. These gears have 
wear-resistance properties and are easy to lubricate. 

Non-Ferrous Metals 

Among the various non-ferrous metals used in gear manufacturing, bronze is the most common 
alloy used. Various types of bronzes are used as gear materials, mainly because of their ability 
to withstand heavy slidingloads which are encountered in applications such as worm-gear sets. 
Also, like cast iron, bronzes are easy to cast into complicated shapes when necessary. 

Phosphor bronze is generally recommended for worm-wheels which mesh with worms ofhigh 
hardness and accuracy, and is normally meant for medium loads and medium to high speeds. 

Tin bronzes offer strength, resilience and hardness, and can be used for worm-wheels for 
general purposes. Silicon bronzes have similar properties as phosphor bronzes. Besides, leaded 
bronze, manganese bronze, aluminium bronze and nickel bronze also find wide application as 
gear materials. 

Best operational results from bronzes are obtained when the blanks are centrifugally cast. 

Non-metals 
Various types of non-metals have been widely used as gear materials since earliest times. These 
materials are chiefly selected because of their quietness during service at high speed, resilience, 
vibration damping ability and low cost in bulk manufacture. Non-metallic gears are also used as 
timing gears and also various other classes of gearing. Such materials used for gear making are 
generally reinforced phenolic moulding materials, moulded plastics like nylon, reinforced 
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thermosettinglaminates, raw hide, resin-bonded pressedmaterials, hard fabrics, etc. For rough 
calculation as to their strength properties and power-transmitting capabilities, these materials 
can be considered to have the same properties as those of cast-iron. However, for accurate 
calculation such data for each material are available (samples of such calculations shown in 
Ch. 2.). Meanwhile, it may be pointed out that though the tensile strength of non-metallic gear 
materials may be less than cast iron, their resilience is high which enables them to withstand 
impact and abrasive wear better than cast iron. 

Initially, raw hide was used as the non-metallic gear material. Later on, materials with 
improved properties came t o  be marketed under various trade names, such as, Formica, 
Textolite, Phenolite, Micarta, etc. These materials are chiefly made of layers of canvas with 
bakelite impregnation. These a're then fused under high hydraulic pressure. As a consequence 
of pressure and heat, a dense rigid mass results. Impregnated canvas is more durable than cast 
iron or raw hide. 

For gears made of non-metallic substances, phenolic laminated materials are most commonly 
used for their various advantageous properties. Such gears have entirely different characteris- 
tics as compared to metallic gears. Since the values of the moduli of elasticity of these materials 
are low, the resultingelastic deformation under load takes care of the usual detrimental effects 
of errors, such as tooth shape error, spacing error, etc. These errors, therefore, have little effect 
on the overall strength and performance of the gears, which is not so in case of metallic gears as 
we shall see in the section dealing with the strength calculations of usual gears. 

Experimental results have established the fact that the best tooth form for these materials is 
the 20' stub-tooth system. It  has also been found that the load-carrying capacity of a driving 
pinion made of these materials is considerably affected by the cutting action of the corner of its 
metallicmatinggear as the pair come into mesh. The remedy lies in reducingthe approach action 
which ensures a greater and safe load transmission. 

Phenolic laminated materials are most suitable for high speed duty. Their performance is not 
satisfactory in general when the speed is low, starting torque high, load is of fluctuating nature 
and when really high shock loads are involved. Good results are obtained when the pitch line 
velocity is about 3 m / s  or more. 

As regards the materials for mating gear, hardened steel with Brinell Hardness Number over 
4000 N/mm2 leads to best operational performances and greater durability under load. Cast 
iron can also be used for the mating gear, but softer steel or non-ferrous metals (like brass 
and bronze) tend to produce excessive abrasive wear. 





Spur Gears 

2.1 The Basic Rack 

The basic rack represents the normal section of a tooth in any gear-tooth system and determines 
the form or shape of tooth  as well as the various relations of tooth form dimensions thereof, 
namely, the module, the whole depth of tooth, circular pitch and the fillet radius. Within the 
involute system, many variations oftooth forms are possible,viz. 20' full-depth tooth system, 20" 
stub-tooth system, and similarly for other pressure angles, such as 14.Y2", 15", 25", 30", etc. To 
standardise any gear-tooth system, it is only necessary t o  give the relevant proportions of the 
rack tooth belonging to that system, because of the fact that the rack is the basis or  foundation 
of a standard system of interchangeable gears. 

In IS: 2535-1978, the basic rack for involute cylindrical gears for general engineering pur- 
poses has been specified. The salient features of this tooth profile are represented in Fig. 2.1 
which is based on the figure of thebasic rack. Each side of the profile of the basic rack is a straight 
line which is a special case of the involute curve when the base circle diameter is infinite. 
Sometimes tip relief is provided in which case the end profile lines are slightly curved as shown 
in the figure. The pressure angle is 20' and the height of the tooth (or whole depth) is 2.25 times 
the module m. Normally, the maximum value of the radius at the root of tooth r is 0.38 m, but 
in certain cases the maximum value may be exceeded up t o  0.45 m. In any case, this radius must 
be kept as large as possible because the root fillet plays an important role in notch effect and 
stress concentration aspects as will be seen later in this book. All the tooth relations are given 
in the figure. 

The profile reference line, MM cuts the basic rack in such a manner that on this line the 
following relation exists: 

The nominal tooth thickness s = the nominal tooth space width e = half pitch p / 2  

(2.1) That is 

Here, p is the circular pitch in mm and rn is the module in mm The circular pitch of a gear is 
one of the important specification criteria of a gear. It is defined as the length of the arc of the 
pitch circle between two adjacent teeth, and is given by 

P 
2 

s = e = -  

n d  n m z  z m  - p = s +  e = - - - = 
z z 
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0.02 rn(max.) 7 3  7 
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EFFECTIVE FLANK 

FLANK ANGLE = 2a 
Fig. 2.1 Basic rack geometry 

(2.2) 
where z = Number of teeth of gear, and d = Pitch circle diameter = mz 
Similarly, the base pitch of a gear is analogous to the circular pitch, except that it is measured 
on the base circle, and is given by 

Circumference of the base circle K d cos a K m t cos a - - - P b  = - 
z z z 

= z m  cos a = p  cos a 

:. pb = p cos a 
The fundamental dimensions bear the following relations 

(2.3) 

Addendum = ha = rn, Dedendum = hf = m + c, where c = Top clearance = 0.25 m, as per IS: 2535 
:. h, = m + 0.25 m = 1.25 m. Whole depth of tooth 

(2.4) = h = ha + hr= (1 + 1.25) m = 2.25 m 

2.2 Basic Nomenclatures and Gear Tooth Terminology 

The basic terms associated with gears and gearing systems are explained in Figs 2.2 and 2.3 and 
defined below. In Fig. 2.3 parameters relating to helical gears have also been included for 
comparison. These will be taken up again in Chap. 3. However, in this section we will discuss 
the terms relating to spur gears. 
Pitch circle: This is the circumference of an imaginary cylinder which rolls without slipping 
when in contact with another such cylinder as in friction drive. The two rolling cylinders are 
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Fig. 2.2 Gear tooth parameters 

DEVELOPED PITCH CYLINDER 
OF A SPUR GEAR 

(b) 

DEVELOPED PITCH CYLINDER 
OF A HELICAL GEAR 

(a 

Fig. 2.3 Spur and helical gear parameters 
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called pitch cylinders. According to  the law of gearing explained in Chap. 1 the angular velocity - 
ratio must remain unchanged. Since this is not practicable in friction drive, the cylinders are 
replacedby toothed wheels calledgears. The pitch circles of two matinggears are the same as the 
circumferences or the end projections of the two rollingpitch cylinders having the same angular 
velocity ratio. In any gear, the relevant pitch circle is the reference circle of that gear and though 
imaginary, it is the basis of measurement of other parameters of the gear. The diameter of this 
circle is called the pitch circle diameter (pcd for short) or simply pitch diameter. It is denoted by 
the letter “d ” with proper subscripts, e.g. d ,  for pinion and d ,  for the mating gear. 
Tip circle: This is also known as the addendum circle or the outside circle. This is a circle which 
bounds the outer edges of the teeth of a gear and its diameter is denoted by d,. 
Root circle: Also known as the dedendum circle, it is the circle which bounds the bottoms or the 
roots of the teeth and its diameter is denoted by df  . 
Base circle: This is the circle from which the involute tooth profile is developed. Its diameter 
is denoted by d,. 
Addendum: It is the radial distance between the pitch circle and the tip circle and is denoted 

Dedendum: It  is the radial distance between the pitch circle and the root circle, and is denoted 

Land: The top land and the bottom land are the surfaces at the top of the tooth and the bottom 
of the tooth space respectively. 
Working depth: This is the distance of engagement of two mating teeth and is equal to  the sum 
of the addendums of the mating teeth of the two gears in case of standard system. 
Whole depth: This is the height of a tooth and is equal to the addendum plus dedendum. 
Clearance: This is the radial distance between the top land of a tooth and the bottom land of 
the mating tooth space. 
Face width: This is the width ofthe gear and is the distance from one end of a tooth to the other 
end. 
Face oftooth: This is the surface of the tooth between the pitch cylinder and the outside 
cylinder. 
Flank oftooth: This is the surface of the tooth between the pitch cylinder and the root cylinder. 

Module: It  is defined as the ratio of the pitch diameter to the number of teeth of a gear. The 
value of module is expressed in millimeters. The module is one of the major and determining 
parameters of a gear. 
Pinion: It  is smaller of the two gears in mesh and is usually the driving component of a gearing 
system. The other component, which is larger, is usually referred to as “gear”. 
Chordal addendum: This is the height bounded by the top of the tooth and the chord 
corresponding to the arc of the pitch circle representing the circular tooth thickness. 
Chordal tooth thickness: This is the chord referred to above. Both chordal addendum (or 
chordal height, as it is sometimes called) as well as the chordal tooth thickness are ofimportance 
in checking of gears as will be explained in Sec. 2.28. 

by ha. 

by h,. 

a 
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Diumetralpitch: This is a term used in gear technology in the FPS system. It is defined as  the 
ratio of the number ofteeth to the pitch diameter in inch. It is usually denoted as “DP. It is equal 
to the number of gear teeth per inch of pitch diameter. The unit of DP is the inverse of inch. The 
following relation exists between DP and module 

25.4 
Module (mm) 

DP (inch-’) = 

Approximate values of DP versus module are given in Appendix D for comparison. 

systems. These terms will be defined and discussed in the relevant sections in the text. 
Besides the above terms, there are many other terms associated with gears and gearing 

2.3 Relations between Gear Parameters 

The basic terms which have been defined in Sec. 2.2 have the values as given in Table 2.1 in a 
normal, standard gearing system. In a normal, standard gear, the profile reference line M-M 

Table 2.1 Dimensions for standard gearing 
~ ~~ 

Description Pinion Gear 
~~~ 

Number of teeth 
Pitch circle diameter 
Tip circle diameter 
Root circle diameter 
Base circle diameter 

Tooth thickness on pitch circle 

Centre distance 

~~~ ~ ~ 

21 2 2  

d, = zlm 
d,, = d, + 2 m 
d,, = d1-2x1 .25m 
d,, = d, cos a 

d2 = z, m 
d,, = d, + 2 m 
d,, = d2-2x1 .25m 
db2 = d,cosa 

P n m  
2 2 

s = e = - = -  

z + z2 d l +  d2 = m  1 a,, = - 
2 2 

~~ 

of the basic rack is tangent to  the pitch circle of the gear at the pitch point. When two such gears 
mesh, we have a standard gear set, as distinct from the (‘corrected’’ gearing which will be taken 
up later. The principal parameters of an uncorrected gear set are summarised in Table 2.1. 

In  Fig. 2.4 two standard gears have been shown in mesh. The terms described below are 
defined in relation to  two gears in mating condition. 

Arc ofaction: This is the arc on the pitch circle through which a tooth travelsfrom the beginning 
of contact with the mating gear tooth to the point where the contact ends. Since the two pitch 
cylinders are in rolling contact (without slippage as per the theory of gearing), the lengths of the 
arcs of action of the two gears a re the  same. That is 

(2.5) 

where r1 and rz are the pitch circle radii, and 6, and 6, are the angles (in radians) subtended by 
the two arcs at their respective centres, The arc of action, in each case, is divided into: 

Arc of approach, which is  the arc through which the tooth moves from the initial contact up to 
the pitch point P ,  and 

Arc of action = r,6, = r,02 
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DRIVEN 

I 
i 
0 2  

LENGTH OF ACTION = A 8 
LENGTH OFAPPROACH, A P 

LENGTH OF RECESS = P 8 
BEGINNING OF CONTACTIS SHOWN IN SOLID LINE. 
ENDOFCONTACTISSHOWNINDOTTED LINE. 

Fig. 2.4 Characteristics of tooth action 



SpurGears 2.7 

Arc of recess: which is the arc through which the tooth travels from the pitch point to  the end of 
contact. 
The arcs of approach and recess have been illustrated in Fig. 2.4. 

Angle ofapproach and recess: These are the angles subtended at  the centre by the arc ofapproach 
and the arc of recess respectively. 

I t  should be noted here that though the lengths of arcs are the same for both the gears, the 
corresponding angles are different for the two gears. This is apparent from Eq. 2.5 as rl and r, 
have different values. 

Points of tangency: TI and T,are the points of tangency where the common tangents of the two 
base circles through the pitch points P meets the base circles. 

Line ofaction: This is the line along which the point of contact of the two mating tooth profiles 
moves. This is also known as the path of contact and is the same common tangent referred to 
above. 

Length of action: That portion of  the line of action on which the point of contact moves during 
the course of action is known as the length of action. This length is bounded by the pointsA and 
B on the line of action, as shown in Fig. 2.4. The length of action AB, which in effect represents 
the beginning and the end of contact of the two mating gear teeth, is sub-divided into length of 
approach AP, and the length of recess PB, as shown in the figure. 

Pressure Angle 

If a tangent is drawn to the involute profile of a tooth  a t  any point on the curve and if a radial 
line is drawn through this point of tangency, connecting this point with the centre of the gear, 
then the acute angle included between this tangent and the radial is defined as the pressure 
angle at that point. 

Referring to Fig. 2.5(a), A is the point at which the tangent has been drawn and aA is the 
pressure angle for point A. Referring to  Fig. 2.5 (b), P i s  the pitch point where the two standard 
pitch circles meet on the line of centres, O,O,. If a common tangent to  the two tooth-profiles is 
drawn through P, then the pressure angle for point P is obviously the angle subtended by this 
tangent to the line of centres a t  P. The segments 0, P and 0, P of the line of centres also happen 
to  be the radials for the point P. This pressure angle (at the pitch point P )  is one of the most 
important specification factors ofa gear. This pressure angle is denoted commonly by the Greek 
letter a. Apressure angle at any other point is designated by a subscript, e.g. aA for the point 
A and so on. The symbol a for the pressure angle at the pitch point carries n o  subscript. The 
value ofthe pressure angle afor the standard tooth as per the basic rack, IS: 2535, is Z O O ,  but 
the pressure angle can have other values also, viz. 14.’/,’, 15”, 25”, 30°, etc. depending on the 
tooth standard, We will see in sections dealingwith “corrected”gears that the working pressure 
angle aw can be quite different from the standard pressure angle, depending upon the correc- 
tion factors involved and the mounting dimensions. The cutters which generates the gears, 
however, are called “20’-pressure angle cutters”, irrespective of whether they produce standard 
or corrected gears. Pressure angle ofthe cutter is also referred to  as the "built-in" pressure angle. 

Since the involute is generated from the base circle, the pressure angle at the starting point 
is zero. Referring to  Fig. 2.4, a tangent drawn on the base circle and passing through the pitch 
point P also subtends an angle equal t o  a at  the centre. That is 
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to' 

l? 
,PRESSURE 

ANGLE a 

POINT A 

(4 
Fig. 2.5 Pressure angle 

angle T,O,P = T,OB = a 
Hence, we get the relation 

d, = d cos a (2.6) 

1. 

2. 
3. 
4. 
5. 
6. 
7. 

The relation between the pressure angle of a point on the involute tooth profile and the 
pressure angle of some other point on the same involute will be given later in this section. 

From Fig. 2.4 it can also be seen that the common tangent line TITz to the base circles also 
makes a n  angle a to the perpendicular to  the line of centres through P. Line TIT,, which is 
variously known as the pressure line, line of action or path of action,, is the line along which the 
contact ofmating teeth takes place at various points during the course of action. This is also the 
direction in which the driving force acts. 

In automotive industries a 25' pressure angle is quite common. For involute splines, this 
angle is usually 30'. With increasing pressure angle, the load carrying capacity becomes more. 
Pressure angles in case of helical gears will be discussed in Chap. 3. 

The effects of increasing the pressure angle are summarized as below: 
The limiting number of teeth to avoid undercuttingis lowered. That is to  say ifthe pressure 
angle is increased, pinions with comparatively lesser number of teeth can be generated 
without undercutting (see section on interference and undercutting). 
The shape of the tooth becomes more pointed or peaked. 
Tooth flank becomes more curved. 
The relative sliding velocity is reduced. 
The contact ratio and overlap are reduced. 
The tooth pressure and axial pressure increase. 
Tooth load-carrying capacity increases. 
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The Base Circle and Root Circle 

The module and the pressure angle remaining same, the mutual position of the base circle and 
the root circle will depend upon the number of teeth for any particular basic rack. I t  is wrong to 
presume that the root circle is the smallest circle in a gear. Taking a standard basic rack 

Base circle diameter, d, = d cos a = rn z cos a 
Root circle diameter, d, = d - 2 x 1.25 m = m z - 2.5 m = m (z - 2.5) 

Ifd,= d,, then rn z cos a = m (z - 2.5) or z cos a= z - 2.5 orz (1 -cos a) = 2.5 

= 41 teeth 2.5 - - 2.5 - 2.5 :. z = - 
1 - COS 1 - COS 20" 1 - 0.93969 

This is a borderline case. If the number ofteeth exceeds 41, the root circle becomes greater than 
the base circle. 

For example, if z = 50, rn = 2, a = 20", then 

d, = m z cos a = 2 x 50 x 0.93969 = 93.969 mm 

d - rn (z - 2.5) = 2(50 - 2.5) = 2 x 47.5 = 95.000 mm I -  

Hence, in this case, roo t  circle is greater than base circle. Therefore, theoretically the involute 
has already started before the dedendum circle or root circle. However, in actual practice, fillets 
with suitable radii are provided a t  the roots of the teeth to nullify the detrimental effects of stress 
concentration and notch effect, irrewective of whether the base circle or the root circle is the 
bigger of the two. /NVOLUTE CURVE 

Tooth Thickness 

0 

(a) (b) 

Fig. 2.6 Involute curve and gear tooth thickness 

Referring to Fig. 2.6 (a), an involute curve has been generated from the base circle of radius rb. 
A and B are two points on this involute at distances of rA and ro respectively from the base circle 
centre 0. From geometry, we get the following relations 

r,  = rA cos aA = rB cos aB 
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whence we get the important equation 

(2.7) 

From Eq. 2.7 we can determine the pressure angle at any point on the involute in relation to the 
parameters of another known point. For example, if the circle passing throughA happens to be 
the pitch circle the diameter of which is known, then for a standard system 

rA cos a, = - cos a, 
rB 

r 
cos 20" = - cos 20" 

d l  2 
cos a, = - 

rB 'P Figure 2.6 (b) shows a gear tooth enclosed between the tip circle and the base circle. From the 
properties of involute discussed in earlier section, we know that 

arc DE = straight length DB 

arc CE = straight length CA 

arc DE DB Also,angleEOD(inradian) = - = - - - t ana ,  

Similarly, angle EOC = tan aA, 
'b 'b 

Now, angle EOB = angle EOD - aB. 
Similarly, angle EOA = angle EOC -' a, = tan a, - a, 
From Ch. 1, we know that the expression: tan a - a has been termed as: inv a. Therefore, 

Or, angle EOB = tan aB - aB 

angle EOB = inv a, = tan a, - a, 
and angle EOA = inv a, = tan a, - aA 

Values of involute function for different angles are given in the Appendix. We shall now see how 
these relations and values can be used to find expressions for tooth thicknesses at different 
positions along the tooth profile. 

Referring to Fig. 2.6 (b), we can easily see that 

angle EOF = angle EOB + angle BOF 

The centre line through pointF divides the tooth in two equal and symmetrical halves. Therefore, 
the circular tooth thickness, s,, at the circle passing through B is given by 

- = r, x angle BOF (in radians), 
2 

:. angle EOF = inva, + - 
2 '"B 

SA angle EOF = inva, + - 
2r* 

Similarly, 

We can now establish the following relation after equating 

s, - - ' A  + inv a, - inv a, - -  
2r, 2r, 

r 1 or 1 + in-v a, - inv a, (2.8) 
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Equation 2.8 is important for gear calculations because it enables the designer to calculate the 
tooth thickness at any cylinder if the parameters of a particular cylinder are known. 

For example, it is often necessary, especially in case ofpositively corrected gears, to calculate 
and check the tooth thickness at the top land. For an uncorrected, standard tooth, the tooth 
thickness at the pitch circle is given by: 

The top land thickness s ,  or s,, is given by 
r 

1 S 
sa = 2rai- + inva - invcxa 

2 r  
where r and r,, are the radius a t  the pitch circle and tip circle respectively, and 
angle a t  the tip circle. The value of an can be ascertained from Eq. 2.7. 

aa is the pressure 

(2.9) 

Sometimes, for positively corrected gears, it may be necessary to  calculate the diameter at 
which the tip becomes pointed or  “peaked”. Obviously, a t  this points,, = 0. Incidentally, recalling 
Eq. 2.7, we have 

‘h 

rb ‘b 

r cos (x 
cos ah = = - (as per Eq. 2.6) = 1 . :. ab = 0” 

Hence, the pressure angle at the base circle is O”, as mentioned earlier. 
The tooth thickness at the pitch circle of a positively corrected gear is not equal to pJ2, but 

somewhat greater, depending upon the correction factor chosen. An expression for this tooth 
thickness will be given in Sec. 2.12. 

2.4 Types of Gear Tooth 

Besides the 20’ full-depth involute tooth discussed in Sec. 2.1 which shows the basic rack as per 
IS: 2535, there are other types of tooth forms which are commonly used. These will be described 
now. It is to be noted that while establishing any gear tooth standard, only the proportions of 
the relevant rack tooth need be given because the rack is the basis or the foundation of any type 
of standard tooth system of interchangeable gears. To ensure interchangeability, the mating 
gears must be produced by cutters having the same pressure angle. This particular pressure 
angle can be termed as the "built-in" pressure angle, as mentioned in earlier sections. In sections 
dealingwith “corrected” gears, we will be usingthe term “working”pressure angle which is quite 
different from the built-in pressure angle. Besides pressure angle, the interchangeable gears 
must also be ofthe same module (or diametral pitch) and of the same magnitude of pressure angle 
and helix angle at the pitch circles in case of helical gears mounted on parallel shafts. The 
following different types of tooth proportions are normally used. 

1. Full-depth, 20” involute system: This is by far the most widely used tooth system and is fully 
discussed in Sec. 2.1. Due to  the increase ofpressure angle t o  20’, such teeth alleviate the inter- 
ference and undercutting problems, and are also of broader and stronger root section as 
compared to  the systems having smaller pressure angles. 
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2. Full-depth, 14;" involute system: This was one of the earliest systems used, and was 
preferred because the sine of 14: is about 4 .  This somewhat simplified the machine-setting 
problems in early gear-cutting machines. Here the pressure angle is 141", the whole depth is 
2.157 times the module and the working depth is twice the module which characterises it as a 
full-depth system as in the case of 20" full-depth system. Other proportions are: addendum 
= 1 x module, dedendum = 1.157 x module and clearance = 0.157 x module. This system is quite 
satisfactory so long as the number of teeth of the gear is large enough to avoid undercutting. 

3. Full-depth, 15" involute system: Here the pressure angle is 15". This system is much used 
in Continental Europe. In  both 14: and 15" systems, the undercutting begins when the number 
of gear teeth is below 32. 

4. Stub-tooth system: This class of tooth systems reduces the interference problem by having 
shorter addendum and large pressure angle, usually 20". For standard stub-tooth system, the 
tooth proportions are: whole depth = 1.8 x module, addendum = 0.8 x module, dedendum 
= L O X  module, working depth = 1.6 xmodule, clearance = 0.2 x module. One defect of the stub- 
tooth system is its lesser contact ratio as compared t o  the full-depth system, which results in 
adverse effect on the wear of teeth and also leads to greater noise in running gears unless this 
aspect is specially taken care of by accurate machining and mounting. The running of gears is 
not generally smooth. The system gives better results when the pinion has less than 25 teeth. 

In  automotive transmissions, the 20" stub-tooth finds wide applications because it affords the 
possibility to have relatively small gears and the maximum power-transmitting capacity for a 
given module or material. In such application, of course, extremely accurate gears and 
mountings are imperative. Helical stub-teeth are also used in such cases for smoother operation 
and lesser noise. 

It will be seen in  Sec. 2.9 on interference and undercutting that the possibility of interference 
sets a limit t o  the value of the addendum. I t  follows, therefore, that if the interferring portion 
of the tooth is cut off, it cannot dig into the matingflank. This is the principle on which the stub- 
tooth system is based. It is to be noted, however, that  this system does not eliminate interference 
entirely. 

The advantages of the stub-teeth are: 
1. Greater strength because there is more material a t  the root a s  compared to a normal, 20' 

pressure angle, full-depth tooth; also, because of shorter moment arm, the bendingmoment 
is less; 

2. Reduced chances of interference, as indicated before; 
3. Quicker production as the material to  be removed during cutting is comparatively of 

4. Sliding is reduced and therefore wear caused by sliding only is also reduced. 
Other stub-tooth systems include Fellows stub-tooth and Nuttall stub-tooth systems. 

smaller quantity, and 

Fellows Stub-tooth: This system was introduced by the Fellows Gear Shaper Co. of the USA. 
The peculiarity of this system is that  the different basic dimensions of the tooth are derived by 
using two diametral pitches. One of them is used to obtain the dimensions of the addendum and 
dedendum while the other is used for determining pitch circle and tooth thickness values. 
The Nuttall Stub-tooth: In  this system, developed by the R.D. Nuttall Co. of USA, the tooth 
dimensions are based directly on the circular pitch. In both Fellows and Nuttall Stub-tooth 
systems, the pressure angle is 20'. 

Besides the above tooth systems, in  some applications, 25" pressure angle full-depth teeth are 
used, specially in automotive industries, to impart greater strength to the teeth. In USA, there 
is a fine-pitch system which is similar to the 20' full-depth, American basic rack system, except 
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that  for gears with diametral pitches (DP) of 20 and finer, a slight increase in whole depth is 
provided to allow for the greater proportional clearance. In involute spline systems, pressure 
angle of 30" and 45' are also used besides the usual pressure angles. Involute spline with 30' - 
pressure angle is most common. 

Different types of gear tooth forms, including cycloidal tooth form, have been illustrated in _ -  
Fig. 2.7 for comparison purposes. 

(c) (d) (e) 
Fig. 2.7 Comparison of gear tooth profiles 

(a) Cycloidal, (b) Involute, (C)14; full-depth involute, 
(d) 20" full-depth involute, (e)  20' stub involute 

'/ 
ONE PAIR OF TEETH IN ENGAGEMENT 

TWO PAIRS OF TEETH IN ENGAGEMENT 
Fig. 2.8 Different stages of gear teeth engagement during meshing 
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2.5 Nature of Tooth Engagement in Spur Gear Drive 

In a pair of meshing spur gears, the line of contact along the width of the gears is parallel to the 
gear axes and shifts its position along the tooth profile curve from top to bottom region of tooth 
height or vice versa as the engagement proceeds during the course of action. 

In Sec. 2.7, the significance of the contact ratio has been explained. The value of the contact 
ratio can be taken as a measure of the number of the pairs of teeth in mesh during the course of 
action. Depending upon the mesh position at  a particular moment, there can be one-pair or two- 
pair engagement as shown in Fig. 2.8. Since the contact ratio is normally greater than 1, two 
pairs of teeth share the load part of the time. This is elaborated below. 

DRIVER 

A 6  = LENGTH OF CONTACT 

DRIVEN 

Fig. 2.9 Course of tooth contact 
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Referring t o  Fig. 2.9, the tooth contact begins a t  A and terminates at B during the course of 
tooth action. In  Fig. 2.10 (a) the tooth z2 of the driving pinion comes in contact with the top of 
the tooth z2’ of the driven gear, as the course of action begins. The previous pair z,z,’is already 
in mesh so that  the load FN is shared by these two pairs. This condition continues for a short time 
till the pair zlzl’ goes out of mesh as  shown in Fig. 2.10 (b). From this point onwards, the pair 
zzzZ’ takes the full load and continues to do so till a new pair comes in matingposition. Thereafter, 
the load is again shared by the pair zzz,‘ and the new pair for a short while till zgz’ goes out of 
mesh. A pictorial view of two pairs of teeth in mesh has been shown in Fig. 2.10 (c). In  all these 
figures the load zones have been demarcated by extra thick lines. In Fig. 2.10 (d), the sequence 
of tooth contact has  been illustrated on the tooth profile during the course of action. 

I 
DOUBLE TOOTH 

CONTACT 

SINGLE TOOTH 
CONTACT / 

i 
L------ \ DOUBLE TOOTH 

CONTACT P 
Fig. 2.10 Nature of tooth engagement in spur gear drive 

In  Fig. 2.11, the progression of tooth contact and load distribution has been diagramatically 
represented to clarify further what has been discussed so far. At point A, the contact begins. 
Each of the pairs z2z2’ and z,z,’ carries a load of F.J2. At point G,  the whole load is on z 2 z l  as 
z,z,’ goes out of mesh at point B. This condition has been shown by thin, dotted contours. This 
single pair bears the load till point H is reached. Double-pair engagement begins from here 
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onwards tillz,z,' goes out of mesh, this time the two pairs beingz,z,' and the new, in-coming pair. 
In Fig. 2.11, Pis the pitch point, TITz is the line of action, M is the length of contact as before 

and Pb is the base pitch. (For contact ratios CR,, CR, and CR, see Sec. 2.7.) 

Fig 2.1 1 Distribution of tooth load during single-pair and double-pair engagement 

2.6 Sliding Phenomenon of Gear Teeth 

In Sec. 1.3 we have seen that when the profiles of two meshing teeth contact at the pitch point 
P, the motion is one of pure rolling without slippage. As the contact point moves up or down the 
line of contact (action), the motion is a combination of rolling and sliding. Farther the contact 
point goes away from the pitch point, higher is the rate of sliding. Thus, in Fig. 2.12 ifthe length 
of contact (along the path of contact) i s m ,  the maximum values of the relative sliding velocities 
are at A and B which are the initial and final points of contact respectively. 

In mechanisms which are positively driven by direct contact, such as a pair ofgears, cam and 
follower, it is often required to find the amount of this slidingvelocity. This is a parameter which 
has got a direct bearing on the amount of abrasion-wear which may ensue and also on the type 
of proper lubricant to be selected, among other aspects. Besides purely kinematic reasons, a 
knowledge of slidingvelocity is necessary because researchers ofgear technology have found that 
in case ofvery high-speed gears, the product of Hertz (contact) stress at the area of tooth contact 
and the maximum sliding velocity is a very useful design criterion for such gears and is a limiting 
factor of the power-transmitting capacity of the gear teeth. 

By means of the various velocity-analysis methods, one can find the relative sliding velocity 
at any point of contact during the course of tooth engagement, but the following method is by far 
the simplest one: 

f 
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\ 

2 

Fig. 2.1 2 Sliding velocities of two gears in mesh 

In Fig. 2.12 let Q be the momentary point of contact between the mating teeth. The sliding 
velocity vectors will be at right angles t o  the path of contact and will be along the common tangent 
to the tooth profilesas shown. Now, referringtoFig. 1.11 wecan derive at the following relations: 

When two gears are in mesh, their angular velocities are in opposite senses. Since the 
rotations are co-planar, an arithmatic sum of their angular velocities will represent the vector 
addition of these quantities. The relative angular velocities of the two gears will be given by 

Relative angular velocity = q + o2 
where w1 and o, are the angular velocities of the pinion and the gear respectively. In Fig. 1.11 
let the hatched curves represent tooth profiles in conjugate action. The velocity vector ofthe point 
Q is represented by the line QM, for the driving pinion rotating at an angular velocity of a),, N N  
is the common normal to the two curves in mesh and TTis the common tangent. Line NNis also 
the line of action or the path of contact of the two curves in motion. Vector &MI is resolved into 
two components: Q n  along the common normal and Qt, along the common tangent. Since we are 
dealing with rigid bodies in contact, the normal component of the velocity of Q, when considered 
as a point on body 1, is equal to  the normal component of the velocity of Q, when considered as 
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a point on body 2. The instantaneous directions of velocities of Q in body 1 and 2 are as shown 
by the arrows of QM, and QM, which make right angles to the radial lines 0, Q and 0 ,Q  
respectively. Since Qn is the common component, the magnitude of the velocity vector QM,of body 
2 can be found as shown in the figure. The components of QM, and QM, on the common tangent 
2" are Qt,  and Qt, respectively. These are individual sliding components of QM, and QM,. When 
Q coincides with the pitch point P ,  the slidingcomponents become equal in magnitude and being 
in the same direction, the relative sliding velocity is zero. The motion is then one of pure rolling. 

From Fig.l.11 it can be easily seen that the relative slidingvelocity is the difference between 
the sliding components since, in this case, the components happen to be in the same direction. 
Had they been in opposite directions, the components would have to be added to get the relative 
slidingvelocity. An expression for this relative slidingvelocity will now be derived, so that it will 
not be necessary to draw the velocity diagrams to arrive a t  the value. This is explained below 

Relative sliding velocity = Qt,  - Qt2 - 
Drop perpendiculars 0,R and 0,s on the common normal N N .  

Since linear velocity (v)  = Angular velocity (w) x Radius ( r ) ,  we have 

QM2 and 0, = - QM, w, = - 
*,Q 0 2  Q 

From geometrical relation, we see that the following triangles are similar 
QM,t, and 0 , Q R  

Now 

QM2t2 and 0 2 Q S  
0 ,PR and 02PS 

PQ = PS - QS = - O Z p  x R P - Q S  = 0, x RP - Q S  (Eq. 11) 
and O F  " 2  

0 2  Q 1 

QM2 " 2 

QS = - x Qt2 = - x Qtz 

or W, PQ = Qt, - Qt, - U, PQ 
whence 

Thus we arrive at the following important relation: 
The relative sliding velocity of a point of contact = The distance of that point from the pitch 

point x The sum of the angular velocities of the two gears. 
Hence, to find the relative sliding velocity of a particular point of contact, we need only to 

measure its distance from the pitch point and then multiply it by the sum of the gear angular 
velocities which are already known from their speed in rpm. 

Qtl - Qt, = PQ (a, + ",> 
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EXAMPLE: Given: speed of pinion n, = 1200 rpm, reduction ratio i = 2, PQ = 53.1 mm. To find the 

Solution: 

relative sliding velocity. ' 

Speed of gear = 120012 = 600 rpm, w1 = 2an, = 2a 1200, w, = 2a 600. 

= 1 0 m I s  53.1(1200 + 6OO)Zn :. Relative sliding velocity = - 
60 x 1000 

It is to be noted that the maximum values ofthe relative slidingvelocities are attained at the 

u, = Length of approach x (wl + w,) 

beginning and at the end of contact. These values are respectively given by 

and 

ue = Length of recess x (ul + 0,) 
To find the power loss due to sliding, we proceed as  follows: 

Linear velocity at pitch point P = u = u, rl = w, r,. Reduction ratio = i = - w1 = 5. 
w2 r1 

V U U U U 
:. w ,  = - and w 2 - - = -  - or W , +  0, = - + - = v[; + 

r1 r2 ir, '1 '2 

U - - - (i + 1) 
i. r, 

U Relative slidingvelocity = PQ ( w ,  + w 2 )  = PQ - (L + 1) 
- 1 rl - 

1 V 

2 i r, 
Average relative sliding velocity, U, = - 1 PQ,,,,, - c i  + 1) 1, where PQ,, is the maxi - 

L 4 

mum distance of Q from P. 

The coefficient of friction ,u depends on the material, finish of tooth surface, and the state of 
lubrication. It is not of a constant value, but varies with load changes, velocity changes, etc. 
besides the above determining factors. Average value of p can be taken as  around 0.07. 

Power loss due to sliding P, = ua FN p, where FN = Normal gear force (see Sec. 2.18) 

Nominal power P = F p ,  where F, = Transmitted load (see Sec. 2.18). 

(for helical gear), a and p being the pressure F, F, F, = -(forspurgear) = 
cos a cos a cos p 

angle and the helix angle (in case of a helical gear) respectively. 
Expressed as a percentage of nominal power, 

100% P, PQ,,, i + 1 P 

P dl 
- x  100 = -- 

i cos ~ C O S  p 
(2.10) 

Pressure angle a = 20" normally, and for spur gear p = 0". 

ics of the teeth only, a simplified version of the efficiency ( q  can be given as: 
Neglecting power losses at the bearings and lubrication losses, and considering the kinemat- 

(2.11) 



2.20 Handbook of Gear Design 

where, f = Loss factor due to tooth friction. It  has an average value of 2.6 for 20’ standard 
toothing, and has been calculated on the basis of an average value for contact ratio of 1.65. 
Coefficient offriction pis taken as 0.07. In the above equation positive sign is meant for external 
gearing and negative for internal gearing. 

2.7 Contact Ratio 

It can be seen from Fig. 2.11 that during the course of action of teeth engagement along the path 
of action in a meshing pair of gear teeth, i.e. from the beginning of contact to the end of contact 
comprising the length of contact, the load is transmitted by a single tooth of the driving gear for 
part of the time and by two teeth during rest of the time. That is, a new pair of teeth comes into 
action before the preceding pair goes out of action. For continuous‘contact, the angle of action 
must be greater than the angle subtended a t  the centre by the arc representing the circular pitch 
(called “pitch angle”). The relation between these two angles is termed as the “contact ratio”. 

The physical significance of the contact ratio lies in the fact that it is a measure of the aver- 
age number of teeth in contact during the period in which a tooth comes and goes out of contact 
with the mating gear. A contact ratio of 1 means that only one pair (one tooth from each gear) 
is engaged at all times during the course of action. This is the case when the angle of action is 
just equal to  the pitch angle. Contact ratio 1.6 means that during the period of engagement one 
tooth each from the matinggears is in contact 100% of that period, while during the same period, 
two teeth each from the mating gears are also in mesh, but 60% of the time only. 

To ensure smooth and continuous operation, the contact ratio must be as high as possible, 
which the limiting factors permit. Definite values are difficult to specify, but for satisfactory 
performance of power transmitting gears, a value of 1.4 is used as a practical minimum. The 
value, ifthe situationwarrants it,maybepermittedtohavealowestvalueofup t o  1.2 sometimes 
in extreme cases. Alower contact ratio also necessitates a higher degree of accuracyin machining 
to ensure quiet running of the gear set. 

We have seen in Ch. 1 on involumetry that the common normal to the two involutesin contact 
is tangent to the two base circles. This common normal is also the line of action TT. Contact 
begins when the line of action intersects the tip circle of the driven gear. At this point the flank 
of driver touches the tip of the driven gear. Contact ends when the line of action intersects the 
tip circle of the driver. At this point the tip of the driver just leaves the flank of the driven gear. 
These two points are shown as A and E in Fig. 2.13 and the portion of the line of contact AB of 
TIT2 is called the length of contact or the length of action. 

An expression for the contact ratio can be found in the following manner: Referring to  
Fig. 2.13 which illustrates a simplified version ofthe teeth positions during the course of action, 
the contact begins atA and ends a tB  as stated before. At the base circles, T,  and T, are the points 
of tangency. 

The angle of action consists of the angle of approach and the angle of recess in each case, both 
these angles being separated by the central line O,PO,. The angles of action in this case are:fOf’ 
and h0,h’. Since the radii of the two gears are different, the angles also are different. But since 
both the gears are supposed to roll on their pitch cylinders without slippage, the two arcs on the 
two pitch circles are equal in length during the movement which takes place for a particular time. 
In other words 

arc f f ’  = arc hh‘ = arc of contact or action 

i 
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Fig. 2.13 Derivation of contact ratio 

Now, the involute starts a t e  and traces toA on the line of action. Similarly, e’ traces toB. From 
properties of involute curve, we know that  

arc T,e = length TIA, and arc T,  e’ = length TIB 

Hence, 

arc ee’ = length AB = length of action 

We can now establish the following relations from geometry 
AB = AP + PB = (AT2- PT,) + (BT - PT,) 
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1 = [,/- -r2 sin a] + [J- - r, sin a 

Here the length of action AB is divided intoAP = length of approach, and PB = length of recess. 
The respective IS symbols are: A B  = ga AP = gf and PB = g,. 

Simplifying the above equation, we get 

AB = [/- +J-] - [rl + r2] sina 

r 1 

= 14- + 4-1 - a sin a 
Contact ratio (CR) is given by 

Angle of action 
Pitch angle 

CR = = E (IS symbol) 

Now, ,the angle subtended by the arc ee‘ at the centre 0, is equal to the angle subtended by the 
arc f f  at the centre 0,. Therefore, calling this angle as 6, we have 

arc ee‘ = rbl 0, and arc ff‘= r,e 

arc ee‘ But, rbl = rl cos a ,  hence, arc ff ’, = - 
cos a 

e Calling the pitch angle as @, we have CR = - 
Q 

m 
, a n d  4 = - arc ff’ arc ee‘ AB Transposing, weget e = - = - --  - 

r1 r, cosa r, cosa ‘1 

r1 

(since circular pitch, p = am). 
arc ee’ 1 - - - x -  AB - x - -  

e AB 
@ r, c o s a  am am cosa  cos a am 

:, CR = - = 

- arc ff’ arc of action 
zm circular pitch 

Now, am cosa = p cos a = p b  = Base pitch. 

- - =  

We finally come t o  the following relation 
Angle of action Arc of action - Length of action 

Pitch angle Circular pitch Base pitch 
- - Contact ratio (CR) = - 

{- + 4- - a s ina  

p cosa 

Jr- + J..I-.d - a sina 

1 1 2 2 Therefore, CR = 

1 I 2 1 - - 

(2.12) 

(2.13) 
pb 

Figure 2.14 shows the outlines of the teeth in contact in a more elaborate manner to illustrate 
the contact ratio relations. 
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LENGTH OF CONTACT - -  AB - CONTACTRATIO = BASE 
P b  

BEGINNING OF CONTACT AT “A” (SHOWN IN DOTTED LINES) 

END OF CONTACT AT “8” (SHOWN IN SOLID LINES) 

Fig. 2.14 Contact ratio 
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For a gear mating with a rack, the contact ratio is given by 
hr ,/- - r sina + - 

sin a CR = 9 

p cosa 
where, ra, rb and r relate to the gear and h,is the addendum of the rack and is usually equal to 
the module m. 

For corrected gears, described later in this chapter, the corrected values of ral, ra2 and the 
centre distance a are to be inserted. Also, a will be replaced by the working pressure angle aw. 

In connection with the discussion on the contact ratio relations, it is interesti g to note that 
this is a ratio of the length of action AB, which is a straight line, and the base pi d hp,, which is 
the arc of a circle. This may seem odd to a reader. In Fig. 2.15 two adjacent teeth are shown in 
the figure where the base pitch has been laid off as per its definition. This is arcac in this figure. 
From point a, involute ab is generated with reference to point T on the base circle. Involute cd 
is similarly generated. From Ch. 1 on the characteristics of the involute curve (Sec. 1.51, we know 
that 

arc Tc = straight line Td 
Similarly 

arc Tu = straight line Tb 
or, 

arc Tc - arc Ta = line Td - line Tb 
:. arc uc = Base pitch = line bd 

Since bd lies on the line of action, the ratio: length of contact AB to the base pitch (ac = bd) is a 
measure of the contact ratio. 

Fig. 2.15 Base pitch and circular pitch 
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In Appendix F tables of contact ratio of spur gears in mesh are given for different ZJZ, corn- 
binations. The tooth profile is standard with addendum = M, and the pressure angle = 20'. 

2.8 Backlash in Spur Gears 
Backlash can be generally defined as the play between a mating pair of gear teeth in assembled 
condition. It is the amount by which the width oca tooth space exceeds the thickness of the 
meshing tooth measured on the pitch circle. This is called the circumferential or torsional, or 
angular backlash, and is designated asj,. If the backlash is measured on the line of action, it is 
termed as the normal or  linear backlashjn. These backlashes have been shown in Fig. 2.16. The 
relation between these two types of backlashes is given later. Unless otherwise specified, the 
values of backlash are given with reference to the pitch circles. Proper amount of backlash 

I TORSIONAL OR ANGULAR BACKLASH 

in = NORMAL OR LINEAR BACKLASH 

Fig. 2.16 Backlash in gears 
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ensures smooth running of the gear set. Except in case of timing gears, indexing and some other 
special purpose applications where the meshing gears have practically zero backlash, the main 
purpose of providing backlash is to prevent jamming and to ensure that no contact is made on 
both sides of the teeth simultaneously. Too little backlash may lead to overloading, overheating, 
jamming and ultimately seizure and eventual failure ofthe system. Moreover, a tight mesh, may 
result in objectionable noise during running. On the other hand, excessive backlash may cause 
non-uniform transmission of motion especially if the amount of backlash varies from tooth to 
tooth due to machining and other errors. Excessive backlash may also cause noise and impact 
loads in case of reversible drives. 

Specification of proper amount of backlash, therefore, is of prime importance. Moreover, an  
unnecessarily small amount of backlash allowance should be avoided because this will increase 
the cost of gea'rs as allowances for run-out, pitch error, profile and mounting errors are also to 
be kept correspondingly smaller. 

In selecting the proper amount of backlash, many factors are t o  be taken into consideration. 
They are the run-out and errors in tooth thickness, pitch tooth spacing, profile, helix angle, etc. 
I t  should be noted that backlash in no way affects the involute action. 

In the mounted condition, the backlash will consist of the amount by which the thickness of 
the teeth has been reduced as well as the tolerance on the centre distance. The tolerances 
specified on the teeth (which are always negative), either on individual teeth or on block 
measurement as described later in Sec. 2.28, determine the amount by which the tooth 
thicknesses are reduced. This will again depend on the quality and the zone of tolerance selected 
(see Secs 2.27 and 2.28). The reduction in tooth thickness is usually obtained by sinking the 
cutter deeper into the blank to correspond to the tolerance pre-selected. In some cases the cutter 
itself is so dimensioned that the tolerance is taken care of when the tool cuts up to  the relevant 
standard tooth depth. Determination of the final backlash in the mounted condition has been 
illustrated diagramatically in Fig. 2.17. 

For measurement of circumferential or  torsional backlash, one gear of the pair is held 
stationary and the other one is rotated till its tooth touches the corresponding tooth face of the 
other component. The movement is then registered by a dial indicator suitably mounted. For 
measuring normal backlash, suitable feeler-gauges or similar measuring instruments may be 
employed. 

Gears, when meshed with a rack, have no backlash. When base circles are shifted away from 
each other, as in the case of non-standard centre-distance gear systems, the matinginvolutes will 
have zero backlasli with the theoretical rack as shown in Fig. 2.18 (b), but they will have an ac- 
tual backlash between themselves which is quite apparent from the figure. When the centre 
distance is non-standard, the working, i.e. the actual pressure angle aw is different from the 
nominal pressure angle of the basic rack. Under such conditions, the individual mating gear 
tooth profiles have zero backlash with respect to the common reference profile of the rack, but 
they will contact the rack profile at different points, viz. A and B in Fig. 2.18(b). This 
displacement of the respective contact points, together with the lesser convexity of the tooth 
profilesin case ofpositivelycorrectedgears, resultsin creatingthe backlash between the profiles 
of the mating teeth. 

In Fig. 2.30 the conditions which prevail when two standard gears meshing at the standard 
centre distance have been shown schematically. As we have seen before, this standard centre 
distance is given by 

1 
2 

a, = - m (zl + z2) 



Spur Gears 2.27 

(4 
EFFECTOF TOOTH THICKNESS TOLERANCE 

(4 
EFFECTOF CENTRE DISTANCE TOLERANCE 

Fig. 2.1 7 Tolerance versus backlash 
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The backlash here is zero, that is, not considering the tooth thickness allowances or the tooth 
distance allowances and the centre distance allowances which cause the creation of backlash 
automatically, as will be seen later in the section on gear tooth tolerance, etc. Pressure angle a . 
is the standard pressure angle, sometimes called the "in-built" pressure angle of the cutter, 
namely 14.5', 15", 20?, 25", 30" as the case may be. In the above condition, the matinggears will 
operate at this particular standard pressure angle. The pitch circles in this condition meet at the 
pitch point P and are the standard pitch circles or the cutting pitch circles as the gears were cut 
at these pitch circles. Note that in this condition, the standard pitch circles and the working or 
operating circles are identical. 

In Fig. 2.18 (a) the two gears have been pulled apart and the centre distance has now been 
increased. I t  is clear from the figure that now backlash exists between the mating pair of teeth. 
Restricting our discussion here only on standard gears and not considering the corrected gears 

P 

r 

Fig. 2.18 Backlash due to extended centres 
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(which will be taken up later) where gears are “pushed” to make up for the backlash (as explained 
in Sec. 2.13), we can arrive at the following relations: 

Ifthe gears (now situated at extended centres) are made to mate, the standard pitch circles 
no longer touch each other. Instead, the tooth profiles touch at a point other than the standard 
pitchpointP. Ifcircles are now passed through the new point ofcontact, we can call the resulting 
circles as working circles with radii rIW1 and r’,,.(The symbols r,, and r,, are not used here because 
they are used in connection with corrected gears after “pushing” as detailed in Sec. 2.13.) 

The new contact point divides the new centre distance, called a’ into segments which are 
inversely proportional to  the angular velocities of the gears. That is 

Also 
a’ = r,L1 + rL2 (2.15) 

Joining the two base circles of the gears by a common tangent, we get the new line of action and 
a new working pressure angle aIw. 

Since 
rbl = r ,  cos a = rlWl c o s d w  

and 
rb2 = r2 cos a = r ’ w2 cos a’, 

.. (r ,  + r2) cos a = (r‘,] + r‘,J  COS^'^, or a,  cos a = U’COSCY,, 

a0 

a‘ 
or cos a, = - c o s a  

From the above equations, the following relations can be established 
I I rwl cosa, - rl  COS^ - 

or 

Again, 

.. 

r2 cos a rwz cos a, 

(2.16) 

(2.17) 

Due to faulty mounting or otherwise, sometimes the standard gears are operated at such 
extended centre distance, in which cases the determination of backlash may become necessary. 
An expression for such backlash can be arrived at as shown under: 

The sum of tooth thicknesses measured on the working circle +- Backlash 
= Circular pitch measured on the working circle 
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That is, refemng to Fig.2.18 (a), 

Recalling Eq. 2.8, we have 

‘1 + inv a - inv s1 - 2 ri, (inv a: - inv a)  

‘2 + inv a - inv s2 - 2 rL2 (inv a: - inv a)  
horn Eq. 2.17, we have 

a O = A = - x L = -  r 2 n  rl t P 
U’ rL 1 z1 21ri-L~ p’ 

a’ a’ 
a, a, 

.. p‘ = - x p = -  z m  

wherep andp’ are the circular pitches on the pitch circle and the working circle respectively. ’ 

.. 2n ri 
21 

= -  a’ a m  - 

Backlash = - - s; - s; = p* - s; - s; 

’ 
x SI + 2r:, (inva: - inva)  

a0 r1 
I 

- 52 x s2 + 2ri2 (inva: - inva)  
‘2 

U’ a’ 

a0 0 0  

a’ 

- - -  n m  - - (sl + s2) + 2u’ (inval, - inva)  

= - [ n m  - (sl + sz) + 2u0 (inva: - inva)] (2.18) 
For standard gears, a0 nrn 

s 1 =  s2 = s =  - 2 
.. Backlash = 2u’(inv a‘, - inv a) (2.19) 

It has been mentioned before that two kinds of backlash measurements are done-the normal 
backlash j ,  and the torsional backlashj,. The magnitude of both the kinds of backlashes will 
depend upon the tolerances on tooth thickness and centre distance. These aspects have been 
dealt with in detail in Secs 2.27 and 2.28. When these grades and tolerances are fixed from 
various design considerations, the magnitudes of the backlashes become automatically fixed. 
General guidelinesfor determination of the proper amount of backlash will be given later in this 
section. Expressions ofbacklashes for spur gears are given in Eqs 2.20 to 2.23. These are to be 
read along with Secs 2.27 and 2.28. Subscripts Uand L stand for the upper and the lower values 
of the tolerance which is represented by the general symbol A, 1 and 2 for pinion and gear, S for 
tooth thickness and a for centre distance. Thus A,, denotes the lower value u1) of tooth thickness 
(S) tolerance (A) of gear (2). 
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j,, (min) = - (A,,, + A,) cos a + 2 A, sin aw 

j ,  (max) = - (AsL1 + ASLJ cos a + 2 Aa, sin aw 

j ,  (mid = - (Asrn + ASuJ + 2A, tana, 

(2.20) 

(2.21) 
(2.22) 

(2.23) 

It is important to note here that all the tolerances are to be entered in the above formulae with 
the proper algebraic sign they carry (+ or -1. The centre distance tolerance Am, for example, 
carry k sign (see Appendix L). 

For general engineering applications, the values of backlash as per IS: 4460 given in Table 2.2 
serve the purpose adequately. Otherwise the amount of backlash is determined from the 
tolerances on tooth thickness and centre distance, as indicated earlier. 

For specifying the proper amount of backlash, the undermentioned salient points are to be 
kept in mind. 

1. The maximum permissible run-out is one of the most important criteria for the determi- 
nation of the magnitude of backlash, followed by allowable errors in profile, pitch, tooth thick- 
ness and helix angle. 
2. Gears which rotate in slow speed generally require the least backlash. 
3. Maintenance of the proper lubricant film is another important consideration. Backlash 

should be so chosen that there is adequate clearance for an oil film. To avoid generation of heat 
and excessive loading on teeth, oil should not be allowed to be trapped at the root of the teeth. 

Table 2.2 Backlash for gears for normal applications 

(All dimensions in mm) 

Pitch line velocity 

UD to 8 mlsec Above 8 mlsec 

Module Backlash Module Backlash 
Min Max 

20 0.75 1.25 
16 0.50 0.85 
12 0.35 0.60 
10 0.30 0.51 
8 0.22 0.40 

8 0.40 
7 0.38 
6 0.36 
5 0.28 
4 0.23 

6 0.20 0.33 
5 0.15 0.25 
4 0.13 0.20 
3 0.10 0.15 
2.5 0.08 0.13 

3.5 0.22 
3 0.21 
2.75 0.20 
2.5 0.19 
2 0.1 8 

- - 2 0.08 0.13 
1.5 0.00 0.10 - - 

andfiner 
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4. When tolerances on tooth thickness are not determined as per the specified tables, it is 
customary to distribute the backlash allowances evenly amongst the two members of the gear 
pair. However, when the number of teeth of the pinion is very low, the thinning of teeth should 
be made on the gear only. This way the pinion teeth are not weakened. 

5. If necessary, the design should be aimed at controllable backlash. That is, provision should 
be made so that relative adjustment can bemade between the positions ofthe matingcomponents 
afier assembly. Such backlash adjustments are required in case of bevel gearing and screw 
compressor drives. 

6. In case of helical and spiral bevel gears, the greater the angle, the higher should be the 
transvers backlash for a particular normal backlash. 

7. For gears with pressure angles more than 20°, backlash required h more on the pitch 
circles to have agivenvalue ofbacklash in the direction perpendicular to the matingtooth profiles. 

8. Determination of backlash is a direct function of the heat-treatment of the gear teeth 
which follows. 

9. Backlash is influenced by machining errors, mounting misalignments, errors in bearings 
and allied factors. 

10. Gears used in timing and indexing devices, and in certain precision instruments require 
minimum backlash. The ideal "zero backlash", however, is extremely difficult to achieve. It 
involves employing special machines and costly techniques. 

It has been mentioned before that the amount of actual backlash obtained after mounting will 
be governed by the magnitude of the tooth thickness allowances ofthe two gears and by the value 
of the centre distance allowance. 

Equations 2.20 to 2.23 are the expressions for the minimum and the maximum values of the 
two kinds of backlashes discussed in this section. However, this does not mean that during 
running, the gear-set can have a backlash which may very between the minimum and the 
maximum limits. These two values simply show the two extreme permissible limits of the 
backlash for the quality and the zone which have been chosen for the case in question. 

The variation in backlash which may be permitted during the actual running have a definite 
value, and this value must lie within the range stipulated by the two (min and max) limits. The 
following example will amply illustrate the point. 

EXAMPLE 2.1 : Given - z ,  = 24, z, = 60, m = 2, quality and zone = 9d, tan aw = 0.36. 
To find the relevant values of the torsional backlash. 

SoZutwn: From Appendices J and L (zone J) we get the following values in micrometres (keep- 
ing in mind that for minus numerals, those having lesser absolute values are considered to be 
higher because they are nearer to zero, e.g. - 90 > - 135). 

A,,, = - 90 Aa, = + 56 

AsL,=-135 AI- =-168 Aa,=-56 

A,,, = - 112 

From Eqs 2.22 and 2.23 we have 

j t  (mid  = - [(- 90) + ( -11211 + 2 ( - 5 6 )  x 0 .36  = 162 

j t  (max) = - [<- 135) '+ ( - 16811 + 2 ( +56) x 0.36 = 343 

Therefore, the permissible limits of the torsional backlash are 162 (mid  and 343 (max). The 
maximum value ofthe variation which may be allowed in this runninggear-set is found as follows 

t 

i 
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Range of deviation of pinion = 135 - 90 = 45 
Range of deviation of gear = 168 - 112 = 56 
Total deviation = 45 + 56 = 101 

Hence, the permissible variation in backlash in the running gear-set is 101 micrometers. This 
means that at the limiting ranges, the torsional backlash may vary  

between 162 and 263 ( ~ 1 6 2  + 1011, and 
between 242 (=343 - 101) and 343 

Any intermediate values, of course, are allowed within the limiting ranges, provided the 
variation does not exceed 101 micrometres. 

2.9 Interference and Undercutting of Gear Tooth 

In  Sec. 1.5 it has been mentioned that  the involute curves begin a t  the base circle and extend 
outwards to form the gear tooth profiles. Obviously, there is no involute inside the base circle. 
From Fig.1.13, we know that  the line of action of the two inter-meshing gears is tangent to the 
two base circles. The two points of tangency represent the two extreme limiting points of the 
length of action. These two points, T ,  and T, in Fig.l.13 are called the “interference points”. 

It has been emphasised in Sec. 1.5 that  to  have and maintain conjugate action, the mating 
teeth profiles of the gear pair must consist of involute curves(when involute curves are used as 
teeth profiles). Any meshing outside of the involute portion will result in non-conjugate action. 
That portion of the tooth profile which lies between the base circle and the root circle comprises 
non-involute curve. 

Referring to Fig. 2.19 T ,  and T,  are the points oftangency. It may so happen that  the mating 
teeth are of such proportion that  the beginning or the end of contact or both occur outside of the 

Fig. 2.19 Interference on flank of driving tooth (a= 14; ”) 
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interference points on the path of contact. Then the involute portion of one member will mate 
with the non-involute portion of the other member. In the case in question, the initial contact 
takes place at point A. At this point the flank ofthe tooth ofthe driver is forced into contact with 
the tip of the tooth of the driven gear. It  can be seen from the figure that the tip of the driven 
tooth comes in contact below the base circle of the driver. Consequently, no conjugate action 
takes place. This phenomenon has been termed as “interference” in gear technology. 

In the example, contact also occurs on the non-involute portion(at 33) when the teeth leave 
the mutual meshing. In short, $the contact takes place outside of the path T, T, during the course 
of action, the teeth will interfere with each other as they come in and out of mesh. 

Interference in gear toothing is undesirable for several reasons. nue  to interference, the tip 
ofone toothofthe gear ofthepairwill tendtodigintoportionsoftheflank ofthe toothofthe other 
member of the pair. Moreover, removal of portions of the involute profile adjacent to the base 
circle may result in serious reduction in the length of action. All these factors weaken the teeth 
and are detrimental to proper tooth action. Interference can, of course, be eliminated by using 
more teeth on the gears, but such solution is seldom resorted to because this calls for larger gears 
with their ensuing problems, such as, increased pi tch-line velocity, noise, reduced power trans- 
mission, etc. 

If gears are manufactured by one of the generation processes, the interference is automati- 
cally eliminated as the cutting tool also removes the interfering portion of the flank. 

From Sec. 8.3 on gear cuttingprocesses, it will be seen that in ageneration process, the cutting 
actionis such as ifthe two components-the gear being produced and the cutter-are in mesh like 
two gears rolling on their pitch cylinders. While generating gear teeth, if there is interference 
ofthe cutter, then arecess is cut at the root ofthe tooth. The profile thus generateddeviatesfrom 
the theoretical tooth profile. This happens when the cutter extends beyond the base circle of 
pinions having small number of teeth. This removal of material a t  the root of the gear tooth is 
called “undercutting”. 

The tooth is already at the weakest region in the vicinity of the root. By undercutting, the tooth 
becomes further weakened. Hence, although interference can be avoided by the generation 
process because the corresponding recess is made at the tooth root by the cutter with the conse- 
quent absence of fouling, this is not considered an acceptable solution because of its tooth 
weakening effect. The problem of interference is simply substituted by another problem caused 
by undercutting. 

There are several practical ways of tackling the problem of interference and undercutting. 
One of them is to  use a larger pressure angle. Since 

d, = d cos a 
larger pressure angle results in a smaller base circle, the pitch circle diameter remaining the 
same. This in turn allows more of the tooth profile to  be made of involute curve. Thus small 
pinions of 25” pressure angle system are preferred by some designers inspite of the fact that 
frictional forces and bearing loads are more. 

Another practical way of eliminatinginterference is to limit the addendum of the driven gear 
so that it passes through the interference point as shown in Figs 2.20 and 2.21 so that the whole 
depth of the tooth consists of the normal depth minus the shaded portion, making it a stub-tooth. 

Referring to  Fig. 2.21 where a rack and a pinion have been shown in mesh, the point of 
tangency or the interference point is at  T. This point fixes the maximum addendum for the rack 
having the pressure angle shown. If the rack has the addendum as shown in the figure, the 
contact begins at  A. Undercutting takes place as shown by the dotted line. If now the shaded 
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UNDERCUT 
/ PORTION 

1 
Fig. 2.20 Interference and undercutting-two gears 

PINION 
UNDERCUT PORTION 
7 

INTERFERENCE LINE 
PITCH LINE 

ROOT LINE 

INTERFERENCE LINE 
PITCH LINE 

ROOT LINE 
I RACK 

Fig. 2.21 Interference and undercutting-rack and pinion 

portion is removed, pointA merges with point T. In other words, the point of initial contact is 
now T and interference is obviously eliminated. The same conditions for cases where two gears 
mesh are shown in Fig. 2.20. 

One important conclusion which can be drawn is: Instead of a rack, if a gear with the same 
modified addendum as the rack now meshes with pinion, the point of initial contact will lie on 
the line of action at a point somewhere between the pitch point P and the interference point T. 
Thus, there is no possiblity of interference. 

We can, therefore, conclude that if the number of teeth of pinion is such that it meshes with 
a rack without interference, it will also mesh with any other gear having the same or a greater 
number of teeth without any chance of interference taking place. 
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Determination of Undercutting Rad ius 

If a gear is undercut for one reason or another, it may become sometimes necessary to know the 
magnitude of the undercutting radius. 

In Sec. 2.10, an equation for the minimum number of teeth to avoid undercutting is given as 
2 

The above equation is valid for standard gear tooth with the addendum of the rack being equal 
to the module m. The general expression is 

2 z h,, = sin a m  - 
2 

The undercut-free minimum number of teeth is given by 
2 he, 

2 Zmin = 
m sin a 

where hco = The addendum of the rack-cutter without tip fillet-rounding. 

UNDERCUT1 
GENERATED INVOLUTE 

PORTION 

p, 
Fig. 2.22 Determination of undercutting radius 

The undercutting radius can be determined with the help of geometrical and trigonometrical 
relations. These relations are given in subsequent paragraphs with reference to Fig. 2.22. 
Let ru = Undercutting radius 

r = Pitch circle radius 
rb = Base circle radius 
a = Standard pressure angle 

A, B, and C are angles (in radians) the values of which can be determined from the following 
relations. 



SpurGears 237 

'b cos c = - 
ru 

B = inv C = tan C -  C 
Angle A is determined from the following equation 

A - 5  - 
sin(A + B) q, 

By transposing and inserting the relevant values, we get the following relations 

hm = r - ru cos (a + A  + €3) 

1 hac 
cos a 'b 
- --  

= rb 
A ru = rb 

sin (A + B) cos (a+A+B) 

2.10 Minimum Number of Teeth to Avoid Interference 

In Sec. 2.9 the phenomenon of interference and undercutting and conditions thereof have been 
discussed. It was observed that a pinion which meshed with a rack without interference would 
also mesh with a gear of the same size as the pinion or with a larger one without interference. 
Such type of gear action will ensue if the tooth proportions are same in both the cases. 

For gears with standard tooth proportions, the minimum number of teeth which a pinion can 
have to mate with a rack without interference can be calculated. Referring to Fig. 2.23(b), this 
limiting case can be solved by passing the addendum line of rack through the interference point 
T of the pinion. The following relations can be arrived at 

P T m  

r PT 
sins = - = - 

whence 

Now 

.. 

2 PT m m 

r PT r 
x - = -  sin a = - 

d 1  r = - -  - - mz 
2 2  

2 2 m 
sin a = - - - m- = - 2 

r mz z 
2 

or z = -  = zL or zmin = the limiting or minimum number of teeth (2.24) 

For 20" full-depth tooth system, zdn = 17. For other systems, the values are : 32 for 14 " full- 
depth, 14 for 20' stub and 12 for 25" full-depth system. 

Since these values were determined for a pinion meshing with a rack, they can also be taken 
as the minimum values for a pinion meshing with any gear without having the danger of 
interference. The generation process by hobbing is analogous to the tooth action between a rack 

sin2 a 

~ . -.I- - "--"--_ 
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BASE CIRCLE 
LINE 

(b) 

Fig. 2.23 Limiting conditions for undercut-free toothing 
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and a pinion in mesh. Hence, the minimum values of the number of teeth of pinions are also the 
minimum which can be generated by a hob without undercutting. 

There are other generation processes where a hob is not used. For example, Fellows shaping 
method uses a pinion-type cutter. The above minimum number of teeth of pinion for such cases 
will not work. A generalised expression, therefore, is derived for a pinion and a gear in mesh for 
determining the limiting number of teeth of pinion. 

Referring to Fig. 2.23 (a), the condition where interference is just avoided has been repre- 
sented. T ,  and T, are the points of tangency where the line of action, passing through the point 
of contact of the two pitch circles or the pitch point P ,  is tangent t o  both the base circles. To avoid 
interference, it is obvious that the limiting conditions will be such that the two tip circles must 
also pass through T ,  and T2. Therefore, the initial and the final points of contact,A andB, merge 
with T,  and T2 respectively. Considering 20" full-depth teeth with addendum = m, we have from 
the figure 

ra2 = O,T, = r2 + m = J(o,T~Y + (T,T,)~ = J(r2 + (T,P + m212 

= (r2 cosa)  + (rl sina + r2 s ina)  = r2 cos a + (rl + r2) sin a 2 2 2 2  2 2  

Squaring and simplifying, we get 
2 2 2  2 m + 2r2 m = r, sin a + 2r1 r2 sin a 

, we have mz, mz2 Putting rl = - and rz = - 
2 2 

2 2  
2 mz2 = - m z1 sin 2 a + 2- . mz1 - m22 s i n a 2  m + 2 m -  

Simplifying and transposing, we get 
2 4 2 2 

2 4 1  + z2> 
2, + 2z,z2 = 

2 sin a 
(2.25) 

Dividing by z2, 
4 4 2 

+-  21 - +2z1 = 
2 2  z2 sin a sin2a 

2 

When z2 tends to infinity, we have the limiting case; 
2 

or z1 = - 
sin2a sin2a 

4 
22, = - 

This is the case where a rack (z2 = infinity) meshes with a pinion of number of teeth = z,. We 
have already arrived at the above equation from geometrical stand-point. 

The value ofz, as calculated from the above equation is slightly more than 17, (zl = 17.097). 
Therefore, some people take it as 18. 

From Eq. 2.25, it can be seen that asz, decreases, z, also decreases. Ifz, = z,, then the minimum 
number of teeth becomes around 13. This is the condition depicted in Fig. 2.23 (a). For gear/ 
pinion ratio of 3 : 1, we get the value of about 15 for z, after inserting the value z,/z, = 3 in Eq. 
2.25 and so on for other ratios. Thus the minimum number of teeth of the pinion to avoid 
undercutting is a function o f  the gear tooth ratio. 
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For gears cut with the shaping-type of generation process, we have seen that the smallest 
number of teeth for two equal gears for 20' full-depth teeth is 13. Figures for other tooth 
proportions are : 23 for 14.5' full-depth, 10 for 20' stub and 9for 25" full-depth systems. It should 
be noted here that there is a maximum limit in each case for the maximum number of teeth of 
the second gear, i.e. z,, which will mesh with the pinion having the minimum number of teeth 
without interference, when gears are cut by the shaping method. Obviously, the second gear 
cannot be increased to a rack. Keeping the value of z, to the minimum calculated, the largest 
values ofz, are as follows: z, = 13 andz, = 16 for 20' full-depth, 23 and 26 for 14.5' full-depth, 10 
and 11 for 20' stub, and 9 and 13 for 25' full-depth systems. 

However, as the tooth profiles are often generated with a rack-type cutter or a hob, it follows 
that the minimum number of teeth of pinion should be so chosen as to avoid undercutting while 
meshing with a rack or a gear in service. 

Experts are of the opinion that a little undercutting does not adversely affect the smooth 
running of the gear pair much. Hence, they allow the minimum number of teeth to  go down to 

5 
6 

z,jn = - x 17 14 
From a practical angle it has been found that the detrimental effect on tooth action is marginal 

when the minimum number is taken as 14, the resulting undercutting being very slight in 
magnitude. 

2.1 1 Profife Correction of Gears 

In the previous sections we have discussed the problems of interference and undercutting and 
arrived at the value ofthe minimum number of teeth of the pinion required to avoid undercutting. 
We have also seen that interference is a serious defect of the involute system of gearing and 
should be avoided at all costs. Apart from the fact that interference hampers conjugate action 
when the involute portion of a tooth mates with the non-involute portion ofthe other tooth, there 
is every likelihood that the,two meshing gears will not rotate at all. Rather, the gear causing the 
interference will have a tendency to  jam on the flank of the pinion-unless, of course, the pinion 
tooth-root has already been undercut making room to provide free movement of the gear teeth. 
Besides, due to interference and in the absence of an undercut, the mating gear will try to scoop 
out metal from the interfering portion. But since the mating gear is not a cutting tool, in the 
process the teeth become damaged and it will have an overall detrimental effect on the gearing 
system. 

If the situation warrants, a pinion might have to be designed with the number of teeth less 
than the minimum number stipulated to avoid undercutting. In such cases, the practice which 
is now universally adopted is what is known as the "profile correction" of gear tooth. 

In gear technology profile correction is variously termed as "addendum modification", "profile 
displacement", " profile shift", etc. by different authors. Also, the correction factor is called as"ad- 
dendum modification coefficient", etc. In this book, we shall simply use the terms "correction" 
and %orrection factor" respectively. 

The effects of profile correction are manifold and its various characteristics will be discussed 
in latter sections. In this section we will restrict our discussion only on finding the appropriate 
amount of the correction factor just t o  avoid undercutting. 

We have seen before that if the contact between the mating teeth takes place somewhere 
inside the points of tangency, that is, if the length of actionAZ3 is within the line T1T2, then no 
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interference will take place. However, if the contact takes place outside TIT2, interference will 
occur. In a generating process, the cutter will take out metal from the interfering zone. 
Therefore, while generating the pinion, one obvious solution is to make the cutting arrangement 
in such a way that the cutting tip of the rack-type cutter or hob just touches the point of tangency 
when the cutting action begins. To effect this, the cutter is withdrawn by a specified distance so 
that the addendum line of the rack-type cutter or  hob just touches the point of tangency when 
the cutting action begins. To effect this, the cutter is withdrawn by a specified distance so that 
the addendum line of the rack just passes through the interference point, i.e. the point of 
tangency. This cutter off-set has been shown in Fig.2.24(a). 
As the rack is withdrawn, the outer periphery of the pinion must also be correspondingly 

increased beforehand. In other words, a larger pinion blank is to be machined, the diameter of 
which can be calculated by formulae given later. When a standard, uncorrected pinion is cut by 
the rack, the pitch line (i.e. the reference line of the rack situated at 1 m from the tip line of the 
rack in standard profile) is tangent to the pitch circle of the pinion at the normal pitch point P. 
When, however, the rack is withdrawn, this situation alters. This can be seen in Fig. 2.24 (b). 

CORRECTED C T A  “InARD 
1 TH I 
rooTH a w 

“IC.I.” 

, TOO 

Fig. 2.24 Formation of conected tooth 



2.42 Handbook of Gear Design 

The rack reference line MM is no longer a tangent to the pitch circle. Instead, it is away by 
an amount equal to  xm millimetres. 

This amount xm is the profile correction of the gear and the coefficient x is known as the 
“correction factor”. Note thatx is dimensionless, butxm is expressed in mm. We shall see later 
that x can be positive or negative. Positively corrected gear is known as S-plus gear and 
negatively corrected gear as S-minus gear. To find the correction factor for pinion whose number 
of teeth lies within the minimum number specified to avoid undercutting, we proceed as per the 
undermentioned procedure. In Fig. 2.24 (b) the rack is withdrawn just enough so that the 
addendum line of the rack passes through the interference point T of the pinion. This point T 
is the position from which the involute profile of the pinion tooth starts. Referring to the above 
figure 

PQ m - x m  

PT PT 

PQ PT 

sin a = - - - for standard, full - depth tooth with addendum = m 

Also 

sin a = - - - - or P T = r  s i n a  

Again 
d l  2 r 

r = d /2 = mz/2 
Inserting the values, we get 

m -  xm 2 m ( l -  x) 2 2  sin a = - - , whence we have 1 - x = - sin a 
From Eq. 2.24, we have r sin a mz sina 2 

z Z :. 1-x  = - or x = 1 - - 2 
2 ’  Zmin = - 

sin a Zmin Zmin 

(2.26) 

The above equation gives a theoretical expression of the correction factor which is the minimum 
value a gear with a number of teethz must have to avoid undercutting. For a= 20’, we know that 
the theoretical value ofzmin is 17. It has also been pointed out that a slight undercutting does not 
affect the tooth action much and as such the practical limiting number of teeth has been taken 
as 14. We, therefore, come to the relation which is most commonly used 

Zmin - 
zmin 

or x =  

14 - z 
x =  

17 
(2.27) 

Putting2 = 14 in the above equation, x becomes equal to zero-which it should be. Figure 2.25 
(a), shows the graphical representation of the above equation. The amount of correction factor 
necessary corresponding to the number of teeth to avoid undercutting can be directly read from 
this curve. The figure also shows the negative allowable limit of the correction factor for those 
gears in which the number of teeth lie above the practical value of zmin, and also the boundary 
line at which the positively corrected tooth becomes pointed or peaked. The limiting number of 
teeth tdm is a function of the pressure angle a and of the helix angle j3 in case of helical gears. 
These have been shown graphically in Figs 2.25 (b) and (c). 

It may be mentioned here that in the opinion of some experts, speed plays a part in determining 
the magnitude of the allowable undercutting. The recommended values of zmin after allowing a 
marginal, non-detrimental, undercutting vis-a-vis speed are as follows: 
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Zmin = 14 for medium speeds. (This value has been recommended for general case and normal 
service.) 

= 12 for very slow speeds 

= 18 for high speeds 

2.12 Characteristics of Corrected Gears 

The modern trend in gear technology envisages the use of corrected profile gears in most of the 
power transmitting and other areas. In fact correction factor is now standardised for the purpose 
of interchangeable gearing (explained in Sec. 8.12 later). Previously, gears were corrected either 
to  avoid undercutting (Sec. 2.11) or to  achieve a predetermined centre distance. These reasons 
are still valid in specific cases wherever required, but irrespective of the above two aspects, 
pinions as well as gears are now generated with positive correction because of the ensuing 
beneficial effects which the positively corrected gear profiles offer. Briefly, the reasons of positive 
correction and the effects thereof are as mentioned hereunder. 

1. Avoidance of undercutting: This aspect has been already discussed in Sec. 2.11. 
2. Attainment of a pre-determined centre distance: This aspect will be taken up in detail and 

the relevant formulae will be given in Sec. 2.13. 
3. To increase the strength at  the root and flank of the tooth. It  will be shown that due to  

positive correction, the thickness of tooth a t  the root is increased, resulting in greater load 
carrying capacity of the teeth. By choosing the proper amount of correction, the designer is in 
a position to specify gear-sets of higher capacity without entailing the corresponding cost 
increase for materials of higher strength. 

4. Betterment of sliding and contact relations. 
5. To shift the beginning ofthe effective profile awayfrom the base circle. The highest sliding 

velocity and the maximum compressive stress occurs at  the bottom ofthe tooth. From discussion 
on contact stress, it is known that'this stress a t  any point on the tooth profile is a function of the 
radius vector of the involute curve a t  that point. From Sec. 1.4 on characteristics of the involute 
curve, we know that the radius of curvature at  the starting point of the curve on the base circle 
is zero. Moreover, around this region, the curvature rapidly changes and the specific contact 
pressure is extremely high. Tooth contact at this region is to be avoided as it is detrimental for 
load transmission and it adversely affects the load carrying capacity. In a positively corrected 
tooth profile, the start of the active involute where the tooth contact takes place is farther away 
from the base circle than in the case of an  uncorrected profile. This naturally helps to  alleviate 
the above-mentioned difficulties as the tooth contact now takes place on those portions of the 
involute where the radii of curvature are greater. 

It has been shown in Sec. 1.5 how the conjugate action remains unaffected even if the centre 
distance is changed. This is one of the valuable properties of the gears having involute tooth  
profile. At extended centres, the gears continue to transmit uniform angular velocity ratio. Due 
to correction, there is obviously a change in the shape ofthe gear teeth as shown in Fig. 2.26. The 
active profiles are now formed from the involute curve generated from the same base circle but 
this time a different portion of the curve, which is farther away from the base circle, is used. 
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INFLUENCE OF PROFILE CORRECTION ON LIMITING NO. OF TEETH 
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Fig. 2.25 Effect of profile correction factor and limiting number of teeth 
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Unlike normal gears, the corrected gears since they are custom-built, cannot be used for 
interchangeable sets unless the correction factor itself is standardised as in the case of the "05" 
system. Moreover, corrected gears can only be manufactured by the generation processes. They 
can, of course, be made by formed tools in a millirjg machine, etc. but this is not economically 
viable, as the correction varies according to the particular design parameters, and so does the 
shape of the tool. "his means that a large number of formed tools have to be stocked and each 
one must be highly accurate. In a corrected gearing system, the contact ratio is somewhat smaller 
in most cases. These are the disadvantages of the corrected gear tooth system. 

In a corrected gear, the following parameters remain unaltered 
Base circle diameter d ,  = d cos a 
Pitch circle diameter d = m z 

Circular pitch p = 7rm 
The following parameters change: 
Tip circle diameter da becomes bigger by an amount of + 2 x m in case of S-plus gears and 

smaller by -2 x m in case of S-minus gears. (Here, the topping has not been taken into account 
which will be discussed in Sec. 2.13.) Incidentally, it is customary to express the amount of 
correction in terms of module, the reason being that since x is dimensionless, it does not convey 
any physical concept. Butxm is in millimetres and as such, it is a tangible amount. It shows the 
magnitude by which the gear blank is to be made bigger or smaller radially from the centre of 
the blank, depending on whether x is positive or negative. 

PITCH CIRCLE 

PITCH CIRCLE 

(a) CORRECTION FACTOR x(= + 1.0 

(d) CORRECTION FACTOR x = - 0.5 

(b) CORRECTION FACTOR x=+0.5 
(c) NORMAL TOOTHING WITH x =  0 

Fig. 2.26 Effect of profile correction 
Based on Maschinenelemente, Niemann, vol. II, 1965 edition, 
Fig. No. 3711, p. 37. Springer Verlag, Heidelberg. 
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Root circle diameter df becomes bigger or smaller by the same amount as in the case ofdo. The 
whole depth of tooth remains the same unless topping is done. 

Tooth thickness s becomes greater and tooth space width e becomes correspondingly lesser 
in the case of positively corrected gears. The reverse is true in case of negatively corrected gears. 

In  a positively corrected gear, the addendum is increased by an  amount of x m (neglecting 
topping) and the dedendum is correspondingly decreased by the same amount. The reverse is 
true in case of the negatively corrected gears. Normally, the root-fillet becomes smaller in case 
of positively corrected gears. This has a detrimental effect on stress concentration problems. 
Negative correction weakens the teeth and the tooth strength decreases. However, this 
detrimental effect is largely nullified in case of gears with a greater number of teeth. 

The influence of different types and amounts of correction factors on the shape of the tooth 
profile has been shown in Figs 2.26 and 2.27. It is clear from these figures that  the enlargement 
of a positively corrected gear is similar in effect to moving the teeth outward radially relative to 
the pitch circle. Consequently, the tooth thickness at the pitch circle is increased with a corre- 
sponding diminution of tooth space as the circular pitch n m remains unchanged. It may be 
mentioned here that  the effect of profile correction on tooth form decreases with increasing 
number of teeth ofgear. With z = infinity, that  is, with a rack, the effect is zero. In this connec- 
tion, see Appendix A, Method 4. 

Peaking 

One effect of the positive correction is to make the tooth more and more pointed as the correction 
factor increases. Consequently, the top land becomes correspondingly smaller and ultimately 
results in a pointed tip. This phenomenon is termed as “peaking”. The peaking limit sets a 
boundary to the amount of positive correction that  may be applied. The shape of a peaked 
tooth has  been shown in Fig. 2.26 (a). This figure also shows the relative shapes of S-plus gear 
(b), normal gear ’..’ and S-minus gear (d). 

We have noticea in Sec. 1.4 that the involute curve becomes increasingly flattened as  i t  moves 
awayfrom the base circle from which itisgenerated. I thas  been stated previously that  the profile 
of a positively corrected tooth (i.e. its face and flank) is composed of that  portion of the involute 
which is farther away from the base circle than in case of an ordinary gear. Moreover, positive 
correction results in greater tooth  thickness at the root. All these aspects combine to make a 
positively corrected tooth look thicker at the bottom and pointed a t  the top-more or less like a n  
inverted V. 

Though peaking limit determines the maximum value of positive correction, in actual prac- 
tice the correction is not carried to  that  limit a s  in case of a peaked tooth, the top land is zero. 
Obviously this cannot be allowed. IS: 3756 recommends that  the tip thickness should be greater 
than or equal to 0.4 m for hardened gears. In exceptional cases, this may be reduced to 0.25 m. 
In  actual practice, however, the least value of the top land can be brought down to 0.25 m even 
in gears for normal running without encounteringany significant detrimental effects. Neverthe- 
less, it is always advisable to check the value of top land by theoretical calculations where high 
correction factors are involved. 

The relevant formulae have already been given in Sec. 2.3 to determine the tooth thickness 
at any cylinder (Eqs 2.8 and 2.9). To calculate the top land thickness sa of a corrected gear, it is 
important to remember that  in the above equations, the corrected values of the tooth thickness 
at the pitch circle s (given later in this section), and of the radius a t  the tip circle ra are to be 
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Z = 24 
a = 20" 

I x = o  

Fig. 2.27 Tooth forms of corrected and uncorrected gears 
Based on Grundzuege der Verzahnung, Thomas, 1957 edition, 
Fig. No. 11.6, p. 21 2. Carl Hanser Verlag, Munich 
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inserted. Also, while finding the value of the pressure angle at the tip circle ct4 by means of 
Eq. 2.7, the corrected value of ra is to be used. 

Table 2.3 gives the maximum allowable positive correction factor values in case of a certain 
selected number of teeth commonly in use. This is based on a top land value of OAm, and the 
values of correction factors given in the table should not be exceeded if this amount of top land 
value is to be maintained. Using the relevant equations, values for top lands of gears having 
other numbers of teeth can be calculated. 

Table 2.3 Maximum permissible positive correction factor values 
vis-a-vis number of teeth 

2 14 16 18 20 

+x- 0.43 0.50 0.57 0.62 

Determination of Correction Factor for Peaked Tooth 

For the purpose of checking, it may sometimes be required to determine the correction factor at 
which the tooth of a positively corrected gear becomes peaked. Such a case is illustrated in the 
example below: 
Example 2.1 a Given z = 10, m = 5, to  determine the correction factor at which the teeth of a 
positively corrected gear become peaked and its outside diameter thereof 

I Solution 
S 

so = do [; + inv a - inv a, (From Eq. 2.9) 

For a corrected gear, as per Eq. 2.28 (given later), we have 

+ 2% m t a n a  = 5 - + 2 x  tan 20" = 5 (15707963 + 0.7279404 x )  (: 1 zm 
2 

s = -  

Also, the outside diameter of a positively corrected gear is given by 

d, = nw + 2m + 2 x m  = 5 (10 + 2 + 2x1 = 5(12 + 2%) 

For a peaked tooth, so = 0, 

.. inv a, = - + i n v a  = 
S 

d 5 x  10 

5 (15707963 + 0.7279404 x )  + inv 2oo 

= 0.1719836 + 0.07279404 x = tan a4 - a4 

After inserting the proper symbols and subscripts in Eq. 2.7, we get 
mi? 4.6984631 cos a = cos 20" = 

d cos a4 = - 
d o  m (12 + 2x1 6 + x  

Simplifying, we finally get the following the equations 

4.6984631 

6 + x  
cos u, = 



SpurGears 249 

and 
(Note tha t  in the above expressions, module m plays no part ultimately.) 

The above equations cannot be solved by ordinary methods. They can be solved only by using 
techniques involvinghigher mathematics, viz., Newton-Raphson method. However, solution can 
also be obtained by trial and error methods by inserting reasonable arbitrary values ofx in  the 
first equation, solving for aa , inserting this value of aa in the second equation and then solving 
forx till the two values ofx in the two equations tally. In  this case, the value ofx is around 0.7. 
Consulting Fig. 2.25 (a), if a vertical is drawn corresponding to z = 10, it meets the peaking limit 
curve at a point corresponding to which the value ofx is found to be around 0.7. For this parti- 
cular gear with peaked teeth, the outside diameter is given by 

tan aa - aa = 0.1719836 + 0.07279404 x 

da = 5 (12 + 2x1 = 5 (12 + 1.4) = 67 mm. 

Tooth Thickness of Corrected Gears at the Pitch Circle 
The generation of a positively corrected gear has been shown in Fig. 2.28. The amount of 
correction is + x m millimetre. The profile reference line of the rack is shifted by an  amount of 
x m from the generating or cutting line which contacts the pitch circle of the gear at point P. The 
generating line of the cutter and the pitch circle of the gear are in rolling contact like two pitch 
cylinders which are rolling without slipping as per the law ofgearing. Had it been a normal gear, 
they would have rolled at the profile reference line of rack MM, because then x n = 0 and the 
profile reference line would have been the generating line. In the present context it is clear from 
the figure that  the tooth thickness of the gear at the pitch circle (which is equal top/2 or mnf2 
for a standard gear) is now increased by an  amount of 2 x m tan a due to correction. Here 

arc A P  = straight length A'P 

HOB CUTTER' 
PROFILE 

Fig. 2.28 Tooth thickness of corrected gear 
Based on Zahnraeder, Zirpke, 1 1 th edition, 1980, Fig. No. 55, 
p. 59 VEB Fachbuch Verlag, Leipzig 

"he expressions for the tooth thickness, therefore, are as follows 

P 
2 2 

For S-plus gear 
nm + 2xm tan a s = - + 2xm t a n a  = - (2.28) 
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For S-minus gear 
z m  

2xm t a n a  = - - 2xm tan a P 
2 2 

s = - -  
(2.29) 

In this connection, see Sec. 8.5 and Appendix A, Method 4. 

2.13 Types of Corrected Gearing 

Based on the correction aspect, gearing can be classified into two broad categories (1) So-gearing, 
and (2) S-gearing. 

So-gearing 

In So-gearing, the two components of the mating pair of gears receive numerically equal 
correction factors, but these two factors are algebraically of opposite signs. Normally, the pinion 
is provided with positive correction and the gear with negative correction. In other words 

x 1 + x 2 = 0  o r x , = - x x ,  (2.30) 

That is, the pinion is an S-plus gear and the gear is an S-minus gear. The So-gearing is also 
known as the “long and short addendum” system. 

In So-gearing, because of the fact that the amount of correction is equal and opposite, their 
effect is to nullify each other as far as certain dimensions are concerned so that the two pitch 
circles contact each other at the pitch point P and the working pressure angle remains as the 
standard pressure angle as in the case ofuncorrectedgear, viz. 20” in usual cases. Also, the centre 
distance remains unaltered and is equal t o  the sum of the pitch circle radii. However, unlike 
uncorrected gearing system, the reference line of the reference profile (the basic rack) does not 
pass through the normal pitch point P i n  this case. It is shifted away by an amount equal t o  the 
numerical value of xm (mm). In case of the pinion, which normally receives the positive 
correction, the cutter is moved away from the gear blank centre by an extra amount ofxm (mm) 
while cutting so that an enlarged pinion with its tip diameter increased by an amount of 
2 xrn (mm) is produced. In case of the gear, the cutter is moved towards the gear centre by the 
same amount so that its diameter is smaller by an amount of 2 xm (mm) than in the case of 
uncorrected gears. Since topping is not necessary for So-gearing, the gear blanks are simply 
made bigger or smaller, as the case may be, by the amount indicated before feeding them to the 
gear-cutting machine. (Topping is explained later in this section.) 

The So-gearing is normally meant where the reduction ratio is large. Thicker pinion teeth are 
ensured and the gear teeth also do not become significantly weak. However, S,-gearing is not 
recommended for small reduction ratios as it tends to weaken the teeth of the gear. The So- 
gearing is also sometimes recommended where for certain specific reasons the normal tooth- 
thickness of the gear pair or the specific sliding velocities between the meshing teeth flanks are 
to be changed. Besides, since normally the pinion teeth are weaker than gear teeth when both 
are made of the same material, they are more vulnerable to  breakage and wear. The So-system 
tends to equalise the tooth strength and thereby reduces the susceptibility to such damage. 

For this type of gearing, the number of teeth of pinion z, is less than the practical limiting 
number of teeth to avoid undercutting zmln. Also, the sum of the teeth of both the gears should 
be equal to o r  greater than twice the limiting minimum number of teeth. That is 

Table 2.4 gives the expressions for the dimensions ofgears in  an S,,-gearing. 
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Table 2.4 Dimensions for Sogearing 

Description Pinion Gear 

Pitch circle diameter d, =z,m d, = q m  
Tip circle diameter 

Root circle diameter 

- 
Number of teeth 21 2 2  

d,, = d, + 2m + 2x1m 

d, = d, - 2 (1.25-x,) m 

de2=  d2+2m-2x ,m 

d,, = d2 - 2 (1.25 + x,) m 

nm m Tooth thickness on pitch circle s1 = - + 2x,mtana s2=- - 2x1 mtan a 
2 2 

z + z  a=a, = 4 + 4  = m u Centre Distance 

2 2 

Example 2.2: Given: 
the dimensions of suitable gears. 

transmission ratio i = 8 : 1, m = 10, centre distance = 540 mm. To find 

1 10 

2 2 
Solution: a = -m (z ,  + z2), or 540 = - (z ,  + z2), whence z ,  + z2 = 108, 

i = 3 = 2 = 8, orzz=8z1. Solving, we getz, = 12 andz, = 96 
n2 21 

Since z, is less than 14, the pinion has to  be corrected. Using Eq. 2.27 we get 

14- 12 
x1 = -10.118 

17 
The centre distance is to  remain unaltered. Hence, an So-gearing is indicated. :. x, = - 0.118. 
Using Table 2.4 we calculate the required dimensions thus: 

do, = mz, + 2m + 2x,m = (10 x 12) + (2 x 10) + (2 x 0.118 x 10) = 142.36 mm 

do, = mz, + 2m + 2x,m = (10 x 96) + (2 x 10) - (2 x 0.118 x 10) = 977.64 mm 

S-Gea r i n g 
In S-gearing the sum of the profile corrections of the two mating gears is not equal to zejo. It is 
either positive or negative. However, the sum is positive in almost all cases in order to take 

Fig. 2.29 Types of corrected gearing 
(a) Normal gearing x, = x2 = 0 

Pressure angle a = 20' 
(b) So-Gearing x, = - x2 = 0.5 

Working pressure angle 

(c) S-Gearing x, =x2 = 0.5 
Working pressure angle 
a, = 25.1 5', a = 20" 

a, = a = 20' 

Based on Maschinenelemente. Niemann, vol. I I .  
1965 edition, Fig. No. 3712, p. 37. Springer Verlag, 
Heidelberg 
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advantage of the beneficial effects of positive correction mentioned before. Usually, the sum is 
so divided that the pinion gets the bigger share of the positive correction. Sometimes an S-plus 
pinion may mate with a normal, uncorrected gear. I t  all depends on how the situation 
warrants it. 

Figure 2.29 illustrates the different types of gearing. In an  S-gearing, several parameters 
change. These changes are explained below along with the procedure for determination of the 
relevant values. 

Determination of the Working Pressure Angle It  should be specially noted that in an S-corrected 
gearing system, the pitch circles of the two meshing gears do not touch each other (Fig. 2.30). 
They touch only in case of an uncorrected gearing system or in case of the So-corrected gearing 
system. 

In Fig. 2.32 the two correctedgears are in mesh without backlash in an S-gearing system. The 
circles of the two gears which touch at the pitch point are called working circles. Had it been an  
uncorrected or an So -corrected system the working circles would have been ideptical to the pitch 
circles. The pressure line, which is tangent to both the base circles as before and which passes 
through the pitch point, now makes a new angle a, instead of the standard pressure angle 
a = 20”. This angle aw has been termed as the “working pressure angle”. We shall now find 
an expression for the “working pressure angle”. 

In this connection, i t  may be mentioned that some authors and gear manufacturers term the 
working circle andits diameter for a correctedgear as  “corrected pitch circle” and “corrected pitch 
circle diameter”. Such nomenclature is amisnomer. The pitch circle and the p.c.d. are theoretical 
parameters, and irrespective of whether a gear is corrected or not, the p.c.d. remains the same, 
being given by: d = M z ,  and since m and z are not changed in a corrected gear, the pitch circle 
and the p.c.d. remain unaltered. 

Recalling Eq. 2.28 the circular tooth thickness on the pitch circles are given by 
rt m 
2 

SI = - + 2x1 m t a n a  

rtm 
2 

s2 = - + 2x2 m tan a 

Since the two cylinders are now rolling at the working circles with radii rwl and rW2, we have 

(2.31) 

Now, since the two working circles are rolling without slipping, the circular distances covered 
on the circles by a common point in a particular time are the same (analogous to the circular pitch 
in a standard gear system). In  other words, on these circles, the distance comprising one tooth 
thickness plus one tooth space of one gear in equal to one tooth space plus one tooth thickness 
of the other gear-both in circular measure. That is, the two teeth of two gears fit into the 
corresponding two spaces in the two gears. Usings for thickness and e for gap (as recommended 
before) we have 

, 21crw,-27t run 
Circular pitch on the working circle = p,  = s i  + e: = si + e2 = --- 

But 
21 22 

, 27rrw, 2rtrw2 si = e; a n d ~ ;  = e l  :. si + e; = si + s2 = - --  - 
21 2 2  
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Using Eq. 2.8 for the values of corrected tooth thicknesse, s we have 

2rW1 [A + inva - inva, + 2rw2 3 + i n v a  - inva,  = - 2XCl 

2r1 I L2 I 21 

r 7 r 7 

2rW1 15 + inva - inva, + 2rw2 3 + inv a - inv a, = - 2XCl 

2r1 1 L2 1 21 

Dividing by 2 r,,, 
r 1 r 1 

a I = ;  '1 + inva - inva,J + 52 15 + ipv a - inva, k 5 1  2% 
Using the relation 2r1 = m z, and 2r2 = m z2 and the Eq. 2.31, after transposing, we have 

S 2 x - ' 1  + 2 x 2 = - + (inva, - i nva )  
mz, mz, z, 21 

Multiplying by mz, 

Using the values of s, and s,from Eq. 2.28 and equating 

s, + s, = x m  + m (2, + z2 1 (inv a, - inv a) 

wm a m  - + 2x, m tan a + - +2 x2m tan a = a m  + m (z ,  + z,) (inv aYI - inv a) 
2 2 

or 
2 tan a (xl + x,) m + a m  = a m  + m (zl + 2,) (inv a, - inv a) 

or 

and 

(zl + zz) (inv a, - inv a )  
2 tan a 

XI + x2 = 

2 tan a ( x ,  + x2> inv a ,  = + i n v a  

(2.32) 

(2.33) 
21  + 2 2  

Equations 2.32 and 2.33 are extremely important relations in gear design. Equation 2.32 
gives us an expression for the amount of total correction factors the proper distribution of which 
among the pinion and the gear will be shown in Sec. 2.14. Equation 2.33 gives us an  expression 
for calculating the value of the working pressure angle a,. Since the pressure line (or the line 
of action) is inclined to the horizontal at that angle, it is imperative.to know the value of the 
working pressure angle as it enters into equations involving force analysis, power rating and 
other important calculations of a gear set. 

Actual Centre Distance in an S-corrected Gearing In Fig. 2.30 the centre distance relations in 
an S-corrected gearing system along with other systems have been shown. Due to the enlarge- 
ment of the component gears, the centre distance between the two gears is extended. It  has been 
shown in Fig. 2.18 of Sec. 2.8 that because of this extended centre distance, a considerable 
amount of backlash is created between the mating gears. For proper running of the gear set, 
this backlash must be eliminated. Incidentally, this backlash is not to be confused with the 
backlash which is deliberately given and which is a result of the thinning of the tooth profiles 
caused by imparting tooth-thickness tolerances as well as a result of the centre distance 
tolerances. This aspect has been discussed in the Sections dealing with backlash and tolerance 
systems on gears (See Secs 2.8,2.27 and 2.28). 

- 



--- . 

(a (C) (a) 
UNCORRECTED GEAR CORRECTED GEAR-BEFORE PUSHING CORRECTED GEAR- AFTER PUSHING 

*-r . 

Fig. 2.30 Centre distance relations in S-corrected gearing 
Based on Grundzuege der Verzahnung, Thomas, 
1957 edition, Fig. No. 1 1.8; p. 238, Carl Hanser Verlag, Munich. 
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To nullify the effect of the backlash created by the extended centre distance and to bring the 
profiles of the teeth of the mating gears in backlash-free contact, the gears are brought nearer 
to each other till the tooth surfaces are in contact and the gears are in mesh. This is known as 
"pushing" since the gears are"pushed"re1ative to  each other. It is obvious that the effect of push- 
ing is t o  shorten previous centre distance. 

(a) (b) 

Fig. 2.31 Corrected toothing (S-gearing) 
Based on Zahnraeder, Zirpke, 1 1 th edition, 1980, Fig. No. 61, p. 69, VEB Fachbuchverlag, Leipzig 

In Fig. 2.31, the positions of the teeth in an S-gearing have been shown before pushing in (a> 
and after pushingin (b). Along with these positions, the position of an uncorrected, standard gear 
has also been shown in Fig. 2.30 for comparison purposes. The following relations can be 
established from the geometry of the various centre distances from Fig. 2.30. 

a =a ,+ (x , rn+  x2m> (2.34) 
P 

a, = Centre distance in an uncorrected system = d , +  42 = rl + r2 
2 

Refemng to Fig. 2.30 (c), the two cylinders after pushing are now rolling on their respective 
"working circles" having diameters dw, and dw2 or radii rwl and rw2 respectively. The common 
tangent to the base circles through the pitch point P now have a new pressure angle-the 
"working pressure angle"aw. 

Recalling Eq. 2.7 and suitably transposing, we have 

cos a cos a 
2rw, = 2r, - ordw,  = d, - 

cos a, cos aw 
Similarly 
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cos a dw2 = dd - 
cos a, 

The modified and final centre distance is given by 

Now 
dbl = 2rb1 = d,, cos aw 

or d ,  cos a db 1 d,, = - = 
cos a,  cos a, 

Similarly 
d ,  cos CY db2 dw2 = - = 

cos a,  cos 0, 

1 cos a 
2 2 cos a, 

( d ,  + d,) d w 2  + dw2 = 
Hence 

a =  

or z + z2 c o s a  cos CY - m L - -  a =  - -  - a,- 
2 cos aw 2 cos a ,  cos a, (2.35) 

d, + d, cos a 

Equation 2.Q5 is an extremely important and useful equation from which the final centre 
distance in an  S-gearing can be calculated. The value of the working pressure angle aw can be 
calculated from Eq. 2.33. 

The shortened centre distance a is related to the centre distance before pushingap as  follows 

a p - a = y m  
Note that  the above equation is identical to  Eq.2.36 given later in the sub-section on “topping”. 

The coefficienty is called the centre distance modification factor. As in the case of correction, it 
is customary to express the difference up -a in terms of the module m as shown. 

Referring to Fig. 2.30 (c), the common tangent to  the base circles is now the new line of action 
along which the contact takes place and the force is transmitted. It passes through the new pitch 
point P on the line of centres O,O‘,. Point 0;  is the new position of the centre of the gear after 
pushing so that  the amount pushed is ap -a. The two working circles with radii rwl and rw touch 
each other at P. The working pressure angle is aw . From geometry, we can establish the following 
relations 

‘b2 / - =  cos a - r , x  - 1 = 5 = - a1 ‘bl - ‘bl - - _  1- - - - - ‘b1 

0; P r,, cos a,  cos aw rb2 cos a rb2 r2 ‘2 0 1  

- 
O P  

It, therefore, makes no difference in the angular velocity ratio when the centre distance 
becomes different from the standard centre distance in case of involute gearing. This is a 
confirmation of this particular property of the involute curve discussed earlier. This property is 
of great advantage and significance in gear drive. 

Table 2.5 gives standardised values of the centre distance. These values are valid for closed 
units with module of gears rn 2 0.5 mm. The values given in the table are preferred value 
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numbers, given in the preferred value series. If from operational or design standpoint the cal- 
culated values of CD does not tally with the value given in the table, it is not imperative to stick 
to the standardised value. This can deviate from the standard value and can conform to  the 
calculated value. 

Table 2.5 Standard values of centre distance 
Based on Zahnraeder, Zirpke, 11th edition, 1980, table no. 2, p. 73. 

VEB Fachbuchverlag, Leipzig 

Series Centre Distance {mm) 

1 63 100 160 250 
50 63 80 100 125 160 200 250 31 5 

3 50 56 63 71 80 90 130 112 125 140 160 180 200 224 250 280 315 

1 400 630 1000 1600 
2 400 500 630 800 1000 1250 1600 2000 
3 355 400 450 500 560 630 710 800 900 1000 1120 1250 1400 1600 1800 2000 

If the design conditions permit, the order of preference for the selection of the value of centre 
distance should be: Series 1 the first choice, followed by Series 2, and lastly Series 3. 

Example 2.3 Given: m = 10a = 20°, i = 3 : 2, a = 210 
m = 10, a = 20' To find the diameters of the appropriate pair of gears. The 
values of i and a are to be kept exact. 

Solution: Normal gearing gives the following results 
3 2 2  - - 210 = - m (zl + z2) = - (z ,  + z2) orzl + z2 = 42. Also, i = - - 

2 2 21 2 
1 10 

Solving the above two equations does not lead to any whole numbers for z,and z2. The nearest 
value z + z2 = 40 gives z - 16 and z2 = 24, satisfying the condition that i = 24/16 = 312. Since the 
centre &stance is to be kipt  exact, the solution lies in using an S-gearing. 

16 + 24 cos 20' 

2 cos aw 

Using Eq. 2.34, we have 

a = 210 = 10 , whencea, = 26' 30' 

From Eq.2.33, 2 tan 20' (xl + xz)  inv 26' 30' = + inv20' 
16 + 24 

From Appendix H, inv 26" 3 0  = 0.036069, and inv 20" = 0.014904 
Inserting these values and solving, we get x1 + x2 = 1.163 
Using Eq. 2.41 given in the Sec. 2.14, we get 

1.5 - 1 
= 0.5652 1.163. 

x .  = + 0.5 

.. 
1 

1.5 + 1 1.5 + 1 
x2 = 1.163 - 0.5652 = 0.5978 
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Topping (as per Eq. 2.36 given later in this section) is given by 
10 

2 
ym = - (16 + 24) + 1.163 x 10 - 210 = 1.63 mm 

Therefore, the required diameters are: 

Pinion diameter, da, = d ,  + 2m + 21cl m - 2 y  m = (10 x 16) + (2 x 10) + (2 x 0.5652 x 10) 

Gear diameter, da2 = d, + 2m + a, m - 2ym = (10 x 24) + (2 x 10) + (2 x 0.5978 x 10) 

Addendum Modification or “topping” It has been explained before that  in a n  extended centre 
distance system, as in the case ofan S-gearing system, the component gears are “pushed”re1ative 
to each other to bring the pinion and the gear in a backlash-free contact. The centre distance is 
shortened due to pushing. Equations for the normal centre distance for an uncorrected gearing 
as well as for So-gearing a,, that  for the S-gearing before pushing up, and that  after pushing a, 
have already been given at appropriate places. 

Now, one effect of pushing is that  the clearance between the tip of one gear and the root of the 
mating gear becomes less. 

Figure 2.31 (a) represents the gear positions before pushing, showing clearly that the back- 
lash exists between the mating teeth. Figure 2.31 (b) depicts the position afterpushinghas been 
implemented, thereby eliminating backlash as in the case of Fig. 2.32. The new centre distance 
a is less than up, as  explained earlier. It can be easily seen from Fig. 2.31 that  the tips of the 
teeth have entered the corresponding tooth spaces so much that  there is not enough clearance 
between the tips and the bottom lands. Consequently, normal running of the gear set will be 
impaired and this may even lead to  seizure, unless some remedial measure is taken to avoid such 
a situation. Moreover, the top of the gear tooth may mate with the non-involute portion at the 
root region of the tooth of the other gear of the pair, leading to interference and allied problems. 

One obvious solution is to “cut-off the offending tooth tips. This is what is known as  adden- 
dum modification or topping. It must be emphasised, however, that  actually no cutting-off is 
done after the gear has been made. The blank itself is reduced prior to teeth cutting as per the 
calculated value determined before. The relevant formulae are given later. Also, in the gear 
cutting machine, the feed is given accordingly so that  a “topped” tooth, (which is obviously ofless 
height than the standard tooth of standard whole depth), emerges. One side effect of topping is 
that  the top land of the tooth is also increased. The topped portion has been shown as cross- 
hatched in Fig. 2.31 (b). 

To achieve the standard clearance c ,  the tooth to be topped is reduced by an amount given by 

(2.36) 

As in the case of correction, the amount of topping is expressed in terms of module, the unit 
of measurement being millimetre. The coefficient of topping y is dimensionless, as in the case 
of correction factor x .  

- 2 x 1.63 = 188.044 mm 

- 2 x 1.63 = 268.696 mm 

ym = up - a  = la, +(xl + xz) ml - a  (mm) 

The standard clearance now is given by 

(2.37) 

We can now arrive at the value of the outside diameter of the blank after topping 
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GEAR 1 / /  1 STANDARD PITCH 
CIRCLE 

/ 
STANDARD PITCH 

CIRCLE 
GEAR 2 

/ /  
Fig. 2.32 Determination of working pressure angle 

dal = [d, + 2m + 2x,ml- 2ym 

:. da, = [d, + 2m + 2 x,ml - 2 la, + (x, + x,) m - u I 

d l  + ' 2  - 2x,m -2x,m + 2a = d l  + 2 m +  2x,m - 2 

= 2 ( a + m - x , m ) - d 2  (2.38) 
2 

Similarly 

da2 = 2 (a + m -xlm) - d ,  (2.39) 

Sometimes topping may not be considered as necessary because the clearance without topping 

In that case, the tip diameters are calculated as per the formulae given in case of uncorrected 
may be sufficient for certain service conditions. 

or So-gearing. 
The important formulae connected with S-gearing have been summarised in Table 2.6. 

Table 2.6 Dimensionsf.or Sgearing 

Description Pinion Gear 

2, 
d2 = z2m 

de, = 2 (a + rn - x,m) - d, 
d,, = d, -2 (1.25 - x,)m 

Number of teeth =1 

Pitch circle diameter 
Tip circle diameter 

Root circle diameter 

d, = z,m 

d,, = d, -2 (1.25 - x , ) r n  
(with topping) dmr=2(a+rn-x , rn ) -d ,  

Tooth thickness 
017 pitch circle 

Topping 

P 
2 

y m = a o + ( x , + x 2 ) m - a  

s, = - + 2x,  rn tana s2 = + 2x,mtana 
2 

(contd.) 
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Table 2.6 (Contd.) 

Standard centre distance a , = m -  Zl + za 
2 

Actual centre distance 
(after pushing) 

Working pressure angle 

Top clearance 

Sum of profile’correction 
factors 

cos a Z + Z  cOSa a = a, - t m U - 
cos aw 2 cosa ,  

inv a, = 2- xl+x* tan a+inva 
Zl+Z2 

x ,  + x2 = (z, + 22) 
inva, - inv a 

2 tan a 

2.14 Distribution of Correction Factors 

In the previous sections on corrected toothing of gears, the consequences effected by correction 
on various aspects of toothing have been discussed. It has been emphasised that profile 
correction of gear teeth is undertaken to avoid undercutting in case of a small number of gear 
teeth, to suit a pre-determined centre distance when necessary, and above all to increase the load 
carrying capacity of the gear teeth by providing positive correction whereby the root thickness 
of the teeth is considerably increased. Better operational properties are also attained by gear 
correction when oompared to those of ordinary, standard gears. 

In previous sections, we have also arrived at expressions for corrected toothing systems where 
the correction appears as total correction on the pinion and the gear. In this section, we shall see 
how the sum of correction factors can be divided among the two components of the mating pair 
and the relevant methods thereof. The methods are applicable only in case of spur and helical 
gears. 

If correction is carried out only to avoid undercutting, the formulae given in Sec. 2.11 will 
suffice. If, however, other factors as stated above are involved which necessitate profile shifting, 
the total correction should be properly distributed between the pinion and the gear. For 
convenience some equations relevant to correction are repeated here after necessary transposing 

(zl + z2) (inv a, - inv a,) 
2 t a n a  

x1 + x2 = 

rn, (21 + 22) cos a,, = cos a, 
2a 

Here, a, is the working pressure angle in the transverse plane, a, is the standard pressure 
angle in the transverse plane and a is the standard pressure angle in the normal plane-all in 
case of helical gears. In case of spur gears a& = aw and a, = a, rn, = micos p for helical gears 
with helix angle = p;  for spur gears m, = rnn = M as/3,=0’. Having ascertained the total correction 
factorsx, + x, by using the relevant equations, the individual correction factors can be determined 
by using the following formulae. The underlying idea is that both the pinion and the gear are 
subjected to equal maximum stresses 

X I  + x2 i -  1 + for equal sliding velocity i +  1 i + 1 + 0.42, x1 = (2.40) 

x1 + *2 + 0.5 - i - 1 for equal root stress 
i + l  1 +  1 

(2.41) 
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x1 + x2 z1 + 12 
x1 = + -  for equal contact pressure a t  i 2 2 (2.42) 

i +  1 z 1 + 2  z , + 2  
Besides the above method, distribution of gear correction factors can also be done as per the 

steps laid down in IS: 3756 and DIN 3992 which are essentially the same. These standards are 
applicable for spur and helical gears belonging to  the standard basic rack and having number of 
teeth 10 or more, Figure 2.33 gives distribution ofcorrection factor s f  or reduction gear drives and 
Fig. 2.34 for step-up gear drives. The undermentioned basic requirements must be satisfied after 
correction. 

(a) 
(b) 

A minimum contact ratio of 1:l should be maintained. 
The tip clearance should have a value of at least 0.1 m. Normally, topping is done in case 
of corrected gears as explained in the section on correction dealing with that aspect so 
that the tip clearance is around 0.25 m. 
The top land preferably should not be below 0.4 m for hardened gears in normal 
applications. The value may be brought down to  0.25 m in certain cases. 
There should be no interference and undercutting. 

(c) 

(d) 
Figures 2.33 and 2.34 can be used to divide the sum of correction factors equitably as described 

below. The middle portion of each figure is meant for helical gears and is used for obtaining the 
equivalent or virtual number of spur gear teeth zul  and zu,. The equivalent number of teeth 
zv = z/c0s3 p for helical gears. The equivalent spur gear concept for replacing helical gear for 
calculation purposes has been explained in the chapter on helical gears. Distribution of 
correction factors for helical gears is also dealt with in this section along with that for spur gears. 

Knowing the sum of number of teeth, i.e. z1 + z,, the individual correction factorsx, and x2 can 
be ascertained by the procedures explained below and by the examples which follow. The method 
is applicable for gears with number of teeth up to 150. When the number exceeds 150, a 
somewhat different method is adopted, but since profile correction in case of gears with a large 
number of teeth does not have a significant influence on the load carrying capacity of the gear 
teeth, the method described in this section is adequate for normal applications. The basic idea 
on which the method is based is to have equalization of load carrying capacity at the roots of the 
pinion and the gear teeth, balanced conditions, advantageous sliding conditions, etc. 

In Figs 2.33 and 2.34 the respective characteristic lines L1 to  L17 and S1 to SI3  represent a 
compromise between the different requirements and various factors involved. Lines P1 to P9 in 
each figure serve the purpose of identification according t o  tooth properties. These are: (i) zone 
between P3 and P6 for normal applications; (ii) between P6 and P9 for higher bending and wear 
strength; (iii) between P1 and P3 for high contact ratio, and (iv)zones marked for special cases- 
the upper one meant for toothing with greater pressure angle and smaller contact ratio while the 
lower one designated for toothing with smaller pressure angle and larger contact ratio. The 
method is well illustrated by the undermentioned examples. 

Example 2.4 Given: z, = 32, zz = 64, m = 3 
To design control gears with high contact ratio for a reduction gear unit. Gears are to be spur 
gears. 

Solution: Line P2is selected from Fig. 2.33 for high contact ratio. Since only spur gears are to 
be considered the middle portion of the figure is not necessary 

Z,  + Z,  = 32 + 64 = 96 
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Fig. 2.33 Distribution of correction factors for reduction gear drive 
Based on Zahnraeder, Zirpke, 11 th edition, 1980, Fig. No. 230 & 231 pp 398 & 399 VEB Fachbuchverlag, 
Leipzig. 
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2 

Fig. 2.34 Distribution of correction factors for step-up gear drive 
Based on Zahnraeder, Zirpke. 11 th edition, 1980. Fig. No. 230 & 232, pp 398 & 400. ' 
Leipzig . 

VEB Fact )buch\r rerlag, 
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A vertical line is drawn from the horizontal axis of the uppermost diagram at the point 
denoting 96 till it cuts the horizontal line P2 (shown at point A in the figure). This corresponds 
to XI + x2 = - 0.20. 

Using the two relevant equations given before at the beginning of this section, we get 

= 19" 19' lo" 

a = 143.39 mm 

tlu 

and 

I t  is desirable to round off the value of the centre distance. Hence 

a = 143.5 mm (taken) 
Recalculation yields the following values 

cy;," = 19" 26' 39" 

and 
X ,  + X ,  = - 0.164 

A vertical line is then dropped from point A till it meets point B corresponding to  the value 

- 0.082 X + X ~  = -0.164 = 
2 2 

One can also raise a vertical from the point z = CZ, + z,)/2 = 48 to locate point B. This vertical 
is an extension of the line AB. 

A straight line is drawn from point B which matches between the adjacent l ines l9  andL10. 
Verticals from points: z ,  = 32 and z, = 64 cut this straight line at two points. Horizontals from 
these two points OR the vertical axis give the values 

x1 = + 0.06 and x2  = - 0.23 

These are approximate values. Hence, keepingx, = + 0.06, the final values are 

x,  = + 0.06, and x2 = - 0.164-0.06 = - 0.224 

Example 2:s Given: z, .= 14, z2 = 33, normal module m,, = 4.5, helix angle fl  = 18O. To design 
a set of gears to transmit high load in a step-up gear system. 

Solution: This is solved in a similar manner using Fig. 2.34. First, lineP7 is selected. Line from 
p = 18" meets the line forz, + z, = 47 at C.Vertica1 from C passes through a value corresponding 
to the sum ofthe equivalent number ofteethzui +zu2 = 54. PointD onP7 islocated;xl + x  = O X .  
After finding the working pressure angle and the centre distance as before, the centre tistance 
is rounded off and recalculation is made yielding a value ofx, +x2  = 0.9357. Point E, below C'and 
D, denotes 

- 27 and x = - = 0.468 Zvl + 3 2  = __  54 
2, = 

2 2 2 

Verticals are drawn fromF (j3 = 18", z1 = 14) and G (fl= 18", z2 = 33) to determine the ha l  values 
x ,  = + 0.40 andx, = 0.53 after drawing line throughE in a simdar manner as in Example 2.4 using 
Fig. 2.33. 
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2.15 Internal Spur Gears 
Jn an  internal gear, the teeth are cut on the inside of a ring. It  is also known as  an annular gear 
since the rim on which the gear is produced is in the shape of an annulus. The internal gears have 
many applications, the most frequent being the planetary gear systems. 

The tooth space on an internal gear more or less corresponds to  the tooth of the external gear 
with which it mates, and the tooth of an internal gear corresponds to the tooth gap of its mating 
external gear. The tooth and the tooth-space of an internal gear can be proportioned like a 
standard gear with the addendum and the dedendum in reversed positions, but this is not 
generally done in order to alleviate the interference effects and also to improve tooth action. 
Normally, both the internal diameters of the internal gear and the outside diameter ofthe mating 
pinion are made slightly larger than the size calculated according to  the conventional tooth 
proportions. Figure. 2.35 shows the internal gear parameters. Usually, the pinion is the driver 
and the internal gear is the driven one. 

The undermentioned characteristics of the internal gears are to be noted vis-a-vis those of the 
external gears. 

1. Since the centre distance is small, areductian gear unithavinginternalgear arrangement 
is more compact for any particular reduction ratio. 

2. The tooth forms of internal gears are stronger than those of the corresponding external 
gears. 

3. The action of tooth during operation is much smoother than that of the conventional 
external gear drives. 

4. The sense of direction of tooth travel is the same for the two members comprising an 
internal set. This results in reduced sliding, low wear and greater efficiency. 

Fig. 2.35 Parameters of internal gear drive 
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5. The tooth profile of an  internal gear more or less wraps around the tooth profile of the 
external tooth of the pinion. This aspect has several advantages, namely, the contact ratio is 
greater, load transfer from tooth to tooth is gradual, running is quieter, and most important, 
since the actual surface in contact is increased because of this wrapping action between the two 
curved surfaces, a greater load can be taken by the system for the same surface stress and life, 
or conversely, the surface stress is much less for the same corresponding load. (In this connection 
see Sec. 2.23 on contact stress.) 

6. Due to longer line of action, comparatively more teeth are in contact simultaneously. 
Consequently, the load-intensity on any one tooth is correspondingly decreased, thus increasing 
the life of gears. 

7. As a consequence of decreased load on one tooth, the impact force at the beginning of tooth 
engagement is much reduced, resulting in quieter running. 

8. Since the shape of a n  internal gear drive forms a sort of natural guard over the meshing 
teeth, it is advantageous for some kinds of machines. 

In an  internal gear drive, two types of interference may take place. First is the usual kind, 
that  is, the mating of involute profile of one member with the non-involute portion of the other 
member. 

The tip circle of the (driven) internal gear does not cut the line of action as the top of the tooth 
extends inside the base circle where obviously there is no involute profile. Consequently, the part 
inside the base circle will cause interference which can be avoided by modifying the teeth so that  
no contact occurs till the “interference point” is reached. The modified internal gear is shown in 
Fig. 2.36. 

I 

Fig. 2.36 Modified internal gear 

PATH FOLLOWED 
BY POINT ON 

PINION TOOTH 

Based on Grundzuege der Vezrahnung. Thomas, 1957 edition. 
Fig. No. 11.7, p. 233. Carl Hanser Verlag. Munich 

Fig. 2.37 Fouling in internal gear 
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The second type of interference is cal1ed"fouling". This type of interference is peculiar to the 
internal gear system only. The principal limitingfactor underlying the design of an  internal gear 
system is the difference between the numbers of teeth z2 and z, of the mating members. When 
this difference is too small and the detrimental effect is not taken care of by suitable corrective 
measures, foulingor tip interference may occur. That is, foulingmay take place between the tips 
of the pinion and the internal gear in the region where their respective tip circles cross as shown 
in Fig. 2.37. 

The tooth profile of an  internal gear is concave instead of convex as in the case of external 
gears. Because ofthis shape, the fouling type ofinterference occurs between the inactive profiles 
as the teeth ofthematingmembers go in and out ofmesh. Foulingoccurs when the pinionis large 
compared to the internal gear. 

Fouling can be avoided if a minimum difference in tooth numbers between the gear and the 
pinion is maintained. This is 12 teeth for 14.5" full-depth system, 10 for 20" full-depth system 
and 8 for 20" stub tooth system. As a general rule, the pinion diameter should not be larger than 
about two-thirds of the pitch diameter of the internal gear for 20' full-depth teeth. The following 
general rule applicable for gears a t  standard centre distance is also used by some designers. 

In each case, however, modifications in the teeth profiles may be necessary. When such 
modifications are undesirable for any reason, then the difference in tooth numbers has  to be 
greater. Another method ofavoidingfoulingis to generate the internal gear with a Fellows cutter 
having two teeth less than the number of teeth of the gear. This automatically relieves the tips 
of the internal gear teeth to prevent fouling. 

For internal gear drives, the standard 20" involute full-depth form is mostly used. In principle 
design technique of an internal gear is the same as  used for external gears. The basic rack forms 
are the same in both the cases. Measures, however, are to be taken while ascertaining the 
dimensional parameters of an internal gear drive system in order to  ensure effective tooth action 
by avoiding various types of interferences. 

The processes available for manufacturing internal gear teeth are limited; e.g., casting, shap- 
ing or milling with formed tooth or cutters. An internal gear cannot be hobbed. However, for 
accurate production of internal gear teeth, only the generation method using a pinion-type or 
Fellows cutter is employed. But this process too has its limitations as  regards the cutter size. 
Internal gears of small size can be produced by broaching. 

To avoidinterference and to ensure free and smooth movement ofincoming and outgoing teeth 
of the meshing pair, two methods are generally employed. The first method involves the 
enlargement of internal (addendum circle or tip circle) diameter of the internal gear as  well as 
of the tip circle diameter of the mating external pinion. For this, the following formula may be 
used. 

Internal diameter of the internal gear da, = MZ*- 1.2 m 
Tip diameter of the external pinion dal = mz, + 2.5 m 
Note that in both the cases, the diameters are somewhat larger than the normal values given 

by 
da, = d,  + 2m = niz, + 2m 
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and 

do, = d, - 2m = m2-2m 
The second method is to  reduce the addendum of the internal gear teeth .by addendum 

modification or topping. I t  has been stated before that in 20" full-depth toothing system the 
fouling type of interference can be avoided if the minimum difference in numbers of teeth of the 
gear and the pinion is maintained as z2 -zl = 10. However, it is a good design practice to allow 
some topping so that the designer is sure of doing away with all types of interference. The 
guidelines given in Table 2.7 can be used for cases where z -tl = 10. If z2 -zl is less than 10, 
the addendum of the internal gear teeth are to be made stilt smdler. In that case, the relevant 
values are t o  be determined by making drawings of actual teeth. 

Table 2.7 Addendum values of internal gears where z, - z, = 10 

z2= * 20-22 23-26 27-31 32-39 40-51 52-74 75-130 over 130 

ha = 0.60 m 0.65 m 0.70 rn 0.75 m 0.80 rn 0.85 m 0.90 m 0.95 m 

In case z2 - t l  is greater than 10, no interference is normally encountered and hence no topping 
is necessary. 

The relationship between the different gear parametersfor an internal drive are summarised 
in Tables 2.8,2.9 and 2.10. These are standard formulae and do not take into account the special 
considerations, e.g. enlargement of gears, special amount of topping, which are connected with 
an internal drive, and which have already been discussed earlier in this section. Only the 
standard type of topping to provide the standard top clearance in case of corrected gears has been 
considered and included. The reader should compare the parameters ofinternal gears with those 
of external drives. 

Table 2.8 Dimensions of internal spur gear drive for uncorrected gears 

Description Pinion Internalgear 

Number of teeth 21 -5 
Pitch circle diameter d, = z,m d2 = z2m 

Tip circle diameter 

Root circle diameter 

d,, = d, + 2m 

d,, = d- 2x 1.25m 

d, = d, - 2m 

de = d, + 2X  1.25 m 

Centre distance 

Tooth thickness on 
the pitch circle 

P r n  
2 2  

s = - = -  

In an Sdcorrected internal drive, both the pinion and the internal gear receive the same 
amount of positive correction. That isx, = x,. This is unlike an external So-corrected drive where 
x* = - x,. 

, 
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Table 2.9 Dimensions of internal spur gear drive for So-corrected gears 

Pitch circle diameter d, = z,m d2 = z2m 
Tip circle diameter 

Root circle diameter 

d,, = d, + 2m + 2 x ,  m 

d, = d ,  - 2 (1.25 - x,)m 

de = d2- 2m + 2 xlm 

d,, = d, + 2 (1.25 + x , )  m 

Centre distance a -  d2 - dl - z 2 - z 1  

2 2 
s, = + 2 xlm tan u s 2 = - -  2x1m tan u Tooth thickness on 

the pitch circle 2 2 
~ ~ ~~ 

Table 2.1 0 Dimensions of internal spur gear drive for Splu,-corrected gears 

Pitch circle diameter 

Tip circle diameter 

Root circle diameter 

Centre distance 

Working pressure angle 

Tooth thickness on 
the pitch circle 

Top clearance 

d, = z,m 

d,, = d, - 2(a - m -x2m) 

d, = z2m 

d , = d 1 + 2 ( a - m -  x,m) 

d, = d 1 - 2 ( 1 . 2 5 - x , ) m  d,, = d, + 2 (1.25 t x,) m 
z2 - z1 cos a a = m - -  

2 cos aw 

inv a,= 2- ‘ 2  - ’ 1  tan a + inv a 
z2 - z1 P 

2 
s1 = - + 2x,m tan a s2 = - -  P 2x,m tan a 

2 

2.16 Practical Design Criteria for Gear Dimensions 

In  solving any gear design problem, the usual practice for the designer is to make a rough, 
preliminary draft design before proceeding to finalise the design data consisting of the finer 
aspects of the art of gear design. At the preliminary stage, the design involves such considera- 
tions as the types and magnitudes of stresses which the gear is likely to be subjected to, an  
estimate of the approximate gear size keeping the space and weight restrictions in mind, arough 
idea about the power rating t o  meet the requirements in case i t  is not initially known and other 
operational parameters. 

Though no dogmatic rules can be given which will enable the designer to  make a perfect job, 
some generalisations can be drawn and guidelines given t o  determine the practical dimensional 
and other gear data. In Chap. 1 we have discussed about the gear drive requirements as to  the 
type of gearing, speed, axis orientation and the number of stages. In this section design criteria 
for gear dimensions and allied aspects will be dealt with. 

The geometrical proportions of a gear will depend on several factors. Normally, the following 
parameters are given from which the designer has to  proceed in his task. 

1. The output power or the torque required. 
2. The transmission ratio. 
3. The input speed or the required output speed. 
4. The anticipated life of the gear set. 
5.  The duty or the service conditions. 
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6. The nature of load which the gear set is expected to encounter during its operational life 
7. Other special conditions, such as, space requirements, pre-specified centre distance and 

price limitations. 
We will now take up the individual data of gear parameters for proper design. 

Material 

Selection of proper material has already been discussed in detail in Sec. 1.8 and at other places 
in this book. Besides strength considerations, the choice of material mainly depends on the 
requirements of space and weight and the overall price of the gear drive. Cast iron is good enough 
for ordinary purposes. Steel and cast steel offer better strength. Pinion of synthetic material is 
quiet running and vibration damping. Phosphor bronze and similar materials are used to 
alleviate the loss due to sliding. 

Number of Teeth 

The number of teeth of the pinion and the gear are to be so chosen that  a minimum value of 1.1 
for contact ratio is assured. For fast moving set, it should be greater than 1.5. The transmission 
ratio should not preferably be a whole number to  ensure hunting tooth action. Guidelinesfor the 
selection of minimum number of teeth of pinion are given in Table 2.11. When the number of 
teeth is below the minimum specified in Sec. 2.10, then obviously the pinion is to be positively 
corrected. 

Table 2.1 1 Minimum number of pinion teeth 

Type of service Minimum number of teeth 

Heavy duty and high speed 
Medium speed 
Light duty and low speed 

16 
12 
10 

For the sum (or difference) of number of teeth ofpinion and gear, the following rule holds good 
For external gearingz, + z, 1 2 4 ,  and for internal gearingz, -2, 2 10 

Transmission Ratio 

If the transmission ratio is high, a multi-stage gear set is used to  avoid unnecessarily big gears. 
In general, the transmission ratio per stage is given by 

i I 7 for general purpose drive 
= 10 for maximum value in special cases 
= 4 for maximum value for change-gear sets 

If the given transmission ratio cannot be strictly adhered to for some technical ground, the 

For all types of drives excluding worm-drive when i 2 250, the allowable deviation = 2 3 '36 
For all types of drives including worm-drive when i > 250, the allowable deviation = 2 5% 

following deviations are allowed: 
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Pitch Circle Diameter 
The final value of pitch circle diameter will depend on many and different factors. Only broad 
outlines can be given for initial calculations. These are 

d, 2 1.5 x'shaft diameter in case of a pinion shaft, i.e. when the pinion and the shaft are made 
from one stock 

2 2 x shaft diameter in case of key-fitted or shrink-fitted pinion 
Neglecting the effect of bending and considering torsion only, we can arrive at a rough, initial 

value ofd,, using the well-known formula from mechanics: torque T = - d3 T,, and 

inserting a conservative value of the allowable torsional stress 7p = 12N/mm2 

a 
16 !/= Shaftdia = d(mm) = 160 

(2.43) 

Width of Tooth 

In selecting the width, the type and the quaiity of bearing are the deciding factors, among other 
considerations. The following guiding values can be given: 

Straddle mounted, i.e. bearing on both sides 

bld, I 1.2 (2.44) 

Overhung, i.e. bearing on one side only 
bld, 5 0.75 (2.45) 

Putting b,,, = h, Table 2.12 shows the relation between the tooth width and the module. . 

Table2.12 Factor il for different service conditions 

Tooth surface condition Type of bearing a 

Cast clean and smooth 

Machined 
smoothor 
ground 

Bearing fitted on steel constructions 10 
Bearing fitted on steel constructions, e.g. beams etc. 15 
Bearing with overhung pinion 15 
Bearing fitted in gear box casings and similar cases 25 
Anti-friction bearings or journal bearings fitted on 

rigid base and using shafts of sufficient stiffness 30 

Normally, the width of pinion is made 3 to 4 mm greater than that of the gear t o  ensure 
complete engagement during service, so that the effects of straying ofgears on the shafts and mis- 
alignment are averted. 

Module 

Selection ofproper module will, ofcourse, depend on the strength considerations. Small modules 
permit noiseless running. The limitingfactors comprise strength of tooth root, quality ofbearing 
and manufacturing constraints on the lower side, and the PCD and number of teeth on the higher 
side. 
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The relevant relations are: 
b mmin = - 
A 
PCD of pinion 

Minimum number of pinion teeth m m i n  = 

(2.46) 

(2.47) 

2.17 Types of Gear-body Construction 

Depending upon the size, material, type of application, cost and other deciding factors, such as 
nticipated stress conditions and operational parameters, the gears may have different con- 

structional designs and shapes. Gear blanks may be machined from a solid raw-stock or may be 
manufactured by casting, forging and fabricating by welded construction. Often the designer has 
to reckon with such considerations as machining facility and availability of heat-treatment 
measures. 

Small pinions are often made integral with the shaft. In such a design, which is normally 
referred to as  a pinion shaft, the key is dispensed with and the provision of a n  axial-locating 
device is also eliminated. 

Gears are also made by drop-forging and die-casting. Steel gears with diametersup to 500mm 
are usually made full without recess. Large gears are generally of cast construction. Very large 
and wide gears are usually of two-walled variety and are either of cast or welded construction. 
For saving costly materials, composite designs of gears are sometimes resorted to. In  such 
designs, the gear rim of quality steel is press-fitted or shrink-fitted on to the gear-hub which is 
made of comparatively inferior material. Grub screws are sometimes fitted between the rim and 
the hub for extra securing. To avoid fatigue failure, gear teeth are often chamferred sideways 
or are rounded off laterally. 

To effect reduction in weight, the gear crown or the rim may be joined to the central hub 
through arms or spokes. The following dimensional guidelines are given for cast gear bodies. 

Rim thickness (excluding tooth height) = 1.6 to 2 m 
Hub thickness 

Hub length 

= (0.4 x shaft diameter) + 10 mm, for cast iron 
= (0.3 x shaft diameter) + 10 mm, for steel casting 
2 1.5 x shaft diameter 

Number of arms 
Arm thickness = 1.6 m 
Arm width 

= 1/7 to1/8 of 4 pitch circle diameter,in mm = 4 to 8 (generally) 

= 8 m to 11 m near the hub, tapering to 6.5 m to 9 m at the rim 

The designed gear blank must be rigid and the hub must be of enough thickness for the 
maintenance of the proper fit, for the provision of the keyway of standard dimensions and for 
proper torque transmission. If two keys o r  splines are used, the hub thickness should be decided 
upon accordingly. 

Gears are sometimes made in two halves. This way it is possible to assemble the two halves 
without pushing the gear along the shaft from one end till i t  reaches the desired position on the 
shaft. Large gears are also made in two halves to alleviate casting difficulties or to facilitate 
despatch. These split gears have even number of teeth and the parting plane always passes 
through the tooth-gaps so that  the teeth are not weakened. The size and positions of the bolts 
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connecting the two halves are especially calculated. For split gears, the ultimate alignment is 
of vital importance. 

When the pitch line velocity is high, the resulting bending stress induced in the rim may be 
considerable. For steel gears, this stress may not pose a serious problem, but when the gear 
material is cast iron, the rim may be vulnerable to bursting. Hence i t  is prudent to check this 
stress in case of cast iron gears. This involves complicated calculations, but approximate value 
can be arrived at by making a few assumptions to simplify the procedure. 

We can consider that  the portion of rim between two arms is a uniformly loaded beam fixed 
at the ends by the arms. The length ofthis portion is the mean length of the arc contained between 
the two arms. Then, neglecting the effects of curvature of the rim and other factors, the total 
bending load effective in that  sector of the rim is given by 

' 

F ( N )  = - VlULU2 = - Mu2 
r 

(2.48) 
r 

where 
F =Force,N 
mu = Mass of unit length of rim, kg/mm 
L = Developed length of the sector, mm 
M = Total mass = mu L, kg 
u = Pitch line velocity m/sec 
r = Mean radius of rim, m 

From mechanics, we can write the following formula for uniformly loaded beam fixed at the 
ends 

FL 
Maximum bending moment, B,,, = - 12 

(2.49) 

The stress induced may then be calculated by using the formula 

B,,, = 02 
h e r e  Zis the modulus of section of the rim cross-sectional area. The induced stress ocan then 
be compared with the allowable stress ob, for checking. 

The loading pattern ofthe arm is also very complicated and the stress calculations thereofare 
quite involved. Acombination offorces acts on the arms. These are the bendingforce due to the 
transmitted torque, the centrifugal force on the rim which in turn produces bending and tension, 
and a vibrating bending force created by the dynamic load. By neglecting all the factors except 
bending by the transmitted torque, an approximate formula for the stress can be obtained as  
explained below. 

It is assumed that  only one-fourth of all the arms take part in the transmission of load. Tak- 
ingF, as the tangential force acting on the tooth surface at the pitch circle and 2 as the section 
modulus of the cross-section of the arm, we have the bending moment 

B = F,La (2.50) 

La = Effective length of the arm, that  is, the length from hub to rim. Equating for 
where 

stress, we have 
Number of arms 

4 
B =  x x bb, 

(2.51) 
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where ob is the bending stress produced, the allowable values for which are given by 

= 60 N/mm2 for steel casting 
obp = 30 N/mm2 for cast iron 

Large gears are often made of welded construction. Welded design is resorted to for the 
undermentioned reasons. 

1. It is cheaper than the cast design. 
2. For cast items, patterns are to be made. If the number required is not large, then the 

pattern making for a few pieces is not economically viable. Hence, welded design is more 
economical. 

3. The total time required is less. 
4. Welded construction is lighter in weight. 
5. For the same load carrying capacity, material required is less. 
Examples of different designs of large gears have been illustrated in Figs 2.38 to 2.40. In  each 

ofthese figures, the left design is of cast type and the right design is of welded or fabricated type. 

2.18 Force Analysis for Spur Gears 

One of the fundamental parameters to be considered, analysed and checked for designinga gear 
system is the load-transmitting capability of gear teeth. For this the circumferential force 
effective on the tooth at the pitch circle of the gear when in mesh, must be known. 

Depending on the given data, this force F,, known as  the tangential force or transmitted load, 
can be derived from the following standard equations 

2000T 191x 105x P lOOOP 
d d x n  U 

= -  F t = - -  - 

where 
F, = Tangential force in newtons 

(2.52) 

T = Transmitted torque in newton metres 
d = Pitch circle diameter in millimetre 
P = Power in kilowatts 
n = Speedinrpm 
u = Circumferential velocity in metres per second 

Irrespective of the value of the contact ratio, for calculation the total gear forces are taken to 
be effective on a single pair of teeth in mesh. Referring t o  Fig. 2.41, normal force FN acts along 
the pressure line. The normal force due to the pinion produces an  equal and opposite reaction 
at the gear tooth as shown in the figure. Since the pinion is mounted on its shaft, force R acts 
at the centre of the shaft which is equal in magnitude but opposite in direction to FN. The same 
thing happens in case of the gear. 

Normal force F,is resolved into two components-F, in the tangential direction and F, in the 
radial direction. S o  far as the transmission of power is concerned, component F, plays no part. 
The driving component is F,. The tangential component of shaft reaction R and F, constitute a 
couple which produces the torque on the pinion which in turn drives the gear set. The magnitudes 
of the components of the normal force FN are given by 
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Fig. 2.38 Types of gear body construction 
Based on Maschinenelemente. Niemann, vol, It, 1965 
edition, Fig 72, p. 72 Springer Vertag, Heidelberg 

Fig. 2.39 Types of gear body construction 

I 
Fig. 2.40 Types of gear body construction 

F, = FN cos a 

F, = FN sin a = F, tan a 
(2.53) 
(2.54) 

where ais  the pressure angle. In case of correctedgears with non-standard centre distances, the 
working pressure angle a" should be inserted in the above equations instead of a. 

If the metric technical system of units is used, the following relations are of relevance. 
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I - DRIVING GEAR 

Fig. 2.41 Force diagram of spur gears 
f,, = Force imposed on tooth of driven gear 
f, = Tangential driving force (Transmitted load) 
f, = Radial component (Separating force) 
R = Reaction of shaft to force exerted by the driving gear 

P(metric HP) 
d (cm) x n (rpm) 

= 143 x io3 

Circumferential velocity 

d(cm)xn (rpm) 
1910 

u(mls )  = 

(2.25) 

(2.56) 



SpurGears 2.77 

The above force analysis is, of course, a simplified one. In actual practice, dynamic forces (as 
discussed later in Sec. 2.22), deflection of shaft due to the action of the radial force Fr, power losses 
due to bearing and shaft-seal friction, lubrication effects, etc., are also to be taken into 
consideration for precise calculations. Distribution of gear forces on shafts for different 
orientation of the driving and driven gears has been illustrated in Fig. 2.42. 

DRIVER 

RESULTANT FORCE AT 01 = 0 

Fig. 2.42 Distribution of forces fon shafts 
Based on Die Tragfaehig keit der Zahnraeder, Thomas and 
Charchut, 7th edition, 1971, Fig. No. 7,8 & 9, p. 34 & 35. 
Carl Hanser Verlag, Munich 

2.19 Spur Gear Bearing Loads 

Gears impose loads on bearings on which the shafts carrying the gears are mounted. Depend- 
ing on the arrangement of the gear drive, the magnitude of the gear-tooth drivingforce and the 
direction, the bearing loads are distributed on the individual bearings accordingly. In the case 
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of helical gears, apart from the resultant radial forces acting on the bearings, thrust forces 
axially along the shafts are also created, as will be discussed in Chap. 3 on helical gears. For 
selection of the type of bearing, that is, journal or anti-friction bearing, ball, roller or thrust 
bearings, etc., and determination of its size will depend, among other factors, on the load it  has 
to carry. In case of anti-friction bearings, the catalogues and manuals of the standard bearing 
manufacturers give details about the load carryingcapacities of these types ofbearings and their 
selectionprocedures, so that the selection ofthe most proper and suitable type and size ofbearing 
poses no problem once the bearing loads are known. In case of journal bearings, however, a 
proper bearing has to  be designed after considering bearingloads, material of bearing, allowable 
stress, type of lubrication, etc. In any case, a complete load analysis is required before the right 
type and size of bearing is selected or designed, as the case may be. For anti-friction bearings, 
load ratings and life required by design calculations should correspond with those given in the 
manufacturer's catalogues. For reduction gear units in general, a service life of 20,000 hours is 
the usual criterion. 

It  has been shown in Sec. 2.18 that force FN which is normal to the tooth curve and which acts 
along the line of action can be resolved into two components, F, which is tangential t o  the pitch 
circle of the gear and which is actually the driving force, and F, which is the radial component 
directed towards the axis of the gear and as such, serves no useful purpose. 

In the following diagrams, bearings loads in several cases ofgear-drive orientations are shown 
with their respective values in terms of known forces. In all cases subscript B stands for the 
ultimate load on the bearing, letter L with appropriate subscripts, such as I, 11, etc., stands for 
the respective distances, and subscriptsN, t and r have the usual meanings as given before. In 
each case the resultant load on a bearing is the vector sum of all the individual force components 
acting on that bearing. 

Straddle Mounted 

The straddle mounted type of arrangement is shown in Fig. 2.43 (a). The resultant force acting 
on bearing BZ and BIZ are given by 

FBI = Theresultantforceon bearingBZ = ( F  l2 + ( F  l2 (2.57) J nIt BIr 

FBII = The resultant force on bearing BIZ = d(Fn,11)2 + (FnIlr)' (2.58) 

FBI, and FBIr are the tangential and the radial components of the main gear force FN acting 

The magnitudes of the two resultant bearing forces will depend upon the position ofthe gear 
on bearing Z. Their counterparts on bearing ZZ are Fnlll and FnIIr. 

as it is mounted on the shaft, and are given by 

- FNLI 
FBII - - L 

(2.60) 
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t 

(a) STRADDLE MOUNTED-ONE GEAR (E) OVERHUNG -ONE GEAR 

(c) STRADDLE MOUNTED-TWO GEARS (d) OVERHUNG & STRADDLE MOUNTED 
-TWO GEARS 

Fig. 2.43 Distribution of gear forces on bearings 
Based on Die Tragfaehigkeit der Zahnraeder. Thomas and Charchut. 7th edition. 
1971, Fig. No. 1 1,12, 13. & 14, p. 35 & 36. Carl Hanser Verlag. Munich 

Overhung 
Figure 2.43 (b) shows the overhung type of arrangement. In this case Eqs 2.57 to 2.60 are also 
applicable. It is  recommended that the following relations in distances are adhered to 

(2.61) L (min) = 2.5 x Pitch diameter o f 2  2.5 x L, 

Two Gears Mounted on the Same Shaft 

When two gears are mounted on the same shaft, the orientation of the different forces shown in 
Figs 2.43 (c) and 2.43 (d). 
For Fig. 2.43 (c) 

(2.62) 

(2.63) 
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FBllr = FEllr - FElla = 

For Fig. 2.43 (d) 

bearing I1 are different and are given by 
In this case the equations for bearing I (Eqs 

(2.64) 

(2.65) 

2.62 and 2.63) are applicable. Equations for 

(2.66) 

(2.67) 

After ascertaining the tangential and the radial components, the resultant forces acting on the 
bearings can be found by using the general equations 2.57 and 2.58, which are the vector sums 
of the components forces. 

Example 2.6 Gioen : Straddle mounted corrected pinion of a S-gearing system with the 
following data 

P, = 150 kW, n, = 1450 rpm, z, = 23, n = 5, working pressure angle a, = 24" 4l', 

To find the bearing loads and the maximum bending moment. 
distance between bearings = 200 mm, pinion is situated at 70 mm from one end. 

Solution: From Sec. 2.13, we have the relation 
Working circle diameter 

cos a cos a cos 20" 

cos a, cos a, cos 24" 41' 
d,, = d, - = m z, -- - 5 x 2 3 ~  =118.93 mm 

Torque 
T, = 9550 x 3 = 9550 x - 150 - - 988 N m  

n1 1450 
Circumferential force on the pinion 

Normal force on the tooth profile 

- 18286 N F N = - -  Ft 
cos a, 

Referring to Fig. 2.43 (a) and using Eqs 2.59 and 2.60, we get 

FBI=-= 18286x130/200= 11886 N 

FEl, = %= 18286 x 70 I 200= 6400 N 
L 

L 



SpurGears 2.81 

Maximum bending moment 

B,,, =For x L, = 11886 x 70 = 832 N m 

Journal bearings: For the purpose of designingjournal bearings, the allowable bearing loads 
are to be known according to  the material used. Besides, the following data are of relevance in 
this context: 

L = 0.8 to 1.2 d 

where L is the length of the bearing and d is the diameter of the journal portion of the shaft. 
Bearing load F, 

Projected area d L  
Bearing pressure p ,  = = -  (2.68) 

The allowable bearing pressure values for common bearing materials for different velocities 
are given in table 2.13. 

Table 2.13 Allowable bearing pressure on journal bearings 

Circumferential velocity of journal vin mls 
Bearing 3 (max) 40 30 20 10 5 2 
material 

Permissible bearing pressure pp in N/cm2 

Cast iron 50 to 100 

2.20 Journal and Journal Bearing 

A journal is defined as that portion of the shaft which is encased inside a bearing. To determine 
the size of the journal, the diameter is first calculated on the basis ofthe bearing force in question 
and then i t  is checked against the bending stress produced. The force to be carried by the bearing 
is given by 

FB (N) = d L p  (2.69) 
where d is the diameter of bearing in mm, L is the length of the bearing in mm, and p is the 
specific bearing pressure produced in N/mm2. The expression dL represents the projected area 
of the loaded journal. 

For safe working, p must be equal to or less than the allowable bearingpressurepp. The value 
of p ,  depends on the service conditions, circumferential velocity of the shaft, duration of 
operation, material and type of lubrication and cooling. Estimation of the dynamic load carrying 
capacity is rather involved. For simplified calculations, the values of allowable bearing pressure 
for common bearing materials at different velocities given in Table 2.13 can be used. 

Journals may be mounted on anti-friction bearings or on radial bearings known as sleeve 
bearings or journd bearings. For the proper selection of anti-friction bearings, the reader may 
refer to catalogues of standard bearing manufacturing companies. In this section only journal 
bearings will be discussed. 
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Journal bearings are simple in construction, easy to instal, cheaper in cost, require less space 
and normally noise-free and impact damping. However, the startingfriction is very high and the 
system requires considerably more lubricant. Modern design practice calls for shorter journal 
bearings having length to diameter ratioCL : d )  between 0.4-0.8 and 1.0-1.2. Though ideally L 
should be equal to or less than d, this condition may not be possible to adhere to because of the 
specific bearing pressure p produced in case of different bearing materials. Shaft being made of 
steel, the following relations can be used for different materials. 

L = 1-1.8 d for bronze or gun metal 
= 1.5-2 d for white metal 
= 2-3 d for cast iron 

Example 2.7 Given: 
parameters for the bearing. 

Solution: The following tentative selections are made with the help of Table 2.13. 

Material: shaft-Fe 490, bearing-white metal. 

Bearing load = 20000 N, speed = 1500 rpm. To determine the relevant 

L : d  = 2 or L = 2 d , p p  = 100 N/cm2, FB =dLpp, or 20000 = d x2d  x 100, :. d = 10 cm 

u ( d s )  = mlnl60 x 100 = 3.14 x 10 x 1500/60 x 1005 8. 

This velocity is well within the value specified in the table. The bending moment within the 

B = FA12 = 20000 x 2012 = 200000 N/cm =Zo, = 0.1 x d3 x ob, 
journal portion is given by 

or 

200000 = 0.1 x 103 x ob, whence ab, = 2000 Nlcml = 20 N/mm2 

This stress value is also within the normal permissible value for steel selected. Hence, the 
dimensions and the materials selected are acceptable. 

2.21 Shaft Design 

In order to design the shaft on which the gear is mounted, many diverse factors have to be taken 
into account. Stress concentration is a major factor for which the reader may refer to standard 
books on mechanics where this aspect is dealt with in detail. In Appendices M and N, the 
standardised values of shaft diameters and the fillet radii in case of stepped shafts have been 
given. These data should be made use of while fixing the shaft dimensions. 

By and large the main determining factors for the calculation of the diameter of the shaft are 
the maximum bending moment and the torque to which it is subjected. The determination of 
bending moment has been dealt with in Sec. 2.19 for spur gears and in Sec.3.13 for helical gears. 
Expression for torque has been given in Sec. 2.25 and at other places. 

The next step is to calculate the equivalent bending moment for the combined effect of bending 
and torsion. This is given by 
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where B and Tare the maximum values of bending moment and torque respectively. Equation 
2.70 is based on the maximum distortion-energy theory, which is also known as  the shear-energy 
theory or the von Mises-Hencky theory, and this theory is normally applicable for materialsused 
for shafts. 

Section modulus 2 = 0 . W  for a solid shaft of diameter d and a is a stress relations factor 
given by 

(2.71) 

where ab, = Permissible bending stress, and 2, = Permissible torsional shear stress. The following 
allowable values can be taken for shaft materials 

ob, = 40 to 60 N/mm2 for Fe 490 
= 60 to 100 N/mm2 for Fe 620 and alloy steels 

As a rough guideline, obp can be taken as 20% of the endurance limit of the shaft material in 

T~ = 40 to 80 N/mm2 for steel having ultimate tensile strength less than 500 N/mm2. 
reversed bending. 

= 60 to 100 N/mm2 for steel of UTS greater than 500 N/mm2. 
The corresponding equivalent stress is given by 

(2.72) 

where o a n d  z are the bending and the torsional stresses produced respectively. The diameter 
of the shaft is given by 

(2.73) 

Besides strength considerations, shafts are sometimes checked for stiffness, deflection and 
critical speed. For long shafts, a certain angle of twist must not be exceeded. For such cases this 
is the deciding factor for the ultimate selection of the shaft diameter. 

The angle of twist is given by 
TL 4 (radian) = - 
IPG 

(2.74) 

where T = Torque (Ncm), L = Length of shaft (cm), Ip = Polar moment of inertia of the shaft cross- 
section (cm4), and G = modulus of rigidity (N/cm2). 
For circular shafts 

Zp = nd4/32 G for steel is around 8 x lo6 N/cm2. 

Expressing qj in degrees, the angle of twist per meter length is given by 

om = 18000T, whence d(cm) = 1 5 . 5 4 , / m  
r GIp 

Normally, the permissible value of is 1/4"/m. This gives 
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d (cm) = 0.4125 x 4/5; (2.75) 

Shafts which have to withstand bendingforces caused by machine elements mounted on them 
should be checked against the deflection which results from such loadings. Elements carried by 
the shaft should be mounted close to the bearings to reduce deflection. The maximum deflection 
must be kept within the allowable limit which is normally 0.001 to 0.003 times the span, i.e. the 
distance between the bearings. 

I n  case of high speed shafts (with n greater than 1500 rpm) of certain types of machines, the 
critical speed should be checked. Imbalance in the system causes vibration. The vibration 
amplitude may reach such values as to cause ultimate failure of the shaft. Resonance occurs 
when at a critical shaft velocity, the frequency of vibration of external forces and of the shaft 
system coincide. The speed at which resonance sets in is called the “critical speed”. To avoid the 
disturbance caused by this phenomenon, the operating speed must be widely away from the 
critical speed which should lie at least 10% above or sometimes widely below the operating speed. 

The reason for resonance vibrations lies mainly in the centrifugal force which is caused by 
improper balancing and deflection of the shaft. Arriving mathematically, the critical speed is 
given by 

ne (rpm) = 300 4 7  (2.76) 
where f =  the maximum static deflectiodin cm) of the total rotating and vibrating masses. 

An indication of the impending failure of the shaft is its excessive vibration. However, the 
shaft does not fail all of a sudden. Proper balancing, therefore, is of utmost importance for high 
speed shafts together with the machine elements mounted on them. 

2.22 Dynamic Loads on Gear Teeth 
The forces acting on gear teeth are normally determined from parameters like power and speed. 
These forces which are known as transmitted loads, however, give only the theoretical values. 
In  actual practice, these forces may be exceeded considerably because of effects due to moving 
and swingingmasses, machiningerrors of teeth caused by cuttinginaccuracies, deformation and 
deflection of teeth under load causing periods of acceleration and deceleration of short durations 
during the course of action, inertia forces required to  change the velocity of the inertial-masses 
of the meshing gears, shaft misalignment and impact loads. These additional forces which are 
superimposed on a steady (transmitted 1 load are generally termed as “dynamic loads”. 

Although considerable research has  been carried out by experts in the field viz. Erle 
Buckingham, G. Niemann and others, the dynamic load remains as one of the least understood 
phenomena of gear teeth in action. The vibration characteristics induced by the dynamic loads 
are so complex that no completely satisfactory methods of computation of such forces have 
evolved, and calculations based on considerations of rigid bodies lead to inaccurate results. 

Considering the practical aspect, therefore, the gear transmission phenomenon is far from 
what one concludes from the conventional formulae. What actually happens when gear teeth 
come in contact depends on diverse factors. Briefly, these may be described as follows: Gear 
teeth in  mesh have a number of imperfections, namely, the tooth profiles are never perfect 
involutes, the tooth spacings are never uniform; kinematic perfection is never attained because 
teeth deflect under load; the shaft and mountings also deflect under load; the tooth elements are 
not perfectly parallel to the axis in case of spur gears; and uniform distribution of load never 
takes place across the face and flank of teeth. The result of all these defects and errors is the 
dynamic load which is in addition to the load derived from the usual formulae. 
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Dynamic load gives rise to shock and impact. Research has  shown that  the worst effect occurs 
when the load is transferred from one mating pair of teeth to the next pair. They bounce apart 
and mesh again with an  impact. The dynamic load is momentarily at the maximum peak at the 
instant of impact. Though perfect determination of the amount of the dynamic loads is not 
possible, approximate values can be derived, the magnitude depending upon the moment of 
inertia of the rotating masses, the composite error in spacing and profiles of teeth, speed and 
material of gears. 

Pattern of the Dynamic Load 
Rigorous analysis of dynamic load is extremely difficult and uneconomical for common design 
purposes. Often a more or less satisfactory method of proper selection of gear class is based on 
the desired noise level. A gear set will never run without producing some noise, but since the 
magnitude of the noise generated is directly related to the accuracy with which the gears have 
been cut, noise can be reasonably taken as a criterion or indicating factor of the accuracy of the 
gear set. Obviously noise can be reduced by exercising greater accuracy. 

D E 

D E 

D 

(d) TIME- 

Fig. 2.44 Tooth load versus time characteristics 
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Figure 2.44 shows the load us. time relation of a pair of meshing gears. During the course of 
teeth engagement, there will be a period when the applied load is carried by two pairs of teeth, 
a t  other period the entire load is on one pair only. This aspect has already been discussed in Secs 
2.5 and 2.7. Figure 2.44 (a) shows an idealised representation of the load-time characteristics 
in case of a spur gear pair running a t  low speed. Recalling Secs 2.5 and 2.7, a pair of tooth comes 
in contact and instantly this pair takes the load represented by the IineAB . Since at that  instant, 
one previous pair is still in mesh, the new pair shares about half of the total load while the older 
pair takes the remainder of it. ‘This continues till point C is reached whereupon the load on the 
new pair is suddenly increased by CD. At this stage the older pair has  gone out of engagement 
and the new pair takes the full load. This is represented by the line DE. At E there is a sudden 
reduction in load-carrying because another new pair has come into mesh in the meantime. The 
rest of the load sequence is a reversal of the initial one. A more realistic picture of load-time 
curve is shown in Fig. 2.44 (b) where the elasticity of the teeth and their convex profiles modify 
the vertical lines and round off the corners. At high speed the curve takes the form as shown in 
Fig. 2.44 (c). Here the most important feature is point D where the load overshoots and the 
maximum force on the tooth becomes greater than the force which corresponds to the nominal 
torque. 

The foregoing case deals with teeth which are properly cut as regards tooth profile and spacing. 
This, however, is not the case in practice as pointed out before, and consequently the angular 
velocity ratio never remains constant throughout the period of engagement. All types of errors 
make a considerable difference in the load-time characteristics. Oscillographrecords show large 
variations from the idealised tooth-force curves. The load-time curve may take a shape as 
depicted in Fig. 2.44 (d). It may be seen from this figure that  for a short period the teeth remain 
out of engagement due to acceleration or deceleration ofthe rotatingmasses and then they again 
come in contact with considerable impact, shooting to a maximum momentary force. It is this 
excess ofmaximum transient loadover the nominal load which quantifies the dynamicload. “his 
has also been termed as “dynamic increment” by some authors. 

Since no clear-cut or wholly satisfactory method has been evolved so far, the undermentioned 
procedures can be adopted for deriving approximate results on the dynamic load aspects: 

Peak Loads 

In case of big gear boxes with considerable self weights of moving parts, failure may occur 
during starting or sudden braking of the system givingrise t o  instantaneous peak loads. In case 
of direct coupling of electric motors, the starting torque can amount to a lo t  more than the 
nominal torque. In hoisting mechanisms, a sudden actuation of the main coupling may result 
in a torque reaching around 2 to 4 times the nominal torque of the motor. It is, therefore, 
imperative that  in such cases a thorough calculation should be made, taking into account such 
factors as  the starting, braking as  well as any special and critical service conditions which the 
gear boxes may be subjected to. 

In cranes, hoisting devices and similar applications, the acceleration torque is calculated and 
added to the nominal torque for the determination of maximum bending and contact stresses. 

The acceleration torque is given by 
w T, = I,a = I ,  - 
t (2.77) 

The expression for T, can be expanded as follows 
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More conveniently 

Here, 

1 WD'n T, (Nm) = - x - 
3 75 t 

(2.78) 

T, 
W D2 = An expression which has been termed as the "fly-wheel moment or "moment 

of gyration" of moving masses in Nm2. Some authors and manufacturers 
of motors and couplings use the German expression GD2 

= Acceleration torque in N m 

W (or G) = Weight of the rotating masses in N 
D = Diameter of gyration of rotating masses in m = 2 x k (radius of gyration) 

We have the following relation 

where 

W D- I ,  = - 
4€! 

(2.79) 

I ,  = Mass moment of inertia in newton metre seconds squared 
g = Acceleration due to  gravity in meters per second squared 
w = Angular velocity in radians per second 
a: = Angular acceleration in radians per second squared 
t = Starting or braking time in seconds 
n = Speedinrpm 

Values ofZm and D for common geometrical solids can be found in standard books of mechanics. 
The W D 2  values of motors and couplings of standard make are normally given in the catalogues 
of the manufacturers of those items. 

For proper selection of the motor torque in actual working conditions, it is necessary to add 
the acceleration torque to the rated torque ofthe motor. To achieve this, the equivalentfly-wheel 
moment of the whole rotating system is to be calculated with respect to the motor shaft. This is 
done by using the following equation 

2 2 

WD"; = (WD'), x + (WD2),, x + (WD2)l l ,  x + ... (2.80) 

where (WD2), is the fly-wheel moment of the motor or of the motor plus the coupling, and (WD'),,, 
(W D2),,,, etc., and 11, n3, etc., are the WD2 values and the speeds of the other rotating masses of 
the system respectively, e.g. pinion shafts, gears, other shafts, other couplings, rotatingparts of 
the driven machine and any other rotatinginertial mass that  has to be accelerated to bring the 
system to  the required speed. 

When elaborate calculation is not possible or necessary, the design torque can be taken to be 
around 10 to 25% higher than the rated torque of the motor. The value of the torque found from 
the rated power and speed by using the conventional formulae plus the acceleration torque 
determines one ofthe design criteria by which the proper motor is selected. The reader is advised 
to refer to Sec. 2.26 in this connection. 
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Different Aspects of Dynamic Load 
The dynamic load, which has been defined as the maximum instantaneous load acting on the 
meshing teeth of gears during action, may be created due to outside factors like service 
conditions, number of starts, nature of duty, type of drive, and also due to internal factors, such 
as different types of tooth errors which lead to speed fluctuations which in turn give rise to 
additional forces due to  momentary acceleration or deceleration and deformation of teeth under 
load. Besides, as each gear is a rotating mass and, therefore, possesses inertia, it follows that 
the mass requires the application of force to change its velocity. Both external and internal 
factors influence the magnitude of dynamic loads. 

External factors : These factors can be taken care of by using the values given in Table 2.16. The 
values of the service factor @ have been arrived at by experience, taking into consideration the 
type of driving machine, starting and running conditions, nature of duty and other operational 
parameters. The maximum tooth load will occur when 

(2.81) 
where T mpx and T nted are the maximum and the rated torque parameters respectively, and @is 
the service factor. 

'ma, = 'rated x @ 

Znternal factors : These factors are so complex that to arrive at a reasonably accurate value of 
the additional load due to the dynamic forces acting on the tooth profiles, a large number of 
complicated calculations are t o  be made. This is justified when calculationsfor master gears are 
involved. Moreover, in case of comparatively smaller speed ranges, the effects of tooth errors, 
and other detrimental factors are less pronounced than those in case of high speed gears. 

Non-uniform and jerky operation of a gear is the effect of tooth errors, such as profile error, 
or pitch error, which are caused by faulty manufacture. Teeth also deform under load as stated 
earlier. The gear ratio i may be considered to be of constant magnitude duringone complete cycle, 
but in actual practice instantaneous values of this ratio remain changing all the time resulting 
in non-uniform rotation of the driven gear. This gives rise to angular accelerations which in turn 
produce a hammering effect during engagement causing additional dynamic load. Noise and 
vibration are created, and smooth and useful transmission of energy is impaired. Obviously, a 
larger dynamic load will be created if the machining accuracy is low, velocity is high and the 
rotating masses are comparatively greater. 

In majority of the cases, the approximate method developed by Prof. G. Niemann is sufficient 
to calculate the dynamic forces. 

Based on experimental research work, the following relation has been derived 

Ftdyn = KO K, b u (2.82) 
where, 

Ftdyn = Additional tangential force on the tooth caused by dynamic loads, N 
KO = Factor taking into account the amount of load in relation to the effective tooth 

K, = Factor taking care of the influence of the circumferential velocity, seconds per 
errors, newtons per centimetre 

metre 
b = Face width of tooth, centimetres 
u = Circumferential velocity, metres per second 

KO is determined from the relation: 
K,=-x F, @ +26 f 

b (2.83) 
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where 
Ff = Tangential force on the tooth, N 
f = The numerical value (expressed in micrometers) of the largest existing tooth error 

e.g. f., f ,  etc. as the case may be. 
After ascertaining KO, the value of K, is read off from Table 2.14 

Table 2.14 Factor K, in relation to factor KO and velocity Y 

v in mls 
KO in 1 2 4 6 8 10 12 14 16 18 20 

Kvx in s/m 

500 5.7 5.6 5.6 4.6 3.4 2.9 2.6 2.1 1.9 1.9 1.6 
1 coo 5.0 4.9 4.8 4.1 3.4 3.0 2.7 2.4 2.1 1.9 1.8 
2000 3.8 3.7 3.2 3.0 2.7 2.5 2.4 2.3 2.2 2.1 2.0 
3000 3.3 3.0 2.5 2.4 2.3 2.3 2.3 2.2 2.2 2.1 2.1 
4000 3.1 2.9 2.5 2.3 2.3 2.3 2.3 2.2 2.2 2.2 2.2 
5000 3.0 2.9 2.5 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 

10000 3.0 2.9 2.4 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 
12000 2.9 2.8 2.4 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 

Based on Die Tragfaehigkeit der Zehnraeder. Thomas and Charchut, 7th Edition, 1971, table no 6, p. 30 Carl Hanser 
Verlag, Munich. 

To calculate the gear parameters when the dynamic load is considered, the total tangential 
force and the total torque are to be determined. These are given by 

(2.84) 

where F, to, and T tot are the total tangential force ana the total tor{ue respectively, and d is the 
pitch circle diameter in cm. 

In Table 2.15 the values of allowable circumferential velocity in relation to manufacturing 
processes and quality or grade has been shown. These are guiding values only and are given to 
facilitate gear calculations for general engineering applications. The value of the maximum 
tooth errorfis to be calculated on the basis of Table 2.23 given in Sec. 2.27. 

Table 2.15 Allowable circumferential velocity of gears in relation to the 
manufacturing processes and quality 

w mlsec Manufacturing process Quality 

0 . 8  Cast, coarse cut, gas cut, flame cut 10-12 
0.8-4 Smooth finished 8-10 
4-12 Ground 68 

12-60 Scraped, shaved, tine ground 4 4  
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FREOUENCY 
OF 

STAR TIN C 

The effect of the additional load due to dynamic causes can be neglected in case of small 
circumferential velocity u less than 1 m/sec. Normally, a linear relationship exists between the 
magnitude of the dynamic load caused by the inner factors and the velocity up to around 
u = 50 4 s .  Beyond this value the increase in dynamic load is only marginal. The dynamic load 
in case of a helical gear can be taken as about 75% that  of the spur gears for calculation. Table 
2.16 gives the service factors for different service conditions. 

Tabie P.16 Service factor for different service conditions 

TYPE OF DUTY DRIV€ BY 

c OM3 Us T I 0  N 
ENGINES 

1. CYLINDER - 

2 .  C Y L  INDER - 
4 CYLINDER , 

STEAM ENGINE 

UATER TURBINE, 

;AS TURBINE . 
-1 E t .  MOTOR 

VU1 NERA E l l  I T Y 
TO 

Based on DieTragfaehigkeit der Zahnraeder, Thomas and Charchut, 7th Edition, 1971, table no. 5, p. 29. Carl Hanser 
Vcrlag, Munich. 

Example 2.8 A mixing drum is operated by an  electric motor through a one-sttige gear drive. 
The pinion is keyed to the shaft and is mounted at the end of the shaft of diameter 45 mm. 
The following data are given: rated power = 10 kW, speed of pinion = 500 rpm, reduction ratio 
= around 4, drive is medium, impact-free full load and normal vulnerability to tooth failure. 
The system is subjected to dynamic loading. Find the total power required for the system 
disregarding the acceleration torque required for starting or braking. Take pinion matefial as 
60 C 4. 
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Solution: For initial calculation of a normal gear drive, the following relation holds good 
d, = 2 x Shaft diameter = 2 x 45 = 90 mm, u = d, (cm) x n, (rpmYl9lO = (9 x 500)/1910 

From the given service conditions, the service factor t#~ = 1.4 is selected from Table 2.16. 
= 2 . 3 6 d ~ .  

F, (N) = 2 x T, (?$ cm)/d, (cm) = 2 x T,/9 = T,/4.5 

Also T,  = P,(kW) x 955000/n, (rpm) = 10 x 955000/500 = 19100 N cm 

.. F , = - -  19100 - 4244. 
4.5 

Referring to the simplified calculatioh of strength given in Sec. 2.25, a rough estimate is now 

To avoid undercutting, z, is first assumed t o  be 15. Next, using Eq. 2.111, we get, 
made about the value of the module as follows: 

I-- 
D (cm) = 3. 
1 .  y z , A  cn1 

c = c0K, K, K,, c0 = 3000/(2.36 + 10) = 243 

The following values of the coefficients are selected: 

K, = 3, K2 = 0.8, K3 = 1 

.. c 243 x 3 x 0.8 x 1 = 583 

A = 3 (selected for machined teeth) 

P ,  = 10 kW, n, = 500 rpm andd,  = 90mm A = 9 cm = 0.09 m 
Inserting the relevant values, we get 

p = m = 16.6 mm 
m = 16.6/3.14 = 5.28 mm .. 

The nearest standard module 5.5 is taken from Appendix D. 
Taking z, = 17 for greater safety against undercutting and recalculating, we get 

d,  = m x z ,  = 5.5 x 17 = 93.5 mm 

Taking quality = 8 which is commensurate with the velocity range as per Table 2.15, and 
consulting the various tables given for different kinds of error in Sec. 2.27, we find for m = 5.5, 
d, = 93.5 and quality = 8, the error = 36 pm. 

Now 

New value of tagential force is given by 

A = b/n m, or b = 10 x 5.5 = 55 mm = 5.5 cm 

19100 = 4086 N F, = 
9.35 
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From Eq. 2.83, we have, 

4086x1.4 +26~36=1976N/cm 
(5.5 1 .  KO = -~#+26f= F, - 

b 
u = dp(1910 = 9.35 x 500/1910 = 2.44 m l s  

The new value of u makes marginal difference in the value of c,. Hence, m = 5.5 is kept. 

K, = 3.6 x 10" dm, found by interpolation from Table 2.14. 
F, dyn = KoKv bu = 1976 x 0.036 x 5.5 x 2.44 = 955 N 

The final values are 

= (4086 x 1.4 + 955) x 0.98 
= 6542 N (assuming 98% efficiency) 

d 
2 

Total power required = 

T,,, = x 2 = 6542 x 9.3512 = 

Therefore 

- - 
- - 

2.23 Contact Stress and Surface Durability 

30584 N cm = 305.84 Nm 

Torque (Nm) x Speed (rpm) 

9550 
305.84 x 500 I550 
16 kW 

When gears mesh, the region of contact is theoretically a line. The curvatures of the individual 
mating surfaces at the points of contact will vary according to the given dimensions of the tooth 
profile of the mating gears as well as to the instantaneous positions of the point of contact on the 
line of action as the gear tooth surfaces roll and slide during the course of action. The nature of 
contact is, therefore, analogous to that  of two contacting cylinders of constantly changing radii 
of curvature. I n  the case of external gears, both the surfaces in contact are convex while for 
internal gears they are convex and concave. 

Though theoretically it is a line contact, the line actually develops into a band of certain width 
along the length of the teeth due to mutual compressive pressure. As the tooth surfaces move 
relative to each other with a combination of rolling and sliding, this band is also continuously on 
the move. The stress pattern developed within this band is quite complicated. According to 
Dudley, this is what happens when the gear tooth surfaces are in action -a point of maximum 
compressive stress is created in the centre of the hand of contact. Jus t  below this point, a maxi- 
mum subsurface shear stress develops. Due to the mutual sliding motion coupled with friction, 
additional stresses come into action. In the direction of sliding, each tooth surface develops a 
subsurface compression towards the leading end of its moving contact band while a region of 
tensile stress follows the trailing end. 

Since the tooth surfaces undergo fluctuating, repeated and cyclic stresses of all kinds during 
the course of action, fatigue failure of the surface ensues. Though various kinds of gear tooth 



Spur Gears 2.93 

failures are attributable to fatigue, pittingis quite common (see Sec. 1.8). The continuous stress 
reversal plus its ever varying magnitude leads to  fatigue which, augmented by heavy load, 
results in cracks, plastic flow and ultimately rupture of the metal, Lubricants under pressure 
enter these cracks, and in turn, help loosen bits of metal on the gear tooth surface, thereby 
producing pits. 

It has been observed that pitting mostly occurs in the vicinity of the pitch line. This may be 
due to the fact that the direction of sliding velocity changes a t  the pitch line, making the effect 
of the compressive stress more damaging around this region. Also, this region sustains the 
maximum dynamic load. Since the pinion is usually the driver which makes more revolutions 
relatively, it is more vulnerable to pitting than the mating gear. Besides, the nature of sliding 
motion also promotes pitting of the driving member of the gear pair. 

The phenomenon of pitting, which is essentially a type of gear tooth surface failure due to 
fatigue,is also generally known as  wear. There is a considerable difference of opinion as to the 
exact definition of wear. Some gear experts assign the term “wear” exclusively to  fatigue failure 
by pitting caused by contact stress, and use the term “abrasive wear” in case of the general 
thinning of tooth caused by rubbing or engendered by fine particles carried in the lubricant or 
embedded on the tooth surfaces. Others prefer to use the word wear in a general sense to 
encompass all kinds of tooth damage and surface failure which include pitting, scoring, tooth 
breakage due to  fatigue and all kindsof abrasion. Still others restrict the term to  denote removal 
of tooth material, layer after layer, by abrasion and other means, and do not include pitting as 
a wear phenomenon. In the absence of aprecise definition, we will use the nomenclature “wear” 
in this book to indicate failure by pitting only, since this is the most common type of surface 
fatigue failure. Other kinds of failures will be defined, described and discussed in Sec. 8.7. 

The German physicist, Heinrich Hertz, developed expressions for the stresses which are 
created when two curved surfaces are in contact. These surface stresses are universally known 
as contact stresses or Hertz stresses or Hertzian stresses. The symbol t o  denote the contact stress 
orpressure isp, while ais  usedfor bendingstress. Both the symbolsp and ocarry the appropriate 
subscripts to  conform to  the expressions or equations which are relevant to  the context. For 
examplePscstands for the surface fatigue strength and its values for common gear materials are 
given in Appendix E, Pc denotes contact stress in general,Bpstands for permissible contact stress 
and PP is the contact stress developed at the pitch point P of two mating gear tooth profiles. 

Contact stress is generally the deciding factor for the determination of the requisite dimen- 
sions of gears whose tooth surfaces are nothardened. Research on gear action has confirmed the 
fact that beside contact pressure, sliding velocity and viscosity of lubricant as well as other 
factors like frictional forces also influence the formation of pits on the tooth surface. However, 
sufficient information and experimental data are lacking to take all these design parameters into 
account while making the calculations. Hence, the calculations are mainly based on Hertzian 
equations. 

In machine design, problems frequently occurs when two members with curved surfaces are 
deformed when pressed against one another giving rise to an area of contact under compressive 
stresses. Of particular interest to  the gear designer is the case where the curved surfaces are of 
cylindrical shape because they closely resemble gear tooth surfaces. 

In Fig. 2.45 (a) two cylinders are shown in contact under compression. In Fig. 2.45 (b) two gear 
teeth are shown in mating condition at the pitch point. Referring to Fig.2.45 (a), the area of 
contact under load is a narrow rectangle ofwidh B and lengthL. The stress distribution pattern 
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is elliptical across the width. The maximum value is given by 

where 

F 

(2.86) 

(2.87) 

Fig. 2.45 Contact stress 

Here, F is the applied force, v, and v, are the Poisson's ratios of the two materials of cylinders 

Combining Eqs 2.86 and 2.87, and assigning a value of 0.3 to Poisson's ratio, we have the 
with diameters D ,  and D,, and E, and E, are the respective modulii of elasticity. 

following simplified version after replacing the diameters by the respective radii 

(2.88) 

The Hertz equations discussed so far can be utilised to  calculate the contact stresses which 
prevail in case oftooth surfaces oftwo mating spur gears. Though an approximation, the contact 
aspects of such gears can be taken to  be equivalent to  those of cylinders having the same radii 
of curvature at the contact point as the load transmitting gears have. This assumption yields 
reasonably accurate results in the region of the pitch line. However, it is to be kept in mind that 
the radius of curvature changes continuously in case of an involute curve, and it changes sharply 
in the vicinity of the base circle. In fact near the base circle this radius approaches zero and the 
surface stress approaches infinity. Hertz equations do not produce accurate stress values in this 
region, and contact in this region is t o  be avoided to  avoid the deterimental effects of high surface 
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stresses. Contact stress equations are valid only on the assumption that the elastic limit is not 
exceeded and that the contact band is subjected to  only compressive stress. 

For calculation, the surface at  the pitch point is generally taken as the criterion as regards 
surface loading ofgear teeth. To find this stress, the following relations are inserted to  make use 
of Eq. 2.88 

p p  = 

, L = b, R, = d, sin a I 2  = r, sin a, 4 = d, s i n a l  2 = r, sina F = -  4 
cos a 

F E u +  1 1 
b d, u cos2a tan a,  

0.35’ - 

where Fi is the tangential force or transmitted load, b is the tooth width, R, and R, are the radii 
of curvature a t  the pitch point, and d,  and d, are the pitch circle diameters of the gears 

Putting 
E = - - ( E , + k ) , ~ r E =  1 1 1  2 El E2 

El + E2 

for pinion and gear materials with different modulii of elasticity, and 

u = -  d2 

d, 
we arrive at the following relations, 

u + l  - 1 2 
d, sin a u 

Inserting these values in Eq.2.88, we get the expression for the maximum contact pressure at 
the pitch point 

F E u +  1 1 (2.89) 2 1 u + l E  0 . 3 5 F ’  1 - - - - = ‘0.35’ ~ 

cos a b sin 01 d, u 2 b d, u cos a sin a P P  = 

In case of S-corrected gears with service pressure angle aw Eq. 2.89 is modified to  

To simplify calculation, Eq. 2.90 is written in tlie form 

P P  = Ym Y P  j F  F, u + l  

(2.90) 

(2.91) 

where y, is the material coefficient and y, is the pitch point coefficient, which are given by 

E; + E, Ym = 
(2.92) 

(2.93) 
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The value ofyp is 1.76 for uncorrected and So-corrected gearing. Forym see table 2.17 for pairing 
of common gear materials. 

Table 217 Material coefficient y,for pairing of common gear materials 

Pinion Gear 

Material €1 5 Ylll 
N/mm2 Material N/rnm2 4N/mm2 

Steel 206,000 269 

Cast steel: 
Grade 30-57 201 ,Ooo 
Grade 26-52 20 1,000 

267 
267 

Steel 206,000 Cast iron with 
spheroidal graphite 173,000 
SG 50017 

257 

Bronze 103,000 219 

Cast iron: 
FG 260 126,000 
FG 200 118,000 

234 
229 

Grade 26-52 201,000 265 
Cast steel 
Grade : 30-57 201,000 SG 50017 173,000 255 

FG 200 1 18,000 228 

SG 50017 173,000 FG 200 1 18,000 222 

6G 200 126,000 FG 200 207 

FG 200 1 18,000 1 18.000 203 

Based on Zahnraeder, Zirpke, 1 lth edition, 1900, table no. 31, p. 397. VEB Fachbuchverlag, Leipzig. 

Recalling Sec. 1.8, the surface durability is the property which determines the ability of the 
gear surface to resist fatigue type of tooth surface failure caused by contact pressure. For 
satisfactory service and life, the gears are to be designed in such a way that the surface stresses 
lie well within the surface endurance limit of the material used. Appendix E gives the values of 
the surface fatigue strength of common gear materials. In Sec. 1.8 the importance of the 
compressive strength and hardness ofthe tooth surface has been emphasised. The power rating 
of modern industrial gears is primarily based on the surface strength and not on the beam 
strength. The safe limit of contact stress should, therefore, be carefully chosen, and this limit 
should never be exceeded to avoid surface failure. Guidelines for selecting the proper design 
stress are detailed in See. 2.25 on strength calculation. 
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2.24 Stress Concentration 

From mechanics, we know that stress concentration plays a major role when amachine member 
is subjected to fatigue type of loading. As gear teeth have to  withstand repeated and fluctuating 
types of load, their failure is essentially attributable to fatigue phenomenon. Studies through 
photoelasticity have revealed that stress concentration occurs mainly at the point of loading and 
at the root fillets. The magnitude of stress concentration at the root fillet depends on the 
minimum radius of the fillet and also on the general configuration of the part. Generating 
methods of gear cutting produce fillets which are actually trochoids and not arcs of circles. 

The cutter tips produce these fillets and there is no single standard for the curvature of the 
tips which will give the best result as far as the avoidance of stress concentration is concerned. 
For precise calculations, stress concentration should also be taken into account. Apart from fillet 
radius and pressure angle, stress concentration factor is a function of material, root thickness 
of tooth, load position on the tooth, and other parameters. 

Employing photoelastic studies, the following empirical relation for gears with 20' pressure 
angle has been derived by Dolan and Broghamer* 

K ,  = 0.18 + [(b)"" x (t)"'"] (2.94) 

where K, is the theoretical stress concentration factor, r is the minimum fillet radius, h is the 
height of applied load above the weakest section, and t is the thickness of tooth at the weakest 
section. 

This theoretical value should be modified by the notch sensitivity factorq, the details ofwhich 
may be found in any standard book on mechanics. The value of q will depend upon the fillet 
radius, material and other factors. For hardened teeth, the value ofq is practically unity, so that 
the theoretical value holds good. Calling the modified or  actual stress concentration factor asK,, 
the stress produced at the tooth root should be arrived at after multiplying the stress value 
(calculated on the basis of the transmitted load or tangential forceF, ) by Krand then proceeding 

Fig. 2.46 Pattern of stress distribution 
(Photoelastic method) 
Areas of stress concentration are 
indicated by arrows 

* T.J. Dolan and E.I. Broghamer: Aphofoelasfic study ofthe stresses ingear tooth fillets, Univ. 111 Eng. Expt. Sta. Bull. 
1942.335. 
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accordingly by the usual methods given in the relevant sections dealing with strength calcula- 
tion. For hardened teeth Kl. = K,, giving safer stress values. Since the stress concentration 
enhances the stress, the actual stress may be 1.2 to 2 times the theoretical stress based on 
conventional equations. Obviously, the actual stress must lie below the allowable stress for the 
material. Further, since the stress is of dynamic nature, it should be less than the endurance 
limit to  ensure a reasonable margin of safety. 

Figure 2.46 shows the pattern of stress distribution on a mating pair of gear teeth using 
photoelastic method. Under polarised light, the stress pattern becomes visible on transparent 
plastic models of gear teeth. The resulting alternate layers of bright and dark areas are the 
isochromatic fringes produced by double refraction. Positions of maximum stress are indicated 
by a crowding of these layers of bright and dark areas as shown in the figure. By and large the 
photoelastic method of stress analysis agrees with the actual stress conditions, except in some 
special cases. 

2.25 

Complete knowledge of the stresses which the gear teeth are subjected to  is imperative for the 
determination of the different parameters of a gearing system. This should be as exact as 
possible and is a prerequisite for the proper design to avoid damage or failure of the gears within 
the stipulated life. Hence, the most important stresses which the gears normally encounter 
should be theoretically checked as regards load-carrying capacity. 

It should, however, be kept in mind that the load capacity of a gear pair can be determined 
reliably only by practical experimentatio,i.The stress conditions are ofthree dimensional nature 
and are not readily amenable to  theoretical analysis. Running tests on various specimens of 
different materials and in different simulated service conditions are conducted from which 
relevant charts, tables and curves are made to facilitate prediction of the behaviour of gears in 
actual operational life. Factorslike tooth shape, root fillet form and stress concentration thereof, 
surface finish, meshing conditions z.nd other data are analytically assessed. Factors which are 
generally unpredictable, such as variable loads, peak load, effect of tooth errors, uneven load 
distribution, and the detrimental effects of improper lubrication are usually taken care of by 
using semi-empirical relations and similar methods. For high powergear drives, best results are 
obtained by hardened and precisely ground teeth. These gears have an extremely high load 
carrying capacity coupled with a high degree of reliability, restriction of size and weight 
requirements. 

From theoretical considerations, appropriate gear dimensions can be reasonably arrived at by 
using the design data available in books, manufacturer's manuals, journals, and the standard 
specifications, such as IS, DIN, BS, GOST, and the various American standards. The most 
important stresses which should be considered for gear designing are: 

Strength Calculations and Power Rating 

(i) the stress due to the bending of the tooth, and 
(ii) the stress created by contact pressure, generally known as  Hertz stresses. 
Besides, gear failure by scoring is also considered. 
Basically, failures due to both the above kinds of stresses that is, bending stress and contact 

stress, may be considered as types offatigue failures since the stresses are of cyclic nature. Tooth 
breaks due to the repetition of bending stress of varying magnitude whereas surface failure 
occurs due to the numerous application of contact stress causing flakes and particles t o  detach 
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themselves from the tooth surfaces where cracks have formed below the surface (see Sec. 2.23). 
In this section, the strength calculation and power rating will be treated in three ways by 

using: 
(a) relations from the first principles of gear drive, 
(6 )  a simplified method for quick and rough calculation, and 
(c)  methods laid down in IS: 4460. 

Relations from the First Principles of Gear Drive 

Essentially, a gear tooth in operation can be considered as a cantilever beam under load. For this 
reason, the ability of the tooth to resist tooth breakage at the root is often referred to as its beam 
strength. The basic tooth stresses caused by bending were first investigated by Wilfred Lewis and 
the bending stress equation is still known as the Lewis formula although much modification of 
the original formula has taken place during the period of nearly 10 years. 

Referring to Fig. 2.47, the tooth load FN is  supposed to act at  the tip corner as shown. Under 
this assumption, calculation becomes simplified. Load FN acts along the line of action a t  a grip 
angle of a: at the tip corner. When referred to  pitch point P, angle a i s  the pressure angle of the 
the system. As explaind in earlier sections, force FN is normal to the tooth profile a t  pitch point 
P on the line of action. 

+ 

0 

TOO 1 H UIIEAKAGE 

Fig. 2.47 Gear tooth forces 
Based on Die Tragfaehlgkeit der Zahnraeder. Thomas and Charchut, 7th edition, 1971, 
Fig. No. 25, p. 67. Carl Hanser. Verlag, Munich 
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If at the intersection of the line of action and the present centre line of the tooth, this force FN 
is resolved, then we get 

the radial component = FN sin 

the tangential component = FN cos a'a 
From Fig. 2.47 we can easily see that the following individual stresses are created. 

(2.95) 

Compressive stress 

Average shear stress 

(2.96) 

(2.97) 

where Sq is the thickness of the weakest portion at the root of tooth. 
Research work in this field has established the fact that for calculation of practical strength 

the compressive and the shear stresses can be neglected since their effects are marginal. Only 
the bending stress, therefore, is taken as the determining factor with sufficient accuracy. 
Now, the tangential force or the transmitted load is given by 

F, = F, cos a 
Normally in solving a gear problem, the power and the speed are given.The following formulae 
are recalled 

Torque 

P, (Metric HP) (in kgfm) = 716.2 x 

Circumferential velocity 
d, (mm) x n, ( r p d  

19100 
u (m / s) = nd,n, = 

Also 

Substituting F,lcos a for FN in Eq. 2.95, multiplying the denominator and numerator by rn, and 
after rearranging, we have. 
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q k  
F, 6 m h, cos a: - - -  F, 

Ob = - 
b m S% cos a bm 

The expression 
6 m h, cos a; 

q h  = s; cos l2 

(2.98) 

(2.99) 

is used to derive the form factor qk the values of which have been computed and are presented 
inFigs2.48 and2.49. These figures can be used for spur, helical, uncorrected and correctedgears. 
The magnitude of the module has no influence on the form factor since hq and Sq also increase 
in proportion to m. The effect of topping on the value of qk is also negligible. 

Besides qk, the equation for the bending stress is to be modified by taking into account another 
factor called the overlap factor or the contact ratio factor q,. Equation 2.95 is based on load taken 
by one pair of mating teeth only. Factor q, is used to make allowance for the reduced load carried 
at the tooth tip due to two pairs of teeth making simultaneous contact and thus sharing the load. 
With sufficient accuracy, q, can be taken to be equal to  the reciprocal of the contact ratio (CR). 
That is 

The contact ratio can be calculated by using Eqs 2.12 and 2.13 given in Sec. 2.7. However, as 
the circumferential force does not distribute itself on the tooth pairs as it ideally should due to 
inaccuracy in toothing or low load, the value of q, can be taken as 1. 

We can now finally write the bending stress equation as 

(2.100) 

Since the number of teeth as well as the materials of the pinion and the gear are usually 
different, it is advisable to check the bending stress for both the members of the gear set. 

Equation 2.100for bending stress is t o  be checked against the allowable bending stress ofthe 
material. This working stress can be found in different ways and its selection depends on the 
discretion of the gear designer. Some guidelines are discussed here in this regard. 

Permissible bending stress obP can be directly taken from Appendix E which shows strength 
characteristics of common gear materials. It can also be found by using the relation. 

6, 
2 to 3 

= -  o e  

Ob’ = Factor of safety 
(2.101) 

It has been emphasised before that gear teeth subjected t o  bendingis actually a manifestation 
of gear fatigue. Moreover, the teeth may be subjected to continuously reversible drives. Keeping 
all these factors in mind, some designers prefer to  select the maximum permissible tooth bending 
stress according to the number of stress cycles the gear is expected to undergo during its 
operational life. Such maximum allowable stress values as a function of the number of stress 
cyclesfor different materials can be obtained from Fig. 2.50. If the stress conditions of a drive are 
known with sufficient accuracy, reliable gear design can be made with a minimum factor of 
safety. 
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Fig 2.48 Virtual number of teeth Zv in relation to helix angle p and number of teeth Z 
Based on Die Tragfaehigheit der Zahnraeder, Thomas and Charchut, 7th edition, 1971, Fig. No. 28, p. 71 Carl 
Hanser, Verlag, Munich 
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The endurance limits for different materials given in Fig. 2.50 are based on conservative 
estimates. For cases where the stress cycles are large or for infinite life, the endurance limits in 
this figure can be taken as the maximum permissible stress for design calculation. 

For hardened gears, the bending stress is usually the determining factor. Using several 
equations given before we can arrive tentatively at the required value of the module. 

Thus 
2000 T, 2000 T,q,,qe 

qkl qe = qklqe = 
F, 

Obl = - 
b m  d: ( b l d , ) m  2: m3 ( b l d , )  

Putting o bF for obl and transposing, we get 

A suitable value of the quotient b l d ,  can be obtained from Sec. 2.16. As the values of qkl and 
qe are also not known initially, they are to  be guessed. The average values which can be taken 
are qkl = 2.25 and q, = 0.9. Inserting these values, we can arrive at  the following expression for 
the module 

(2.102) 

As explained earlier, besides the bending stress, contact pressure is also created where the 
two surfaces of the mating teeth meet. This surface stress, commonly known as Hertz stress, has 
been discussed in detail in Sec. 2.23. For unhardened gears, the contact stress is usually the 
deciding design criterion. Recalling Eq. 2.91 and inserting the permissible surface stressPCP for 
p,, we have the following expression after modifying the equation in the same manner as in the 
case of bending stress 

P ,  = Y, Yp /? 2000 TI 

b I d,) d: 

Putting d, = z, rn and transposing Eq. 2.103, we get 

(2.103) 

(2.104) 2 2  
1 2000 TI y, yp u + 1 

21 

. -  
( b  1 4 )  Pcpz U I m = - 3  

Depending on the material pairing, the value ofyln is to  be taken from Table 2.17 of Sec. 2.23. 
The factory is not generally known beforehand. An average value ofyp = 1.66 can be taken for 
initial calcufation. 

For calculating permissible surface stress, the following relation can be used for all practical 
purposes 
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(2.105: 
P S C  

1 5  
= -  

where p ,  is the surface fatigue strength as given in Appendix E. 

relationship gives fairly accurate results 

For cast iron and heat-treatable steel 

In case the value of the surface fatigue strength is not readily available, the following simple 

p ,  = 0.25 x HB (2.106: 
For surface-hardened teeth 

p ,  = 25 x HRC (2.107) 

As indicated earlier, gears need not be designed for infinite life. In case of applications 
involving finite life, the permissible Hertz stress can obviously be taken higher than that meant 
for infinite life. Experiments have shown that the contact stress at which pittingmay be expected 
to occur for a finite life corresponding to 10 Nload cycles is approximately % times the surface 
fatigue strength, where N is in the range of 3 to 7. Depending upon the type of loading as to its 
frequency, the number of load cycles can be expressed as follows 

For constant loading 

Lc = 60 x n x L, (2.108) 

where Lc = Life in number of cycles 
L, = Lifeinhours 
n = Speedinrpm 

For variable loading the, equivalent life in number of cycles is given by 
3 3 3 

Le eq = "[ Lhlnl [ Lh2n!2 [ :) Lh, n3 [ :) ***I 
= -Cq3 60 L~~ ni 

T." 
(2.109) 

where, T,  is the maximum sustained torque actingforL,,hours at n,  rpm, and T,, T3... are small 
sustained torques acting for Lh2, L,, . . . hours at n,, n,.. .rpm 

Example 2.9 Given: Input through electric motor, load is of impact nature, gears to be 
mounted on shafts fitted with anti-friction bearings in a gear box. Nominal power, P, = 2 kW, 
transmission ratio, i = 3, input speed n, = 50 rpm, z, = 45. A suitable spur gear pair is t o  be 
designed. 

Solution: The following data are taken 

bld ,  = 0.5, material of pinion 40 Cr  4, material of gear 45 C 8. 

Both members of the gear set are flame-hardened. 

Z, = iz, = 3 ~ 4 5  = 135 

To have hunting tooth action, we choose z, = 137 which is a prime number 
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:. 
this case. 

i = 137145 = 3.04. The deviation of i is within f 3% which is the usual allowable limit in 

n1 - 50 - 16.45 rpm n2 = - - - - 3.04 3.04 

2 
nl 50 

Nominaltorqueatthe pinionshaft= 9550 x 3 = 9550 x - = 382 Nm 

Since the load is of impact nature, a n  impact factor of 1.5 is taken. Hence, the actual torque is 
given by 

T, = 382 x 1.5 = 573 Nm 

From Appendix E, we get 

1620 - 1080 N / mm', ob,, = 200 N I mm2, oc2 = 180 N / mm2, pep, = - - 
1-5 

1640 - 1093 N / m m 2  P e p 2  = 15 - 

m ii: 34- = 2.251 m = 2.5 mm (taken) 
452 x 0.5 x 200 

d, = 45x2.5  = 112.5 mm, d2 = 137 x 2.5 = 342.5 mm 

b = 0.5 x 112.5 = 56.25 mm = 56 mm (taken) 
Check : Referring to Sec. 2.16, we have 

bmaX = h = 25 x 2.5 = 62.5 mm > 56 mm 

mmin = b/ A = 56/25 = 2.24 mm < 2.5 mm 

The above value are, therefore, within the specified limits. 

In  accordance with the velocity, quality 10 is chosen. 

d, + 4 - 112.5 + 342.5 = 227.5 mm Centre distance a =  - 
2 2 

The nearest higher standard centre distance is 250 mm as per Table 2.5 of Sec. 2.13. The 
reader is advised to recalculate and determine the appropriate correction factors as well as the 
changed values of dal and da, with the help of sections dealing with correction, keeping in mind 
the limitations imposed by too high a correction factor. 

From Fig. 2.49q,, = 2.4 forz, = 45. Sincez, = 135, we get the value qkz = 2.15 by interpolation. 
Therefore 

F, '" " = 56 x 2.5 b m  
10'187 x 2.4 x 1 = 175 ( N /  mm2> (9, = 1, taken) o b 1  = - 



2.108 Handbook of Gear Design 

Ft 
qk2qe = 56 x 2.5 b m  

x 2.15 x 1 = 156 (N/mm2)  o b 2  = - 

y, = 269 for steel on steel from Table 2.17 
yp = 1.76 for uncorrected gearing. 

From Eq. 2.91 (Sec. 2.23) 

p p  = y,,, yp dm = 269 x 176 {v 56 x 112.5 = 694 (N/ mm2) 

Hence, both the bending stresses and the surface stresses are within allowable limits as given 
earlier. 

Simplified Method of Strength Calculation 

In case where enoughdata are not available or where approximate values will serve the purpose, 
the following simplified method of strengthcalculationmay be adopted. Assuming that one tooth 
only carries the total force a t  a time, we get the following relation 

F, (N) = bpc (2.110) 
where 

be expressed as 
b = Tooth width (zm), p = Circular pitch (cm) arm, and c = Load factor (N/cm2). Factor c can 

c = co Kl K2 K3 
Here c,= abp/Q 1c where Q = A factor which depends on the type of toothing, meshing relations 
and the number of teeth; Q = 5.5 to 2.5 with increasing number of teeth. Taking the value of c, 
for cast iron (CI) as the basis for calculation and considering the effects of velocity u and thereby 
of wear, we get a modified expression of co 

lo (Ncm2) 10 - 300 x 3000 
c, = - 

37r 0 + 10 u + 10 
where obp is taken as 3000 N/cm2 for CI and the average value of Q is taken as 3. The 
circumferential velocity u at the pitch line is calculated after assuming a value ford . 

Thus 

Factor K, gives the relation betwen the strength of cast iron uis-a-uis that of other materials. 
Thus 

Kl = 1 f o r C I  
= 1.8 to 2.5 for cast steel (average = 2) 
= 2.8 to 3.3 for Fe 490, Fe 410, Fe 620 (average = 3) 
= 5 t o  9 for alloy steels and hardened steels 
= 1.7 for phosphor bronze 
= 0.8 to 1 for pressed synthetic materials 

Factor K2 takes care of the type and duration of service to which the gear drive is subjected. 
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K, = 0.8 to 1 €or normal service conditions 
= 0.6 to  0.7 for heavy duty 
= 0.5 for heavy duty and shock loads 

Factor K, is for other influences e.g. tooth form, lubrication, contact ratio. 
K, = 0.8 for unmachined straight teeth 

= 1 for machined straight teeth 
= 1.1 to 1.3 for machined helical teeth 
= 1.5 for ground helical teeth 

Toothwidth - b b LetA = - - = -  
Circular pitch p ~m 

Its value can be taken as indicated below 
A = 2 t o  3 for cast teeth 

= 2 to  5 for unground, hardened teeth 
= 3 t o  6 for machined teeth 
= 6 to  13 for fine-machined teeth flanks, n, I 3.000 rpm 
= 13 to 27 for teeth with best surface quality, high accuracy of toothing, 

mounted on rigid bearings, and n, 2 3000 rpm 
Circumferential force is given by 

Here torque Tis in N cm, and d and m are both in cm. By transposing, we get 

Putting 

(2.11 1) 

P (kW) 
n (rpm) 

T = 955,000 x 

we can find the value ofp from Eq. 2.111 and thereby the required module m. 
Calculations in case of helical gears can be made in a similar manner with the value of ab 

taken as 20 to  40% higher than that of spur gears. 

Example 2.10 An electric motor of 2.5 kW drives a shaft through a single reduction unit. Motor 
pinion data z, = 14, n, = 1000 rpm, Driven gear z, = 70. 
To find (i) speed of driven shaft, (id module and the width of the gears made of CI with milled 

teeth, and (iii) diameter of the driven shaft, material: 45 C 8. 

Sol ut ion: (i) nlzl = n2 z2 

10 c = C, K, K, K3, C, = 300 x - 
u + 10 (id 

A dl  nl = 3.14 x 0.1 x 1000 = 5,2m, :. u = 
60 60 

Assumed, = 100 mm = 0.1 m 

C, = 300 x 
lo 

5.2 + 10 = 200N I cm2 K,= 1 for CI. K2= 1 for normal service, K, = 1 for 
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milled teeth :. c = 200 x 1 x 1 x 1 = 200 N/cm2 

A = - = 3 (selected) b 
P 

= 121 cm 955000 x 2.5 
X 

27r P = 3  
14 x 3 x 200 1000 .. 

= 12.1mm = 7r x 3.85 :. m = 3.85 = 4 mm (taken) 
d, = mz, = 4 x 14 = 56 mm d, = mz, = 4 x 70 = 280 mm, 
b = p A=7r4 x 3 = 40 mm 

(iii) Taking allowable torsional stress to be 2000 N/cm2 for the shaft material, we have 

Torque 

Also 

2.5 T ( N m )  = 9550 x 2*5 (kW) = 955 000 x - (N cm) 
200 (rpm) 200 

T (Ncm) = 2 (section modulus) x 7p (permissible shear stress) 
7r 

= - x d 3  x 2000 
16 

whence the diameter of the driven shaft 

d = 3.1 cm = 31 mm = 35 mm (taken) 

Method for Rating of Machine Cut Gears as per IS: 4460 

Method for rating spur and helical power transmitting gears connecting parallel shafts and 
meant for general engineering applications has  been specified in IS: 4460. The method primarily 
deals with checking of power transmitting capabilities of a gear set when the relevant 
parameters, such as material, gear dimensions, speed, are known so as to ensure whether thc 
particular drive meets with the requirements. For this purpose, a set offormulae along with tht: 
values of the basic stress factor sfor ccmmon gear materials as well as other relevant factors, e.g. 
speed factors, zone factors, pitch factors, has  been speci'fied. The stress factors in tabular fornt 
and other factors in graphical form are given a t  the end of this sub-section (Table 2.18 and Fig!; 
2.51-2.56). I n  IS: 4460, the conventional metric system has beenused. As such, the units are k e p  
unaltered. The reader can refer to Appendix T for conversion into SI units. The symbols foi- 
materials are also left as given in IS: 4460. For new symbols see Appendix E. 
In this sub-section horse power always means metric horse power only (denoted by the? 

German symbol PSI which is equal to about 0.736 kW, as distinct from the British horse power 
(HP) which is equal to about 0.746 kW. 

The power rating of spur and helic gears is divided into (i) horse power for strength, and (ii) 
horse power for wear. These are given by 

Horse power for strength 

Horse power for wear 

X, Y3,brnn.z 1774 
K lo8 

x -  (PSI = 

(2.112) 

(2.113) 
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The Standard also specifies formulae for allowable tangential loads with respect to strength 
and wear, and these formulae can be used for checking purposes when the tangential load of a 
gear drive is calculated from the given power, speed and gear dimensions. These are given by. 

= X,YS,m for strength (2.114) 

Allowable tangential load (kgf/mm of tooth width) 

- - xcy'c x 25.4 for wear (2.115) 
K 

where 
X, = Speed factor for strength 
Xc = Speed factor for wear 
Y = Strength factor. See Fig. 2.53 for spur gears and helical gears with 30' helix angle. 

For other helix angles, the strength factors obtained from Fig. 2.53 shall be multi- 
plied by 1.33 cos2 

Y, = Zone factor. See Fig. 2.54 for spur gears and Fig. 2.55 for helical gears with 30' helix 
angle. For other helix angles, the zone factor obtained from Fig. 2.55 shall be 
multiplied by 0.75 x sec2 p 

K = Pitch factor 
S ,  = Bending stress factor, this depends on the tensile strength of the material 
Sc = Surface stress factor, this depends on the hardness of the material 

Other factors, such as b, m, z and p have same meaning as before. The normal rating of a gear 
is the allowable continuous load for 12 hours running time per day. 

The following examples will illustrate the use of the above formulae, tables and graphs. 

Example 2.1 1 Apair of spur gears is required to reduce the speed from 500 to  100 rpm working 
continuously for 12 hours running time. The pinion is of 0.40% carbon steel, is normalised, and 
has 20 teeth. The gear is of cast iron, grade 20, IS: 210, and has 100 teeth, m = 8, b = 100 mm, 
a = 20". The allowable horse power of the pair is t o  be determined. 

Solution: From Eq. 2.112 horse power for strength (PSI = X, YSbb m2 nz x 1774/25.4 x lo8. 
For pinion, we get the following values 

X, = 0.3175 from Fig. 2.51 
Y = 0.72 from Fig. 2.53 
S, = 14.05 from Table 2.18 

Hence PS for pinion = 0.3175 x 0.72 x 14.05 x 100 x 64 x 500 x 20 x 1774425.4 x 109 = 143 
Similarly PS for gear = 0.42 x 0.615 x 4.22 x 100 x 64 x 100 ~ 1 0 0  x 1774425.4 x lo8) = 48.7. 

From Eq. 2.113 horse power for wear (PS) =Xc Y, Scb rn n z x 1774/(Kx 10% Using the relevant 
tables and figures, we get the following values after inserting the appropriate data 

PS for pinion = 0.305 x 2.2 x1.125 x 100 x 8 x 500 x 20 x 177442.5 x 109 = 42.8 
PS for gear = 0.400 x 2.2 x 0.81 x 100 x 8 x 100 x 100 x 1774/(2.5 x 109 = 40.5 

The allowable horse power rating of any pair of gear is the least of the four values calculated 

Example 2.1 2 The long travel mechanism for a steel plant crane is equipped with a single 

for the pinion and the gear. Hence, in this case the allowable rating is 40.5 PS. 
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stage helical gear box by the crane manufacturer. The gears are to be checked for strength and 
wear. The relevant data are as follows. 

Crane duty class 3 as per IS: 4137; duration of service 5 hours/ day; ambient temperature 55' 
C; power rating of gear box 29.5 kW at 720 rpm; z1 = 20; z, = 145; m = 5; p = 10"; a = 20"; tooth 
width b = 140 mm; material C 40 for pinion and C 30 for gear, both hardened and tempered. 

Solution: i = z2/z1 = 145120 = 7.25 = n,ln2 = 72Oln, whence n2 = 99.31 rpm 

Tangential load on pinion F, = 2T  I d, = 2 x 39.9 x l o 3  [ - .:zkj = 2 x39900 (-) 
Input torque TI = 974 x 29.51720 = 39.9 kgfm = 39.9 x lo3 kgfmm 

= 786 kgf 
As per IS: 4137 which classifies steel mill duty cranes, the duty factors for class 3 cranes are 

as follows 

for strength: 1.4 (which takes impact into account) 
for wear: 0.6 

Hence effective F, for strength = 1.4 x 786 = 1100 kgf, and for wear = 0.6 x 786 = 472 kgf. 
Check for strength: As per Eq. 2.114. 
Allowable tangential load (kgf) = X,YS,mb 

= 0.32 x (0.735 x 1.33 cos2 10') x 14.8 x 5 x 140 = 3149 for pinion 
= 0.46 x (0.625 x 1.33 x cos2 lo') x 14.8 x 5 x 140 = 3860 for gear 

Check for wear: As per eq. 2.115 
Both these values are greater than 1100 kgf. 

Allowable tangential load (kgD = xc yz sc x 25.4 x b 
K 

= 
= 

0.36 x (3.13 x 0.75 x sec2 10') x 1.44 x 25.4 x 14013.7 = 1206 for pinion 
0.52 x (3.13 x 0.75 x sec2 10') x 1.125 x 25.4 x 14013.7 = 1361 for gear 

As both of these values are greater than 472 kgf, the gear pair is safe from strength and wear 

Example 2.13 In a non-reversing type rolling mill drive a gear is designed to run 24 hours 

point of view. 

per day, transmitting power in the following manner 

1500 PS normally 
6000 PS for 3 seconds, 600 times per day 
8000 PS maximum momentary peak load 

all at a constant speed of 40 rpm. 
This drive is required to be checked for wear and strength. 

- Solution: In  a problem ofthis nature where the load is not uniform, it is necessary to calculate 

We use symbol M to represent power in PS in such a case of varying amounts of power at 
first the equivalent running time at a uniform load which have the same effect on the gears. 

different phases during operation. These powers are defined as follows 
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M, = The maximum sustained gear load acting for HI hours at n, rpm 
MzM 3.... = Smaller loads which act for HJY3 hour ... 

at n, n3 rpm. . . respectively 
Next, the equivalent running time per day at the maximum sustained load and the corresponding 
speed is calculated. This is given by 

Heq = H I  + H ,  * (2) (2) (21 + ... 
(2.116) 

In the example in question, the maximum sustained load is 6000 PS acting for 3 x 600/3600 = 
0.5 hours per day. Speed is constant and so n,  = n, = 40 rpm. 

Hence 

= 0.5 + 0.37 = 0.87 hour per day 

The equivalent load is 6000 PS for 0.87 hour per day. 

the allowable overload capacity. This is done as follows. 

certainty. I t  is considered to act for a period of not more than 15s, i.e. 0.004 hour. 

Now, it is to be examined whether the momentary peak load of 8000 PS exceeds the least of 

The momentary overload is that load, the duration of which is too short to  be defined with 

The maximum momentary loads are given by 

for wear = M1 (2 + cm or 3M1 whichever is less 
xc -- 

(2.117) 

(2.118) 

Here 
Xcl, = Speed factor for wear at 12 hours running time per day 
X,,,= Speed factor for strength a t  12 hours running time per day 

X,, X,, and Ml have meanings as before. The values ofXc andXcl2 are to be taken from Fig. 2.52 
and those ofX, and X,,, from Fig. 2.51 

From these figures, we have the following values for the example in question 

Xc = 1.2 and X ,  = 0.70 for 40 rpm for 0.87 hour per day 
XClz = 0.480 and X,, = 0.480 for 40 rpm for 12 hours running time per day 

Inserting these values in Eqs 2.117 and 2.118, we have 

for wear 
for strength 

= 9300 and 3 M ,  = 3 x 6000 = 18000 
= 8850 and 2M1 = 2 x 6000 = 12000 

The maximum momentary power (PSI, i.e., 8000, does not exceed the least of these allowable 
values which is 8850. 

The gear, therefore, fulfils the conditions it is designed for, and is thus acceptable. 
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Table 2.1 8 Basic surface stress and bending stress factors 

Material Condition Minimum Brinell BaSiC Basic 
(finished tensile hardhess surface bending 

gear) strength HB stress stress 
kgf/mr/f kgf/mr/f factor S factor S, 

- 0.39 3.16 Fabric - - 

Malleable Cast Iron 
Whiteheart malleable iron - 28 217max 0.599 6.9 

castings, Grade B 
(IS :2107-1962) 

Blackheart malleable iron - 32 149 maw 0.599 7.72 
castings, Grade B 
(IS: 21 08-1 962) 

CastIron(lS : 210-1962) 
(Iron castings for gears and gear blanks) 
Grade 20 As cast 20 179 min 0.8 1 4.22 
Grade 25 As cast 25 197 rnin 0.876 5.27 
Grade 35 As cast 35 207 min 0.915 8.60 
Grade 35 Heat-treated 35 300 min 1 .oo 8:60 

Phosphor Bronze (IS : 28-1 958) 
Phosphor bronze castings Sand cast 16 60 min 0.436 4.07 

(for gear blanks) 

(for gear blanks) 

(for gear blanks) ally cast 

Phosphor bronze castings Chill cast 24 70 rnin 0.50 5.8 

Phosphor bronze castings Centrifug- 26.77 90 0.69 6.92 

CastStee/(lS : 1030-1962) 
Grade 1 - 55 145 1.125 13.38 

~~ ~ ~ 

Forged Steels (IS : 1570- 196 1 ) 
Carbon steel 
0.30 per cent carbon steel (C 30) 
0.30 per cent carbon steel (C 30) 

0.40 per cent carbon steel (C 40) 
0.40 per cent carbon steel (C 40) 

0.55 per cent carbon steel (C 55 Mn 75) 
0.55 per cent carbon steel (C 55 Mn 75) 

0.55 per cent carbon steel (C 55 Mn 75) 

Normalised 
Hardened and 

tempered 
Normalised 

Hardened and 
tempered 

Normalised 
Hardened and 

tempered 
- 

Carbon chromiun steel 
0.55 carbon chromium steel (55 Cr 70) 

0.55 Carbon chromium steel (55 Cr 70) 

0.40 per cent carbon, 1 percent chro- 
mium steel (40 Cr 1) 

Hardened and 
tempered 

Hardened and 
tempered 

Hardened and 
tempered 

50 
60 

58 
60 

70 
72 

80 

90 

100 

80 

143 
152 

152 
179 

201 
223 

248 

225 rnin 

285 rnin 

229 rnin 

0.985 
1.125 

1.1 25 
1.44 

1.63 
1 .83 

2.1 1 

2.105 

2.47 

1.90 

11.95 
14.80 

14.05 
14.80 

16.90 
17.60 

19.70 

22.2 

24.6 

19.7 

(Contd.) 
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Carbon manganese steel 

Carbon manganese steel (27 Mn 2) 
Carbon manganese steel (27 Mn 2) 
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Normalised 
Hardened and 

tempered 
Hardened and 

tempered 
- 

55 
60 

- 13.4 
1.41 14.8 

- 
170 rnin 

201 min Carbon manganese steel (27 Mn 2 ) 

Carbon manganese steel (37 Mn 2) 
Carbon manganese steel (37 Mn2) 

Maganese molybdenum steel 
Manganese molybdenum steel 

Manganese molybdenum steel 

Manganese molybdenum steel 

Manganese molybdenum steel 

(35 Mn 2 Mo 28) 

(35 Mn 2 Mo 28) 

(35 Mn 2 Mo 45) 

(35 Mn 2 Mo 45) 

70 1.69 16.9 

70 
80 

201 min 
229 min 

1.69 16.9 
1.90 19.7 

Hardened and 
tempered 

Hardened and 
tempered 

Hardened and 
tempered 

Hardened and 
tempered 

70 

80 

80 

90 

201 min 

229 rnin 

229 rnin 

255 min 

1.69 16.9 

1.90 19.7 

1 .go 19.7 

2.105 23.2 

Chromium molybdenum steel 
1 per cent chromium molybdenum steel 

(40 Cr 1 Mo 28) 
1 per cent chromium molybdenum steel 

(40 Cr 1 Mo 28) 
1 per cent chromium molybdenum steel 

(40 Cr 1 Mo 28) 
1 per cent chromium molybdenum steel 

(40 Cr 1 Mo 28) 
1 per cent chromium molybdenum steel 

(40 Cr 1 Mo 60) 
1 per cent chromium molybdenum steel 

(40 Cr 1 Mo 60) 
3 per cent chromium molybdenum steel 

(15 Cr3 Mo 55and 25 Cr Mo55) 
3 per cent chromium molybdenum steel 

(15 Cr3 Mo 55and 25 Cr3 Mo 55) ’ 

Hardened and 
tempered 

Hardened and 
tempered 

Hardened and 
tempered 

Hardened and 
tempered 

Hardened and 
tempered 

Hardened and 
tempered 

Hardened and 
tempered 

Hardened and 
tempered 

70 

80 

90 

100 

90 

100 

90 

155 

201 min 

229 rnin 

255 rnin 

285 rnin 

248 rnin 

293 rnin 

255 rnin 

144 rnin 

1.69 16.9 

1.90 19.7 

2.105 23.2 

2.47 24.6 

1.75 23.2 

2.06 24.6 

2.105 23.2 

1.16 36.6 

Nickelsteel 
3 per cent nickel steel (40 Ni 3) 

3 per cent nickel steel (40 Ni 3) 

1.90 19.70 

2.105 23.2 

Hardened and 
tempered 

Hardened and 
tempered 

80 

90 

229 rnin 

255 rnin 

Nickel chromium steel 
4: percent nickel chromium 

steel (30 Ni 4 Cr 1) 

1 per cent nickel chromium moly- 
bdenum steel (40 Ni 2 Cr 1 Mo 28) 

1; percent nickel chromium 
molybdenum steel 
(40 Ni 2 Cr 1 Mo 28) 

21 percent nickel chromium 
molybdenum steel 
(medium carbon) 
(31 Ni 3 Cr 65 Mo 55) 

Nickel chromium steel 

Hardened and 
tempered 

154 444 min 3.87 35.9 

Hardened and 
tempered 

Hardened and 
tempered 

90 

155 

255 min 

444 min 

2.1 1 23.2 

3.87 37.3 

Hardened and 
tempered 

90 255 rnin 2.1 1 23.2 

(Contd.) 
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Table 2.1 8 (Contd.) 

percent nickel chromium 
molybdenum steel 
(medium carbon) 
(31 Ni 3 Cr 65 Mo 55) 
percent nickel chromium 
molybdenum steel 
(medium carbon) 
(31 Ni 3 Cr 65 mo 55) 
per cent nickel chromium 
molybdenum steel 
(highcarbon) 
(40 Ni 3 Cr 65 Mo 55) 
percent nickel chromium 
molybdenum steel 
(high carbon) 
(40 Ni 3 Cr 65 mo 55) 
percent nickel chromium 
molybdenum steel 
(highcarbon) 
(40 Ni 3 Gc 65 Mo 55) 

3.87 36.6 Hardenedand 155 444 min 
tempered 

Hardenedand 110 331 min 2.60 26.7 
tempered 

Hardened and 100 285 min 2.47 24.6 
tempered 

3.8 1 37.3 155 444 min Hardened and 
tempered 

Hardened and 120 341 min 3.82 28.8 
tempered 

Surface Hardened Steels (IS : 1570- 1961 ) 
Carbon steel 
0.4 per cent carbon steel - 55.12 145 (core) 1.97 8.35 

0.55 per cent carbon steel - 70.86 200(core) - 2.80 10.55 
460 (case) 

520 (case) 

Carbon chromium steel 
0.55 per cent carbon chromium steel - 86.61 250 (core) 3.58 12.91 

500 (case) 
1 per cent chromium steel - 70.86 500 (case) 2.80 10.55 

Nickelsteel 9 per cent nickel steel 

3 per cent nickel steel 

1: per cent nickel, 1 per cent 

Nickel steel 

chromium steel 

- 70.86 200 (core) 
300 (case) 

- 86.61 250 (core) 
500 (case) 

- 86.61 250 (core) 

3.57 12.91 

3.58 12.91 

3.58 12.91 

CaseHardenedSteel (IS :1570-1961) 
Carbon steel 

0.15 per cent carbon steel - 50.39 140 (core) 7.00 28.00 
0.20 per cent carbon steel - 50.39 140 (core) 7.00 28.00 

0.1 2 to 0.22 per cent carbon steel - 50.39 650(case) 7.00 28.00 

640 (case) 
Nickelsteel 

3 per cent nickel steel - 70.86 200 (case) 7.1 7 28.12 

9 per cent nickel steel 

5 per cent nickel steel 

- 70.86 200 (core) 7.17 28.12 
620 (case) 

- 86.61 250 (core) 7.87 33.07 
600 (case) 
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and helical gears for strength 

3.0 

2.0 

1.5 

1 .o 
0.8 
0.7 
0.6 
0.5 

0.4 

0.3 

0.2 

0.1s 

0.10 

0.05 
0.1 

0.25 

0.5 
1 

2 

4 
6 
E 

REVOLUTIONS PER MINUTE 
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helical gears for wear 
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NUMBEFi OF TEETH IN MATING GEAR 

Fig. 2.53 Strength factor for helical gears with 30' helix angle and spur 
gears-20" normal pressure angle 
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Fig. 2.54 Zone factor ( YJ for full depth spur gears-20' pressure angle 
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Other Strength Factors 
Apart from the bending stresses and the surface fatigue stresses discussed so far, there are other 
factors which must be considered while designing a gear. Design parameters will change 
according to such factors as overloading or shock, errors, high starting torque and acceleration 
torque. Besides, the dynamicloadis ofprime consideration in designingagear set. These aspects 
have already been discussed in detail in Sec. 2.22. 

Another important gear failure factor is scoring (or scuffing). This kind of failure appears in 
the form of coarse ridges down the teeth surfaces from the tip to  the pitch circle. Though opinion 
differ, scoring is mainly considered as a result of lubrication failure. Momentary local welding 
of high spots of the tooth flanks takes place which is caused by high surface loads, high sliding 
velocities, improper surface finish and the unsuitable characteristics of the lubricant applied. 
Various other causes have also been postulated. 
To check agear against failure by scoring, an empirical formula can be used. This is valid when 

straight mineral oil is used, that is, no extreme-pressure (EP) lubricant is used. 
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& + 4  - 
Fig. 2.57 Scoring factor 

Based on MAAG Handbook of M/s. MAAG Zahnraeder AG, Zurich, page 129. 

Referring to Fig. 2.57, the abscissa represents the sum z, + z,. The ordinate represents a 
quotient given by 

(2.119) 4 6  

J;; 
S, = F, - 
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where, 
F, (N/mm) = Average load per unit length along the width of tooth 

u ( 4 s )  = Pitch line velocity 
a (mm) = Centre distance 

In  Fig. 2.57 lines have been drawn corresponding to the transmission ratio i. If the value of 
S,  lies below the line representingi which is relevant to the problem being investigated it may 
be assumed that  scoring will not occur even when the full load is applied t o  new gears. 

- Strength Calculation of Non-Metallic Gears 

Properties of non-metals as gear meterials have been discussed in Sec. 1.8. Synthetic material 
like plastic, synthetic rubber, and other materials like raw hide, rubber impregnated laminates 
and pressed fibres are used in gear drive mainly for their high damping properties and noise-free 
operation. Such gears are normally paired with metallic gears. Lubrication should be copious. 
From strength and other points of view, these gears are, comparable t o  cast iron gears. 

The non-metallic gears are obviously not meant for heavy load and tough duty. Their load 
carrying capacity is limited by beam strength, temperature and permissible sliding. The 
transmitted load is given by 

F,  (N) = K,K, bp (2.120) 

where 
K ,  (N/mm2) = Load factor as per Table 2.19; it depends upon the material and the 

velocity 
K, = Number of teeth factor as per Table 2.20 

b (mm) = Tooth width = 8 to  10 m 
p (mm) = Circular pitch = n m  

Table 2.19 Load factor K, 

Materials 

Circumferential 
Synthetic material Cast iron velocity v Vulcanised fibre Raw hide 

m/s K, (Wrnrn’) 
~ 

0.5 
1 
2 

0.8 
0.8 
0.7 

1.6 
1.6 
1.4 

2.5 
2.3 
2.2 

2.7 
2.6 
2.3 

4 0.6 1.1 1.7 1.9 
6 0.5 1 .o 1.3 1.7 
8 0.4 0.8 1.1 1.4 

10 0.4 0.7 0.95 1.2 
12 0.3 0.6 0.85 1 .o 
15 0.3 0.6 0.70 1 .o 

The data for cast iron are given in the above table for comparison purposes. 
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Table 2.20 Number of teeth factor K, 

z= 13 15 20 25 30 40 60 100 
~ ~ ~~~~~ 

K, = 0.7 0.85 1 .o 1.08 1.14 1.21 1.27 1.34 

The following practical guidelines are of relevance in connection with the design and operation 
involving non-metallic gears: 
1. A non-metallic gear should always be paired with a metallic gear. However, in special 

operational conditions, e.g., in acidic environments, both the gears can be non-metallic. 
2. Dimensions permitting, the larger gear of the pair should normally be the non-metalic one. 
3. The width of the non-metallic gear should be somewhat smaller than that of it+ metallic 

4. The tooth width, b, should not preferably be more than 10 m. 
5. The teeth must lie at right angles to the direction of laminations. 
6. The teeth of the mating metallic gear should be clean and polished. 
7. Copious lubrication is indispensable for long life and noise-free drive. 
8. Before the beginning of first operation, application of a graphite paste on the non-metallic 

gear is recommended. A small amount ofgraphite can also be added to the lubricatingoilfrom 
time to time during the running of the gear pair. 

9. These gears can be fitted on the shaft through taper-seat ( 1 : l O  t o  1: 20) or through feather 
keys. 

10. To facilitate better fastening with the shaft, metallic bushes with keys-ways can be press- 
fitted inside the bore of the non-metallic gears, if other conditions permit. 

Example 2.13 a In a spur gear drive, the following data are given: z = 60, n = 300 rpm, 
a = 20", material of gear : synthetic material. 
To calculate the appropriate dimensions of the gear to transmit 1.75 kw. 

Solution : From Eqs 2.52 and 2.120, we have 

mating component. It should never exceed the width of the metallic gear. 

z m z n  nd n 
60000 60000 

- -  u = - -  

where d is in mm. Taking b = 9 m and p = m, we get 

1000 x P x 60000 = K,K, g m z m  F. = 
1 . 5  IC m z n  

From Table 2.20, K,  = 1.27. A value of K,  = 2.2 is tentatively selected from Table 2.19. 
Transposing the above equations, we have 

'Oo0 6oooo =2.86, m = 3 mm (selected) 
9 ~ ~ x 6 0 ~ 3 0 0  x 2.2 x 127 

= 3 4  1000 x P x 60000 
9 z2z  n K, K, m = 3\/ 

d = m z = 3 x 60 = 180 mm, = 2.83 f u =  
60000 
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K, = 2.0 from Table 2.19 by interpolation, b = 9m = 9 x 3 = 27 mm. 
F, = 2.0 x 1.27 x 27 x 3 x =  646N 

P = F, x VI1000 = 646 x 2.8311000 = 1.83 kw > 1.75 kw. 

Hence, the above non-metallic gear is capable to transmit the required power. 

2.26 Acceleration Torque and Motor Characteristics 

We discussed the various parameters concerning the acceleration torque in Sec. 2.22, and arrived 
at the following equation WD2n 

375 t 
T, (Nm) = -, 

where T, is the acceleration torque in newton metres, WD2 is the fly-wheel moment in newton 
metres squared, n is speed in rpm and t is the acceleration time in seconds. By transposing, we 
get 

WD2n 
t ( s )  = - 

375 T, 
(2.121) 

For proper selection and subsequent operational behaviour of the motor which drives the gear 
box, the torque curves of the driven machines as well as the torque characteristics of the motor 
must be known. During acceleration (starting) and deceleration (braking), the difference 
between these two torques is the measure of the acceleration (or deceleration) torque T,, A typical 
motor drive has been shown in Fig. 2.58 a. 

In  Fig. 2.58 b (i and ii), the four basic torque curves (representing the load torque) and power 
curves of the various types of driven machines commonly encountered are given. These are 
shown as functions of speed, power and torque. The four basic curves for usual applications are 
elaborated in the table below. 

Case Load torque Power Application (driven machine) 

1. Practically constant Directly proportional Cranes, reciprocating pumps and compressors, 

2. Directly proportional to Proportional to square Glazing rollers 

3. Proportional to square Proportional to cube of Centrifugal pumps, blowers, etc. 

4. Inversely proportional to Constant Some types of lathes and allied machine 

to speed 

speed of speed 

of speed speed 

Speed 

rolling mill conveyors, machine tools etc. 

tools, coiler, shaving machines variable 
speed drives. etc. 

The above four cases are represented by the curves 1 to 4 in Fig. 2.58 b (i and ii). 
Apart from the mechanical considerations, the acceleration time t is of utmost importance 

because this is a determining parameter for the selection of the right type of motor for the 
following reasons-during starting and the period of acceleration, heat is generated due to 
normal losses. A temperature rise takes place during this time and also during service until the 
normal operating temperature, relevant to the particular motor and service condition, is 
attained. 

It is, therefore, obvious that  since too much heat is detrimental to the windings and other parts 
of the motor, and since the acceleration time is a contributary factor in heat generation, a limit 
has to be set as regards the duration of this time factor. However, no hard and fast rule can be 
established as to this duration since it is a function of so many factor. It may range from a few 
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Fig. 2.58 Characteristics of an electric motor 
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seconds to several seconds. Guiding values are: 2 to 10 seconds for normal duty, 2 to  5 seconds 
for intermittent duty, and up to 20 seconds for heavy loads such as in the case of cooling tower 
fans, etc. Catalogues of motor manufacturing companies and codes of practice give the values 
of the maximum allowable temperature rise for the windings which in turn is determined by the 
temperature limits of the insulating materials. The usual practice is to assume a reasonable 
value for the acceleration time after consulting these codes and catalogues and then proceed 
further to determine the acceleration torque from the formula given. As discussed in Sec. 2.22, 
this acceleration torque is to be added t o  the rated torque for eventual determination of the gear- 
drive data. 

I t  is to be noted that  the instantaneous acceleration time is a variable factor as the machine 
speeds up from rest to the normal running condition. It is truly given by 

t = -  
375 

where n, is the normal running speed. 
Equahon 2.121 is an  approximation where To actually represents a mean-constant accelera- 

tion torque. In  Fig. 2.58 b (iii) the torque characteristics of an asynchronous, squirrel-cage motor, 
commonly used in industries, are given. Characteristics of other types of motors can be obtained 
from motor manufacturers catalogues. 

For all practical purposes, the peak torque of a motor can be taken to be around 2.2 to 2.5 times 
its rated torque. It can be seen from Fig. 2.58 b (iii) that 

the acceleration torque a t  any instant = motor torque at that  instant -load torque of the 

The mean acceleration torque has been shown in Fig. 2.58 b (iu). This can be arrived at by the 
usual graphical methods o r  by integrating the area and then dividing this area by the base. 

2.27 Quality Grades and Errors of Gears 
Since i t  is practically impossible to produce any engineeringcomponent without manufacturing 
errors, deviations from theoretically perfect dimensions of the component have to be allowed. 
These deviations are known as  tolerances or permissible errors. For economic reasons, the values 
of these tolerances should be selected as high and wide as possible since unnecessarily precise 
tolerances make the products costlier. On the other hand, too coarse a tolerance may not serve 
the purpose. I t  is, therefore, imperative for the gear designer to acquire the necessary knowledge 
and experience to enable him to select proper tolerances, keeping in mind the various factors 
involved, such as service conditions, availability ofcuttingmachines, duration of operating hours 
possibility of interchangeability if needed, and above all, techno-economics concerning the 
economic viability of his design. 

The conditions which prevail for the determination of the tolerances for a pair of matinggears 
are quite different from those in case ofthe usual matingparts in other engineeringcomponents, 
such as the shaft and the mounting with the corresponding bore. Since kinematics are involved, 
design considerations are more complicated for a pair of mating gears. Only with special 
machines, manufacturing and testing of gears can be carried out. 

On the basis of experience in gear-drive design as well as from the theoretical considerations 
and research work in the field, experts have laid down guidelines and codes for the permissible 
values of these tolerances and errors which may be applied in case ofgears and gear-boxes so that 
n reasonably good gear-drive for the purpose for which it is meant can be attained. These 
guidelines also serve as the yardsticks for acceptance tests by the inspectors, customers and 
competent authorities. 

driven machine at that  instant 
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As in the case of limits, fits and tolerancesfor ordinary engineeringcomponents, a system has 
been evolved for grades and tolerances of gear toothing. As per the requirements of Draft IS0  
Recommendation No. 1328,”Accuracy of parallel involute gears” and the relevant Indian 
Standard Specifications, e.g. IS: 4702,4725,4058 and 4059, gears have been classified into 10 
quality or accuracy grades-from 3 (high-precision gears) t o  12 (coarse-quality, low-speed gears). 
Qualities 1 and 2 also exist in German practice, but these are mainly for master gears and are 
produced by extremely sophisticated machines. The quality numbers refer to the degree of 
precision with which the gear teeth have been made. The quality of a gear depends on the limits 
of tolerance for pitch, tooth profile and tooth alignment. The quality or grade assigned to any 
particular gear is the finest grade number selected for any ofthe above three elements. Normally, 
for a pair of mating gears, the elements of the components belong to identical accuracy grades, 
but these may also have different grades as per the agreement between the manufacturer and 
the user. 

For common engineeringcomponents, the qualities usually in practice are from 5 to 10. Many 
factors influence the choice of quality grade, viz. available testing procedures for accuracy, 
assembly requirements, backlash accuracy requirements, permissible noise level. Another very 
important consideration is the additional dynamic forces caused by manufacturing errors of 
toothing (Dynamic forces have been discussed in Sec. 2.22). Obviously, the quality of operation 
of agear drive is a direct function of the degree of the quality oftoothing : higher the quality grade, 
smoother the running, and lesser the error, lower the magnitude of the disturbing dynamic 
forces. A direct relationship exists between the quality of toothing, circumferential velocity, 
dynamic forces, and other determining factors. This is shown in Table 2.21. 

The usual qualities which are used for toothing for different types of application and 
equipments are given in Table 2.22. These should act as guidelines for the designer for selection 
of the requisite qualities. 

Table 2.21 Relationship of gear quality to other factors 

Manufacturing Process 

TYP cast, Machined Milled Fine Finished by TYW 
of pressed with form generated finished grinding, of 
Qear forged cutter scraping etc. loading 

Quality of gear 

Maximum allowable velocity, mlsec 

10 to 12 9t010 8 to 9 6to7 4 to 5 

Spur 0.8 1.2 5 8 15 Normal 
Helical 1 .o 2.5 15 25 100 Heavy 
Hemngbone 1.0 2.5 15 25 100 Impact 
Straight bevel 0.5 1 .o 4 6 - Normal 
Spiral bevel 0.8 2.0 8 12 25 Heavy to 

Impact 

Basedon dieTragfaehigkeitderZahnraeder,Thomas andchamhut, 7th Edition, 1971,table no2, p. 15. Carl Hanser, 
Verlag, Munich. 

Standard Specifiations 
Depending on the quality grades involved, gears have been classified as under by the Indian 

ISS Number Quality Grade Nomendature 
4702 3 and 4 High precision gears 
4725 5 and 6 Precision gears 
4058 10,ll and 14 Coarse quality, low speed gears 
4059 7,8 and 9 Medium quality, medium speed gears 
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Besides the above IS Specifications, IS: 4071 lays down requirementsfor master gears which 
are intendedfor checking other workinggears. As stated before, grades 1 and 2, (sometimes also 
3) are assigned for master gears as per German specifications and the specifications of some other 
countries. 

While selecting the quality grade, the designer should always keep in mind the cost angle 
involved. The cost or the time required for manufacturing parts do not vary in a rectilinear way 
with the quality grades. In practice, they follow power curves with ascending order of fineness 
of the qualities. For ground gears, for example, the grinding time (and consequently the cost as 
well) will vary more or less according to the data given below, taking the time for quality grade 
8 as unity for the sake of comparison. 

Quality 8 7 6 5 4 3 2 

Machine 

~~ ~ 

Grinding time 1 1.6 2.4 4 6.6 20 33 

General purpose 

Gears for 

1 2 3 4  5 6 7 

General 
mechanical 
equipment 

8 9 10 1 1  12 

tools 

Fine 

internal combustion engines 

Steam engines 

machine tools 

Watch industries 

Chemical industries 

Printing industries 

1 Railwaysand signalling equipment 

Measuring instruments 

machines Master gears 

Transport 
quipment 

1 Aircraft industries I 
Cars and trucks 

I Locomotives and similar machines 

Agricultural equipment, 

tractors, etc. 
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It has been pointed out before that the criterion of assigning quality grades is the error for 
pitch, for tooth profile and for tooth alignment. The departures from the theoretically ideal 
geometrical parameters can be accurately measured by precise instruments, but such measure- 
ments are not enough to correctly interpret the motions of running gears, because running 
qualities will depend upon the sum of errors and are also made complicated by radial and lateral 
run-outs. 

Types of Errors 

An error is defined as the value obtained by subtracting the design value of a dimension from its 
actual value 

Errors can be broadly classified into two main categories-the individual errors and the 
composite errors. 

Individual errors involve those errors which are deviations of individual parameters of 
toothing from their ideal values. Under such headings fall: profile error f i ,  adjacent pitch error 
fp,, base pitch error fpb, tooth alignment error fp radial run-out A ,  tooth thickness error t, 
etc.These errors are measured by special measuring instruments. Symbol fdenotes errors over 
single unit of measurement parameters, while F is used when the measurement extends over a 
certain specified range of several such units and their cumulative effects thereof. 

The composite errors of a tooth system denote the total effect on the position and form of the 
tooth surfaces when a number of individual errors act jointly and simultaneously. This type of 
error will be elaborated later in this section. 

Zndividual errors The different types of the idividual errors are discussed below. Their permis- 
sible values are given in tabular form in Table 2.23. As indicated earlier, each type of individual 
error is measured by special measuring and inspecting equipment. 

Profile errors This error is an indication of departures of the actual profile from the ideal 
involute profile. This departure at any point is measured normal to the involute profile. I t  is 
denoted by the symbols fiand Ff .  

Pitch errors This error denotes the departure of the actual spacing of the teeth from the ideal 
one. The adjacent pitch error fpL is this departure measured on similar flanks of two adjacent 
teeth. When the measurement is done over a length more than one pitch apart, namely, k number 
of pitches, it is called the cumulative pitch error F ~ :  Besides, there is the base pitch error fpb, 
which is the difference between the actual and the ideal base pitch. 

Tooth alignment error This is also known as the error of distortion. When a spur or a helical 
gear is cut, its tooth traces should follow the ideal path, i.e. parallel to the axis in case of a spur 
gear and at an angle equal to the helix angle in case of a helical gear. The tooth alignment error 
is an indication of deviation from this ideal path. This error is usually measured in micrometres 
(pm) over a given distance on the tooth width of the gear. It is denoted by fp and FB. 
Radial run-out This is a measure of the eccentricity cf the tooth system and is denoted by c. 
Axial run-out This is a measure of the wobble of the gear, and is measured by placing a dial 
gauge whose axis is held at a specific distance and parallel to the axis of rotation of the gear. 

Tooth thickness error This is the value obtained by subtracting the design tooth thickness from 
the actual tooth thickness, measured along the surface ofthe reference or pitch cylinder. This is 
denoted by L. 
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Table 2.23 Permissible values of individual and composite errors 

(All values of errors in pm) 

Tooth profile error Adjacent pitch error Cumulative pitch error Gear 
Quality F, fP t ' P  k 

3.0 + 0.160, 2.0 + 0.160, 1.6 + 0.63 f i  
4.0 + 0.250, 3.2 + 0.250, 2.5 + 1.00 f i  

4.0 + 1.60 Jz 
6.0 + 2.50 f i  

10.0 + 1.600, 16.0 + 1.250, 12.0 + 5.00 f i  
16.0 + 2.500, 22.0 + 1.800, 17.0 + 7.10 f i  
25.0 + 4.00 0, 32.0 + 2.500, 25.0 + 10.00 

33.0 + 14.00 JT; 

3 

4 
5 5.0 + 0.400, 5.0 + 0.400, 

6 6.3 + 0.630, 8.0 + 0.630, 

7 

8 

9 

10 
11 40.0 + 6.300, 45.0 + 3.550, 

12 

JT; 8.0 + 1.000, 11.0 + 0.900, 8.0 + 3.55 

Jz 
Jz 63.0 + 10.000, 63.0 + 5.00 0, 50.0 + 20.00 

Note:@,=m+O. lO~@,=rn+0.25~ ,L(mm)  =Arclength klrmonasectorof k numberofpitches. L,,,= lrd2, m(module) 
and d(pcd) are in mm. 

Radial run-out Gear Tooth alignment error 
quality F, f, 

2.5 + 0.50 6 7 + 0.560, 3 
4 3.0 + 0.63 Ji; 11 + 0.900, 

4.0 + 0.80 6 18 + 1.400, 5 

28 + 2.240, 6 5.0 + 1.00 6 
6.0 + 1.25 & 40 + 3.15 0, 7 

10.0 + 2.00 Ji; 50 + 4.000, 8 

16.0 + 3.15 6 63 + 5.000, 9 

25.0 + 5.00 6 80 + 6.300, 10 
100 + 8.000, 11 40.0 + 8.00 6 

63.0 + 12.50 6 125 +10.000, 12 

Note: b (mm) = Tooth width, b,,, = 150 mm 

Tooth-to tooth composite Total composite error, Gear 
Quality error, double flank double flank 

f'; F: 

4.0 + 0.320, 10 + 0.800, 
3 6.0 + 0.450, 16 + 1.250, 4 
5 9.0 + 0.560, 25 + 2.000, 
6 12.0 + 0.90$ 40 + 3.200, 

16.0 + 1.250, 56 + 4.500, 
71 + 5.600, 

7 

90 + 7.100, 
8 

20.0 + 2.240, 9 
10 36.0 + 2.800, 112 + 9.000, 

45.0 + 3.550, 140 +11.20$ 11 
56.0 + 4.500, 180 +14.000 12 

22.0 + 1.800, 

- .. 
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Base circle error This error denoted by c i s  the difference between the actual and the theoretical 
dimensions of the base circle diameters. 

The commonly used formulae from which the individual errors can be calculated are given in 
Table 2.23. The relevant formulae for deriving the composite errors are also included in the same 
table for convenience. 

Composite Errors 
In a composite error test, the combined effects of a number of errors, acting simultaneously, are 
revealed. These errors include two or more of the individual errors, such as profile error, pitch 
error, tooth alignment error, tooth thickness error, radial and axial runout (or wobble), etc. This 
type of test approximates the action of the gear in question under service conditions. Since it is 
not practicable in regular production schedule to measure each and every individual error of each 
and every product-gear, the composite error type of test is resorted to for general workshop use. 

The composite error tests are of two types-single-flank composite error test and the double- 
flank composite error test. Each ofthese tests are sub-divided into two categories-tooth-to-tooth 
composite error test and total composite error test. 

In both single-flank and double-flank composite error tests, the product gear is rotated 
through at least one complete revolution in intimate contact with a “master gear” of known 
accuracy. The single-flank type of test reveals errors in angular transmission whereas the 
double-flank type of test represents variations in centre distance. 

The double-flank tests are more prevalent in practice and therefore it will be discussed in 
detail. This type of test is also known as the “rolling gear test” or simply “roll test” in workshop 
vocabulary. In this test the gear to be tested and the master gear are mounted on a variable centre 
distance fixture which is suitably designed for gear rolling, and the resulting data are measured 
by a suitable device. This fixture may consist of a spring-loaded movable slide or one gear may 
be pivoted on a spring-loaded arm as shown in Fig. 2.59 (d). The fixture may also be like the one 
shown in Fig. 2.59 (c). In any case the main idea is that the two gears should rotate in tight mesh 
without backlash. During rotation, there is a variation in the centre distance and the effects of 
errors in the gear are shown by a dial indicator or by a recording or tracing device. 

In the single-flank test the rolling is done on any one flank only. The centre distance is kept 
constant. The master gear rotates with perfect and constant angular motion. Any deviation in 
the angular movement of the product gear shows up in the single-flank test. The conditions for 
single-flank and the double-flank tests are represented in Fig. 2.59 (a and b). 

In the double-flank test, the tooth-to-tooth composite error is the error which snows up as 
flicker on the indicator ofthe variable centre distance fixture arrangement when the gear rotates 
from tooth-to-tooth in fight mesh with the master gear. This shows the combined effect of the 
errors, e.g. profile error, pitch error and the variation in tooth thickness. It  is represented by the 
difference between the highest (peak) and the lowest (trough) adjacent points of the error-line 
for each pitch or  spacing as the two gears roll. 

The total composite error is the total variation in centre distance as the work-gear is similarly 
rotated with the master gear. Besides including the tooth-to-tooth composite error (which in turn 
includes the errors mentioned above), the total composite error also includes runout and wobble. 

In the usual types of gear-testers, the error may be recorded in the form of a cirular trace or 
a linear trace as shown in Fig. 2.59 (e and f ). The result is then compared with the standard or 
permissible values as given in the Table 2.23 for acceptance or rejection of the gear. In case of 

, 
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an ideally perfect gear, which is virtually impossible to  attain no changes in the centre distance 
will show up on the chart and hence a straight line will result. 

The values calculated for the double-flank composite errors are to be modified in case of 
pressure angles other than 20". They are to  be multiplied by factor K which is given by 

tan 20" in case of uncorrected spur gear with pressure angle equal to a K =  - 
t a n a  degrees 

tan 204 K = - in case of corrected spur gears with working pressure angle 
tan% equal to aw degrees 

tan 20" in case ofuncorrected helical gears with working pressure angle 
tan a, equal to a, degrees 

tan 20" in case of corrected helical gears with working pressure angle in 
tan a,, the transverse plane equal to at, degrees 

K =  - 

K =  - 

The values of the centre distance tolerances given in Appendix L are also to be multiplied by the 
above factors. 

2.28 Metrology, Inspection and Tolerances of Gears 

After production, gears are checked and inspected to  ensure correctness of different parameters 
and smoothness of operation. 

Inspection of Gears 

Different methods are followed for measurement and checking of gears. Several types of 
measuring gadgets and instruments are kept in shops because one inspection method for a 
particular type o f  gear may not be suitable for another type. For example, spur gears are easy 
to measure and check over pins or by backlash when meshed with a master gear. Although pin 
type method of measurement can be used in case of helical gears with an even number of teeth 
(but with more difficulty than in case of comparable spur gears), measurement becomes 
extremely difficult in case of helical gears having an odd number of teeth. Besides, the backlash 
and master gear method of measurement is not economically viable in case of helical gears 
because of the infinite number of helix angles in use. 

Broadly, the different methods employed for measuring and checking of gears are: 
(i) checking by means of accurately ground pins or wires of proper diameters, 
(ii) checking by vernier calipers or micrometers, 
(iii) checking by suitable dial indicator set-ups, and 
(iv) checking with the help of optical comparators. 
Of all the methods enumerated above, we will later discuss in detail only the second method, 

i.e. inspection and cheking of gear teeth by Vernier calipers or micrometers, as this is the most 
widely and conveniently used method in shops. 
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The method using suitable pins or wires are also used quite frequently, especially in simple 
cases. I n  this method two accurately ground pins of proper diameter are placed in diametrically 
opposite tooth spaces in cases ofgears with an even number of teeth. Measurement over the pins 
is made with a micrometer. Theoretical values for such measurements are given in relevant 
tables. The actual measured values are then compared with the theoretical values. If the actual 
value is greater than the value given in the table, the tooth is thicker than the standard 
measurement, and ifit is less, the tooth is thinner. In case ofgears with an odd number ofteeth, 
the pins are to be placed in tooth spaces as nearly opposite as possible. Relevant tables for such 
cases are also available. For each module or diametral pitch, separate sets of pins or wires of 
proper diameter must be used. (See Appendix W). 

The individual errors and the composite errors have already been discussed in detail in Sec. 
2.27. For measuring each type of individual errors, different types of special checking instru- 
ments suitable for the relevant types of errors are available. Normally, individual error 
checkings are required only for gears of the highest class, e.g. marine turbine reduction gearing, 
instrumentation gearing, etc. and hence these are not carried out in production line gears. 
Rollinggear tests for composite errors generally suffice the purpose. These tests have been dealt 
with in Sec. 2.27. 

By and large, the most comonly used method for checking of toothing is the measurement of 
width over a certain specified number of teeth by means of vernier calipers or micrometers with 
special attachments. This method is known as the “span system of measurement”, the “block 
measurement system”, or more commonly a s  the “base tangent 1ength”measurement system. It 
is near ideal method and is universally applied because of the fact that  it is simple yet accurate, 
gears can be measured while still in the machine (even in running condition), and no specialised 
skill is required to obtain a n  accurate measurement. 

For accurate generation to be effective, measurement and checking of toothing are of vital 
importance. The base tangent length method of measurement system stems from the geometric 
fact that if a normal is drawn to an  involute tooth profile, the normal will lie in a plane which is 
tangent to the base cylinder. This is clear from the very principles of involumetry. If now two 
parallel caliper jaws contact the two tooth profiles as shown in Fig. 2.60 (a) the jaws will touch 
the profiles tangentially. The operator makes the measurement with the calipers with a “feel”. 
It can be easily seen from Fig. 2.60 (a) that  if the straight line of fixed length a6 rolls back and 
forth over the base circle without slipping, its end pointsa and b will generate the involute curves 
which are the opposite profiles of the two teeth as shown. It can also be seen that  this straight 
line is also the developed length of the arc confined between the initial points of generation ofthe 
two involute curves. In other words 

W = straight length a b  = Arc length a‘b‘ 

From Fig. 2.60 (a) we can also infer that  

W = ab = (2  x base pitch) + (1 x tooth thickness on the base circle) 

Now 

Tooth thickness on the base circle = d, - + i n v a  - inva,  

where 

base pitch = circular pitch x cos a = ~ r n  cos a (from Eq. 2.3) 

(from Eq. 2.8) [ ;: 
d, = Base circle diameter = d cos a 
ab = Pressure angle at the base circle 
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(a) BASE TANGENT LENGTH 

, z 

(b) DIRECTION FOR READING Z' 

(c) METHOD FOR MEASUREMENT OF BASE TANGENT 
Fig. 2.60 Inspection of gears 

On the base circle, the pressure angle ab is zero. Hence 

Tooththickness = d b ( c  + i n v a )  = d c o s a ( ~  nm + i n v a  
2d 

= mzcosa - xm + inva)  = m z c o s a [ ~  + inva)  
(2mz 

Ifz' be the number of teeth over which the measurement is made, then we have the generalised 
expression 
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W = [{z- 1) x base pitch] + 1 x tooth thickness on the base circle 

=[(z' - 1)mcos  a ]  + [mzcos at[' + inv a)] 

m cos a 
2 

= z l m  cos a - m cos a i - + mz cos a inva 

= m cos a [(z'- 0.5) IC + z inv a1 (2.122) 

For corrected gears, the expression is modified as 

W = m cos a [(z'- 0.5) K + z inv czj + 2 x m sin ci (2.123) 
For helical gears with correction, the value is given by 

W = m cos a [(z'- 0.5) IC + z inv at] + 2 x m sin a (2.124) 

Instruments by which the base tangent length measurements can be made are: Vernier calip- 
ers, gear-tooth calipers, micrometers having suitable fixtures on the anvils, and other measuring 
devices (Fig. 2.60 c). 

There are, however, certain limitations of this system of checking. If the helix angle is high 
and the face width ofthegear is narrow, the ordinary calipers o r  micrometers which are not fitted 
with special attachments cannot be used if the calculated gear teeth over which the measurement 
is to be made are many in number. Moreover, certain errors such as helical-lead error, total index 
error, profile error, and some other errors may also affect the accuracy of the measured values 
to some extent. But, by and large, this type of measurement is good enough for all practical pur- 
poses. Reference charts, figures and tables have been drawn up to alleviate the tedium of 
calculation and the possibility of errors inherent therein. Here Chart 2.1 and Tables 2.24 and 
2.25 have been given for quick reference. 

The data are valid for 20' pressure angle gears. 
To find the desired value of the span measurement, the following formula is used 

W =  m [K, +K,z + 2 x  sin a1 in mm (2.125) 

The value of zf is first ascertained from Chart 2.1, after taking cognizance of the relevant 
parameters, viz. z, p ,  and x. Figure 2.60 b gives the direction for reading off the value of z'. 

The value ofK, is Found from Table 2.24. The value ofK, is a function of the helix angle and 
is given in Table 2.25 for the helix angle range 5' to  22' which is the range commonly encount- 
ered. For spur gears (p = O"), K, = 0.014006. 

Example 2.14 

Solution: 

Giuen:z = 50, m = 6, a = 20', p = 8" 20', x = + 0.5. 
To find the value of W. 

From Chart 2.1, zf = 7, from Table 2.24 K, = 19.18885, from Table 2.25 
K, = 0.014437, sin 20" = 0.34202. 

:. W = 6[19.18885 + (0.014437 x 50) + (2 x 0.5 x 0.34202)l 
= 121.516 mm 

Another way of ensuring the dimensional accuracy is to  check the chordal thickness of 
individual tooth at a pre-determined height. These measurements can be carried out by the gear- 
tooth calipers as shown in Fig. 2.61. The relevant equations are given on page 174. 

- 
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Table 2.24 Values of K, 
- 

- i K, 2' K, 2' K, 
1 1.47607 21 60.51869 41 119.561 32 

122.5134!i 2 4.42820 22 63.47082 42 
3 7.38033 23 66.42296 43 125.46550 
4 10.33246 24 69.37509 44 128.41 772 
5 13.28459 25 72.32722 45 13 1 36961 
6 16.23672 26 75.27935 46 134.3219;' 
7 19.1 8885 27 78.23148 47 137.274 1. 
8 22.14098 28 81 .la361 48 140.22624 
9 25.09312 29 84.13574 49 143.1 7837 
10 28.04525 30 87.08788 50 146.13050 
1 1  30.99738 31 90.04001 51 149.08263 
12 33.94951 32 92.9921 4 52 152.03477' 
13 36.90164 33 95.94427 53 154.98690 
14 39.85377 34 98.89640 54 157.93902 

16 45.75804 36 104.80066 56 163.8432S 
17 48.71017 37 107.75280 
18 51 66230 38 110.70493 
19 54.61443 39 1 13.65706 
20 57.56656 40 116.60919 

15 42.80590 35 101.84853 55 160.981 l€m 

Based on Catalogue No. 956.800/00.01 of M/s MAAG Zahnraeder AG. Zurich, page 10. 

TaMe 2.25 Values of K2vis-a-vis helix angle 

Helix angle f3 K 

Min 5" 
Degrees 

6' 7" 8 O  9" 10" 

0 
1' 
2' 
3' 
4' 
5' 
6' 
7' 
8' 
9' 

10' 
11' 
12' 
13' 
14' 
15' 
16. 
17' 
18' 
19' 

20' 
21' 

.O 141 59 

.014160 

.O 14 161 

.014162 

.014163 

.014164 

.014165 

.014166 

.O 141 67 

.014168 

.O 141 69 

.014170 

.014171 

.014173 

.014174 

.014175 

.014176 

.014177 

.014178 

.014179 

.014180 

.014181 

.014227 

.014228 

.014229 

.014231 

.014232 

.O 14233 

.014235 

.014236 

.014237 

.O 14238 

.014240 

.014241 

.014242 

.014243 

.014245 

.014246 

.O 14247 

.014249 

.014250 

.014251 

.014253 

.014254 

.014308 

.O 14309 

.014311 

.014312 

.014314 

.O 1431 5 

.O 1431 7 

.014318 

.014320 

.014321 

.014323 

.014324 

.014326 

.O 1 4327 

.014329 

.O 14330 

.O 14332 

.O 1 4333 

.O 1 4335 

.O 14336 

.014338 

.014339 

.O 1 4402 

.o 14404 

.O 1 4406 

.014407 

.O 1 4409 

.014411 
Dl4412 
.014414 
.014416 
.014417 

.0144 19 

.014421 

.014423 

.O 1 4424 

.014426 

.O 14428 

.014430 

.O 14431 

.O 14433 

.014435 

.014437 

.014438 

.014510 

.014512 

.O 145 14 

.014515 

.014517 

.014519 

.014521 

.O 1 4523 

.014525 

.O 14527 

.014529 

.014531 

.014533 

.o 14535 

.014537 

.014539 

.O 1454 1 

.014543 

.o 14545 

.O 1 4547 

.O 14549 

.014551 

.014631 

.014633 

.01463!5 

.014693 

.0146411 

.014642 

.O 14648 

.O 14646 

.o l a 3  

.01465'1 

.o 14653 

.01465!i 

.01465? 

.O 14650 

.O 14662 

.o 1 4664 

.0146ai 

.o 14668 

.014670 

.014673 

.014675 

.01467i' 
(ConMI 



SpurGears 2.137 

Table 2.25 (Contd.) 

Helix angle 
~~ ~ 

Min 5" 
Digrees 

6" 7O 8" 9" 10" 

22' 
23' 
24' 
25' 

- 26' 
27' 
28' 
29' 

30' 
31' 
32' 
33' 
34' 
35' 
36' 
37' 
38' 
39' 

40' 
41' 
42' 
43' 
44' 
45' 
46' 
47' 
48' 
49' 

50- 
51' 
52' 
53' 
54. 

. 55' 
56' 
57' 
58' 
59' 

.O 141 82 

.014183 

.014185 

.014186 

.014187 

.014188 

.014189 

.014190 

.014191 

.014192 

.014 194 

.014195 

.014196 

.014197 

.O 141 98 
,014199 
.O 14201 
.014202 

.O 1 4203 

.O 14204 

.014205 

.O 14206 

.O 1 4208 

.O 14209 

.0142 10 

.014211 

.O 14212 

.014214 

.014215 
014216 
.014217 
.0142 18 
.014220 
.014221 
.014222 
.O 14223 
.014225 
.014226 

.014255 

.014257 

.014258 

.014258 

.O 1 4260 

.O 14262 

.O 14263 

.014265 

.014266 

.O 14267 

.O 14269 

.014270 

.O 14271 

.014273 

.O 14274 

.014275 

.014277 

.014278 

.014280 

.014281 

.014282 

.014284 

.O 1 4285 

.014287 

.O 1 4288 

.014289 

.O 14291 

.014292 

.O 14294 

.014295 

.O 1 4296 

.014298 

.014299 

.014301 

.014302 

.O 14304 

.O 1 4305 

.014307 

.014341 

.o 1 4343 

.014344 

.O 1 4346 

.014347 

.O 14349 

.014350 

.014352 

.014353 

.O 14355 

.014357 

.O 14358 

.O 1 4360 

.014361 

.O 14363 

.O 1 4364 

.O 1 4366 

.O 1 4368 

.O 14369 

.014371 

.014373 

.014374 

.014376 

.O 1 4377 

.014379 

.O 1 438 1 

.014382 

.O 14384 

.O 14386 

.014387 

.O 1 4389 

.O 14390 

.014392 

.O 1 4394 

.014395 

.O 1 4397 

.O 1 4399 

.O 14400 

.O 14440 

.014442 

.014444 

.014445 

.014447 

.014449 

.014451 

.014452 

.014454 

.O 14456 

.014458 

.O 14460 

.014461 

.O 1 4463 

.014465 

.014467 

.O 14469 

.014471 

.O 14472 

.O 1 4474 

.O 14476 

.014478 

.014480 

.O 1 4482 

.O 14483 

.014485 

.O 14487 

.014489 

.O 1449 1 

.014493 

.o 14495 

.O 14496 

.O 14498 

.014500 

.O 14502 

.O 1 4504 

.O 14506 

.O 1 4508 

.014553 

.o 14555 

.014557 

.o 1 4559 

.014561 

.O 14563 

.O 14565 

.014567 

.O 1 4569 

.014571 

.014573 

.014575 

.O 14577 

.014579 

.O 14581 

.O 1 4583 

.O 14585 

.014587 

.014589 

.014591 

.O 14593 

.O 1 4595 

.O 14597 

.O 1 4600 

.014602 

.O 1 4604 

.O 14606 

.O 14608 

.O 146 10 

.014612 

.014614 

.0146 16 

.O 14618 

.014621 

.014623 

.O 1 4625 

.014627 

.014629 

.014679 

.014681 

.014684 

.O 14686 
,014688 
.014690 
.O 1 4693 
.O 14695 

.O 14697 

.014699 

.014702 

.O 1 4704 

.O 1 4706 

.014709 

.014711 
,014713 
.014715 
.O 14718 

.014720 

.014722 

.014725 

.014727 

.O 1 4729 

.O 14732 

.O 1 4734 

.O 14736 

.014739 

.O 1 474 1 

.O 14743 

.O 14746 

.O 14748 

.014750 

.o 14753 

.O 14755 

.014757 

.O 14760 

.014762 

.O 14764 

Min 11" 

0' 
1' 
2' 
3' 
4' 
5' 
6' 

- 7' 

.014767 

.014769 

.014772 

.014774 

.014776 

.o 1 4779 

.O 14781 

.014784 

12" 

.014917 

.014920 

.014922 

.O 1 4925 

.014928 

.O 1 4930 

.O 1 4933 

.O 14936 

uegrees 
13" 

.015982 

.O 15085 

.015088 

.015091 

.O 15094 

.015097 

.015100 

.O 151 03 

14" 

.O 15264 

.015267 

.O 15270 

.015273 

.O 15276 

.015279 

.O 15283 

.015286 

15" 

.015461 

.O 1965 

.015468 

.015471 

.015475 

.O 15470 

.015482 

.o 15485 

16" 

.O 15676 

.015679 

.O 15683 

.O 15687 

.015691 

.o 1 5694 
,015698 
.O 15702 
(Contd) 

- 
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Table 2.25 (Contd) < 

Degrees 

Minl l ”  11” 12” 130” 14” 15” 16” 

8’ 
9’ 

10’ 
11’ 
12’ 
13’ 
14’ 
15’ 
16’ 
17’ 
18’ 
19‘ 

20’ 
21’ 
22’ 
23’ 
24’ 
25’ 
26‘ 
27’ 
28’ 
29’ 

30’ 
31’ 
32’ 
33’ 
34‘ 
35’ 
36’ 
37’ 
38‘ 
39’ 

40‘ 
41’ 
42 * 
43 I 
44‘ 
45’ 
46‘ 
47‘ 
48’ 
49 ’ 

50‘ 
51’ 
52‘ 
53’ 
54’ 

.014786 

.O 1 4788 

.014791 

.014793 

.O 14796 

.O 14798 

.014801 

.O 1 4803 

.014805 

.014808 

.014810 

.O 148 13 

.O 148 15 

.014818 

.014820 

.O 14823 

.O 14825 

.O 14828 

.O 1 4830 
,014833 
.014835 
.O 14838 

.014840 

.014843 

.014845 

.014848 

.O 14850 

.014853 

.014855 

.014858 

.O 14860 

.O 14863 

.014865 

.O 1 4868 

.014870 

.014873 

.O 14876 

.014878 

.014881 

.014883 

.O 14886 

.014888 

.014891 

.O 14894 

.O 14896 

.014899 

.O 14901 

.014938 

.014941 

.014944 

.014946 

.014949 

.O 14952 

.O 14954 

.014957 
,014960 
.O 14962 
.O 14965 
.O 1 4968 

.014970 

.O 14973 

.014976 
,014979 
014981 
.014984 
.014987 
.O 14990 
.014992 
.O 1 4995 

.014998 

.015001 

.O 1 5003 

.o 15006 

.015009 

.015012 

.0150 14 

.015017 

.015020 

.O 15023 

.015026 

.015028 

.015031 

.015034 

.015037 

.O 1 5040 

.O 1 5043 

.O 1 5045 

.O 1 5048 

.015051 

.O 1 5054 

.015057 

.o 15060 

.015062 

.015065 

.015106 

.015109 

.015112 

.015115 

.015117 

.015120 

.015123 

.014126 

.015129 

.015132 

.015135 

.O 151 38 

,015141 
.015144 
.O 15147 
.015150 
.015153 
.015156 
.015159 
.015162 
,015165 
.015168 

.015171 

.015174 

.015177 

.015180 

.O 151 83 
,015186 
,015189 
.015192 
.015195 
.015198 

.015201 

.015205 

.015208 

.015211 

.015214 

.O 1521 7 

.015220 

.015223 

.015226 

.O 1 5229 

.O 1 5232 

.O 1 5235 

.015239 

.015242 

.015245 

.O 15289 

.O 15292 

.015295 

.015299 

.o 15302 

.O 15305 

.015308 

.015311 

.0153 15 

.015318 

.015321 

.O 15324 

.015328 

.015331 

.015334 

.015337 

.015341 

.O 15344 

.015347 

.015350 

.o 15354 

.O 1 5357 

.o 15360 

.015364 

.O 15367 

.O 1 5370 

.O 15374 

.015377 

.O 1 5380 

.015383 

.015387 

.015390 

.O 15393 

.015397 

.015400 

.O 15403 

.015407 
,015410 
015414 
.015417 
,015420 
.015424 

.015427 

.015430 

.015434 

.015437 

.015441 

.o 15489 

.015492 

.015496 

.o 15499 

.O 15503 

.o 15506 

.015510 

.015513 

.015517 

.o 15520 

.O 15524 

.015527 

.015531 

.015534 

.o 15538 

.015541 

.015545 

.01!%48 

.015552 
,015556 
.O 15559 
.o 15563 

.015566 

.015570 

.015573 

.015577 

.015581 

.o 15584 

.015588 

.015591 

.O 1 5595 

.O 15599 

.o 15602 

.o 15606 

.015609 

.015613 

.015617 

.015620 

.015624 

.015628 

.015631 

.O 1 5635 

.015639 

.015642 

.o 15646 

.o 1 5650 

.015653 

.015706 

.015709 

.0157 13 

.015717 

.O 15721 

.015724 

.O 15728 

.O 15732 

.015736 

.O 15740 

.O 1 5743 

.015747 

.015751 

.O 15755 

.015759 

.O 15763 

.O 15766 

.015770 

.O 15774 

.015778 

.015782 

.015786 

.O 15790 

.O 15793 

.015797 
,015801 
.O 1 5805 
.015809 
.015813 
.015817 
.015821 
.015825 

.O 15828 

.O 15832 

.015836 

.O 15840 

.o 15844 

.o 15848 

.O 15852 

.o 15856 

.o 15860 

.015864 

.015868 
015872 
.015876 
.015880 
.O 15884 
(corn@ 
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Table 2.25 (Confd) 
55’ .O 1 4904 .015068 .015248 .o 15444 .015657 .015888 
56‘ .O 14907 .015071 .015251 .015447 .015661 .O 1 5892 
57‘ .014909 .O 15074 .015254 .015451 .O 15665 .o 1 5896 
58’ .014912 .015077 .015257 .o 15454 .015668 .015900 
59’ .O 1491 4 .O 15080 .O 1 5260 .O 1 5458 .015672 .o 1 5904 

Degrees 
Min 17” 18” 19” 20” 21” 22” 

0‘ 
1’ 
2’ 
3’ 
4‘ 
5’ 
6‘ 
7’ 
8‘ 
9’ 

10’ 
1 1 ’  
12’ 
13’ 
14’ 
15’ 
16‘ 
17’ 
18’ 
19’ 

20’ 
21’ 
22’ 
23‘ 
24 ’ 
25’ 
26’ 
27’ 
28’ 
29’ 

30‘ 
31’ 
32’ 
33’ 
34’ 
35’ 
36’ 

.O 1 5908 

.0159 12 

.O 1591 6 

.O 15920 

.O 15924 

.O 15928 

.O 15932 

.O 1 5936 

.015940 

.O 15944 

.O 1 5948 

.o 15953 
,015957 
.015961 
.015965 
.O 1 5969 
.O 15973 
.015977 
.015981 
.O 1 5985 

.O 1 5989 

.O 1 5994 

.O 1 5998 

.o 1 6002 

.O 16006 

.016010 

.016014 

.016019 

.016023 

.016027 

.016031 

.O 1 6035 

.O 1 6039 

.016044 

.O 16048 

.016052 

.o 16056 

.016159 

.G16163 

.016168 

.016172 

.016176 

.016181 

.016185 

.016189 

.O 161 94 

.016198 

.O 16203 

.016207 

.016211 

.O 16216 

.016220 

.016225 

.016229 

.O 16233 

.O 16238 

.O 16242 

.016247 

.O 16251 

.016256 

.016260 

.016265 

.016269 

.O 16274 

.016278 

.O 16283 

.O 16287 

.016292 

.O 16296 

.016301 

.O 16305 

.O 163 10 

.O 1631 4 

.O 163 19 

.016429 

.o 16434 

.O 1 6439 

.O 16443 

.O 1 6448 

.O 16453 

.O 16457 

.016462 

.016467 

.O 16472 

.016476 

.016481 
,016486 
.016491 
.O 16495 
.O 1 6500 
.O 16505 
.016510 
.0165 14 
.om19 

.016524 

.016529 

.016534 

.O 1 6538 

.O 16543 

.O 16548 

.O 16553 

.016558 

.O 16563 

.016567 

.016572 

.016577 

.016582 

.O 16587 

.016592 

.O 16597 

.016601 

.016720 

.O 16725 

.O 16730 

.O 1 6735 

.O 16740 

.016746 

.016751 

.O 16756 

.016761 

.O 16766 

.O 16771 

.O 16776 

.016781 

.016786 

.016791 

.O 16796 

.016802 

.016807 

.016812 

.016817 

.016822 

.016827 

.016832 

.O 1 6838 

.O 16843 
0.16848 
.o 16853 
.016858 
.O 1 6863 
.O 16869 

.O 16874 

.016879 

.O 16884 

.o 16890 

.O 16895 

.O 16900 

.O 1 6905 

.O 1 7033 

.O 1 7038 

.O 1 7044 

.017049 

.017055 

.O 1 7060 

.017065 

.017071 

.017076 

.017082 

.017087 

.O 1 7093 

.017098 

.017104 

.017109 

.017115 

.017120 

.017126 

.O 17131 

.017137 

.017142 

.017148 

.O 1 71 53 

.017159 

.O 1 71 64 

.017170 

.017175 

.017181 

.O 171 87 

.017192 

.017198 

.O 1 7203 

.O 17209 

.O 1721 5 

.017220 

.O 1 7226 

.017231 

.O 1 7368 ’ 

.o 1 7374 

.o 1 7380 

.O 1 7386 

.017392 

.o 1 7397 

.O 1 7403 

.017409 

.017415 

.017421 

.017427 

.o 17433 

.o 1 7438 

.o 1 7444 

.o 1 7450 

.017456 

.017462 

.o 17468 

.017474 

.017480 

.o 1 7486 

.017491 

.017497 

.O 1 7503 

.017509 

.017515 
,017521 
.017527 
.o 1 7533 
.o 1 7539 
.o 17545 
.017551 
.017557 
.O 1 7563 
.O 1 7569 
.017575 
.017581 

(Contd) 
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TaMe 2.25 (Gontd) 

Min 17" 

~ 

Degrees 
18" 19" 20" 21 22" 

37' 
38' 
39' 

40' 
41' 
42' 
43, 
44, 
45' 
46' 
47' 
48' 
49' 

50' 
51' 
52' 
53' 
54' 
55' 
56' 
57' 
58' 
59' 

.016060 

.O 16065 

.O 16069 

.016073 

.O 16077 

.O 16082 

.O 16086 

.O 16090 

.O 16094 

.O 16099 

.016103 

.O 161 07 

.016111 

.016116 

.016120 

.016124 

.016129 

.O 16133 

.016137 

.016142 

.016146 
,016150 
.016155 

.O 16323 

.O 16328 

.O 16332 

.016337 

.O 16342 

.O 1 6346 

.016351 

.016355 

.O 16360 

.016364 

.O 16369 

.016374 

.O 16378 

.O 16383 

.O 16387 

.O 16392 

.O 16397 

.O 16401 

.O 16406 

.016411 

.016415 

.016420 

.O 16425 

.O 16606 

.016611 

.016616 

.016621 

.O 16626 

.016631 

.o 16636 

.016641 

.O 16646 

.016651 

.O 16655 

.o 16660 

.016665 

.016670 

.016675 

.o 16680 

.@ 16685 

.o 16690 

.O 16695 

.O 1 6700 

.O 1 6705 

.O 1671 0 

.016715 

.O 1691 0 

.O 1691 6 

.016921 

.O 16926 

.016932 

.016937 

.O 1 6942 

.016947 

.O 169% 

.O 1 6958 

.O 16963 

.O 1 6969 

.016974 

.016979 

.O 16985 

.O 16990 

.O 16995 

.017001 

.O 17006 

.017011 

.017017 

.017022 

.017028 

.O 17237 

.O 1 7243 

.017248 

.O 1 7254 

.O 1 7260 

.O 1 7265 

.017271 

.017277 

.O 17282 

.O 1 7288 

.O 1 7294 

.O 1 7299 

.O 1 7305 

.017311 

.017317 

.O 17322 

.o 1 7328 
,017334 
.o 1 7340 
,017345 
,017351 
.o 1 7357 
.o 1 7363 

.O 1 7587 

.O 1 7593 

.017599 

.0176O5 

.017611 

.0176 18 

.017624 

.O 1 76% 

.O 1 7636 

.017642 

.O 1 7648 

.O 1 769  

.017660 

.O 1 7666 

.017673 

.O 1 7679 

.O 1 7685 

.017691 

.O 1 7697 

.017703 

.o 1 7709 

.017716 

.017722 

Based on Catalogue No. 956.800/00.01 of M/s MAAG Zahnraeder AG, Zurich, Switzerland, page no. 14.31. 

Fig. 2.61 Measurement by gear 
tooth calipers 
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For a spur gear with correction, the chordal tooth thickness is given by 

radians 
s 

where w = - w S = dsin - 
2 r 

* P  S = - + 2xm tan a = Circular tooth thickness 
2 

- 

Since p = mn and d = mz, we have 

1 1  Imz (ty inradians) 

(when vis in degrees) 
180” I = mz sin I 5+2xfan20’ - 

L J 

Chordal height i ~ ,  = m(l+x l+g[  1-cos $) 
2 

(2.126) 

(2.127) 

(2.128) 

Equation for 6, is applicable when addendum correction or topping is not considered. When 
this is to be taken into account, then the value of 6 is to  be reduced by the amounty m. (see Eq. 
2.36). Puttingx = 0 in the above equations, we getathe relevant values for normal, uncorrected, 
spur gears. These values can also be obtained from Table 2.26. This table gives the values for 
module = 1. For any other module, the values from the table against z are to be multiplied by 
the module in question. 

Example 2.15 : z = 34, m = 22, To find 

Solution : 
and 

3 = 1.57024 (for z = 34) x 22 = 34.5453 mm 

= 1.01815 x 22 = 22.3993 mm 

Tolerances of Gears 

After ascertaining the tooth distance W and the tooth thickness,$, the values are to be 
“toleranced”. Alongwith the tolerances on the centre distance, the tolerances on W orsdetermine 
the final backlash between the meshinggears in the mounted conditon. This has been explained 
in Sec. 2.8 dealing with backlash. Tolerances on W and 3 are given in Appendices K and J 
respectively . 

Thevalues of the given tolerances are valid for transverse section. For spur gears, the normal 
and the transverse sections are the same and hence the values can be directly used. For helical 
gears, however, the values are to be multiplied as shown in Eqs 2.129 and 2.130 to get the values 
in the normal section 

Asn = As,  COS^ (2.129) 

A,,,“ = Am, COS p (2.130) 
where A, = Tooth thickness tolerance in the normal section 

A,, = Tooth thickness tolerance in the transverse section as given in Appendix J 
Awn = Tooth distance tolerance in the normal section 
Aw, = Tooth distance tolerance in the transverse section as given in Appendix K 
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The tolerances on tooth thicknessq and on tooth distanceAw are related to each other as shown 
in the following equation 

Aw =As cos a (2.13.1) 

Table 2.26 Chordal tooth thickness and height 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

1.56433 
1.56546 
1.56631 
1.56698 
1.56750 
1.56793 
1.56827 
1.56856 
1.56880 
1.56900 
1.56918 
1.56933 
1.56946 
1.56957 
1.56967 
1.56976 
1.56984 
1.56991 
1.56997 
1.57003 
1.57008 
1.57012 
1.57016 
1.57020 
1.57024 
1.57027 
1.57029 
1.57032 
1.57035 
1.57037 

1.061 60 40 
1.05590 41 
1.05135 42 
1.04740 43 
1.04405 44 
1.041 10 45 
1.03850 46 
1.03625 47 
1.03425 48 
1.03235 49 
1.03073 50 
1.02920 51 
1.02795 52 
1.02675 53 
1.02560 54 
1.02461 55 
1.02371 56 
1.02275 57 
1.02210 58 
1.02131 59 
1.02065 60 
1.01996 . 61 
1.01 930 62 
1.01871 63 
1.01815 64 
1.01 762 65 
1.01710 66 
1.01665 67 
1.01620 68 
1.01577 69 

1.57039 
1 .57041 
1.57043 
1.57045 
1.57046 
1.57048 
1.57049 
1.57050 
1.57051 
1.57052 
1.57053 
1.57054 
1.57055 
1.57056 
1.57057 
1.57058 
1.57059 
1.57059 
1.57060 
1.57061 
1 .57061 
1.57062 
1.57062 
1.57063 
1.57063 
1 .57064 
1.57064 
1.57065 
1.57065 
1.57065 

1,01541 
1.01502 
1.01468 
1.01430 
1.01 393 
1.01360 
1.01331 
1.01302 
1.01 275 
1.01 249 
1.01 227 
1.01 202 
1.01 181 
1.01162 
1.01141 
1.01 121 
1.01105 
1.01081 
1.01061 
1.01042 
1.01025 
1.01008 
1.00991 
1.00975 
1.00959 
1.00945 
1 . a 3 1  
1.00918 
1.00905 
1.00892 

70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

1.57066 
1.57066 
1.57066 
1.57067 
1.57067 
1.57067 
1.57068 
1.57068 
1.57069 
1.57069 
1.57069 
1.57069 
1.57069 
1.57070 
1.57070 
1.57070 
1.57070 
1.57071 
1.57071 
1.57071 
1.57071 
1.57071 
1 S7071 
1.57072 
1.57072 
1.57072 
1.57072 
1.57072 
1.57072 
1.57073 

1.00880 
1 .ma 
1 .m56 
1.00845 
1.00834 
1.00824 
1.00813 
1.00803 
1.00793 
1.00783 
1.00774 
1.00764 
1.00755 
1.00746 
1.00737 
1.00729 
1.00720 
;.00712 
1.00703 
1.00696 
1.00687 
1.00679 
1.006721 
1.00665 
1.00657 
1.00650 
1 .00643 
1.00637 
1.00630 
1.00623 
. 

For any pressure angle a", other than 20"; the requisite value ofAU,, relevant for that angle 
can be found as follows 

cos a, 
4 0  = 

r2.131, 

Example 2.16 Given: As, = - 40 and - 60 p m. To find the corresponding values o f  Aun for 
pressure angle 15' and helix angle 10". 
Solution: A Iu, = A ,  cos a = - 40 x cos 20' = - 37.6 p m 

Awn = AWL cos p = - 37.6 x cos 10' = - 37pm 
Awn@ = Awn cos ao/cos 20' = -37 x cos 15'Icos 20' = - 38 pm = - 0.038 mm 
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Similarly, the corresponding values ofAw, for A, = - 60 pm can be calculated. 
The proper choice of the tooth thickness tolerances or tooth distance tolerances as well as the 

tolerances on the centre distance (discussed later) will depend upon the discretion of the 
designer. The designer determines the tolerances mainly from experience after considering 
many factors, viz. backlash required, method of manufacture of gear, material, speed, type of 
lubrication, permissible stresses, magnitude and type of load, duty factors and other relevant 
parameters. As the Appendix on tolerance indicates, the tolerance values are functions ofquality 
grade, module, pcd, and the zone position designated by a letter. The zone position starts with 
letterh havingzero asone ofthelimits oftolerance and then goes on to lettera havingmaximum 
deviation from the datum, i.e. zero value as can be seen from the Appendices on tooth thickness 
and tooth distance tolerances. This has been diagramatically represented in Fig. 2.62. There are 
further zone positions beyond a, but these are not included in the tolerance table because they 
are normally not much used. The Appendices contain values rejevant only for usual qualities, 
moduGs and other factors of general, practical use. Zone h is used for gear drives which run 
practically without backlash. Zoneg is valid for gear drives with very small backlash. Zonesf 
to a along with centre distance tolerances J and K provide backlash in all cases. 

$$k CIRCLE 

I 

(a) W \,' 
Fig. 2.62 Thickness measurement and tolerance of gear tooth 

Sometimes the zonal deviations may encompass more than om position as shown in Example 
2.17. 
Example 2.17 Given: m = 3, pcd = 45, tolerance and zone = 9 db 

Solution: From Appendix K, we have 
To find the tolerance values of W 

Tolerance values of d Tolerance values of b 
Upper limit Aw, - 0.085 - 0.169 
Lower limit AWL - 0.127 - 0.211 

In each individual case, the field of tolerance is 42 pm (127 - 85 = 42 and 211 - 169 = 42). If the 
tolerance is given as "db", it means that a tolerance field of 0.042mmcan float between the two 
extreme limits that is,- 0.085 mm and - 0.211 mm. The actual tolerance can then have any value 

r 
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between thesetwo extremes, provided the difference is maintained at 42pm. For example,it can 
have values - 0,100 mm and - 0.142 mm, and so on. The usual practice is to have greater 
flexibility in backlash values, as in the case of change gears, variable or elevated thermal 
operating conditions, etc. This also minimises the quantity of rejects during manufacture. 

If, for instance, the quality and zone are 7 e, then the final values of W (see Example 2.14) 
are given by 

W = 121.516 (mm) 
- 0.050 
- 0.084 

I t  should be noted here that  the tolerance value, as given in Appendix K, were multiplied by 
the value of cos p ,  i.e. cos 8' 20', to arrive at the above values since the span measurement is done 
in normal section as explained earlier. 

Centre distance tolerances are given in Appendix L. There are two zone positions, J and K. 
Values in zone K are twice as large as those in zone J. As mentioned in Sec. 2.27, the given values 
of the centre distance tolerances are to be modified by multiplying them by the factor K as 
detailed a t  the end of that  section. 

As emphasised earlier, no cut and dried method can be given to select the proper tolerances 
for any type of gear, this being entirely the discretion of the designer who draws from his 
knowledge and experience to arrive a t  certain values of the tolerances concerned. Table 2.27 
serves as  a guide for the proper selection of tolerances. 
~~~ ~ 

TaMe 2.27 Selection of quality and tolerance zone 

Gear Quality 7 8.9 10 and above 
~ 

scope of 
application 

Fast running gears, Normal running gears, Coarse gears, 
gears for turbines, gears for general hand-operatedgear 
screw compressors, purpose machines, boxes, slow running 
and similar machines cranes and presses gears 

Centre distance 7J 
tolerance 

8Jor 9 J 1 0 K and above 

~ 

Tooth thickness 7c 
tolerance 7 d  

7cd 

8 b o r 9 b  
8 c o r 9 c  
8bcor 9 bc 

10 a and above 
10 bandabove 
10 aband above 

I t  must be kept in mind that  these tolerances are the parameters which determine the backlash 
in the mounted condition of gearing, and hence, they should be selected judiciously. Gear blank 
tolerances are given in Appendix I. The common linear dimensional tolerances are given in  
Appendix 5. The dimensional tolerances as well as the IT values can also be obtained from IS: 
919 or from any standard book on fits and tolerances. 

2.29 Efficiency of Spur Gear Drive 
In any gear drive, the efficiency of the system is given by 

Output power 
Input power 

Efficiency ( q )  = 
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There is a power loss in the system due to  the sliding action of toothing. Besides this, there 
are power losses at the bearings, loss due to  the churning of lubericating oil and other losses, so 
that the overall efficiency becomes still lesser than the efficiency calculated on the basis of loss 
due to sliding only. The following values are typical for the spur gear drive system 

q = 92 t o  94% for unmachined teeth 
= 96% for smooth and lubricated teeth 
= 98 t o  99% for very carefully machined teeth with hydrodynamic lubrication 

between teeth surfaces 
With the ideal kind of design, construction and bearing systems coupled with very good 

lubrication and gears ofhigh quality, it is not difficult to attain an efficiency as high as 98 to 99%. 
For automotive drives in general, it is around 97%. 

If the slidingvelocity is high, it leads to considerable power loss due to friction and the effici- 
ency may fall t o  around 85%. 

In this section, efficiency considering the toothing aspects only will be discussed. That is, loss 
due to bearings, lubricants, etc. will not be taken into account. 

Neglecting friction, torques T, and T, of the two meshing gears have the following relation 

where 0, and 0, are the centres and P is the pitch point, dividing the line of centres 0, 0, into 
pitch circle radii rl and r,. Due to the effect of the frictional force, however, the actual pressure 
line cuts the line of centres 010, somewhat away from the pitch point P. This point P' always lies 
between P and the centre 0, of the driven gear. Considering friction, we have the relation 

0, P' - = - 
T, 0,P' 

The instantaneous efficiency at any point of contact other than the pitch point (where the motion 
is one of pure rolling) is given by 

Since P always lies between 0, and P, 0,P' e r ,  and rl < 0, P'. 
is always less then 100%. Only when P' coincides with P, i.e. when the net effect 

of the relative sliding velocity is zero, qina is 100% because at that particular instant the power 
loss due to sliding is zero. 

Since there is elastic deformation of teeth under load (see Sec. 2.22 on dynamic loads), 
determination of tooth pressure at individual contact points is a statically indeterminate 
problem. Moreover, tooth load remains the same only when the contact ratio is a whole number 
and when the actual tooth profile exactly conforms to the theoretical one. Besides, in normal 
cases where the contact ratio is not a whole number, meshing of two pairs of tzeth during part 
of the course of action also prevent the calculation from being precise. For all practical purposes, 
however, the following treatment should suffice. 

Therefore, 

Here, AP and BP are the segments of the length of contact AB, as shown in Fig. 2.12. Points 
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A and B are the extreme points where the sliding effect is maximum. 
Taking module = 1 and inserting factor f ,  given by 

f -  1 [(AP)'+(BP)'] 
cosa  AP+BP 

in the above formula for efficiency, we get the simplified expression 

77 = 1-+--) 1 1  

The above relation is same as Eq. 2.11 in Sec. 2.6, and the definitions and values given in that 
section are also the same. 

2.30 Engineering Drawing of Gears 

A manufacturing or shop drawing of a gear should mainly consist of  
(i) a dimensioned drawing of the gear as an engineering component, and 
(ii) a table containing the relevant gear data which should preferably accompany the gear 

drawing, both be placed side by side. 
Besides the above, it should contain the usual information on various aspects such as heat- 

treatment, machining, material specifications, hardness, etc. which is commonly given in a n  
engineering drawing. 

The drawing of the body of the gear should be executed just like that of any other engineering 
item that is, it should contain the relevant views, sections, etc. t o  represent the solid body of the 
gear in orthographic projections. 

There is a great diversity in the manner in which the relevant gear data are presented. In 
present-day practice, although some kind of standardised data table has been recommended by 
different Standards institutions or gear manufacturers associations, many individual gear 
manufacturers and engineering firms follow their own practices. Some general guidelines, 
however, are given below. 

1. Basic data and specifications These relate to the number of teeth, module or  diametral 
pitch, pressure angle, helix angle and hand of helix in case of helical gears, tip circle and pitch 
circle diameters, tooth form, amount of correction in case of corrected gears, etc. In case of bevel 
gears worm and worm-wheels, and other types of gearing, the relevant data are t o  be inserted. 
Besides, the transverse module and transverse pressure angle in case of helical gears, the 
standard whole depth of tooth, addendum, amount of topping, etc. may also be given. The value 
of the tip circle and the pitch circle diameters are sometimes given both on the body of the gear 
drawing as linear dimensions as well as in the gear data table. 

2. Inspection data These are also used in different stages ofgear manufacture besides serving 
inspection purposes. These data include permissible values of different types or errors, quality 
and zone of tolerance, base tangent length measurement with tolerance, chordal thickness and 
height of tooth at the pitch circle, etc. Details of some allowable errors, e.g. Fi,  Fp, Ff ,  may also 
be given. Normally, the permissible value of the double-flank total composite e r r o r p i  should 
suffice for all practical purposes. 

Broadly, the table should contain the undermentioned three categories of data. 
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3. Engineering reference data These are auxiliary data which are useful for the gear-drive as 
a whole unit and also for mounting purposes. These include the number of teeth of the mating 
gear, its part  number in the drawing, centre distance with tolerance, etc. 
As examples of engineering drawing of gears, Drawings 2.1 and 2.2 are given. The numerical 

values and data given in those drawings refer to the example of a spare part drawing-set of a 
gear drive given in Sec. 8.9. Drawings of gears which are designed from first principles will also 
be represented in the same manner. Simplified versions of drawings of different types of gears 
are illustrated in Fig. 2.63 which are mostly used in assembly drawings. 

SPUR 6 HE1 ICAL 
GEAR 

BEVEL GEAR WORM WHEEL 

SPUR OR HELICAL GEAR IN BE VEL GEAR IN ASSEMBLY 
ASSEMBLY 

WORM I WmM WHEEL 
IN AWMRL Y 

RACK 4 PINION IN ASSEMBLY 

Fig. 2.63 Conventional representation of gear and gear assemblies 
in engineering drawings 
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DESCRIPTION DATA 

! 
SECTION A A  ..- 

VOTE: 
1. HARDNESS TO BE HB 2550- 

10 

l i  

12 

13 

14 

15 

16 

. 

2860N/mm2. GEAR TOOTH 
SURFACE SHOULD BE CASE 
HARDENED TO HRC 50’-55 
N/ITXI-,* IJPTO A DEPTH O F  limn. 

QUALITY OF TOLERANCE 7dS” 

NO. OF TEETH TO BE 2’ 3 
-.MEASURED 

w 38.745 -0.053 
-0.078 

TOOTH DISTANCE 
TOTAL COMPOSITE ERROR, F’i 
DOUBLE FLANK 0.083 
NO. OF TEETH IN MATING 
GEAR - _ _ _ ~  
DRG. NO. OF MATING 
GEAR 
CENTRE DISTANCE IN 
HOUSING WITH TOLERANCE a 

73 

DRG. NO. 2 

231 S*0.034 I 

- -  ~ 

2. RADIAL RlJNOIJT O F  TIP 
CYLINDER, RADIAL L AXIAL. 
RUNOUT OF REF. SURFACE WTk 
RESPECT TO BORE SHOULD 
NOT BE MORE THAN 0.018 min. 

3. THE OVALITY L TAPER OF 
FI‘ITING DIAMETERS SHOULD 
BE WITHIN HALF O F  THEIR 
RESPECTIVE DIAMETRAL 
TOLERANCE. 

4. FOR REPLACEMENT, BOTH THE 
GEARS O F  ?‘HE MATING PAIR 
SHOULD BE CHANGED. 

1 I NO. O F  TEETH Z I  18 I 
2 JMODULE 1” I 5 I 
3  OUTSIDE DIAMETER da I 102 .42 , ,1  

90.88 

L.H. 
8 IPROFILE CORRECTION x.in I +0.8 I 

I I 
AS PER 
IS: 2535 9 TOOTH FORM 

Drawing 2.1 
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ILJLs? GEARDATA 

I)ESCIIIITION DATA SI, 
NO. 

t 

1 NO. OF THETI1 z 73 

2 MODU1.E m 5 

3 OUISIDE DIAMETER da 380.52,,, 

4 PITCH C1RCl.E DIAMETER 368.58 

S I’lU;SSUI<I’ ANGI,E a 20° 

6 HEIJX ANGLE P 8” 

7 I~II<IX~I’ION 0 1 ;  I l l t l . lX  K.11 
I ‘  1 ~~ 

I 8 I I’II0FII.E CORIIECTION . x.ml +1.0 ~ I 
L ‘  

AS PER 
IS:2535 

I 10 )QUALITY OF TOLERANCE I 7dS” I 

I 12 ITOOTH DISTANCE I 
F i  TOTAL COMPOSITE 

I3 EFFOR ~ 0 U B I . E  FLANK 
NO. OF TOOTH IN 

l4 MATING GEAIL ia . 
I IS I DWC,. NO. OF MATING ORAR I DKO.NO.1 I 

I 
16 CENTRE DISTANCe INHOUSi 

NQ WITH TDIBRANCE 

NOTE: - HARDNESS [I7 T O  UE HB 21 15-2550 N/niiii2. 
(itiAl< ~ l ~ O o ‘ l l l  SUIWACI., SII0UI .I )  DIiICASE 
HA1II)ENED T O  HRC S(L55 N/mm2 UP T O  
A DEPTH OF Imni. 

Drawing 2.2 

MATIiIIIAI : 4SCX 

1 KW J 

SCA1.B 1:2.5 

I 



Helical Gears 

3.1 Geometry of Helical Gears 

Like spur gears, the helical gears are employed to transmit motion between parallel shafts. 
These gears can also be used for transmitting motion between non-parallel, non-intersecting 
shafts. I n  the former case, the gears are called parallel helical gears, while in the latter case, they 
are termed as crossed helical gears. Crossed helical gears are discussed in detail in Sec. 3.15. In  
Secs 3.1-3.14 only parallel helical gears will be discussed. 

Figure 3.1 (a> shows a plane which rolls on a base cylinder. The edge of this plane is a straight 
line parallel to the axis of the cylinder. When this plane rolls or unwraps from the cylinder, each 
point on the edge traces an  involute, namely, curves a$,, a&,, etc. Since points b,, b,, etc. are 
equidistant from their original positions, i.e. a,, a,, etc. all the involute curves thus generated are 
identical in every respect. In  other words, the surface of an involute spur gear tooth is thereby 
created by the edge of the unwrapping plane. 

Now consider Fig. 3.1 (b) where the edge of the plane is inclined to  the axis. When this inclined 
edge coincides with the base cylinder, the line is in the form of a helix, alan. As the generating 

GENERATING PLANE 

77 

(a) SPUR 
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(b) HELICAL 

7 Generating Line 

involute Iielicoidel 7 

Helix on the-. 
Base Cylinder 

Base 

Devebed Plane 

Toolh Traco on ---- 
the Pitch Cylinder 

Tooth Trace on t h e 2  

Id) 

Pilch Plane 

Fig. 3.1 Generation of gear tooth 

t 
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plane unwraps and becomes a taut, horizontal plane, the edge becomes a straight line. The 
points, as before, trace out involute curves, viz. a$, . . .ambe, etc. The curved surface bounded by 
points a,-b,-bn-un is an involute helicoid and it forms the surface of the tooth of a helical gear. 

Apictorial view of generated helicoidal surface is shown in Fig. 3.1 (c). In Fig. 3.1 (d), a pictorial 
view of the pitch cylinder of a helical gear has been shown in partly unwrapped condition. One 
can easily discern the helical orientation of the tooth traces on the body of the pitch cylinder, 
which become straight lines on the developed pitch plane. 

It is obvious from the figure that curves a,b, and ambm are unequal in length because of the 
initial inclination of the edge of the generating plane. Curve a,b, is now extended to  c,, so that 
a,blcl = ambm. Point c, and bm will now be equidistant radially from the central axis of the base 
cylinder. In other words, they will lie on circles of the same diameter, do. These are the two tip 
circles of the helical gear at the two extreme ends of the cylinder, covering the width of the gear. 
Note that there exists an  angular phase difference between points c, and bm when referred to the 
cylinder axis. This represents the twist of the helical gear tooth which is quite apparent in 
Fig. 3.2. Because of this twist along ths width of the helical gear, the top land is not parallel to 
the bottom land as can be seen from the figure. This is not so in case of a spur gear where all the 
lines are parallel to  the axis of the gear. Therefore, if the helical gear is thought of as consisting 
of an infinite number of concentric hollow cylinders, placed one inside another so that the 
resulting body is a solid, then if any individual cylinder is considered, the path of the tooth-trace 
on the surface of that cylinder is a helix along the whole length covering the tooth width. But, 
because ofthe twist, the inclinations ofthe helices of different cylinders with reference to the gear 
axis are different. This results in different helix angles at different cylinders which will be 
discussed in Sec. 3.2. 

BOTTOM LAND 

TOP LAND 

FACE' WIDTH 

Fig. 3.2 Shape of helical gear tooth 
Based on Practical Gear Design, Dudley, 1954 edition, fig. 1 - 1  3, p. 19. 
McGraw-Hill Book Co. Inc., New York. 

3.2 Helical Gear Terminology and Relations 

Because spur gears are easier to design and manufacture, engineers usually prefer these gears 
when power is transmitted between parallel shafts. There are, however, some design considera- 
tions like greater contact ratio, greater strength, and some operational requirements, such as, 
noiselessness, smoother engagement of meshing of teeth, for which the use of helical gears is 
preferred. 

When a pair of parallel helical gears mesh, the following conditions must be satisfied for 
proper running of the set: 
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(i) The gears must have helix angles of equal value; 
(id The gear teeth of each member must have the same module, and 
(iii) The gear teeth of each member must have opposite helices, that is, one gear must have 

right-handed helical teeth while the other must have left-handed ones. 
One ofthe fundamental differences between spur andhelical gear as far as  the course ofaction 

is concerned is that the contact of the two spur gears in mesh takes place always in a line 
extending all along the surface of the tooth, this line being always parallel to the axis of the gear. 
In a helical gear, the initial contact is a point which gradually changes into a line as engagement 
proceeds. Unlike spur gear, this line ofcontact is a diagonal across the face and flank ofthe tooth. 
This aspect and its implication will be discussed in detail in Secs 3.4 and 3.5. 

The basic parameters of spur and helical gears have been shown in Fig. 2.3. Figure 2.3 (c) 
represents the developed pitch cylinder of a helical gear. The definitions of basic nomenclature 
andgear tooth terminology are the same in spur and helical gears, and for these the reader should 
refer to Sec. 2.2. The special features which characterise and differentiate a helical gear from a 
spur as well as their inter-relations will be discussed in this section, 

Helix angle This is the angle which the tooth trace of a helical gear in the pitch plane makes 
with the gear axis. This inclination to  the gear axis varies along the involute as  it originates from 
the base cylinder and develops outwards, that is, away from the base cylinder. I t  should be 
carefully noted that when the term “helix angle” is used in connection with a helical gear, it 
means the helix angle a t  the pitch cylinder only and is usually denoted by Pwithoutany subscript. 
With other cylinders, the general expression is given by 

The following special parameters of a helical gear are defined here (Fig. 2.3 c). 

dc tan Pc = tan p x- 
d 

(3.1) 

Where P, = The helix angle of any cylinder c 
dc = The dialvter of the above cylinder 
p = The helix angle a t  the pitch cylinder and 
d = The pitch circle diameter of the helical gear 

Lead angle The lead angle is the complimentary angle to the helix angle, and is given by 

y= 90O-P (3.2) 
In case of a helical gear, two types of sections are consideredthe normal section and the 
transverse section. These sections have been shown in Fig. 3.3. (a) with respect to  the reference 
profile. The normal section is taken by passing a plane at right angles to the tooth trace of the 
top-most tooth and through the pitch pointP on the pitch cylinder as shown. If the plane is passed 
at right angles to the axis of the gear, the transverse section is obtained. The reader should note 
that normal section ofthe pitch cylinder is an ellipse while the transverse section is a circle. The 
relevant parameters and the relations thereof are explained below. 

Module Two kinds ofmodules are differentiated in helical gears-the normal module and the 
transverse module. They bear the following relation to each other 

m, m, = - 
cos p (3.3) 

where rn, = The transverse module 
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m- = The normal module. (The normal module has sometimes been written as simply m, 
that is, without the subscript 

Circular pitch Normal circular pitch 

Transverse circular pitch 

Axialpitch p a = a m a = a m t t a n y = a m t  

where H = Lead, and z = Number of teeth 

Base pitch Normal base pitch 
Transverse base pitch 

n in this book.) 

p(or p,) = a m  

P, = a m ,  

lrm am H 
sin p cosy z 

cotp =- = - = - 

(3.4) 
(3.5) 

(3.6) 

(3.7) 
(3.8) 

Pressure angle In case of a helical gear, it is important to differentiate between the normal 
pressure angle a (or a,), which is the pressure angle in a plane perpendicular t o  the tooth trace 
(normal section), and the transverse pressure angle a,, which is the pressure angle in a plane 
perpendicular to the gear axis (transverse section). The two pressure angles are related thus: 

(3.9) 
The normal pressure angle a i s  20’ for standard tooth profile. The above relation can be easily 
arrived at from Fig. 3.9 (Sec. 3.121, which gives a pictorial view of the system. Besides, like 
corrected spur gears, there are also working pressure angles am and at- which will be used in 
connection with corrected helical gears in Sec. 3.8. 

Face advance It can be defined as the distance on the pitch circle through which a helical tooth 
(or a spiral tooth, in case ofa spiral bevel gear) moves from the initial positionat which the contact 
begins at one end of the tooth curve to the final position at  the other end across the face width 
when the contact ceases. 

The face advance of a helical gear is created due to  the helical orientation of the course of the 
tooth along its length and this off-set is given by 

F A = b x t a n P  (3.10) 
The above relation can be established from Fig. 2.3 (c), where b = width of the gear. Obviously, 
the face advance of a spur gear is zero. In a parallel helical gear, width b is made larger with a 
view to making the face advance greater than the circular pitch corresponding to  a given helix 
angle. This ensures continuous contact in the axial plane as the gears rotate. The ratio-face 
advance to circular pitch (in transverse sec t ionvan be considered as a contact ratio (termed 
“face contact ratio”), and along with the regular contact ratio as explained in the case of spur 
gears in Sec. 2.7, the total contact ratio will consist of the sum of these two values. This is 
obviously greater than that of the spur gears. Contact ratio for helical gears is discussed in 
Sec. 3.6. 

For the sake of safety, it is customary to  increase the limiting value of the tooth-width by at 
least 15% (the limiting condition being FA = p), so that 

tan a = tan at cos p 

1 . 1 5 ~  
tan p b>-  
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Lead 

Pitch circle diameter In a helical gear, because of the helix angle, the pitch circle diameter and 
other diameters are greater than those of the corresponding spur gear. It  has been pointed out 
before that the transverse section only is circular, the normal one being elliptical. In Fig. 3.3 (c) 
a frontal view of a helical gear is shown. This is the same as a transverse section. It is to be 
emphasised here that irrespective of the section, the pitch cylinder remain the same, whose 
diameter is given by 

It  is the axial advance of the helix in one complete turn. 

zm d = -=zm,=zmsecp 
cosp 

(3.11) 

Tip circle diameter In a spur gear, the tip circle is given by 

d, = zm + 2m 

In a helical gear, it is given by 

d, = zm, + 2m (3.12) 

Many readers may wonder why it is not given by d, = zm, + 2m,. 
The reason is quite apparent from Fig. 3.3 (4. It  a is circle only in the transverse section and, 

therefore, to  reach the tip circle one has to add an amount equal t o  m on both sides of d radially 
from the centre, so that 

zm 
cos p d a = d + 2 m  = - +2m = zm,+Zm 

In Fig. 3.3 (b), comparative, superimposed pictures of the basic rack tooth in the normal and 
transverse sections have been shown. Note the difference in tooth thicknesses in the two sections 
and note also that the height of the tooth remain the same. The two thickness are related thus 

S (or 3,) = St cos p (see Fig. 2.3) 

From Fig. 3.3 (b), we can arrive at the following relation 

But S = S,  COS^ 

S . , - - - x -  1 - S 1 
2 tana ,  2 t a n a  
- st cosp - -  1 

x- -  * -  st .. 
2 tana ,  2tan a 

(3.13) 

or tan a = tan a, cos p 
The basic relations of a helical gear pair in mesh are given in Table 3.1. "he gears are normal 

The tooth thicknesses on any cylinder can be found in a similar way as explained in Sec. 2.3. 
ones conforming to the standard basic rack. 

Tooth thickness in transverse plane is given by 



3.8 Handbook of Gear Design 

Table 3.1 Dimensions for a standard helical gear-set 

Description Pinion Gear 
~ 

Number of teeth 21 4 
Pitch circle diameter 
Tip circle diameter 
Root circle diameter 
Base circle diameter 

Tooth thickness on pitch circle 
(measured in circular arc) 

d, = 2, mlcos p = z,m, 
d,, = d, + 2 rn 
d, = d, - 2 x 1.25 m 
d, = d, cos a, 

Normal section: 
Transverse section: S, = e, = p,/2 = nm/2 

d ,=z ,m /cos~  = z 2 m ,  
d,, = d, + 2 m 
d,, = d,-2 x 1.25 m 
db, = d, cos xa, 

S, = e, = p,12 = nm/2 

Centre distance a. = (d, + d,)/2 = (m/cos 8) x (2, + 2,112 

Stc = de (S, Id + inv a,- inv a,.> (3.14) 
Here, subscript c denotes any cylinder and other subscripts have the usual connotations. The 

pressure angles are related to each other by the equation 
d cos a, = cos a, - 

d C  

In the normal plane, the tooth thickness is given by 

(3.15) 

S,  = Sk.cosPC = S, d l $ m  (3.16) 

where P, is the helix angle at the tip circle dc of the cylinder. 
In this connection, the reader is advised to refer to Eqs 2.7 and 2.8 given in Sec. 2.3. 

3.3 Equivalent Spur Gear and Virtual Number of Teeth 

While studying a helical gear, the concept of an equivalent spur gear is very useful in as much 
as it renders the helical gear into a spur gear from the calculation point of view, which in turn 
makes it possible to approximately calculate strength and other data ofa helical gear as if it were 
a spur gear. This simplifies calculation procedures and the relevant spur gear formulae can be 
used (with modifications) as the helical gear is analogous to a spur gear. 

If a section N - N in Fig. 3.4 is cut through a plane which is normal to the tooth in a helical 
gear, the resultant sectional plane on the pitch cylinder will be a that of an ellipse of minor axis 
d and major axis dlcos p, where d is the pitch diameter of the helical gear and p the helix angle. 
On the periphery of this ellipse, no two teeth profiles are quite alike. However, the shape of the 
tooth at P, i.e. at the top of the minor axis of the normal section, can be approximately taken to 
be that of a spur gear situated on the periphery of a circle whose radius R is equal to the radius 
of curvature of the ellipse at P. The centre of this circle is a t  0. 

The parameters of this ellipse are given by 
1 d  r semi-major axis = a = - - = - 
2 cos p cosp 
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PITCH CIRCLE OF EQUIVALENT T SPUR GEAR 

SECTION T-T 

(b) 
Fig. 3.4 Equivalent spur gear 



3.10 Handbook of Gear Design 

semi-minor axis = b = d/2 = r 

To amve at an expression for R,  we proceed as follows. A rectangle is drawn with sides a and b, 
and a diagonal is drawn as shown in Fig. 3.4 (a). From pointA of the rectangle, a perpendicular 
is dropped on this diagonal. This perpendicular is extended to  meet the centre line coinciding 
with the minor axis at 0. From similarity of triangles, we have 

R a  a’ r2 I r d or D = 2 R  = - - = - or R =  - orR = -x- = 
a b  b cos2p r cos2p cos2p 

A spur gear having a pitch radius of R is called an “equivalent spur gear” because, for all practical 
purposes, the tooth profiles on such a spur gear correspond to the tooth profile of the helical gear 
in question at P. Such a spur gear will have properties similar to  those of the helical gear as 
designed on the normal section. The number of teeth of such a spur gear is given by 

virtual number ofteeth = Circumference of the equivalent spur gear 
Circular pitch 

Z - mt x- -  1 - - d 
X 

2 z R  2 
x m  m 2c0s2p m cos2p c o s p  cos2pcosp 

- - -  - _ -  

Therefore 2 
2” = -  COS^^ (3.17) 

Hence, the virtual number of teeth of a helical gear is the number of teeth which can be generated 
on the surface of a cylinder having a pitch radius equal to  the radius of curvature of the point at 
the tip of the minor axis of an ellipse obtained by taking a section through the helical gear in a 
plane which is normal to the tooth at that point. 

The above mathematical treatment is an approximation which is sufficiently accurate for all 
practical requirements. To obtain the exact value, the section is passed along the course of the 
helix, resulting in a helicoidal surface and not in a simple, two dimensional plane. The exact 
equation is 

tu = z/cos2 /3,cos p, where /3, = Helix angle at the base circle 

For cutting spur and helical gears in a workshop using form cutters, a set of 8 cutters valid 
for each pitch or  module, is used. The details about this cutter series are given in a tabular form 
in Sec. 8.5. 

To select the proper cutter number for cutting helical gears, the value o f  zy+and not z t i s  
to be inserted in the column marked: “Number of teeth of gear t o  be cut”. 

To find zv, equation 3.17 is allowable only up to around D= 20’. For bigger helix angles, as in 
the case of crossed helical gears (see Sec. 3.15), Eq. 3.17 yields too inaccurate result which is not 
permissible. The accurate expression, which is normally used in workshops and for which ready- 
made charts are usually available to avoid time consuming calculations, is given below, 

tan a, - at- 
”O“ (a  and at in degrees). 

tan a - a-  
180“ 

x 
2“ = z x 
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tan a, - a, 
tan a- a  

= z  (a and a, in radian) 

inv a, 
inv a 

= z -  

The normal pressure angle, a, which is usually 20', is related to the transverse pressure angle, 
as per the Eq. 3.9. For involute functions, see Appendix H. 

3.4 Characteristics of Helical Gears 

Helical gears are analogous to a set of stepped gears which consist of a number of identical spur 
gears so arranged that the teeth of each individual member are slightly out of phase relative to 
each other. In such an arrangement, there is an overlap during successive engagement ofteeth, 
thatis, when two teeth are in mesh at  the pitch line, other mating pairs of teeth are in different 
phases of contact including approach and recess contacts. A helical gear construction is 
approximated ifa composite body is made up of an infinite number of such stepped gears, each 
of which is a lamination of infinitesimal thickness, placed side by side successively with a slight 
phase difference. This has been illustrated in Fig. 3.5. 

Fig. 3.5 Formation of helical gear 

During load transmission in a helical gear pair in mesh, the leading end of the tooth comes in 
contact first and the trailing end last. Thus the tooth picks up load gradually. In contrast, during 
load transmission in spur gear, the entire face width (theoretically, at  least) makes contact at 
the same instant, and the contact line between the two mating gears is parallel to  the axes of the 
gear shafts. Thus, the contact takes place over the whole length of the tooth along the width 
simultaneously. In case of a helical gear pair, however, this contact line across the tooth's surface 
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is diagonal, beginning from a point high on the face, i.e. near the tooth top, at one end to some 
point low on the flank, i.e. near the tooth root, a t  the other end ofthe tooth. The contact, therefore, 
progresses gradually along the whole range of the tooth width, covering the tooth face and flank. 
The result of such an engagement is smoother operation as compared to  spur gears, greater load 
carrying capacity and practically noiseless running. The quieter operation of helical gears is, 
therefore, due to their favourable meshing conditions of the gear pair. 

It is obvious that unlike a pair of mating spur gears, the load is never concentrated wholly at 
a particular position of a mating helical gear pair, as the contact starts at one end of a tooth and 
extends continuously across the tooth to  the other end. Besides, other pairs of teeth are also in 
different phases of contact simultaneously during this period. 

Hence, quality of manufacture, lubrication, type of loading, and other factor remaining the 
same, helical gears have a much smoother and quieter running and operational characteristics 
than comparable spur gears. The helical gears offer considerable advantages for high speed and 
heavy duty gear drives. They are, therefore, preferred for such drives. 

Ameshinghelical gear pair has greater contact ratio than a corresponding spur gear pair. The 
frictional forces, which are generated due to the mutual slidingofteeth before and after the pitch 
point, are considerably reduced. Due to the greater total contact ratio and lesser magnitude of 
frictional forces, the detrimental effects are comparatively smaller in case of reversible drive and 
impact-type service. 

It has been estimated that one consequence of the sloping contact line in a meshing pair of 
helical gears is that the maximum bendingmoment on a helical gear tooth is only alittle greater 
than halfthat on the same size of spur gear tooth, assuming the load to be the same in each case. 
Itfollows, therefore, that from the strength point of view, a helical gear tooth has a greater load- 
transmittingcapacity than a spur gear tooth for the same pitch and face width. Besides, in case 
of a mating pair of helical gears, there is always more than one pair of teeth in mesh at any 
instant. This is not always true in case of spur gears in mesh. 
By proper selection of the helix angle, the common length of contact of teeth can be 

considerably increased. This leads to  lesser specific loading on tooth surfaces which in turn 
facilitates retention of a load-carrying lubricant film. 

The basic rack for the spur and the helical gear is the same. Both can therefore, be cut or 
generated by the same tool or cutter, except in certain special cases. For helical gear pair which 
have parallel axes, the magnitudes of the helix angles are the same. The angles have opposite 
hands in case of external gear drives and have the same hands in case of internal gear drives. 
For crossed helical gears, the relations are different, as can be seen in Sec. 3.15. As will be 
discussed later, a helical gear drive generates axial thrust forces. These can be taken care of by 
proper bearing mountings or by using a double-helical gear drive. Such a drive is described in 
Sec. 3.16. The axial thrust in case of a double-helical or herringbone gear drive is nullified by the 
in-built directionally-opposite hands of teeth of each of the components of the mating pair. 

The hand of helix of a helical gear is defined as follows: If a helical gear is held in front of an 
observer in such a way that its circular face is in a vertical plane and is parallel to  the observer 
with the gear axis in horizontal position and at right angles to the observer, then if the tooth 
twists from left towards right as it recedes away from the observer, i.e. it twists in a clockwise 
manner, such a tooth is said to have a right-handed helix. If the tooth twists away from right 
towards left when a gear is held in a similar manner, then i t  is left-handed helical gear (see 
Fig. 3.7). 
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3.5 Nature of Tooth Engagement in Helical Gear Drive 

Unlike tooth engagement characteristics in a pair of meshing spur gears, the action is gradual 
and smooth in a helical gear drive. As pointed out in Sec. 2.5, contact in a pair of spur gears in 
mesh takes place along a line throughout the width of the teeth and this line is parallel to the 
axes of the gears. The contact begins suddenly across the whole tooth width and it ceases also 
abruptly. 

In a helical gear drive, the contact begins at the tooth end and as the rotation progresses, the 
contact point moves along the whole tooth width till i t  reaches the other end. This results in a 
gradual, even tooth action and load distribution. Unlike spur gear drive, the contact line runs 
diagonal from one end to the other end of the helical teeth. Besides, in a helical gear drive, more 
than one pair ofteeth are always in mesh. This, and other characteristics, like shorter lever arm, 
allow the helical drive to have considerably more load carrying capacity. 

/ .  pJyy z ,  

FN 

I 

Fig. 3.6 Nature of tooth engagement in helical gear drive 
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In Fig. 3.6 (a) the initial contact conditions of a mating pair of helical gears have been shown. 
Figure 3.6 (b) depicts the out-going pair z, z’, as it leaves the contact. The contact conditions of 
spur and helical gear drives have been illustrated in Fig. 3.6 (c> for comparison. 

3.6 Contact Ratio of Helical Gears 

The contact ratio of spur gears has been discussed in Sec. 2.7. The derivation ofthe contact ratio 
and its implications have been dealt with in detail. The contact ratio of a pair of helical gears in 
mesh can be found in a similar way. It has been mentioned in Sec. 3.2 that due to the effect of 
the face advance in a helical gear, an extra amount of contact ratio is created. This face advance 
is due to the helical orientation of the tooth along the length of the tooth, covering the width of 
the gear. The contact ratio due to face advance is called the face contact ratio and is given by 

Face advance - - b tan p (3.18) CR,, = 
Transverse circular pitch PI 

Now 

am 
Pl = - cosp 

b sin fl  
cosp = 

b tan p :. CR,, = 
am am 

(3.19) 

The face contact ratio is also known as the axial contact ratio and the overlap ratio. Due to 

The transverse contact ratio in case ofa pair ofhelical gears in mesh can be found in a similar 
this, the total contact ratio in case of a helical gear is greater than that of a spur gear. 

manner as in the case of spur gears. It is given by 

(3.20) 

For corrected helical gears, the corrected values of rnl, rn2 and the centre distance a are to 
be inserted. Moreover, a, will be replaced by the working pressure angle in the transverse 
section at,. 

The total contact ratio (or, simply, the contact ratio) of the helical gearing is a summation of 
the above two contact ratios. Therefore 

CR = CR, -I- CR, 

(3.21) 

Since the circular pitch and the base pitch in the transverse section are related by the 

Transverse base pitch pbr = Transverse circular pitch p, x cos a, 

expression 

Eq. 3.21 can be vritten as 

b sin p cos a, + cosp [dm + 4- - a sin 01,l 
K m cos 01, 

CR = (3.22) 
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3.7 Backlash in Helical Gears 

For the determination of backlash in drives comprising helical gears, the same considerations 
which are applicable in case of spur gears are valid. These have been detailed in Sec. 2.8. 

The expressions for the two kinds of tolerances, namely, the normal backlash j ,  and the 
torsional backlash j ,  are given below 

(3.23) 
(3.24) 

(3.25) 
(3.26) 

Here, symbols a,, and aw, stand for the working pressure angles in the normal and the 
transverse planes respectively. As in the case of spur gears, all the tolerances are to  be entered 
in the above formulae with the proper algebraic signs (+ or -1 they carry. 
As in the case of spur gears, the backlash values are to be read in conjunction with Secs 2.27 

and 2.28. 

j, (mid = - (A,,, + A,, m) cos a cos f l  + 2 Al, sin awn 

j m  (max) = - fAsILl  + A,) cos a cos p + 2 Aa, sin awn 

j, (mid = - (A,,, + A,,,) + 2 A, tan a, 
j ,  (max) J - (AsaI + A,,,) + 2 Aa, tan awl 

3.8 Correction in Helical Gearing 

The correction aspect of the gearing and its ramifications have been discussed in detail in 
Chap. 2. Like spur gears, helical gears are also corrected when needed. The same reasons for 
which the spur gears are corrected are valid for helical gears also. The minimum number of teeth 
to avoid undercuttingin case of a helical gear is a function of the helix angle. This has been shown 
in Fig. 2.25 (c). For helical gears with standard tooth profile, the minimum number of teeth is 
given by 

2 cosp 
Zmin = - 

sin2 a, 
(3.27) 

By trigonometrical transposition and allowing a marginal amount of undercutting as before 
in the case of spur gears, we have 

zrnin = 14cos3P (3.28) 

To avoid undercutting through profile correction, the correction factor is given by 

14-2, I t = -  
17 

(3.29) 

where zv = The virtual number of teeth as per Sec. 3.3. 
As in the case of spur gears, the magnitude of the positive correction factor is limited by 

peaking [see Fig. 2.25 (a) puttingz" instead of z in Fig. 2.25 (a)]. Where large correction factor is 
involved, it is advisable to  check the tooth thickness at the top land which should not be normally 
below 0.25 m to 0.4 m. Referring to Sec. 2.13, the helical gearing can also be classified into two 
categories of corrected gearing sy stems-,,-gearing and S-gearing. 
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Table 3.2 Dimensions forS,gearing 

Description Pinion Gear 

Number of teeth 
Pitch circle diameter 
Tip circle diameter 
Root circle diameter 

Tooth thickness on pitch 
circle (normal section) 

d,  = zlmlcos/3 
da l  = dl  + 2 m ( l  + x,) 

d f ,  = d ,  - 2 x 1.25m + 2x ,m 

? 
d2 = z2mIcos/3 

da2 = d2 + 2 m ( l  - x l )  
d f 2  = d2 - 2 x 1.25m - 2x1m 

2x l t ana  R S,, = m ( y  - 
~~ 

Centre distance a, = ( d , + d 2 ) / 2  = (m lmSj3)  (z1+22) /2  

TaMe 3.3 Dimensionsfor Sgearing 

Description Pinion Gear 

Number of teeth Z, 1 2  

Pitch circle diameter 

Tipcircle diameter 
(with topping) 

Tip circle diameter 
(without topping) 

Root circle diameter 

Tooth thickness on pitch 
circle (normal section) 

Tooth thickness on pitch 
circle (transverse section) 

d,, = 2(a + m - x2m) - d2 

d,, = d, + 2m + 2x,m 

d,, = d, - 2 x 1.25m + 2x,m 

d, = d2(a + m - xlm) - d, 

d,  = d2 + 2m + 2x,m 

d,, = d,- 2 x 1.25 m + 2x2m 

Topping y m  = a,+ (x, + x,) m - a  

Standard centre 
distance 

Actual centre distance 
(afterpushing) 

Working pressure angle 

Top clearance 

dl + d2 = m Z I +  2 2  a, = - 
COSB 2 2 

cos u1 dw1+'dw2 

tan a + inv a, x1+ x2 inva, = 2- 
Z l+Z2  

a=a,- = - 
cos um 2 

inv I+- inv u1 

2 tan u 
Sum of profile correction x1 f x2 = (z ,  + z2) 

factors 

Working circle diameter 
cos f1, d,, = d, - 
cost*, 

cos a, 
dw2 = d2 - 

COSCY, 

Transverse pressure angle 

Since the reasons for correction, characteristics of corrected gearing and other aspects are the 
same as in the case of spur gears which have been enumerated in Sec. 2.13, they are not repeated 

tan a, = tan dcos /3 
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here. The relevant formulae will obviously differ to some extent due to the helix angle involved. 
In the Tables which follow, these formulae are summarised which are valid for helical gears 
comprising So-and S-gearing. For distribution of correction factors, see Sec. 2.14. 

3.9 Internal Helical Gears 

The internal gear drives in case of spur gears have been discussed in Sec. 2.15. The observations 
made in that section are also applicable to internal drives having helical gears. In  an  internal 
gear drive, both the pinion and the gear have the same amount ofhelix angle, and the helices are 
of the same hand. In Tables 3.4 and 3.5 the relevant relations between the different gear 
parameters are given for uncorrected and So-corrected gearings respectively. Table 3.6 gives 
these data for Sp,Y1-corrected gears. In each case, the gears have standard 20" full-depth teeth, 
conforming to the basic rack given in Sec. 2.1. 

Table 3.4 Dimensions of internal helical gear drive for uncorrected gears 

Description Pinion lnternalgear 

Number of teeth 

Pitch circle diameter 

Tip circle diameter 

Root circle diameter 

d,, = d, + 2 mn 

d,, = d, - 2 x 1.25m 

Z2mn 
cos p d2 = - = z2mt 

Centre distance 

Tooth thickness on pitch 
circle (normal section) 

Table 3.5 Dimensions of internal helical gear drive for S,-corrected gears 

Description Pinion Internalgear 

Pitch circle diameter 

Tip circle diameter 

Root circle diameter 

d,, = d, + 2 m" + 2x.m" 

d,, = d, - 2 x 1.25mn + 2x,mn 

dR2 = d2 - 2mn + 24177" 

d,, = d, + 2 x 1.25 mn + 2x1mn 

Centre distance 

s,, = m , j 2 - 2 r 2  x tana 
Tooth thickness on pitch 

circle (normal section) 
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Table 3.6 Dimensions of internal helical gear drive for S,,conected gears 

Description Pinion Internalgear 

Pitch circle diameter 

Tip circle diameter 
Root circle diameter 

d,, = d,-2 (a-m,,-xp,,) d.2 = d1+2 (a-m,+xF,,) 
d,, = d l - 2  (1.25-xl)m,, d,, = d2+2 (1.25+x2)mn 

Centre distance 

Transverse pressure 

Working pressure 
angle 

angle 

tan a tana,  = - 
COsP 

x - x  inva, = 2 2 t a n a  + inva, 
2 2  - =1 

cos a, dwl = d1- 
cos a ,  Working circle diameter 

s,, = mn(? 7r + 2xltana 

s,, = m , ( a  + 2x1tanu 

s,, = m n ( ; -  2x, tan IY 

s,, = m,(? - 2x,tana 7t 

Tooth thickness on pitch 
circle (normal section) 

Tooth thickness on pitch 
circle (transverse section) 

drz-dat a = ~- d,z-% a Top clearance c = -- 
2 2 

3.10 Design Criteria for Helical Gears 

Because of simplicity of design and ease of manufacture, most designers prefer to use spur gears 
for transmitting power between parallel shafts. There are, however, operational requirements 
which warrant drive by helical gears. The advantages of helical gears over spur gears have been 
already elaborated in earlier sections of this chapter. Briefly, a helical gear drive can carry 
heavier loads, run at higher speeds and has smoother, quieter service. 

In general, the guidelines given in Sec. 2.16 on spur gears are also valid for helical gears. 
Table 2.11 for minimum number of pinion teeth is also applicable here, butz, is to be replaced 
by the virtual number of teeth, 2,. , 

Table 2.12 showing Ivalues is also applicable for helical gears. Here, the minimum module 
denotes the model in the normal section, mmmln. The relevant relations are 

b (3.30) 
mn min = - A 

bm.* = 2 %  (3.31) 
Helix angle 
The helix angle is obviously an important criterion of design of helical gears as the gear 
dimensions, centre distance of drive, thrust forces and other parameters depend on its magni- 
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tude and orientation. Hence, it should be judiciously chosen. 
For normal application, the value of helix angle should lie in the range shown as follows 

Helix angle (p> = 8' to 20' (3.32) 

The helix angle should not cross 30' t o  avoid a large resultant axial thrust. On the lower side, 
it should not be below 8' as otherwise the advantages offered by helical gearingbecome marginal. 
It is desirable to have the helix angle as a whole number as it simplifies machine setting for 
cutting gears as well as finishing processes. 

3.1 1 Thrust Characteristics of Helical Gears 

When the tooth force acting on the surface of a helical gear is resolved, one of the components is 
the thrustwhichactsalongthe axisofthegear. Acomplete forceanalysisforhelicalgearsisdealt 
within Sec. 3.12. In this section, only the thrust component and the effects thereof are discussed. 

Determination of the magnitude and the direction of the thrust forces is a fundamental 
criterion of helical gear design. The directions ofhelix, i.e. left hand or right hand, ofthe members 

OnlVEN 
I H  .. 

R H  
IRI 
R 

DRIVEN 
L H  

DRIVER 
R.H. 

L.H. 

DRIVER 
R.H. 

DRIVEN 

L.H. L.H. R.H. 

Fig. 3.7 Thrust diagrams for helical gears 
Direction of thrust depends upon direction of rotation, relative position of driver and 
driven gear, and direction of helix. 
Direction of rotation 4 
Direction of thrust : 
Direction of helix : R.H. (right hand), L.H. (Left hand) 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  + 
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comprising the gear set will be fixed only after the direction of thrust has  been determined and 
the position of the driver vis-a-vis the driven gear is known. 

The direction of thrust in a helical gear drive is a function of several factors. These are: the 
direction of helix, the relative positions of the two components of the gearing, and the direction 
of rotation of the individual gears. If, for some reason, i t  is considered desirable to change the 
condition ofthrust, it can be brought about by changingany ofthe three factors mentioned above, 
that  is, the thrust can be made to be effective in the opposite direction if any one of these 
alterations are carried out. As far as the helix angle is concerned, both its magnitude and 
direction play a vital role in the determination of the axial force. Since this axial force or thrust 
is created due t o  the helical orientation of the teeth, thereby altering the direction of the main 
tooth force F,. the helix angle should be chosen carefully. For single helical gears running on 
parallel shafts, it is prudent to confine the helix angle within 20" in order to avoid excessive end 
thrust. In exceptional cases, where the detrimental effects produced by the axial force is 
meticulously taken care of, the helix angle may go up to 30". But for normal applications, it 
should not exceed 20". 

The proper selection of the bearings holding the shafts on which the helical gears are mounted 
will depend upon the amount of the axial thrust. The thrust diagramsfor helical gears in normal 
applications are shown in Fig. 3.7. The direction ofthrust can be conveniently determined from 
the figure. 

After ascertaining the magnitude of the thrust force from force analysis and the direction from 
Fig. 3.7, the selection of the bearing which is appropriate for the purpose can be made after 
consulting catalogues and manuals of standard anti-friction bearing manufacturing companies. 

3.12 Force Analysis for Helical Gears 

Force analysis for helical gears can be made in similar manner as  in the case of spur gears dis- 
cussed in Sec. 2.18. Here, because of the helix angle, an  additional force component is produced. 
This appears as a n  axial force with the resulting axial thrust  on the bearings as explained in 
Sec. 3.11 

In  helical gears tooth forceF, acts normal to the tooth surface a t  an angle equal to the pressure 
angle a Fig. 3.8. This tooth force is resolved into three components which act at right angles to 
one another. The interrelations ofthese components can be easily established from Fig. 3.9 which 
shows a three dimensional representation of the force pattern. The magnitudes of these forces 
are given by 

2000 T Circumferential force = - 
d 

Axial force Fa = F, tan fl  
F, tan a Radial force F, = F, tan a, = - 

cos p 

(3.33) 

(3.34) 

(3.35) 

where a a n d  a, are the pressure angles in the normal section and transverse section respe:tively, 
pis the helix angle, d is the pitch circle diameter in mni, and Tis the driving torque in Nm. ,411 
the forces are expressed i n  newtons. 

I 
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Fig. 3.8 Helical gear tooth forces 
BasedonDieTragfaehigkeitderZahnraeder,ThomasandCharchut,7th Edition, 1971. Fig.no.43,~. 100.Carl 
Hanser Verlag, Munich. 

AXIAL PLANE 

TRANSVERSE TOOTH HELIX ON PITCH 

PITCH CYLINDER 

PITCH 

Fig. 3.9 Pictorial view of helical gear tooth forces 
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In cases where the end thrust of a helical gear set is objectionable for any particular reason 
or this axial force creates problems for the bearings, a double-helical or herringbone gear set is 
used. Such a gear is in effect a combination of two similar helical gears, having the same amount 
ofhelix angle but of opposite hands, placed side by side, cut on the same gear blank and mounted 
on the same shaft. 

When two such composite units ofherringbone gears, mounted on two shafts, mesh with each 
other, the end thrusts produced are counter-balanced so that the resulting aria1 force is zero. 
Usually for relief of cutting tool, a suitable groove is provided on the blank between the right- 
hand and left-hand helical halves, but the teeth can be made to be cut continuous, i.e. without 
the groove, by certain processes of gear cutting methods. 

Since the limitations imposed by the end thrusts are eliminated in case ofherringbone gears, 
these gears are often cut with high helix angles, namely, 30' or 45'. 

Herringbone gears are treated in detail in Sec. 3.16. 

3.13 Helical Gear Bearing Loads 

The force on the tooth in spur gears is resolved into tangential and radial or  separating 
components as explained in Sec. 2.18. In helical gears, apart from the above two forces, axial 
forces are also created due to the inclination of teeth as explained in Sec. 3.12. The axial forces 
on the teeth produce couples which in turn produce additional radial forces and a thrust load on 
each shaft carrying the mating gears. The radial forces due to these couples are equal in 
magnitude but opposite in direction in their effect of the two bearings on which each shaft is 
mounted [Fig. 3.10 (a)]. 

For better understanding ofthe topic, it is recommended that the reader should once again go 
through Sec. 2.19 in which the spur gear bearing loads have been dealt with. The bearing loads 
on helical gears are calculated in the same manner as in the case of spur gears, except that in 
this case the additional radial forces referred to above are also taken into consideration while 
computing the resultant load on the bearings. The following forces act on the bearings. 

Normal force FN is resolved into the following components (Sec. 3.12): 

Tangential force F, 

F; t a n a  Radial force F, = F, t a n  a, = 
cosp 

Axial force Fa = F, tan p 
The cases of gear mountings -straddle mounted and overhung-are discussed here 

[Fig. 3.10(b)l 

Straddle Mounted Bearings 
The resultant forces acting on bearing BI and BIZ are given by 

F,, = 

FHll = 

(3.36) 

(3.37) 
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- L- 

41 - iFa 

The respective magnitudes of the different force components are given by 

LLLuJ 

RADIAL FORCES ON BEARINGS DUE 7'0 AXIAL THURST 
(a) 

(i) STRADDLE MOUNTED BEARINGS 

a 4  

(ii) OVERHUNG BEARINGS 
(b) 

Fig. 3.10 Distribution of gear forces on bearings 

BasedonDie TragfaehgkeitderZahnraeder,ThomasandCharchut,7thEdition. 1971, Fig.no.44,~. 101.Carl 
Hanser, Verlag, Munich. 
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And the additional radial components due to the couple are given by 

FHII~,, = FRlr, = - Fn (in absolute value) L 
The above value of the additional radial force is obtained by equalising the couples 

Fa x R = Fer, L or = FmmL 

Overhung Bearings 
Forces are the same as in the case of straddle mounted bearings except the following 

FBI] = J(F/~~I~)P + (FBl,r,, -FBlIrf 

As in the case of spur gears, the following relation as  regards distances is applicable in case 
of helical gear system also 

L(,,,, = 2.5xpitch diameter of gear 2 2.5 L, 

Selection of Bearings 

If the force analysis is known, proper anti-friction bearing can be selected after consulting the 
catalogues of standard bearing manufacturers. This is illustrated in the following example. 

Example 3.1 In a helical gear drive, the pinion is straddle mounted in the middle of a shaft of 
25 mm diameter. The following data are given: pitch circle diameter of pinion = 80 mm, power 
= 10 kW, speed = 750 rpm, helix angle = 9". Select a suitable anti-friction bearing for a life of 
20,000 hours. The bearings are to be 300 mm apart. 

Solution: 

Tangential force 
F, = 'Oo0 Power(kW) = 1000 x 1013.14 = 3184N 

V (m / sec) 
Since the pinion is mounted in the middle, we have 

L,= Lll = L ! 2 ,  FBI, = FBI,, = - "I2 - - 318412 = 1592N 
L 

Radial force 
F , t ana  - 3184tan 20" = 1173N Fr = - 

cosp cos 90" 

Axial force Fa = 3184 tang" = 504N 

F R 
L 

504 x 40 = 67N - 
3 00 Fl,, = Flllllrn = - 
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Using Eq. 3.37, which gives the greater of the resulting forces on the two bearings, we have 

FBI, = J ~ = J I 5 9 2 ' + ( 5 8 6 + 6 7 ) ' =  1720N 

From the catalogues of standard bearing manufacturers and also from the relevant books, we 
have the following relation. 

k lo6 
60n P 

Lh = - (") (3.38) 

where 
L, = Life of bearing in operating hours 
C = Basic dynamic load rating of bearing as given in the catalogues (N) 
P = Equivalent dynamic load on the bearing as calculated from given data (N) 
k = An exponent which is 3 for ball bearings 
n = Speedhpm) 

The equivalent dynamic load (P)  is defined as that hypothetical load which, if applied, will 
have the same effect on bearing life as the actual loads on the bearing when the bearing carries 
both radial and axial loads simultaneously. The general equation is 

P = X F , + Y F a  (3.39) 

The symbols and the subscripts in the above equation are used universally. Here, F,stands 
for the resultant of all the radial forces acting on the bearing (i.e. F,,or F,,,), Fa is the axial force, 
andXand Yare factors to be taken from the bearing catalogues. Referring to an SKF catalogue, 
we tentatively select ball bearing No. 6205 for a shaft diameter of 25 mm. The following data are 
taken from the catalogue: C = basic dynamic load rating = 10,800 N, and C, = basic static load 
rating = 6950 N. Factors X and Y will depend upon factor e which is a function of the quotient 
FJC,. In this example, FJC, = 504/1720 = 0.07. Corresponding to this, the value of e is 0.27. Also, 
Fa/Fr = 504/1720 = 0.293. 

The values ofXand Y will depend on whether the value ofFa/F, is greater or lesser than the 
value of e. In this case 

(Fa/F, =) 0.293 > 0.27 ( = e) 

From catalogue X = 0.56 and Y = 1.6 

:. P = 0.56 x 1720 + 1.6 x 504 = 1770 N. From Eq. 3.38, we have 

lo6 
60 x 750 

L, = 

Since this is much less than the required life of 20,000 hours, ball bearing No. 6206 is 
inadequate and is, therefore, rejected. We try the next higher size (No. 6305) the relevant values 
of which are 

C = 17300 N, and C, = 11400 N :. FaIC, = 504/11400 = 0.044 

The next higher value of Fa/ C, as given in the catalogue is 0.07 which leads to a value 0.27 
for e. Since FJF, = 0.293 is greater than e in this case also, we have 

X = 0.56 and Y = 1.6 
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Therefore P = 0.56 x 1720 + 1.6 x 504 = 1770 N 
3 

x -  17300 = 20749hours lo6 
Lh = 60 x 750 ( 1770) 

Since this value is greater than the stipulated bearing life of 20,000 hours, ball bearing No. 
6305 is finally selected. 

Bending moments 
FOT the determination of shaft dimensions and other relevant design criteria i t  is necessary to 
know the pattern of the bending mo'ment and also its maximum values. We will discuss here the 
case of one gear straddle-mounted on a shaft which meshes with another gear mounted on 
another shaft. 
As the forces are effective in differentplanes, it is convenient to find first the bendingmoments 

separately in two mutually perpendicular planes. As shown in Fig. 3.11, forces Fa and F, are 
effective inx -2 plane, while iny -2 plane, only the tangential force F, is effective. The individual 
bending moments are then added vectorially to determine the resultant bending moment. The 
two maximum moments are given by 

The greater of the two is used for the determination of shaft diameter. Besides bending 
moment, the shaft is subjected to the axial thrust (Fa) and the torsional moment or torque 2'. For 
shaft calculation, the effect ofthe axial thrust can be neglected, and the calculation can be carried 
out on the basis of bending and torsion only. Shaft calculations have been dealt with in Sec. 2.21. 

3.14 Strength Calculation for Helical Gears 

While describing the nature of tooth engagement in case of spur and helical gears, it has been 
pointed out that at any stage of tooth action there are in general more teeth in engagement in 
case of helical gears than in case of spur gears, other factors remaining the same for both the 
types. The load carrying capacity of a helical gear pair, therefore, is greater than that of a spur 
gear drive. 

In Sec. 2.25 the methods of strength calculation for spur gears have been discussed in detail. 
The same considerations and the equations-with the relevant modification to take care of the 
helical aspect-an be used for helical gears. We can write the following equations as applied to 
the helical gears 

(3.40) 

Factor qk can be read off from Fig. 2.49 corresponding to zu instead of z as in spur gears. For 
initial calculation of module, we assume the following average values 
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ql, = 2.2 and q,= 0.9 

(3.42) 

Factor q, takes care of the unequal load distribution on helical teeth during the course of 
action. However, the same remarks about the load calculation of spur gears are valid here also, 
and we can take value of q,as 1 to  amve at a safe, though conservative, result. We get similar 
expressions for contact stress as in the case of spur gears. Thus 

LOADING 
DUE TO F, 

LOADING DUE 
TO F, and Fa 

I 'rh I 
Y-2 PLANE 

/RESULTANT 
BENDING 
MOMENT 

Fig. 3.1 1 Bending moment diagram of helical gear drive 

Pep = YmYpY,  
(3.43) 

(3.44) 

Factory' is the tooth length factor and it takes care of the different magnitude of load on the 
teeth during action. Its value can be taken as 1 for all practical purposes. The allowable stresses 
are determined as in the case of spur gears. The pitch point factor is 
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yp = F cos’ CY, tan a,, (3.45) 

The value ofyp can be taken as 1.6 for initial calculations. The expression for the base helix 

(3.46) 

angle (p,) can be easily established as 
tan P,= tan p cos a, 

3.15 Crossed Helical Gears 

Crossed helical gears belong to that category of helical gears where the respective shafts on 
which they aremounted are not parallel and their axes do not intersect. Both members ofthegear 
pair are involute helicoids cut on cylindrical blanks. These gears are sometimes referred to as 
“spiral gears”, but to  avoid confusing these with spiral bevel gears, the term “crossed helical 
gears” will be used in this book. 

Essentially, these are non-enveloping worm gears (see Fig. 1.9). They connect skew shafts. If 

the shaft angle is c and the helix angles of the two component gears are 0, and p,, the basic 
relationship which holds good is given by 

(3.47) 

Here, the convention regarding the algebraic sign which should prefix a helix angle should be 
maintained-a right-hand helix angle is regarded as positive, and a left-hand helix angle as 

negative. In normal applications, the shaft angle c is 90’. The magnitudes of the helix angles 
of the mating components need not be the same. Till assembled in mesh, there is no difference 
between a crossed helical and an ordinary helical gear, the manufacturing processes also being 
the same. 

While in a pair of conventional, ordinary helical gear pair, the helix angles are equal in 
magnitude and opposite in sense, this need not be so in case of crossed helical gears. The hands 
of a mating crossed helical gears are usually the same, but by manipulating the shaft angle 
properly, gears of opposite hands can be meshed together. There are, therefore, four possible 
combinations 

1. 
2. 
3. 
4. 

RH driver meshing with RH driven 
RH driver meshing with LH driven 
LH driver meshing with LH driven 
LH driver meshing with RH driven 

When in mesh, the crossed helical gear teeth have point contact between the mating pair. This 
develops into a line contact due to wear after some time. This is the reason why this type of gear 
pair is meant for only small loads, for example in instrumentation, distributor drive of 
aytomobile engines and other similar applications. They are not recommended for power 
transmission. However, with increasing wear, the line contact becomes a band contact, thereby 
enhancing the load carrying capacity appreciably. In a crossed helical gear system, the reduction 
ratio (i) is normally limited to a maximum value of 5 : 1. For higher reduction ratios involving 
systems having similar orientation of axes, worm and worm-wheel reduction units are used. 

The bearings which support the shafts on which the crossed helical gears are mounted have 
to withstand both thrust and radial loads. The pattern of these thrust loads has been discussed 
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in Sec. 3.11. It is relevant to  reiterate here that  the direction of the thrust produced depends on 
the direction of helix, the relative positions of the gears, and the direction of rotation. 

One of the main advantages of a crossed helical gear system is its reduced sensitivity towards 
changes in centre distance, shaft angle and alignment, and axial position. With ample face width 
and backlash, these gear-sets can withstand small changes in centre distance and shaft angle 
without any deterimental effect in the overall accuracy of transmitted motion. Also either 
member can take endwise shifting, thus facilitating easy mounting. Close accuracies in centre 
distance and shaft alignment are, therefore, not imperative. 

In  short, mounting ease, insensitivity to axial movement of either member, invulnerability to 
small changesin shaft angle or centre distance, and low cost are the main advantages of a crossed 
helical gear drive. 

Since unlike ordinary, parallel axes helical gears, the crossed helical gear pairs need not have 
equal helix angles for individual members, the pitch diameters of such gears are not in proportion 
to their tooth ratio. It may so happen that  the gear having the larger number of teeth may be the 
smaller one in diameter. Thus, the terms “pinion” and “gear” become arbitrary. Some authors 
prefer to ascribe “pinion” as that member which has the smaller number of teeth. Others prefer 
to describe them as  “driver” and “driven”. 

Since different helix angles are used for the two gears, the transverse module (m,) is not the 
same. Hence, in specifying the size, the normal module (mn> i s  always used. Recalling Eq. 3.11, 
the pitch or reference diameter of a helical gear is given by 

m z  
d = -=m,zsecp 

cosp 
For crossed helical gears, these diameters are given by 

(3.48) 

(3.49) 

Adding 2 mm to d ,  and d, gives the respective outside diameters as in the case of standard 
helical gears. 

By assigningappropriate values, it is quite easy to observe from the above equations that  the 
gear having the larger number of teeth may be the smaller one in diameter of the pair in certain 
cases. Also, the angular velocityratio can be obtained only by using the ratio ofthe tooth numbers 
and not by using the ratio of the pitch diameters as  these are not directly proportional to  the 
number of teeth. 

For crossed helical gears, the gear tooth proportions have not been standardised. The 
following guidelines can be given for the designer. 

1. 
2. 

3. 

4. 

A contact ratio in the normal section of a t  least 2 gives the best results. 
The designer should aim at having equal helix angles because this results in minimum 
sliding velocity. 
With unequal helix angles having the same hand of helix, the gear with the larger angle 
should be used as the driver. 
In  order to obtain high contact ratio, a low normal pressure angle should be used. Also, 
deep tooth depth should be used. 
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The standard centre distance is given by 

a = %(L 2 cosp, + L) cosp, 

Also, the reduction ratio is given by 
z2 d2cos&, 1- d,cos/l d,cosp, 

1 = - -  . n , - - =  - 
n2 =I mn mn d,cosP, 

Putting the diameter ratio D, = d,/d,, we have 

The following relation can be arrived at by trigonometrical transposition 

(3.50) 

(3.51) 

(3.52) 

(3.53) 

When the shaft angle C = 90" then tan p, = i / D ,  

follows 
To find the condition of minimum centre distance when the shaft angle is go', we proceed as 

Since p, = 90' - PI, sec p, = sec (90' - p,) = cosec p, 
By inserting in Eq. 3.52, we have 

a = -  'lmn (sec p , t i  cosec p,> 
2 

Differentiating the centre distance a with respect to p,, we have 

(3.54) 

- = - ',me (secp, t anp l  - i cosec/l, cotp,) 
dB1 2 

Setting daldp, = 0, we get the conditions for the minimum value of a. Thus 

sec tan p, = i cosec p, cot PI, or sin3 p,Icos3 p, = i :. tan /3 = il" (3.55) 

Inserting the relevant values in Eq. 3.54, we get the minimum value of the centre distance 

(3.57) 

In case of non-parallel shafts connected by gears, the crossed helical gear system affords the 
possibility of altering the space requirements (if such need arises) without changing the centre 
distance, module, gear ratio or shaft angle as can be seen from Example 3.2. If necessary, it is 
also possible to calculate the relevant gear data for conversion to a different gear ratio from the 
original one, while keeping the centre distance constant. 

Example 3.2: Given: shaft angle = go", gear ratio = 1 : 1, p, = p, = a", mm = 2.5, 
Z, = zZ = z = 60 

The above identical gears are t o  be so changed that the drivengear (No. 2) has a pitch diameter 
of around 150 mm in the new arrangement. 
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Solution: d, = mnz,/cos PI = m,z/ sin p,, d, = m,zJ cos p2 

a = (d,+$)/2 = - x 2d  = d = 2.5x60lcos 45" = 212.132 mm 1 
2 

sinp,+cosp, 
sin p2 cos p, 

a = --(d,+$) 1 = 

Also 

Therefore 

- 1  
2 x 212.132 cotp, = -- 2 a  1 =  

4 150 
whencep, = 28.675" 

Therefore 
d, cos pz - 150 x cos 28.675' = 52.64 = zz = - 

mn 2.5 

Taking an integral value ofz as 52, and substituting 

2 a  sinp, + cos p, 
m,z sinp, cosp,  
- =  

or 
212.132 sin p,+cos f l ,  

m,z 2 . 5 ~ 5 2  2 sinp, cosp, 
- - - -  - a 

Squaring 
1+ sin Z P ,  
sin2 z P ,  2.662721 = 

This is a quadratic equation, yielding fl,= 27' 59' 2.8". 
Final values : d, = 2.5 i< 521 sin 27" 59' 2.8" = 277.052 mm 

d, = 2.5 x 521~0s 27" 59' 2.8" = 147.212 mm (which is around 150 mm) 
a = (d, + dJ2 = (277.052 + 147.212Y2 = 212.132mm 

This tallies with the original value of the centre distance. 
It has been stated before that the crossed helical gears have point contact while in mesh. Also, 

the load carrying capacity is inconsequential. Because of point contact, even light tooth forces 
generate very high compressive stresses. Moreover, while the sliding of teeth of gear pairs 
previously discussed is up and down along the tooth profile, in case of crossed helical gears the 
teeth slide also across one another. This cross-slidingphenomenon gives rise to more friction and 
the low efficiency ofthese gears is attributable to frictional loss as one ofthe contributingfactors. 

To calculate the load carrying capacity of these gears, wear and heat developed are the 
deciding design criteria, beam strength calculation being superfluous. Insufficient information 
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is available in this area and that  too is not very reliable. As such, only some broad guidelines can 
be given in this regard. 

As regards materials, bronze, non-metallic materials or  hardened steel should be used for one 
of the members comprising the pair when the slidingvelocity is in excess of 5 d s .  If we take the 
ratio blmn = 10, the following approximate formula, based on contact stress and wear, gives 
reasonably acceptable results 

Ft, 2 10 m: ZK (3.58) 

where 
Ft,  = Tangential force of the driver (N) 
K = A factor to be taken from Table 3.7 (N/mm2) 

Table 3.7 Factors Kand C,for crossed helical gears 

Material K "s c, 
pair (N/rnm*) (m/s) 

CI/Steel 6/(2+ V,) 0 to 5 7 

SteeVBronze 1042 +v,, 5to10  4 

(hardened) 20/(2 + V,) - 8 t o 1 0  2 

CI/CI 

CVBronze 

SteeVSteel 

The relative sliding velocity us is given by 

us = u, sin c/ cos fl, = u, sin C /cos fl, = v, sin p ,  + u, sin p, (3.59) 

The circumferential velocity v, is given by 

u,  = d,n, /  19100 m/s, where d ,  is in mm and n,  is in rpm 

When the pinion is driving the gear, the power loss due to sliding in terms of pinion power PI 
is given by 

(3.60) 

The coefficient of sliding friction pis a function of the material and the sliding velocity. With 
good lubrication, its value can be taken as 0.1. For the orientation of the sliding velocity u,, see 
the velocity diagram in Fig. 3.12 (a). 

In  a crossed helical gear system, the lengthwise cross-sliding of teeth which has been referred 
to before, has more pronounced effect than the other kind of sliding. For the determination of 
frictional power loss, therefore, calculations are based on the cross-sliding phenomenon, 
neglecting the other kind of sliding whose magnitude is comparatively small. The efficiency of 
toothing is given by 
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(b) 

FORCE DIAGRAM 
Fig. 3.1 2 Velocity and force diagrams of crossed-helical drive 

Here, only the loss ofpower due to slidinghas been considered to arrive a t  the above expression 
for efficiency. Besides this, there are other losses, e.g. loss due to toothing action which depends 
on i, z and m ,  bearing losses and losses due to allied factors. Eaciency of bearing can be generally 
taken as 0.9. The total efficiency is found by multiplying all the individual efficiencies. 

From Eq. 3.61 and differentiating, we get for the maximum (theoretical) efficiency, 

after setting dq Idp, = 0 
tan (P, - PJ = p 
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Putting p = tan p, where p = Angle of friction, we have 

tan (P,- &.> = tan p 
or 

B, - B 2  = tan P (3.62) 

or pi - (c - p )  = P whencep, ( c + p ) / 2  

Note that p, > If p2 exceeds a certain limiting value, the 'drive from gear No. 1 cannot take 
place. This value can be derived by putting q = 0 in Eq. 3.61. We have 

l - W n B ,  = 0 
1+P tanA 

t l =  

whence 

This shows that transmission of motion from shaft1 to shaft 2 is theoretically possible only 
when 

p, c (90' - p) 
The practical limiting value of p2 is still less. When the shaft angle is 90' 

(3.63) 

For high and practically unaltered efficiency during the drive, it is desirable that the helix 
angle of the driving gear p, should lie between 30' and 60'. 

In a crossed helical gear drive, the output is limited by the contact pressure and the heat 
developed. For a reasonable life, the material selected should be wear resistant and an adequate 
supply of lubricant should be ensured. Allowable contact stress should be around half of that 
assumed for normal spur or helical gear drive having the same material and conditions. Because 
ofpoint contact, it serves no purpose to increase the gear widths. The minimum valuesfor a shaft 
angle of 90' are b, = p,,  and b, = p, , ,  where p ,  stands for the transverse circular pitch and b for 
the width as before. For usual calculations, the value taken is 

b = 5 to lornm 
Recalling Eq. 3.58, 

F,, 2 10 rn; K K  = 1000 P,/u, 

transposition, we get 
lOOP,(kW) 

nu,(m / s ) K ( N  / mm2) 

(3.64) 

(3.65) 

To check against overheating, the following formula can be used 
Factor of safety for temperature. 
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(3.66) 

The values of C, are to be taken from Table 3.7. 
Rewriting Eq. 3.50, we get for shaft angle 90' 

* or 
z2mn 1 - 1 + --- zlmn 1 -- 

2a  C O S ~ ,  2a sinp, 

If the parameters, e.g. a, mn, z, and z,, are known or are assumed and their values inserted in 
the above equation, it becomes an equation of fourth degree to solve for the helix angle p,. This 
equation can be graphically solved by trial and error, and by recalculation to arrive at the precise 
values. Such methods are given in detail in relevant books. 

Referring to  the force diagram in Fig. 3.12 (b) in which the tooth flank of the driven gear is 
shown in operating condition with its driving gear, we can derive the following expressions for 
the different forces with gear 1 as the driving member 

FN' = F, COS u 
where FN is the normal force on the tooth surface as before, and other symbols have the usual 
meanings in the following equations, 

- 

Tangential forces 
F N  cos a 

cos(P1 - P )  = cos p cos ( P , - P )  

= cos p cos ( P 2  + P )  

Fi F,,= - 
cos p 

FNcos a 
F 12 =&cos(P2+p) cos p 

Axial forces 
F N  cos a 

cos (PI- P) G Fa,= -COS (P I  - p) = 
cos p cos p 

F N C O S  a 
cos p cos (A + P )  F =- Fi cOs(p,+p) = a2 cos p 

(3.67) 

(3.68) 

(3.69) 

(3.70) 

Example 3.3 : Given : C = 90" n, = 1440 rpm, n2 = 300 rpm, P ,  = 0.9kW, a = 20". To find the 
gear dimensions and other relevant data ofa crossed helical gear drive. Due to space constraints, 
the diameter of the pinion should not exceed 120 mm. 

Solution: In case of a new design, it is customary to assume some reasonable value for one of 
the gears and then proceed further to determine other parameters. The assumption should be 
based on such considerations as design requirements, space availability, shaft diameter, 
allowable circumferential velocity and other factors. In selecting the helix angles, the designer 
should make sure that the drivinggear is provided with the bigger angle. The following guideline 
can be given 

p, 2 1 2 
for reduction gear drive 
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and 

P ,  = a for step up gear drive 

The following data are assumed for the example in question 

d,= 110 mm, p,  = 60", p = 0.1, v, = d, n,/19100 = 110 x 1440119100 = 8.3 d s .  

The material selected is hardened steel. us = v(sinp, = 8.31 sin 60' = 9.6 d s ,  K = 201 (2 + us> = 201 
(2 + 9.6) = 1.72 

1ooxo.9 =142 m, = /X=  Jp av ,K a x 8 . 3 ~ 1 7 2  
m, = 2mm (selected) 

mil= m,/ cos p, = 21cos 60' = 4mm, m,, = Ycos 30' = 2.3094mm 

z, = d,/ mtl= 11014 = 27.5 I. 28. Actual value of d, = 28 x 4 = 112 mm 

1440 x28 = 134.4 = 135 n 
n2 300 

2, = iz, = l z l  = - 
1440 

4.8214 
Actual value of i = ZJZ, = 135128 = 4.8214. Actual value of n, = - = 298.67rpm 

Since the numerical values of z,  and z, have no common divisor, hunting tooth action is 
assured. 

d, = z, mt,= 135 x 2.3094 = 311.769 mm 

Centre distance 
a = (d, + d,)/2 = (112 + 311.769)/2 = 211.8845 mm 

If it is desired to  have the centre distance as a whole number, it can be taken as 212, and 
recalculations can be made accordingly to determine the relevant parameters, or the gears may 
be corrected. 

Efficiency 

Therefore 
tan (60" - 5" 42' 38") = 3% 

tan 60" 7 7 =  

da, = d,+ 2mn = 112 + 2 x 2 = 116 mm 

do, = 311.769 + 2 x 2 = 315.769 mm 

b = 10mn = 10 x 2 = 20mm 

Power loss 
Ps = P I  (1 - 77) = 0.9 (1 - 0.803) = 0.1773 k W  

= 4.6 112 x 20 
1360 x 0.1773 x 2 

SI = 
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Since the value of S, is greater than 1, the system is safe against temperature rise. Check 
for power transmission 

U, = 112 x 14401 19100 = 8.44 4 s  

v* = 8.44/sin 60' = 9.75 m/s 

K = 2042 + 9.75) = 1.702 N/mm2 

10m,2aKv, - 1 0 ~ 2 ~ ~ 3 . 1 4 ~ 1 . 7 0 2 ~ 8 . 4 4  = 1.8kW Power capacity = - 
1000 1000 

Since this is greater than the required value of P ,  = 0.9 kW, the calculated gear data of the 
crossed helical gear system are suitable for the purpose. 

3.16 Herringbone Gears 

It  has been explained in Sec. 3.12 that a pair ofhelical gears meshing with each other develops 
radial as well as thrust loads. These loads are taken by the bearings on which the shafts carrying 
the gears are mounted. 

In certain operations, the high thrust forces may be objectionable for various reasons and 
undesirable for the bearings and other components of the equipments. These forces therefore 
should be avoided as they may lead to  vibrations and other complications. One solution lies in 
using the herringbone or double-helical gears. Such a gear is in effect equivalent t o  two helical 
gears of opposite hands, mounted side by side on the same shaft. When two such gears are in 
mesh, the pair develops equal and opposite thrust reactions with the result that they cancel out 
the thrust loads (see Fig. 1.5). 

Normally, t o  provide a run-out clearance for the cutting tool, e.g. hob, milling cutter, grinding 
wheel, and other cutters, a suitable gap is provided between the helices on the gear blank. This 

I gap is in the form of a groove, the depth of which should be somewhat below the root diameter 
of the gear. The width of this groove required will depend upon the cutting process used. There 
are, however, gear generators which produce double-helical gears with continuous teeth, i.e. no 
gap needs to  be provided between the opposite-handed helices. 

Double-helical gears are generally used in parallel shaft transmissions where smooth, con- 
tinuous motion in high speed drives is intended. The pitch line velocity usually ranges from 5 m/ 
sec to 15 m/ sec in normal applications and it may rise t o  6Om/sec or more in special equipments, 
such as marine reduction gears, turbo-alternators, and similar machines. 

In case of low angular speeds and heavy duty drives, like, rolling mills, the teeth are usually 
cast. For higher speeds coupled with heavy loads where accuracy is of prime importance, the 
teeth are made by milling or generation methods. 

The value of helix angle p used in case of double-helical gears normally lies between 20" to  
45", with higher anglesfor precision gears and low tooth pressures. As in the case of so many other 
types of gears, failure in herringbone gear transmission is seldom attributed to  the tooth 
breakage. I t  is more likely to be due to  fatigue. Excessive wear may take place or fatigue may 
cause sub-surface failures such as pittingor spalling. Surface durability, therefore, should be the 
design criterion. The contact stresses should be within the permissible limits for wear. Since 
pinion is the weaker member and subject to  a greater amount of wear, it is the general practice 
to base the power rating calculations of the gear pair on the pinion data. 
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Three types of designs are usually followed in case of herringbone gears. 
(i) Teeth are cut on single solid blank. Normally, pinions are of this type. 

(ii) Teeth are cut on two separate blanks and then the gears are joined together by means of 
bolts or similar fasteners. The magnitude of the helix angle is the same, but the helices 
are of opposite hands. Dowel pins may be used for alignment. 

(iii) Teeth are cut on rings and the ring-gears are then shrink-fitted on the circular stepped 
seats on the solid hub, machined properly to accept the rings. Grub screwsmay be inserted 
in-between the hub and the rings for additional securing. 

Proper alignment is of vital importance when the gear is made of separate components. It is 
to be ensured that the two halves are exact mirror-images of each other. The gears may be post- 
machined so that alignment with the pinion is perfect and the system runs smoothly when in 
mesh. There is, however, one type of design of herringbone gears where the teeth on the two 
halves of the same gear blank are cut staggered to  each other. This design is known as a Wuest 
gear, named after its inventor. 

The herringbone gears are generally sturdy in construction, are resistant to shock loads and 
can take frequent reversal of direction of loads without any noticeable detrimental effects. 

Because these gears usually have high helix angles, pinions havingavery few number ofteeth 
can be cut without undercutting. The minimum number of teeth of a pinion in such cases may 
be as low as 4 or 5.  This is a distinct advantage of the herringbone gear, besides others. 

A normal practice followed in case of herringbone gears in mesh is to  have one of the shafts 
as a floating shaft. This is done to facilitate equal distribution of load between the two sections 
of the gear. 

The large helix angle of these gears allows more over-lapping of tooth contact which in 
consequence leads to quieter and smoother operation. Generally, the minimum face width (b) is 
kept at around 2 . 3 ~ ~  /tan p, wherep, = the circular pitch in the transverse plane. Both the single 
helical and the herringbone gears are produced using the same design techniques. 

The double helical gears, however, have their own limitations as regards application. If i t  is 
required to fit a helical gear by face-wise sliding along the teeth so that the gears are slid into 
mesh by axial displacement in a cluster in which the other members have already been 
assembled, then obviously this cannot be done in case of a double helical gear. In case of axial 
thrusts, if both the shafts have to sustain large axial loads caused by some extraneous source, 
the single helical gears are preferable as the tooth pressure can evenly distribute itself along the 
width of these gears which is not the case in case of double-handed gears. The herringbone gears 
are also not suitable in case of application which calls for anchoring of both shafts against axial 
movement. However, as pointed out earlier, the double-helical gears induce no additional thrust 
as compared to the single helical gears. 

Example 3.3a : In a turbine drive, a pair of double-helical gears is used with following data: 
z 

z, = 31, z2 = 123, u = 2 3.3243, m, = 3 mm, p = 31° 

a ,  = 20°, x, = +0.14, x, = -0.14, b, = b2 = 2 x 92 = 184 mm, 
2 1  

nominal power, PI = 300 kW, service factor = 1.1, n, = 3225 rpm. It  is required to select the proper 
materials for the gear set. 
Solution: 

300 x 11 = 977Nm. Torque,T, = 9550 x - x service factor = 9550 x - 
n1 3225 
P, 
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Tangential force or transmitted load at the pitch circle 
2000T, - 2000 x 977 F,=-- = 15,090N 

d, 129.49 
Using Figs 2.48 and 2.49, we get the form factors for pinion and gear having z, = 37, z2 = 123, 
p =  31', x,  = + 0.14 and x,  = - 0.14, as follows 

qkl = 2.25 

qk2 = 2.25 (by extrapolation) 

The contact ratio factor, 'q,' is taken to be 1 in both cases. The bending stresses, as per Eq. 3.40, 
are given by 

15090 
184 x 3 

x 2.25 x 1 = 62NImm' 4 k l  4, = 

15090 x 2.25 x 1 = 62N/mm2 
= 184 x 3 

To find the contact stress, we use Eq. 3.43 

P e p  = Ym YP YL /p 2000 Tl 

From Table 2 . 1 7 ~ ~  = 269 for steel gears, y p  is calculated as per Eq. 3.45 and found to be 1.56. Here, 
af, = at for So- gearing. Tile transverse pressure angle, af, and the base helix angle, Pb, are 
calculated as per Eqs 3.9 and 3.46, respectively. The value ofy,. is taken to be 1. Inserting the 
above values, we have 

Consulting the strength of gear materials given in Appendix E, we find that the materials 45 C 
8 or  40Cr 4, after hardening by flame or induction hardening processes, will serve the purpose 
adequately. The dimensional parameters can be fixed as per Table 3.2 on So- gearing of helical 
gears. 

3.17 Replacement of Diametral Pitch Gears by Module Gears 

Many machines are equipped with components which are based on the FPS system of measure- 
ments. In such equipments, the gears are based on the diametral pitch (DP) system of 
calculations and are cut or generated by DP cutters. Since the inch system is on the way out, the 
designer is often asked to replace the DP spur or helical gears by module gears without tampering 
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with the existingparameters like centre distance, gear ratio, and available space in the machine 
as most of the machine shops these days stock module cutters only. 

The above objective can be achieved in two ways as illustrated in the examples which follow. 
Since the changes in strength properties are negligible and since sufficient factor of safety is 
usually taken in the initial design calculations itself, checking from the point of view of strength 
is normally not necessary. 

Example 3.4 Given: diametral pitch = 10, z ,  = 21, z, = 60. 
To replace the DP gears by module gears, keeping the gear ratio and the centre distance the 
same. 
Solution: 

(21+60) = 4.05inch = 102.87 mm 1 1 Centredistance = - x - x (z,+z,) = - 
2 DP 2 x 10 

Reduction ratio i = 60121 = 2.8571. As per Appendix D, the nearest module to DP 10 is 2.5. To keep 
the centre distance unaltered, the gears to be corrected. We proceed as follows 

z,+zz cosa 
2 cosa, 

Centre distance a =m-- 

or 

(as per Eq. 2.35) 

21 + 60 cos20" 102.87 = 2.5 x x -  
2 cos a, 

a, = 22" 20' 5125" 
2 x tan20" (x, + x2) i nvaw = + inv20" 

2, + 2 2  

whence 

(as per Eq. 2.33) 

Inserting the values and interpolating for the value of inv aW from Appendix H, we have 

2 x 0.36397 (x, + x2) 
0.021061 = + 0.014904 

81 

whence 

Equation 2.41 yields 

xl + xZ = 0.6851 

0.5(2.8571 - 1) 
= 0.4184 0.6851 + x ,  = 

(2.8571 + 1) (2.8571 + 1) 

X ,  = 0.6851 - 0.4184 = 0.2667 

d, = m ~ ,  = 2.5 x 21 = 52.5, d, = 2.5 x 150 

du, = Z(102.87 + 2.5 - 0.2667 x 2.5)- 150 = 59.4065 mm (as per Eq. 2.38) 

da, = 2U02.87 + 2.5 - 0.4184 x 2.5) - 52.5 = 156.148 mm 

The final values are 

z, = 21, z, = 60, m = 2.5, i = 2.8571,d1 = 52.5, d, = 150 

dul = 59.4065,da, = 156. 148, x, m = 1.046, x,m = 0.66675 
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Check: 
as follows 

Similarly 

The amount of centre distance modification, topping and the top clearance are checked 

2 ym = (mz, + 2m + 2 x,m) - dn, = 0.1855, or ym = 0.09275 

2 y m  = (mz, + 2 m + 2 x,m) -do, = 0.1855, or 

ap-a = y m  

ym = 0.09275 
Again 

(as per Eq. 2.36) 

or dl+4 +x,m+x,m -a=ym [H 1 
Inserting the value, we get 

Hence all the values of ym tally 
ym = 0.09275 

Clearance at the top (as per Eq. 2.37) 

Putting the relevant values, we get 

c = 0.625 mm = 0.25 x module 2.5 
Hence, the clearance conforms to the value stipulated in the basic rack given in Sec. 2.1. 

Example 3.5 Given: data as in Example 3.4. 
To solve the problem by using helical gears. 

Solution: Figure 3.13 shows a pictorial representation of helical gears with different helix 
angles. A study of this figure reveals the fact that by varying the helix angle, we can adjust the 
centre distance between a pair of meshing gears without altering the gear ratio or the number 
of teeth of individual gears. We shall take advantage of this property in the following manner to 
solve this problem. 

mz,  - 2.5 x 21 mz, - 2.5 x 60 d , = - -  ,d, = - - 
cos p cos p cos p cos p 

1 2.5 or 102.87 = - x 81 x - 1 
2 cosp 

a = Z(d, + d2), 

whence 

Therefore, the final values are 

p = 10’ 10’ 54.29” (LH and RH) 

d, = 53.34 mm, d, = 152.4 mm, 

do, = d, + 2 m = 58.34, 
do, = 157.4 

Due to certain restrictingfactors like insufficient top land due to a high correction factor and 
dificulty in machine-setting for accurate helix angle, sometimes a combination of the two 
methods described above is employed to attain the desired values, that  is, gears are made both 
corrected and helical. Such a measure poses no problem if the gears are cut by a generating 

4 
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method. However, while cutting gears in a milling machine, it may not be possible to adhere to 
the exact helix angle found by calculation due to indexing difficulties of the particular machine. 
Again, if corrected profiles of gear teeth are to be cut in a milling machine, this necessitates 
making of a form-tool to conform to the particular tooth profile. This may neither be practically 
possible nor economically viable. In such cases, gears are cut by standard milling cutters by 
compromisingon the gear ratio, provided that the maintenance of the gear ratio is not that rigid 
and as such, it can be changed a little without unduly hampering the gear drive. Such a flexible 
case of gear ratio is illustrated in the Example 3.6. 

. .  

Fig. 3.13 Orientations of helical gear 

Exampk 3.6: Giwn: rn = 2.5, a = 102.87 mm (as in previous example), helix angle can be 
eusted to the nearest minute only. 
To find z, and z,. 
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Solution: Taking p =  lo' at first, neglecting the minutes and seconds of the helix angle of 
Example 3.5, we have 

1 1 2.5 
a = 102.87 = -(dl+d,) = - ( z ,  +z,)- 2 2 cos 10" 

zl+z, = 8104573884 or 

Sincez, +. zz must be an  integral number, and since 81 has already been used in the previous, 
examples, we try other numbers. 
By transposing, we get 

cos p = 2'5 (z,+z,) = 0.012151258 (z,+zz) 
2 x 102.87 

By trial and error, we find that one combination is z1 + z, = 83. In that case, cos pis practically 
equal to 1, that is, /.3 = 0'. 
Taking z, = 21 and z, = 83-21 = 62 

1 a = - x 2.5 x 83 = 103.75 m m  
2 

Obviously, this combination cannot be used as the centre distance should be kept at 102.87 
mm. Again by trial, we find that a value of /I= 13' 34' and z, + z, = 80 will serve the purpose as 
the following calculations show 

z, = 20, z, = 60, d, = 2.5 x 2Olcos 13' 34' = 51.435 mm 

Similarly, d, = 154.305 mm 

1 
2 

a = - (51435+154.305) = 102.87mm 

Hence, this combination can be accepted as it more or less satisfies the conditions. The reader 
is advised to check for backlash in each case and assign the proper tooth thickness or tooth 
distance tolerances. 

3.18 Efficiency of Helical Gear Drive 

When compared to spur gears, i t  can be seen that the meshing conditions of helical gears have 
a considerable influence on the efficiency of the system. This is mainly due to the different 
natures ofload distribution patterns in case of the two types of the gear drives during the course 
of action. 

In amatingpair of spur gears, the tooth contact relations and load distribution are relatively 
simpler than in case ofhelical gears in mesh. As pointed out in previous chapters, contact begins 
along the whole of the top edge of the driven tooth in case of spur gears. The frictional loss is 
greatest at this point. In contrast, the load distribution in case ofhelical gears takes place along 
a diagonal over the tooth surface, as explained in Sec. 3.5. One result of such action is that the 
height ofthe point ofgrip between the mating teeth varies continuously along the diagonal, ifone 
considers each individual transverse section of the tooth. This results in a lesser amount ofloss 
due to tooth friction than in case of spur gears with identical data. The frictional loss is roughly 
about 20% less. 
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Equation 2.11 is repeated here 
q = l-fP(q*l,) 1 1  

The above equation gives us an expression for the efficiency for spur gear drives. It can be 
shown that the efficiency for helical gears is given by 

q = l - 0 . 8 c o s p f p  -+- 
(:I 3 (3.71) 

In the above equation, the different factors have the same meanings and values as given 
previously in the relevant sections, (Secs 2.6 and 2.29). 



Worm and 
Worm-Wheels 

4.1 Fundamentals of Worm and Worm-Wheel Drives 

Worm and worm-wheel drives are normally used for non-parallel, non-intersecting, right-angle 
gear-drive systems where high reduction ratios are involved, though they are also employed as 
low to medium speed reducers in many applications. A large reduction ratio also automatically 
means a large multiplication of torque. Avariety of worm-drives have been developed which are 
quite novel and innovative as  to their shape, scope of application, kinematic properties and other 
aspects. In  this chapter, we will restrict our discussion only to those types which are most 
commonly used in usual, conventional applications. 

The worm in a worm-drive system is generally the driving member, though this is not always 
the case. The most commonly used type is the single-enveloping, cylindrical worm. The tooth 
resembles the thread of a screw which wraps around the root cylinder in a helical fashion. The 
profile of the thread is either straight or slightly curved, depending upon the type of design used, 
as discussed later in this chapter. The worm-wheel is hobbed on a blank which is curved 
widthwise. This is called a “throated” blank, and this is done so that  the wheel can envelope the 
worm. The hob used for generating the worm-gear is an exact duplicate of the worm. In  other 
words, the shape of the worm-tooth defines the shape of the wheel tooth. This means that the 
wheel tooth must be cut by a tool that produces a profile conjugate with the thread on the worm. 
The wheel teeth are curved and are thicker at each end than at the middle. 

“he meshing action in a worm-drive is a combination of sliding and rolling, with sliding 
prevailing at higher reduction ratios. In  this respect, this drive is similar to the crossed-helical 
gear-drive. But the worm-drive has greater load-carrying capacity than the crossed-helical 
system because the worm-drive has a line contact whereas the crossed-helical has a point 
contact only and as such it is not considered for power transmission as explained in Sec. 3.15. 

The teeth of the worm in a worm-drive system may or may not be of involute form. This will 
depend upon the type of tool used in cutting the threads. The tooth profile of the wheel is a n  
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involute. Aworm may have more than one tooth or thread helix. In gear technology the number 
of teeth is referred to as the number of “start”. Thus, there can be single-start or multi-start 
worms. The reduction ratio of a worm-wheel set does not depend only on the diameters of the 
worm and the wheel. To find the reduction ratio, the simplest method is to divide the number 
of teeth of the wheel (z,) by the number of starts of the worm (z,). 

The worm and the wheel have the same hand ofhelix. However, unlike a set of parallel helical 
gears, the magnitudes of the helix angles of worm and the wheel are quite different. It is 
customary to specify the “lead angle“ of the worm. The lead angle is complementary to the helix 
angle. With a 90’ shaft angle worm-set, the lead angle of the worm is equal to the helix angle 
ofthe wheel. It is the axial pitch of worm which is normally usedfor specification. The axial pitch 
of the worm is numerically equal to the circular pitch of the worm-wheel. I n  case of module too, 
the calculations are based on the axial module and not on the normal module. 

Though orientations having other shaft angles are possible, the components of a worm-drive 
are generally mounted on non-intersecting shafts with 90’ shaft angle. While the worm bearings 
are designed for high thrust loads, the wheel bearings are meant to withstand high radial loads. 
As far asmounting is ,concerned, ipis imperative that  the shafts on which the members ofthe set 
are mounted be very correctly aligned. The centre distance must tally perfectly with the 
calculated value, though some leeway in centre distance can be achieved by using corrected 
wheels as discussed in Sec. 4.7. 
As regards the shape of the worm-thread, several types are in vogue. These will be taken up 

in Sec. 4.2. Broadly, four types are in common usage-thread which is straight-sided in the axial 
section, thread which is straight-sided in normal section, thread having a tooth profile which is 
convex in normal section and concave in axial section, and thread which has  an  involute profile 
in the transversk section. Besides these, a fifth type with concave profile of worm-tooth is also 
used in industrial applications for its many advantages (see Sec. 4.4). 

Since a considerable amount of driving energy is dissipated mainly in the form of heat due to 
the sliding action between the mating components in a worm-set, entailing frictional power loss, 
it is therefore logical for a designer to endeavour to minimise the coefficient offriction by various 
means. One way to achieve this is to select dissimilar metals for the worm and the gear. 
Combinations of worm and gear materials are discussed in several sections of this chapter at 
relevant places. 

Since the worm-gear is produced by the generating method, it can be corrected in the same 
manner as explained in the case of spur and helical gears. However, as the parameters of the 
hob cutter and those of the worm remain constant, only the wheel can be corrected and not the 

The wide application of the worm-drive system stems from the fact that the system affords to 
have a design with higher transmission ratio with comparatively lower weight, smaller overall 
dimensions and space requirements. The arrangement is thus compact and also ensures a 
smooth and noiseless operation. Self-locking ability or irreversibility of drive, when required, is 
another advantage which is of utmost importance in applications like hoisting equipment and 
allied contrivances, because the load can be held in suspended condition when the motive power 
is Gthdrawn. Low overall efficiency, high frictional losses givingrise to heat, and comparatively 
low transmitted power are the main disadvantages. 

worm. 
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4.2 Types of Worms 

Depending on the type of worm, the worm -tooth can be manufactured in a lathe with a turning 
tool or in a hobbing machine employing a hob or  a circular cutter. I t  can be produced by other 
methods as  well. 

For simple and economical manufacture, the cutting edge of the tool is provided with a simple 
straight or curved form. In relation to the manufacturing processes involved, the under- 
mentioned tooth forms of the worm are generally used in practice (Fig.4.1). 

(i) Type Z A  The tooth flank is defined in the axial profile. This type of worm tooth has a 
trapezoidal form with straight-sided tooth profiles in the axial section. In transverse section. 
that is, in  section at right angles to the axial section, the profile is an Archjmedian spiral. When 
section is taken normal to  the tooth, the tooth profile is convex. It  corresRonds to  a screw with 
a trapezoidal or acme thread. It  can be produced by a single poinf tootwith cutting edge having 
the required profile and is located in the axial plane of the worm. Angle a in half axial profile 
of the tool is the tool angle. This type of worm can also be produced by a pinion type cutter working 
in an axial plane of the worm. 

(ii) Type ZN: This is similar to  type ZA except that instead of the axial section, the tooth 
profile is of trapezoidal form with straight sides in the normal section. Favourable contact 
relations can be obtained in this type. The tool is of trapezoidal form in the normal section. The 
tooth profile is slightly curved in the axial section. The profile can be made by a turning tool and 
approximately by end-milling cutter or face and side milling cutter. 

In this type the tool is of trapezoidal form, but the tooth profile of the worm 
is convex in normal section and concave in axial section. This type is frequently used for certain 
advantages it offers as regards cutting processes. Tooth profiles are obtained by means of side 
and face milling cutter or grinding wheel. Angle a is the tool angle in the half axial profile of the 
tool and angle yis the lead angle of the worm. 

This type of worm is analogous to a helical gear with involute toothing and 
having small number of teeth. The worm-thread is an involute helicoid. The tooth form is an 
involute in transverse section as in the case of a helical gear, convex in normal section and 
approximately hyperbolic in the axial section. The tooth profile is produced by a trapezoidal 
shaped turning tool which is properly set or by a grinding wheel or by special hob-cutters. 

Besides the above four common types, worm-drive with concave-convex profilqs is also used 
in the industrial field for its many advantages. This is called a CAVEX drive and is separately 
treated in Sec. 4.4. 

In normal practice, straight cylindrical worms with trapezoidal profile of worm-thread and 
wheel with involute toothing are used. This type of pairing has theoretically only a line contact. 
Special profiles like CAVEX offer greater load capacity, lesser frictional loss, continuous 
maintenance of lubricating film and high hydrodynamic lubricant pressure which reduces 
output loss and wear, impact damping properties and noiselessness. Other advantages and 
special properties are given in detail in Sec. 4.4 

Besides CAVEX, another similar design is from Brown and Bostock-Renk. Because of their 
special advantages, these special types of worm gearings with high capacity and specially high 
efficiency are now fast replacing the conventional types, particularly in such applications as 
cranes and similar drives where lighter construction with greater power output is of vital 
importance. 

(iii) Type ZK : 

(iv) Type ZI: 

- 
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Pinion type cutter 

TYPE-ZA 

Turning ‘tool M i d g  Cutter 

TYPE-ZN 

TYPE-ZI TY PE-ZK 

Fig. 4.1 Type of worm flanks 
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(HERE, NO. OF STARTS, Z:=4)’ 

Fig. 4.2 Worm and worm-wheel geometry 

A general view of the common\worm-drive h a s  been shown in Fig.4.2. The worm and wheel 
arrangements can also be categorised according to the envelopment point of view. This is 
explained below: 

Single-enveloping worrn-gear This type of worm gear h a s  been shown in Fig. 4.3. The single 
enveloping worm-set is made in such a way tha t  the wheel wraps around or envelops the worm 
thereby partially enclosing it. The worm-gear is “throated” to achieve this purpose. I n  this  type 

., 
Fig. 4.3 Single enveloping worm-wl ieel 

of configuration, it is theoretically a “line contact”. Under load, there is some area contact 
because of flattening effect. This line contact may extend either across the face width or across 
the portion of the tooth which is in the region of action. While in action, the line sweeps across 
the whole width and height of the tooth. Though similar to helical gears as f a r  as the meshing 
action is concerned, the slidingvelocity is much higher in the worm-drive for the same pitch line 
velocity. 
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CIRCULAR PITCH ’ / ‘  

Fig. 4.4 Double enveloping worm-wheel 

Double-enveloping worm-set In this type, shown in Fig. 4.4, both the worm and the wheel are 
throated and, the worm is also curved longitudinally to fit the curvature of the wheel. In double- 
enveloping type, the system can have “area contact”. The alignment must be accurate and the 
mounting dimensions should be strictly adhered to. The worm and the gear must mutually fit 
exactly at the middle axially. This type has more tooth surfaces in contact than the single- 
enveloping type. Consequently, the larger contact area enables a double-enveloping worm-gear 
system to  have increased load carrying capacity and higher efficiency at normal speeds. 
However, more heat is generated at high speeds and hence, copious lubrication should be assured 
to prevent scoring and overheating. 

The double-enveloping worm-set is also known as the “globoidal worm-gear pair”. The worm 
is sometimes referred to as an “hour-glass” worm because of its peculiar shade. It can be easily 
seen from Fig.4.4, that the linear pitch is not constant from thread to thread. The profile of the 
worm thread must also continuously vary and so does the lead angle. 

Since more teeth share the load, the unit pressure is low, leading to longer life, provided the 
lubrication and other aspects are in order. The system, however, is comparatively difficult to  
manufacture as special cutting tools are required. 

Besides the worm and wheel systems described so far, there are a number of other combina- 
tions described below which find place in industrial usage. 

(i) Cylindrical-worm and h&calgear A standard single-start worm can mesh with a standard 
helical gear. This simple arrangement is economical and does not require rigid maintenance of 
alignment or centre distance. Existing helical gear in a system can be made to operate with a 
suitably designed worm. However, power capacity is low due to point contact. 

(ii) Enveloping-worm and spur or helical gear Here, the worm is throated, hour-glass type, 
while the gear is either standard involute spur or helical. The system is good for indexing but 
is not recommended for high power applications. The drive makes a line contact. 

(iii) Wildhaber worm-drive This is same as type (ii), except that  the gear has a straight-sided 
tooth form instead of an involute one. Extremely high accuracy in tooth spacing can be obtained 
in this type of worm-drive. Axial alignment of worm should be strictly maintained. The drive 
makes a line contact. 

(iv) Hindley-worm drive This is a double-enveloping worm-drive system and is the only one 
with area contact among the four types discussed here. This type, with certain modifications, 
is also known as the “Cone-drive” system which is named after Samuel Cone. The drive has the 

I 
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hour-glass type worm and the gear is throated. In this type, the design is compact and the load 
transmitting capacity is high. Strict axial alignment is a prerequisite. All teeth are straight 
sided, and special tooling and equipment are required to cut the teeth. Space requirements are 
small compared to the output delivered. 

4.3 Basic Parameters of Worm and Worm-Wheel 

The basic dimensional parameters of the worm and the wheel have been illustrated in Figs 4.5 
and 4.6. These parameters as well as other relevant details connected thereof will be discussed 
in this section. 

,Axial Section of worm 

Right-HaAded worm Left-Handed worm 

Fig. 4.5 Basic parameters of worm 

The reference profile of a worm-drive is taken in the axial section of the worm. The different 
tooth dimensions, namely, height of tooth, clearance a t  the tip, tooth thickness, and other 
measurements are taken in this profile. The definitions and relations of these parameters are 
given in the following paragraphs. 

Number of starts of worm A worm can have a single or more threads or teeth which are wound 
around the cylindrical body of the worm along the length of the worm. The number of such 
threads has been termed as the number of starts and is denoted by zl. The number of starts 
should not normally exceed 6. If self-locking or irreversibility of drive is desired, then only single 
start worms are used. 
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Fig. 4.6 Basic parameters of worm-wheel 

Middle circle diameter of worm This is the nominal dimension of the worm. I t  is denoted by d, 
or d,,. It is the diameter of the reference circle of the worm and is analogous to  the pitch circle 
diameter of a gear. Generally, the value of dml lies between 25 to  60 % of the centre distance. 
Axial module ofworm Incase of worm, the axial pitch is normally usedas a specification factor. 
The axial module is related to  the axial pitch by 

pa= n m  (4.1) 

where m is the axial module and pa the axial pitch. Since in case of a worm-drive, it is the axial 
module which is the reference module on which all calculations and specifications are based, it 
is customary to denote this module as m, without any subscript. However, some authors use ma 
for axial module and m,, for normal module. These two modules are related to each other by 

(4.2) 

where y,is the middle lead angle of the worm. As a guiding value, m can be taken to have a value 
which lies between dm1/15 to d,,/6, with an average value of 0.1 dm, 

Axialpitch of worm The axial pitch is the distance, measured axially, from a point on one tooth 
to the corresponding point on an adjacent tooth, and is given by 

(4.3) 
Lead of worm This is denoted bypz, and is defined as the distance, measured axially, between 
two consecutive point on the same worm-tooth when the tooth helix makes a complete turn 
around the axis. If the number of start is one, thenpL =pa. In Fig. 4.5 (top portion) the number 
of start (2,) is 4. Hence, in this case, p ,  = 4 pa. 

Lead angle ofworm This is the angle subtended between a tangent to  the pitch helix (i.e. the 
helix on the middle cylinder) and a plane normal to the axis of the worm. This is also known as 

m (or ma) = mn/cos y, 

5 pa = m = p,/zl 
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the middle lead angle of the worm and is denoted by yo r  y,. The helix angle of the worm is 
complementary to the lead angle, that  is, lead angle = 90"- helix angle. Thus, a worm can be 
thought of as a helical gear whose tooth makes a complete revolution around the pitch cylinder. 
The lead angle is given by 

P. -1- nmz - mz, 
r d ,  n d ,  d ,  

tan y, = - - (4.4) 

Form number of worm This is the ratio between the middle circle diameter and the module, and 
is given by 

4 2, = - 
m (4.5) 

This is a n  important parameter of the worm as  it determines the shape of the worm and as a 
consequence also determines the moment ofresistance ofthe worm against bending. We can also 
write 

zF=7 ZF40 
Fig. 4.7 Effect of form number 

(4.6) 

It can be seen in Fig. 4.7 how the form number affects the same shape of the worm, keeping other 
parameters ofthe worm-drives constant, e g .  the centre distancea, the trqnsmission ratio i, and 
the number start  z1 = 1. With smaller z,, the worm diameter is smaller, greater lead angle, 
greater higher deflection and lower circumferential velocity. With larger value ofz, the case is 
reversed. In  practice, z, lies between 6 and 15. For normal design, an average value ofz,. = 10 
can be taken. 

Addendum, dedendum and whole depth of tooth If the lead angle is small, the addendum and 
dedendum should be selected in relation to the axial module. Recalling Eq. 4.2, it can be seen that  
as the lead angle increases, the axial module also increases for the same normal module. The 
tooth height also increases. The tooth height for larger lead angle is found with reference to the 
normal module, a s  in this way certain unfavourable consequences like peaked tooth on hob as 
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well as on the worm and the wheel can be avoided. Hence, the following practice is generally 
adopted 

ha = m and h,= 1 .2m for y s 15' (4.7) 

Tooth height = h,  = h, = ha + h, 

ha = mn and h,= 1.2 mn for y >  15" (4.8) 

(4.9) 

Pressure angle The pressure angles used in worm gearing depend upon the lead angles. The 
pressure angles must be large enough to avoid undercutting of the gear tooth on the side at which 
the contact ends. With increased lead angle, the cutting condition of the worm-wheel cutter 
becomes unfavourable. For manufacturing reasons, greater pressure angles are selected for 
largerleadanglesas shown inTable 4.1. Asatisfactory tooth depth is also obtainedin the process 
by choosing the proper pressure angle. 

Table4.1 Recommended pressure angles in relation to lead angle 

Y upto 15' over 15' up to 25' over 25' up to 35' over 35" 

Y. 20' 
~ 

22.5" 25 ' 30 * 

In  worm gearing, the pressure angles in the normal and the axial sections have to be different- 
iated. They bear the following relation 

tan a, tan aa = - 
cos Y, 

(4.10) 

where an and aa are the normal and axial pressure angles respectively. 

Tip circle diameter of worm This is given by 

da, = d ,  + 2 hal (4.11) 

Root circle diameter of worm This is given by 

df l  = dn, - 2 h, (4.12) 

Top clearance 
clearance (c)  is 

Depending upon the type of manufacturing process involved, the value of top 

c = 0.167 to 0.3 m (4.13) 

This value should be as small as possible to enable the worm to  have a high moment of 
resistance and preferred value is 0.2-0.25 rn. 
Length of Worm The length of worm (b,)  is a function of the magnitude of load as shown 

b, = 2 m ( l + @  for light to  medium duty service (4.14) 

= 2 m 1/2z, - 4 for heavy duty service (4.15) 

i 
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where z, = Number of teeth of worm-wheel 

Tooth thickness of worm On the middle circle, it is given by 

n m  m, s = -  cosy = - 
2 2 

Pitch circle diameter of worm wheel This is given by 

d ,  = mz, 

(4.16) 

(4.17) 

For expression regarding the middle circle diameter of the wheel (dm2) for uncorrected and 
corrected gears, see Sec. 4.7 

Throat diameter of worm wheel This is given by 

da2 = d ,  + 2 ha, (4.18) 

For corrected gears, the value of hn2 should be inserted as per Eqs 4.39 and 4.40 given in 
Sec. 4.7. 

Outside diameter of wheel The value of the outside diameter will depend upon the helix angle 

d, =do;+  m 

d ,  = d a 2 + m n  

for y 515" 

for y > 15' 

(4.19) 

(4.20) 

Root circle diameter of wheel This is given by 

d f 2  = da2 - 2h, (4.21) 

Radius ofwheel face This is the radius of the circle which forms the surface line of the globoidal 
worm-wheel, and is given by 

1 
2 

r = a -  - d o 2  (4.22) 

Helix angle of wheel For proper meshing, the following conditions must be satisfied 

Lead angle of worm = Helix angle of wheel 
Axial pitch of worm = Circular pitch of wheel 

Face width of wheel This is the face to face dis ance of a worm wheel as measured along the 

(4.23) 
(4.24) 

wheel axis. The empirial relations as guidelines 1 for selection are as follows 

b, = 0.4 to 0.5 times (dol + 4m) for bronze wheels 

= 0.4 t o  0.5 times (dol + 4 m)  + 1.8 m for light metal wheels 

As per DIN recommendation b, J 0.8 d , .  

Centre distance 
if any, and the reader is referred to Sec. 4.7 for its expression. 

summarised in Table 4.2 

The value of the centre distance (a) will depend on the magnitude of correction, 

The dimensional parameters of worm and worm-wheel discussed so far in this section are 
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Table 4.2 Dimensional parameters of a worm-drive 

Description worm Worm-wheel 

Number of teeth 

Number of start of worm z, 
Guidelines for selection 

i 2 30 15-29 10-14 6-9 

4 1  2 3 4  

1, = iz, 

Axial module of worm = m = P a = m n = P I  
Transverse module of wheel If cosy Ifz, 

pa = nm = EL Axial pitch of worm = 

=1  Circular pitch of wheel 

Lead P, = PaZ1 

Lead angle of worm = 
Helix angle of wheel 

dl ZF = - 
m 

Middle circle of diameter of worm 

Form number of worm 

Diameter of d, = m z, 
reference circle = Nominal dimension of worm (dm,=dz+2xm)  

= d, = d,, 

Tip diameter 

Outside diameter 

de, = d, + 2 ha, Throat diameter = d, = d, + 2 h, 

d, = d,, + m ( y s  15') 
= d,, + m,(y>15' )  

Root diameter d,, = d., - 2 h, d,, = da, - 2 h, 

Reduction ratio 

Centre distance dl + d2 a = -k x m  
2 

Radius of wheel face r = _ -  ! m  

Top clearance 

Addendum 

c = 0.167 m to 0.3 m. Preferred value 0.2 - 0.25 m 

For ys 15' ha, = m h,,=m+xm 
For y> 15' J m, = m s x m  

Dedendum h,, = h, - ha, h,, = h, - h, 

h, = h, = 2.2m Whole depth 
For ys 15" 
For y> 15' h, = h, = 2.2m, 

I 
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Table 4.2 (Contd) 

Length of worm 

Face width of wheel 

For light or medium load 

b, = 2m(l+&) 

Forheavy load b, = 2 m d - 4  

For bronze wheels 

b, = (0.4to 0.5)  (d,,+ 4m) 

For light metal wheel 

b, = (0.4 to 0.5) (d,,+4m) +1.8m 

Normal pressure angle 
(Guiding values) 

yup to 15‘ over 15’up to 25’ 

CY” 20’ 22.5‘ 2 5  30“ 

over 25“ up to 35’ over 35” 

tan a, 
taw,=  - 

cosy  Axial pressure angle 

Hand ofworrn A worm may be classified as right-handed or left-handed, depending upon the 
direction of helix of the worm-thread in which the thread winds around the root cylinder. The 
worm is said to be “right-handed” if the tooth helix rises from left and goes up towards right as 
seen from front when the worm is held in an  upright position as shown in Fig. 4.5. If the tooth 
helix veers towards left, then it is a “left-handed” worm. Normally right-handed worms are used 
in preference to left-handed worms which are used in case of special requirements only. 

Direction of rotation in a worm-drive The direction of rotation in a worm and worm-wheel 
system of drive will depend upon the direction of helix of the worm and the position of worm- 
wheel. This can be easily seen from Fig. 4.8. 

Standardised dimensions of worm gearing To alleviate the tedium of calculation, standard 
tables (Tables 4.3 and 4.4) have been prepared from which the main parameters of worm and 
wheel can be obtained. Table 4.3 is based on standard modules as recommended by DIN 780. With 
a few exceptions, these standard modules by and large tally with those given in IS: 3734. Table 
4.4. is also based on the above modules, but here the emphasis is on maintainingstandard centre 
distances. Hence, the worm-wheels are corrected in majority ofthe cases to  attain those standard 
centre distances. 

RIGHT-HANDED LEFT-HANDED 
WORM WORM 

Fig. 4.8 Direction of rotation of worm drive 

While designing a worm-drive set, the gear designer should aim at modifying the strength and 
other calculations involved so that  the designed parameters of the components conform to the 
standard values given in the above tables, without radically hampering the essential design 
considerations, as far a s  possible, in normal cases. 
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Table 4.3 Standard dimensions of worm gearing 

Module Pa =, ZF dm dm dtl y, Remarks 
m Preferred 

Series 

1 9.000 - 18 22 13.2 6.3402' 
1 11.200 22.4 - 26.4 17.6 5.1022' 
1 14.000 - 28 32 23.2 4.0855' 
1 17.750 35.5 - 39.5 30.7 3.2245' SL 

2 6.283 2 9.000 - 18 22 13.2 12.5289' 
2 11.200 22.4 - 26.4 17.6 10.1248' 
2 14.000 - 28 32 23.2 8.1301' 

23.9625' 4 9.000 - 18 22 13.2 
4 11.200 22.4 - 26.4 17.6 19.6536' 
4 14.000 - 28 32 23.2 15.9454' 

1 8.480 - 21.2 26.2 15.2 6.7256' 
1 10.600 26.5 - 31.5 20.5 5.3891' 
1 13.400 - 33.5 30.5 27.5 4.2670' 
1 17.000 42.5 - 

2.5 7.854 2 8.480 - 21.2 26.2 15.2 13.2706" 

2 13.400 - 33.5 38.5 27.5 8.4889" 
4 8.480 - 21.2 26.2 15.2 25.2531' 
4 10.600 26.5 - 31.5 20.5 20.6742" 
4 13.400 - 33.5 38.5 27.5 16.6206" 

47.5 36.5 3.3665' SL 

2 10.600 26.5 - 31.5 20.5 10.6847' 

1 
1 
1 
1 

3.15 9.896 2 
2 
2 
4 
4 
4 

8.413 - 
10.635 33.5 

16.825 53 

10.635 33.5 
13.492 - 

10.635 33.5 

13.492 - 

8.413 - 

8.413 - 

13.492 - 

26.5 

42.5 

26.5 

42.5 
26.5 

42.5 

- 

- 

- 

- 

32.8 
39.8 
48.8 
59.3 
32.8 
39.8 
48.8 
32.8 
39.8 
40.8 

18.9 
25.9 
34.9 
45.4 
18.9 
25.9 
34.9 
18.9 
25.9 
34.9 

~ ~~-~ 

6.7789' 
5.3717' 
4.2389 * 
3.401 1' SL 

13.3739" 
10.6506" 
8.4317" 

25.431 4' 
20.6119' 
16.5113' 

~ 

1 7.075 - 31.5 39.5 21.9 7.2371 ' 
1 10.000 40 - 48 30.4 5.7106' 

1 16.750 67 - 75 57.4 3.4167' SL 
4 12.566 2 7.875 - 31.5 39.5 21.9 14.2500' 

11.3100' 2 10.000 40 - 
2 12.500 - 50 58 40.4 9.0902' 
4 7.875 - 31.5 39.5 21.9 26.9275' 
4 10.000 40 - 48 30.4 21.8014' 
4 12.500 - 50 58 40.4 17.7447' 

1 8.000 - 40 50 28 7.1250' 
1 10.000 50 - 60 38 5.7106' 
1 12.600 - 63 73 51 4.5377' 
1 17.000 85 - 

5 15.708 2 8.000 - 40 50 28 14.0361' 
11.3100' 2 10.000 50 - 

1 12.500 - 50 58 40.4 4.5739 

48 30.4 

95 73 3.3665' SL 

60. 38 
(Contd) 
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Table 4.3 (Confd) 

Module Pa 2, I F  dml dm d, y,, Remarks 
m Preferred 

Series 

2 12.600 - 63 73 51 9.0195' 
4 8.000 - 40 50 28 26.551 1' 
4 10.000 50 - 60 38 21.8014" 
4 12.600 - 63 73 51 17.6125' 

1 
1 
1 
1 

6.3 19.792 2 
2 
2 
4 
4 
4 

7.937 - 
10.000 63 
12.698 - 
17.778 112 
7.937 - 

10.000 63 
12.698 - 
7.937 - 

10.000 63 
12.968 - 

50 

80 

50 

80 
50 

80 

- 

- 

- 

- 

62.6 34.9 
75.6 47.9 
92.6 64.9 

124.6 96:9 
62.6 34.9 
75.6 47.9 
92.6 64.9 
62.6 34.9 
75.6 47.9 
92.6 64.9 

7.1 81 4" 
5.7106" 
4.5028" 
3.2195' SL 

14.1 44 1 
1 1.31 00' 
8.9506' 

26.7481' 
21.801 4" 
17.4844" 

1 
1 
1 
1 

8 25.133 2 
2 
2 
4 
4 
4 

7.875 - 
10.000 80 
12.500 - 
17.500 140 
7.875 - 

10.000 80 
12.500 - 
7.875 - 

10.000 80 
12.500 - 

63 

100 

63 

100 
63 

100 

- 

- 

- 

- 

79 
96 

116 
156 
79 
96 

116 
79 
96 

116 

43.8 
60.8 
80.8 

120.8 
43.8 
60.8 
80.8 
43.8 
60.8 
80.8 

7.2369' 
5.7106' 
4.5739" 
3.2705' SL 

14.2500' 
11.3100' 
9.0902' 

26.9278' 
21.8014' 
17.7447' 

1 7.500 - 75 95 51 7.5947" 
1 9.500 95 - 115 71 6.0089" 
1 11.800 - 118 138 94 4.8439' 
1 17.000 170 - 190 146 3.3665' SL 

10 31.416 2 7.500 - 75 95 51 14.9314" 
2 9.500 95 - 115 71 11.8886' 
2 11.800 - 118 138 94 9.6198" 
4 7.500 - 75 95 51 28.0670" 
4 9.500 95 - 115 71 22.8336' 
4 11.800 - 118 138 94 18.7256" 

1 7.200 - 90 115 60 7.9072' 
1 8.960 112 - 137 82 6.3684' 
1 11.200 - 140 165 110 5.1022' SL 
1 16.960 212 - 23 7 182 3.3744' 

12.5 39.270 2 7.200 - 90 115 60 15.5242' 
2 8.960 212 - 137 82 12.5831' 
2 11.200 - 140 165 110 10.1248' 
4 7.200 - 90 115 60 29.5042' 

24.0572' 137 82 4 8.960 112 - 
19.6536" 4 11.200 - 140 165 110 

(Contd) 
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Table 4.3 (Contd) 

y,, Remarks Module P, =, Z F  dm del dll 
m Preferred 

Series 

1 7.000 - 112 144 73.6 8.1300' 
1 8.750 140 - 172 101.6 6.51 98' 
1 11.250 - 180 21 2 141.6 5.0795' 
1 17.500 280 - 31 2 241.6 3.2705" SL 

73.6 15.9452' 
2 8.750 140 - 172 101.6 12.8753' 
2 11.250 - 180 21 2 141.6 10.0681- 
4 7.000 -- 112 144 73.6 29 .7450° 
4 8.750 140 - 172 101.6 24.5670' 
4 11.250 - 180 21 2 141.6 19.573 1 * 

16 50.265 2 7.000 - 112 144 

1 6.600 - 132 172 84 8.61 56' 
1 8.500 170 - 21 0 122 6.7097' 
1 10.600 - 21 2 252 164 5.3891 ' 
1 17.000 340 - 380 292 3.3665' SL 

20 62.832 2 6.600 - 132 172 84 16.8583' 
2 8.500 170 - 21 0 122 13.2405" 
2 10.600 - 21 2 252 164 10.6847" 
4 6.600 - 132 172 84 31.2184' 
4 W O O  170 - 21 0 122 25.201 1' 
4 10.600 - 21 2 252 164 20.674 2' 

Notes: 1. Left-handed worms are used only in special cases. 
2. Self-locking or irreversibility of the worm drive has been indicated by the letters "SL" in the remarks column of 

the Table. Self-locking is guaranteed only when the worm drive is stationary and is vibration-free. 

Table 4.4. Standard centre distance and other parameters of worm gearing 

Centre Transmission 
x Remarks distance ra ti0 Module dm =, t z, 

a i m 

7.25 
(9.5) - 
14.5 

(19) 

2.5 
2 

2.5 
2 

2.5 
2 

1.25 
1 

- 

- 

- 

26.5 
22.4 

26.5 
22.4 

26.5 
22.4 

22.4 
17 

- 

- 

- 

4 
4 

2 
2 

1 
1 

1 
1 

- 

- 

- 

20.6742' 
19.6536' 

10.6847' 
10.1248' 

5.3891 ' 
5.1022' 

3.1939' 
3.3664' 

- 

- 

- 

29 
38 

29 
38 

29 
38 

62 
83 

- 

- 

- 

+0.2000 
+0.4000 

+0.2000 
+0.4000 

+0.2000 
+0.4000 

+0.4000 SL 
0.0000 SL 

- 

- 

- 

63 

7.25 3.15 33.5 4 20.6119' 29 
(9.75) 2.5 26.5 4 20.6742' 39 
12.75 2 22.4 4 19.6536' 51 
14.5 3.15 33.5 2 10.6506' 29 

(1 9.5) 2.5 26.5 2 10.6847' 39 
25.5 2 22.4 2 10.1248" 51 
29 3.15 33.5 1 5.3717' 29 

+O. 1 825 
+0.4000 
+0.4000 
+O. 1 825 
+0.4000 
+0.4000 
+0.1825 

(Contd) 
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Table 4.4 (Contd) 

Centre Transmission 
distance ra ti0 Module dm =, 7" ? x Remarks 

a i m 

(39) 2.5 26.5 1 5.3891' 39 +0.4000 
51 2 22.4 1 5.1022' 51 +0.4000 
61 1.6 28 1 3.2705" 61 +0.1250 SL 

(82) 1.25 22.4 1 3.1939- 82 +0.4400 SL 
109 1 17 1 3.3664' 109 0.0000 SL 

7.5 

13.25 
15 

26.5 

(10) 

(20) 

(40) 

(82) 

80 30 

53 
62 

110 

4 
3.15 
2.5 
4 
3.15 
2.5 
4 
3.15 
2.5 
2 
1.6 
1.25 

40 
33.5 
26.5 
40 
33.5 
26.5 
40 
33.5 
26.5 
35.5 
28 
22.4 

4 
4 
4 
2 
2 
2 
1 
1 
1 
1 
1 
1 

21.8014' 
20.6119' 
20.6 742' 
11.3100" 
10.6506" 
10.6847' 
5.7106' 
5.371 7" 
5.3891 * 
3.2245' 
3.2705" 
3.1939' 

30 
40 
53 
30 
40 
53 
30 
40 
53 
62 
82 

110 

0.0000 
+0.0794 
+0.2000 
0.0000 

+0.0794 
+0.2000 
0.0000 

+0.0794 
+0.2000 
+0.1250 SL 
+0.2500 SL 
+0.0400 SL 

100 30 
(40) 

52 
63 

(82) 
107 

5 
4 
3.15 
5 
4 
3.15 
5 
4 
3.15 
2.5 
2 
1.6 

50 
40 
33.5 
50 
40 
33.5 
50 
40 
33.5 
42.5 
35.5 
28 

4 
4 
4 
2 
2 
2 
1 
1 
1 
1 
1 
1 

21.801 4' 
21.801 4' 
20.6119' 
1 1.3100' 
11.3100' 
10.6506" 
5.71 06' 
5.7106' 
5.371 7" 
3.3665 * 
3.2245" 
3.2705" 

30 
40 
52 
30 
40 
52 
30 
40 
52 
63 
82 

107 

0.0000 
0.0000 

+0.4286 
0.0000 
0.0000 

t0.4286 
0.0000 
0.0000 

+0.4286 
0.0000 SL 

+0.1250 SL 
+0.2500 SL 

7.25 
(10) 

(20) 

(40) 

(83) 

13 
14.5 

26 
125 29 

52 
62 

107 

6.3 
5 
4 
6.3 
5 
4 
6.3 
5 
4 
3.15 
2.5 
2 

63 
50 
40 
63 
50 
40 
63 
50 
40 
53 
42.5 
36.5 

4 
4 
4 
2 
2 
2 
1 
1 
1 
1 
1 
1 

21.8014' 
21.801 4' 
21.8014' 
11.3100" 
11.3100' 
1 1.3100' 
5.71 06' 
5.7106' 
5.7106" 
3.401 1 
3.3665' 
3.2245' 

29 
40 
52 
29 
40 
52 
29 
40 
52 
62 
83 

107 

+0.34 13 
0.0000 

+0.2500 
+0.3413 
0.0000 

+0.2500 
+0.3413 
0.0000 

+0.2500 
+0.1111 SL 
0.0000 SL 

+0.1250 SL 
~~~ ~ 

7.5 8 80 
(10) 6.3 63 

13.5 5 50 
15 8 80 

6.3 63 
5 50 27 

30 8 80 

(20) 

160 

4 21.8014" 30 0.0000 
4 21.8014" 40 +0.3968 
4 21.8014' 54 0.0000 
2 11.3100' 30 0.0000 
2 11.3100" 40 +0.3968 
2 11.3100' 54 0.0000 
1 5.7106' 30 0.0000 

(Contd) 
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Table 4.4 (Contd) 

Centre Transmission 
distance ratio 

a i 
Module dm 2, %I 3 x Remarks 
m 

200 

(40) 
54 
63 

(84) 
1 1 1  

6.3 63 1 5.7106' 40 +0.3968 
5 50 1 5.7106' 54 0.0000 
4 67 1 3.4167' 63 +0.1250 SL 
3.15 53 1 3.4011' 84 +0.3810 SL 
2.5 42.5 1 3.3665" 1 1 1  0.0000 SL 

7.5 
(10) 
13.25 
15 

26.5 
30 
(40) 
53 
63 
(83) 
110 

(20) 

10 
8 
6.3 
Id 
8 
6.3 
10 
8 
6.3 
5 
4 
3.15 

95 
80 
63 
95 
80 
63 
95 
80 
63 
85 
67 
53 

4 
4 
4 
2 
2 
2 
1 
1 
1 
1 
1 
1 

22.8336' 
21 .a01 4' 
21 BO1 4' 
11.8886' 
11.3100' 
1 1.31 00' 
6.0089' 
5.7106' 
5.7106' 
3.3665" 
3.4167" 
3.4011' 

30 
40 
53 
30 
40 
53 
30 
40 
53 
63 
83 
110 

+0.2500 
0.0000 
+0.2460 
+0.2500 
0.0000 
+0.2400 
+O .25W 
0.0000 
+0.2460 
0.0000 SL 
+0.1250 SL 
+0.0794 SL 

250 

7.75 
(10) 
13 
15.5 

(20) 
26 
31 
(40) 
52 
61 
(83) 
108 

12.5 
10 
8 
12.5 
10 
8 
12.5 
10 
8 
6.3 
5 
4 

112 
95 
80 
112 
95 
80 
112 
95 
80 
112 
85 
67 

4 
4 
4 
2 
2 
2 
1 
1 
1 
1 
1 
1 

24.0572' 31 
22.8336' 40 
21.8014' 52 
12.5831' 31 
11.8886' 40 
11.3100' 52 
6.3684' 31 
6.0089' 40 
5.7106' 52 
3.2195' 61 
3.3665" 83 
3.4167" 108 

+0.0100 
+0.2500 
+0.2500 
+0.0100 
+0.2500 
4.2500 
+0.0100 
+0.2500 
+0.2500 
+0.2937 SL 
0.0000 SL 
+0.1250 SL 

31 5 

7.5 
(1 0.25) 
13.25 
15 
(20.5) 
26.5 
30 
(41) 
53 
60 
(82) 
109 

16 
12.5 
10 
16 
12.5 
10 
16 
12.5 
10 
8 
6.3 
5 

140 
112 
95 
140 
112 
95 
140 
112 
95 
140 
112 
85 

4 
4 
4 
2 
2 
2 
1 
1 
1 
1 
1 
1 

24.5670' 30 
24.0572' 41 
22.8336' 53 
12.8753' 30 
12.5831' 41 
11.8886" 53 
6.5198' 30 
6.3684' 41 
6.0089' 53 
3.2705' 60 
3.2195" 82 
3.3665" 109 

+0.3125 
+0.2200 
+0.2500 
+0.3125 
+0.2200 
+0.2500 
+0.3125 
+0.2200 
+0.2500 
0.0000 SL 
+0.1111 SL 
0.0000 SL 

7.75 20 1 70 4 25.2011" 31 +0.2500 
(1 0.25) 16 140 4 24.5670' 41 +O. 1250 

(Contd) 
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Table 4.4 (Contd) 

Centre Transmission Module 
distance ratio dm 2, 'ym 2 2  x Remarks 

a i m 

13.75 12.5 112 4 24.0572' 55 +0.0200 
15.5 20 170 2 13.2405' 31 +0.2500 

(20.5) 16 140 2 12.8753" 41 +0.1250 
27.5 12.5 112 2 12.5831' 55 +0.0200 

400 31 20 170 1 6.7097' 31 +0.2500 
(41) 16 140 1 6.5198' 41 +0.1250 

55 12.5 112 1 6.3684' 55 +0.0200 
63 10 170 1 3.3665' 63 0.0000 SL 

(82) 8 140 1 3.2705' 82 +0.2500 SL 
+0.1032 SL 109 6.3 112 1 3.2195' 109 

500 

- 
(1 0.25) 
13.25 

(20.5) 
26.5 

- 

- 
(41) 

(83) 

53 
63 

107 

- 
20 
16 

20 
16 

20 
16 
12.5 
10 
8 

- 

- 

- 
170 
140 

170 
140 

170 
140 
21 2 
170 
140 

- 

- 

- 
4 
4 

2 
2 

- 

- 
25.201 1' 
24.5670' 

13.2405' 
12.8753' 

6,7097' 
6.51 98' 
3.3744' 
3.3665' 
3.2705" 

- 

- 

- 
41 
53 

41 
53 

41 
53 
63 
83 

107 

- 

~~ 

- 
+0.2500 
+0.3750 

+0.2500 
+0.3750 

+0.2500 
+0.3750 
+0.2000 SL 
0.0000 SL 

+0.2500 SL 

- 

Notes: 1. In Table 4.4, SL stands for self-locking as in Table 4.3. 
2. The transmission ratios i - 10, i s  20, i -  40 and i= 80 are fundamental transmission ratios. These ratios are 

shown in parenthesis in Table 4.4. 

4.4 Worm-Drive with Concave-Convex Profile 

The different types of worm which are commonly used, namely, types ZA, ZN, ZK and ZI, have 
been described in  Sec. 4.2. These usual types of worm-profiles are not satisfactory as regards the 
requirementsfor a good and close contact between the tooth surfaces of worm and wheel, and for 
the creation ofadequate pressure ofthe lubricating medium. Favourable operational conditions 
for the above requirements can be attained by worms with teeth having concave profile instead 
of the usual straight or convex curvature. This type of profile has been developed by Prof. 
Niemann and is known as CAVEX type of tooth profile. 

The worm-wheel teeth are convex in profile which fit snugly into the corresponding tooth space 
of the worm during meshing action. Contrary to the usual types of worms where the pitch or 
workinglineissituatedatthemiddleoftheteeth,in theCAVEXtypeitlieson the tipofthe worm. 
In  other words another speciality of this type of design is  tha t  the tip cylinder of the worm has 
been made to be identical with the pitch or rolling or working cylinder of the worm. 

The cutter employed to produce the worm teeth has a convex, circular-arc profile, which gives 
a concave shape to the worm-tooth profile. The cutter may be a milling cutter or a grinding wheel 
which has a circular-arc profile in normal section at right angles to the course of the tooth-gap. 
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# 
Due to the ideal contact conditions between the concave worm-tooth surface and the convex 

wheel-tooth surface, the CAVEX drive has several advantages. In  this respect, this drive has 
such features which resemble the properties of the internal gearing. The many advantages which 
this type of design offers are summarised below. 
1. Due to favourable contact relations between the concave-convex tooth profiles of the compo- 

nent members of the worm and wheel set, the contact pressure or Hertz stress distribution 
takes place in a wider area for the same applied tooth force as compared to the conventional 
worm-drive. Consequently, the surface pressure per unit area is much less. 

2. The close contact of flanks helps in the maintaining of a lubricating oil film. 
3. The hydroaynamic pressure of the lubricant is greater. 
4. Wear and heating as well as the power losses are low. 
5. Without weakening the worm-tooth, a high bendingresistance and load carryingcapacity of 

the worm-wheel teeth are attained, assuring a high security against breakage of teeth. 
6. The efficiency is high, attaining around 96%. 
7. The system is impact-damping and practically noiseless. 
8. Higher power can be transmittedper unit volume of space required and weight ofmachinery 

9. Higher transmission ratios can be achieved a t  relatively low space requirements. 
10. Eddy loss in oil is very small a t  high circumferential velocities. 
11. For the same allowable temperature or wear limits, the system can produce more output to 

the tune of 125 to 150% as against the usual worm toothing conforming to the same 
conditions. 

is comparatively lower. 

12. Operational life of this type of gearing is more. 
13. The overload capacity is much higher due to the greater root thickness of teeth of the worm- 

14. The CAVEX toothing used in power transmitting gear boxes also ensures extremely high, 

The comparative configurations of the tooth-shapes, pressure distribution patterns and the 
efficiency charts of the conventional and CAVEX drives are shown in Fig. 4.9. 

It has  been pointed out before that  in CAVEX type of worm-gearing, the working circle of the 
worm coincides with the tip circle ofthe worm. This is the normal practice. However, depending 
upon the design considerations, the diameter of the working circle may have a range which is 
normally given by 

Working circle diameter dw , = (d, + m> to (d,  + 2m) 

wheel. 

momentary peak torques without any detrimental effects on the system. 

where 

When the upper limit is taken, then 

d, = The middle circle diameter of the worm 

dw , = d, + 2m = da = Tip circle diameter of the worm 
Other relevant diameters are 

d,, = d, - 2.32m 
d, = mz, 

Q = -  d w ,  +d, 
2 

Centre distance 
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Fig. 4.9 Characteristics of CAVEX drive 

4.5 Force Analysis of Worm-Drive 

The determination of forces acting on worm and worm-wheel can be done in a similar way as in 
the case of crossed-helical gears. Neglecting friction for the time being, the only tooth force F,v 
is the one acting normal to the tooth profile (Fig. 4.10). 

Force FN can be resolved into three mutually perpendicular component - the tangential com- 
ponent F,, the radial component Fr, and the axial component Fa. 

For the sake of simplification of calculation we assume tha t  the transmission of force takes 
place only at  the pitch point P .  In normal section N -N,  force F,,which acts perpendicular to the 
tooth profile, is inclined at a n  angle of a,(the normal pressure angle) as shown in the figure. 

If the effect of friction is not taken into account, then the resolved components forces of F, 
would be 

Axial force = FN cos an cos 7 

Tangential force = F, cos an sin y 

Radial force = FN sin a, 
However, a frictional force i s  created, which is given by 

F N f  = p FN 

where p = the coefficient of friction = t an  p and angle p is the angle of friction. 

it produces two components: 
This frictional force acts along the worm-tooth surface as shown in Fig. 4.10. When resolved, 



4.22 Handbook of Gear Design. 

p F N  sin y and p F N  cos y 
It can be seen from the figure that the axial component of the frictional force acts in the opposite 
direction to the axial force Fa, whereas the tangential component acts in the same direction as 
the force F,. Hence, for a worm driving the gear, the expressions for the different resultant forces 
effective on the worm are given by 

(4.25) Axial force Fa, = FN cos an cos y- p FN sin y 

Tangential force F,,= FN cos an sin y+ p FN cos 7 

Radial force F, = FNsin a, =Fa, tan a, 

(4.26) 

(4.27) 

The axial pressure angle (a,) is given by 
tan an 

tana, = - 
cosy 

In Eq. 4.27, the term p FN sin yofEq. 4.25 is neglected to amve at the approximate expression. 
In a worm-drive system, the transmitted load is given by 

Subscripts 1 and 2 refer to  the worm and gear respectively as before, T, is the output torque 
available at the gear shaft, and r2 is the mean radius of the gear. Since the axes of the worm and 
the gear are at right angles to each other, we have 

The total axial force acting on the worm = The transmitted load by the gear 

Their absolute values are the same, but the direction or sense is opposite. Therefore, in terms 
of absolute values, we have from Eq. 4.25 

F,, =Fa, = F, cos a, cos y- p F, sin y 

Similarly 

F,, = Fa, = FN cos a, sin y+ p FN cos y 
Therefore, the torque input to  the worm is given by 

*I = *, lrl 
Taking cos an = 1 and p = tan p, we have, for a worm driving the system 

sin y + pcos  y 

cosy - psin y 
sin y + tanpcos y cosy 

cosy - tanp sin y cosy 

F , 1  = Fa, 

= Fa, x -  

tan y +tan p 

1- tanp tan y 
= Fa, = Fa] tan (y+p)  

= <,tan(y+p) 

(4.28) 

(4.29) 

(4.30) 
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With the gear driving the worm, the hbove equation becomes 

= ~ l = F a ,  t an (y-p)  (4.3 1) 
In Fig. 4.10, u, is the circumferential velocity of the worm. The slidingvelocity is represented 

by u.. These are important parameters for calculations connected with the efficiency of w o m -  
drive. 

4.6 Bearing Forces in a Worm-Drive 

The procedures for the determination of magnitudes of forces acting on a worm-drive system 
have been discussed in Sec. 4.5. For calculatingloadsactingon bearings on which the worm-shaft 
and the wheel-shaft are mounted, the initial step is to calculate the tangential force F,, the axial 
force Fa, and the radial force F,. After ascertaining these forces, we can proceed to  find the forces 
acting on the two bearings of the worm-shaft and the two bearings of the gear-shaft as detailed 
under. 

To determine the bearing forces, i t  is convenient to consider the different forces as acting on 
two mutually perpendicular planes-theX-2 plane and the Y-2 plane, as shown in Fig. 4.11. In  
a worm and wheel system, each component has its own plane of reference containingits axis and 
the common perpendicular. 

From Fig. 4.11, we can arrive a t  the following expressions for the bearing loads. In each case, 
subscripts BZ and BIZ refer to bearing Nos. 1 and 2 respectively in both the cases of worm and 
gear. Subscriptsx and y stand for reference planesX-2 and Y-Z respectively. In expressions for 
forces, subscript 1 refers to worm and subscript 2 refers to the wheel. For dimensions pertaining 
to lengths, Wand G are the subscripts for the worm and the gear respectively. 

1- - - -  

3 

Fig. 4.1 0 Forces in a worm-drive system 
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1. Bearing loads on Worm-shaft 
Falr1 + F,,Lw2 

LW 
Fso, = 

L W  

"he resultant radial loads on the bearings are given by 

(4.32) 

(4.33) 

Besides the above radial forces, the worm-shaft bearings are subjected to the axial thrust of 
magnitude Fal. 
2. Bearing loads on gear-shaft 

Fazrz +FrzLG, 
FBIx2 = 

L G  
The resultant radial loads on the bearings are given by 

(4.35) 

Besides the above radial forces, the gear-shaft bearings are also subjected to the axial force of 
magnitude Fa2. 

For the proper selection of the anti-friction bearings, the relevant manufacturer's catalogues 
should be consulted. These bearings should be capable of withstanding both the radial and axial 
loads. After the determination of these loads, their values should be inserted in the formulae 
contained in those catalogues to determine the equivalent loads. After that, the proper selection 
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(a) Worm shaft bearing forces 
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(b) Worm gear bearing forces 

Fig. 4.1 1 Bearing forces in a worm drive 

of the bearings can be made. These aspects are elaborately dealt with in the catalogues and 
manuals of standard bearing manufacturers. 

To facilitate the appropriate selection of bearings, the designer is recommended to have easy 
access to such catalogues. One example of bearing selection is given in Sec. 3.13 to illustrate the 
framework of selection. 

4.7 Correction in Worm-Drive System 

Like spur and helical gears, profile correction becomes necessary to avoid undercutting in case 
ofworm-wheels with small number of teeth, the relevant relations being similar which are given 
as follows. 
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Minimum number of teeth to avoid undercutting 

2 
Zmin = - 

sin2 a 
(4.36) 

As indicated earlier, the pressure angle is a function of the lead angle chosen, and it should vary 
according to the magnitude of the lead angle for proper functioning of the worm-drive system. 
The pressure angle is normally 20' for general application with usual values oflead angles. The 
values of the minimum number of teeth are 

zmin = 17fora = 20' 
= 30 for a = 15' 

The profile correction factor is given by 
z, sin2a x = 1 -  z, = 1 -  

%in 2 

The amount of profile correction, therefore, is 

xm = (1- z,sin2a )m (4.37) 

Referring to Fig. 4.6, the relation of the middle circle diameter of the worm-wheel dm2 and the 
pitch circle diameter of the worm d,  (sometimes called the middle circle diameter of the worm) 
in a corrected gearing is given by 

(d,+ 2xm)+ d, d, + d, = -  + xm - - or the centre distance a = dIn2 + d, 
2 

(4.38) 

Equation 4.38 is the expression for the corrected centre distance. If there is no correction, then 
obviously dm, = d,. Therefore, the profile correctionx m is the difference between the middle circle 
radius and the pitch circle radius ofthe worm-wheel. The correction is positive if the middle circle 
is greater than the pitch circle and is negative when it is smaller. 

The following practice is generally adopted for calculation of the worm-wheel addendum in 
case of wheel with correction 

ha, = m k x m  for y 15' (4.39) 

= mn k x m  for y > 15' (4.40) 

4.8 Deflection of Worm-Shaft 

In a worm and worm-wheel drive system, the worm is subjected to  bending ahd deflection. Since 
perfect contact relations and tooth action are possible only in case of precise bearing mountings 
and accurate toothing, and since such conditions are not practically attainable, some amount of 
deformation during service has t o  be allowed, the magnitude of which is based on the experience 
of the designer and the judicious use of the empirical relations. It goes without saying that this 
permissible value should not be exceeded. 
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It is desirable to have comparatively large diameter of the worm-shaft, and the distance 
between the bearings should be kept as small as possible commensurate with the other design 
parameters, so that the least amount of change of shape takes place. In this respect, the form 
number of worm, (Sec. 4.3) plays amajorrole and, therefore this factor should be carefully chosen. 
The following relations are relevant for calculation of deflection. 

From mechanics, we can establish the following formula. 

(4.41) 
Fl L w 3  

f = -  
48 EI 

where f(mm) = The deflection of the worm shaft 
L, (mm) = The distance between the bearings holding the worm shaft. 

I t  is assumed here that the worm is mounted at the middle of this distance (see 
Fig. 4.11, Sec. 4.6) 
For rough calculation L,= 1.5 x centre distance a 

resultant force (F,)  which deflects the worm shaft, is given by 

- 
F, ( N )  = The vector sum of the tangential force F,,, and the radial force Fr,. This 

(4.42) 

Symbol E (N/mmz) is the modulus of elasticity of the worm material and Z (mm4) is the area 
moment of inertia of the cross-section of the worm shaft. Here, I is taken to be approximately 
constant throughout the length of the shaft. 

Permissible deflection is given by 
d m ,  f ,  = - 1000 (4.43) 

The following factor of safety against deflection (23,) should be adhered to during design 

s ,= - -21  f P  (4.44) 
f -  

4.9 Bending Stress Calculations 

In a worm-drive system, the worm-wheel teeth are to be checked against bending. The factor of 
safety against bending is given by 

(4.45) 

The value of S ,  should be equal to  or more than 1. Here 
olim (N/mm2) = Limitingvalue of allowable load factor, as given in Table 4.5for different types 

om= (N/mm2) = Maximum bending stress which may occur during operation 
of wheel materials commonly in use 

F, lllpx (N) = Maximum tangential force which may act on the wheel when referred to the 

0 6(mm) = Arc length of tooth width of wheel at root = r'lf - 180" 

middle circle diameter 

r' = + c and angle $(in degree) is given by sin? = 
2 2 2r' 

where 
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Table 4.5 Limiting values of load factor for different wheel materials 
(Materials of worm is steel in each case) 

Material 
of 

Type of uvm profile 
ZA and ZN ZK and ZI CA VEX 

wheel 
oh( N/mm2) 

Centrifugally cast 23.5 29.4. 39.2 

Aluminium alloys 11.3 14.0 18.6 
Al-Si alloy 7.5 9.3 12.5 
Zn alloys 

Cast iron 11.8 14.7 19.6 

Cu-Sn bronze 

4.10 Contact Stress Calculations 

In  designinga worm-drive, it is ofvital importance to check the system against failure due to the 
detrimental effect of contact stress. The factor of safety in this case is given by 

P l i m  

P 
sc = - (4.46) 

where plim (N/mm2) 

p(N/mm2) 

= Limiting value of contact pressure (Values for common materials are 

= Actual contact pressure created in the system 
given in Table 4.6) 

The expression for the actual contact pressure is as  follows 

(4.47) 

The value of Sc should normally lie between 0.6 to 2.2, depending upon the allowable wear. 
Factor K, takes into account the effect of the middle lead angle, i ts  values are given in 

Table 4.7. 
Table 4.6 Limiting values of contact pressure 

Based on Zahnraeder, Zirpke, 11 th edition, 1980, table no. 23, p. 344, VEB Fachbuchverlag, Leipzig. 

Material 
of 

wheel 

Steel worm 
Unhardened Hardenedand ground 

Centrifugally cast 
C u S n  bronze 

Aluminium alloy 
ACSi alloy 
Zn alloy 

Cast iron 

3.5 

1.5 

1.3 
1.8 

- 

5.9 

3.1 
3.3 

2.9 
- 
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Table 4.7 Factor K, In relation to lead angle 

Based on Zahnraeder, Zirpke, 1 lth edition, 1980, table no. 24, p. 344, VEB Fachbuchverlag, Leipzig. 
~~ 

Proriletype tany, = 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.0 0.9 

ZA, ZN, ZK K, = 0.41 0.36 0.32 0.29 0.265 0.248 0.233 0.223 0.215 0.213 
and ZI 
CAVEX 

convex) 
(concave- K, = 0.40 0.40 0.46 0.445 0.433 0.425 0.420 0.417 0.415 0.415 

4.1 1 Effect of Heat Generation 

The relative sliding action between the teeth of worm and wheel causes generation of a 
considerable amount of heat. Particularly in heavy duty worm-drives, arrangement for heat 
dissipation should be provided. This is normally achieved by providing fans which are fitted 
inside the gear box housing or the housing may be so cast as to  have cooling ribs or both the above 
measures can be taken. 

The-effect of heat generation is an important design criterion for the worm-drive. Some 
researchers in the field have developed a set of empirical relations which determine the 
temperature safety factor for normal operation ofthe drive. The relevant equations are given as 
follows 

Temperature safety factor 

(4.48) 

The value of S,  should be equal to or greater than 1 for smooth service. As before, a is the centre 
distance in mm and P, is the transmitted power of the worm in kW. By transposing Eq.4.48, we 
get the required minimum value of the centre distance 

136 PI a= 10 (4.49) 

FactorsK, to K, take care of the influences of type of cooling, transmission ratio, material and 
design of the drive. Factor K ,  is given by 

(4.50) 

Equation 4.50 is valid for worm-drives which are situated in a place with sufficient air 
circulation. The fan factor KF is given by the following equations with worm rotating at  a speed 
of n, rpm. 

For drive without fan 

(4.51) 
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For drive with fan 

(4.52) 

The duty factor DF is expressed as per cent of running time per hour. Thus, DF = 20 if the drive 

For a system where the worm is the driving member, the value ofKz can be taken from Table 

The material factor K, will depend on the material pairings. This is given in Table 4.9 for 

runs for an  average time of 12 min/hr, its value will be 100 for a continuous drive system. 

4.8. 

cylindrical worms belonging to the types given in Sec. 4.2. 

Table 4.8 Values of K, vis-a-vis transmission ratio I 

Based on Zahnraeder, Zirpke. 1 lth edition, 1980, table no. 20, p. 340, VEB Fachbuchverlag, Leiptig. 

i =  5 7.5 10 15 20 25 30 4 0 5 0 6 0  

y = 1.16 1.10 1 .oo 0.81 0.68 0.59 0.52 0.41 0.32 0.28 

Table4.9 Material factor K, 

_. Based on Zahnraeder, Zirpke, 1 1 thedition, 1980, table no. 21, p. 343, VEB Fachbuchverlag, Leizig. 

Mater$l 

worm wheel 

Steel, hardened and 
ground 

Steel hardened 
and tempered, not 
ground 

Centrifugally cast 
Cu-Sn bronze 
Aluminium alloys 
Cast iron 

Cu-Sn bronze 
Zinc alloys 
Aluminium alloys 
Cast iron 

1 .o 
0.87 
0.80 

0.67 
0.67 
0.58 
0.55 

Cast iron, Centrifugally cast 0.87 

Cast iron 0.80 
not ground Cu-Sn bronze 

For worm-drive with concave-convex profile described in Sec. 4.4, the value ofK, is modified, 
depending on the sliding velocity us. The value of K,, as given in Table 4.9, is to be multiplied by 
the factor f given in Table 4.10. 

TaMe4.10 Factor fin relation to sliding velocity v, 

v, (mlsec) = 0.1 0.5 1.1 2.0 4.0 8.0 12.5 16.0 

f = 1.12 1.19 1.25 1.33 1.47 1.61 1.67 1.70 
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Factor K, will depend upon the type of design of the system. It is given in table 4.11. . .  

TaMe4.11 Design typefactor K, 

Based on Zahnraeder, Zirpke, 1 1 th edition, 1960, table no. 22, p. 343 VEB Fachbuchverlag, Leipzg. 

Type of design K. 

Worm at the bottom with worm supplying the lubricant 
Other configuration of worm with wheel supplying the oil 
Additional oil cooling arrangement provided, e.g., spray 

1 .o 
0.6 

above 1 .O 

4.1 2 Design Criteria of Worm-Drive 

In designing a worm-drive, many disparate factors are taken into consideration. The designer 
should be fully conversant with these factors and should take decision according to his discretion. 
In this section, we shall deal with the factors involved and the guidelines thereof for proper 
selection of the parameters of the drive. 

To simplify elaborate calculation procedures and to achieve standardisation of worm-drives, 
dimensional standard tables have been made which are based after taking into consideration the 
common design factors(Tab1es 4.3 and 4.4 in Sec. 4.3). In these tables relevant data, such as the 
module, transmission ratio, number of teeth, centre distance, correction factor required and 
other aspects like diameters, lead angles and self-locking possibilities have been compiled. 

The materials for worm and wheel should be carefully selected after considering operational 
conditions, scope of the drive, ensuing power losses and other factors. For normal power trans- 
mission, steel worms and phosphor bronze wheels are extensively used. Worms are generally 
hardened and ground. 

The materials commonly used for worm and wheel, their properties and combinations have 
been given in Table 4.12. 

TaMe4.12 Materials and stressesforwormgearing 
~ ~ 

UTS Harhess Allowable Allowable 
Symbol Material Condition 0, HB stress pairing Remadm 

W.th 
=P 

Wmfl Wmd 
Wmd 

Materials for mrm 

A Case Hardened 520 (crore) 6000 (case) - 1.2and3 Flanks 
hardending ground 

B Heat Heat 600-900 1800-2080 - 1 and2 Flanks 
steel 

treatable treated 
steel 

cut on 
lathe 
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Materials for worm-wheel 
._ 

1 Phosphor Sand 190 600-950 80 A and B 

2 Cast iron Sand 220-280 1970-2410 55 A and B Sliding 
casting velocity 

bronze casting 

upto3m:s . 
- 3 Special Chilled 200-220 950-1050 40 A 

Al- casting 
alloy 

Worm-wheels are also made of following materials. 
Centrifugally cast phosphor bronze for heavy duty wheels, high contact pressure, high wear 

resistance, high impact resistance. UTS = 320 N/mm2, hardness = HB 1150 N/mm 2, op = 120 
N/mm2. 

Zinc alloys for low temperature. UTS = 220 N/mm2, HB = 800 N/mm2, o = 40 N/mm2. Synthetic 
material for low velocity (e  2 m/s). UTS =I50 N/mm2, HB = 350 N/mm2: o, = 35 N/mm2. 

Determination of Worm-Drive Parameters 

Several limitingfactors come into consideration while designing a worm-drive set. These are: (i) 
Deflection of worm shaft, (zi) bending stress developed in wheel teeth, (iii) contact stress 
developed, and (iv) Heat developed. 

Thesefactorshave already beendiscussedin Secs4.8 to4.11. For designingthe pair, the stress 
which necessitates the selection of the biggest dimension is the ultimate deciding factor. 

Surface stress, sliding velocity and sliding properties of paired materials, viscosity and 
efficacy of the lubricant are the factors which influence wear. Wear is caused by the rubbing 
action between the mating surfaces or as a result of contact pressure which may lead to  pitting. 
In  the sphere of boundary lubrication, wear caused by rubbing is unavoidable. In  hydrodynamic 
lubrication, there is no metal to metal contact. Such condition is possible if the sliding velocity 
between the mating surfaces is sufficiently large. However, due to continuous loading and 
unloadingofthe teeth, fatigue failures take place which are apparent on the tooth surfacesin the 
form of pitting, serrations and flaking of the tooth materials. 

Load rating ofworm-drive usingformulae given in IS: 7443 will be discussed in Sec. 4.13. This 
section outlines how worm and wheel parameters are derived from the first principles. The 
following example illustrates the procedures involved. 

Example 4.1 Given: 11, = 960 rpm, i =52, output torque T, = 2000 Nm, material of worm heat 
treatable steel, material of wheel phosphor bronze, lubrication by pressurised oil. 

Solution: The following strength-based formula takes care of the limiting factors mentioned 
before 

(4.53) 

(4.54) 

To find the relevant dimensions of the components of the worm-drive. 

q, (N  ) = c b p,, 

where 
b(mm) = The useful width of wheel -7 2 m J z  

Recalling equations from Sec. 4.3, we have zp = d,/ni = z,/tan y, , and p ,  = n na. 
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Factor c depends upon service conditions, circumferential velocity, material, and it takes into 
consideration the effects of wear, heat generated and other limitingfactors as stated before: The 
value of c is to be take from Fig. 4.12. The following points are t o  be noted. 
1. 
2. 
3. 

4. 

5. 

InFig. 4.12, the solid curves are valid for norm&continuous service and splash lubrication. 
The dotted curves are meant for oil cooling and pressurised oil lubrication. 
For intermittent service, c may be taken at some intermediate point between solid and 
dotted curves proportionately. 
In Fig. 4.12, c is valid for z2= 30. For other number of teeth., multiply this value of c by factor 
f= given in Fig. 4.13. 
Table 4.12 is t o  be read along with Fig. 4.12 where combinations of worm and wheel of 
different materials are given. Thus, for example, combination 1 B means a worm of symbol 
B and a wheel of symbol 1. 

N/mm2 

vs--m/s 

Fig. 4.1 2 Values of factor c 

Assuming about 76% efficiency of the set, we have 

Input power of the worm Pl = - T2 X - X -  n1 =5kW 
9550 L 0.76 

c A  zlnl 
m = 10 Module (4.55) 

The value of factor A (=b/pa) usually lies around 2 to 2.5. The following data are taken 
Since i = 52, z, = z,i = 52 z, = 1, sliding velocity u, = 4 d s ,  A = 2.1 
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fig. no. 80, p. 187. Carl 

Material combination 1 B is taken, whence we get from Fig. 4.12 corresponding to curve 1 B  and 
from Fig. 4.13 corresponding to z, = 52, c - 6.3. Now, using Eq. 4.55 

As 

m = 10 {1933x5xo.16 =8mm(t&en) 
6.3~ 2. lx lx 960 

A = 2.1 = bIP, = b l n m ,  b = 2.1~3.14~8 = 52.8mm 

Also 
b = 2 m , / 3  or 52.8=2x8 ,/-~ orz, = 9.89 = 10 

and 
zp = d,,/m = z , / tany ,  = 10 whenced,, = 80mm 

y, = 5.7106' = 5' 42' 38.14" 

Since m = 8 = 0.1 x dml, this tallies with the average value relation given in Sec. 4.3. Using 
Eq. 4.75 and Table 4.15 given in Sec. 4.14 on efficiency, we have 

0.051~ y 0'051x l5 = 0.03(taken) - - 
p = J i E q  %,/Giz 

q=tany , / tan (y ,+p)  whencep = 171836' alsotanp = p ,  

Putting the relevant vdues,we get q = 0.767, which more or less tallies with our original 
assumption 

d, = 8 x 52 = 416 mm Centre distanceu = (80 + 416) / 2 = 248 mm. 
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Taking the standard centre distance of 250 mm and resorting to positive correction, we have 
da2=d2 + 2m + 2xm = 416 + 16 + 16x = 416 + 16 + 2(250-248) 

or 16% = 4 or x = 0.25 
Other dimensions can be fixed by consulting Tables 4.3 and 4.4. To match the set with the 

standard drive as given in those tables, certain approximations of the calculated values have 
been made. Rigid adherence to calculated values lead to  somewhat different parameters. 
Check: From Eq. 4.48 (Sec. 4.11) 

2 

KF = 3.1 d(s) = 3 K ,  = ( 1 +  - ;)(s+ 3) = 7 

(taking 100% duty factor) 
K2 = 0.31 K, = 0.67K4 = LO 

Putting the values, we get S, = 1.33 > 1.0 
From Eq. 4.46 (Sec. 4.10) Sc = pl,,Ip. The value ofpl,,is taken as 1.5 

p=F,,/ d,, d,, K,  InsertingvaluesF,, = 6.3 x 52.8 x 3.14 x 8 = 8356 N 
KE = 0.36, d,, = 80, d,, = 416 + 4 = 420 

Therefore 

S, = 2.17, which lies within range 
From Eq. 4.45 (Sec. 4.9) 

S b  = o l i m  1 o m a x  = o l t m  n mn' q z r n a x  

80 

180" 2 2 

, whence $I = 78' 

+ C  = --I- 2 = 4 2  I 9 I dol b = r  a- , r  = -  

9 b2 52.8 

2 2r' 84 
- s in-  = - - - 

As per Eq. 4.23 (Sec. 4.3) b, = 0.4 to 0.5 times (dal + 4 n) 
If the higher value is taken, then b, = 64 mm. If b, = b = 52.8 is taken, then also the coefficient 

lies between 0.4 and 0.5. 

6 = 42 x 3.14 x 781 180 = 57.2mm 
Inserting the values, we get 

3.14 x 8 x cos 5.7106" x 57.2 = 2.05 , s, = 12 
8356 

From Eq. 4.44 (Sec. 4.8) S, = ctf 

f ,  = &,I 1000 = 801 1000 = 0.08 mm, f = F,L&/48EI. 
Taking worm shaft diameter = 50 mm, I = - n x 504 = 306800mm4, 

64 



4.36 Handbook of Gear Design 

E=206000N/mm2, & = 15a = 15 x 250 = 375 mm, Fl = 4- 
Referring to Eq. 4.30 (Sec. 4.5) we have 

F,, = F,, tan (y + p )  = 8356 x tan 7.42896" = 1090 

F,, = FN sin a, = Fa, tan a, = F,, tan a,, I cosy = 8356tan 20'1~0s 5.7106" = 3056 
F,, can also be found by using the formula 

- 1243 N Pl F,, = 2000 T,./d, ,  = (2000/80) x 9550 - = 25 ~ 9 5 5 0  x - - 
n1 960 

The difference in the two values of F,, stems from the fact that many assumptions and 
approximations have been made. 

As 

Therefore 

F, = .I( 1090)' + (3056)' = 3244 

= 0.056 
. 3 2 4 4 ~ 3 7 5 ~  

= 48 x 206000~ 306800 

S, = f p 1 f  = 0.0810.056 = 143 > 1 

The above design, therefore, is safe against all the conventional failures as the above check 
methods show. Remaining dimensions of the set can be calculated by using the various formulae 
and tables given in Sec. 4.3. 

4.13 Load Rating of Worm-Drive 

The code for power rating of worm and worm-wheel system of drive has been laid down in 
IS: 7443. Since in this Indian Standard the unit offorce is kgf, this unit is used as such, as in the 
case of IS: 4460 dealing with the method of load rating for spur and helical gears discussed in 
Sec.2.25. For conversion ofkgfinto the SI unit of force, see Table in Appendix T. Also, the same 
symbols and subscripts for the different parameters have been mainly maintained as given in 
the IS. The explanations of notations which have been previously used in this chapter and 
elsewhere are not repeated here. 

Symbols 
y, = Zone factor as per Table 4.13 

xCt, xc, = Speed factors for worm and worm-wheel; these correspond to the combina- 

xbI ,  xbz = Speed factors for strength, these correspond to the rotational speed only 

Scl, Scz = Surface stress factors, these depend on the combination of materials and 

Sbl, S,, = Bending stress factors, these correspond to the material used and are given 

Zr = Length of root of worm-wheel teeth 

tion of rotational speed and rubbing speed (see Fig. 4.14) 

(see Fig. 4.15) 

are given in Table 4.14 

in Table 4.14 
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Formulae 
(m / s) (4.56) 

(us should not exceed 12.5 m / s )  

ndrn,n, sec Y Rubbing speed us = 
60,000 

Normal rating This i s  defined as the  rating corresponding to a total running period of 26,000 
hours when the  system is subjected to a running time of 12 hrlday. For any other life period, the 
following formulae should be used which give the multiplication factors K,  and K, to be applied 
to the permissible power or worm-wheel torque T,, as found by using the formulae given later  

1 /:1 

K,  = [ 2 7 j ~ ~ ~  ) for wear 
1000 + t,, 

200 + t,, 

(4.57) 

(4.58) 

- 
Factors te, and tcb are  total equivalent running time in hours. For factors involving shock loads, 

The output torques of the worm-wheel in normal running condi- 

see IS: 7403. 

Permissible torque for wear 
tions are determined by relations 4.59 and 4.60. 

0 . 1 9 ~ ~ ~  S,, yz md;: (kgfcm) (4.59) 

0. 19x,, S,, yz md;; (kgf cm) (4.60) 

Permissible torque for strength The corresponding torques are  given by 

0. 18xh1 S,, ml, d,, cos y (kgfcm) (4.6 1) 
0.18 xb2 S,,, ml, dm2 cos y (kgfcm) (4.62) 

In  both of the above cases, the  lower of the two values is to be taken for calculation purposes. 
The length of root of worm-wheel tooth is given by 

I, = (d,, + 2c) sin-' ~ ( da1:2c) 
where 

b = Useful width of the worm - wheel =2md= (cm) 

Power rating For normal service conditions, the power is given by 

(4.63) 

(4.64) 

(4.65) 

Here, T, is the smallest of the  four worm-wheel torque values as determined by the above four 
relations (Eqs 4.59-4.62). 

Equivalent running time When the  load is not steady, the following formulae should be used 
for determining the  equivalent running time. 
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(4.66) 

tc = Equivalent running time in hours per cycle for wear at torque T,‘ and n’, 
T, = Maximum torque acting for t ,  hours at a mean speed of n’, 
n’, = Mean speed during which T, acts 

Other symbols with their respective subscripts stand for smaller torques effective during the 
period in question. The relevant formula for strength is similarly given by 

t, = t ,  + t, (Z)($J + t ,  (:)(:I + ... (4.67) 

The total equivalent running times in hours a t  torque TI and speed n’, are given by 

For wear tec = tc x total number of cycles during the expected life 

For strength teb = t, x total number of cycles during the expected life 

(4.68) 

(4.69) 

In  the above equations, since the torques T appear as ratios, they can be replaced by the loads 
or forces F, giving the same results. 

Example 4.2. Given: z ,  = 2,  z, = 30, m = 10, centre distance a = 200 mm, n, = 1000 rpm. 
To find the power rating required for the system for a total equivalent running 
time of 40,000 hours. 

Solution: To arrive a t  the standardised values for the two components of the drive, data from 
the tables 4.3 and 4.4 will be used. 
Materials selected: 

Case hardened carbon steel for worm 

Centrifugally cast phosphor bronze for wheel 

Transmission ratio i = 30P2 = 15, Output speed = Speed of wheel, n2 = - ‘Oo0 - - 66.7 

From the above tables, the following data are taken 

15 Right-handed drive is selected. 

2, = 

Centre distance a 

9.5, y =  11.8886’, d,,,, = 95 mni, dU,  = dm, + 2nt = 115 mm 

d,n, + d,, - d,,,, + (d2 + 2 Xm) - - - 
2 2 

95 + ( 3 0 ~ ~ 0 + ~ ~ 0 . ~ ~ ~ ~ 0 )  95 + 305 = 200mm - - 
2 2 

This tallies with the given centre distance. Correction factor x = + 0.25 from Table 4.4. 
us = d m l n ,  sec y/ lOOO x 60 = 3.14 x 93 x 1000 x sec 11.8886”/1000 x 60 = 5.08 m/s 

This value is less than 12.5 m / s  which is the maximum value allowed in the code a s  stated before. 
From Tables 4.13 and 4.14 and Figs 4.14 and 4.15, we get the following data on the materials 
selected 

Scl = 4.93, Sr, = 1.55, S,, = 28.20, S, = 7.00, y, = 1.223, 
x ~ ,  = 0.125, xC, = 0.25, xbl = 0.27, x,, = 0.45 

From Eq. 4.63, we get lr = 68.5, taking top clearance c = 0.2 m = 2 mm 



Table 4.13 Zone factory y, 

6. 6.5 7 7.5 8 8.5 9 9.5 10 11 12 13 14 16 17 18 20 

Y Z  

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

1.045 1.048 1.052 1.065 1.084 
0,991 1.028 1.055 1.099 1.144 
0.822 0.890 0.969 1.109 1.209 
0.826 0.883 0.981 1.098 1.204 
0.947 0.991 1.050 1.122 1.216 
1.132 1.145 1.172 1.220 1.287 

1.316 1.340 1.370 
1.437 

1.107 1.128 1.137 
1.183 1.214 1.223 
1.260 1.305 1.333 
1.301 1.380 1.428 
1.315 1.410 1.490 
1.350 1.438 1.521 
1.405 1.452 1.540 
1.462 1.500 1.557 

1.573 1.604 
1.410 1.557 

1.143 
1.231 
1.350 
1.460 
1.550 
1.588 
1.614 
1.623 
1.648 
1.680 

1.160 
1.250 
1.365 
1.490 
1.610 
1.675 
1.704 
1.715 
1.720 
1.728 
1.732 
1.715 

1.202 
1.280 
1.393 
1.515 
1.632 
1.694 
1.725 
1.738 
1.743 
1.748 
1.753 
1.760 

1.260 
1.320 
1.422 
1.545 
1.652 
1.714 
1.740 
1.753 
1.767 
1.773 
1.777 
1.780 
1.784 

1.318 
1.360 
1.442 
1.570 
1.675 
1.733 
1.760 
1.778 
1.790 
1.798 
1.802 
1 B O 6  
1 BO6 
1.81 1 

1.374 
1.418 
1.502 
1.634 
1.735 
1.789 
1.817 
1.838 
1.850 
1 .858 
1.862 
1 .868 
1.867 
1 .871 

1.402 
1.447 
1.532 
1.666 
1.765 
1.818 
1.846 
1 .868 
1.880 
1.888 
1 .892 
1 .e95 
1.898 
1 .goo 

1.437 
1.490 
1.580 
1.710 
1 BO5 
1 .854 
1.880 
1.898 
1.910 
1.920 
1.924 
1.927 
1.931 
1.933 

1.508 
1.575 
1.674 
1.798 
1.886 
1.928 
1.950 
1.960 
1.970 
1.980 
1.987 
1.992 
1.998 
2.000 
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Putting these values in the relevant equations, we get the following values of torque 

0.19 x,, S,, yz m d i ;  = 0.19 x 0.125 x 4.93 x 1223 x io  x 305" = 42430kgfcm 

Similarly, using Eqs. 4.60,4.61 and 4.62, and inserting the respective values, we get the follo- 
wing torques values 26,680 kFfcm, 280,609 kgf'cm, and 116091 kgfcm. 

Taking the lowest value of torque, viz. 26,680 kgf cm, we have 

26680~66.7  = 18.3 kW Normal power rating = 
97442 

(as per Eq. 4.65) 

Using Eq. 4.57, we have for a life of 40,000 hours, 

= 0.87 
\. 1000 i 40,000 

K,  = 

Therefore the required rating = 18.3 x 0.87 t 16 k W  

4.14 Efficiency ot Worm-Drive 

As a power transmitting contrivance, the efficiency ofthe worm and worm-wheel system is rather 
low compared to other types of gear drives with similar capacity. A large amount of frictional 
loss occiirs due t o  the relative sliding between the mating surfaces of worm and wheel under load 
which is the main cause of the low efficiency. 

The efficiency of this system is a function of many factors, viz. lead angle, surface finish, type 
and amount of lubrication, type of design of the system, and other factors. Efficiency increases 
with increasing lead angle. Better efficiency can be achieved by using multi-start worms with 
small diameter. Good results are also obtained by usingrigid, non-yielding worms with smooth, 
ground or  polished flanks. 

The basis for calculating the efficiency of the worm-drive system is to  compare the force 
without friction with the force with friction. Both the components of the system can drive each 
other, depending on the design requirements. Denoting the angle of friction by p, and the 
coefficient of friction by p where p = tan p, we can arrive at the following expressions for the 
efficiency of the system 

With worm driving, the efficiency is given by 
tan y 

tan ( Y  + P )  
1 7 =  (4.70) 

With wheel driving, the efficiency is given by 

(4.71) 
tan y 

If the lubrication is proper and ifthe system consists of a hardened and ground worm meshing 
with a n  accurately machined wheel, then the efficiency will mainly depend on the lead angle and 
the coefficient of friction, p. 

tan ( Y  - P )  q' = 

Transposing Eqs 4.70 and 4.71, we can write 
1 - p tan y (4.72) 

P 1 +  - 
tan y 

7 7 =  
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P 1 -  - 
(4.73) tan y 

l+p  tan y 
77’ = 

Simplifying we get 

1 (4.74) 71)  = 2 - - 
Experiments have confirmed the fact that  the coefficient offriction is dependent on the sliding 

velocity. Denoting the sliding velocity along the worm middle circle as us, the following empirical 
relation can be established 

77 

0.051 x y 
= 4-i 

If n, is the speed of worm in rpm, and d,, is the middle circle diameter in metres, then 

~ d m , n ,  us (m / s) = 
60 cos y 

(4.75) 

(4.76) 

The value offactory in Eq. 4.75 will depend upon the material combination of the worm and the 
wheel, and this can be taken from Table 4.15. 

Table4.15 Factor yfor coefficient of friction 

Worm material Wheel material Y 

Steel, hardened and ground Cu-Sn Bronze 
AI alloy 
Cast iron 

1 
1.15 
1.25 

Steel, heat-treated and 
not ground 

Cu-Sn Bronze, Zn alloy 
AI alloy 
Cast iron 

1.5 
1.73 
1.83 

Using Eq. 4.74, if q = 0.5, then 

The significance of the above equation is that  with the value of q being equal t o  or less than 
0.5, it is not possible for the wheel to drive the worm;This means that  the system is irreversible 
or self-locking, that  is, the worm can drive the wheel but the reverse drive is not possible. This 
property is made use of when irreversibility isimperative, but since i t  is dependent upon p which 
is likely to change during service due to  various reasons, the irreversibility is not automatically 
assured even if the above conditions are satisfied and the proper coefficient is initially chosen for 
the purpose. I t  is always prudent to  have the provision of a brake in such system. 

In  applications where self-locking should not be there purposely (for example certain crane 
systems) the lead angle must be so chosen that  it is p e a t e r  than the angle of friction (y> p ) .  As 
guiding values for rough calculation, the following values may be taken where irreversibility is 
required 
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y 5 5" when antifriction bearing is used 
5 6" when journal bearing is used 

Table 4.16 gives the practical guiding values of p 

Table 4.16 Value of the coefficient of friction p 

Worm Mating wheel 
P 

Material Condition Material Condition 

Steel Heat-treated Cast iron 

Steel Heat-treated Bronze 

Steel Heat-treated Bronze 

Steel Hardened and Bronze 
ground 

Smooth teqth, 

Untreated teeth, 

Machined teeth, 

Machined teeth, 

grease lubrication 0.1 

0.08-0.09 

oil lubrication 0.06-0.07 

grease lubrication 

oil lubrication 0.05-0.06 

Table 4.17 gives the efficiency of worm and wheel system as a function ofthe lead angle and the 
coefficient of friction. 

Table 4.17 Efficiency of worm-gearing (with worm driving) 

Leadangle of worm in degrees 
Coefficient of 

friction 5 10 15 20 25 30 35 40 45 
__ P 

Efficiency (Yo) 

0.01 
0.02 
0.03 
0.04 
0.05 
0.06 
0.07 
0.08 
0.09 
0.10 

89.7 
81.3 
74.3 
68.4 
63.4 
59.0 
55.2 
51.9 
48.9 
46.3 

94.5 96.1 97.0 
89.5 92.6 94.1 
85.0 89.2 91.4 
80.9 86.1 88.8 
77.2 83.1 86.3 
73.8 80.4 84 .O 
70.7 77.8 81.7 
67.8 75.4 79.6 
65.2 73.1 77.6 
62.7 70.9 75.6 

97.4 97.7 97.9 98.0 98.0 
95.0 95.5 95.9 96.0 96.1 
92.7 93.4 93.9 94.1 94.2 
90.4 91.4 92.0 92.2 92.3 
88.2 89.4 90.1 90.4 90.5 
86.1 87.5 88.2 88.6 88.7 
84.1 85.6 86.4 86.9 86.9 
82.2 83.8 84.7 85.2 85.2 
80.3 82.0 83.0 83.5 83.5 
78.5 80.3 81.4 81.9 81.8 

It  is evident from the above discussion that the efficiency of a worm gearing varies markedly 
with lead angle. It follows, therefore, that the large lead angles are desirable for power 
transmitting sets. However, with increasing lead angle, the root diameter of the worm dimi- 
nishes correspondingly. This results in reduction in the relative strength of the worm and also 
makes the face width of the wheel narrower. The choice of lead angle, therefore, cannot be made 
on the basis of efficiency alone. For proper design, the designer should endeavour to  strike a 
balance between the factors governing the efficiency and strength. 





Straight Bevel Gears 

5.1 Theory of Bevel Gears 

We have seen in the chapters dealing with spur and helical gears that  these gears are similar 
in action when two pitch cylinders roll against the surfaces of each other without slipping. 
Basically, bevel gears are analogous t o  afriction cane drive when the conical surface ofone drives 
that  of the other cone by friction. Since friction cone drive is not attainable in practice, teeth are 
provided on these cones for positive drive, The pitch cones of bevel gears are analogous to the 
pitch cylinders of spur and helical gears. 

For transmission ofpower through intersectingaxes, the bevel gears are most commonly used. 
As stated before, the pitch surface of a bevel gear is a (truncated) cone. When two bevel gears 
mate, their respective pitch cones contact along a common element. The pitch cones, when 
extended, meet at a common point called the apex. The shaft centre lines also obviously intersect 
a t  the apex. 

The rolling pitch cones have spherical motion. While in motion, every point in a bevel gear 
remains at a constant distance from the apex. It is not customary to  make the large end, that is, 
the hack of a bevel gear spherical. It is made conical, this cone beingknown as the back cone which 
is tangent to the theoretical sphere a t  the pitch diameter. 

The tooth data of a bevel gear are all given with reference to the large end. While in case of 
spur and helical gears, the cutting tool represents the teeth on a basic rack as  given in Sec. 2.1, 
the cuttingtool of a bevel gear represents the tooth on a basic crown gear as discussed in Sec. 5.2. 
A crown gear is a bevel gear where the pitch cone angle is 90' and bears the same relation to a 
bevel gear as a rack does to  a spur gear. The tooth form in the bevel gear is slightly modified from 
a true involute. To ensure practical gear cutting, the basic crown gear have straight sided teeth. 
The cutting tools having straight cutting edges are inclined to  give the desired pressure angle. 
Strictly speaking, the basic crown gear tooth should be slightly curved to attain the true involute 
form. Cutting should also conform accordingly t o  produce this contour. To avoid practical 
difficulties associated with giving cutters a curved outline, straight teeth are used as indicated 
before. The teeth produced are said to have"octoid" form. In the generation method, a straight 
sided tool simulating the crown gear and the blank of the bevel gear cone roll on each other, 
producing the desired bevel gear. 
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The basic shape of a bevel gear tooth is almost the same as that  of the spur gear. The tooth 
tapers off as it approaches the apex. The contour of the tooth also varies along its entire length. 
The angle between the shafts will depend on the conditions of drive. I t  is usually go”,  but can have 
other angles also. 

The configurations of the straight-sided bevel gears have been shown in Fig. 5.1. 

:K CONE 

/” 

CROWN 
GEAR 

(C) (dJ 

Fig. 5.1 Straight-sided bevel gears 

5.2 Bevel Gear Basic Rack and Modules 

In IS: 5037, the proportions of the basic rack of a straight-sided bevel gear have been specified. 
This rack is defined as the profile of the tooth of a crown gear of infinite diameter on a plane at 
right angles to  the tooth surface. For bevel gears having straight teeth, this profile is used as the 
basis of reference. The tooth proportions have been shown in Fig. 5.2. 

Modules 
The recommended series of modules are given in Table 5.1. Column 1 is the first choice. Sizes 
given in brackets under “Choice 3” column are to be avoided, 
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0.02 (max) P-P=~ --I r 

Fig. 5.2 Profile of the basic rack of bevel gear 

Table 5.1 Modules for straight sided bevel gears 

Preferred Choice 2 Choice 3 

1 
1.25 
1.5 
2 
2.5 
3 

4 
5 
6 
8 

10 
12 
16 
20 
25 
32 
40 

1.125 
1.375 
1.75 
2.25 
2.75 

3.5 
4.5 
5.5 
7 
9 

11 
14 
18 
22 
28 
36 
45 

(3.25) 
(3.75) 

(6.5) 

When diametral pitches are used, the following values are recommended 
Referred 
Choice2 

20, 16, 12, 10, 8, 6, 5,4,3,2.5, 2, 1.5, 1.25, 1, 0.75, 0.625, 0.5. 
18, 14, 11, 9, 7, 5.5, 4.5, 3.5, 2.75, 2.25 1.75, 0.875. 
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Class of Bevel Gears 
Both straight sided and curved toothed bevel gears have been categorised into certain classes. 
This classification will depend mainly upon the circumferential speeds and the transmitted load. 
For normal transmission ofload, bevel gears with speeds above 10 m/s are termed as high-class, 
precision gears, while commercially produced gears meant for usual industrial purposes with 
speeds below 6 d s e c  belong to the ordinary class. Bevel gears may be cast or milled, but 
generation methods produce precise and accurate teeth. 

5.3 Bevel Gear Terminology and Relations 

Bevel gears are cut on conical blanks. The teeth of the bevel gears may be straight or curved. 
Normally, the axes ofthe matingpair ofgear intersect, but there are also non-intersecting types. 
The terms which are typical to straight bevel gears are given here. However, the terms which are 
common to other types ofgears and are explained elsewhere, are not repeated here. Some ofthe 
parameters of the bevel gear are depicted in Fig. 5.3. 

Since the tooth size decreases from the back end towards the apex and the tooth contour also 
varies accordingly, terms such as  addendum, dedendumwhole depth, pitch circle diameter, tip 
circle diameters, etc. are all measured with reference to the large end of the tooth . It is to be 
specially noted here that  if, along with the pitch cones which meet a t  the apex, other lines such 
as the addendum line, root line, etc. also meet at the apex when these lines are theoretically 
extended, then there is a non-uniform clearance between the tip of one tooth and the bottom land 
of the mating tooth along the length oftooth. This clearance becomes progressively smaller from 
the back end towards the apex. This has been graphically shown in Fig. 5.3. If uniform clearance 
is to be maintained, these lines should meet at different points on the axes, that  is, only the pitch 
cones meet at the apex or the point of intersection of the two shafts (when extended) on which 
the gears are mounted. Other cones, viz. tip cones, root cones, etc. meet their respective gear 
centre lines at different points along these lines. 

As amat ter  offact, all these lines and angles meeting at the pitch cone apex represent the old- 
style design. Modern trend is to make the outer cone of one gear parallel to the root cone of its 
mating counterpart. This results in constant top clearance and permits a better cutting-tool 
design and tooth design than the old fashioned one with tapering clearance. 

The pitch cones These are cones which roll without slipping when they are in peripheral 
contact. They are analogous to pitch cylinders of spur and helical gears. The angular velocities 
of these cones are inversely proportional to the number of teeth of the bevel gears to which they 
correspond. 

The pitch cone angle This is the angle subtended a t  the apex by the axis and the pitch cone 
generator. This is usually denoted by Gwith subscripts 1 and 2 for pinion and gear respectively 
as before. 

Theconedistance Thisis thelength ofthe pitch conegeneratorfrom thepitchcircletotheapex, 
and is denoted by R or R,. 

The back cone This is the cone generated by a line which is perpendicular to the pitch cone 
generator at a point on the pitch circle. The angle between the back cone generator and the axis 
ofthe gear isknown as the back cone angle. It is the complement ofthe pitch cone angle. The back 
cone radius is denoted by R,. 
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CROWN HEIGHT 

w I- \,OUTSIDE DI,AMETER 

Fig. 5.3 Bevel gear geometry 

The blank cone angle This is the angle between the axis and the tip surface of the tooth. The 
blank cone on which the bevel gear teeth are cut, is analogous to the blank cylinder of a spur or 
helical gear. This angle is equal t o  the sum of the pitch cone angle and the addendum angle. The 
blank cone angle is also known as the face angle. 

The shaft angle The angle between the intersecting axes of gears is known as the shaft angle, 
and is denoted by E. It is equal to the sum of the pitch cone angles of the pinion and the wheel. 
Normally, the shaft angle is go', but it can have other values also depending upon the design. 

The face width This is the length of the tooth measured along the pitch cone generator, and is 
denoted by b. Normally, b lies between 8 and 10 m where m is the module of the bevel gear. 

Virtual number of teeth As in the case of helical gears, the concept of the virtual number of 
teeth in case of bevel gears is also quite useful. To be strictly theoretically correct, the tooth 
profiles of a bevel gear should be developed on a spherical surface. As a true development of a 
spherical surface into a plane is not possible, an approximation has to  be made for which the 
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virtual number of teeth is to be determined. This parameter is defined as the number of teeth 
which a spur gear would have the radius of which is equal to the back cone radius or distance R,, 
and having pitch of the bevel gear. This is called Tredgold's approximation , The number of teeth 
of this imaginary spur gear is given by 

(5.1) 

wherep is the circular pitch, measured at the back end of the teeth. 
Obviously, the virtual number of teeth is not necessarily a whole number and in fact, in most 

cases it is not. The strength calculations of bevel gears are based on the equivalent spur gear 
concept. 

Crowngear The crown gear has already been defined in Sec. 5.1, and its shape illustrated in 
Fig.5.l (d). 

In a crown gear, since the pitch cone angle is go', the surface of the pitch cone becomes a flat 
circular plane. The consideration of the crown gear in case of bevel gears is very useful as the 
dimensional data can be represented on the relevant crown gear. This is especially true in case 
of spiral or curved toothed bevel gears as we shall see in Chap. 6. In short, the crown gear is the 
best method to represent the toothing and other characteristics of any kind of bevel gear. 

The radius of the crown gear is denoted by the radius of the pitch plane referred to before. Its 
value is equal to  that of the cone distance R of the bevel gear which mates with the crown gear. 
Referring to Fig. 5.3, we have 

sin 6=  r l R  = mzI2R 

where 6 is the pitch cone angle, r pitch circle radius, and z the number of teeth of the mating 
bevel gear. Since R is also the (pitch) radius of the crown gear, we have 

2R = mzc, where zc = Number of teeth of crown gear. 

Hence z,= 2 R l m  = z I sin 6 (5.2) 

5.4 Minimum Number of Undercut-free Teeth 

In case of bevel gears, the minimum number of undercut-free teeth is found in a similar way as 
in the case of spur or helical gears. However, instead of the actual number of teeth, the virtual 
number of teeth is inserted in the equation to find zmin. From Eq. 5.1, we have 

whence 

2" = - 
cos 6 

2 2  andz,, = - z,, = - 2, 

cos 6, cos 6, 
Inserting the value 14 for practical limiting number of teeth in case of spur gears as  discussed 
in Sec. 2.10, we have for bevel gears 

zmln = 14 COS 6, (5.3) 

zmln2 = 14 COS 6, (5.4) 

I 
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where the subscripts 1 and 2 stand for pinion and gear as before. The above relation holds good 
for 20" pressure angle. 

5.5 Profile Correction of Bevel Gears 

As in the case of spur and helical gears, profile correction is also carried out for bevel gears to 
avoid the danger to the teeth arising out of undercutting, if conditions warrant such a step. 

The relevant equations are similar to  those for spur gears. Only, instead of the actual number 
of teeth, the value of the virtual number of teeth is inserted as shown in the following equation 

Similarly 

2, 14-- 
14 - z", cos 6, - 

17 X I = - -  17 

22 14 - ___ 
14- z,, - cos 6, 

x , = - -  
17 17 

(5 .5)  

(5 .6)  

However, in case of bevel gear drive, it is desirable to have an So-gearing, because in this way the 
shaft angle remains unaltered. I t  will be possible to  have So-gearing if the following condition 
is satisfied 

2 2 x zmln for spur gear 2 2 x 14 228 +- 2 2  

cess, cos6, 
(5.7) 

As before, the above equation holds good for 20' pressure angle gears and the limiting number 
of teeth is arrived at after considering the practical aspects. 

As in the case of spur and helical gears, there are practical limitations to profile correction in 
bevel gears. Theoretically, correction can be carried out till the teeth become peaked, but since 
a minimum amount of top land is imperative, the correction is restricted by the following 
condition 

Tooth thickness a t  the tip circle sa = 0.25 m 

- 

- 

In  case of case hardened bevel gear teeth, the tip tooth thickness a t  the innermost portion of 

sa, = 0.4 m, 
the tooth of the pinion should not be below the following value 

where m, is the value of the module at the middle of the tooth. 

5.6 Guidelines for Selection of Dimensions 

The bevel gears are sensitive to  machining and mounting errors, elastic deformations and 
particularly to the deflection of shafts. The deflection tends to displace the shafts so that  the pitch 
cones do not meet at the theoretical apex. The errors result in one-sided loading, noisy running, 
vibrations, jamming of teeth and other undesirable effects. These and other factors have limiting 
influences on bevel gear dimensions. To alleviate the detrimental effects of misalignment, the 
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teeth of the bevel gears are sometimes generated in such a way that  their surfaces are s l igh t l~  
convex in the lengthwise direction. 

The designer should keep in mind that  since a bevel gear is generally mounted at the end of 
a shaft, it is especially vulnerable to the effects of bending and deflection leading to misalign- 
ment. Besides, due to the wedge-like shape of the teeth, chances ofmisalignment occur. All these 
factors necessitate extreme care in mounting and proper bearing selection, though in spite of all 
these measures, bevel gears do not generally attain the output and the quietness of running of 
spur and helical gears. 

The important dimensions and parameters of bevel gears are summarized in Table 5.2 
which should be read along with Fig. 5.3. 

I n  designing a bevel gear drive, the minimum and maximum values of certain dimensional 
parameters should be maintained for proper running of the drive. These values have been fixed 
by experience after studying different operational conditions. These are enumerated in the 
following lines. 

The minimum number of teeth of the equivalent spur gear for the pinion is given by 

where z', min is the smallest number of teeth which a spur pinion should have after taking into 
account the adequate amount of contact ratio and other factors, such as speed and load. The 
values have been arrived a t  after considering that  profile correction of proper magnitude has 
been. applied t o  the spur pinion as  and when necessary, and the values are to be taken from Table 
2.11 in Sec. 2.16. . 

Limitations as regards the usable values ofthe middlemodule and the face width are as follows 

b Minimum middle module = m, = 2- A (5.9) 

Factor ;Z depends on the condition of the tooth surface and the type of bearing as  shown in 
Table 2.12 (Sec. 2.16) which is applicable here also. 

The maximum face width is &en by 
A LX = p 

It should not exceed the value R/3 as indicated in Table 5.2. 

Table 5.2 Dimensions of bevel gears 

(5.10) 

Description Pinion Gear 

Number of teeth 2, 2 2  

Pitch circle diameter d, = z, m d, = z2m 

Transmission ratio 

Pitch cone angle 
(shaft angle is equal to 90') 

(Contd) 
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Table 5.2 (Contd) 

Description Pinion Gear 
~ ~~~ 

Pitch cone angle 
(shaft angle is not equal to 90’) 

sin tan 6, = 
1 + cosz 

6, = 2-6, 

Shaft angle z = 6, + 6, - 
Tip circle diameter d,, = d, + 2mcos6 ,  d,, = d2 + 2m cos6, 

Middle circle diameter 
(subscript m for middle) d,, = d,-bsin 6, 

R 
3 bmnx S - Face width 

~~ 

Cone distance 
d d2 R = L = -  

2 sin 6, 2 sin 6, 

Virtual number of teeth 
(subscript v for virtual or equivalent) 

=1 z,, = - 
cos 6, 

2 2  z,2 = - 
cos 6, 

Middle module 
(subscript m for middle) 

Top clearance 

Whole depth 

Addendum 

c = 0.2 m 

h = 2 m + 0.2m = 2.2m 

ha, = h, = m 
~ 

Dedendum h, ,=h , ,=1 .2m 

Addendum angle tan e,, = tan e,, = m/R 

Dedendum angle tan k,, = tan e,2 = 1.2 mlR 

Blank cone angle or Face angle So, = 61 + ea, sa, = + ea, 
\ 

d CH, = 4 -msin6, CH, = -2 - msin6, 
2 2 

Crown height 
~~ ~~ ~ 

Backcone distance Re, = R tan 6, Rb2= R tan 6, 

5.7 Force Analysis for Bevel Gears 

For force analysis of a pair of mating bevel gears, it is assumed that the total force FN acts on 
the pitch point P at the middle of the tooth width. The resultant, however, actually occurs 
somewhere between the midpoint and the back end of the tooth, but the error due to the above 
assumption is marginal. 

The mean tooth force FN is resolved into three mutually perpendicular components-the tan- 
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gential force or transmitted load F, , the radial force Fr, and the axial force Fa (Fig. 5.4). From 
geometry, we can arrive at the values of these forces for the bevel pinion and the gear as 
illustrated in Fig. 5.5. 

(5.11) Tangential force F,, = Fa = F, = FN cos a 

Fig. 5.4 Forces acting on bevel gear tooth 

This force is calculated from the torque as in the case of other types of gear drives, and is given 
by 

where TI = Pinion torque in N m = 9550 PJnl 

P, = Pinion power in kW 
n, = Pinion speed in rpm 

Radial force F,, = F, tan a cos 6, 
Fro = F, tan acos 6, 

Axial force Fat = F, tan a sin 6, 
Fo0 = F, tan a sin 8, 

If the shaft angle is 90*, then the following relations hold good 

Fa1 = ' 7 2  

F a 2  = Fr, 

(5.12) 

(5.13) 

(5.14) 

(5.15) 

(6.16) 

(6.17) 
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Fig. 5.5 Distribution of tooth forces on bevel gears 
Based on Die Tragfaehigkeit der Zahnraeder, Thomas and Charchut, 7th Edition, 
1971, Fig. No. 51 p. 134. Carl Hanser Verlag, Munich 

The above relations are in absolute values and do not take into account the respective algebraic 
signs. 

5.8 Bevel Gear Bearing Loads 

For the determination of bearing loads in case of bevel gears in mesh, it is convenient to  analyse 
first the forces acting on the bearings in two mutually perpendicular planes and then add the 
partial bearing loads vectorially to arrive at the resultant load on each bearing. The method is 
explained below. 

The three forces which act on a bevel gear tooth are F,, F, and Fa, as explained in Sec. 5.7. 
Referring to Fig. 5.6, we have in the X- 2 plane 

(5.18) F,,* L = F, (L, + L) whenceF,,= = F, (L, + L ) /  L 

Similarly 
In Y-2 plane 

(5.19) 
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X-Z PLANE 

(5.20) 

(5.21) 

Fig. 5.6 Bevel gear bearing loads 

The resultant values of the bearing loads on bearings BZ and BIZ are 

FBI = 4- (5.22) 

FB// = d(FBUx)*+(FBI/Y)z (5.23) 
Bending Moments 
The shaft will be subjected to bending besides torsion and the axial thrust Fa by which the bearing 
will beloaded. For shaft calculation, all these parameters are to be taken into account in the usual 
way as given in standard books on mechanics. Normally, Fn can be neglected without any 
significant effect in final calculation. The bending moments CB) are calculated for the points P 
and for the mid-point ofBI.  They are given by 

(5.24) 

(5.25) 

Example 5.1 Given: P = 14 kW, n = 1000 rpm, t = 25, m = 3 mm, Z = 90*, a = 20', 
6 = 21' 40', distance between bearings L = 100 mm, overhung distance 
L, = 50mm. 

I 

To find the bearing loads and bending moments. 
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P 14 

n 1000 
Solution: T = 9550- = 9550- = 133.7Nm, d = mz = 3 x 25 = 75 mm, 

R = d l 2  sin6=10157rnm,b = R f 3  = 34mm,d, = d - b  sin6=62mm,rm=31 
Ft = T l r ,  = 1 3 3 . 7 ~  1 O O O f 3 1  = 4313 N,F,=Fttan20"cos21"40'= 1459N, Fa=Ft  

tan 20' sin 21' 40' = 580 N 

= 
4313(50+ 110) = 6273 

4313 x 50 

110 
1459(50 + 110) - 580 X 31 

110 

110 

= 1960 N 

= 1959N 

1459 X 50- 580 x 31 

110 
= 500N 

Using Eqs 5.22 and 5.23, FBI= 6572 N and FBI, = 2023 N. Also, B, = - 17.98 Nm, and BBI= 222.53 
Nm. As moments act in opposite sense they are of different sings. I 

5.9 Bending Stress Calculations 

The strength calculations in case of bevel gears, can be made in a similar way as in the case of 
spur gears. The basic design methods are the same but to  perform such calculations, the values 
ofbevel gears are replaced by equivalent values of spur gears as explained in Sec. 5.3. The design 
procedures, therefore, are based on the concept that the load carrying capacity of a bevel gear is 
equal to  that of an  equivalent spur gear having the same tooth width. Moreover, since the teeth 
are ofunequal depth and thickness along the face width, the calculations are based on the value 
at the middle of the teeth. 

Recalling the relations given in Table 5.2 (Sec. 5.61, we have for the pinion 

d,, = d,-b sin6, = d1-% = d, (l-;] 
2R 

rn, = - = 1-- r n =  0.8m 
dml 21 [ !2R] 

Equivalent diameter at the middle 

Expressions for the above values for the gear can be similarly obtained by substituting the 
subscript 1 by 2. 
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For strength calculations, the following relations are necessary 
z, cos 6, sin (90'- 6,) Equivalent transmission ratio = i,, = = i  
z, COSS, cos 6, 

Circumferential force at the middle is given by 
CIm 

.2 = i tan6, = I 

F,, = 3 x 1000 
d m  1 

where the torque T, is in N m, F,,,, is in N, and dm, is in mm. 
For beam strength calculation, a similar (but modified to suit bevel gears) set of equations is 

used as in the case of spur gears. As before, for calculating the bending and other stresses, the 
force is taken to act at the tip corner of the gear tooth. The bending stress is first found and then 
checked against the allowable stress. When referred to the middle circle, the expression for the 
bending stress is given by 

(5.26) 

(5.27) 

The values ofq, can be found from Fig. 2.49 corresponding to the number of teeth of the equivalent 
spur gears Zu, and Zv2, as given in the abscissa of the figure. For medium and coarse quality bevel 
gears which are mostly used for normal drive, the value of q, can be taken as unity. 

The allowable bending stress will depend upon the material. If the endurance limit g o f  the 
material is known, then the allowable stress ab, can be found by using the formula 

Q, 

2to3 Qb, = - (5.28) 

It  can also be directly taken from the values given in Appendix E. 
To find a suitable value for module m, we can proceed as follows. 

R Taking b = -,mm = s m ,  where R, is cone distance up to the mid-point where the 
module is m, 3 R 

5 

6 
dml = z,m, = 2,-m 

F,, = - 2 TI x 1000 = - 2T16 x 1000 
..I. 

d m  1 5 z , m  

Putting the above value in Eq. 5.26, we have 
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x -  x 2sin6,qk1q8, 6 - 12000T1 
5 z 1 m  5 m  z l m  Ob1 = 

Solving for module and putting the expression for permissible value of stress, we get 

(5.29) 

For rough calculation to determine the module, we take the average values ofgk, and qel to be 
2.2 and 0.9 respectively. Hence 

m I. 3. /zq%japz (mm) (5.30) 

5.10 Contact Stress Calculations 

In general, for contact stress calculations in case of bevel gears, it is sufficient to  check the stress 
at the pitch point P to ensure the Hertzian pressure a t  the pitch point is within the allowable 
limit. Equations used for calculating contact stress in case of bevel gears are similar to those 
given in Chap. 2 on spur gears. Thus, the contact pressure at the pitch point in case of a pair of 
bevel gears with any shaft angle is given by 

' 

(5.3 1) F,,E u, i 1 

Here 
d COS' ~2mm cos 6, cos 6, 

2, 1 d,, cos6, cos6, d,, cos6, zlm, cos6, cos 6, 
- = 4 1 J- = = - u, = z , ,=d , , ,=  d m z  

For 90' shaft angle 

cos6 cos (90"-6,) - = tan6, = 1= - 
cos 6, cos 6, cos 6, 

U" = u2 Therefore 

It may be recalled here that 
Number of gear teeth z, u =  = - g 1  

Number of pinion teeth z,  
Speed of driving member 
Speed of driven member 

i = Transmission ratio = 

Since normally the pinion is the driving member, i = nJn, = zJzl = u 
In the case, as  in the case of step-up gear-set, the gear is the drivingmember, the transmic -ion 

ratio is smaller than 1, because of the reversed functions, n, stands for the speed of the gear dnd 
is less than n2, the speed of the pinion. 
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Again 

Inserting these values in Eq 5.31 

cos a t a n a ,  

Putting material coefficient 

- 

(5.32) 

(5.33) 

where E, and E, are the modulii of elasticity of the pinion and the gear materials, and putting 
the pitch point coefficient 

1 
YP = Jcos2a tan a, 

and inserting these values in Eq. 5.32 yields the following relation - 

P p  = Ym Yp JJy:I1 - - 

(5.34) 

(5.35) 

The value of the pitch point coetXcientyp can be taken as 1.76 for straight sided bevel gears in 
normal cases. For material coefficienty,,, ,see Table 2.17 (Sec. 2.23). 
Recalling equation is given in Sec. 5.9, we have 

z1m and sin 6, = - 5 z1m d,, = 2,-m, b = - 6 6 sin S, 2R 
1 4- = - z, m d x  
2 

With shaft angle = 904, R = ,/-- = 
L 

By inserting the values, we get 

andb = 2 d z  
6 

1 sin 6, = 

Putting all the above values in Eq. 5.35, we have 

In the above equation, Fm has been replaced by the relation 

(5.36) 

By transposing and inserting the expression for the allowable value of contact pressurepep, and 
solving for the module, we get 

(5.37) 
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In the example that follows, the relevant equations given in this section as well as in Sec. 5.9 will 
be used to solve a bevel gear problem. 

Example52 Given: Shaft angle = go', nominal input power = 6 kW, i = 3, n, = 750 rpm, 
z, = 20, a = 20'. Tooth surface should be hardened. Prime mover is electric 
motor. 

To calculate the design data for a pair of bevel gears confirming to the above specifications. 
Take impact factor = 1.75 for continuous duty with considerable impact. Gears are to be mounted 
on anti-friction bearings in a gear box. 

Solution: The following data are taken 

Material of pinion 40 Cr 4 
Material of gear 45 C 8 

The materials are flame or induction hardened, with the following strength data taken from 
Appendix E 

2 2 ob,,, = 200 N / m m  , ob,l2 = 180 N l m m  

Taking a factor of safety of 1.5, we have 

Surface fatigue strength (p,)  
15 Allowable contact pressure (pep) = 

Therefore 

pep,  = 1620 / 15 = 1080 N I mm2, pcp2 = 1640 / 1.5 = 1093N / mm', 
z2 = i, z1 = 3 x 20 = 60. To have hunting tooth action, the value ofz, is taken to be 6 1  

.Hence i = zJzl = 61/20 = 3.05 
Since it is a step-down arrangement, u = ZJZ, = i = 3.05. 
Therefore 

n, = 7501 3.05 = 246 rpm, tan 6, = z l l  z2 = 201 61 

whence 
6, = 18" 9' 9.74", 6, = 90-8, = 71" 50'50.26' 

P 6 
n, 750 Nominal torque on the pinion shaft = 9550 x 1 = 9550 x - = 76.4Nm 

Taking impact factor into account, the effective torque T, = 76.4 x 1.75 = 133.7 N m. Using 
Eq. 5.30, we have ,.3Jv = 3,/p 34 x 133.7 x sin 18" 9' 9.74" x 1000 = 2.6 

zl O b p l  202 x 200 

Module selected (m) = 3 mm 
d, = zlrn = 20x3  = 60mm, 4 = z2m = 61x3 = 183mm 
R = d , l2s in6 ,  = 6012xsin18"9'9.74" = 96.293 mm 
b = R / 3  = 32 mm, b = 30 mm (taken) 

d,, = d, - bsin8, = 60 - 30 sin6,  = 50.65mm, m, = d,n,/ z, = 2.53mm 
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Check for m, and b: Referrings to  Eqs 5.9 and 5.10 (Sec.'5.6) and taking A = 25 from Table 2.12, 
we have 

a 25 
2 

b,,, = z m ,  = - x 2.53 = 3163>30mm 

The accepted values are, therefore, within the allowable limits for m, and b. 

= 2L048 z 20 z,, = - - - 
cos 6, cos 18" 9'9.74" 

= 195.8 2, 20 Z", = - = 
cos 6, cos 71" 50'50.26" 

U, = U' = z,, f z,, = 9.3025 

d,," - - - Z l m m  - - zulm, = 21048 x 2.53 = 53.25mm 
cos 6, 

- zu,m, = 185.8 x 2.53 = 495.37mm - Z2mm d,," - - - cos 6, 

Velocity (v) = d,, a n,l60000 = 50.65 x 3.14 x 750 J 60000 = 2m J s 

F, = 2 T , / d m I  = 2 x 133.7 x 1000/50.65 = 5279N 

Since standards as regards tolerance vis-a-vis velocity are not available for bevel gears, we shall 
use Table 2.15 which is valid for spur and helical gears. 

Quality of tolerance = 10 (taken) 

For quality 10, q, can be taken as  1. From Fig. 2.49, we get 

- 2.85 for zu, = 21.048 

Figure 2.49 gives the values of qk up to zu = 100. By extending the curves of Fig. 2.49 and 
q k 1  - 

interpolating, the values of qk for zu above 100 can be obtained. Thus 

qk2 F;: 2.15 for zu2 = 195.8 

- Cnl 5279 x 2.85 = 198 N/mm2 
= 30 x 2.53 0 4 1  - - 

b MI* 

5279 x 2.15 = 150N/mm2 
30 x 2.53 q k 2  q e  = En 

bmm 
Ob, = - 

(taking q, = 1 in both th se) 
Since both the above values lies within the allowable values given earlier, abP, and qP2, the 
system is safe against failure by bending 



Straight Bevel Gears 5.19 

Hence, the system is safe against surface stress also since the above value is less than the 
allowable contact pressure given earlier. 

5.11 Blanks and Mountings for Bevel Gears 

Since the solids on whose surfaces the pitch cones of a pair of bevel gears are in rolling contact, 
the blanks on which the teeth of bevel gears are cut, are also obviously conical in shape. 

For any type of gear, the ultimate quality of the gear in the finished form is largely dependent 
on the design and accuracy of the gear blank. In  general, for bevel gears and for other types of 
gears as well, the blank should be so designed and treated that  the localised stresses are avoided. 
Care should be taken to avoid deflections within the blank. The designer should provide 
adequate amount ofmetal under the tooth root to  ensure proper support. This should be at least 
as much as the height of the tooth and this metal depth should be maintained throughout the 
length of the tooth. 

The other important criteria for proper blank design, are the ease of machining and 
appropriate hardening conditions in case of hardened gears. Another factor of vital importance 
is the provision of a suitable locating surface on the back end of the blank. This surface should 
be very carefully machined or ground, because checking and mounting will be done with 
reference to this surface. (See mounting distance in Fig. 5.3.) 

For mounting, the shaft angle of the axes of the bevel gears must be exactly the same as the 
design shaft angle. Though very small deviations do take place from the ideal condition in actual 
practice, care should be taken to  restrict these deviations to as  small a value as possible, as 
otherwise serious running difficulties will be encountered. The axes must intersect. While 
mounting the bevel gears, the mounting distances a5 given in the drawing must be rigidly 
observed so that the gears are mounted a t  the correct distances from the cone apex. 

As for bearings, the journal bearings are not considered suitable. Anti-friction bearings give 
better results. To minimise the detrimental effect of deflection, bearings should. be properly 
spaced. The spacing will depend upon the stiffness of the shafts carrying the gears and the 
orientation of mounting, that  is, whether the gears are straddle mounted or  overhung mounted. 

Mountings should be rigid so that the displacements of the gears under service conditions are 
kept within allowable limits. To minimise the detrimental effects of misalignment, proper 
alignment of the gears should be ensured. Besides, mountings should be accurately machined, 
keys should be properly fitted and couplings accurately mounted. 

As a result of experience and tests carried out by the reputed manufacturers, the following 
permissible deviations may be taken as guidelines: for gears of 150 to  400 mm diameter, the lift 
or depression of gear a t  the centre of the face width should not exceed 0.08 mm, the axial 
movement of the pinion should be restricted to  0.08 mm in either direction, and that  ofthe gear 
to  0.25 mm for gear ratios greater than one. 

5.12 Efficiency of Bevel Gear Drive 

For all practical purposes, the efficiency of straight bevel gear drive and of spiral bevel gear drive 
can be found by using the formulae used for spur and helical gear drive. These formulae, however, 
are to be used with certain modifications as explained below. 

In both the cases, the virtual number of teeth are to  be used instead of the actual number of 
teeth. The relations are given by 
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z 
2, = - in case of straight bevel gear 

cos 6 
2 - - 

where p,,, = The middle spiral angle of the spiral bevel gear. 

in case of spiral bevel gear 
COSSCOS' p, 

Using Eq. 2.11, the modified expression for the efficiency of straight bevel gear is given by 

COSS, COSS, q = I - fp  - ( 21 +-1 2 2  

Using Eq. 3.71, we get the following value for the spiral bevel gear 

 COS^,  COS^^, C O S S , C O S ~ ~ ,  + 
2 2  

7 = 1 - 0.8 cOsp,fp 

(5.38) 

(5.39) 

The different factors in the above formulae have the same meanings and values as given 
peviously in the relevant sections (Secs 2.6,2.29 and 3.18). 
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6.1 General Classification of Spiral Bevel Gears 

Spiral bevel gear is a term generally used in case of bevel gears that have teeth curved 
longitudinally along the length of the teeth. Though, strictly speaking, bevel gears like hypoid 
gears and a few others which resemble spiral bevels, do not fall in this category, nevertheless 
since “spiral bevel gear” is a loose term, we will includein this class the varieties of bevel gears 
which do not have straight teeth. A class of bevel gears having straight teeth but are tangent to 
a circle concentric to the centre of the gear (i.e. the teeth do not pass through the apex when 
extended but are obliquely placed on the conical blank ) is also sometimes referred to a s  spiral 
bevel gears. These gears are also known as “skew bevel gears” or “oblique spiral bevel gears”. 

The curved-toothed bevel gears which are normally encountered in practice will be discussed 
in this chapter. The main advantage ofthese gears over the straight-toothed varieties lies in the 
fact that as more teeth are in contact at the same time because of the curved-shaped contour of 
the teeth, a smoother meshing action between the mating pair is ensured. In  view of the shape 
ofthe tooth, the curved toothed bevel gears have special properties which are summarised below. 

1. Longer tooth-engagement time is effected diie to simultaneous meshing of a number o f  
teeth. 

2. Greater contact ratio can be achieved. 
3. The meshing action is gradual and progressive over the whole length of the gear teeth. 
4. The noise level is considerably small. 
5. The flank and the root strengths of teeth are greater. 
6. The minimum number of teeth to avoid undercutting is reduced, thus allowing a design 

7. In general comparatively higher transmission ratio is achievable. 
8. These gears are not unduly sensitive to fluctuating types of loads. Hence, these gears can 

take care of misalignment in mounting and bearing systems. 
9. Above all, spiral bevel gears have greater load carryingcapacity than the straight -toothed 

bevel gears, other parameters remaining the same. 
Broadly, these gears have similar advantages over the straight-toothed bevel gears as the 

with greater reduction ratio for the same space requirements, if necessary. 

helical gears have over the spur gears. 
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Depending on the type chosen, spiral bevel gears may have constant tooth height along the 
widthor the height may decrease progressively from periphery towards the centre. Moreover, the 
shape of the tooth  will depend on the manufacturingmethod employed and on the profile of the 
cutter used. 

The curved toothed bevel gears can be broadly grouped into seven categories discussed here. 
1. The spiral bevel gears tha t  have teeth shaped like the arc of a circle along the length are 

patented by the Gleason Works of Rochester, USA. They are generally used for speeds greater 
than 5 m / s  or 1000 rpm, though for special application where smoothness and quietness are the 
main design criteria, they may also be run a t  lower speeds. The spiral angle is normally 35". The 
tooth height decreases progressively towards the centre. 

2. Zerol bevel gears have also been developed by the Gleason Works. When the spiral angle 
is zero, the spiral bevel gear is known as zero1 bevel gear. Zerol gears are used mostly in high- 
precision instruments where it is often necessary to  have almostzero backlash. The teeth ofzercl 
gears can be accurately finish-ground and therefore they are ideally suitable where very hard 
tooth surfaces must be accurately finished. 

3. Hypoid gears are the special spiral bevel gears which are mounted on non-intersecting, 
cross-axis shafts, having an offset between the two shaft axes. Among others, hypoid gears offer 
two distinct advantages. 

(i) Because the pinion shaft or drive shaft occupies a lower position than the gear shaft, hypoid 
gear pairs have been adopted by many automobile manufacturersfor use in the differential 
for the rear axle drive of the car. This is due to the fact that  a lowered drive shaft permits 
a lower-floored body of the vehicle. The centre of gravity of the system is thereby lowered 
which brings greater stability as a consequence. 

(ii) In industrial applications, where there is a sufficient offset between the two shafts, the 
shafts may pass one another with enough clearance, thus permitting the use of a compact 
straddle mounting on the gear and the pinion. Gang drive i s  thus possible so that  several 
hypoid pinions can be arranged on a single shaft with drives t o  several machines from a 
single input shaft. 

The surfaces of the pitch solids of these gears are hyperboloids. If the offset is zero, a pair of 
hypoid gears becomes an  ordinary spiral bevel gear pair. 
4. Bevel gears with Archimedian spiral have tooth-traces that  follow an  Archimedian spiral. 

These gears are not much used in industries. 
5. Spiral bevel gears withinvolute tooth trace are usedin case of the Palloid type of spiral bevel 

gears developed by a German manufacturer, Klingelnberg. The height of tooth remains nearly 
constant along the tooth width. 

6. Eloid spiral bevel gears, developed by a Swiss manufacturer, Oerlikon, have epicycloids or 
hypocycloids as spirals. The height of tooth is constant. 

7. Kurvex toothed gears, generated by special cutters, are similar to the Gleason system, 
except tha t  the tooth height remains constant throughout. The longitudinal contour ofthe tooth 
along its length is an arc of a circle as in the Gleason system. 

Besides the above mentioned categories, certain other types which are usuallyknown by their 
trade names, also come under the general category of spiral bevel gears. These are-coniflex, 
beveloid, spiroid, planoid, helicon and other types. 

The different. types of bevel gears are illustrated in Fig. 6.1. These gears are represented in 
a plane, that  is, they are the crown gears of the respective types of gears. The crown gear has  
already been defined and described i n  Sec. 5.3. 
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I 

(a) 
STRAIGHT-SIDED 

(b) 
OBLIQUE 

R H  

I I 

(c) (d 1 
ARCHIMEDIAN SPIRAL CIRCULAR (GLEASON) 

R H  LH 

(e) 
INVOLUTE (PALLOID 

TOOTHING BY 
KLINGELNBERG) 

LH 

( f )  
E P ICY CLOl D ( EL01 D 

TOOTHING BY 
OERLIKON) 

LH 

Fig. 6.1 Types of straight-sided and spiral bevel gears 

The spiral bevel gears are also categorised according to the method of manufacture. 
1. Generationby hobbingin part with cutter head: Gleason and Arcoid systemsoftoothingare 

produced by this method. In these systems, the tooth curve is a circular arc and the tooth 
height is tapered from back towards the apex. The generating machine is fitted with a 
circular cutter head which carries straight-sided cutter at the front side. The teeth of 
Kurvex gears are also manufactured by this system of generation, but here special cutters 
with two cutter heads are used. The teeth of these gears are of constant height throughout 
the length. 

2. Generation by continuous spiral hobbing with cutter head: The Oerlikon gears belong to 
this category. The tooth is of epicycloid curve or hypocycloid and is of constant height. The 
generation is effected continuously by the cutter head fitted with a series of cutters. 

3. Generation by continuous spiral hobbing with conical or cylindrical hob: The Klingelnberg 
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gears are produced by this system. The tooth curve is involute and the tooth height is nearly 
constant. The generation is done by a spiral type cutter or a bevel gear type conical hob 
cutter. 

6.2 Spiral Bevel Gear Geometry and Basic Relations 

The basic terminology of spiral bevel gears is the same as in the case of the straight-sided bevel 
gears. The relevant terms have been defined in Sec. 5.3. The terms as well as the relations which 
are pertinent to spiral bevel gears only, or are modified because of the spiral angle, will be defined 
and discussed in this Section. 

Spiral Angle 
Two spiral bevel gears in mesh are shown in Fig. 6.2. The spiral bevel dimensional parameters 
have been depicted on the sectional views of the gears a s  well as on the crown gear. 

Referring to the geometry of the pitch plane of the crown gear, the spiral angle p, is defined 
as the angle which is subtended at the point of intersection of the tooth spiral and the middle 
circle of radiusRm, and is contained between the tangent to the curve at the point of intersection 
and the radial through that point. The spiral angle along with other parameters, such as  the face 
advance, face width and circular pitch are shown in a simplified manner in Fig. 6.3. 

The spiral angle as defined above is called the middle spiral angle or simply spiral angle in 
common usage. The spiral angle, however, varies at different cone distances. The spiral angles 
at the tip and the root circles are denoted by symbolspa and pi respectively. At any cone distance 
R’, the spiral angle p’ for Gleason spiral bevel gears can be found from Eq. 6.1 

R~~ - R,‘ 

R’ 2% rc 
(6.1) 

where rc is the radiusof curvature ofthe mean spiral curve as shown in Fig. 6.2. Though the spiral 
angle varies according to design considerations, its usual value is 35’. 

Since the teeth are curved, a considerable amount of overlap results when two such gears 
mate. Contact of more than one pair of teeth at all time is assured. As emphasised in Sec. 6.1, 
the tooth engagement is gradual and continuous because of the spiral teeth which is also 
conducive to smooth and quiet running. Moreover, for the same size, the spiral bevels have 
greater load carrying capacity than the straight sided ones. 

When other design factors permit, the spiral angle should be so selected that  a face contact 
ratio of at least 1.25 is assured. Maximum smoothness of drive, however, is attained when the 
face contact ratio is between 1.50 and 2.0. 

Hand of Spiral 
When viewed from the front, that  is, from apex, if the tooth makes a clockwise spiral from the 
base winding towards the apex, then it is designated as a right-handed spiral. The reverse is true 
for the left-handed spiral. In a meshing pair, the hands of the spirals of the component members 
are always opposite. In gear technology, i t  is customary to identify a combination by the hand 
of spiral of the pinion which is normally the driving member. It may be mentioned here that  the 
hand of spiral plays no part as far as the smoothness or quietness of operation and the efficiency 
of the gear-set are concerned. 
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Fig. 6.2 Spiral bevel gear geometry 
Basedon Maschinenelemente, Niemann,vol. II. 1965edition, Fig. No. 1332, p. 133. 
Springer Verlag. Heidelberg 

CIRCUIAR PITCH 

,-CENTRE LINE OF 
TOOTH SPIRAL 

FACE ADVANCE 

Fig. 6.3 Spiral angle of spiral bevel gear 
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Direction ofRotation 
The direction of rotation is determined as viewed from the back, that is, not from the apex. 
Accordingly, the shaft along with its mountedgear is said to rotate in clockwise or anti-clockwise 
direction. 
Selection of Direction of Spiral and Rotation 
The selection of hand of spiral and direction of rotation will depend on several factors, e.g. type 
and magnitude of load, mounting conditions, effect of backlash, etc. There is no choice on a 
reversible drive but the following guidelines may be given for an ordinary drive, which will 
determine the proper selection. 
First, the following rules are t o  be kept in mind 

( i )  An LH pinion, driving clockwise, tends to move axially away from the cone centre. 
( i i)  An R.H pinion, driving clockwise, tends t o  move axially towards the cone centre. 
(iii) An LH pinion, driving anti-clockwise, tends to move axially towards the cone centre. 
( iv)  An RH pinion, driving anti-clockwise, tends to move axially away from the cone centre. 
The resultant effect ofthe thrust loads should be carefully considered before final selection is 

made. If the mounting condition is such that there is adequate end-play in the pinion shaft, then 
an FW pinion, driving clockwise, will have a tendency to reduce the backlash and the teeth of 
pinion and gear may wedge together. An LH pinion in such condition will introduce additional 
backlash. Usually, when the gear ratio, pressure angle and spiral angle permit, the hand of spiral 
should be so selected as to allow the axial thrust which will tend to  move both the pinion and the 
gear out of mesh. If not, then only the pinion should be allowed to tend to move out of mesh. 

Shapes of Bevel Gear Cones 
Comparative shapes of cones of different spiral bevel gears have been shown in Fig. 6.4. Point 
0 in each case represents the point of intersection of the axes of the mating pair. The relative 
difference of positions of the pitch cone, the blank cone and the root cone in case of the Gleason, 
Oerlikon and the Klingelnberg systems can be easily seen. 
Hand of Spiral, Direction of Rotation and their Relation to Forces 
In case of spiral bevel gears, includinghypoid gears, the spiral angle introduces additional force 
components when compared to straight bevel gears. In a helical gear, an axial thrust results 
because of the helix angle as we have seen in Chap. 3 on helical gears. But this axial thrust is 
a function of the helix angle alone. In case of spiral bevel gears, however, the spiral angle gives 
rise to both axial and radial components. 

(4 (b) (4 
GLEASON OERLIKON KLINGELNBERG 

ELOID PALLOID 
Fig. 6.4 Centres of cones of bevel gears 

Based on Maschinenelemente, Niemann, vol. II, 1965 edition, Fig. No. 137/1, 1 
p. 137. Springer Verlag, Heidelberg 

It can be seen from Fig. 3.7 that the direction of the axial thrust depends upon the hand of 
helix, the direction of rotation, relative position of the driver and the driven gear, and whether 
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the gear is the driving or the driven member. In case of spiral bevel gears, in addition t o  the above 
factors, the pitch cone angle is also a determiningfactor. All these factors determine whether the 
axial component will make the gear move away or towards the cone centre. 

As far as the  direction of the resultant axial component is concerned, the fundamental 
difference between the straight andzerol bevel gearson one side, and the spiral and hypoidgears 
on the other is tha t  in the former case, the axial components always tend to force the pinion and 
the gear out  of mesh, while in the latter case, the direction to which the thrus t  force acts may be 
either towards or away from the cone centre, dependingupon the algebraic sign of the calculated 
resultant force. Conventionally, the axial force which tends to move the  two components out of 
mesh is regarded as positive and the other one as negative. It follows, therefore, t ha t  in case of 
spiral bevels andhypoids, since the resultant axial component may, as a consequence ofboth the 
pressure angle and the spiral angle, act  in either direction, the choice of the direction and 
magnitude ofthe spiral angle is a prime consideration ofthe designer. The component gears may 
move away, creating unnecessarily a large backlash, or they may move towards each other into 
a tight mesh which may result in jamming or seizure. Since proper running of spiral bevel and 
hypoidgears necessitates the rightkind ofsupport against apossible axial displacement ofeither 
member of the gear-set, meticulous design calculations of thrus t  forces are imperative for the 
selection ofthe proper kind ofbearings and other allied factors. Figure 6.5 illustrates the relevant 
relations between the hand of spiral, direction of rotation, and the axial thrus t  forces. 

Resolution of Forces 
The main forces acting on spiral bevel gear teeth are 

( I )  The tangential tooth load F, 
(ii) The axial thrus t  F,, 
(iii) The radial separating force F, 

All the above forces a re  referred to the mid-point of tooth 

The Tangential tooth loud This load is given by 

F,, (N) = - 2T, x 1000 (d,,in mm) 
dm 1 

Where F,, = Tangential tooth load on pinion, and is equal in magnitude to the tangential tooth 
loads on gear F,, in case of spiral bevel gears. The tangential tooth loads on pinion 
and gear are different in case of hypoid gears. 

T,(Nm) = 9550- P, x K =  Maximum torque on the pinion 
” I 

Here, P, is the nominal motor power in kW, and n,  is the motor speed in  rpm. 
FactorKtakescare ofthe effect ofadditional operational and impact forces. Selection of K will 

depend on the service conditions and experience. Values given in Table 2.16 (Sec. 2.22) for @ can 
be taken for K too for all practical purposes. 

The axial thrust The axial forces acting on the gear components can be computed from 
Table 6.1. I f t he  resultant axial force is of positive sign, then the force is directed away from the 
cone apex. Negative sign indicates movement towards the apex. The relation between the force 
actingon a spiral bevel gear and its proper algebraic sign for the forces a re  shown in Fig. 6.5 (b). 
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spiral oevel gear 
The radial sepbrating force The radial separating force acting on the gear components can be 
computed from Table 6.2. 

If the resultant radial separating force is of positive sign, then the force is directed towards 
the gear axis, that is, away from the mating member. Negative sign indicates a direction away 
from the gear axis, that  is, towards the mating member. 

Table 6.1 Formulae for the determination of axial forces acting on bevel gears 

Driver 

spira! rotaton 
Hand of Direction of Magnitude of axial thrust 

Right Clockwise 

Left Anti-clockwise 

Right Anti-clockwise 

Driven 

Left Clockwise F, = -L (tanasina- sinB-6) 
cos B 
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Table 6.2 Formulae tor the determination ot radial separating force on bevel gears 

Driver 
Hand of Direction of 
spiral rotation 

Magnitude of separa ring force 

Right Clockwise 

Left An ti-clockwise 

Driver 

F , = -  5 (tan acos 6 + sin psin 6) 
cos p 

Driven 

F, = -L (tan ixcos 6 - sin p ,  sin S) 
cos p 

Right Anti-clockwise 

Left Clockwise 

Driver 

F, = J- (tan acos 6 - sin Psin 6 )  
cosp 

Driven 

? =-  6 (tan crcos 6 + sin Psin 6) 
cos 13 

In  each of the above cases, while using the above formulae given in the tables for the 
determination of different forces, care should be taken to ensure that  the relevant values of 
parameters, corresponding to the particular member in question are inserted. That is, proper 
subscripts are attached to  the forces and angles, e.g. subscript 1 for pinion and 2 for gear or 1 for 
the drivingmember and 2for the driven member, a s  the case may be. The normal pressure angle 
(a) is the pressure angle on the driving side of the tooth. 

Direction for Use of Tables 6.1 and 6.2 
In a condition where the driver is ofRH spiral and the direction of rotation is anti-clockwise and 
the driver may be pinion or gear, the driven member is obviously of LH spiral and rotates in 
clockwise direction. 

From Table 6.1, complying with the above arrangement of drive, we have 

Axial force of driver = F, = - ' (tan a sin S+ sin pcos 6) 
cos p 

Taking the pinion t o  be the driver and assigning the subscript 1 t o  the pinion and 2 to  gear, we 
have 

F,, = JL (tan cusin 6, +- sin pcos SJ 
cos p 
P 

F,, = l l ~  (tan a sin 6, - sin p cos 6,) 
cos p 

The tangential forces are the same. Hence, F,, = F12= F, . F,can be calculated from the given 
data, such as power and speed, a s  per the usual formulae. As a n  example, take cy = 20", ,4 =35', 
C = 8, + 6, = 90" and 6, = 30", 8, = 60'. 
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From the above equations, Fa, is obviously positive. The axial force of the driven (gear, 
member is 

Fa2 = - ' (tan 20" sin 60" - 
cos 35" 

sin 35" cos 60") = F, x 0.03468 

Since Fa2 is also positive, both the driver and the driven member tend to move away from 
the apex. The same equations, used in the above example, are also valid for a driver havi tig LH 
spiral and clockwise rotation mating with a driven gear having RH spiral and anti-clockwise 
rotation. Table 6.2 for radial forces can be similarly used for calculation and checking. 

Stress Calculations and Power Rating 
Since the curved toothed bevel gears are produced by different types ofmachines and since these 
gears also have different geometrical configurations depending on the manufacturing processes 
involved, it is advisable to perform calculations according to  the instructions ofthe manufactur- 
ers of the relevant machines and cutting processes. 

As far as the strength calculations are concerned, the load carryingcapaci ty ofthe spiral bevel 
gears, in general, can be taken to be around 15 to 25% higher than that  of the corresponding 
straight-sided bevel gears. 

In  Sec. 6.1, we have seen that there exist various systenis according t o  which the spiral bevel 
gears are manufactured. Each system has its own geometrical characteristics arising out of its 
own peculiar generating mechanism, by means ofwhich the spiral bevel gears belonging to that 
particular system are produced. Hence, the tooth design will vary accordingly. Gear calculations 
and dimensional parameters based on one system will not be valid for those conforming to some 
other system. Besides, a designer may have his own idiosyncrasies as regards the design criteria 
and procedures for a particular system of spiral bevel gear. I t  is, therefore, always prudent to 
have a dialogue with the supplier before the designer undertakes to  fix the relevant parameters 
and makes the rocessary manufacturing drawings. This way, a fruitful result will be ensured 
because the supp, clue to the lack ofproper equipments and manufacturingfacilities, may or 
may not be in a P O S I L I O ~  to make the gear if the drawings and calculations are made beforehand 
without prior consultation. 

In many industrial organisations which lack the facilities for producing spiral bevel gears in 
their own shops, but which need these gears for replacement as spare parts for their machines 
orgear boxes, the usual practice is to  off-load these items to firms specialised in the manufacture 
of spiral bevel gears. The design ot'fices of such organisations make manufacturing drawings of 
these gears for all other body portions except the teeth portions, which are shown as solid, 
truncated conical blanks with sufficient machiningallowances. The firm which gets the order is 
free to  cut the teeth portions according t o  its own system, provided it fulfils the customer's 
requirements and pre-conditions as regards power, torque, strength properties, reduction ratio, 
dime ional and space constraints, speed, guaranteed life, inspection procedures and all other 
releva,. parameters. The gears, thus produced and delivered, should fit in the machine without 
difficulty and should run smoothly during their operational life. 

6.3 Gleason System of Spiral Bevel Gears 

One ofthe pioneers of the spiral bevel gear technology is the Gleason Works ofRochester, USA. 
The Gleason system was originally developed in the FPS units. Though metric Gleason system 

? 

r I 
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has also been developed, most of the spiral bevels using the Gleason system are still DP gears. 
Hence, in this section, the FPS units are used for convenience. 

Table 6.3 Parameters for Gkason spiral bevel gears 
(All dimensions are in inch units) 

DBscriotion Pinion Gear 

Number of teeth 21 22 

Shaft angle z = 9 0  

Addendum h,, = Working depth - ha, ha, = 1 P [0.46+0.39 (?y] 
Working depth 1.700 

P 
- 

Whole depth 1.888 
P 

h = -  
~~ 

Clearance 0.188 
P 

c = -  

~~ ~~ 

Pitch circle diameter 21 d, = - 
P 

d, fi. 
P 

Pitch cone angle 
Z 6, = 
2 2  

6, = 90' - 6, 

Cone distance 

~~ ~ 

Circular pitch A p = -  
P 

Tip circle diameter d,, = d, +  COS 6, d,, = d, + 2h,,  COS^, 
I 

' 4, ef2 = tan-' - hI2 
R 

ef l  = tan-' - 
R Dedendum angle 

~~ ~ ~~ ~ 

Face angle of blank 6 a t  = 61 + 012 S a 2  = 82 + 

- _  
Table 6.4 Minimum number of teeth to avoid undercutting 

i '2 mn i 4 mn 
1 17 
1.12 16 
1.26 15 

17 
18 
19 

1.43 14 
1.69 13 
2.16 12 

20 
22 
26 
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As stated in the beginning of this chapter, the spiral-curve of a Gleason bevel gear is an  arc 
of a circle. The gear parameters and relations which are given here are as per the 1952 Revision 
of Gleason Works. These data pertain to  spiral bevel gears for general industrial purposes. The 
teeth are manufactured by the generation process. The validity of the data is for gears with 12 
DP and coarser. The Gleason Works have listed 5 categories ofgears which do not conform to the 
standard proportions given here. These may be considered as special designs and include spiral 
bevels for automotive rear-axle drives, gears of finer pitch than 12, ratios having lesser number 
of teeth than 12 in the pinion, and some other special types. 

The main emphasis ofGleason desigr! is on practical operatingtequirements. According to the 
present day Gleason design, the face cone element of a blank is made parallel to the root cone 
element of the mating gear. The purpose of this is to ensure constant clearance throughout the 
length of the tooth from back to front. This also permits the use of larger edge radii on the cutters 
without fillet interference at the small end. The pressure angle for the system is 20' and the spiral 
angle is 35'. 
Spiral Angle of Gleason System 
As stated before, the spiral angle is 35' which is most commonly used. Calculations for equal 
stress in pinion and gear have been based and determined using this angle. However, for other 
spiral angles from 20' to 45', the same tooth proportions can be used. Special proportions are 
required for angles below 20'. High spiral angle is conducive to  greater face contact ratio, 
smoother and quieter operation, but it affects the ensuing thrust loads in service. 

The common data which are required for the Gleason system are given in Tables 6.3 and 6.4. 
To keep uniformity with metric gears, the symbols and subscripts used are the same as in the 
case of metric gears, though inch units are used. 

The unit of diametral pitch P is inch-'. 

6.4 Zerol and Hypoid Gears 

Zerol Bevel Gears 

When the spiral angle of a spiral bevel gear is designed to have a value of zero, it is termed as 
a zero1 bevel gear. As indicated earlier, this is a patented item of the Gleason Works. 

Fig. 6.6 Zerol bevel gear 



Spiral Bevel Gears 6.13 

The zerol bevel gears have curved teeth the orientation of which is in the same general 
direction as  the straight teeth ofthe straight-sided bevel gears. The zerol gears can have ground 
teeth. Hence, when hardened gears having extreme accuracy and precision are required, such 
as those used in aircraft industries, these gears are recommended in preference to the straight- 
sided bevel gears. 

The same machines which are used for producing spiral bevel gears can be made to produce 
zerol bevel gears. As far as the tooth action and the end thrust are concerned, they have the same 
effect as the straight-sided ones. 

The zerol gear geometry is such that  the face cone parameters do not pass through the pitch 
cone apex. They are more or  less parallel to  the root cone elements of the matinggear. The reason 
for such configuration is the same as that  adopted in case of certain types of designs of straight 
bevels, namely, to have uniform tooth clearance along the length of the teeth. 

Zerol gears can be used up to  a circumferential velocity of around 5 m/s. At higher speeds, they 
tend to be noisy. 

When extreme smoothness of tooth action and quietness of drive are imperative, these gears 
are highly recommended by the gear designers. Journal bearings can be used for mountings, 
though anti-friction bearings give better results. However, plain bearings offer compactness of 
design and are less expensive, and this is one of the reasons why straight and zerol bevels are 
extensively used in differentials. Other types of bevel gears require more elaborate mountings 
to compensate for the different types of forces which are produced thereby. 

Design calculations involved in zerol gears are comparatively simple, and are similar to those 
of straight-sided bevel gears. The machine settings for cutting these gears are also easy. Zerol 
bevels are generally recommended when the loads are light. They are also satisfactory for high 
static loads and when the wear of the tooth surfaces is not a critical factor. The basic pressure 
angle is 2O', though when avoidance of undercutting is necessary, pressure angles of 22.5' and 
25" are also used. The face width is generally limited to one-fourth of the cone distance. 

Hypoid Gears 
The hypoid gears resemble the spiral bevel gears in general appearance. The shape of the tooth 
is similar to that  of the spiral bevel. One notable difference is that  in case of a spiral bevel, the 
pitch solid is a cone whereas it is a hyperboloid of revolution in case of a hypoid gear. 

The axis of the hypoid pinion may be offset above or below the axis of the gear. This is shown 
in Fig. 6.7. Besides the advantages mentioned in Sec. 6.1, the hypoid gears offer the following 
special advantages. 

1. So far as smooth and quiet running is concerned, hypoid gr'ars are more suitable than 
ordinary spiral bevel gears. 

2. Hypoid gears can easily produce large speed reductions. Transmission ratios of 603 and 
higher are quite common in industrial applications using these gears. 

3. The hypoid drive is compact and the pinion strength ishigh. When compared to the straight 
or zerol bevels, the hypoid drive makes it possible to reduce the overall size of the 
installation with a smaller number of teeth in the pinion. 

Generally, the hypoid pinion is designed to have a larger spiral angle than the gear, thereby 
making the pinion diameter bigger which in turn results in a pinion stronger than the 
corresponding spiral bevel pinion. The increased pinion diameter permits the use of compara- 
tively high speed ratios, at the same time allowing the pinion-body to  have enough material left 
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Fig. 6.7 Orientathns of hypoid gear 
Based on Maschinencglemente, Niemann, Vol. II, 
1965edition, Fig. No. 144, p.144. Springer Verlag, 
Heidelberg 

after the requisite hole has been bored to accept the shaft of adequate size commensurate with 
the torque it is designed to deliver. 

In a hypoid drive, there are limitations as to the magnitude of the shaft offset. Normally, the 
offset should not exceed 40% of the equivalent bevel gear back cone distance. For heavy duty 
equipments, this should be nearer 20%. Oil tight case with anti-friction bearings should be used 
as housing mountings, and thrust bearings must be provided. 

Because of the peculiar motion between the two members comprising a hypoid drive, the 
meshing action is subjected to a considerable slidinglengthwise along the teeth. This high degree 
of sliding gives rise to a greater energy loss. In this respect, a hypoid gear pair is analogous to 
other types of non-planer gears, such as worm and worm wheel drive. High localised tempera- 
turesaregenerated whichmay result in weldingofmetalsat the hot spots. The extremepressure 
(EP) lubricants inhibit this welding tendency and also sustain high pressures, (see also Sec. 8.6). 

It has been found that at low ratios, the hypoid gears are comparatively more efficient. In 
general, the efficiency of a hypoid gear-set is given by 

x 100% cos a + p tan p 
= cosa + ptanp: 

.'.! 2) 

where p, and p2 are the spiral angles of the pinion and the gear respectively, a is the normal 
pressure angle and pis the coefficient offriction. Sliding action across the tooth surfaces entails 
loss of efficiency. This is a common feature of all non-intersecting gear sets. 
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6.5 Klingelnberg Palloid System of Spiral Bevel Gears 

In  Klingelnberg Palloid system, the teeth of the spiral bevel gear have involute-shaped spirals 
along their lengths. The tooth height remains nearly constant throughout the length ofthe tooth. 
These spiral bevel gears are easily mounted and are not affected by bearing inaccuracies. Along 
life can be expected for these gears if properly designed and maintained. Using the same symbols 
and subscripts as before, the following relations of parameters are relevant t o  the system. 

Toavoid a high spiral angle and the resultinghigh axial forces, the following relation between 
the transverse module and the normal module is usually maintained. 

- z  1.5 
mn 

1 + cos 

sin c For = go”, cot 6, = i, a n d f o r z t  go”, cot 6, = ( C = S ,  + 6,) 

, Ri = Rn-b mnz , cosp, = - 
2 sin 6, 3.25 to 3.75 d m  

d2 , h & 10m, = R, Rn = 

Base circle radius of the involute spiral = z,mn/2 sin S,, p ,  = xm,; Middle transverse module 
m,, = d,h; Middle transverse - pitch p , ,  = ?r m,,; Number of teeth of crown gear z, = zdsin 
6, 

d,  = m, z,, d,, = d ,  - h sin S,, d, = m, z,, h(>, = mn (1 + x,),  ha, = 2mn - ha, 
The correction factor ( x , )  is to  be inserted from Table 6.5. 

do, = d ,  + 2 hU, COS S,, dn, + 2 ha, COS 6, 

Table 6.5 Values of (1 + x,) for a = 20’ 
~ ~ ~~ 

2 2  z, 
8 9 10 11 12 13 14 15 16 

22 
24 
26 
28 
30 
35 
40 
45 
50 
60 
70 

1.27 
1.26 
1.25 
1.25 
1.25 
1.26 
1.28 
1.29 
1.30 
1.33 
1.36 

1.23 
1.22 
1.22 
1.22 
1.22 
1.23 
1.24 
1.25 
1.26 
1.30 
1.32 

1.16 
1.16 
1.16 
1.17 
1.17 
1.18 
1.20 
1.21 
1.23 
1.26 
1.29 

1.04 1 .oo 
1.06 1 .oo 
1.07 1 .oo 
1.08 1 .oo 
1.09 1 .oo 
1.11 1 .oo 
1.13 1.02 
1.15 1.05 
1.16 1.07 
1.20 1.11 
1.24 1.16 

1 .oo 1.00 1.00 1.00 
1 .oo 1.00 1.00 1.00 
1 .oo 1.00 1.00 1.00 
1 .oo 1.00 1.00 1.00 
1 .oo 1.00 1.00 1.00 
1 .oo 1.00 1.00 1.00’ 
1 .oo 1.00 1.00 1.00 
1 .oo 1.00 1.00 1.00 
1 .oo 1.00 1.00 1 00 
1.03 1.00 1 00 1.00 
1.08 1.00 1.00 1.00 

Anglecorrection In Klingelnberg Palloid system, a n  “angle correction” is carried out. By means 
of this angle correction of the pitch cone angles 6, and 6L, better tooth action and undercutting 
can be attained. The magnitude of this correction is small and in this section, simplified formulae 
have been used, disregarding the angle correction. The reader may refer to  more advanced 
treatise on Klingelnberg system or to the company norms for more information. 
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A simplified and somewhat modified version of a n  example based on DIN 3990 and involving 
Klingelnberg Palloid system of spiral bevel gears is given in Example 6.1. 
Example6.1: In  a Palloid system of spiral bevel drive set, havinghardenedgears, the following 
data are given : 

z, = 9, z, = 28, u = z , / z ,  = 2819 = 3.11, m, = 4.875mm, a, = 20'. 

p, = 33" 20', C= go', x ,  = + 0.75, x2 = - 0.75, 6 = 20mm, 
working depth of teeth, h, = 170 m,, whole depth oftooth, h = 1888 m,, 
cutter addendum, h, = 1038 m,, nominal torque, T, = 140 Nm, 
service factor = 125. 

To calculate the relevant dimensional parameters of the gear set and select suitable materials 
for the same. 

Solution : d, = m,z, = 4.875 x 9 = 43.875 mm 
d, = m,z, = 4.875 x 28 = 136.50 mm 

cot 6, = i = u = 3.11, whence 6, = 17' 49' 
6, = 90' - 6, = 90' - 17'49' = 72'11' 

d,, = d, - 6 sin 6, = 43.875 - 20 x 0.30597 = 37.755 mm 
d,, = d, - 6 sin 6, = 136.50 - 20 x 0.95204 = 117.46 mm 

Ra=-- d2 - 7168 mm, R, = Ra - - = 6168 

Virtual numbers of tooth are given by 

b 

2 sin 6, 2 

z, - - 9 = 16.21 
cos 6, c0s3pm cos 17' 49'cos3 33' 20' zu, = 

= 156.91 - 28 
22 - 

COS 6,  COS^^, COS 72' 11'c0s3 33' 20' Z"2 = 

Module of virtual toothing 

Rm 
R a  

m, = mnm = m, cosp, - = 3.50 mm 

The correction factor given in Table 6.5 takes care of the undercutting aspect only. Here, 
we have a case of So- gearing with r = 2 0.75. The correction factors of the virtual toothing are 
given by 

XI +0*75 = + 0.898 xu1 = - = cos p, cos 33" 20' 

cos p, cos 33' 20' 
xu2 = - x2 = -0'75 - - -  0.898 

1 
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Pitch circle diameters of the virtual gears 

du, = z,, mu = 1 6 . 2 1 ~  3.5 = 56.73 mm 
do, = zu, m, = 156.91 x 3.5 = 549.18 mm 

Addendum: 

L70 + 0.75 4.875 = 7.80 mm 1 hul 170 rn, 
2 

R m  6168 
'a 7168 

ha, = 2 + XI m, = 

ha,, = ha, - = 7.8 - = 6.71 mm 

4.875 = 0.4875 mm 
hw 170 m, 

ha, = - + x2 m, = 
2 2 

R m  6168 
'a 7168 

ham2 = ha, - = 0.4875 - = 0.419 mm 

Dedendum: 
hf1 = h,,, - x1 m, = (1038 - 0.75) 4.875 = 140  mm 

6168 hfml = h,, = L40 - = 1.20 mm 
' a  71.68 

hf2 = h, - x2  m, = (1038 + 0.75) 4.875 = 8.71 mm 

The outside diameter and the root diameter of the virtual gears can now be calculated thus: 
= 56.73 + 2 x 6.71 

= 56.73 - 2 x 120  

= 549.18 + 2 x 0.419 = 550.02 mm 
= 549.18 - 2 ~ 7 . 4 9  

d,,, = d,, + 2ham, 
dful = d,,, - 2hfml 

d,,, = d,,, + Zh,,, 
dfU2 = d,, - 2hfmz 

= 70.15 mm 
= 54.33 mm 

= 534.2 mm 

Now, the tooth profile in this particular example is not as per the standerd reference profile. 
Hence, the values of form factor, IJ~, given in Fig. 2.49 cannot be used here. Analytical 
determination of these values is extremely complicated. DIN 3990, therefore, recommends that 
on the basis of the dimensional data of the virtual toothing calculated so far, that is, using the 
value oft,,, mU,an,xU and other parameters, and taking fillet radiusat the root, ru= 0.25 mu = 0.875 
mm, reasonably appropriate sketches of a virtual tooth of the pinion (S - plus) and of the gear 
(S-minus) should be drawn as per some suitably enlarged scale. (In this connection, see Fig. 2.47 
in Sec. 2.25.) 

Having drawn such figures of the virtual toothing of pinion and gear in this particular case, 
the following data are obtained by actual physical measurement on the drawings by means of 
suitable drawing instruments: 

h,,, = 7.50 mm, 
hqu2 E 7.00 mm, 

SqV1 = 8.25 mm, 
SqUz = 7.75 mm, 

a;,,, = 39"40' 
aLU2 = 19' 50' 
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Analogous to Eq. 2.99 in Sec. 2.25, we have the following expression for the form factor of the 
virtual toothing 

6m, h,, cos a:, 
S:" cos a, q k u  = 

Inserting the relevant values, we get 

6 x 3.5 x 7.5 x cos 39" 40' = 1.89 
8.25' x cos 20" q k w l  = 

6 x 3.5 x 7.0 x cos 19'50' = 2.45 
7.752 x cos 20" q k u 2  = . 

The value ofthe contact ratio factor, q,, is taken to be 1 for both pinion and gear. The tangential 
force or the transmitted load a t  the pitch circle is given by 

2T, (Nm) x Service factor 
d,, (mm) 

2 x 140 x 125 x 1000 = 9270 x 1000 = 
37.755 F,, (N) = 

The bending stresses are given by 

F , m  9270 x 189 x 1 = 250 N / mm' (See Eqs 5.26 and 5.27) 
q k l  qe = 20 x 3.5 **, = - 

b m n m  

9270 
20 x 3.5 

x 2.45 x 1 = 324 N I mm2 *b2 = 

For calculation of contact stresses, the values of material coefficient, y,,,, and of pitch point 
coefficient,yp, are required. From Table 2.17y," = 269 for gears made of steel. The value ofyp can 
be taken from the graph given in DIN 3990, corresponding to the spiral angle and correction 
factors. In this case, yp = 1.53 (from the above graph). In the absence of such graph, somewhat 
higher value can be assumed for a safe design. The contact stress is given by 

P, = Y m  Y, -/r - (see Eq. 5.35) 

The bending and the contact stresses produced in this case are rather on the higher side, 
and suitable common materials to cope with such conditions are not covered by the gear 
materials given in Appendix E. Hence, in this case, materials for the pinion and the gear can be 
selected after consulting product manuals offirms manufacturinghigh alloy and special purpose 
steels. These manuals usually contain enough information regarding strength properties, heat 
treatment and other data to  facilitate proper selection of the materials to suit the service 
conditions. 
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6.6 Kuwex System of Spiral Bevel Gears . 
This system can afford to have an  economical method of manufacture of spiral bevel gears. As 
indicated earlier, the Kurvex gear has  teeth which are curved in the form of circular arc and the 
tooth height is constant along the length of the tooth, covering the face width. 

As in the case of other spiral bevel gears, the geometrical parameters of the gear are referred 
to on the crown gear. The reference profile is the tooth profile of middle normal section, and the 
calculations are based on the normal module a t  the middle of the tooth, mnm. The axial force 
increases with increasing spiral angle. 

The dimensional parameters of an  uncorrected Kurvex gearing system are summarised in 
Table 6.6. These parameters have been pictorially represented in Figs 6.8 and 6.9. The two gears 
have been shown in mesh in Fig. 6.10. 

M.D. 
B - ._ U 

Fig. 6.8 Geometry of a Kurvex spiral bevel pinion 
Based on Zahnraeder. Zirpke, 1 lth edition, 1980, Fig. No. 181 p. 283, VEB 
Fachbuchverlag , Leipzig 
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Table 6.6 Dimensional parameters of Kurvex spiral bevel gears 

Description Pinion Gear 

Normal pressure angle 

Middle spiral angle 

a = 20' 

Range : pm = 25' to 40' 
Usual value : p, - 35' 

Transmission ratio 

Tooth ratio 

Pitch cane angle 

For shaft angle Z = 90' 

z ran6, = 1 
z2 

sin 
tan6, = 6, = c- 6, < 90' 

For shaft angle C e 90' 3 +cosC 
Zl 

Forshaftangle Z > 90' 
sin ( 180' - C ) 

tanS, = 
2 - cos(180' - ) 
Z1 

Middle pitch cone 
distance 

R, = mnm ZI 
2c0spm sin 6, 

b s R "  = 2 
Face width 3 7 RD 

Outer pitch cone 
distance 

b R, = R,,, + - 
2 

Outer transverse me = Ramnm 

module 4 cos B m  

Pitch circle diameter 

Top clearance 

dl = z, m,. d* = 2 2  mu 

c = 0.2 m,, 

Addendum 
~~ 

h, = h, - c = 1.15 mnm - 0.2 m,, 

Dedendum h, = 1.15 mnm 
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Description Pinion Gear 

Tooth height h = h, + h, = 2.1 m,, 

Tip circle diameter d,, = d, + 2 h, COS 6, d,, = d2 + 2 h, COS 6, 

Blank cone angle 6.1 = 6, 8, = 4 

Root cone angle 611- 6, 4 2  = 62 

Back cone angle *, = 6, 

Tip cone angle 

Inner cone angle 

Crown height 

g, = 90' +s, 

C, = R, cos 6, - h, sin 6, 

6, = 90' + 6, 

C, = a,ca 6,- h, sin 6, 

Tooth width in 
axial direction 

~ 

Calculation of Kurvex Gearing 
The procedure involved in the calculation of a Kurvex gearing system is explained and illustrated 
in Example 6.1. 
Example 6.2: Given: C = 90" , a= 20', P, = 35', mnm = 4 mm, z ,  = 20, z2 = 26, n, = 500rpm (Dire- 

ction of rotation : anti-clockwise), Nominal motor power, P ,  = 2.4 kW, 
Hand of spiral : pinion-RH, gear-LH, Continuous drive and overhung 
bearings. 

To find the dimensions of gears, the relevant forces and suitable materials. 

Solution: 
500 26 

20 u 1.3 
n1 = - = 385 rpm (Direction of rotation: clockwise) u = - = L 3 , n , = -  

z 20 

zz 26 
tan 6, = 1 = - = 0.76923 whenceti, = 37'34' 7" 

and 6, = E- 6 ,  = 90'-37' 34' 7" = 52' 25' 53" 

Rm = 

b s - =  R m  
3 

R, = 

m, = 

4 x 20 
m n m  21 - - = 80.09 mm 

2cos 35'sin 37' 34'7'' 2coi p, sin ti, 
80.09 

3 
26.7 = 26mm (taken) - =  

b 26 

2 2 
Rm + - = 80.09 + - = 93.09 mm 

93.09 x 4 
Ramnm - - = 5.676mm 

80.09 cos 35' Rm COS P m 
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rn M.D. 

Fig. 6.9 Geometry of a Kurvex spiral bevel gear 
Based on Zahnraeder, Zirpke, 1 lth edition, 1980, Fig. No. 181 p. 283, VEB 
Fachbuchverlag, Leipzig 
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M 

Based on Zahnraeder, Zirpke, 1 lth edition, 1980, Fig. No. 173 p. 277, VEB 
Fachbuchverlag, Leipzig 

Fig. 6.10 Pair of Kurvex spiral bevel gears in mesh 
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d, = z, m, = 20 x 5.676 = 113.52 mm 
d, = z,m, = 26 x 5.676 = 147.58 mm 
c = 0.2mn, = 0.2 x 4 = 0.8mm 

h, = 1.15mn, = 1.15 x 4 = 4.60 mm 
h, = h, - c = 4.60 - 0.80 = 3.80 mm 
h = 2.1 m,,,,, = 8.40 mm 

sa, = 6,) = 6, = 37’ 34’ 7” 
Sa, = 6,, = 6, = 52’ 25’ 53” 
do, = d, + 2ha cos 6, = 113.52 + 2 x 3.8 cos 37’34’ 7‘‘ = 119.54 mm 
do, = 4 + 2ha cos 6, = 147.58 + 2 x 3.8 cos 52’ 25’ 53” = 152.21 mm 
b,, = b cos 6 ,  = 26 cos 37’ 34‘ 7‘‘ = 20.61 mm 
b,, = bcos 6 ,  = 26cos 52’ 25’ 53” = 15.85 mm 

C, = Ra cos 6,-ha sin 6 ,  = 93.09 cos 37’ 34’7’’-3.$sin 37’ 34’7” = 7147 mm 
C, = Re cos 6,- ha sin 6, = 93.09 cos 52’ 25‘53’‘ -3.8 sin 52’ 25‘ 53“ = 53.75 mm 

6 b l  = 62 = 52’ 25’ 53” 
6& = 61 = 37’34‘ 7” 
6,1 = 6t* = 90’ 
6il = 90’ + 61 = 90’ + 37’ 34’ 7’’ = 127’ 34’ 7’’ 
6 ; v  = 90’ + 62- = 90’ + 52’ 25’ 53” = 142‘ 25’ 53” 

0.4 

mm 

0.3 

t 0.2 
C 

3 

0.1 

0 

Fig. 6.1 1 Normal backlash for Kurvex spiral bevel gears 
Based on Zahnraeder, Zirpke, 1 lth edition, 1980, Fig. No. 162 p. 272, VEB 
Fachbuchverlag, Leipzig 
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For proper running of the gear pair, suitable backlash is to be calculated and indicated in the 

These are normal j,,, and the torsional backlash j , .  From Fig. 6.11, we find the normal 
drawing. Referring to Sec. 2.8, two types of backlashes are to be provided. 

backlash corresponding to m, = 5.676 to be 

j,, = 0.14 to 0.21 mm = 0.18 (taken) 

The torsional backlash is given by: 

= 0.23 mm - 0.18 jn  - 
cos P,  cos a cos 35' cos 20' j t  = 

To determine the maximum torque on the pinion shaft, we recall the following formula 

The above value of torque is to be multiplied by a service factor K, the values of which have been 
determined by experimental measurements and experience. For electrical drive, the following 
guiding values may be taken 

Full load, steady: 1.25 
Full load, light impact: 1.50 
Full load, heavy impact: 1.75 

.. 
As stated earlier, the selection of the factor K will depend on the service conditions and 
experience. From Table 2.16 (Sec. 2.221, we get the values of 4 whichcan be taken for Kfor  all 
practical purposes. In  this case, for steady impact-free full load and having unhardened gear 
material, which means full vulnerability to wear, the value of #(orK> is found to be around 1.25. 

"he maximum torque T, = 45.84 x 1.25 = 57.30 Nm 

The middle pitch circle diameter of the pinion is  given by 

- 2o = 97.66 mm m n r n  d,, = 2, - - 
c0sprn cos 35" 

Tangential tooth load at the middle pitch circle is 
2000T, 2000 x 57.30 = 1173N F,,  =,- - - 

d, I 97.66 
"he tangential forces are the same. Hence 

Referring to Table 6.1 and 6.2, we now calculate the axial and radial forces. Since the pinion 
(driver) has  R.H. spiral and rotates in anti-clockwise direction, while the driven gear has L.H. 
spiral and rotates in clockwise direction, the axial forces are as follows (see Table 6.1): 

F,, = & = F, 

(tan a sin 6, + sin p, cos 6,) r t  Fa, = - 
cos Pm 

= 969 N 



6.26 Handbook of Gear Design 

(tan a sin 6, -sin P, cos 6,) 

(tan 20" sin 52" 25' 53" - sin 35" cos 52" 25' 53") 

8 Fa, = - 
COS P m  

- --  1173 
cos 35" 

= - 8 8 N  
Consulting Fig. 6.5 (b), we find that the pinion tends to move away from the cone apex, while 
the gear is directed towards the apex. 

The radial forces are as follows (see Table 6.2): 

Fr, = - 4 (tan a cos 6,- sin p,sin 6,) 
cos P, 
1173 - -  - (tan 20' cos 37" 34' 7" - sin 35' sin 37" 34' 7") 

cos 35" 
= -88N 

(tan a cos 6, +sin p, sin 6,) 4 
COS P m  

cos 35" 

Fr, = - 

- --  1173 (tan 20" cos 52" 25' 53'' + sin 35" sin 52" 25' 53") 

= 969N 

Hence, we see that  for shaft angle C = 90' 

and 
F., = F,, = 969 N 
Fa, = F,, = -88N 

3.0 

2.9 

2.0 

4 2.7 1 2.6 
2.5 

2.4 
d 

2.3 

2.2 

2.1 

2.0 
10  20 30 40 50 60 70 80 90 100 110 120 130 

5 - 
Fig. 6.12 Tooth form factor qk for Kurvex spiral bevel gears 

Based on Zahnraeder, Zirpke, 1 lth edition, 1980. Fig. No. 184 p. 290, VEB Fachbuchverlag. Leipzig 
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Virtual number of teeth are found from the following expressions 
= 45.9 20 

cos335' cos 37" 34' 7" 
- 2, - 

c0s3p,,, cos 6, 
2, 

Z"1 = 

= 77.6 26 - - 
' u 2  = c0S3pm cos 6, cos3 35' cos 52' 25' 53" 

For uncorrected gear drive, the form factors are obtained from Fig. 6.12 as follows 
For zUl = 45.9, qkl = 2.30 

For z , , ~  = 77.6, qkz = 2.14 

Fig. 6.13 Transverse contact ratio factor q, for Kurvex spiral bevel gears 
Based on Zahnraeder, Zirpke, 1 lth edition. 1980, Fig. No. 186. p. 291, VEB Fachbuchverlag, 
Leipzig 
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The overlap or the transverse contact ratio factor, qe, is given in Fig. 6.13 for uncorrected gears. 
By interpolation, we get the following values 

For p,,, = 35', z, = 20 and u = 1.3, we have 
q, = 0.83 

For overhung bearings, a bearing factor, qb, of 1.1 is taken. Finally, we arrive at the bending 
stresses of the pinion and gear from the following equations 

P 

- - 1173 
26 x 4 

x 2.30 x 0.83 x 1.1 = 23.7 N l m m '  

- - 1173 
26 x 4 

x 2.14 x 0.83 x 1.1 = 22.1 N / m m Z  

It has been emphasized before that  for unhardened gears, the contact stress is usually the 
deciding design criterion. We shall now calculate the surface stresses developed on the teeth of 
the gears. 

From Table 2.17, Sec. 2.23, we get the material coefficient for steel on steel 

ym = 269 4- 
The pitch point coeffcicient is a function of the spiral angle. For p, = 35' 

In case of spiral bevel gears, the tooth length factor, y,,, takes care of the different magnitudes 
of load on the mat . teeth during action, especially when the length of contact of the meshing 
teeth is minimum. lnis factor is calculated as follows 

36 - 4.6 

Corresponding to this value and p, = 35', we find the value of the face contact ratio, C R ,  to be 
1.18 from Fig. 6.14. The transverse contact ratio, CR,, is given by 

b 
m, 5.676 
- = - -  

1 2  CR,, = - = - = 1 
q. 0.83 

Finally, we get the value ofyl, from Fig. 6.15 corresponding to the above values of CR, and CR,. 
Y,, = 0.92 

The contact stress developed is given by 
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1.2 

1.1 

k 

0.9 

0.8 

Fig. 6.15 Tooth Length factor yL for Kurvex spiral bevel gears 
Based on Zahnraeder, Zirpke, 1 lth edition, 1980, Fig. No. 171 p. 276, VEQ 
Fachbuchverlag , Leiprig 

0.85 

0.9 

0.95 1 
1 .o 

cr' 
0 

1.1 

1.2 

1.3 

1.4 

1.5 

1 

d u a +  i 
i 2 6  ; l g . 6 6  1 3  

= 269 x 151  x 0.92 

= 285NImm' 

As material, we tentatively select the following 

For pinion : Fe 690 (formerly: St 70) 
For gear : Fe 490 (formerly: St 50) 

From Appendix E, we get the following strength values 
For Fe 690: yield strength = 410 N/mm2 

endurance limit = 370 N/mm2 
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For Fe 490: yield strength = 290 N/mm2 

endurance limit = 255 N/mmz 

Using Eq. 2.01, we calulate the permissible bending stress 

- 185 N / m m 2  > ob, = 23.7 N/rnm2 
be l=- .-  370 

O b p l  = 
2 2 

2 128 N l m m  

For the calulation of allowable contact pressure, the material with lesser yield strength is the 

> ob2 = 22.1 N / m m 2  b e 2  255 
2 2 O b p 2  = - = - = 

deciding criterion 
= oy2 . C,, = 290 x 1 = 290 N / m m 2  > pc = 285 N / m m 2  PCP 

Here, C, is the life factor whose value is taken as 1 for continuous drive. From above 
calculations, we find the materials selected will serve the purpose for this gear-drive. 

As stated earlier, Figs 6.8 and 6.9 show drawings for Kurvex pinion and gear. After making 
the necessary calculations, values of the relevant parameters are to be entered as in the above 
figures, which should also contain gear data tables. Besides these data, the shop drawings should 
also contain mounting distance (M.D. in the drawings), mounting instructions, and other usual 
technical information. 

6.7 Arcoid System of Spiral Bevel Gears 

The Arcoid system of spiral bevel gears uses a toothing whose lengthwise configuration is a spiral 
in the form of a circular arc and, unlike the Kurvex system, the tooth height is tapered from back 
towards the apex. It i s  similar to the Gleason system and, asmentionedin Sec. 6.1, the toothings 
of the two systems are generated by the same method. 

1. Drive for automobile transmission, known a s  System I, with z, < 12, and 
2. Drive for machine tools and general engineeringpurposes, known as System 11, withz, 1- 12. 

Since System I1 is more in use commercially, this system only will be discussed in this section. 

The Arcoid spiral bevel gears are categorised for use in two types of drives, namely: 

Table 6.7 Dimensional parameters of Arcoid System II spiral bevel gears 

Description Pinion Gear 
~ ~~~ 

Middle spiral angle Range: p,,, = 35' to 40' 
Usual value : p, = 35" 

Top clearance c = 0.25 m,, 

Dedendum 
h,, = -mnm R* (1.25 - x )  

Rm 
h,2 = $m, (1.25 + x )  

R m  

Tooth height h = h,, + hi, = ha, + h, 

(Contd) 
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Table 6.7 (Contd) 

Fig. 6.1 6 Geometry of an Arcoid spiral bevel pinion 
Based on Zahnraeder, ZI-,ke, 11th edition, 1980, Fig. No. 158 p. 264, VEB Fachbuchverlag, Leipzig 
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Fig. 6.17 Geometry of an Arcoid spiral bevel gear 
Based on Zahnraeder, Zirpke, 1 lth edition, 1980, Fig. No. 158 p. 264, 
VEB Fachbuchverlag, Leipzig 

-1 
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31+4 - 
Fig. 6.20 Tooth form factor, q,,, for Arcoid spiral bevel gears 
Based on Zahnraeder. Zirpke, 1 lth edition, 1980, Fig. No. 182, p. 289, 
VEB Fachbuchverlag, Leipzig 



t 
d 

0.90 

0.85 

0.80 

0.75 

0.70 

12 16 20 24 28 32 36 40 44 48 52 56 

Fig. 6.21 Transverse contact ratio factor, q, for Arcoid spiral bevel gears 
Based on Zahnraeder. Zirpke, 1 lth edition, 1980, Fig. No. 185. p. 291, VEB Fachbuchverlag. 
Leipzig 
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The dimensional parameters of the gearing system conforming to Arcoid System I1 are given in 
Table 6.7. The parameters which are common to both this system and Kurvex system, given in 

peculiar to the Arcoid toothing are given in Table 6.7. These are to be read in conjunction with 
Figs 6.16,6.17 and 6.18. 

In Arcoid System 11, if the transmission ratio u = 1, then the gears are not corrected. Otherwise, 
So- gearing is generally resorted to. The correction factor, x (equal in magnitude, but positive for 
the pinion and negative for the gear), is a function of the transmission ratio, and is to  be taken 
from Fig. 6.19. The basis on which the values of the correction factor have been fixed is the 
equalization of bending stresses a t  the tooth roots of the pinion and the gear, so that  the form 
factors, 4,, = = qL. The value of qL with respect to the sum of the virtual number of teeth, zul 
and zuz, is shown in Fig. 6.20. The strength and other calculation procedures for the Arcoid 
gearing can be made in the same manner as in  the case of Kurvex gearing illustrated in Example 
6.2. The same formulae are valid, but care should be taken so that  the proper parameters, 
relevant to Arcoidgearingonly, are inserted in the expressions a t  places where the data relating 
to the two systems differ. Figures 6.11 and 6.15 are common to both the systems. Figures 6.21 
and 6.22 show the transverse contact ratio factor and the face contact ratio respectively, for 
gearing conforming to the Arcoid System 11. 

- Table 6.6, are not repeated here. Only those data which differ from Kurvex toothing and are 



I 



7 
Miscellaneous 
Gearings 

7.1 Gear Train 

A gear train consists of a combination of two or more gears, mounted on rotating shafts, to 
transmit torque or power and also to act as a speed reducer or increaser, generally as a reducer 
in common industrial applications. If a large reduction is envisaged, it can be attained by using 
two gears only. Obviously, in that case one gear has to be enormously big, thereby creating 
problems of space and other difficulties. Such a design, therefore is precluded. To obtain the 
desired speed ratio, a train normally consists of several smallergears requiringconsiderably less 
space. Such a train may include any one type of gears or a combination of different types of gears, 
e.g. spur, helical, bevel, as well as worm and worm-wheel. 

Two types of gear trains are generally u sedq i )  the ordinary gear train [Fig. 7.l(a)l in which 
all gears rotate on fixed axes relative to a single frame ofreference, and (ii) the epicyclicgear train 
in which at least one gear axis rotates relative to  the frame in addition to the gear's rotation about 
its own axis. The second system, also called the planetary gear train, is treated in Sec. 7.2. 

An ordinary gear train can be simple or compound. In a simple train, each shaft carries one 
gear only as shown in Fig. 7.l(b). Gear GI, mounted on the shaft SI, is the driver and GI drives 
G, which in turn drives G,. Gear G, is the idler which serves the purpose of changing the dire- 
ction of rotation, without having any effect on the gear ratio of the train. The idler also serves 
to bridge the gap between the effective gears, thereby affordinga chance to  reduce the diameters 
of those gears. In a compound train, shown in Fig. 7.l(c), some of the shafts carry two or more 
gears. Here, large speed ratio can be obtained in a small and compact form. As shown in Fig. 
7.l(a), the driving and the driven shafts may be arranged t o  be coaxial, if necessary. 

' 

In any train, the ultimate speed ratio, (i) is given by 

. Rotational speed of first driving gear 
Rotational speed of last driven gear 

1 =  
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D 

B 

(a) GEAR TRAIN 

G1 3 

(b) SIMPLE TnAlN 

G1 

(c) COMPOUND 1'RAlN 
Fig. 7.1 Gear train 

The train value (e) is the reciprocal of i ,  and is given by 

hoduct of number of teeth of driving gears 
Product of number of teeth of driven gears 

e =  

nF hence i = - = - , where nF and n, are the speed (rpm) of the first and the last gear of the 
e nL 

train respecti\ . Since d = mz, the number of teeth can be replaced by the pitch diameters in 
the above relatioli. For the train in Fig. 7.1 (b), we have e = (z( -z2) x (-z2 / z J  = zl/zs, and i = zd 
z, = n,/ n,, where tl, z2 . . . and n,, n2 . . . , are the number of teeth and speeds in rpm of gears GI, 
G2,. . . , the negative sign indicating rotation in opposite sense. Similarly for the compound train 
in Fig. 7.1 (c), we have 2 e = 1 x -'z-z x zg_2 

-22- 1 '8-1 -'4 

In reduction gear units, commonly known as "gear boxes" in industrial and commercial usage, 
the selection criteria mainly taken into consideration are: The overall speed reduction ratio, the 
maximum allowable speed reduction in any one stage, the space requirements, the values of 
speed reduction from stage to stage which are usually in geometrical progression, and the gear 
tooth tnodules which must necessarily be of progressively increasing values from stage to stage 
commensurate with torques as they increase from the input end to the output end in a reduction 
unit. 

7.2 Planetary Gears 

An epicyclic or planetary gear train consists of one or more rotating gears revolving around a 
central gear. The basic components of such a gear train are shown in Figs 7.2 and 7.3. The train 
usually consists of a central gear or sun gear (S 1, one or more gears surrounding the sun gear 
called planet gears (P 1, a member with one or more arms to which the planet gears are mounted 
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called arm (A), or planet carrier or spider, and an annular gear or ring gear (R )which is concentric 
to the sun gear. 

7.2 Pictorial view of planetary 
gear system 

* 

Fig. 7.3 Components of planetary gear train 
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The aspects which characterise a planetary gear system are its compactness, co-axial 
arrangement of driving and driven shafts, large speed reduction possibilities vis-a vis its overall 
size, possibilities of a number of combinations of driving and driven inputs and outputs, large 
torque conversion possibilities, and different possibilities of orientation of drives. 

A unique feature of this type of gearing is that it permits some of the gear axes to rotate with 
respect to others. How this characteristic is incorporated in the system has been explained in 
Fig. 7.4 (a-d). Consider the movements shown in Fig. 7.4 (a). Here planet P is freely attached to 
the arm A. Assuming that there is a gap between the sun gear S and the planet gear P, as A 
rotates about S, a point a on the periphery of P will always point downwards as shown because 
P is freely mounted on A . This is analogous to  the motion of a passenger-carrying gondola in a 
merry-go-round. I t  can be easily seen that in this case, planet P makes no revolution about its 
own axis. In other words, if we designate the angular speeds of the arm as n,, of planet as np and 
of sun as n,, then for one rotation of the arm, 

nA = 1, and np = 0 

f Q \  
0- -@--- -3 

(4 
Fig. 7.4 Different aspects of planetary gear movements 
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Consider now Fig. 7.4(b) where P is locked toA and they both rotate en bloc about S. In  this 
case point a is always directed towards S.  The effect of this is that  the axis of P on the plane of 
this paper makes a complete 360" rotation around the centre of the system, that is, P makes one 
rota-tion. Tnis is analogous t o  the motion of the moon around the earth (locked motion). 

Therefore 11, = 1, and n,, = 1 

Coming to Fig. 7.4(c) both P and S are free to  rotate, A is fixed and P drives S. This is a simple 
2-gear train the reduction ratio of which is given by 

np - z, Pcd of S 
- - - =  ( z  = Number ofteeth) 
n, z,, Pcd of P 

i.e. for each revolution of S,  planet P makes nJn- revolutions. 
Let us now consider the case represented by Fig. 7.4(d). Here, sun S is fixed, planet P is free 

to rotate on the arm A, andA rotates around S. In this arrangement, for one rotation ofA around 
S, planet P can be seen to  execute two rotational motions: (i) i t  makes one revolution as  its axis 
makes one revolution which is shown in Fig. 7.4(b), and (ii) i t  also rolls around S with the same 
effect as in Fig. 7.4(c). 

Therefore, the end result for the rotation o f P  is the summation of fi)  and (ii). For one rotation 
of the planet carrier A , the number of revolutions made by the planet P = 1 + nplns. 

This is the fundamental principle on which the planetary gearing system is based. 
A planetary gear train comes in various combinations. In fact the number of ways in which 

the gears may be arranged in this system can be of an infinite variety. Planet gears may form 
a compound system, ;.e. the system may have more than one gears on the same shaft and these 
gearsmay bemadetomesh with other sun orinternalgears, therebymakingitacomplexsystem. 
By choosing a suitable combination, speed ratio of 10000 : 1 are easily obtained. 

In  a simple planetary gear train consisting of the central sun gear, the planet carrier and the 
internal ring gear, any one ofthe above three elements can be made to be the fixed member. Any 
of the two remaining elements can be used as the input or the output component for power 
tran'smission. With a single planetary gear train, there are thus six combinations of speed ratios 
possible. Because ofits flexibility for attainingvarious speed ratios and torque conversion, ability 
to transmit comparatively high power in limited space and reduced weight, the planetary system 
is much used in aircrafts, hoists, machine tools, automobile differentials, servo-mechanisms, and 
automatic transmission gear boxes ofcars. In a system ofplanetary gear train, it canhappen that 
no gear is fixed such as in the case of the bevel planetary gear train, in an  automobile differential. 

Calculation of Reduction Ratio 

The ultimate reduction ratio in an  epicyclic gear train can be found by the following methods 
which are described here in detail. 

Tabulation Method 
This is one of the commonly used methods of solving planetary gear problems. This method is 
convenient because one of its advantages lies in the fact that  the ensuing table gives a complete 
picture of the angular motions of the different rotary components a t  a glance and, unlike the 
algebraic method (described later) which gives only the final ratio, any intermediate ratios can 
also be easily found from the tabulation method. I t  is actually a summation process in which the 
system is first considered to  rotate en bloc, thereby having no relative motion between the 
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different members comprising the system, and then the system is considered as an ordinary gear 
train as if all the gears are free to rotate about their own axes, disregarding the arm. The result 
is then added and presented in a tabular form. The following examples will clarify the tabulation 
method. 

Referring to Fig. 7.5(a), the method is applied in steps enumerated below. 

(a) (b) FIXED 
Fig. 7.5 External and internal planetary systems 

Unlock the sun gear so that it is free to rotate on its shaft. Lock the sun and the planet 
to the arm. It is obvious that now there cannot be any relative motion among the 
members. 
Rotate the whole system en bloc once about the centre of  the sun gear, taking the 
clockwise rotation as positive. I t  can be seen that each individual member rotates once 
about its own individual axis. 
Unlock the gears from the arm. Disregard the arm and consider the system as an  
ordinary gear train. Give the sun gear one counter-clockwise (negative) rotation. 

We can now sum up the total number of revolutions made by each component of the planetary 
system so that the absolute values are obtained. This is represented in the following tabular 
form. 

. Step 1. 

Step 2.  

Step 3. 

Condition of members Sun Revolution of Planet Arm 

1. All members locked to one + 1  
another, the whde system 
rotates en Moc 

+ 1  + 1  

2. Arm fixed, sun 
rotates planet 

- 1  + 3  
ZP 

0 

Resultant rotation 0 ,+ fs + 1  
ZP 
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This tallies with the result previously obtained. 
Referring to Fig. 7.5 (b), a table is made as before with the following results: 

~ 

Condition of Revolution of 
members Ring Sun Planet Arm 

1. All members 
lacked 

+ 1  + l  + 1  +1 

2. Arm fixed, ring 
gear given 
one negative 

- 1  0 

rotation 

Resultant 
rotation 0 

ZR l + I ”  1 - -  
z* ZP + 1  

Example 7.1: Given: z, = 100, z, = 60, z p  = 20. 

Solution: From the above table, we get 

To find the speed of sun gear if the arm makes 9 rpm. The ring gear is fixed. 

2 1 +  3 
100 8 s = 1 + - = -  

Speed of arm 1 60 3 
Speed ofsun - z - 

Therefore 
8 
3 

speedofthe sungear = 9 x - = 24 rpm 

Algebraic Method 
The problem can be solved simply by using the following relation 

n,-n 
n F  - n.4 

e =  (7.1) 

where e = Train value relative to the train arm, 

- Product of number of teeth on driving gears in a train 
Product of number of teeth on driven gears in a train 

- 

nF = Absolute angular speed in rpm of the first gear in the train 
nL = Absolute angular speed in rpm of the last gear in the train 
n, = Absolute angular speed in rpm of the train arm 

This method is known as the algebraic method and is clarified in the following example. 

Example 7.2 : Figure 7.6 gives certain basic data from which it is required to find the ultimate 
speed ratio between the driver and the follower. The annular or the ring gear is fixed. 
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ARM 

rouowr  r i  

FIXED 
Fig. 7.6 Compound planetary system 

Solution: For calculation, the gear train is split in two sequences. 
(i) Gears having teeth 80- 40-24-144. 
Let the first gear in this train make one revolution, i.e. nF1 = ne0 = 1 

1 

(- 40) x (-144) 3 
- - -- e, = ~ O X  (-24) 

Here, the negative sign indicates a direction of rotation opposite to that of the driver which is 
assigned a positive sign. Applying Eq. 7.1, we have 

1 0 - n  1 
A ThereforenA = - o r - -  = - nL1 - nA = - nA 

nF1 - nA 1 - nA 3 1 - n A  4 el - 

(ii) Gears having teeth 80110-24-96. 

The train value of this system is given by 
In the second train, the last gear has 96 teeth. Therefore, nL2 = nss. 

i 

(-4O)X96 2 2 nF2-n, I-- 
4 

nL2-- 
4 -- 'nF2=nF1 = 1 8 0 ~  (-24) 1 nL2-nA - 

ez = = -. Therefore - = 

5 whence nL2 = - 
8 

. Therefore, the ultimate speed ratio of the whole system is given by 
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Hence, the last gear or the follower having 96 teeth makes 518 revolutions for one revolution 

Several common applications of planetary gear trains will now be solved with the help of the 

1. Figure 7.7 (a). In this case sun S is fixed, arm A is the driver and planet P is the follower. 

of the first gear or the driver having 80 teeth. 

algebraic method using Eq. 7.1.  

Using the same notations as before, we have 

= -- o - n A  - n A  

-zs  n,-n, n p - n ,  

or  nA 2, zpnp-zpnA=zsnA or nA ( zp+zS)=zpnp  or  - = - 
nP Z P + Z S  

Therefore, for one revolution of arm A, the follower makes 

np = nA (''2) - = 1 x ( 1  + = 1 + tprevolutions ZS 

2. Figure 7.7 (b). Here, the train value is given by 

For 

3. Figure 7.7 (c). In this case, we take the power flow in the reverse direction for ease of 
calculation, and take the sun gear as the driver. Proceeding as before, we get 

zSzy O-n, o r - - =-  e = - - -  ZS - zy 

- Z x - Z R  ' x Z R  n S - n A  

By transposing, we get the transmission ratio 
+ nA = zs zy 1 = -  

nS z.z z R + z S  zy 

For one revolution of the driver (nA =1) the follower, i.e. the sun gear, makes 

ns = 1 +  - z ~ z ~  revolutions 
zy zs 

4. Figure 7.7 (d). In this case 

zR x zp = - - z R  =- =-  O-n, -nA e = -  
Z P  -2s zs nS-nA nR-n ,  

By simplifying, we get 
2s = 1 + -  

n A  Z R  ZR 
* nR = zR + zS t = -  

For nA = 1, the driver speed 
2s 

Z R  
nR = 1 +  - 
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SUN GEAH(S) 

FIXED 

(4 

. .  

DRIVER(R) 

s2 FOLLOWER(S'l1 

~ LOWER(P) 

DRIVE R(A) 

RING GEAR(R) 

DRIVER (R) 

FOLLOWER(A) 
S 

s2- 

OLLO W E R( A) 

DRIVER (Si) 

(1) 

SECONDARY DRIVER(R) @ FOLLOWER(A) 

DRIVER (Si) 

(9) 

Fig. 7.7 Different combinations of planetary system 
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5. Figure 7.7 (e). Here, the sequence is split into two gear trains a s  shown in the beginning 
while explaining the algebraic method. We have 

Train e ,  comprising: R - y - S, 

Train e ,  comprising: R -Y - x - SI 

zR  - Z R  

z y  -zs2 ZS ,  

Therefore, for one revolution of the driver R,  we get 

e ,  = -1 = - 

zit - n ~  whencen, = - 
Z S q  nlt-nA 1-n, 1 - n, ZIt + zs2 
z I ( - p - - - -  I ? S ~ - ~ A  - 0-n, - -- - 

ZIt nSl - - 

1- ~ 

z n  2% - n S l - n A  - z R  + zS2 

Z R  

zn + zs2 

e 2 = -  - - - -  1- n, ZY - ZSl  

By transposition, we get 
Z R Z S ~ Z y - Z H Z S 2 Z . s  

zRzS1zy+ zSlzS,zy 
nsl = 

nn = - 1 - - (zRzS,zy  + z S ~ S 2 z y )  i = -  Therefore, 
nsl nsl Z n Z s , ~ y  - ~ n Z s 2 Z x  

zs, X L = - - - - -  -2 z s l z y  - o - n A  - - n A  6. Figure 7.7 (f) .  e = - 
-2% zs, ZXZS, 1- n,  1-n,  

Simplifying, we get 

nA = 

. 1  Z.S2ZX Therefore 1=-  = 1 -  - 
’1 A ZS 1 z, 

=Number of rotation of follower (arm) for one revolution of the driver (SI) ZSIZY 

zs,zy - ZS2Z” 

7. Figure 7.7 (6). In this case there are two drivers-the main driver S and the secondary 
driver R . The rotational motion of both drivers are added to  rotate the followerA . Denoting the 
number of revolutions of the secondary driver as nR for one revolution of the driver S, we have 

or 
zRnn+z 1 zs + zn or  nA = ’ Therefore2 = - = 

The planetary gearing system using bevel gears has  many application; the most common being 
the differential of cars, cone pulley drives of certain machine tools and other equipments. Some 
common arrangements are discussed here. 

z S + z R  n~ Z S  + Z R ~ R  
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8. Figure 7.8 (a). I n  this case the reduction ratio z = zs/zp. 
9. Figure 7.9 (a). Here, i = cos a+z,/z,, where a = Shaft angle 

/ 

/ - DRIVER@) 

'1 ) 

Fig. 7.8 ' Bevel planetary systems 

The above expression for the reduction ratio can be established in the following manner. 
Referring to Fig. 7.9 (b), consider AB and CD to be axes of the sun and the planet respectively, 
GEF representing the arm, all referred to on the plane of the paper. We will now only consider 
the revolution of CD about its own centreF as the arm rotates about its centre E. Since, for the 
present, we are not considering the rotation ofthe planet which is caused by its tooth engagement 
with that of the sun, AB and CD have been shown separated. 

Now, hadAB been integral with the shaft GE, i.e. fixed by a key or similar device, the angular 
magnitude of rotation of GE would have been equal to that  ofAB. Hence, a rotation of AG by 
an  amount d q5 may be considered as  ifGE has  been rotated by that amount. This rotation causes 
CD to assume the new position C'D'on the surface of the imaginary cone as  shown in the figure. 
It can be seen from Fig. 7.9 (b) that  due to this shifting, CD has rotated by an amount doabout 
it own centre F. 

From geometry, the following relation can be obtained 

arc AA' = AG d Q 

AG = OA cos a 
The arc AA' can also be taken as equal to OA d 6 in the infinitesimal range. 
Therefore AG d@ = OA de or OA cos a dQ = OAdO. Therefore do = cos ad@ 
For a complete rotation of the arm, we can now write the following equation 

2n 

Id6  = cos a pQ 
By integrating, we get 

planet axis CD xirakes cos a x  1 = cos a revolution about its own centre . 

one revolution of the arm is given by 

e=cos a [ $ ] r = c o s  a2rr 

Hence, in terms of rotation, when the arm makes one complete revolution (angle = 2d, the 

If now the two gears are brought into mesh, the total number of revolutions o f  the planet for 
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z 
np = cos a+> 

ZP 
(7.2) 

G 

Fig. 7.9 Bevel planetary with shaft angle other than 90" 

It  i s  interesting t o  note that in case 1 the axes of the two gears are parallel. Hence a = 0" 

Therefore 2.S 2.9 

21, 21' 

11,' = cos 0" + - = 1 + - 

PROPELLER S H A F T  
FROhI ENGINE 

HUMPAGE REDUCTION GEAR UNIT DIFFERENTIAL 

Fig. 7.10 Common applications of bevel planetary systems 

(a) (b) 
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which tallies with the equation previously given for case 1. 
In case 8, a = 90' 

Therefore np = cos900+ 3 = 0 + 3 = 4s 
ZP ZP ZP 

Equation 7.2, therefore, is a generalised relation for any two meshing bevel gears having shaft 
angle a. In cases 10 and 11 which follow, the effect of the shaft angle cancel out due to the ultimate 
co-axiality of the driver and the follower gears. 

10. Figure 7.8 (b). Here, for one revolution of follower A, the number of rotations of driver S ,  
is given by 

11. Figure 7.10. This type of arrangement is known as  the Humpage reduction gear unit which 
is sometimes used in machine tools. For one revolution of follower 4, the number of rotations of 
driver 1 is given by 

n, = I +  ISp- 3.3 
21 2 2  24 

Geometrical Method 
To visualise exactly what happens when motion takes place in an  epicyclic train, consider the 
following geometrical treatment depicted in Fig. 7.11. The two gears, the sun and the planet, 
touch initially a t  the pitch point P, their centre beingo, and 0,. The sun is fixed and the arm turns 
clockwise which makes the planet t o  roll over the periphery of the sun to the new position with 
0; as the centre. The initial and the new positions of the arm makes an angle 8 a t  centre 0, as 
shown. The new pitch point isP'afterrollingoftheplanet. The initial pitch pointPon the planet 
now occupies a new position Q. Since the rolling is without any slippage, i t  can be seen that 

arc PP'= arc QP' 

Fig. 7.1 1 Epicyclic movement of planet gear 

It can also be seen that  the initial line 0,P now assumes the new position OiQ as a result ofthe 
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rotation of the arm. Furthermore, the new vertical axis of the planet gear is 0; T. Since the initial 
vertical axis 0 , P  now occupies the position 0;Q after rotation, i t  can be easily seen that  the 
planet gear as a whole has rotated through an angle TOiQ. From geometry we have 

Angle TOiQ = 6 + 4 

Now, since arc PP’ = arc QP’, we have 

o , p w = o ; p * x ~  

or 

where rs and rpare the pitch radii andz, andz, are the number of teeth of the sun and the planet 
respectively, and m is the module. 

In other words, if the arm makes a complete revolution around the centre O,, i.e. 8 = 2 zr, then 
the planet gear makes an angle of 2zr (l+z,/z,), that is, (1 +z,/zp) revolutions. Therefore, the 
reduction ratio is given by 

It should be noted here that  had there been no rotation of the arm and the sun gear were free to 
rotate, then the system would have been reduced to  a simple train with i = zslzp. 

Differential 
The differential is a mechanism consisting ofbevel epicyclic gear system by means of which arear  
wheel of an automobile is permitted to  roll faster than the other while negotiating a curve. It is 
a simple but ingenious system of planetary gearing. There are many types of complex differential 
mechanisms also. A simple, common type of differential i s  depicted in Fig. 7.10 (b) and described 
here. 

The power to both the rear axles of an  automobile comes from the engine through the gear box 
to  the propeller shaft which carries a bevel pinion (usually hypoid) a t  its end numbered 2 in the 
figure. Pinion 2 meshes with the ring gear 3. Gear 3 is fitted to the differential case 7 / 0 n  7, two 
bevel gears 4 are freely mounted by means of pine. Bevels 4 mesh with bevels 5 and 6, each of 
which is fitted to the inner ends of the two rear axles, the outer ofwhich carry the two rear wheels. 
The whole mechanism is encased in a housing (not shown in the figure). 

When the car is moving on a straight path, 2 drives 3. This rotates the case 7, carrying the pins 
of 4. Bevels 4 in turn rotate 5 and 6 by tooth engagement. Bevels 5 and 6 rotate the respective 
axlesand theaxlesrotate the wheels, It can be seen that  the components 3,7,4,5,6, and the axles 
rotate en bloc, and there is no relative movement between them. 
Now, suppose the car takes a left turn, During the same time period, the right wheel has to 

cover a longer curvilinear path than the left wheel, Obviously, the right wheel must rotate faster 
than the left wheel to make this possible, As bevel 6 tends to rotate faster, bevels4 begin to  rotate 
about their individual pins on which they are freely mounted. As may be seenfrom Fig. 7.10 (b), 
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the teeth of bevels 4 push the teeth of the bevel 6 which helps it (bevel 6) to rotate faster. On the 
other hand, the teeth of bevel 4 t ry  to push the teeth of bevel 5 in the opposite sense. Thus, a 
differential angular speed ensues between the bevels 5 and 6. Depending on the road friction, 
bevels 4 may rotate bevels 5 and 6 or they may simply roll or "walk" on bevels 5 or 6, while all 
the time the main rotational movement remains. That is, bevels 5 and6  continue to being bodily 
rotated by bevels 4 through tooth engagement. 

The whole sequence is reversed when the car takes a right turn. 

7.3 Non-Circular Gears 

When a continuously variable angular velocity ratio is required throughout a single revolution, 
the non-circular gears offer a simple method of attaining this condition. Often these gears are 
provided with the  proper linkage systems to obtain the type ofmotion neededfor themechanism. 
In any non-circular gear system, the driver rotates at a constant angular velocity and the driven 
gear executes a non-uniform angular motion, resultingin a variable velocity ratio at each instant. 

Although i t  is always possible to  design a pair of matinggears having special shapes t o  attain 
virtually any desired mutual velocity and acceleration characteristics between the two gears, 
only a handful of such systems are used in practice. 

Non-circular gears are usually more expensive than cams, linkages or similar devices used to 
obtain variable velocity ratios, but by using modern production methods, the cost has decreased 

- considerably. Among the many manufacturing methods employed, gear cutting by the tape- 
controlled gear shaper is the most accurate one. 

From the application point of view, these gearing systems can be categorised into two groups- 
(i> cases where only a n  over-all change in the angular speed characteristics of the driven 
component is needed, and (ii) those cases where precise angular movements are required to 
produce certain specified non-linear functions. Examples of the first group include quick-return 
drivesofmachines andintermittent mechanisms ofcertain equipments. Examples ofthe second 
groups include mechanical calculators for extracting roots of numbers, raising numbers to any 
power and for treatingproblems involving trigonometrical and logarithmic functions. The pitch 
curves of the non-circular gears may be closed as  in the case of elliptical gears or they may 
be open as  in the case of logarithmic spiral gears used in coniputing devices. Unlike the closed 
types, the open type gears can be rotated only for a portion of a revolution. 

'. 

We shall discuss three most common types of non-circular gear systems in this section. 

Type 1. This gearing system features two ellipses rotating about their foci. Such systems 
comprising elliptical gearings have been mainly used for obtaining quick-return motion for 
equipments like shapers, planers, dotters and similar machine tools in which the cutter, fixed 
on a reciprocating member, moves comparatively slowly during the forward stroke and returns 
quickly during the idle stroke. Some pumps, shears and punches also make use of this type of 
mechanism. 

In Fig. 7.12 (a> the pitch curves of two identical elliptical gears which are mounted on their 
foci F,  and F2 are shown in mesh. The angular velocity ratio i or 01/02 varies according to the 
respective radii of the driving and the driven members at the point of contact. When the gears 
are in the position shown in solid line in the figure, the angular velocity w2 of the driven gear 2 
is minimum, the angular velocity ul of the driven gear 1 being constant all the time. At this 
position, therefore, i is maximum, which means that  l t i  o r  o,/u, is a t  a minimum. This is shown 
in the accompanying curve a t  0, = 8, = 0'. As the driver rotates, its radius r ,  at the point of contact 
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I 

t-b-l 

0" 180" 

$1 - 360" 

I I 1 
0" 180" 360" 

(c) 
Fig. 7.12 Non-circular gears 
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gradually increases till 0, becomes 180" where w2 is maximum. Consequently, i is minimum a t  
this point and lli is at its maximum. The situation is reversed during the remaining half of the 
rotation. The number of rotations made by each gear in a given time is, of course, the same. 

In  Fig. 7.12 (a)a and b are the semi-major and semi-minor axes respectively, c is the distance 
between the geometric centre and one ofthe foci, r,' and ri are the distances from F, andF, to 
the point of contact at the position shown in the figure, r ,  and r2 are the distances from F,  and 
F2 to any instantaneous point of contact in question whereby the axes have rotated by the angles 
6, and 0,. It can be seen from the figure that  

(7.3) 
The angular velocity of the driving gear is constant and the instantaneous angular velocity 
of the driven gear is given by 

r; + r; = rl + r, = 2 a  

- de2 w, - - 
d t  

so that  the instantaneous velocity ratio is given by 

0 1  0 1  ='; - =  
o, dQ,Idt  rl 

Using polar equation of the ellipse, we can write 

and 

Here, e is the numerical value of eccentricity of the ellipse and is given by 

The instantaneous velocity ratio is, therefore, given by 

When 6, = 0, = 0, velocit, A o  is maximum and using the above equation, we get 

Minim, 5 value of i is obtained when 0, = 0, = 180' 

(7.4) 

(7.5) 

(7.6) 

(7.7.) 

(7.8) 

(7.9) 

1- dl- (b / a), 1 
'mi" = 7' = 

1 + 1 -  ( b / a )  ' 

(7.10) 

Often the centre distance of the shafts F, F, is given, and the relation between a and b is to be 
calculated for a particular value of i,,,. This can be found by using the relation 

JlmRx (7.11) 
b 2 
a i,,,, + 1 
- =-  
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The above equation can also be written as 

a 
where 

2 
a+c 
a- c  

The variable i as a function of 8, is given by the relation 
2 

1 = -  '2 = 3. = 2(:) (i+cos e , d Z i Z )  
r1 (32  

This relation is represented by the curve in Fig. 7.12 (a). 

(7.12) . 

1 (7.13) 

Type 2. This variety, shown in Fig. 7.12 (b), has two pitch curves of gears with axes off-set at 
an angle of 90'. These closed curves resemble ellipses and are called "higher order" ellipses. In 
this particular case, the ellipses belong t o  the second order and their contour differs slightly from 
that of a basic ellipse. The gears rotate about their geometric centres and execute two complete 
speed cycles per rotation as shown in the curve. A t  the position shown in the fi&re, 6, = 90' and 
0, = 0" . The relevant equations are 

(7.14) R =  2 ab 
( a  + b) - ( a  - b) cos 28 

(7.15) 

where s = alb .  
Type 3. In this variety, as shown in Fig. 7.12 (c), an eccentrically mounted standard spur gear 
mates with its conjugate gear which has a special shape. The speed ratio versus angle characteristic 
curve is also shown in the figure. The gears are off-set at 180" so that in the position shown, 
0, = 180'. The relevant equations are 

* 

R, = c COS 0, + 4- (7.16) 

7.4 Intermittent Gears 

(7.17) 

When rotary motion of intermittent nature is required, spur gears having special shapes are 
used. In this type ofgearing, the driver rotates a t  aconstant a n y l a r  velocity, when i s  the driven 
member also rotates at a constant a n y l a r  velocity so long as it is in mesh with the drivinggear. 
But when the teeth of the gears are not in  mesh, the driven gear is locked against rotati . 
that it becomes and remains motionless for a prespecified period of rotation t 
activated by the tooth of the driver (Fig. 7.13). 

f j . 
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The driven gear rotates so long as the teeth of the mating driven gear are pushed by the teeth 
ofthe driver. The teeth ofthe pair come out ofmesh after the specified period and the gears enter 
the toothless zone. The convex circular portion of the driver now fits snugly into the concave 
circular portion of the driven gear, thereby locking the rotational motion of the driven gear. It 
resumes its rotation when the tooth of the driver starts to mate with the tooth of the follower. 

A variety of intermittent rotary motions can be obtained by properly designing the gear pair. 
Thus, the driving gear or the driven gear o r  both can have teeth so arranged that  the interval or 
rest period may be made to  vary, dependingupon the number of teeth each gear is provided with 
at successive intervals. For example, the driver may have one, two, three or more teeth 
intercepted by smooth, convex, toothless circular portions in-between the sets of teeth. The 
driven member may have other numbers of teeth, intercepted similarly by concave arcs, so that  
in a single rotation itself variable durations of rotary motion of the follower can be attained, if 
required. 

Fig. 7.13 Intermittent gears 
Based on Gear Design and Application, Chironis, 1967 edition, 
Fig. No. 1,  p. 361, McGraw-Hill, New York 

Intermittent gearing systems of different types are often employed in counting mechanisms, 
motion picture projectors and in many industrial appliances. 

7.5 Involute Splines 

For transmission of torque from the shaft to the gear or vice versa, three kinds of connections are 
normally resorted to 

1. Connection through a shrink-fit. This is discussed in Sec. 8.13. 
2. Connection through different types of keys. Details of these keys are given in the relevant 

Appendices at the end of this book. 
3. Connection through splines. Splines can be straight-sided or with involute profile. Data on 

straight-sided splines are given in Appendix R. Only involute splines will be discussed in 
this section. 
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FORMS FOR INVOLUTE SPLINES 

MAJOR DIA FIT u DIA FIT 

SIDE BEARING @jj 
(b) TYPES OF SPLINE FITS 

PRESSURE ANGLE 30' 

SPLINE 

(c) PARAM-RS OF INVOLUTE SPLINE 

(d) REFERENCE PROFILE FOR INVOLLTE SPLINE 
SHAFT AND HUB 

Fig. 7.14 Involute spline 
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Besides the above modes of connections, sometimes combinations are used. Thus, the shaft or 
the hub may be driven through keys or splines along with either a shrink-fit or a press-fit between 
the shaft and the hub. 

Splines are multi-keys made integral with the shaft. Whenever torques oflarge magnitude are 
to be transmitted, the splined shafts are the suited. In a splined shaft, the parallel multi-keys 
mate with the corresponding grooves or serrations machined inside the hub of the gear or other 
power-transmitting machine elements. In shafts where torque is transmitted by conventional 
keys, slots are cut into the shaft and the hub, that is, the key-ways, inside which the keys are 
fitted. This considerably weakens the torque-transmitting components. Splines are superior to 
keys because of their greater strength, ability to take impact and reversible loads, and have 
bigger area of contact. Centering of the jointed components is advanta-vous and the shaft can 
be made to move accurately, guided along the hub length in case of sliding fit. 

Types of Fits 
Three types of fits described below are normally used bet $1 the hub and the splined-shaft. 

1. Major diameter fit: This is the easiest fit to obtain. ,s controlled by varying the major 
diameter of the external splines. For centering, the matingcomponents contact a t  the major 
diameter. 

2. Minor diameter fit: This type of fit is controlled by varying the minor diameter of the 
internal splines. Centering is done by contact at the minor diameter. 

3. Side bearing fit: "his type of fit is attained by varying the tooth thickness. 
All the above three types have been shown in Fig. 7.14 (b). The type of fit or  centering to be 

adopted will depend upon the amount of accuracy required and the load involved. For high loads, 
side centering is usually recommended because this type of fit permits better load distribution 
between the splines. Side fit is not as accurate as the other two types. Hence, when accuracy is 
the main design criterion, then major or minor diameter fit is employed. 

All the above types of fits can be sub-divided into two classes-sliding-fit where there is a 
relative movement between the mating parts, and press-fit where no relative motion is 
permitted. 

Dimensions of Splines 
Both the straight-sided and involute splines have been standardised and the dimensions can be 
obtained from relevant standards or can be computed by using relevant formulae. For selection 
of spline size, the undermentioned guidelines may be followed. Taking into account the non- 
uniform distribution of load on the spline keys, we assume that  the effective load carrying 
capacity is around 75%. The torque is then given by 

T (N cm) = 0.75 p h  L zr,,, (7.18) 

where p = Allowable bearing pressure 
= 8000 to 12,000 N/cm2for fixed joints without heat treatment. This can be increased 

= 1000 to 2000 N/cm for ordinary sliding joints 
to 12000 t o  20000 N/cm2 with special heat treatment 

h = Height of spline key (cm) 
L = Length of spline key (cm) 
n = Number of keys 

rm = Middle radius = (major diameter + minor diameterY4 (cm) 
Involute splines are much superior to straight-sided ones. These splines have the following 
advantages . 
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1. Power transmitting capacity i s  higher than the other types. 
2. Involute splines can be produced by the same manufacturingprocesses and machines as in 

the case of ordinary gears. 
3. These splines have a self-centering action under load. Even a loose-fitted assembly will 

centre itself when torque is applied. 
4. Since involute splines can be made by hob cutters and other generatingprocesses, no special 

machine is required other than those with which a machine shop is generally equipped. 
Consequently, the cost of production i s  also reduced. 

Normally, external splines a re  cut by hobbing, rolling o r  shaping and the internal ones are 
produced either by broaching or by shaping in a gear shaper. However, since it is almost the 
universal practice to broach theinternal splines, i t i s  theinternal spline whichisheld to thebasic 
dimensions and the external spline dimensions are  varied to control the fit. 

The involute spline-keys are  thickened from top to bottom. There is no sudden change at the 
root of the keys. Endurance is greater, failure due to stress concentration i s  much less, centering 
is assured, service life is prolonged, and of course, load carrying capacity is much higher. 

A hub with involute spline is self-aligning under load. Sometimes crowned splines a re  used 
toimpartflexibilityin the system and to takecareofmisalignnientsup to 5degrees. The pressure 
angle of an  involute spline is normally 30”. As per the American practice, other tooth forms 
employing different pressure angles are used [Fig. 7.14 (all. 

Involute splines seldom fail due to wear or bending stress. Hence, these are  not important 
factors in  the design of spline teeth. Though splines are similar to gear teeth, the action of a n  
involute spline joint is different from tha t  of a mating pair of gears. In a n  involute spline, there 
i s  no rolling action. All the teeth of the two components a re  in mesh at once and since there is 
no relative motion, wear poses no problem in design. Usually, the splined shafts fail in torsion. 
Hence, i t  should be checked against torsion by the usual formulae of strength calculations. 
Splines also fail by fretting corrosion and by fatigue. The teeth of splines sometimes shear  off on 
the  pitch line. A splined system may also fail because the internally toothed member may burst 
because of applied torque. Besides, high speeds may create severe centrifugal force which 
aggravates the situation by being added to the bursting stresses. The shell of the internally 
toothed member becomes vulnerable to failure by rupture. 

Reference Profile of Irivolicte Spline Shaft aiid Spline Hub 
The parameters of a n  involute spline and i t s  reference profile are shown in Fig. 7.14 (c and d 1. 
The tooth dimensions of the spline shaft and hub are  determined as per the reference profile as 
well as the hub major dianieterd, and the number ofteethz. The correction factorx lies between 
- 0.05 to + 0.45. This is done keeping in mind tha t  the designer may select a spline with even 
number ofteeth which is normally preferred. This arrangement also enables the designer to keep 
the mean pressure angle in a fixed and appropriate range which is required for self centering, 
precision in manufacturing and for restriction of normal pressures. However, in special cases 
where other design criteria are predominant factors, the dimensions need not be as per the 
relations given. These can be selected freely a5 per calculations. Obviously, in t ha t  case the 
restrictions as regards the profile correction factor x are  also no longer valid. For normal 
applications, the following relations hold good. 

Pitch p = m i  
Pressure angle = 30” 
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1 
m 

Number ofteeth z=-(d, - 2xm - 1.h) 

1 
2 

Profile correction x m  = -(d, - m z  - 1. l m )  

Whole depth h = 1.0 m 
Addendum ha = 0.45 ni 
Dedendum h, = 0.55 m = Addendum of cutting tool 
Tip clearance c = 0.1 m 
Radius a t  root r = 0.2 m 
Pitch circle diameter d = mz 
Base circle diameter d, = nzz cos a 
Major diameter of hub d, = Reference diameter 
Minor diameter of hub d, = m z + 2 x m - 0.9 m = d, - 2 m 
Major diameter of shaft d, = mz + 2 xm + 0.9 m = d, - 0.2m 
Major diameter of shaft d, = ni z + 2 x m -1.1 ni = d,- 2.2 m 
Width of tooth-gap of hub e = Width of tooth-thickness of shaft s 

mm2 -+2xm tan a - - 
2 

Table 7.1 shows the values of reference diameter vis-a-vis the number of teeth and module. 

7.6 Gear Couplings 

To connect shaft ends to transmit motion or torque, couplings are generally used. These machine 
elements can be broadly classified into two categories-rigid and flexible types. 

When compensation for the misalignment between connecting shafts is imperative because 
of the prevailing operating conditions, the flexible couplings are used. They compensate for 
various types of misalignment, such as, lack of coaxiality between shafts, parallel a s  well as 
angular misalignments, and small axial movement of the shafts caused by temperature 
difference. Besides, they act a s  dampers against shock and impact-type of loads. 

Various types o f  flexible couplings of widely different designs are marketed under various 
trade names. Gear couplings which are a type of flexible couplings, will be discussed in this 
section. These couplings are also designed in various ways, depending upon the type of service 
to which they are put. Thus, there are the common type, shear pin type, mill motor type, brake 
drum type, floating shaft type and a number of other types as well. 

Gear couplings are also known as curved toothed gear couplings because the coupling halves 
are provided with built-in external gear teeth which are curved or crowned to compensate for the 
misalignment, thus impartingflexible properties. A typical gear coupling of common design has 
been illustrated in Table 7.2 along with the relevant data. It consists of the following essential 
parts: Two coupling halves having crowned external teeth, two sleeves provided with internal 
gear teeth which mate with the external teeth of the coupling halves, and intermediate pieces 
which act a s  a y a r d  against the entry of extraneous materials into the interior of the coupling. 
Besides these, a complete coupling contains requisite number of bolts to  connect the two sleeves 
which transfer the torque between the driving and the driven shafts, other fasteners, oil seals, 
gaskets, dowel pins, and an adequate amount of lubricating oil. I n  some designs, the interme- 
diate pieces are dispensed with and the oil seals are mounted directly on the sleeves. Forged 
steels are normally used for mating gears. For other parts, 45 C 8 may be used. 
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Table 7.1 

NO OF TEETH z 
WITH MKJLILE n 

REFERENCE DIAMETER - 
MlwoR DIAMETEC’ OF HUB 

01 (mm) 1 0  125  1 1 5  20 2 5  30 4 0  5 0  .. 1. I I I I I I I 

Values of no. of teeth 2 given in the space bounded by stepped lines are to be preferred. 



Table 7.2 Curved torothed gear coupling 

DIMENSIONS IN rnrn 
SLEEVE 

INTER M E D I ATE 

CURVED TEETH 

COUPLING HALF 

Normal Maximum Finish Bore Flange details 

kW/ Torque kW/ Torque Max No. Fit Bolt 
Size rpm kN m rprn kNrn rprn Min Max D L S E C  R PCD of bolt len 

Holes size gth 

1 0.06 0.55 0.09 0.85 
2 0.12 1.2 0.18 1.8 
3 0.20 2.0 0.30 3 
4 0.34 3.4 0.52 5 
5 0.48 4.6 0.68 6.5 
6 0.68 6.8 1.04 10 
7 0.97 9.5 1.50 13.5 
8 1.26 12.5 1.95 18.5 
9 1.94 18.5 2.87 28 

10 2.76 25 4.07 39 

9500 
8500 
7500 
6700 
6000 
5400 
5300 
4750 
4250 
3750 

22 
28 
30 
32 
35 

40 
58 
68 
78 
88 

40 
50 
60 
70 
80 
90 

100 
110 
125 
1 40 

160 135 60 
183 155 70 
215 183 80 
230 198 90 
255 223 100 
290 249 110 
300 269 120 
330 289 130 
355 330 150 
410 365 165 

123 
145 
165 
183 
204 
230 
250 
270 
305 
335 

5 
5 
6 
6 
6 
8 
8 
8 

10 
10 

60 
75 
90 

100 
1 20 
130 
140 
155 
175 
200 

126 12 M10 35 
147 14 M10 40 
175 14 M10 48 
190 14 M10 50 
215 14 MI0 55 
246 14 M12 60 
252 14 Mi4 70 
282 14 M16 75 
300 14 M16 80 
352 14 M18 85 

(Contd) 

P 



Table 7.2 fcontd.) 

Normal Maximum Finish Bore Flange details 

kW/ Torque kWl Torque Max No. Fit Bolt 
Size rpm kN m rpm kN rn rpm Min Max D . L S E C  R PCD of bolt len 

Holes size 0th 

11 4.10 39 5.97 58 3350 125 160 460 421 190 380 12 230 402 16 M18 
12 5.67 52 8.21 84 3000 145 180 505 481 220 425 12 260 443 16 M20 
13 7.84 75 11.57 110 2650 165 200 570 537 245 475 14 290 504 16 M22 
14 10.60 100 15.67 150 2500 185 220 610 593 270 520 16 325 536 16 M24 
15 22.00 210 32.09 320 2000 245 280 785 751 340 670 22 415 703 24 M30 
16 41.04 395 61.19 585 950 260 350 960 830 400 840 30 590 075 18 M42 
17 58.21 560 87.31 837 875 340 400 1070 890 430 915 30 650 900 24 M48 

Note: Numerical values given in the table for kW/tpm, torque and max, rpm are rounded off values 

90 
95 

105 
105 
115 
1 70 
180 
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Angular misalignment capacity normally amount to 2 1" to 2 2' or 2 3', depending upon the 
design. Permissible axial movement +- 0.5 to 1.5 to 
2 9 mm. The above values depend on the sizes of the coupling and are valid for sizes progressively 
from the smallest to  the largest ones. Tolerances for hub and shaft will depend upon the sizes as 
well as on the design and type of the couplings. I t  is advisable to consult the manufacturers' 
catalogues or manuals regarding the recommended tolerances and other relevant aspects. 

Transient peak loads occur during service leading to momentary increase in torque and this 
factor should be taken into account while selectingacoupling. Servicefactors(SF) which provide 
a basis of estimation and of allowance for combination of various driven equipments and types 
of loading are listed in Table 7.3.  

2 mm, maximum parallel misalignment 

Table 7.3 Service factors (SF) (Prime mover: electric motor or turbine) 

Load, Driven Equipment SF 

Uniform Centrifugal pumps, Conveyors-uniform loading. Exciters. 
Fans and Blowers, Light duty generators, Uniform loading mixers 1 .o 

Light shock Centrifugal pumps, Generators, Pulsating Grinders, Hydraulic pumps, 
Kilns, Line shafting machine tools, Oscillating pumps, Textile machinery, 
Wood working machinery 1.5 

Medium shock Air compressors-multi-cylinder, Ball and rod mills cranes elevators . 
and hoists punch presses, Reciprocating pumps, Shears, Ship drives, 
Welding generators 2.0 

Heavy shock Air compressors-single cylinder, Dredgers, Drilling Rigs, 
Mining machinery, Rolling mill drivers, Rubber mixers 2.5 

Extreme shock Ore crushers, Barstock shears, Conveyors-vibrating 30 
- - 

Selection of Size of Coupling 
For proper selection of the coupling, the following data are necessary-type of prime mover and 
driven machine, rated power of prime mover, speed in rpm, and service factor (SF) as given in 
Table 7.3. The following example illustrates the selection procedures. 

Example7.2. Given: Prime mover = 20 kW electric motor, speed = 1450 rpm, driven 
equipment = centrifugal pump, type of duty = light shock load, nominal 
power required for the reduction unit = 16 kW. 

To select the required gear coupling. 

Solution: The service factor is found to be 1.5 from Table 7.3. 
Effective kW/rpni = 16 x 1.511450 = 0.017. From Table 7.2 we find that  size 1 is suitable for the 
purpose and is, therefore, selected. 

The next step is to check whether the maximum torque required during operation is within 
the allowable limit specified in the table. 

16 x 1.5 
1450 

Effective torque (Nm) = 9550 x = 158 
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Since the values of torque given in the table are 0.55 kN m or 550 N m (normal) and 0.85 kN 
m or 850 Nm (max.) the selected coupling is good enough to sustain the required torque. 

Finally, the diameters of the shafts to be connected are to be checked to ensure whether they 
are within the maximum permissible bores specified for the coupling selected. In case the shaft 
ends ofthe prime mover and the driven machine exceed these limits, then the coupling ofthe next 
higher size is to be selected. 

Crowning 
As stated before, gear coupling teeth are provided with top crowning to compensate for the 
misalignment. Besides top crowning, the teeth are also curved laterally so that  the barrel shaped 
teeth can take misalignment in other planes as well. 

Normally, the barrel-shaped contour of the tooth is a segment of a circular arc. An improved 
version of this contour consists of an  arc at the central region of the tooth which gradually 
flattens off at the two ends. When angular misalignment occurs, the flattened curved area of the 
external tooth surface contacts with the straight surface of the internal tooth. This results in 
lower induced surface contact stresses per unit area, as we know from the Hertz equations that 
bodies with the smallest relative curvature have the largest area of contact under load. In other 
words, under a given load, bodies with the greater radii of curvature have smaller contact 
stresses. 

Since a gear coupling is an item which is bought separately, the function of the designer is 
restricted to selecting the proper coupling as per the guidelines given in this section or according 
to the selection procedures given in the catalogues of standard manufacturers. Those readers 
who would like to delve deeper into the design aspects of these couplings, such as  computation 
of the various stresses on individual components, determination of the correct amount of the 
crowningand barrel radii, and other parameters, should consult specialised books on the subject. 

- 

7.7 Pin Gearing 

Pin gearing is an  early form ofgear mechanism used much before the present day gear technology 
came to be recognised. This type of gearing is still used in clock mechanisms and also in hoists, 
winches, turn-tables, as well a s  those cases where slow speed gear drive is required in  the 
conveying systems. 

In pin gearing, the two components of the pair are a wheel in which pins are inserted and a 
toothed wheel which resembles an ordinary gear (Fig. 7.15). The toothed wheel normally drives 

GENERATING ClllCL E 

- h - C  
DIRf CTlNO CIHCLE 

Fig. 7.15 Pin gearing 
Based on Zahnraeder, Zapke, 11 th edition. 198O.Fig No 36, 
p 36, VEB Fachbuchverlag.Leipzig 
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the pin wheel. The pins in the pin wheel are sometimes fitted with rotatable rollers to minimise 
wear due to sliding. While in action, the pins slide (or roll) over the tooth surfaces inside the tooth 
spaces. 

The profile of the tooth of the toothed wheel is an epicycloid. The generating circle contains 
the centres of the pins, i.e. the circle of diameter d, shown in the figure. The directing circle is 
the circle of diameterd, of the toothed wheel. (Reader may see Secs 1.6 and 1.7 on cycloidal curves 
for definitions of generating and directing circles.) A point on the generating circle, when rolled 
on the directing circle, generates the epicycloidal curve. Conjugate action takes place between 
the epicycloid PA' and points on the circle of diameter d,. But since room has to be made to 
accommodate the pins which take the load, the epicycloids are shifted and tooth profiles are 
drawn parallel to the epicycloids as shown i n  the figure. If the pin wheel is of infinite diameter, 
analogous to  a rack, then the profile of the other wheel is an  involute. 

Some practical values of the pin gearing system are given below. 
Minimum number of teeth of the toothed wheel z,",,, = 8 to 12 for 1) = 0.2 to  1 m/s 

ha = m(l  + 0 . 0 3 ~ ~ )  
b = 3.3 m 

d,, = Pin diameter = 1.67 m 
L = Effective average length of pin = h + m + 5 mm 
r = 0.5 d,, = Fillet radius 

ar I: 0.15 m 
Usual backlash = 0.04 m 

d,  = Z ,  1?2 

The contacting surfaces of both the wheels should be adequately hardened to ensure longer life. 

7.8 Novikov Gears 

Though the involute form of gear toothing has replaced all  other curves in power transmission 
gearing, researchers in the field are always on the look out for other shapes which may prove to 
be more efficient in power drive. One ofthese forms is the circular-arc type of toothing developed 
by Wildhaber in theUSAand Novikovin theUSSR. It is mainly due to the research work carried 
out by Novikov that  this type of toothing has come to be recognised in gear technology. 

The Novikov gears have circular tooth surfaces in the transverse section. The following three 
different types of curve combinations are generally used 

(i) Tooth profile of pinion: Convex 
Tooth profile of gear: Concave 

(ii) Tooth profile of pinion: Concave 
Tooth profile of gear: Convex 

(iii) Face of pinion and gear tooth: Convex 
Flank of pinion and gear tooth: Concave 

Of the above three, the first form is most commonly used. 
The teeth of Novikov gears in mesh have point contact. The height of a Novikov gear tooth is 

only about half that  of the corresponding involute tooth having the same module. Different 
cutters are required for the manufacture of the toothing for the pinion and the gear. 

Calculations and experiments have shown that  the Novikov gearing can withstand a high 
amount of load. Compared to an involute gear drive ofthe same output, the weight requirement 
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of a Novikov system is about half The eficiency can be as high as 99 to 99.5%. 
The main demerits of the involute gearing vis-a-vis Novikov gearing are that  the involute 

gearing has  limited load capacity due to the small radii of curvature of the working surfaces of 
teeth. Resistance to wear is also poor and there is a heavy loss of power due to friction. Novikov 
gearing is practically free of these short-comings. In Novikov system, since the profile of teeth 
of one member is convex and that  of the other concave, the surface stresses are considerably 
reduced. It can be seen from Sec.  2.23 on contact stress that  the surface stress is inversely 
proportional to  the square root of the equivalent radius of curvature, Req, given by Req = R,  R.J 
(R,-Rl) ,  whereR, andR,are the radiiofcurvatureofthe twomatingsurfaces.Here, thenegative 
sign is used because the two curves point t o  the same general direction of centres, a s  in the case 
of internal gears.3f the difference R, - R, is very small, Rcq attains a very high value. As a 
consequence, the surface stresses are very much reduced. 

Research carried out in different countries has yielded the following information. 
1. Novikov system is better than the correspondinginvolute system in high-load andmedium- 

load categories of applications where the speeds are not high. 
2. Novikov tooth surfaces can take and withstand around 3 t o  5 times the load which the 

involute gear tooth surface can take. 
3. These high loads do not lead t o  the typical fatigue phenomena like pitting, wearing down 

of surfaces and other allied failures. 
4. Novikovgears can be subjected to  heat-treatment processes for increasing the load capacity 

just  a s  in the case of involute gearing, e.g. hardening, nitriding, and other processes. 
5. The lubricant retaining properties of Novikov gear teeth in mesh are excellent. Mating 

teeth tend to form a thick oil film, thus ensuring smoother transmission of motion. 
6.  The overall efficiency in power transmission in case of the Novikov system is higher than 

in case of involute gearing. 
There are, however, certain disadvantages too. Compared t o  the involute system, the Novikov 

system is noisier and also it is unduly sensitive to variations in centre distance. 
Figure 7.16 (a) shows a Novikov gear pair in mesh. It can be seen that the convex-concave tooth 

profiles conform to one another, thus enveloping the mating components. This is in contrast to 
the conventional (external) involute toothingin which case tooth surfaces in mutual engagement 
are both convex in form. 

We have seen in Chaps 1 and 2 that  to achieve a constant velocity ratio during rotation, the 
common normal to the profiles of the meshing pair of teeth at the point of contact must pass 
through a fixed point on the line of centres, termed the pitch point P . Such condition produces 
conjugate action. The common normal must obey this law in all positions of contact in order to 
attain conjugate action. In case of involute spur gears, we know that  the mating teeth make 
contact along a straight line across the tooth width b . This contact line changes its position as 
the gears rotate, beginning near the root of the driving pinion tooth and ending near i t s  tip. 
We have also seen that  the two mating spur gears behave as if two pitch cylinders drive by 
friction without slippage, ensuring transmission of motion without (apparent) loss of 
power. 

In  Novikov system, a pair of spur gears contact only once during a complete rotation. In  
consequence, the common normal passes through the pitch point at only one position during a 
complete rotation. Hence, the conjugate action is not achieved. However, if we can visnalise an 
infinite number of Novikov spur gears, each of infinitesimal thickness, joined together but each 
one slightly out of phase, then we can see that  the contact point moves across the teeth from one 
side to another as the gears rotate. In other words, it amounts to a pair of helical gears in mesh, 
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Fig. 7.16 Novikov gear 
Based on Gear Design and Application, Chironis, 1967 edition, Fig. No. 2 8 5, 
p. 125 8 127, McGraw-Hill Book Co. Inc. New York 

t 
i 
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each looking like the one shown in Fig. 7.16 (b). In such a case, conjugate action is ensured and 
the pressure angle a remains constant. 

The system makes a point contact theoretically only. Actually, it is an  elliptical area which 
travels across the width ofthe teeth as shown in Fig. 7.6 (c). Close conformity ofthe mating teeth, 
deformation of the point under load and gradual wearing result in such an  area. 

We have seen in Chap. 2 that  this area of contact due to deformation by load and the surface 
stresses thereof can be calculated by the Hertz equations. We have also noticed that the convex- 
concave combination of gear tooth curves in mesh reduces the surface stresses. This, among 
others, is one of the contributary factors of the high load capacity of Novikov gearing. 





M i sce I la neo u s Topics 

8.1 Reduction Gear Units 

Broadly speaking, reduction gear units are contrivances used for providing high torques with 
comparatively low rotational speeds at the output end. They are normally placed in-between the 
prime-movers such as electric motors, and the machines to be driven for the work they are meant 
for. On both input and output sides ofthe reductionunits, suitable type ofcouplings areprovided. 
These units may also be used as step-up devices, that  is, as speed increasing units. 

In  Sec. 1.1, a general clasification ofvarious gear drives, their usual reduction ratios, stages, 
power, speed, torques and other relevant parameters have deen discussed. A reduction gear 
system is usually encased in a housing which is impermeable to, oil, dust and other outside 
agencies and is normally provided with an  oil bath. The term “gear box” is used to indicate such 
a housing plus the internals it contains, viz., the gears, shafts, pinion shafts, seals and other 
components. The term may also be used sometimes to imply the housing or the casingonly. The 
housing along with other connected accessories will be discussed in  Sec. 8.2. I n  this section and 
elsewhere i n  this book, the term “gear box” has h e n  used to indicate the complete reduction unit 
as a whole. 

Areductiongear unitmaybe ofa built-in typeasused i n  machine toolsoritnlay bean integral 
part of a prime mover such as geared-motors, or it may be of the conventional independent unit 
type which is commonly known as a gear box. 

Depending on the orientation of the driving and the driven shafts, reduction unit can be 
categorised into the following classes. 

1. Spur and helical gear reduction units. These types have parallel shafts and may consist of 
one or  more stages of reduction (Fig. 8.1). 

2. Bevelgear reduction units. The axesofthe shaftsin theseunits are generally a t  rightangles 
to each other (Fig. 8.2). The axes may be co-planer intersecting each other o r  they may be 
non-intersecting type as in the case ofgear boxes using hypoid gears, viz., car differentials. 

3. Worm and worn~-wheel reduction units. The axes in these units are atr ight angles and are 
non-intersecting (Fig. 8.3). 

Besides the above common types, gear boxes may consist of one o r  more combinations of the 
above classes, such as bevel spur or bevel helical gears where the input and the output shafts are 
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BEARING COVER 

OUTPUT SHAFT 

GEAR BOX CASING 
BOlTOM HALF 

Fig. 8.1. Spur and helical gear reduction unit 

at right angles to each other, spur or helical gears combined with worm drives and other assorted 
drives. In  a combination drive with worm, the worm is used as a high-speed component because 
the efficiency of a worm drive is greater at high speeds. Planetary gear boxes are used where a 
high reduction ratio and a compact design are the main criteria. For the same power and gear 
ratios, a planetary gear box can be so designed that  its weight is only half or one-third of the 
weight of a conventional gear box. In co-axial gear boxes the axes of the input and the output 
shafts are in one straight line. The disadvantage ofthis type lies in the fact that  provision ofan 
intermediate projection from the floor of the gear box casing is required to hold the bearings of 
the two shafts. The arrangement is also prone to misalignment. 

Rigid housing in a gear box ensures correct alignment of the shaft bearings. Gears with small 
modules havegreater accuracy of drive and create lesser noise duringoperation besides reducing 
the manufacturing cost. Copious lubrication must be ensured to decrease wear and increase 
overall efficiency. 
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Fig. 8.3 Worm and worm-wheel reduction unit 

Geared Motors 

Geared motors are such units in which the prime mover(e1ectric motor) and the speed reduction 
unit (gear box) are joined together, so that  they make a single compact unit. Among many 
advantages, this arrangement saves a lot of space as i t  dispenses with the use of an  intermediate 
coupling, and also as it allows the motor shaft to protrude inside the gear box. The motor and the 
gear box may be separate and then bolted together for compactness. Or, the electrical and the 
mechanical components may be enclosed in a common housing. 

Dependingupon the type of mounting and the internals used, geared motors are classified into 
flange-mounted or foot-mounted types. Both these types are used in industries, such as roller 
table drives for rolling mills, textile machines, and a host of appliances. Normally, they are 
meant for small power applications. As far a s  internals are concerned, these motorised speed 
reducerscan be categorised according to the gearing system used, like the worm-gear drive, spur 
or helical gear train with parallel shafts, planetary gearing or any other suitable combination 
thereof. A flangermounted geared motor is shown in Fig. 8.4. 

Forquietnessofoperation, high speed-reduction ratioand for shaftaxes a t  right angles toeach 
other, worm-type reduction unit is normally used. This can be of double reduction type if very low 
speeds are envisaged. For intermediate speed reduction range, parallel shaft type speed reducers 
are used. For large speed reductions where economy and compactness are the design criteria, the 
planetary gearings are employed. 

Selection Procedures for Standard Gear Boxes 

Standard worm, spur, helical and other type of gear boxes are manufactured by firm specialised 
in the field. These firms offer catalogues and other relevant technical literature giving detailed 
information concerning their product range as well as the data to help select the right types and 
sizes of gear boxes for the service conditions in question. Besides, IS: 7403 lays down selection 
procedures for worm and helical gear boxes. While selecting the standard gear box, the relevant 
calculations should be made as per IS: 7403, the salient points of which are discussed below. 

For selecting the correct type and size of the gear box, the following data concerning both the 
prime mover and the driven machine are essential. 

t , 
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i. Type: For prime movers, e.g. electric motors, internal combustion engines 
For driven machines, e.g. cranes, machine tools 

ii. Power:For prime mover-rated power 
For driven machine-actual power requirements 

iii. Speed 
iv. Operating conditions, e.g., ambient temperature, dutyfactors, any special workingconditions. 

REDUCTION GEAR BOX7 ,MOTOR SHAFT 

OUTPUT SHAF 

BEARING J 
Fig. 8.4 Geared motor 

Commercial gear boxes are assigned power ratings by the manufacturers of the gear boxes. 
These power values, called the “rated power”, are given in the manufacturers catalogues along 
with the relevant data. One sample data sheet is shown in Table 8.1. 

A gear box is classified according to its size, rated power, maximum torque capacity, 
maximum speed, reduction ratio, input and output speeds, and dimensional constraints, if any. 
To facilitate systematic selection of the correct gear box cotnmensurate with the operating 
conditions, the following guidelines in the form of steps are given. 

1. Calculate the actual power required for driving the machine at the desired speed. 
2. Determine the type of load (U, M, H o r  HI) which is likely to be encountered by the driven 

3. Depending upon the prime mover, duration of service and type ofload as  given in Table 8.2, 

4. Calculate the “equivalent power’’ by using the relation 

machine during service from Table 8.2. 

select the service factor (SF) from Table 8.3. 

Equivalent power = Actual power x Service factor 

5. Select the right size of the gear box from the manufacturers’ catalogues, so that  the rated 
power of the gear box selected is equal to or @eater than the calculated equivalent power 
for the given speed ratio of the gear box. 

Besides the above criteria, other aspects listed below should be checked as well. 



11th 8.1 Power ratings of a double reduction gear box 

LEFT-HAND DESIGN RIGHT-HAND DESIGN 

,OUTPUT 
SHAFT 

t 
I 
3 

8 

Nominal Size of gear unit 
trans- Nominal 
inLsion speeds 110 125 140 160 180 200 225 250 280 315 355 400 450 500 560 630 710 800 
ratio [Vmin] 

i, "1 3 Nominal gear box rating PJkW] 

1500 
6,3 lo00 

750 
1500 

7.1 lo00 
750 
1500 

8 1000 
750 

9 1500 
lo00 

240 36 
160 24 
120 18 
210 36 
140 24 
105 18 
108 32 
125 22 
94 16 
167 29 
1 1 1  19 

50 
34 
25 
48 
32 
24 
44 
30 
22 
40 
27 

70 105 
47 71 
36 54 
66 100 
44 66 
33 50 
62 91 
41 60 
31 46 
56 83 
38 56 

145 
100 
74 
140 
93 
71 
125 
85 
65 
130 
86 

205 
145 
110 
195 
135 
100 
180 
125 
92 
185 
1 25 

285 
215 
1 70 
280 
200 
150 
255 
180 
135 
225 
160 

370 
280 
230 
380 
255 
210 
350 
245 
190 
320 
215 

530 
400 
310 
490 
365 
275 
450 
335 
250 
450 
300 

790 
560 
425 
730 
490 
370 
660 
450 
340 
580 
430 

1060 
800 
600 
990 
720 
550 
920 
680 
520 
820 
620 

1450 
1100 
900 
1350 
1000 
790 
1300 
950 
710 
1100 
800 

2020 
1520 
1200 
1900 
1400 
1050 
1750 
1270 
950 
1500 
1120 

3740 
2650 
1990 
3400 
2330 
1760 
3070 
2120 
1590 
2740 
1890 

5060 
3650 
2790 
4 760 
3270 
2470 
4300 
2970 
2230 
3840 
2640 

7020 
4780 
3600 
6200 
4210 
3170 
5600 
3820 
2870 
5000 
3400 

7120 
5420 7700 

6270 
4730 6700 

5700 
4270 6070 

5070 
(Contd.) 



Table 8.1 (cmm) 

Nominal Size of gear unit 
Vans- Nominal 
mission speeds 110 125 140 160 180 200 225 250 280 315 355 400 450 500 560 630 710 800 
ratio [llmin] 

i" n, "2 Nomina/ gear box rating P,, [kw 

750 83 
1500 150 

10 lo00 100 
750 75 
1500 134 

11,2 1000 89 
750 67 
1500 120 

12.5 1000 80 
750 60 
1500 107 

14 1000 71 
750 53 
1500 94 

16 1000 62 
750 47 
1500 83 

18 1000 56 
750 41 
1500 75 

20 1000 50 
750 38 
1500 67 

22,4 1000 45 
750 33 

15 
25 
17 
13 
22 
15 
1 1  
21 
14 
1 1  
18 
12 
9 
15 
10 
8 
13 
8.5 
6.5 

20 
35 
24 
18 
32 
21 
16 
29 
19 
15 
26 
17 
13 
22 
15 
1 1  
19 
14 
10 
17 
12 
9 

28 
50 
33 
25 
45 
30 
22 
40 
27 
20 
35 
24 
18 
30 
20 
15 
27 
19 
15 
24 
17 
12 
21 
14 
1 1  

43 
74 
49 
37 
66 
45 
35 
55 
37 
28 
48 
32 
24 
43 
29 
22 
37 
25 
19 
35 
23 
18 
30 
20 
16 

67 
100 
68 
50 
95 
65 
49 
80 
52 
42 
68 
46 
35 
60 
40 
32 
55 
39 
30 
49 
33 
2.5 
41 
27 
21 

95 
150 
95 
80 
140 
95 
72 
110 
77 
58 
100 
70 
52 
90 
62 
47 
73 
51 
40 
73 
49 
38 
65 
44 
34 

125 
210 
145 
110 
180 
130 
95 

1 70 
115 
88 
150 
105 
78 
135 
92 
69 
120 
80 
62 
110 
74 
58 
99 
66 
52 

1 70 
280 
195 
155 
250 
175 
130 
225 
165 
125 
205 
145 
110 
185 
130 
97 
140 
98 
77 
140 
98 
77 
135 
92 
70 

235 340 
390 540 
265 360 
210 280 
330 480 
245 360 
185 270 
320 430 
220 300 
165 225 
280 380 
195 265 
145 200 
250 340 
175 235 
130 175 
220 310 
145 230 
110 180 
210 280 
140 190 
110 145 
185 250 
125 170 
98 130 

500 
760 
540 
420 
680 
500 
400 
640 
450 
330 
550 
400 
290 
490 
350 
2 70 
430 
320 
250 
410 
280 
230 
390 
260 
200 

650 
1050 
750 
600 
900 
680 
500 
850 
600 
450 
710 
520 
420 
650 
490 
3 70 
550 
410 
340 
520 
380 
310 
490 
350 
280 

900 
1420 
1000 
800 
1250 
940 
720 
1200 
850 
640 
950 
710 
560 
860 
650 
500 
740 
540 
440 
700 
500 
400 
660 
460 
370 

1470 
2540 
1700 
1320 
2270 
1530 

2020 
1390 
1050 
1790 
1240 
930 
1590 
1100 
820 
1470 
970 
770 
1320 
880 
700 
1180 
790 
620 

i iao 

2080 
3560 
2380 
1860 
3180 
2140 
1660 
2830 
1970 
1480 
251 0 
1 750 
1310 
2230 
1550 
1170 
1760 
1230 
950 
1860 
1240 
990 
1550 
1050 
790 

2750 
4590 
3060 
2460 
4090 
2750 
2200 
3630 
2600 
1950 
3230 
2310 
1730 
2870 
2050 
1540 
2570 
1820 
1440 
2460 
1640 
1290 
2020 
1360 
1040 

4020 5760 

4560 
3600 5160 

4320 
3220 4610 
5420 
3800 
2860 4090 
4820 
3380 
2530 3630 
4270 
3000 
2250 3220 
4020 
2730 
2140 3110 
3600 
2400 
1920 2780 6 

n, 3110 
2100 
1600 2370 

(0 0 

5 
v, 
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Table 8.2 Load characteristics values for different applications 

U = Uniform Load H Heavy Shock Load 
M = Moderate Shock Load HI = High Inertia Load, Manufacturer to be consulted 

Driven machine Type of load Driven machine 
~ 

Type of load 

Agitators: 
Pure liquids 
Liquids and solids 
Liquids-variable density 

Blowers: 
Centrifugal 
Lobe 
Vane 

Brewing and distilling: 
Bottling machinery 
Brew kettles-continuous duty 
Cookers-continuous duty 
Mash tubes- continuous duty 
Scale hopper-frequent starts 

Can filling machines 
Cane knives 
Car dumpers 
Car pullers 
Clarifiers 
Classifiers 
Clay working machinery: 

Brick press 
Briquette machine 
Clay working machinery 
Pug mill 

Compressors: 
Centrifugal 
Lobe 
Reciprocating multi-cylinder 
Single-cylinder 

Apron 
Assembly 
Belt 
Bucket 
Chain 
Flight 
Oven 
Screw 

Conveyors-uniformly Loaded or fed: 

Conveyors-heavy duty not uniformly fed: 
Apron 
Assembly 
Belt 

U 
M 
M 

U 
M 
U 

U 
U 
U 
U 
M 

U 
M 
H 
M 
U 
M 

H 
H 
M 
M 

U 
M 
M 
H 

U 
U 
U 
U 
U 
U 
U 
U 

M 
M 
M 

Bucket 
Chain 
Flight 
Live roll 
Oven 
Reciprocating 
Screw 
Shaker 

Cranes: 
Main hoists 
Bridge travel 
Trolley travel 

Crusher: 
Ore 
Stone 
Sugar 

Dredges: 
Cable r eek  
Conveyors 
Cutler head drives 
Jig drives 
Manoeuvering winches 
Pumps 
Screen drive 
Slackers 
Utility winches 

Dry dock cranes: 
Main hoist 
Auxiliary hoist 
Boom, luffing 
Rotating swing or slew 
Tracking, drive wheels 

Bukket-uniform load 
Bucket-heavy load 
Centrifugal discharge 
Bucket continuous 
Escalators 
Freight 
Gravity discharge 
Man lifts 
Passenger lilts 

Centrifugal 
Induced draft 

€Levators: 

Fans: 

M 
M 
M 
HI 
M 
H 
M 
H 

U 
HI 
HI 

H 
H 
M 

M 
M 
H 
M 
M 
M 
H 
M 
M 

M 
M 
M 
M 
H 

U 
M 
U 
U 
U 
M 
U 
HI 
HI 

U 
M 
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Table 8.2 (Contd) 
- 

Driven machine Type of load Driven machine Type of load 

Large-mine, etc 
Large-industrial 
Light-smaller diameter 

Feeders: 
Apron 
Belt 
Disc 
Reciprocating 
Screw 

Food industry: 
Beef slicer 
Cera1 cooker 
Dough mixer 
Meat grinders 

Generators-hot welding 
Hammer mills 

Hoists: 
Heavy duty 
Medium duty 
Skip 

Laundry washers reversing 
Laundry tumblers 
Line shafts: 

Driving processing equipment 
Light 
Other line shafts 

Lumber industry' 
Barkers-hydraulic-mechanical 
Burner conveyor 
Chain saw and drag saw 
Chain transfer 
Craneway transfer 
De-barking drum 
Edger feed 
Gang feed 
Green chain 
Live rolls 
Log deck 
Log haul-incline 
Log haul-well type 
Log turning device 
Main log conveyor 
Off bearing rolls 
Planer feed chains 
Planer floor chains 
Paraffin filter press 

U 
M 
U 

M 
M 
U 
H 
M 

M 
U 
M 
M 
U 
H 

H 
M 
M 
M 
M 

M 
U 
U 

M 
M 
H 
H 
H 
H 
M 
M 
M 
H 
H 
H 
H 
H 
H 
M 
M 
M 
M 

Planer tilting hoist M 
Re-saw merry-go-round conveyor M 
Roll cases 
Slab conveyor 
Small waste conveyor-belt 
Smalt waste conveyor-chain 
Sorting table 
Tipple hoist conveyor 
Tipple hoist drive 
Transfer conteyors 
Transfer rolls 
Tray drive 
Trimmer feed 
Waste conveyor 

H 

H 
U 
M 
M 
M 
M 
M 
M 
M 
M 
M 

Machine rools 
Bending roll M 
Punch press-gear driven H 

Plate planers H 
Tapping machine ti 
Other machine 1001s and main drive 
Auxiliary drives U 

Draw bench carriage and main drive 
Pinch dryer and slitters M 

Wire drawing and flattening machine 
Wire winding machine M 

Notching press-belt driven HI 

M 

Metal miils 
M 

Table conveyors non-reversing group drives H 
M 

Reversing HI 

Mills-rotary type 
Ball 
Cement kilns 
Dryers and coolers 
Kilns-other than cement 
Pebble 
Rod 
Plain 
Wedge bar 

Tumbling barrels 

Mixers: 
Concrete mixers-continuous M 
Intermittent M 
Constant density IJ 
Variable density 

Oil industry 
Chillers 
Rubber calenders 

M 

M 
M 
(Contd) 



8.10 Handbook of Gear Design 

Table 8.2 (Contd) 

Driven machine Type of load Driven machine Type of load 

Rotary kilns 

Agitators (mixers) 
Barker-auxiliaries-hydraulic 
Barker-mechanical 
Barking drum 
Beater and pulper 
Bleacher 
Calendars 
Calendars, super 
Converting machine, except cutters-platers 
Conveyors 
Couch 
Cutters-platers 
Cylinders 
Dryers 
Felt stretcher 
Felt whipper 
Jordans 
Log haul 
Presses 
Pulp machine reel 
stock chest 
Suction role 
Washers and thickeners 
Winders 

Printing presses 
Pullers: 

Barge haul 
Pumps: 

Centrifugal 
Proportioning 
Reciprocating: 

Paper mills: 

Single acting, 3 or more cylinders 
Double acting. 2 or more cylinders 
Single acting, 1 or 2 cylinders 

Rotary 
Gear WPe 
Lobe, vane 

Rubber and piastic industries : 
Crackers 
Laboratory equipment 
Mixing mills 
RetiWfS 

M 

M 
M 
M 
H 
M 
U 
M 
H 
M 
U 
H 
H 
M 
M 
M 
H 
H 
H 
U 
M 
M 
U 
M 
U 
HI 

H 

U 
M 

M 
M 
HI 

U 
U 

H 
M 
H 
M 

Rubber mill-2 on line 
Rubber mill- 3 on line 
Sheeter 
Tubers and strainers 
Warming mills 

Sand muller 

Sewage disposal equipment: 
Bar screens 
Chemical feeders 
Collectors 
Dewatering screws 
Scum breakers 
Slow or rapid mixers 
Thickeners 
Vaccum fillers 

Screens: 
Air washing 
Rotary-stone or gravel 
Travelling water intake 

Slab pushers 

Stockers 

Sugar industry: 
Cane knives 
Crushers 
Mills 

Textile industry: 
Batchers 
Calendars 
Cards 
Dry cans 
Dryers 
Dyeing machinery 
Looms 
Mangles 
Nappers 
Pads 
Slashers 
Soaps 
Spinners 
Tenter Frames 
Washers 
Winders 

Windlass 

M 
U 
M 
M 
M 

M 

U 
U 
U 
M 
M 
M 
M 
M 

U 
M 
U 

M 

U 

M 
M 
M 

M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 
M 

HI 
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Table 8.3 Service factors 

Service factors 

Nature of load on gear unit trom driven machine Duration 
Prime mover of service 

(hourslday) Heavy shock 
Uniform Moderate Heavy shock Helical and 

shock worm spur 

Electric motor or steam 2 0.75 0.9 1.25 1.40 
turbine 4 0.8 1 .o 1.3 1.5 

8 0.9 1 . 1  1.45 1.65 
12 1 .oo 1.25 1.55 1.76 
24 1.25 1.5 1.75 2.00 

2 0.9 
4 1 .o 
8 1.1 

12 1.25 
24 1.5 

1.1 1.25 1.65 
1.25 1.4 1.75 
1.35 1.6 1.90 
1.5 1.75 2.00 
1.75 2.00 2.25 

Multi-cylinder internal 
combustion engine 

Single-cylinder internal 2 1 1  1 35 1 75 1 9 0  
combustion engine 4 1 25 15  1 85 200 

8 1 35 1 65 1 95 2 15 
12 1 5  1 75 2 05 2 25 
24 1 75 2 0  2 25 250 

Momentary or peak load: This means a load which acts for a duration of not more than 15 
seconds. Normally, the conventional gear boxes are so designed that they can take momentary 
loads oftwice the rated capacity, which means that  they can take 100% overload. In case the peak 
power requirements of the driven machine exceed even this amount) then i t  i s  t o  be checked that  
the selected size should have such power rating that  its rated power is equal to or greater than 
half the peak power. 

Brake torque: When the prime mover is equipped with braking arrangements, it is to be 
ensured that  the torque rating of the selected gear box is greater than that  of the brake. 

Overhung load: Sometimes, the output shaft of the gear box carries a sprocket, pulley or a 
pinion. Thisimposes overhung load on the shaft, The equivalent overhung load can be calculated 
by using the formula 

Shaft power (kWj x Load factor 
Shaft speed (rpni) x Pitch of sprocket, etc. (nini) 

Overhung load (Nj  = 9555 x 10’ x 

The load factor is to be taken from the followiilg table 

Overhtriig nienzher Locia! factor 

Sprocket 
Spur pinion 
Vee belt pulley 
Flat belt pulley 

1.00 
1.25 
1.50 
3.00 
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The overhung load thus calculated should be less than the maximum permissible overhung 
load on the gear box. 

Determination of Speed 

The angular speeds obtainable in a conventional gear box are normally calculated on the basis 
of geometrical progression. This method is particularly applicable in case of machine tool gear 
boxes for varying spindle speeds or feed movements. 

While designing geared transmission systems, the problem of properly proportioning a train 
of gears to attain a given velocity ratio or a given series of speeds is often encountered. In such 
cases, a uniform reduction between the different stages is conducive to a high efficiency and a 
logical sequence of events. When geometrical progression is used, successive speeds are obtained 
by multiplying each preceding term by a ratio or  constant multiplier. This is elaborated below. 

When the maximum and the minimum speeds as well as the number of speeds are known, then 
the following formula is applicable 

(8.1) 

Using logarithm, the above equation can be rewritten as, 

where timax and nalln are the maximum and minimum speeds in rpm, S is the number of speeds 
of the gear reduction unit, and f is the ratio or the common factor with which any speed is to be 
multiplied in order to get the next higher speed. Example 8. 1 illustrates t.hc procedure. 

Example 8.1 : Given: 
n max = 1000 rpm 

n min = 50 rpm 

To find the speeds of a double reduction unit. 

Solution: Since it is a double reduction unit, the number of stages of reduction is 2, and the 
number of speeds is 3. The number of shafts is 3 as shown in the figure accompanying Table 8.1. 
The speed ofthe input shaft is 1000 rpm, and the speed o f  the output shaft is 50 rpm. Therefore, 
the reduction ratio i is 1OOOl50 or 20. 
Using Eq. 8.1, we have 

The derived speeds of the shafts are as follows 
3rd shaft (output): 50 rpm 
2nd shaft (intermediate): 
1st shaft (input): 

50 x 4.472136 = 223.6068 rpm 
223.6068 x 4.472136 = 1000 rpm 
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The job of a gear designer i n  general is n o t  so much as to  design a gear box than to select one. 
For proper selection, catalogues and manuals of standard gear box manufacturers contain 
exhaustive guidelines. 

As a n  example, one such data sheet is shown in Table 8.1 for a double reduction gear box. 
Ultimate selection of the proper size of the gear unit is made after considering various service 
factors, thermal considerations, cooling systems, lubrication and other relevant parameters. 

For numbering the size of the gear box, different manufacturers adopt different yardsticks. 
Often the size indicates the centre distance between the input  and the output shafts in mm. Still 
other companies use some other parameters or may assign the size number arbitrarily or in 
numerically ascending order. In any case, once a size is selected, the gear box housing becomes 
fixed in dimensional parameters. Different nominal power ratings for a particular gear box are 
obtained by varying the input  and the output speeds, keeping the transmission ratio as constant. 
Thiscanalso be achievedbyvaryingthe transmissionratiobychangingthe internal components 
of the gear box as in a change-gear system, keeping the centre distance the same. 

It can be seen from Table 8.1 tha t  the power rating does not necessarily vary on pro rata basis. 
For example, i n  case of size 200 and transmission ratio 18, the power ratings for speeds 750 and 
1500 rpm are  40 and 73 kW respectively, and not 40 and 80kW. The difference is attributable to 
various practical operational factors and  manufacturing constraints. 

For the sake of rationalisation ofparts, and also to simplify manufacturing procedures as well 
as to minimise production costs, gear box components a re  not always made strictly as  per the 
designed o r  calculated values. Thus, for example, a shaft ofa particular diameter may be meant  
for catering to different torques within allowablc limits. 

~ 

8.2 Gear Box Housing and Accessories 

Gear box housings or  casings are containers in which the internals, namely the gears, shafts, 
pinion shafts, bearings, oil seals, bearing covers and other components a re  mounted. 

The prerequisites for a reasonably free, long lasting, non-jamming, vibration free and eficien t 
load transmitting gear-drive are  proper mounting and alignment of the bearings, maintenance 
of the correct centre distance and provision of lubricating arrangements ensuring proper and 
regular supply of lubricants, besides other factors. Closed gear box housings, if properly 
designed, can achieve such objectives. 

As material for gear box casings, good quality cast iron is used in most of the cases. Steel 
castings or  light metal castings a re  also popular, but  they are  used in special cases. Fabricated 
housings are  also not uncommon. 

Cast  iron housings have good damping properties and freedom from noise. In spite of the fact 
that patterns a re  required for such housings, it often pays to use CI castings, even when small 
numbers a re  required, because the initial costs for patterns are nullified in  the long run.  Steel 
castings, which are obviously much costlier than GI housings, a re  used only in those cases where 
GI casings are not strong enough to withstand the operational stresses involved. Because oftheir 
lighter weight, light metal housings are  usually used i n  automotive applications. Gear housings 
are also made of fabricated, welded steel plates and sections. Housings of this  type are  
recommended fo r  a single piece or for very small number o f  pieces. For very bighousings, the cost 
ofpattern is saved iffabricated design is used. The welded construction also affords the designer 
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to reduce weight of the housing considerably. Noise damping property, however, is not as good 
as tha t  of the CI castings. Fabricated casings are often provided with ribsfor extra strength. They 
must be heat-treated to relieve thermal stresses. 

It is relevant to mention here that, in broad terms, the approximate cost break-up for a spur 
or helical gear box is as follows: 

Housing: 36% 
Gears: 22% 
Shafts: 21% 
Bearings: 9% 
Others: 12% 

A gear box housing in general consists of two halves-the upper half and the lower half. The 
plane of separation of the two halves also normally contains the axes of the shafts and bearings. 
Such arrangement facilitates easy mounting and dismantlingof shafts and bearings. "he mating 
surfaces of the two halves are properly machined and suitable gaskets are provided between 
them to secure tightness against entry of dust and leakage of oil. The upper and the lower casings 
are then bolted together and are also provided with dowel pins for proper alignment. Oil seals 
are fitted inside the grooves on the bearing covers through which the shafts project out. These 
serve the dual purpose of preventing the gear oil from leakingout and extraneous contaminants 
from entering the gear box. Felt sealing rings are also used for the purpose. The radial oil seals, 
which are usually fitted to the gear box bearing covers, are of specifications as per IS: 5129-1969. 
Bolt holes are bored on the bottom flange of the lower casing for securing the gear box to its 
support or to the civil fouhdations. 

Figure 8.5 gives the dimensional parameters o f a  gear box. The following guidelines may be 
used for determining the main parameters of a cast iron gear box. 

* c 
Fig. 8.5 Dimensional parameters of a gear box 

If the overall length of the housing is L mm, then the wall thickness of lower half will be 
t,= 0.012L+5mm, wall thicknessofupperhalf t ,= 0.8to I t , ,  thicknessofmatingflangesofcasing 
t ,  = 1.5 t , ,  and thickness of bottom flange t ,  = 2 t , .  
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Gear Box Bearings 

Depending on the type of design, size and operational parameters of the gear box, both anti- 
friction bearings and journal bearings are used. Anti-friction bearings are mainly suitable for 
gear drives with small and medium loads and speed. These bearings require little maintenance 
and their startingresistanceis negligible. They arelubricated bygreaseorby gear oil, depending 
on the overall design. Deep groove ball bearings are mostly used because they can take both 
radial and axial loads. Cylindrical bearings are suitable when only radial loads are encountered. 
For high radial and axial loads, self aligning spherical ball or roller bearings as well as tapered 
roller bearings are generally used. Besides, suitable combinations ofthe above types of bearings 
are also employed. To alleviate space problems, needle bearings are sometimes used. Calculation 
ofanti-friction bearings are generally based on a service life of at least 15,000 operational hours. 
The bearings are generally secured on the housing by means of bearings covers. 

To compensate for the possible thermal expansion o f  the shaft during service, and also to take 
care of the assembly tolerances, one end of the shaft and mounting is usually provided with a 
floating bearing to allow axial movement. Such bearings do not transmit any axial or thrust 
loads. The floating bearing effect can be achieved by using separable type of cylindrical roller 
bearings, by using ball bearings but at the same time providing a little gap between the leg of 
the bearing cover which enters the gear box housing and the outer ring of the bearing, and by 
othermethods, the detailsofwhich are given in  the catalogues ofstandard bearingmanufacturers. 
'She other end o f  the shaft and mountingis normally arranged to have a fixed bearing. Only fixed 
bearings are used in a design when it is imperative that  axial loads are to be sustained in both 
directions. 

Anti-friction bearings are, however, not suitable for high speeds a s  they create problems of 
noise. Journal bearings are preferred for such cases. These bearings are generally used for big 
and high speed gear drives, and they are usually h ydro-dynamicall y lubricated with pressurised 
oil. Lubrication ofgear drives in general has been discussed in Sec. 8.6. 

In  any type of housing, the recesses or grooves in the housing halves for mounting the 
bearings must be bored to a high degree of precision. Both the halves are assembled, secured by 
bolts and pins and then bored in assembled condition. To prevent misalignment, it must be 
strictly ensured that  the opposite recesses are perfectly coaxial. For proper seating of anti- 
friction bearings, takinginto account the effect ofstress concentration, the bearing manufacturers 
have standardised the values of the fillet radii of the steQQed shafts and of the housings on which 
these bearings are mounted. 

Bearing Covers 

The bearing covers are bolted on to  the two halves oftlie gear box casings. They serve the purpose 
ofclosing the holes ofthe casings made for mounting the bearings, helping t o  retain the bearings 
in their proper places and also for mounting the sealing devices. Normally, the sealing devices 
arein the form offelt sealingrings or radial oil seals. Theyarefittedinside the groovesorrecesses 
inside the bearing covers which are made for the purpose. To facilitate preparation ofmanufac- 
turing drawings, details of grooves and recesses are given in Table 8.4 for felt sealing rings and 
in Table 8.5 for radial or rotary shaft oil seals. A general arrangement of bearing mounting 
components is shown in Fig. 8.6. 
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Table 8.4 Groove for felt sealing rings 

Dimensions in mm 
14' 

Felt Sealing Ring Groove for Felt Sealing Ring 

Sealing 

No. 
ring d, = d, b d2 d' d, t 

Fi 5 20 4 30 21 31 3 
Fi 6 25 5 37 26 38 4 
Fi 7 30 5 42 31 43 4 
Fi 8 35 5 47 36 48 4 
Fi 9 3 5 52 41 53 4 
Fi 10 45 5 57 46 58 4 
Fi 11 50 6.5 66 51 67 . 5 
Fi12 I 55 6.5 71 56 72 5 
Fi 13 60 6.5 76 61.5 77 5 
Fi 15 65 6.5 81 66.5 82 5 
Fi 16 70 7.5 88 71.5 89 6 
Fi 17 75 7.5 93 76.5 94 6 
Fi 18 80 7.5 98 81.5 99 6 
Fi 19 85 7.5 103 86.5 104 6 
Fi 20 90 8.5 110 92 111 7 
Fi 21 95 8.5 115 97 116 7 
Fi 22 100 10 1 24 102 125 8 
Fi *1 110 10 134 112 135 8 
Fi 2, 115 10 139 117 1 40 8 
Fi 28 125 11 153 127 154 9 
Fi 30 135 11 163 137 164 9 
Fi 32 140 12 1 72 142 1 73 10 
Fi 34 150 12 182 152 183 10 
Fi 36 160 12 192 162 193 10 
Fi 38 1 70 12 202 172 203 10 
Fi 40 180 12 212 182 213 10 
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Table 8.5 Groove tor radial oil seals (based on IS: 5129-1969) 

0.15 b + O U  
(rnin) 

b 
Width of seal 

‘I 

(0.1 5b + 0.3) 
min 

4 
(b + 0.3) 

min 

7 1.35 7.3 
8 1.50 8.3 
9 1.65 9.3 
10 1.80 10.3 
12 2.10 12.3 
15 2.55 15,3 
20 3.30 20.3 

While mounting, the lip of the oil seal should always be turned towards the side to 
be sealed. For representation of a seal in a drawing, an arrow directed towards the 
side to be sealed shall be used as shown. 
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Press Nt allowances and tolerances on housing bore 

Type A Seals 
(Dimensions in mm) 

Housing bore Outside diameter of seal Possible press fit variation 
Nominal bore - 
diameter of Maximum Minimum 
housing d2 High limit Low limit High limit Low limit interference interference 

Up to 25 +0.03 -0.03 +0.20 +0.10 0.23 0.07 
25-55 +0.03 -0.03 +0.25 +0.15 0.28 0.12 
55- 1 25 +0.03 -0.03 +0.30 +0.20 0.33 0.17 
125-200 +0.04 -0.04 +0.38 +0.22 0.42 0.18 

200 and above +0.05 -0.05 +0.40 +0.32 0.53 0.27 
..____._____. - 

Type B and C seals 
____ ~~ ~~ ~_____  ~~~ 

Housing bore Outside diameter of seal Possible press fit variation 

diameter of Maximum Minimum 
housing d, High limit low limit High limit Low limit interference interference 

Nominal bore 

Up to 50 Nominal -0.03 +0.12 +O .04 0.15 0.04 
50-90 Nominal -0.03 +0.14 +0.06 0.17 0.06 
90-1 15 +0.03 -0.03 +O. 18 +0.00 0.21 0.05 
115-170 +OD3 -0.03 +0.20 +0.10 0.23 0.07 
170-215 +0.04 -0.04 +0.23 +0.13 0.27 0.09 
215-230 +0.04 -0.04 +0.25 +O. 15 0.29 0.11 

230 and above + 0.04 - 0.04 + 0.30 + 0.20 0.34 0.16 

Type A-Rubber-cased seal 
Type B-Metal-aa: -1 seal. 
Type C-Built up sedls for shaft diameter from 22 mm onwards 

8.3 Gear Cutting Processes 

For producing gears, a number of methods are followed, namely, sand casting, die casting 
centrifugal casting, powder metallurgical processes, punching, broaching, extrusion and similar 
methods. But by and large steel gears carrying large loads compared to their size are cut with 
form cutters or are produced by one o f  the gear generation processes. 

Processes usiitgform cutters This method is normally used in a milling machine and a cutting 
tool having the shape of the space between the teeth is utilised. Circular milling cutters having 
profiles matching the shape of the tooth space are widely used for short production schedules and 
for gears where absolute accuracy is not of prime importance. A gear milling cutter has been 
shown in Fig.8.7. For each pitch and gear diameter ideally a different cutter is  required because 
gear teeth having specific pitch, base circle diameter as well as pressure angle have a unique 
tooth shape, and as such necessitate a particular cutter. In practice, however, standard cutters 
are  available and a set of8 cutters is normally sufficient to cover the range from a 12-teeth gear 

Such processes are broadly classified into three categories mentioned below. 
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GEAR BOX HOUSING 
FIXING BOLTS / 

BEARING COVER 

ClRCLlP 

DISTANCE PIECE 

BEARING 

Fig. 8.6 Bearing mounting 

to arack with reasonably accurate profile. A separate set of cutters is, ofcourse, required for each 
module or pitch. Details about milling cutters and other types ofcutters and generating tools are 
discussed in See. 8.5. 

Fig. 8.7 Milling cutter 
Aform cutter may also be used in reciprocating type of machines, such as, a planer or a shaper. 

In such cases, the cutter is not circular but resembles a planingor a shaping tool. But the process 
being slow, it is of no practical use. 

Processes using templates or master formers Here the tool is guided by a tracer arrangement. 
The tracer point moves over a template having the desired shape ofthe gear tooth profile and the 
tool duplicates this motion on the gear blank, and consequently the curvature of the gear tooth 
is cut and produced on the blank. This method is mainly used for cutting very large gears. 
Processes using generation principles These are by far the most frequently used methods 
employed for accurate and high degree of production. The generation processes are broadly 
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Working 

Return 

classified intogear shaping and gear hobbing. In all types ofgeneration processes, a cutter makes 
its mating component; its action being, analogous to that  of a wood screw which makes its own 
counterpart or female thread as  it spirals inside the wood. Similarly, if a hard gear is revolved 
in contact with a soft blank, the resultingrolling action would be to generate matching teeth on 
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the soft blank. If the hard gear is in the form of a cutter, havingcuttingangles, edges, reliefs and 
other features, its teeth will roll into contact with the blank and cut teeth having the curvature 
required for proper meshing of the mating pair. 

In gear shaping type of generation, the cutter may be in the form of a pinion a s  in the case of 
a Fellows gear shaper, or in the form a rack having the same pitch as  the gear to  be generated. 

These methods are shown in Figs 8.8. a id 8.9. 

,GEAR BLANK 

CIRCLE 

Fig. 8.9 Rack-type cutter 

The pinion cutter simultaneously reciprocates and rolls on the face of the gear blank which is 
also imparted a rollingmotion. Thus, both the cutter and the blank slowly revolve together, i.e. 
the same movement as in the case of two gears in mesh in conjugate motion. In  a pinion type 
cutter, however, the possibilities of application are limited as compared to the rack type cutter. 

In  arack type cutter, the blank isgiven a rollingmovement relative to the cutter, and the tooth 
is produced on the blank by the reciprocating motion of the cutter. In all the cases of gear 
generation, the "cutting" and "meshing" motions act simultaneously in a synchronised manner. 
In general, parts with narrow face widths are particularly suitable for generation of gear teeth 
with gear shaping methods. 
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I n  Fig. 8.10MM represents the pitch line ofthe tool which is a rack type cutter, the basic rack 
being used as the generating tool. We have seen in Chap. 1 that  for involute-shaped teeth, the 
basic rack has straight-sided faces and flanks. This fact enables the tool manufacturer to make 
rack teeth to almost any degree of accuracy. For generation, the essential requirement is that  
MM rolls on the pitch circle of blank without slip. In Fig. 8.10 the pitch circle has  been kept 
stationary and MM has been shown to roll on it on either side o f  the pitch point P. In  this way 
it is easier to represent the generation principle on paper. Thus ,  the successive positions ofthe 
rack are indicated by a,&, .... , r as it rolls on the pitch circle. Positions a to k represent rolling 

“I 

GEAR’BLANK \ 1 

M 

PITCH CIRCLE 
OFGEAR 

i 
Fig. 8.10 Generation of Gear teeth 
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of the pitch line on the right hand side ofP, while those from k to r show rolling on the left side 
of P . (See also Sec. 8.5 and Appendix A). 

The hobbing process employs a rotating cutter, called hob, which is in effect a worm having 
gashed teeth to form cutting edges with appropriate relief (Fig. 8.11). The blank revolves in a 
horizontal plane while the rotating hob moves downward across the face of the gear to  generate 
the teeth. Indexing system maintains the relative turning ratio between the pair, and change 
gear combinations permit the desired number of teeth to be generated. 

In any of the gear generation processes, since conjugate forms are produced on the blank by 
the cutter, conjugate action is ensured which is one of the fundamental criteria of gear drive, as 

JOB 

I (4 
Fig. 8.1 1 Generating a spur gear with a hob 



8.24 Handbook of Gear Design 

The straight type of bevel gears are produced by a generating machine which reciprocates a 
cutter in a motion more or less like a shaper, but the cutter does not resemble a pinion or 'a rack'. 
The special geometry ofthe bevel gear necessitates the use of a special tool to cut each side ofthe 
bevel gear tooth. 

A number of generation methods have been developed for spiral bevel gears. The principal 
ones among them are: the Gleason system, Klingelnberg Palloid system in which a conical hob 
is used, and Oerlikon gears which are generated by annular cutters. 

8.4 Gear Finishing Processes 

After cuttingteeth on the gears by any of the processes described in Sec. 8.3, finishingoperations 
are required to improve surface finish, to correct errors left by the gear cutting machine, to 
achieve a desired accuracy in tooth profile, to attain a certain prespecified precision grade, and 
to rectify the distortion of the teeth caused by heat treatment. The undesirable effects caused by 
tooth inaccuracy become particularly pronounced in case of gears running at high speeds and 
transmitting large forces, because these gears then become vulnerable to additional dynamic 
forces caused by the errors in tooth profiles. The finishingprocesses are necessary to reduce these 
errors as much as possible. Several methods or combinations thereof are employed to effect 
finishing processes. The most common of these processes-shaving, grinding, lapping and 
burnishing-are briefly discussed below. 

Shaving 
In  this finishing process, a cutting tool in the form of a hardened pinion or rack is used. The teeth 
of the cutter are serrated with many small and fine notches or cutting edges. This cutter meshes 
with and rotates the gear t o  be finished. The rotation is synchronised with a longitudinal motion, 
so that  the entire face of each gear tooth comes in contact with the cutter. Both the cutter and 
the gear are run together in mesh a t  high speed. As a prerequisite, the gear should be o f  
machineable hardness, usually up to HRC 38, if shaving is to be effectively used as a finishing 
process, though gears may be shaved having hardness up to HRC 47 in certain case. Generally, 
shaving is a much faster process than grinding. 

Grinding 
The process is usually used after the gears have been hardened. Finishing by grinding involves 
similar methods as adopted in the case of the forming process or  the generation principle, only 
the cutter is in the form of an abrasive wheel. When the gear teeth are hardened to a high degree, 
then grinding is the only process to  finish gears. 

When the hardness of parts exceeds HRC 38, it becomes very difficult to cut them by 
conventional means. When they are in the range of HRC 60 in hardness, it is practically 
impossible to cut them. The hardness of a fully hardened martensitic steel is generally around 
HRC 58 to  HRC 63. Hence grinding is the only solution in such cases. Broadly speaking, of all 
the different finishing processes, grinding produces the most accurate tooth profiles. 

P 
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Lapping 
In this process the unfinisliedgear and a lapping gear are rotated in mesh in  the presence of an 
abrasive compound. Lapping is an inexpensive process for correcting slight errors which may be 
caused during hardening, Sometimes a gear is lapped after it has been shaved as this finishing 
process produces high degree of precision. Sometimes a pair o f  production gears may also be 
lapped with each other. 

Burnishing 
Burnishingis a finishingprocess in which the machine operates by rollingthe gear to  be finished 
in contact with a master burnishing gear or gears. Pressure is applied to the burnishing gears. 
Hardened mating gears can be burnished by running them in mesh with one another. This 
process is suitable for gears which have been cut but not heat treated. 

8.5 Profiles of Gear Cutters and their Actions 

It  has been stated before i n  Sec. 8.3 that all gear cutting methods can be categorised into two ' 

general classes: the forming method and the generation method. The cutting tool belonging to 
the first category is made t o  have a shape which corresponds to  the desired tooth space, as in the 
case of milling cutters. The profile of a typical circular type milling cutter is shown in Fig. 8.12. 
The tool in the generation method is given a shape which is conjugate with the form of the tooth 
to be cut. The cutter and the gear blank roll in  contact in timed relation t o  each other and 
simultaneously, they are also given afeed relative to  each other to remove metal from the blank. 

Hobbing is a generation process which is used for the manufacture of spur, helical or worm 
gears as well as herringbone-gears, crossed-helical gears, single and multi-start worms, 
sprocket-wheels, splines, serrations, besides some special applications, such as the hour-glass 
and cone type worm and worm-wheels. 

The cutter, called the hob, is like a worm. For making a hob, a cylindrical blank is first turned 
and then a helical thread analogous to  a worm thread i s  milled. At this stage, the hob is actually 
a worm. To convert it into a cutter, flutes are milled across the thread, so that the thread is 
interrupted at a number of places. These flutes may be either parallel t o  the hob axis o r  a t  right 
angles to the course of thread. Afterwards, relief is provided at the sides and the tops of the 
individual hob tooth thus produced, the hob is hardened, ground and sharpened. The profile of 
a typical hob cutter is illustrated in Fig. 8.12. 

The hob cutter and the gear blank being cut can be compared to a worm and worm-wheel in 
mesh. The cutting action continues till the blank is finished. Precision gears can be generated 
with a high degree of accuracy! and a t  a high rate of production by hobbing method. Another 
advantage of this process lies in the fact that the profile of the hob thread is nearly the same as 
the shape of a straight rack-tooth, the difference being practically negligible. This aspect makes 
it possible to produce hobs readily and with a very high degree of accuracy, unlike curved cutter- 
teeth used in some other generation processes. 

In the involute system, since a straight-sided rack can mesh with a gear havingany number 
of teeth, a single hob can be employed to generate gears of any  number of teeth, and all of theni 
will mate properly with each other and also with a rack. While setting a hob on the machine, the 
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[&Thickness. 

GEAR MILLING CUTTER 

(a) 

GEAR HOB 

(B) 

radius 

Fig. 8.1 2 Profiles of gear cutter 

axis ofthe hob for cutting gears is tilted according to the hob-thread angle w in case of spur gears, 
and in addition, also to the helix angle pin case of helical gears, taking into account the hand of 
the helix, i.e. w k  p, the sign depending upon the hands of the hob flute and the gear-tooth helix. 
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The same hob may be used for cutting spur gears as well as helical gears of either hand or of any 
helix angle. 

Four classes of hobs in general use are mentioned below. 
Class A Precision ground, used for finishing gears of highest accuracy. 
Class B: Commercial ground, satisfactory for finishing general purpose types of jobs. 
Class C: Accurate but unground, suitable for finishing gears of finer pitches. 
Class D: Unground, used commercially for roughing cuts. 
In any class of hobs, the cutters must be properly and accurately sharpened to produce good 

The speeds and the amount of feed for cutting spur and helical gears are functions of many 
quality results. 

factors. Some general recommendations are given below. 

For cast iron: 12 to 30 m/min. (usual value 25 m/min) 

For steel: 18 to 45 m/min. (usual value 30 m/min 1 

On specially designed hobbingmachines, the speed for hobbing steel with ordinary HSS hobs 
can go up to  150 m/min. Non-metallic materials can be cut a t  still higher speeds using carbide 
tipped hobs. 

For a single-cut job, the feed per revolution o f  blank is 0.8 to 1.3 mm. For roughing, it can vary 
from 1.5 to  5 mm. In selecting the amount of feed, care should be taken in considering the safe 
metal-removing capability of the particular cutter. After rough cut, finishing cuts are given, the 
feed being 1 to 2.5 mm depending on the finish required. 

For hobbing helical gears, the speeds are the same as in spur gears. However, to maintain the 
same quality of finish, the feed per revolution should be reduced as the helix angle increases. 
Other factors remaining same, the required feed for a helical gear is found by multiplying the 
corresponding appropriate spur gear feed with the cosine of the helix angle. 

While generating gears with hobbing method, proper coolant should be used. The recom- 
mended coolants are: sulphurised mineral oil combined with lard oil for hobbing steel, and 
soluble oil in water for brass and bronze. Cast iron generally does no t  require any coolant expect 
malleable CI which needs coolant. 

Gear Cutter Profiles 

For generating gear teeth which will conform to the parameters of the basic rack discussed in 
Sec. 2.1, the reference profile of a gear cutting tool should be properly laid down. This has been 
done in Table 8.6. For standard tooth profiles, the cutter profiles have been divided into the 
following four categories. 

I .  Reference profile of cutter with cutter addendum given by 

hcn = 1.167 m 

The above cutter conforms to the DIN basic rack as  per DIN 867. Here, the dedendum of tooth 
of the gear is given by h,= 1.167 m . This profile does not conform to the basic rack as per IS: 2535 
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described in Sec. 2.1 and is included here for reference only. 
11 . Reference profile of cutter with cutter addendum given by 

hm = 1.25 m 

This cutter produces a dedendum of teeth h,= 1.25 m, and conforms to the IS basic rack. 
Reference profiles 111 and IV also conform to the above basic.rack. 

Both the reference profiles I and I1 are meant for processes in which the gears are finish-cut, 
namely, hobbing, gear shaping with rack-type or pinion-type cutters. In each case, however, a 
very small amount of machining allowance may be provided for shaving or other finishing 
processes. 

IZI . Reference profile of cutter with cutter addendum given by 

h,, = 1.25 m+0.25 ’& 
Alarger amount of machiningallowance is provided in this case so that the gear teeth are first 

rough-machined followed by finishing operations, such as grinding and shaving. 
IV . Reference profile of cutter with cutter addendum given by 

h,, = 1.25m + 0.6 ‘6 
This profile provides for machining allowances which are still larger than those provided by 

In Table 8.6, the symbols used are defined as follows 

* 

profile 111. 

h, = 
h’ = 

hcuI = 

h, = 

P ,  = 
s, = 

r,,  r, = 
P =  

A,, = 

Height of the cutter tooth 
Whole depth of the gear tooth. This is the ultimate height of the gear tooth, and 
is equal to  the depth-setting of the gear-cutting tool. The value includes the 
effect of machining allowance and the tooth thickness tolerance, if any. Other- 
wise h’ = h = Whole depth of a standard tooth 
Cutter addendum of reference profile I 
Similarly, he,, 11, etc. refer to the corresponding profiles 
Dedendum of gear tooth 
Pitch of cutter = K m 
Tooth thickness of cutter = p,/2 
Radii of cutter 
Machining allowance per flank of gear tooth, measured perpendicular to the 
flank 
Upper tooth thickness tolerance of gear in mm (see Sec. 2.8) 

. 

The following relations hold good for the different reference profiles. 

h, 2 2.36‘7 ni 

h., 2 2.45 ni  

I. h,= h,, I = 1.167 m. 

II. h,= h,, I1 = 1.25 111 

h. ‘ = 2.167 ni- plsin a + A,,j2 tan a 
h.’ = 2.25 nt - pfsin (x + A,J2 tan (x 



Table 8.6 Reference profiles of gear cutting tools 

1 3.1416 1.57 1.167 1.25 1 .50 0.09 1.85 0.21 0.08 The radius rl on the tip 
1.25 3.9270 1.96 1.46 1.56 1 .a3 0.09 2.21 0.22 0.12 of the tool is made 
1.5 4.7124 2.36 1.75 1.88 2.16 0.10 2.56 0.24 0.20 equal to r2 except for 
1.75 5.4978 2.75 2.04 2.19 2.49 . 0.10 2.91 0.25 0.25 pinion type cutters. In 
2 6.2832 3.14 2.33 2.50 2.82 0.1 1 3.26 0.26 0.30 the case of the latter 
2.25 7.0686 3.53 2.63 2.81 3.14 0.1 1 3.60 0.27 0.40 only the sharp edge is 
2.5 7.8540 3.93 2.92 3.13 3.46 0.12 3.94 0.28 0.50 slightly chamfered. If 
2.75 8.6394 4.32 3.21 3.44 3.79 0.12 4.28 0.29 0.50 radius differing from 5 
3 9.4248 4.71 3.50 3.75 4.1 1 0.12 4.62 0.30 0.60 the values listed is 
3.25 10.2102 5.1 1 3.79 4.06 4.43 0.13 4.95 0.30 0.60 required, this shall be 
3.5 10.9956 5.50 4.08 4.38 4.75 0.13 5.28 0.31 0.70 specified at the time of 8 

4 12.5664 6.28 4.67 5.00 5.40 0.14 5.95 0.33 
4.5 14.1372 7.07 5.25 5.63 6.04 0.14 6.60 0.34 0.90 
5 15.7080 7.85 5.84 6.25 6.68 0.15 7.28 0.35 1 .oo 

C 3.75 11.7810 5.89 4.38 4.69 5.08 0.13 5.63 0.32 0.75 the ordering rn 

0.80 d 
8 
-2. 

(Contd) f 



Table 8.6 (Contd) PJ 
0 
0 

i 
5 

5.5 17.2788 8.64 6.42 6.88 7.32 0.15 7.92 0.36 1.10 % 
6 18.8496 9.42 7.00 7.50 7.95 0.16 8.59 0.37 1.20 0, 

6.5 20.4204 10.21 7.59 8.13 8.59 0.16 9.24 0.38 1.30 !2 
7 21.9911 11.00 8.17 8.75 9.23 0.16 9.90 0.39 1.40 e 

8. 
1 .eo 4 

8" Pc =e hc. I h,. 11 hc, 111 p 111 h,. 1" PI v r2 =0.2m r, 

U 
8 25.1327 12.57 9.34 10.00 10.5 0.17 11.20 0.41 1.60 
9 28.2743 14.14 10.50 11.25 Frornandincl - 12.50 0.43 

10. 31.4159 15.71 11.67 12.50 module9 rete- - 13.79 0.44 2.00 
11 34.5575 17.28 12.84 13.75 rence profiles I - 15.08 0.46 2.20 
12 37.6991 18.85 14.00 15.00 and IIor Ware - 16.37 0.47 2.40 
13 40.8407 20.42 15.2 16.25 used, depending - 17.66 0.48 2.60 
14 43.9823 21.99 16.3 17.50 on the size of - 18.95 0.49 2.80 
15 47.1239 23.56 17.5 18.75 thegrindingor - 20.23 0.51 3.00 
16 50.2655 25.13 18.7 20.00 shaving alow- - 21.51 0.52 3.20 

an- provided 
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III.  hr= 1.25 m h,22.45 m h' = 2.25 m + 0.25 - p/sin a + A,J2 tan a 

p = (hca I11 - h> sin a = 0.25 fi sin a 

IV. h,= 1.25 m he 2 2.45 m h' = 2.25 m + 0.6 -p/sin a +A, J2 tan a 

p = (h,  IV- h$ sin a = 0.6 lh sin a 

or module. The cutter series are tabulated below 
Gear teeth can be cut by form milling cutters, using a set of eight cutters, valid for each pitch 

Cuner No. Number of teeth of gear to be cur Cuner No. Number of teeth of gear to be cut 

135-a rack 

55- 134 

35-54 

26-34 

21-25 

17-20 

14-16 

12-13 

In gear milling, the tooth surface shapes produced are approximate within reasonable limits. 
Those gears, however, meet the ordinary operational requirements. In contrast to the milling 
method, generation processes produce accurate tooth surfaces. Moreover, as stated earlier, any 
generating type of cutter of a given module can be used for any number of teeth of the gears to 
be manufactured. 

Besides the disc-type or circular-type milling cutters discussed so far, end-mill type of cutters 
are also used. These are generally used for cutting spur or helical gears of large modules (10 mm 
and above) where it is not possible to cut the teeth by hobbing method. 

In case of worm and worm-wheels, the worm threads can be made on a lathe with proper tool 
and fixture. Worms are also produced by milling. Production of worms of different profiles has 
been discussed in Sec. 4.2. 

For hobbing a spur or helical gear, the diameter and the helix angle of the hob are not functions 
of the gear. With a worm-wheel hob, however, the matter is different. Such a hob must be a copy 
of the worm. As a result, parameters, such as the hob diameter, angle of the thread, lead of 
thread, must be the same as these elements of the worm. Generally, two types of hobbing are 
done to produce worm-wheel teeth-the in-feed bobbing where the hob is fed radially into the 
gear blank by gradually reducing the distance between the tool and the blank, and the 
tangential-feed hobbing where, keeping the centre-to-centre distance between the axes of hob 
and blank constant, the tool is fed along the axis. In other words, the tool-feeding directions of 
the two methods are at right-angles to each other. The second method produces more accurate 
results. Besides above, single-tooth fly-cutting hobs are also used to produce worm-wheel teeth. 
These have low production, capacity. 

For ordinary purposes, the hobs which are most widely used for worm-sheels are those based 
on a worm having straight-sided linear section which corresponds t o  the Archimedean worm. 
This gives high accuracy. 

For generation of straight-toothed bevel gears, two reciprocating tools or cutters are used in 
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a special type ofmachine. For curved-toothed bevel gears, face-mill type cutters are used. Spiral 
bevel gears can also be generated in special machines by means of conical hobs. 

Finally, in choosing the most appropriate method from the many processes available for 
manufacture of gear teeth, the gear designer should bear in mind the following considerations: 
The capacity of the machine to be commensurate with the size and shape of the gear, proper 
material selection, the magnitude of production range, the length of time involved, the technical 
competence of the machinist, and most important-the economic viability of production. 

8.6 Gear Lubrication and Cooling 

Lubrication of gears is required to ensure smooth operation of the drive. Hence, a thorough 
knowledge of the different aspects of lubricating methods and nature of lubricants is imperative 
for a gear designer. In recent years, the technology of lubrication and lubricants has become 
extremely complicated and sophisticated. This section deals with the broad features of the 
subject. 

Lubrication and Lubricants 

In any gear drive, the fundamental types of motion are rolling and sliding. These occur 
simultaneously, but their magnitudes are functions of the type of gears and speed of operation. 
For example, in case of hypoid or worm-drives, it is the sliding component which is of fleatest 
relevance. 

To effectively meet the detrimental effects caused by these motions in an inter-meshinggear 
system,lubrication isessentialifthe tooth surfaces are tohavea reasonablelength ofservicelife. 
A quick failure by seizure of the tooth surface may be the result of the absence of a lubricating 
medium. Slid:-i~friction leads to the generation ofheat which may be sufficient enough to raise 
the local tempt ure to the melting point of the metal. Welding a t  spots may occur with the 
resulting dislocation of pieces of tooth surface. Inadequate lubrication may lead to gradual 
wearing away of the tooth surface. With proper selection ofgear material and lubricant, metallic 
contact can be prevented when the lubricant has sufficient film strength. The lubricating 
medium should have enough viscosity to develop a suitable oil film between the tooth surfaces 
and to sustain this film under load. The main considerations, therefore, are that  the lubricant 
must withstand the load, and the gear material must be strong enough to resist the contact 
pressures transmitted through the lubricant without succumbing to  fatigue failure. 

Basically, the gear lubricant is intended to serve the following main purposes. 
1. To reduce the wearing off of mating surfaces in general. 
2. To reduce friction and power loss. 
f To act as a coolant by dissipating heat. 
4. 
5. To carry additives to  the tooth surfaces. 
6. To carry away undesirable contaminants in the emuents. 
7. To minimise noise, vibration and shock. 
8. To prevent corrosion. 
Besides these some other minor functions are also carried out by the lubricant. 

- 

. 

o prevent pitting, welding and breakage. 
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Proper selection of gear lubricants involves considerable knowledge and experience. The 
designer must know the basic parameters like type of gearing, operating conditions and the 
desirable characteristics of the requisite lubricant. Operating conditions involve temperature to  
which the gear set is subjected, tooth pressure due to  load, service speed, exposure to contami- 
nation by non-lubricating, outside agencies in the form of solids, liquids or  gases. Oil companies 
furnish extensive charts which incorporate these factors along with such essential data as 
viscosity, load-carrying capacity and  other information to  facilitate the selection of proper 
lubricants. 

Besides causing heavy functional deterioration, faulty lubrication leads to many types of the 
surface defects discussed in Sec. 8.7. I t  is, therefore, imperative that correct lubricant must be 
selected and the protecting film of lubricant maintained uniformly and continuously on the 
meshing teeth of the gears. This film may be very thin in case of boundary lubrication. In that 
case it should be ensured that the lubricant has ample adhesive properties and resistance to  
rupture of the film. Some wear will still take place under boundary lubrication conditions, but 
the extent of serious damage can be avoided by regularly renewing the film. Even with splash 
or circulating type of lubrication, boundary lubricating conditions may sometimes appear with 
possible rupture of lubricatingfilm resulting in the usual harmful consequences such as welding 
of metals, surface tear and galling. The development of sophisticated extreme pressure (EP) oils 
has reduced these damaging effects to a large extent as discussed later in this section. 

The development of gear lubricant technology for the last 3 or 4 decades has been mainly due 
to  an overall advancement in the engineering field. I t  is also due t o  the wide use of automobiles 
and automotive vehicles that the improvement of gear oils has been achieved to a large extent. 
When hypoid gear differential drive came to  be used, the service requirements demanded high 
performance from the gear oils which resulted in the development of the EP oils. 

Apart from a few open type gear systems where grease is used, gears are normally lubricated 
by oils. Use of straight mineral oils is sufficient in most of the cases of gear-drives. In certain 
special cases where maximum oxidation stability is essential, turbine-quality oils of viscosity 
grades 50 to  90 centistokes at  around 40°C are required. In general, wear reduces with increasing 
viscosity of oil. 

AsregardsEP oils, although they were developed primarily for the lubrication of hypoidgears, 
other types ofgears are also serviced by this category ofoils because of the many advantages they 
offer. Another type of oils which operate a t  high pressures is the multi-purpose ( M P )  gear 
lubricant. Many industries prefer these oils to  straight mineral or EP oils, and quite a few 
consumers use this type only in all gear sets in their plant units. This leads to rationalisation of 
stock and simplification of inventory control due t o  reduction in the various grades of oils which 
have t o  be kept in stock. 

In short, for normal gear-drives, straight mineral oils without additives should meet the 
requirements in  most of the cases. For higher duty, gear oils containing mild additives can be 
used. When this is not considered sufficient, the EP oils containing high percentage of additives 
are employed. 

As pointed out earlier, selection of a proper lubricant will depend upon the gear parameters 
and service conditions, Table 8.7 is intended to  give an idea of such selection criteria whirh are 
commensurate with the peculiarities of the drive. Broadly speaking, smaller the veloc~t~ m d  
greiter the tooth pressure and surface roughness, greater must be the viscosity of the oil. 
Besides, a higher viscosity is conducive to a higher hydrodynamic strength. 

. '  
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Table 8.7 Relation between viscosity, velocity and tooth pressure(for selection of lubricant) 

Type of duty 
Circumferential 

velocity Light Medium Heavy 
v (m/s) p e 400 N/cm2 .p  = 4Oo-looO N/cm 2 p > lo00 Ntm2 

Kinematic viscosity of oil in centistoke ( e t )  at 50'C 

Below 0.5 
0.5-2 
2-6 
6-12 

1 50 
90 
60 
45 

250 
1 50 
90 
60 

4 55 
225 
150 
90 

, and the parameters, m, F,, and b have the usual E Herep (N/cm2 1 =Tooth pressure = - 
nbm 

meanings. 

only. I t  is valid for closed gear-drives with oil temperatures ranging between 45 and 90°C. 
Table 8.8 gives guidelines in which the viscosity has been shown as  a function of the velocity 

Table 8.8 Relation between viscosity of oil and velocity of gear 

Based on Mashinenelemente. Niemann. VOI 1 1 ,  1965 edition, table no 12211, 
p. 122 Springer Verlag, Hlidelberg 

Velocity 
V 0.25 0.4 1 .o 1.6 2.5 4.0 6.3 10 16 25 

(mW 

Viscosity in Cst i 75- 145- 100- 83- 69- 5 7- 47- 39- 32- 27 
at 50' C 350 290 200 166 138 114. 94 78 64 54 

To arrive a t  the above relation, the following formula may be applied 

Viscosity (cSt) = 100/rrO~-' t o  200/u (u  i n  m/s) 

Thus, for u = 4 m/sec, the viscosity = 100/4 0.4 to  200/4 0.4 = 57 to 114 cSt, which tallies with the 
values given in Table 8.8. 

Surface finish of teeth has a direct bearing on the efficacy of maintaining the lubricating film. 
In general, when loads are moderate or low and speeds are medium or high, the more accurate 
the gears are, the lower is the viscosity of the oil required. However, with highly polished tooth 
surfaces and extremely low sliding velocity, i t  is difficult for a hydrodynamic film to be 
established or maintained. 

Characteristics of Lubricants and their Nature of Action 

In a pair of rotating gears with lubricated teeth, a hydrodynamic wedge is formed which tends 
to keep away the meshing teeth of the pair from one another by forming a thick fluid film in 
between the teeth. This, however, is true only when the load is low. With increasing load, the 
tooth pressure in the contact zone increases which in turn decreases the thickness of the 
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separating film. Eventually, when the load becomes very high, the fluid film fails to prevent 
metal to metal contact at raised spots, resultingin deterioration oftooth surface. Nature ofwear 
depends on the speed of the system. So far as  gear lubrication is concerned, speed can be divided 
into three zones-slow speed which extends up to around 1000 rpm, medium speed from 1000 
to 8000 rpm and high speed from 8000 to 30,000 rpm. These three regions are characterised by 
absence ofwear, abrasive wear and scoringrespectively. With high loads, EP oils are recommended, 
as stated earlier. 

TO serve its functions satisfactorily, a gear lubricant should have the following characteristics. 
1. It should stick on the tooth surface, resisting the action of centrifugal force. 
2. It must be compatible when mixed with other lubricants o r  additives. 
3. Its component ingredients must not precipitate or settle down. 
4. It must not react chemically or otherwise with gear box parts and fittings such as oil seals 

or gaskets. 
5. I tmust  possess “oiliness”, that  is, it must have such additives so a s  to preventfilm rupture 

as the type of lubrication changes from thick-film to boundary lubrication during course 
of action. 

6. It should be resistant to oxidation. 
7. It must be amenable to  demulsification. 
8. It must have good detergent qualities, film strength and foam inhibition characteristics. 
9. It must have satisfactory viscosity-temperature characteristics and shear stability. 

Gear lubricants, whether oils or greases, are blended products. Products from mineral oils are 
the main constituents, but a number of additives are used to lend the desired properties to the 
lubricants. Besides oil and grease, solid powdery materials like MoS2 or synthetic materials like 
PTFE is also sometimes used as  lubricants in mechanisms where fluid lubricants are not 
admissible. In  some cases, the lubricant may be a gas. 

10. It must be reasonably priced, i.e. available a t  an economic price. 

Methods of Application and the Respective Fields of Lubricants 

Lubricants can be applied in several ways to  the gears, namely: by hand; by feeding by drips; 
either by gravity or by circulation system; by bath or  splash; by force-feed system usingoil under 
pressure created by pumps; by spray or jet; and by creating a mist of oil in the system. 

Selection ofthe type oflubrication for a gearing system will depend upon the nature ofits duty, 
circumferential velocity, availability of facilities, cost and other factors. 

Grease lubrication is resorted to when hydrodynamic lubrication is not possible, e.g. in case 
of low circumferential velocities. The coefficient of friction is higher compared to that  in case of 
oil lubrication. The heat transfer through lubricant is practically nil. 

Splash lubrication affords simplicity of operation and does not need elaborate and complicated 
system. Here the portions of the running gears dip into the oil sump and the teeth surfaces are 
thus lubricated. Sometimes spray discs are provided which scoop oil from the bottom and throw 
it into the desired places of the gear. The depth to  which the gears are supposed to be dipped 
should not exceed the value of six times the module. On the other hand, it should not drop below 
the value of one module. In any case, when splash lubrication is used, it is to be ensured that a 
high oil level is avoided, because in that case the gears have to dip deeper and a high amount of 
power loss, generation of heat and a high level of noise will ensue. 

Normally, avelocity of 13-15 m/s should be the upper limit in case of splash-type lubrication. 
With higher velocities, pressurised spray-type lubrication is used. In planetary gear drive, oil is 
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also sometimes delivered at the tooth surfaces through holes in the shaft and thence to the holes 
at the roots of the teeth of the planet pinions. 
As for the quantity of oil required, the following guidelines may be followed. 
For splash lubrication: 4-8 litres of oil fillings are needed for each k W  lost 
For spray-type lubrication : 1.5 litres per minute per 100 k W  power output. 
It has been found that  a t  high velocities, best results are obtained when lubrication is done 

by thin oils sprayed directly on the tooth flanks. Such objective can be achieved by centralised 
circulatory pressure-lubricating system. For such cases, the typical values of velocity vs. 
viscosity are as follows 

u = 12-20 m/s and viscosity = 45-53 cSt 

u > 20 mls and viscosity = 30-45 cSt 

Higher the velocity, finer should be the oil-spray. The mist thus formed is sufficient to 
lubricate the gear teeth in the proper manner. 

In  spray-type lubrication, the pressurised oil is normally provided by a gear pump. The oil 
pressure in the pipe-lines is usually around 100-300 kPa. The spraying is done throughout the 
length ofthe teeth like showers. Quantity ofoil required for such lubrication is about 0.5 litre per 
minute per centimeter of tooth width. 

Types oflubricating system as  a function ofthe circumferential velocity are given in Table 8.9. 

Table 8.9 Lubrication system vis-a-vis circumferential velocity 

Velocity, v 
(m/s) 

Type of lubrication system 

Up to 0.8 
0.8-4 
4-12 Splash lubrication 

Over 12 

Application of grease is sufficient 
Splash lubrication in case of high rotational speed: otherwise, grease lubrication is enough 

Spray or jet lubrication 

I n  case of worm-drive, grease lubrication should be adequate in the velocity range u s  
0.8 d s ,  where u = the circumferential velocity of the worm. Splash lubrication is recommended 
up to u = 10 m/s. 

For oil lubrication of worm gears, the general recommendations that  can be given are: For low 
speeds an  oil ofviscosity of about 43 cSt; for average conditions of about 32 cSt and for high sliding 
velocities ofabout 17 cSt to be used; the reference temperature being 1OO'C in each case. Straight 
mineral oil is good enough for ordinary worm-drives. 

For lubrication of bevel gears, the methods recommended are the splash method and 
the pressure or jet method. The splash type of lubrication is suitable for gear velocities up to 
10 m/s. When the speed goes higher, churning of oil takes place resulting in overheating. F G ~  
velocities greater than 10 d s ,  pressurised jet  of oil directed towards the tooth surfaces should 
be resorted to. The lubricants normally used for spur and helical gears are also used for normal 
running of straight, zero1 or spiral bevel gears. 

Heat generation and cooling: It has been mentioned before that one of the functions of the 
lubricating medium is to act as a coolant to carry away heat generated during gear operation. 
Heat is developed when there is relative sliding contact and motion between any two metallic 
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surfaces, including gear teeth faces and flanks. It h a s  been found tha t  inspite of the presence of 
lubricating films, surface temperatures may reach several hundred degrees Celsius even at 
small loads and sliding velocities. Gear oils help in dissipating heat generated by friction. 
Generally, oils are not the ideal coolants because of their low specific heat.  Besides, effective 
cooling is a function of many factors, namely, the quantity of oil coming in contact with the  gear 
surfaces, ambient temperature, viscosity ofoils and the method ofapplication of oil over the gear 
teeth. As a general rule, low viscosity oils a re  more effective in heat  transfer. 

High capacity gear units a re  usually provided with pressure lubrication. The pressure oil 
system generally consists of a sump, a pump, a heat  exchanger and nozzles to direct oil streams 
on to the gear  teeth. The heated oil which drains back to the reservoir is cooled by the heat 
exchanger and is then pumped to the jets which direct i t  to the gears. The spray should be so 
oriented that it strikes the leaving sides of the teeth for better effect. 

A portion of the heat generated will be dissipated through radiation and convection, but  the 
bulk ofit is carried away by the cooling oil. In case oflight duty drives, no external cooling system 
is provided for. But  with increasing loads, improved cooling is effected by built-in fans or 
impellers on the shafts. Fins or shrouds on the housing are  also sometimes provided for ensuring 
better cooling effects. 

Although a gear drive is the most efficient mechanical system as yet devised for the 
transmission ofpower between shafts, the heat  developed due to frictional losses may sometimes 
become quite considerable, specially when the gears operate at high speed or when the tooth 
pressure is high. Oil meant  for cooling should be directed towards the gear body and not towards 
the area  of meshing for better results. 

Though the temperature of the gear casing indicates the state of the gears as far  as heating 
is concerned, the actual temperature ofthe gears themselves is considerably higher. High-speed 
gears mostly a re  provided with sufficient backlash so tha t  the teeth do not seize when they 
expand due to heat.  

Heat dissipation will depend, among other factors, on the operating conditions and the state 
of the surrounding air. The following guiding values can be given for ordinary purposes. 

In  still air the rise in temperature of a gear casing can be approximately given by 

(8.2) 

where A is the area of exposed surface of gear case in m2 and other symbols have the usual 
meanings. In  case there is a natural circulation of air around the gear casing, then 

f l u  t("c) = 9 x 10-~ x - 
A 

(8.3) trc) = 6.7 x 10-~ x - F,u 
A 

Tests on gearing mounted on plain bearings have shown tha t  in still air, the rate  of heat 
dissipation will be around 380 Jlminlm of exposed area. This can be increased to 1080 Jl m i d  
m2 with a flow of air at a rate  of about 150 mlmin. 

I n  all the above cases, the expressionFt u represents the total power, t ha t  is, the total sum of 
the entire power transmitted inside the gear box in question. Additional cooling system should 
be provided if the rise in  temperature is more than around 50'C. 

In  agear box, the total power lossPL(Jlsec) is transformed into heat  energyH(kca1hr). Taking 
1 J = ll4187 kcal, we have, 

Rate of hea t  production H (kcalhr)  = PI, x 3600 14187 = 0.86 PI- 
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The value of PL is usually taken to be around 3 6 %  of the useful power delivered by the gear 
box. Heat dissipation is carried out through radiation, fan and lubrication, first to the gear box 
walls and thence to the atmosphere. Ribs on the walls help dissipation. Experience shows that 
with a supply of unhindered current of air, an amount of heat up to 22 kcal/m2. h."C can be 
dissipated. This figure comes down to around 7 kcaVm2. h. "C in case of closed gear boxes without 
any arrangement of fan. Heat to be dissipated is proportional to the temperature difference 
between the temperature ofthe gear box (which approximately correspond to the oil temperature 
and which should not exceed 70' C) and the outside temperature which should be around 35'C. 

8.7 Types of Gear Failures and their Causes 

For preparing an  efficient design, the gear designer should have a thorough knowledge of the 
possible causes of gear failures and the remedial measures thereof. He must be in a position to 
predict the service life of the gear set with reasonable accuracy after assessing all the relevant 
factors involved. For this, a good knowledge offailure criteria is imperative. Correct analysis of 
failure should be made and in this, the designer can draw from past experience to arrive a t  the 
real cause of trouble. Various causes of gear failures will be discussed and evaluated in this 
section. 

According togear experts, there are eighteen recognised ways in which the gear tooth surface 
may fail and two ways in which tooth breakage may take place. Some of these causes of failures 
have already been discussed in Secs 2.23 and 2.25. These will be briefly reviewed here along with 
other causes of failures. 

We have seen in earlier sections that  the meshing action in a pair of gear teeth involves a 
combination of rolling and sliding motions. The line of contact continuously changes and shifts 
its position during action. The line is actually a band having a certain width under tooth pressure, 
so that the area of contact describes it more aptly. It has  been mentioned in Sec. 2.23 that  the 
entire contact area is subjected to continuously fluctuating stresses and this makes the teeth 
surfaces vulnerable to  fatigue failures. In fact, it has been emphasised before that  the failure of 
gear teeth is largely due to fatigue ofone kind or another. The whole gamut of the causesoffailure 
need not be discussed here, only the common ones have been described. 

Wear Wear has  been defined as a surface fatigue failure phenomenon in Sec. 2.23. Surface 
deterioration of this kind results in pitting which has been elaborated in the above mentioned 
section along with the possible remedial measures, such as  hardening of the gear teeth. 

Normal wear and abrusive wear When metal slides against metal, an inevitable consequence 
is the gradual loss of material from the surfaces of the teeth in mesh. This can be termed as 
normal wear. Proper lubrication is one of the effective ways of minimising this loss. Abrasive 
wear takesplace due to surface injury or  damage caused by particles trappedin between the tooth 
surfaces. These particles may be present in the lubricant as  impurities or  they may be flakes of 
material detached from the tooth surfaces. 

Scoring The kind ofgear failure known as scoring has been covered i n  Sec. 2.25. As pointed out 
before, scoring is essentially attributable to the lubrication failure. Course ridges and radial 
scratch lines are formed from the tip of the teeth down to the pitch circle. Lack of adequate 
lubricant may cause metal tometal contact, resultingin momentary welding between contacting 
surfaces due to molecular adhesion. High localised temperatures may induce plastic flow of 
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metals which in turn may result in spot-welding. The contacting surfaces may tear apart when 
they separate out. Extreme pressure (EP) lubricants are used to prevent or minimise scoring as 
they contain welding-inhibiting agents, such as sulphur or chlorine. Besides improper lubrica- 
tion, aspects such as misalignment, interference, involute profile error, tooth spacing error and 
poor surface finish are also contributory factors to scoring failures. Scoring is also termed as 
scuffing, galling, seizing and roping. 

Tooth breakage This kind offailure occurs due to fatigue, and sudden overload or  shock. Fatigue 
breakage is the result of a large number of repetitions of the load. This kind offailure starts with 
a crack which progressively widens till a portion or  a whole tooth breaks away. 

Tooth may break due to  transient overload caused by momentary fluctuations oftorque which 
may considerably exceed the normally transmitted torque for which the gear set is designed. 
Overload may also occur due to the inherent tooth errors which prevent the rotating masses to 
attain uniform angular speed. This in turn creates dynamic loads which add extra burden on the 
toothed system. This aspect has been fully treated in  Sec. 2.22. 

Corrosion This i s  caused by chemical action by the wrong kinds of lubricants or  i t  may be due 
to  agencies prevailing i n  the surrounding atmosphere which may be of corrosive nature. 

Lubrication failures Besides scoring, there are other failures which may be attributable to  
lubrication. The desirable properties of lubricants and their proper functions have been 
discussed in Sec. 8.6. The failure of the lubricants to  attain the requirements expected of them 
will result in tooth failure. However, it must be eniphasised here that there are several factors 
which cause failure due to  extraneous causes other than lubrication, but which are apparently 
thought of as failures due to  faulty lubrication. For example, tooth surface finish is directly 
related to  the possibility, or otherwise, of the failure of tooth surfaces. Better the finish, greater 
is the loadcarryingcapacity and the ability for proper maintenance by the lubricant. There might 
be some inherent design defect which could be the real cause of failure, yet this failure would be 
blamed on the lubricant. Similarly, manufacturing defects may also give rise to such 
misconceptions. 

Spalling This is also a surface fatigue failure similar to pitting. The damage to tooth surface 
may be extensive. Chunks oftooth break away as small or large flakes. Case hardened gears are 
more prone to spalling. Unlike pitting, the damage is not confined to the pitch line area, but may 
occur at the tip area. 
Interference We have seen i n  Sec. 2.9 how interference and undercutting weaken the teeth 
which might eventually result in tooth breakage. By adoptinga proper design and the right type 
of manufacturing process, this type of failure can be avoided. 

8.8 Gear Noise 

In spite of the monumental research work done on the subject, gear noise ( as well as measures 
for its reduction) is one of the least understood areas ofgear technology. Reduction ofgear noise 
is being tackled with renewed interest these days as i t  is believed that  loud discordant sounds 
or  predominently high-pitched whine of a high speed gear-set has a particularly detrimental 
physical and psychological effect on the machine operatcr or others who have to work for a long 
time near such a system. Moreover, vibrations created by sound waves can be very disturbing 
for the normal functioning of machine tools, automobiles and marine engine drives. 
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Even if all the relevant machining instructions, tolerances, and other factors are observed 
faithfully, there is no guarantee that a noiseless gear-set will result. However, to develop a 
reasonably noise-free gear system, certain guidelines can be given. But the designer has to 
depend mainly on the results of practical experience to attain such goal. 

Impulse forces or pulsations in a gear drive are created due to various causes. Impulse is 
generated duringmeshingofteeth. Itfollows, therefore, that  noise in agear system is afunction 
of the accuracy of the component gears. Depending on the quality of manufacture, the various 
errors and other parameters ofa gear will vary from the theoretical values. These include tooth- 
form error, tooth-pitch error, radial and axial run-out. During operation, the mating teeth bend 
under load. Pitch error leads to  unequal transmission of motion. The resulting angular 
acceleration and deceleration generates additional dynamic forces and fluctuating torques on 
the rotating masses. These dynamic forces, along with other factors like the mutual sliding of 
meshing teeth and the behaviour of the anti-friction bearings, are the causes of the gear noise. 

The following measures may prove to be effective for the reduction of noise level. 
1. Gear noise is proportional to the square of the pitch-line velocity of the meshinggears, and 

therefore the reduced velocities produce less noise. This is one of the advantages ofthe planetary 
gears. 

2. Due to the change in pitch and bending of teeth, the pair of teeth which come in mesh next 
are subject to  an impact a t  the beginning ofthe contact. The ensuing noise is proportional to the 
magnitude of the pitch error. This effect is most pronounced in case of spur gears and increases 
with the increasing speed. This can be somewhat allevintcd by providing tip relief of teeth and 
lapping the teeth t o  have a crowning. Experience shows that small modules produce less noise. 
Tooth errors are mainly responsible fo r  noise e3pecially i n  case o f  low loads. Therefore better 
quality of toothing, smoother tooth surfaces and improved alignment remove noise producing 
possibilities. Ground or  scraped teeth surfaces give best results. 

3. Longer duration of meshing period generally reduces noise level. Helical gears are better 
than spur gears in this respect, because the engagement of teeth is gradual and more teeth are 
in mesh simultaneously which helps to  cancel out the bad effects of tooth error resulting in 
smoother operation. High helix angle ensures noiselessness. Also high contact ratio (about 2) in 
case of spur gears results in niininium noise. 

4. Gears may become more prone to vibration due to resonance. Therefore, the natural 
frequency of the system must lie away from the critical zone or the inclination towards 
covibration should be corrected by providing appropriate shape and vibration-damping methods. 
The damping can be effected by shrink-fitting cast iron rings in the gear tooth rim, fitting the rim 
with lead rings, filling the cavity of the rim of big cast gears with noise-damping materials, 
mounting a n  elastic bodv (or bush) between the hub and the tooth-rim, and similar measures. 

5. Gear box housing should be so designed that the resonance effect is avoided by damping. 
Webs and ribs should be appropriately placed to attain this objective. During assembly it is to 
be seen whether the housing could be isolated by a vibration-damping medium such as rubber. 

6. The material should be so selected that  it has danipingproperties. In this respect cast iron 
gears give better results as against steel gears. Considering the susceptibility ofgears towards 
accuracy as regards production of noise, non-metallic gears give better results a s  they can stand 
three to  four times as much error as steel grnrsand can still operate without trouble arisingout 
of inaccuracy. J-Tencr, if  qilence during service is the main design criterion, non-metallic 
materials are primarily selected for gear. Thcy are obviously not suitable for heavy duty gears 
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7. Higher viscosity and high-additive lubricants decrease the gear noise only marginaIIy. 
Research in the field of gear noise gives the following relation 

p = cv-F,h (8.4) 

where p = Sound pressure in micro-bar (ph) u = Circumferential velocity (mis), Ft = Tooth load 
(N. Indicesa and b are found to be around 0.6-1.2 and 0.5-1.1 respectively. Factorc is aconstant  
for the particular gear box. In  terms of power output, the relation is 

(8.5) 
(8.6) 

where Pis the power in kW. 
Generally speaking, the noise level at the work place should be a s  low as possible. In case of 

various gear drives, certain guiding values for intensity of sound can be given which have been 
measured at a distance of 500 nim and which are  usually encountered i n  industry. 

p = 0.11 P (N?) 
Intensity of sound = 55 + 20 log P (phon) 

Very well machined worm-drive 70 to 75 phon. 
Small to medium spur and helical gear drives in industrial gear boxes with low speed 75 to 

Turbine gear boxes 85 to 100 phon 
Big marine gear boxes 100 to 105 phon 

85 phon 

Rigid standards for permissible gear noise have not been made, but the American Gear 
Manufacturers Association (AGMA) has  given the following provisional noise limits for high 
speed helical and  herringbone gear-sets: 

107 dBbetween 20 and 75 Hz, 99 dB between 75 and 150 IIz.  94 dB between 150 and 300 Hz, 
92 dB up  to.10,000 I lz  (here dB (decibel) is the unit of sound level and IIz (hertz ) for the 
frequency.) 

8.9 Spare Part Drawing of a Gear from Sample 

I n  the practical industrial field, an engineer working in the design office of a factory is often 
confronted with the  problem of making a manufacturing drawing of a gear which is used as a 
spare par t  in a n  equipment or  in a gear box drive. In such cases, the problem of the designer is 
the  reverse of the usual one. That  is, instead of designing a gear from the given drive-data, 
arr ivingat  the  proper dimensions ofthe gear from the relevant parameters, workingconditions, 
strength and other requirements, the engineer in this case is required t o  make a shop drawing 
from the sample given, so tha t  a spare par t  can be made accordingly to run  the concerned 
machine. 

Often these gears a re  in worn-out condition. The Jesigner has  to take several suitable 
decisions, namely, choice of materials, allocation of appropriate tolerances to the extent i t  is 
possible, specificationsfor machining, surface quality, heat-treatment, mounting instructions (if 
any), hardness, besides arriving at the relevant gear tooth data and gear body dimensions using 
the measurements taken from the sample. If the material is ofprime importance, then drillings 
should be taken from the sample and analysed cliemically to ascertain the coniposition and heat- 
treatment, if possible. Otherwise, suitable common materials will serve the purpose. Hardness 
can be similarly testedby suitablemcansor its v;iluc~ciin he decided aft ~rconsideringoperational 
constraints, service conditions and other allird fhcto1.s. 
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It has to be assumed in such a case that  the actual measured values may or may not tally with 
the original designed values or with the theoretical calculations which the designer makes for 
this purpose. In  that  case, slight adjustments here and there have to be made by trial and error 
method so that  all conditions are more or less satisfied. Besides the actual measurements of the 
gears, of prime importance is the accurate measurement of the centre distance. The designer's 
gear calculations are vindicated if the gear or gears, which are made as  per the spare part 
drawing, run smoothly when mounted on the shafts a t  the actual centre distance, meshing 
condition do not pose any problem and the gears have a reasonable operational life. 

Though the designer may be asked to make the spare part drawing ofone gear only, it is always 
considered advisable t o  make the drawing of the other gear of the pair too, so that  both the 
members of the gear-set are changed if required. I t  may not be so important for spur gears, but 
for helical gears i t  is virtually imperative for smooth running of the system as  the helix angle of 
the sample gear found by crude measurement could never be the same as the original one. If both 
the helical gears, having the new calculated value ofhelix angle, are changed, this problem will 
not arise. The Example 8.2 illustrates the procedures which should be adopted when a pair of 
mating gears are given for drawing. 

Example 8.2: The following data are determined by actual measurement of the two gears in a 
medium tofastrunningdrive:z1=18,z2= 73,d,, = 102.42,dO2 = 380.52, centredistanceb) = 231.5 
mm. 

Solution: In this case, since the gear has an odd number of teeth, viz. 73, its outside diameter 
ismeasuredby suitablegadgets by mountingiton a mandrel andusingdial indicatorsin theshop 
or in the inspection department. This way the measurement will be accurate. The tip diameter 
of the pinion is measured by vernier calipers. 

The whole depth of tooth is measured and is found to be around 11 mm. Comparing with the 
table given in Appendix D, the corresponding module is found to  be 5. It, is assumed that topping 
has  been done since the gears appear to have been corrected. 

Next, an  impression is taken of the top land of the teeth t o  determine tentatively the helix 
angle a t  the tip circle (pa). For this purpose, the top lands may be first smeared with industrial 
blue or a similar thing and then the gear in question is rolled on a white sheet of paper. The 
resulting developed impression will look more or less like Fig. 3.1 (d). The helix angle from the 
impression is then measured with the help of a protractor. This angle, however, is not the helix 
angle at the pitch circle p. To find p, we use 

To make manufacturing drawings of the gear pair. 

tan pa = tan p X- 4, 
d 

(see Chap. 3) 

Pa = 9" (by measurement). Hence 

or 

102.42 102.42 
tan 9" = tan p x = tan p x 

i r i t ,  sec p 5 x 18 x secb '  

102.42 - sin ,!3 x ___ - 
9 0 

tan 9 whence ,!3 = 8" 
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Therefore 

mz 5 x  18 d l = L =  - = 90.88 
 COS^, COS 8" 

andd, = - 73 - - 368.58 
cos 8" 

In  this connection it is t o  be especially noted that  though the magnitude of pis same for both 
the gears at the pitch circles, the helix angles a t  the tip circles of pinion and gear, pal and&, are 
different. Therefore data relating to any one of the two mating components should be adhered 
to  for calculation. In our example, we will use those of the pinion. 

The transverse pressure angle a, is found from 

tan 20" = tan ar x cos 8" whence al = 20" 11' 

From Table 3.3 the working pressure angle OL, ,,. is found thus 

5 18 + 73 C O S 2 0 '  11' 
231.50 = - 

cos 8' 2 cos a,, 
By solving, we get 

at, = 21" 20, 

From Table 3.3 we get the total correction factor 

2 tan 20" ( x ,  + x,) + inv 2oo 1, inv 21" 20'" = 
18 + 73 

We get the values of the involute functions from Appendix H. By substituting these values, we 
have 

( x ,  + x,)  + 0.015333 0.36397 
18 + 73 

0.018217 = 2 

By solving 
~1 + X ,  = 0.36 

The individual correction factors x1 and x ,  can be found by using Table 3.3. 

102.42 = 2 (231.50 + 5 - ~p 5 )  - 368.58 

380.52 = 2 (231.50 + 5 - . ~ 1  5) - 90.88 

By solving, we get 

Therefore 
xl = 0.16 andx, = 0.2 

X I  + 3 ~ 2  = 0.16 + 0.2 ~ 0 . 3 6  

This tallies with the value of total correction as  found before. In case the calculated values and 
the measured values do not tally, then slight adjustments are t o  be made in different values, e.g. 
tip diameters, helix angles, and correction factors, with aview t o  keeping the centre distance the 
same so that  there is no difficulty in mounting the gears. 
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To check top clearance, we find first the value of topping by using the equation 

y m  = a, + (x,+ x,)m -a = 
+ 368'58 + (0.36 x 5) - 213.5 = 0.03 mm 

The top clearance 

= 2315 - 

As per the  basic rack (IS: 2535), c = 0.25 m. Therefore c = 0.25 x 5 = 125 mm 

The top clearance, therefore, is in conformity with the standard value. 
Some more data are required t o  be given in a shop drawing for manufacturing and inspection 

For block measurement, the number of teeth t o  be measuredz', and the base tangent length 
purposes. With the help of Secs 2.27 and 2.28, the following values are calculated. 

W ,  are found from Sec. 2.28. 

z' = 3 for the pinion as per its data 
W = 5 (7.38033 + 0.014402 x 18 + 2 x 0.16 x 0.34202 ) 

= 38.745mm 

For the type of application in question, a quality of 7 will suffke as per Table 2.27. Zone of 
tolerance selected is d for base tangent length W and J for centre distance. For inspection 
purposes, the double flank roll-gear test for total composite error S" is chosen. 

From Appendix I, the tolerance on the tip diameter d, is h8, and the permissible radial run- 
out of tip cylinder is found to be equal to 

0.025 d, + 15 = 0.025 x 102.42 + 15='17.56pm = 0.018mm 

The tolerances on W are found from Appendix K 

- 53 pm = - 0.053 mm 

- 79 pm = - 0.079 mm 

These values are in  the transverse section. To get the values in the normal section for actual 
measurement, the values given in the table are to be multiplied by cos p as explained in Sec. 2.28. 
The final values are 

- 0.053 mm 
- 0.078 mm 

Appendix L gives the tolerance on the centre distance to be 

2 0.036 mm 
As explained in Sec. 2.27, these tolerances are to  be multiplied by a factor 

= 0.932 tan 20" tan 20: 
tan a,, tan  21" 20' 
- =  
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The final values are 

-e 0.034 mm 

For the double flank total composite error test, the reader should refer to Sec. 2.27. The value 
is given by 

F,"= 56 + 4.54,, = 56 + 4.5 ( n 1 + 0 . ' 2 5 f i  = 56 + 4.5 (5 + 0.25 990.88) 
= 89 p n  = 0.089 mm - 

As before, this value is multiplied by 0.932, giving 

F," = 0.083 mm 

After calculating all the data as  described above, they are to be entered in table along side the 
relevant drawing as shown i n  Drawings 2.1 and 2.2 given in  Sec. 2.30. 

In  Drawing 2.2, the values for z', W ,  Z?" and the tolerances on W have been omitted. This 
has been deliberately done and is meant to  be an exercise for the reader. These values as well 
a s  the run-out values along with other instructions meant for the note are to be determined and 
inserted in the drawing by the reader. 

In  selecting the quality and zone of tolerance and other relevant parameters, it is reiterated 
that  there is no well defined thumb rule for the selection as  this is entirely dependent on the 
experience and discretion of the designer and his assessment of the prevailing operational 
conditions. This has  been already pointed out in Sec. 2.28. If for example, backlash warrants it, 
the tolerances can deviate from the standards and the tables given. These should be considered 
as broad guidelines only and not as inflexible ones. 

- 

8.10 Gear Pumps 

These positive displacement pumps are quite frequently used in industrial equipments, hydraulic 
lines, and lubrication systems. The most common ty,. is the external gear pumps shown in 
Fig. 8.13. Spur gears of equal size are normally used which operate inside a casing. One of the 
gearsis positively driven by meansofa key and the other member ofthe meshingpairis normally 
a n  idler gear which runs free on the shaft. Various types of gears may be used, but the spur gears 
are most common. When the teeth of the rotating gears unmesh, a partial vacuum is created 
which draws fluid into the pump. The fluid is then carried t o  the discharge side by the rotating 
gear teeth as the fluid, which is confined in the space between the tooth-gap and the inside 
surface of the fixed casing, is forced to move continuously along the periphery till it is discharged 
on the delivery side. The fluid is forced out ofthe tooth space on the pressure side, and as  the gears 
rotate, the space vacated by the moving teeth is filled with the fluid again, and the process thus 
continues. Gear pumps are normally provided with relief valves. 

Efficiency of a gear pump will depend on the accuracy ofcomponents, their fittings, a s  well as 
on the magnitude of the leakage oil. Leaking causes a loss and brings down the efficiency. By 
suitably selecting the design criteria, gear pumps can produce pressures up to 1400 N/cm2 or 
sometimes even higher, though these pumps are ordinarily limited to medium to low pressure 
service only. These pumps are small in relation to their capacity and are ideally suited for 
pumping light lubricating oil, though they can be designed to pump different types of fluids. 
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Fig. 8.13' Gear pump 

These pumps are usually self-priming up to moderate suction heads. Helical or herringbone 
gears are also used in these pumps to reduce the high-frequency pulsation which causes noise. 

The gears are closely fitted in the housing and the teeth form a seal against the housing. The 
material, tolerance, and other parameters for the components will vary according to design. 
Mentioned below are some common practical design data. 

Whole depth of tooth = 2.2 to 2 . 2 5 ~ ~ 1  
Centre distance tolerance = u + O.O1 (generally) 
Tolerance on tip circle diameter of gear d, = h6 Tolerance on the inside diameter 

of housing = E 6 
All surfaces including teeth should be ground. Tooth surfaces should be case-hardened to HRC 

Neglecting leakage oil, the theoretical value of f l ow  i n  case of pump with equal gears of 20' 

Tolerance: quality and zone = 5 cb 

63 -c 2. Material of gear should preferably be 17 Mn 1 Cr 95, IS:j1570. 

pressure angle, is given by 

1 1 
2 3 

V = - n b n  (d:-u2-- n 2 d t l z 2 )  IApproximateformulaV = 6 . 9 x d x m x b x n l  

The symbols have the usual meanings used in the gear technology. The unit of V will depend 
on the units used for the gear and other parameters. 

8.1 1 Hunting Tooth System 

It has been discussed that  due t o  the sliding action between the tooth surfaces of mating gears 
and due to other reasons a s  well, wear on the tooth surfaces takes place. Although, theoretically 
the surfaces of all the teeth in a gear should have identical properties as regards hardness, 
surface finish, magnitude of different errors, material and metallurgical properties, tolerances 
and other tooth parameters, in practice this is seldom so. It is quite likely that  after a reasonable 
runningin time, each tooth develops individual characteristics. Cast gear teeth may have 
individual characteristics from the very beginning itself due to imperfections in castings, lack of 
homogeneity in the material, slag inclusions, blow holes, surface irregularities such as raised 
portions, cracks and uneven hardness. 

f 
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If the reduction ratio of a gear pair is an integral number, the numbers of teeth of the two 
members comprising the drive have a common divisor. Consider, for example, a pair of gears 
having24 and 72 teeth. The reduction ratio is 72/24 or 3. Now, for one complete revolution of the 
gear, one particular tooth of the pinion mates with 3 particular teeth of the gear. And this takes 
place for any number of revolutions the gear pair makes. Similarly, each of the other teeth of the 
pinion mates with a particular set of 3 teeth in the gear in each case. This results in uneven 
distribution ofwear. One pinion tooth may be harder than its neighbouring tooth. When the first 
tooth mates with its own set of 3 gear teeth continually, it makes the 3 gear teeth in question to 
wear out faster than 3 gear teeth corresponding to the pinion tooth with lesser hardness. The case 
may also be reverse, that is, a harder gear tooth may make the pinion tooth vulnerable to wear 
and other undesirable effects. 

To control this situation properly and to help i n  equalising wear on all the teeth of the pinion 
and gear, and also t o  improve accuracy of tooth-spacing, the “hunting tooth” system has been 
universally adopted. In this system, which is particularly desirable in case ofteeth surfaces with 
low hardness, one of the two mating gears is provided with an extra tooth than the number 
exactly required for a particular ratio. Considering our previous example of a gear pair having 
24 and 72 teeth, if the gear is made to have 73 teeth, instead of 72, keeping the number of teeth 
in the pinion unchanged, then the reduction ratio becomes 3.0416667, which is very near the 
required value of 3. 

Since the numbers 24 and 73 do not have a common divisor, it is ensured that  any tooth of one 
component ofthe gear pair will, i n  time, contact all the teeth ofthe matingconiponent as  the two 
members rotate during service, and thus the continual meshing of the same pair of teeth a t  
regular intervals is avoided. This progressive nieshingofteeth results in an  even distribution of 
wear because all the teeth develop more or less the same wear pattern. The teeth are then 
eventually worn to  a comparatively true and identical shape. 

It is desirable that  the number of teeth of one member should be a prime number, but so long 
as the numbers of teeth of the two gears have no common factors, the hunting action will take 
place. For example, consider the gears with 28 and 195 teeth. The factors are 

Z x 2 x 7 = 2 8  and 3 x 5 ~ 1 3 = 1 9 5  
Since no common factor is present, huntingaction is assured. Besides, if a cutting tool operating 
on the basis of meshing action like a gear is used for machining, a tool having a common factor 
betweennumber ofteeth ofthe tooland number ofteeth ofgear to bemachined should be avoided. 
Thus, a shaving cutter having 91 teeth should not be used to machine either gear as 91 can be 
factorised as 

91 = 13 x 7 

Factors 7 and 13 occur in numbers 28 and 195 respectively. 

8.12 The 05-System of Toothing 

In this system, each gear of a mating pair is positively corrected by an amount 

.t‘ ni = + 0.5 m 

That is, x = + 0.5, irrespective of the number of tooth of the gear. Hence the name oi the 
system. 
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This system is valid for all gears, having number of teeth 8 and above. The teeth have a 
relatively high load carrying capacity. This system can be used very easily with simple 
calculations by the use of tables given in DIN 3995 for the purpose. The system has, however, its 
own limitations, namely, it can be used mainly for transmission in slow speed or step down 
systems, and it cannot be used if a pre-specified centre distance has to  be maintained. 

I n  05-toothing, the contact ratio is greater for number of teeth less than 12 and up to 15 than 
in case of toothing without profile correction, i.e. ordinary, uncorrected gears, because due to a 
high value of x, the undercutting is avoided. By greater number of teeth, however, the contact 
ratio is lower than that  of the corresponding uncorrected gears. 

Because the correction factorw is constant, all gears with 05-toothing can be paired off, ifonly 
the module is the same. This characteristic is advantageous for inventory control and spare part  
availability because gears can be had "off the shelf" i n  the store or ex-stock from the market. 

Recalling Eq. 2.35, the centre distance of a corrected gearing is given by 

21 + 22 cos n 
2 cosa, 
- a = m 

The working pressure angle h, can be calculated from 

2 tan n (x, + x2) inv a, = 
z1+ 22 

Since x1 = x2 = + 0.5 and a = 20", we get 

z, + 2, 0.93969 a = r n  
2 cos CYu: 

t i n v n  

(8.7) 

0'72794 + 0.014904 a n d i n v a ,  = - + i n v n  = 
:'+an 20" (0.5 + 0.5) 

21 + 22 z1 + 22 
(8.8) 

From the above equations it is clear that  for a particular module the centre distance depends only 
on thesum ofthenumber ofteeth ofthematinggears,i.e.zI + z 2 .  Thischaracteristicof 05-system 
is important for change-gear arrangements because the centre distance remaining the same, 
different transmission ratios are obtainable by changing the z21zl combinations, provided that  
the value ofzl+z2is kept constant. 

The modern trend in gear design is to  adopt the 05-system i n  as many cases as possible for the 
advantage enumerated above. In short, this system conibines the advantages of positive 
correction as discussed in Chap. 2 with the added facilities for interchangeability if required. 

Relevant equations for the calculation of the usual parameters of a 05-gear are given below. 
These can be arrived at by inserting the value x = + 0.5 in the equations in the sections dealing 
with corrected gears, taking a = 20'. 

Tipdiameter d, = 2 ( r  + m + 0.5nz - ym) = 2 m  ( 2 1 2  + 1.5 - y) (8.9) 

Topping factor (8.10) 
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Rootdiameter df = d - 2(125m - 0.5m) = m ( z  + 1 - 2.5) = m ( z  - 1 5 )  (8.113 

Centre distance 
z2 + zp  0.93969 a = m  

2 cos a,,. 
(8.12) 

Working pressure angle CY,,. is given by 

+ 0.01490438 (8.13) 
2 tan20' (0.5 + 0.5) + 2oe = 0.72794046 inva ,  = 

21 + 22 = I  + 2 2  

Base tangent length for inspection is given by 

W = m cos 20' [(z'- 0.5) IC + z inv 20'1 + (2 x 0.5 x ni x sin 20') 

= m x 0.93969[(z'- 0.5) K + t x 0.014904381 + (nz x 0.34202) 

Chordal tooth thickness 

[ 1.934:6656 180 -1 7r 6 = Ill z 

Chordal tooth height (without topping) 

ha - = m x L 5  + m x - z [ 1 -  cos (193476656 E)] 
2 2 K 

(8.14) 

(8.15) 

(8.16) 

8.13 Shrink Fit Calculations for Power Transmission 

When parts are fitted together by shrink fit, the surfaces o f  the components must have cmough 
resistanceagainst slidingor turning between matingparts. I t  is often required to  design machine 
elements which are meant to  transmit torque through shrink fit or t o  check whether a certain 
pair of shrink-fitted items are correctly designed to transmit a specified torque. One of such 
common cases is the torque transmission by a gear which is shrink-fitted on to a shaft. Example 
8.3 illustrates such a case. 

I 

Fig. 8.14 Pinion shrink-fitted on a shaft 
Based on Neue Festigkeitsberechnung fuer den Maschinenbau. Haenchen and 
Decker, 3rd Edition, 1967, Fig No 21 1. p 168 Carl Hanser Verlag. Munich 
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Example 8.3: Figure 8.14 shows a pinion shrink-fitted on a shaft. The material of pinion is 40 
Cr 4, and that  of the shaft is 45 C8. Within the allowable tolerances specified on the drawing, 
what are the maximum and minimum contact pressures developed a t  the mating surfaces?What 
are thb maximum and minimum compressive stresses which the shaft is subjected to?Determine 
whether the system is capable of transmitting a nominal torque of 2600 N m and the factor of 
safety thereof. Take a service factor of 1.25. 

Solution: The shrink-fit chosen is 90 H7Iu6. The tolerances have the following values, 

+ 0.035 +0.146 

go = go+o.124 90" = 90 O u6 

The maximum and the minimum interferences are given by 
Z = (146 - Old46 pm and Z =(124 - 35 p m  = 89pm 

As per Appendix V, the value of R1 for series 4 and 2 triangles finish of surfaces is 10 pm. The 
contact pressure a t  the mating surfaces is given by 

9 
L 4  

N / mm2 (or megapascal, MPa) 
(KO + K I )  DI 10'' P =  (8.17) 

Factors K 0 and Z are auxiliary values to be taken from Fig. 8.16. In the above equation and the 
subsequent equations, subscript 0 stands for the outer part or diameter and subscriptl for the 
inner part or diameter. 

For materials other than steel, the following relation is to be used to find K values 

(8.18) 

where E is the rr.ijdulus of elasticity 

Diameterratioisgiven by 

where Do = Outside diameter of the outer part . 

Qo = A D a n d Q  = - 811 
DO Dl 

DI = Diameter a t  thejoint = Inside diameter of the outer par t= Outside diameter ofthe 

DlI = Inside diameter of the inner part in case of a hollow cylinder 
inner part 

In this case Dl = 90 mm and since it is a solid shaft, DH = 0, therefore, QI = 0. 
A generalised case of pressure distribution is shown in Fig. 8.15. 

Fig. 8.15 Pressure distribution in a shrink-fitted system 
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Dimension of adhesion is given by 

2 (in pm) = I -  2 (Go + GI 1 (8.19) 

where Z stands for interference, and Go and GI are magnitude of smoothness in case of outer 
and inner parts respectively. These are given by 

Go -- 0.6 Rfo and GI = 0.6 RfI 
In  this example both Rto and Rt, are equal to 10 pm. Therefore, Go = GI = 6 pm. 

of z 
Corresponding to the maximum and minimum values ofinterference, there will be two values 

2 

2 

= 146 - 2(6+6) = 122 Lrm 

= 89 - 2(6+6) = 65 pm 

Corresponding to Qo = 901166 = 0.54 and Q, = 0, the values of K are found from the Fig. 8.16 to 
be 

KO -- 0.1 x lo4 mm2/N 
KI = 0.03 x 10dmm'/N 

1 

mm*m 

1.0 x 10- 
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0.07 
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0.05 

0.04 
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0 0.1 0.2 0 3 0 4  0 5  0 6  0.7 0 8  0.9 1.C 
OIAMETER RATIO 4. 0, - 

Fig. 8.16 Auxiliary values, K 
Based on Neue Festigkeitsberechung fuer den Maschinenbau. Haenchen and 
Decker, 3rd Edition, 1967 Fig No. 210 p. 167. Carl Hanser Verlag, Munich. 
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The maximum and the minimum contact pressures are given by 

= 104 N / m m 2  122 P,, = 
(0.1 + 0.03) x io4 x 90 x lo3 

= 56 N / m m 2  65 
(0.1 + 0.03) x io4 Y 90 x lo3 Pmin = 

(8.20) 

The compressive stress in case of a solid shaft is equal to the contact pressure. Therefore 

o,. !milx) = 104 N/mm2 and 0, (mln) = 56 N/nim2 
In this example, the maximum torque required to be transmitted is given by 

I",,, = Nominal torque x Service factor 

= 2600 x 1.25 
= 3250 Nm 

The area of contact is given by 
A = DI x ICL = 90 x I C X  140 = 39584 mm2 

The sliding torque, i.e. the torque required to  overcome the frictional resistance at the surface 
of contact is given by 

T , = ' X D , X A  2 x P  X F  (8.21) 

where F = The coefficient of adhesion found from the Table 8.10. 

Table 8.10 Coefficient of adhesion F 
~ 

Material Coefficient F Shrink- fitted 

SteeVsteel 0.10-0.15 
Steelkteel (hardened) 0.12 
Steel (cast iron) 0.07-0 09 
Steel (hardened)/steel (cast) 0.10 
Steelhrass or bronze 0.07-0.14 

in oil 
d'Y 
dry 

in oil 
dry 

TakingF = 0.12 and the minimum value ofp, i.e. 56 N/mmz, we have 

T, = ~ ~ 9 0 ~ 3 9 5 8 4 ~ 5 6 ~ 0 . 1 2 x 1 0 - 3 N m  
= 11970 N m 

Factor of safety or the safety against failure TIT,, = - llg70 - - 3.7 
3250 

Since the factor of safety required in such cases is usually 1.5 to 1.8, the above shrink-fit system 
is adequate to transmit the required torque. 
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The preheating temperature of the outer part is given by 

1.5 x I,,, 
a x D, x lo3 T ( i n K )  = + TI{ (8.22) 

where a = The coefficient of linear expansion 
TR = Room temperature in kelvin (K 1 

The factor 1.5 ensures sufficient expansion to facilitate the proper joining of the parts. 

8.14 The SI Units 

In science and technology the units and the systems of measurements of physical and other 
quantities have evolved from the crude systems of the past to the extremely sophisticated ones 
used in the modern world of high technology to meet the extremely high degree of accuracy, 
precision and exacting demands of measurements. The British system, or the FPS system, was 
followed in the industrial countries in initial stages. Later, this gave way slowly to the French 
or metric system or the CGS system. The CGS system was primarily used for scientific 
measurements. In  Continental Europe, another slightly different system was followed in 
engineering and technology. This was known as the “technical system’’ as distinct from the 
“physical system” using CGS units. The technical system was again sub-divided into two forms: 
the old and the new. In the old technical system, the unit of force was kg and the unit of mass 
was kdg ,  where g = th’e acceleration due to gravity = 9.81 m/sec2. The unit of mass was thus leR 
unnamed. This led to confusion as kg,is the unit of mass in the physical system and not offorce. 
To correct this ambiguity, the unit of force was designated as kilogramme force or kgfand that  
ofmass as kilogramme-mass orkgm in the English speakingcountries for calculations involving 
metric technical system. In  the new technical system, the word kilopond (or kp) was coined to 
represent the unit of force. This was defined a5 

1 kp = The force required to impart to  a mass of l k g  
an  acceleration of 9.81 m / s 2  

1 kp = l k g  x 9.81 m/s2 or 

The unit of mass was again left unnamed as kg i s  the unit of mass in the physical system and 
notin the technical system-oldor new. Later on, the symbol kp wasdiscardedin many quarters 
because the word pond was phonetically similar to pound which might have again led to further 
misunderstanding. The symbol kp was largely replaced by kgf. 

All these confusions and anomalies were set aright by the introduction of the international 
system of units (SI) which developed intially from three basic units: the unit of length as metre, 
the unit ofmass as  kilogramme and the unit of time as  second. This was abbreviated as the MKS 
(metre-kilogramme-second) system of units. Later the unit of electric current or ampere (A) was 
added and the system came to be known a s  the MKSA system. 

Further units were added and the present system units (SI) came into being. It now consists 
of seven base units, two supplementary units and a number of derived units as detailed in 
Appendix T. This international system of units i s  in fact an extension and refinement of the 
traditional metric system. “his  system is known as: Systeme International &Unites, for which 
the abbreviation is SI in all languages. It embodies features which make i t  logically superior to 
any other system as well as practically more convenient. It is rational, coherent and comprehensive. 
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The SI, like the traditional metric system, is based on decimal arthmetic, i.e. units ofdifferent 
sizes are formed bymultiplyingor dividinga single base value by powersof 10. Thus changes can 
be made very simply by adding zeros or shifting the decimal points. 

The SI is a coherent system. Asystem ofunits is said to be coherent if the product or quotient 
of any two unit quantities in the system is the unit of the resultant quantity. For example, in 
coherent system in which the foot is a unit of length, then the square foot is the unit of area, 
whereas the acre is not. This coherence aspect of SI greatly simplifies technical calculations. For 
example, equations involving physical principles can be applied without introducing such 
numbers as 550 in power calculations, which in the English system have to be used to convert 
units. Thus conversion factors largely disappear from calculations carried out in SI units which 
leads to a great saving in time and labour. The SI being an absolute system and not a 
gravitational system (as the technical system), the factorg has been dispensed with. The unit of 
force is newton (N) and is defined a s  the unit of force required to impart to a mass of 1 kg an  
acceleration of 1 d s 2 .  That is 

1 N = 1 kg m/s2 

Thishasimportant consequencesin calculations andisofparticular interest to the scientistsand 
engineers because the confusion regarding the units of force, mass etc. which often they had to 
face, have been totally removed. There are seven base unitsfrom which units for other quantities 
are derived. The unit horse power (hp) is no longer used and is replaced by the derived unit watt 
(W). Another great advantage which has ensued as  a result ofusing the SI units is the attainment 
of the goal of international understanding between the scientists and the technologists. Units 
such as erg, calorie (cal) or horse power-hour (hp. h) which were used to measure energy in 
various disciplines have been now replaced by one unit only, viz. joule (J). This universality has 
now become even more pertinent because the scientists and the engineers of different countries 
have now to work in close cooperation in fields like control techniques, space technology, nuclear 
engineering and other techno-scientific areas. 

Most of the industrially advanced countries using metric system are switching over to the SI 
units. In India, in many spheres such as schools, universities, industries and other allied fields, 
the adoption of SI units is being actively encouraged and this will help to end the confusion and 
wastefulnessresultingfrom the present multiplicity ofunits. The Indian Standard Specifications 
are now practically all in SI units 

Appendix T gives tables of the basic SI units, derived units and conversion factors. The units 
which are relevant to gear technology have been mainly included in these tables. 

8.15 Preferred Numbers and Sizes 

Preferred Numbers 

In this age ofglobal standardisation, increasingi nternational cooperation and exchange ofideas 
and products in trade, commerce, science and industries, it stands to reason that  along with so 
many other things, the numbers and sizes should be standardised too. Besides, within the 
country itself, there should be standardised numbers and sizes to effect rationalisation and to 
avoid multiplicity of product sizes produced by different manufacturing agencies ofthe country. 

It is, therefore, logical that  some sort of standardised values should be nationally and 
universally adopted. The question now is: What should be the basis of such standardisation?The 
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most obvious solution which one may jump at is to employ a simple arithmetical progression to  
arrive at the standardised numerical values. But the drawback of this series lies in the fact that  
the ratio of successive terms in such a series varies widely. Consider the step from 1 to 2: the 
variation is 100%. The same difference, viz. 1 produces only 10% variation in case of 10 to 11 and 
an  insignificant 1 % in case of 100 to 101. 

It is now generally accepted that  such number series should be a geometrical progression 
because it offers several advantages. Here, each term is largerfrom the preceding term by a fixed 
percentage. Such a series provides small steps for small numbers and large steps for large 
numbers. An arrangement like that  meets best the most requirements in the practical field and 
is also in conformity with themode ofvariations found in nature (e.g. organic growth, radio active 
decay, and other natural laws which generally follow power curves). By studying the arithmetical 
and the geometrical series, we can see that  the arithmetical series has the characteristic that  the 
differences between adjacent values are equally large, while in geometrical series the percentage 
step between successive values are equally large. 

Series of numbers which are standardised on a certain basis so that  these numbers are used 
in preference to any other numbers are called “preferred numbers”. The principal reason behind 
such concept is to provide a master series from which suitable terms can be selected to suit any 
needs. 

When a product is to be manufactured, a thorough planning is required as to its number of 
sizes. Several factors come into consideration. If the sizes and types are many, this will lead to  
increased production costs, inventory control, difficulty in stocking, storage and distribution, 
besides other inconveniences. A rational approach, therefore, is necessary to limit the number 
of sizes which, a t  the same time, must also meet the consumer‘s demands covering a wide range 
of choice. The manufacturer can strike a balance between his constraints and the consumer‘s 
needs by following the standardised sizes for the manufacture of products. 

In  short, for variety reduction and dimensional standardisation, it is only a question of 
compiling a suitable series of numbers o r  sizes which, should be followed to achieve that  goal. 

Havingdecided the rationale behind the standardisation of numbers and sixes, we must now 
try to  decide its basis. It has been already mentioned that the geometrical series is a suitable one. 
It has been found from experience that  the consumer’s requirements are generally satisfied when 
the range of sizesfollows, more or less closely, a geometrical progression. Based on this concept, 
agreed series of preferred numbers have been carefully worked out which, while not restricting 
the liberty of choice, provide the designer with a guide t o  minimise unnecessary variations of 
articles marketed so that  the requisite range is covered by a minimum number of different sizes 
with the resultingeconom) to  both the producer and the user. Experience shows that  ifan article 
is so marketable that  every size can be produced in economically viable quantities, then there 
is novalied reason for severe standardisation. When the consumption figures are small, however, 
it is preferable to stick to  standardised values or sizes. 

The basis of the preferred numbers, therefore, is the geometrical progression. Besides the fact 
that in such a series, each term is larger than the preceding one by a fixed percentage, one more 
advantage ofthis series stems from the fact that  if the linear dimensions are chosen in the series, 
then areas, volumes and other functions of powers of dimensions are also numbers of the same 
series. 

The preferred numbers are classified into five principal series, namely, R5, R10, R20, R40 and 
R80,where the numeral indicates theparticularrootof10on which the seriesisbased.Theletter 
Rstands as a tribute to  Col. Charles Renard, a Frenchman who first conceived and proposed this 
system. 
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In the preferred number series, numbers become irrational with the exception of 10 and the 
integral powers of 10. That is why the terms must be conveniently rounded off in order to be of 
practical usage. Values given in Appendix U have been obtained after careful Consideration and 
agreement at international level. 

After a most exhaustive study by the experts, the following system for preferred numbers has 
evolved. 

The first number of a series is 10 and the other numbers are obtained by multiplying (or 
dividing) the first number by the constant factor relevant to this series and repeating this 
operation with each ensuing number. For example, in case of R5 series, the constant factor is 

= 15849 ... = 1 6  

In the range of 10 to 100, the preferred numbers are found thus 

10 
10 x 1.6 =16 
16 x 1.6 = 25 
25 x 1.6 = 40 
40 x 1.6 = 63 
63 x 1.6 = 100 

It can be seen that this series gives numbers which are, more or less, 60% apart. Similarly, for 
other series, we get 

R 10 = 'fi = 12589 = 125 
R 20 = '(6 = 1.1220 = 1.12 
R 40 = ''m = 10593 = 1.06 
R80 = a = 10292 = LO3 

This indicates that the successive terms in the respective series from R10 to R 80 increase 
approximately by 25%, 12%, 6% and 3% respectively. For preferred numbers below 1, they are 
obtained by dividing the numbers between 1 and 10 by 10 or by 100, etc. as the case may be. For 
numbers above 10, they are obtained similarly by multiplying the numbers between 1 and 10 by 
10 or 100, etc. For example, from the preferred number6.3/10 = 0.63, 6.3, we can get 6.3 x 100 
= 630, and so on. 

The numbers of series R 5 should be preferred to the numbers of series R 10 which in turn 
should be preferred to the numbers of series R 20, and so on. 

Preferred Sizes 

Preferred sizes are a selection of sizes based on the preferred numbers. The numerical values 
more or less tally with the preferred numbers with a few minor variations for practical reasons. 

The purpose of preferred sizes is to limit the number of arbitrarily chosen sizes. If preferred 
sizes are used, then there should be a continual reappearances of the same sizes. This in turn 
facilitates simple and economical production, use, assembly and above all, interchangeability of 
products. These sizes are finding increasing application for the preparation ofproduct standards, 
rationalisation of number of tools and gauges, limiting the number ofjigs and fixtures, and for 
limiting stocks to an orderly series o f  sizes. Use of these sizes leads to simplified practice for 
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selecting sizes and ratings ofmachines. In short, the system affords to  have a comprehensive plan 
in all fields of manufacture. The sizes o f  shafting, for example, would be so designed that they 
are in  conformity with the sizes ofbearings. The same argument applies to other items ofdesign 
and production. 

Appendix U gives tables of preferred numbers and preferred sizes. Preference for numbers 
have been emphasised by bold type. For preferred sizes above 1000, the basic preferred numbers 
may be used. 

8.16 Limits, Fits and Tolerances 

Selection of proper limits, fits and tolerances is an important aspect of mechanical design. For 
designing mechanical components in general or for assigning the correct fits and tolerances for 
specialised engineering items, the reader may refer to the appropriate books or reference 
material on those subjects. The discussion in this section is confined to only those aspects offits 
and tolerances which are relevant as  far as  the gear design is concerned. 

Values ofdimensional tolerances are given in Appendix S. Surface quality symbols and their 
values are shown in Appendix V. There is a direct relationship between the dimensional 
tolerance of a part and the permissible surface rough ness. Assigning of undue accuracy will only 
enhance the production cost of the piece unnecessarily. The designer should carefblly select the 
tolerance, zone, and the surface quality required, keeping in mind the ultimate use to which the 
product will be subjected. 

In  this connection it should be borne in mind that  the dimensional tolerance system has 
nothingto do with the gear quality and tolerance system discussed in Secs 2.27 and 2.28. The two 
systems are based on different considerations altogether and must not be confused. Discussed 
below are the general guidelines for the dimensional tolerance systems. 

General Terminology 
Fit : When two parts are assembled together, the relation resultingfroni the difference between 
their sizes is called a fit. A fit is normally classified into three undermentioned types: 

(i> Clearance fit, where a clearance is always provided between the mating parts; 
(ii) Interference fit, where an interference exists when the parts are assembled: and 

(iii) Transition fit, whereafter assembly, eitheraclcarnncc fitor an interference fif,mayresult, 

Tolerance: Due to the inevitable inaccuracy caused by manufacturing methods and other 
factors, it is not possible to make apar t  precisely as per agiven dimension. Even if i t  canbe made, 
it will not be economically viable and the manufacturing cost of the part will be prohibitive. 
Hence, some minor udcviation” from the ideal dimension has to be acceded to. This deviation is 
called tolerance, which is Lhe difference between the maximum allowable and the minimum 
allowable values, called limits. 

Among the various methods of applying the concepts of fits, the principal ones are the “shaft 
basis” system and the “hole basis” system. The hole basis system is generally followed because 
of its inherent advantages in certain aspects. Normally, it is easier to  produce a shaft with a 
specifiedtolerance than aliole with the same t,olei*ance. It follows, therefore, that  ifthe tolerance 
of the hole is standardised, shafts with different tolerances can be machined to achieve the 
desired fits more easily and economically. Consequently i n  modern engineerj ng design, the hole 
basis system ismost extensively used. The zone ofhole, usually selected in thehole basis system, 

depending upon the actual sizes of the mi1ting parts. 
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is H and for general engineering purposes, the tolerance is of 7 quality. Hence, most of the 
toleranced hole dimensions bear the symbol : H 7. 

The quality of tolerance selected will depend upon the part  and the type of its application. I n  
IS: 919, the quality is categorised into 18 grades: 01,0,1 to 16 in decreasing order offineness. For 
normal work-pieces, grades 5 to 11 are used for machined parts. 

Some of the fi ts, based on the hole basis system, which are most commonly used and which are 
especially relevant to gear technology are given in Table 8.11. 

Table 8.11 Types of fits and their application 
.- 

Type of fit Symbol Example of application Remark 

Shrink fit H 8Ix 8 Gear and shaft where the Selection will depend 
H 8lu 8 torque is transmitted upon the coefficient 
H 7lu 6 by fit only of thermal 

expansion 

Press fit H 71r6 Gear and shaft Normally for light to 
medium duty 

Light Press fit H 71n 6 Gear and worm-wheels 
where shafts is fitted is 50 mm or above, 
with a parallel key 

When shaft diameter 

n 6 is normally 
chosen 

Force fit H 71m 6 Gear and shaft with key Easier dismantling 

Push fit and H 71k 6 Gear and shaft with key When shaft diameter is 
below 50 mm, m 6 or k 6  
is normally chosen; with 
j 6, an easy push fit 
ensues 

easy push fit H 7lj6 

Sliding fits H 71h 6 
H 719 6 
H 7!i 7 
H 8le8 
H8ld9 

These tits are used for 
gears sliding on shafts, 
splines. and for movable 
o c a s  in change-gear trains 

Fit should be properly 
chosen depending 
on the magnitude of 
sliding required 

Running tit H 8lhl 1 Oil seals with metallic 
housing. DIN recommends 
H 8 for hub on which the 
seal is mounted and h 11 
for shaft 

See Sec. 8.2 for oil 
seal as per 1s 
specifications 

Besides thosegiveninTable 8.11, somemorefitsand tolerances which arecommonly usedare 
given below. 

Circlip: Many pinion shafts are fitted with circlips. Grooves for such circlips in the shaft are 
providedwith tolerances,such as,H12,H13,andH14.Thisisshownin Drawing2.1 in Sec. 2.30. 
Keyways: Tolerances for  keyways in housings and shafts are given in appendices dealing with 
different types ofkeys. Tolerances for splines are also given i n  similar manner. 
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Seals: Radial oil seals and felt seals are used in bearing covers which are fitted on gear box 
housings.Tolerances for the above items are shown in Sec. 8.2 on gear box housing and 
accessories. 

Bearings: Anti-friction bearings are generally used in gear boxes and shafts. In an antifriction 
bearing, all the components are manufactured to very close tolerances and to exacting material 
specifications. Depending on the type of bearing, magnitude and nature of load to which i t  is 
subjected, operating conditions, and other considerations, the fits and tolerances which are most 
suitable for the bearing selected have been internationally standardised by the bearing 
manufacturing companies. Since the types and sizes of such bearings have a vast range, their 
loading conditions, temperature considerations, expected life requirements and other allied 
factors vary according to their applications, the tolerances meant for anti-friction bearings are 
notelaboratedhere. The readermay refer to the catalogues ofany standard bearingmanufacturer 
from which the tolerance can be selected commensurate with the type and magnitude of gear 
forces, bearing loads, service conditions and other relevant parameters. 

Forjournal bearings a suitable slidingor running fit should be chosen so that  ample clearance 
.is provided between the journal and the bearing. In  many such cases, the maintenance of a film 
of lubricant is the deciding factor. 

In case of both the anti-friction and the journal bearings, loads on the bearings can be purely 
radial, purely thrust or a combination of radial and axial forces. Calculation and selection 
procedures for the bearing for each type of loading condition are exhaustively dealt with in the 
catalogues and manuals or anti- friction bearingmanufacturers. For such calculation and design 
procedures in case ofjournal bearings, the reader may consult the relevant books dealing on the 
subject. 

. 
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APPENDIX A 

Construction of Involute Gear Tooth 

Method 1 

The involute tooth profile of standard 20’ pressure angle can be drawn as explained below. 

calculated as  per the following relations. 
The values of the diameters of the tip circle do, the pitch circle d , and the root circle d, are 

d = m 2  

do = m z + 2 m  

d, = m 2 - 2  x1.25m 

The involute is generated from the base circle the diameter of which is given by 

d ,  = d COS 20’ 

By geometrical construction, the base circle is found by first drawing a vertical central line, 
and with 0 as centre, the circlesare laid out a s  per the values previously calculated LFig. A. 1 (a)l. 
The pitch circle intersects the vertical central line a t  C .  This is the pitch point. The line of action 
is then drawn making an  angle of 20’ with the horizontal line and passing through C. A 
perpendicular from the centre is dropped on the line of action meeting i t  a tA . The circle passing 
throughA with 0 as centre is the base circle. On both sides ofA, the line ofaction is divided into 
equal parts locating the points E;, E;, E,  E ,,E ‘L, E D, E ~, etc. Here, point A on the base circle 
and point E on the line ofaction coincide. Points E 1, E,,etc. are then transferred on the base circle 
by means ofcircular arcs withE as centre, givingpointsA,,A i,... A’2, etc. Tangentsare then drawn 
from the pointsA 4, A,. etc. On these tangents, points C I ,  C ~,, ... ,C; are, marked off makingA 
,C ,=E,C,A3C3=E3C,APC2=E2C,A,C1  =E ,Cetc. Joiningthesepointsgivesrise to theinvolute 
curve which,incase of a gear tooth, extends from the tip ‘circle up to  the base circle. For the sake 
of clarity and to avoid making the drawing cumbersome, many points, e.g. E E ,, E;, E;. A ,, 
A 2, C l,C;, etc. have not been shown in the drawing. 

From the base circle, the tooth profile is extended up to the root circle as a radial. At  the root 
where the radial meets the root circle, a fillet is provided, the value of which is deterniined 
according to the basic rack profile discussed in Sec. 2.1. 

The profile of the other side of the gear tooth can be similarly drawn, keeping in mind that the 
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circular tooth thickness at the pitch circle is half of the circular pitch, i.e. s = p /2 = nm /2. This 
locates the point on the other side which corresponds to point. C of that side, the profile of which 
has been drawn. 

Method 2 

An approximate and simplified method of drawing the involute tooth has been shown in Fig. A1 
(b). This method is adequate for ordinary representation on a drawing when an accurate one is 
not needed. After drawingthe necessary circles as before, the base circle is drawn as shown. Next, 
an arc is drawn with radius (R ) = AC with the centre a t  A . T iis arc C ,CC gives a reasonable 
approximation oftheinvolute profile which is adequate for all practical purposes as  far asgaphic 
representation is concerned. The same process is repeated for the other half of the tooth profile. 

(a) -k- 
(b) 

Fig. A.l involute tooth 

Method 3 
The graphic method of drawing the involute curve is the most accurate one, though i t  is rather 
a laborious process. For both uncorrected and corrected gear profiles, this method gives the 
correct profiles. Sometimes this method is also used for making templates and form tools. 

First, the values of the relevant circles are found by calculations, using the formulae given in 
Chaps 2 and 3. Recalling the parametric equations of the involute curve (Eqs 1.6 and 1.71, we 
start to plot from the base circle. Then assigning arbitrary values for the angle, we find the 
corresponding values of the x and y coordinates. Plotting these values on a graph paper or a 
white sheet of paper and passing a smooth curve from the base circle to the tip circle and joining 
these points, will trace the involute profile. 
To find the other profile of the tooth, suitable changes are made in the equations since the 

curve now veers towards the left. The tooth thickness at the base circle is then calculated and 
marked on the base circle. Thex andy axes should now be suitably rotated to correspond to the 
new location of the origin of the other half before applying the modified equations. The other 
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profile is drawn in a similar way to complete the whole tooth. As a check, the tooth thicknesses 
at the pitch circle and the tip circle may be calculated by using the formulae given in Chaps 2 and 
3. The calculated values can then be compared with the drawingjust drawn to ensure accuracy. 
The rest of the tooth profile, i.e. the portion from the base circle to the root circle as well as the 
fillet, i s  drawn as before. 

Since the left and the right hand profiles are mirror images, a much simplified method will 
be to draw first one profile on a transparent tracing paper, reverse it, and then re-trace the other 
profile after suitably adjustingthe reversed profile to coincide with the previously located tooth- 
thickness points on the three circles as indicated above. 

Method 4 

By using the principle of gear cutting by generation method, the involute tooth profiles of a gear 
can be drawn on paper. The speciality ofthis method is that  not only the face and flank comprising 
the tooth profile can be drawn, but the fillet curve portions of the teeth are also represented 
realistically. As indicated elsewhere in the book, this curve is a trochoid and not a circular arc. 
This aspect is not taken care of in the other methods described so far, which are only good 
approximations of tooth profiles. By using the generation method and depending upon the 
human and instrumental accuracy, a reasonably good replica of the tooth can be drawn, which 
can be used as  a paper template for making a form tool or as a master profile to guide the tool 
in a copying machine. By this method, the trochoid is automatically generated along with other 
portions of the tooth profile. However, all the methods described so far produce sufficiently 
accurate tooth profiles, mainly in large gears with large modules (around 30 and above). With 
smaller modules, it becomes increasingly difficult to maintain the draughting accuracy and 
errors are likely to creep in. The generation method is described below step by step: 

Step 1: On a transparent tracing paper, draw the profile ofthe gear-tooth cutting rack. This is 
the template of the tool for generating the tooth profiles. Fix i t  rigidly on the drawing board by 
adhesive tape or tack pins. The addendum of this cutting rack is 1.25 module with respect to its 
pitch line MM, which divides the rack into equal lengths of tooth thickness and tooth gap. This 
rack produces gears conforming to the Basic Rack as per IS: 2535, in which case the teeth have 
dedendum equal to 1.25 m. In this connection see Sec. 8.5 on cutter profiles. 

Step 2: On a separate, loose transparent tracing paper, draw the pitch circle of the gear to be 
drawn. On this paper, the tooth profiles will be generated. 

Step3: ThepitchlineMMofthecutterrackisdividedin short,equalparts, say5orlOmmeach, 
and numbered a,  b, c, ... as well as a’, b’, c’, etc., on both sides of the vertical centre line. In a 
similar manner, the pitch circle of the gear is divided a t  equal intervals and numbered 1,2,3, ... 
and l’, 2’, 3’, etc. To facilitate correct alignment, draw thin vertical lines through these points 
parallel to the centre line in case of the rack and radial lines for the gear to be drawn. This is 
shown in Fig. A.2 (a). Obviously, smaller the intervals, more realistic and accurate will be the 
ultimate result. 

Step 4: Next, place the loose tracing paper over the template in such a manner, that the pitch 
line of the rack tool is tangent to the pitch circle of the gear at the pitch point P as  shown in 
Fig. A.2 (a). The vertical through P is the centre line of the pitch circle. 
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W 
Fig. A.2 Generation of involute toothing 
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Pitch Circle 
01 Gear 

Fig. A.3 Completely generated involute toothing 

Step 5: The rack, which is under the transparent tracing paper having the gear pitch circle, is 
visible though this paper. The profile of the rack is now traced on this paper by a sharp pencil. 

Step 6: Now, shift and rotate the paper, so that  the pointsa of rack and 1 of gear coincide. This 
means that  the pitch line of the rack has now rolled on the pitch circle, so that this line is now 
tangent to the circle at point 1. In this condition, the radial line through 1 will be exactly 
superimposed on the parallel line through a of the rack. Draw the outline of the rack a s  before. 
Next, shift and rotate the paper so that  points h and 2 coincide in the above manner and draw 
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Fig. A.4 Effect of number of teeth zand correction factor xon shape of teeth 
conforming to the Basic Rack ps per IS: 2535. 

Based on MAAG Taschenbuch of Ws. MAAG Zahnraeder AG, Zurich, Switzerland, 2nd ediition 
1985, Fig. no. 1.57, p. 85 

the rack outline. Repeat the whole process for all the points on both sides of the centre line, 
pairing c - 3 ..., h - 8,  a' - l', ... h' - 8'. Care should be taken to ensure that the pitch 
line of the rack is always tangent to the pitch circle at all successive points. 

Step 7: The desired profile is the envelope of the rack profiles thus drawn. Pass a smooth curve 
to delineate this envelope. It can be seen from Fig. A.2 (b) that the tooth profiles are gradually 
taking shape. It is particularly noticeable in case of the middle tooth in the figure. When the 

A A A A h  
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Fig. A S  Corrected tooth profiles made by generation method 

CUTTER I 

Fig. A.6 Undercut teeth 
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Profile Reference Line 

Pitch Circle 

Fig. A.7 Tooth profiles with different correction factors 

whole process iscompleted, the tooth profiles will look as shown in Fig. A.3. The tip circle is then 
drawn to mark off the boundary of the gear teeth. 

By shifting the pitch line by an amount equal to x 'm and proceeding as before, reasonably 
accurate profiles of corrected toothing can be generated on paper. 

Theshapeof the toothisafunction ofthenumberofteeth ofthegear and thecorrectionfactor, 
if any. Figure A.4 shows the relation between the number of teeth vis-a-vis the correction 
factor,as far  as the tooth shape is concerned. I t  will be noticed that  the influence of the correction 
factor, positive or negative, in determining the ultimate shape of the tooth diminishes markedly 
with the increase of number of teeth of the gears. In this connection, see Sec. 2.12. 

Figure A.5 shows the corrected tooth profiles made by generation method. In  Fig. A.6, 
undercut teeth have been shown. In Fig. A.7, comparative tooth profiles ofgears having the same 
module, number ofteeth, etc. but with different magnitudes ofcorrection factor have been shown. 
These are given as an exercise for the reader, so that  he can draw tooth profiles with different 
amounts of correction factor by means of the method described above and then compare those 
with the given figures. Figure A.7 (a) shows a profile with correction factor zero, A.7 (b) with the 
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Fig. A.8 Tooth checking by base tangent length method 

Fig. A.9 Tooth checking by chordal tooth thickness and span measurement methods 
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right amount of correction factor relevant for the particular gear and A.7 (c) with too high a 
correction factor (peaked tooth). 

A preliminary check as to the correctness of the drawn profile can be made on the drawing 
board by using the principle of “base tangent length” method of measurement described in 
Sec. 2.28. Having calculated the values of z’and W as per the formula given therein, the length 
Won the drawing can be checked against its calculated value as shown in Fig. A. &Here, the 
anvils represent the parallel scales, set squares or any other drawing instrument used for the 
purpose of measurement of the value of W. 

In  Sec. 2.28, we have seen that the base tangent length method of tooth checking has its own 
limitations. It cannot be employed in case of a helical gear having high helix angle coupled with 
comparatively narrow tooth width, which may not permit to span the required tooth distance W 
ifz’is too high. In such cases, checking by measurement of chordal tooth thickness of individual 
tooth is resorted to. Besides, if the tooth size is very large, this method may be the only choice 
left for practicable measurement. Both of these methods have been represented in Fig. A.9. 
Depending upon his discretion and practical consideration, the designer has to decide upon the 
most convenient method and choose (or devise) a suitable gadget accordingly, so that  tooth 
checking can be made on the drawing board. 
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Construction of Cycloidal Gear Tooth 

Geometrical Method 

When a circle rolls on a straight line, a point on the circumference of the circle traces a path. This 
path is the cycloid curve. The curve can be drawn by solving its characteristic equations by 
assigning arbitrary values to  the variables in the equations and then plotting the resulting 
values on paper and passing a smooth curve joining the points thus obtained. The curve can be 
drawn geometrically as explained below. 

Cycloid 
Let the circle of radius 0-T in Fig. B. l  (a) roll on the straight lineT-6'. One half of the circle is 
then divided into any number of equal parts. In this case, we have divided the semi-circle into 
sixparts, denoted by the arcs T-1,1-2,2-3, ..., 5-6. These arcs are then laid off on the straight line 
T-6',sothatarcT-l= straightlineT-l',arc 1-2=straightline 1'- 2', etc. (Itisobvious thathigher 
the number of arcs in which the semi-circle is divided, more accurate will be the resultingcurve.) 
Next, perpendiculars are erected on the points 1',2',3', etc ofT-6'. Through the points 1,2,3, etc., 
whichare already locatedon the semi-circle,linesparallel toT-6'aredrawn. Theselines intersect 
the diameter of the circle at points l,, 2,, 0, 4,, etc. They also intersect the perpendiculars at 
points 1",2",3", etc. From l", the horizontal line 1"- 1, is cut in such a way that 1"- a = 1-1,. 
Similarly, portions 2" -b = 2-2,, etc., are laid off, locatingpoints u,h,c,d,e, etc. A smooth curve 
is then drawn through these points. This curve T-a-h-c-d-e-f(G") is the cycloid curve. 

Epicycloid 
When the generating circle rolls on the outside periphery of another circle, then a point on the 
generating circle traces an epicycloid in similar fashion as the cycloid. As shown in Fig. B.l  (b), 
the epicycloid can be drawn thus as before, the semicircumference of the rolling circle being 
divided into six equal arcs, viz. T-l,1-2,2-3,, etc. On the directing circle of radiusAT, lay off arcs 
so that  arc T-1' = arc T-1, arc 1'-2 = arc 1-2.etc. as shown in the figure. Draw radial lines joining 
the centre A with l', 2', 3', etc. Next, draw arcs through points 1,2,3, etc. These arcs intersect 
the diameter T-6 a t  l,, 2,,3,, etc., as well as the radial lines a t  l", 2",3", etc. Then on the arc 1" 
- l,, lay off a distance from 1" so that  1"-a = 1-l,, locating the point a. In similar manner, points 
a,h,c, etc., are obtained. The curve T-a-h-c-d-e-f (6') is the epicycloid. 
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(a) CYCLOID 

(b) EPICYCLOID 

(c) HYPOCYCLOID 
Fig. B.l Generation of cycloidal curves 
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Hypocycloid 
When the generating circle rolls on the inside penphery of the directing circle, a point on the 
circumference of the generating circle traces a path known as the hypocycloid curve. As shown 
in Fig. B.2 (c) the hypocycloid T-a-b-c-d-e-f(G") can be drawn in the similar manner as in the case 
of a n  epicycloid. 

Fig. B.2 Cycloidal tooth 

Graphical Method 

For drawing the above curves accurately, graphical method may be adopted as indicated before. 
The relevant equations ofthe curves, which are given below, may be solved after assigningproper 
values for the variables and then the curves can be plotted on a graph paper or a white sheet of 
paper, choosing a proper scale. 

Cycloid 
The equations for the cycloid are 

x = a ($ - sin $ ) 

y = a (1-cos $ )  

where a = the radius of the rolling circle. The origin of the curve is at the intersection of the 
x-axis and the y-axis with # = 0. 

Epicycloid 
The equations for the epicycloid are 

x = (a  + b)  cos# - a cos (7 a + b  @) 
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y = (a  + b) s in@ - a sin - (" 1 41 
where a = the radius of the rolling or generating circle 

The origin of the curve is at the intersection of the directing circle and the x-axis in the 1st 
quadrant with @ = 0. 

Hypocycloid 
The equations for the hypocycloid are 

b = the radius of the directing or pitch circle 

x = ( a  - b) C O S @  + b COS - (" i 4 )  

y = ( a -  

where a = the radius of the directing or pitch circle 

The origin of the curve is at the intersection of the directing circle and the x-axis in the 1st 
quadrant with 4 = 0. 

b = the radius of the rolling or the generating circle 
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Construction of Conjugate Profile 

As explained in Chap. I, conjugate profiles are those curves which conform to conjugate action, 
that is, the two profiles in mesh make it possible for the driving and the driven components (of 
which the two profiles are the mating curves) t o  have a constant angular velocity ratio. We have 
also seen that  gears with teeth made of involute or cycloidal surfaces follow this rule. 

Apart from gears, it is sometimes required to  have a conjugate profile when one profile and 
other relevant data are given. With the help of the law ofgearing, this can be achieved. As stated 
earlier, according to this law, the common normal to the two mating surfaces at any point of 
contact must always pass through a fixed point, called pitch point P, situated on the line of 
centres, irrespective of the position of the point of contact during the course of action. We shall 
now see how we can draw the second profile corresponding t o  the first one whirh is given. 

In Fig. C-1 (a)A lF , is the profile for which the conjugate profile is required to be constructed. 
The pitch circles of the two rotating components are given as  shown. They intersect the line of 
centres O,O, at the pitch point P . 

Consider any point B, on the given profile. Draw a tangent to the curve a t  B, . Drop a 
perpendicular BIB’, on pitch circle 1. Now, B is the point where the two conjugate profiles 
originally met and B, is the point on profile 2 which met B ,  a t  B when the two profiles were in 
contact at that  paint, i.e. a tB.  In other words, the pointB, and B merged with B when the two 
profiles were in contact a t  B. The problem now is to find points B and B,. 

To achieve this, profile 1 must be rotated back around centre 0, till the point B’, comes to 
pitch point P. Point B, is now rotated back as shown by the arrow. With P as centre, draw an  arc 
withradiusB,B’, whichcutsthearcfromB, a t B  so thatPB=B,  B’,.ThepointBis thuslocated. 

Now, since the two pitch circles are in rollingcontact (without slippage), if the pointB’, of pitch 
circle 1 is rotated back to  P,  an  equal amount of arc lenj$h ofpitch circle 2 is also simultaneously , 
brought back to P. I n  other words 

9 -  or B,P = B,P arc BIP = arc BiP 
Point B’, is thus located. 

To find the required point B , on the second conjugate profile, draw an  arc from B with 0 , as 
centre as shown by the arrow. With B’, as  centre, draw an arc with radius equal to B lB’l. This 
arc meets the arc from B at B, so that  B‘@, =BIB‘,. Point B, is the desired point on the second 
conjugate curve corresponding to B,  of the first curve. 
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c GWEN PROFILE 
CONSTRUCTED 

s 

(a) (b) (C) 

Fig. C.l Construction of conjugate profile 

To summarize, B is the original point of contact of th2 two conjugate profiles. After mutual 
rotation, the separated points on the two profiles now occupy the positions B and B,. When in 
contact at B, the common normal to the two profiles passing through the pitch point is BP. 

I n  a similar manner, the complete conjugate profileA ,F , can be constructed point by point. 
The curved line AFis the line of contact, i.e. the line on which all the points ofcontact at different 
stages lie. 

It becomes sometimes difficult t o  lay equal arcs when the radii are different. A practical and 
more or less accurate method is described below with the aid of Fig. C . l  (b and c). 

Arc s of Fig. C.l(b) is given. It is required to lay an  arc equal in length on the circle in Fig. 
c.1 (c). 

Now, we join a with b to get the chord ab. Bisect ab. The radii rl and r2 are known and ab can 
be measured off by a suitable scale. 

ŝ  = r, x 2 8 ,  = r, x 2 8, 
or 

_a 

e2 = - ‘1 e, 
r2 

(all angles in radians) 

- =  ab r, sin 8 ,  or a b  = 2r, sin 8 ,  2 
Therefore 

sin 8, = - ab or 8, = sin- 1 s  
2 r, 2 r, 

Now, to find cd, we use the relations 

cd 
2 
- = r, sin 8, orcd = 2r2 sin 8, = 2r2 sin 

Hence 

cd = 2r2 sin [: sin -1 a b  
2 r1 
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Since, as stated earlier, r and r are known and the chord ab can be measured, the chord 
2 can be calculated. If this straight length cd is cut off on the circle in Fig. C . l  (c), then the arc 
belonging to the chord cd is equal to 5. 
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Basic Dimensions of Standard Gear Tooth 

(Basic Rack as per IS: 2535) 

All dimensions in mm 

Module Equivalent Circular Addendum Dedendum Whole 
DP Pitch depth 

0.30 84.667 0.943 0.30 0.375 0.675 

0.50 50.800 1.571 0.50 0.625 0.125 
0.60 42.300 1.885 0.60 0.750 1.350 

0.40 63.500 1.257 0.40 0.500 0.900 

0.70 36.286 2.199 0.70 0.875 1.575 
0.80 31.750 2.513 0.80 1.000 1.800 
0.90 28.222 2.827 0.90 1.125 2.025 
1 .00 25.400 3.142 1 .OO 1.250 2.250 

1.25 20.320 3.927 1.25 1.562 
1 S O  16.933 4.71 2 1.50 1.875 
1.75 14.514 5.498 1.75 2.188 
2.00 1 2.700 6.283 2 .oo 2.500 

2.25 11.289 7.069 2.25 2.81 2 
2.50 10.160 7.854 2.50 3.125 
2.75 9.236 8.639 2.75 3.438 
3.00 8.466 9.425 3.00 3.750 

3.25 7.816 10.218 3.25 4.062 
3.50 7.257 10.996 3.50 4.375 
3.75 6,773 1 1.781 3.75 4.688 
4.00 6.350 12.566 4.00 5.000 

4.50 

2.812 
3.375 
3.938 
4.500 

5.062 
5.625 
6.188 
6,750 

7.31 2 
7.875 
8.438 
9.000 

5.644 14.137 4.50 5.625 10.125 
(Contd.) 
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Module Equivalent Circular Addendum Dedendum Whole 
DP Pitch depth 

5 .OO 
5.50 
6.00 

6.50 
7.00 
8.00 
9.00 

10.00 
1 1 .oo 
12.00 
13.00 

14.00 
15.00 
16.00 
18.00 

20.00 
22.00 
24.00 
27.00 

30.00 
33.00 
36.00 
39.00 

42.00 
45.00 
50.00 
55.00 

60.00 
65.00 
70.00 
75.00 

5.080 
4.618 
4.233 

3.008 
3.628 
3.175 
2.822 

2.540 
2.309 
2.117 
1.954 

1.814 
1.603 
1.587 
1.41 1 

1.270 
1.155 
1.058 
0.941 

0.847 
0.770 
0.706 
0.651 

0.605 
0.564 
0.508 
0.462 

0.123 
0.391 
0.363 
0.339 

15.708 
17.279 
18.850 

20.428 
21.991 
25.132 
28.274 

31.416 
34.558 
37.699 
40.841 

43.982 
47.124 
50.266 
56.549 

62.832 
69.115 
75.398 
84.823 

94.248 
103.673 
113.097 
122.522 

131.947 
141.372 
157.080 
172.788 

188.486 
204.204 
219.91 1 
235.619 

5.00 
5.50 
6.00 

6.50 
7.00 
8.00 
9.00 

10.00 
1 1 .oo 
12.00 
13.00 

14.00 
15.00 
16.00 
18.00 

20.00 
22.00 
24.00 
27.00 

30.00 
33.00 
36.00 
39.00 

42.00 
45.00 
50.00 
55.00 

60.00 
65.00 
70.00 
75.00 

6.250 
6.875 
7.500 

8.125 
8.750 

10.000 
1 1.250 

12.500 
13.750 
15.000 
16.250 

17.500 
18.750 
20.000 
22.500 

25.000 
27.500 
30.000 
33.750 

37.500 
41.250 
45.000 
48.750 

52.500 
56.250 
62.500 
68.750 

75.000 
81.250 
87.500 
93.750 

1 1.250 
12.375 
13.500 

14.625 
15.750 
18,000 
20.250 

22.500 
24.750 
27.000 
29.250 

31.500 
33.750 
36.000 
40.500 

45.000 
49.500 
54.000 
60.750 

67.500 
74.250 
8 1 .ooo 
87.750 

94.500 
101.250 
1 12.500 
123.7% 

135.000 
146.250 
157.500 
168.750 

Nore: Equivalent DP is given for comparison only 
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Gear Materials 

SI. Material IS: IS: Symbol IS: Symbol Typical uses 
No. No. (new) fold) 

1 Cast 210 FG 200 Grade 20 Gears of light duty work, 
2 Iron FG 260 Grade 25 low speed (up to 0.8 m/s), 

hand-operated winches, etc. 

3 Cast iron with 1865 SG 50017 
4 spheroidal graphite SG 60013 

Gears with increased load 
capacity and resistance to 
contact stress 

5 Cast 1030 Grade: 26-52 Grade 2 Medium speed gears (up to 
6 steel Grade: 30-57 Grade 1 8m/s). cranewheel gears. crane 

cross travel and long travel 
gears 

7 Standard or Fe 410 
8 structural 1570 Fe 490 
9 steel Fe 620 

10 Fe 690 

St 42 
St 50 
St 63 
ST 70 

For general purpose gears 

11 45 C8 c 45 Low speed, light duty gears 
12 Heat 1570 60 C4 C 60 Medium speed, medium duty 
13 treatable 55Cr 70 gears. Gears tor gear oil 
14 steel 37 Si 2 Mn 90 pumps. Gears for conventional 
15 gear boxes. Cross and long 

travelgears for cranes. Medium 
to high speed gears, machine 
tool gear boxes, etc. 

40 Cr 1 Mo 28 

16 10 c4 c10 Heavy duty transmission 
17 Case 15 C4 C15 gears 
18 carburising 1570 17 Mn 1 Cr 95 General purpose gear boxes 
19 steel 20 Mn Crl where hardened gear surface is 

imperative. Hoisting, crane, 
timing gears involving medium 
to heavy duty 

(Contd) 
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SI. Material IS: IS: Symbol lSrSymbo1 Typical uses 
No. No. (new) (old) 

20 Flame or 45 c 8 c 45 For gears of heavy duty 
21 induction 1570 40Cr 4 40 Cr 1 For gears with high surface 
22 hardening 37 Si 2 Mn 90 hardness and whe:e the 

steel stresses are high and exacting 

23 Steel hardened 1570 40Cr 4 40 C r l  Gears for superficially hard 
24 in cynide bath 37 Si 2 Min 90 tooth surfaces ’ 

Ult.ten St. Yield st. End limit Perm. Ben. St. Sur. fat. Str. Br. Hardness 
Plc HB Heat 

Treatment 
SI. =ut O”(0.2) 0. 040 
No. 

Average values (N/mmz) 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

Nom: 

200 - 90 35 295 1670 - 
260 - 115 45 3 75 2060 - 
500 320 - 1 20 470 1960 
600 370 - 150 550 2260 
520 260 205 90 365 1470 Annealed 
5 70 300 235 110 490 1728 
410 250 220 110 335 1230 
490 290 255 1 20 390 1470 
620 380 305 125 440 1770 Annealed 
690 410 370 160 510 2040 
600 380 320 130 490 1810 
700 430 370 150 600 2060 Quenched 
900 650 400 1 70 745 2550 hardened and 

375 190 640 2160 tempered 
700 . 500 500 185 745 3340 
500 300 260 130 1630 5790 
500 300 270 155 1 730 6250 Hardened 
800 590 250 1 790 6380 
980 685 260 1 790 6380 
640 390 180 1640 5840 
080 640 200 1620 5760 Hardened 
080 640 1550 5490 

1370 1640 5840 Hardened 
1470 980 1520 5400 

1. In most cases, the strength values given are the average ones and are for guidance only. In some cases, where 
a range is specified in the relevant codes from which the strength values have be& taken, the lower values are 
givon here for safety. 

2. Values of oe, ob p, and HB for Indian steels are mainly based on those of equivalent or near-equivalent foreign 
steels. This is due to lack of sufficient experimental data on Indian steels. These values, however, can be used 
for calculation. 

3. Except surface fatigue strength (pJ the strength values in case of case-hardened steels refer to core properties. 
For case-hardened steels, the values of p, and HB shown here are typical values obtained after surface 
hardening. 

4. Thevalues of permissible bending stress oware guiding values only They can be changed, depending on loading 
conditions. 
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Table of Contact Ratios (CR) of 
Spur Gears in Mesh 

Based on Grundzuege der Verzahnung, Thomas, 1957 Edition, table no. 11.10, p.247. 
Carl Hanser Verlag, Munich. 

Addendum = m. pressure angle = 20' 

=, =, 
12 13 14 15 16 

12 1.095 
13 1.181 1.269 
14 1.257 1.355 1.442 
15 1.452 1.481 

17 1.497 1.506 
18 1.505 1.514 
19 1.512 1.521 
20 1.519 1.527 

16 1.490 1.498 

21 1.525 1.533 
22 1.531 1.539 
23 1.536 1.545 

25 1.547 1.555 
26 1.548 1,559 

24 1.542 1.550 

27 1.564 
28 1.568 
29 1.572 
30 1.576 

1.257 1.355 1.452 1.548 1.643 m 

~- 
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2 ,  

17 18 19 20 25 30 50 100 200 
*, 
17 1.514 
18 1.522 
19 1.529 
20 1.535 
21 1.541 
22 1.547 
23 1.553 
24 1.558 
25 1.563 
26 1.567 
27 1.572 
28 1.576 
29 1.580 
30 1.584 
40 1.616 
50 1.637 

100 1.683 
200 1.714 
500 1.733 

OD 1.748 

1.529 
1.536 
1.542 
1.548 
1.554 
1.560 
1.565 
1.570 
1.574 
1.579 
1.583 
1.587 
1.591 
1.622 
1.643 
1.689 
1.720 
1.739 
1.754 

1.543 
1.549 
1.555. 
1.561 
1.567 
1.572 
1.577 
1.581 
1.586 
1.590 
1 :594 
1.598 
1.629 
1.650 
1.696 
1.727 
1.746 
1.761 

1.556 
1.562 
1.568 
1.574 
1.579 
1.504 
1.588 
1.593 
1.597 
1.601 
1.605 
1.636 
1.657 
1.703 
1.734 
1.753 
1.768 

1.61 1 
1.615 
1.620 
1.624 
1.628 
1.632 1.656 
1.664 1.686 
1.685 1.707 1.758 
1.731 1.753 1.804 1.850 
1.762 1.784 1.835 1.881 1.912 
1.781 1.803 1.854 1.900 1.931 
1.796 1.818 1.867 1.916 1.946 
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Tables of Trigonometrical Functions 

Sine 0‘ . . . .45’ 

Minutes for sine 
Deg. 0‘ 10’ 20’ 30’ 40‘ 50’ 60‘ - 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

0.0000 
0.01 75 
0.0349 
0.0523 
0.0698 
0.0872 
0.1045 
0.1219 
0.1392 
0.1564 

0.0029 
0.0204 
0.0378 
0.0552 
0.0727 
0.0901 
0.1074 
0.1248 
0.1421 
0.1593 

0.0058 
0.0233 
0.0407 
0.0581 
0.0756 
0.0929 
0.1103 
0.1276 
0.1449 
0.1622 

0.0087 
0.0262 
0.0436 
0.0610 
0.0785 
0.0958 
0.1132 
0.1305 
0.1478 
0.1650 

0.01 16 
0.0291 
0.0465 
0.0640 
0.0814 
0.0987 
0.1 161 
0.1334 
0.1507 
0.1679 

0.0145 
0.0320 
0.0494 
0.0669 
0.0843 
0.1016 
0.1190 
0.1363 
0.1536 
0.1708 

0.01 75 
0.0349 
0.0523 
9.0698 
0.0872 
0.1045 
0.1219 
0.1392 
0.1564 
0.1736 

89 

87 
86 
85 
84 

82 
81 
80 

88 

a3 

10 
1 1  
12 
13 
14 
15 
16 
17 
18 
19 

0.1736 
0.1908 
0.2079 
0.2250 
0.2419 

0.2756 
0.2924 
0.3090 
0.3256 

0.2588 

0.1765 
0.1937 
0.2108 
0.2278 
0.2447 
0.2616 

0.2952 
0.31 18 
0.3283 

0.2784 

0.1794 
0.1965 
0.2136 
0.2306 
0.2476 
0.2644 
0.2812 
0.2979 
0.3145 
0.331 1 

0.1822 
0.1994 
0.2164 
0.2334 
0.2504 
0.2672 
0.2840 
0.3007 
0.31 73 
0.3338 

0.1851 
0.2022 
0.2193 
0.2363 
0.2532 
0.2700 

0.3035 
0.3201 
0.3365 

0.2868 

0.1880 
0.2051 
0.2221 
0.2391 
0.2560 
0.2728 
0.2896 
0.3062 
0.3228 
0.3393 

0.1908 
0.2079 
0.2250 
0.2419 

0.2756 
0.2924 
0.3090 
0.3256 
0.3420 

0.2588 

79 
78 
77 
76 
75 
74 
73 
72 
71 
70 

20 
21 
22 
23 
24 
25 
26 
27 
28 

0.3420 
0.3584 
0.3746 
0.3907 
0.4067 
0.4226 

0.4540 
0.4695 

0.4384 

0.3448 
0.361 1 
0.3773 
0.3934 
0.4094 
0.4253 
0.4410 
0.4566 
0.4720 

0.3475 
0.3638 
0.3800 
0.3961 
0.4120 
0.4279 
0.4436 
0.4592 
0.4746 

0.3502 
0.3665 
0.3827 
0.3987 
0.4147 
0.4305 
0.4432 
0.461 7 
0.4772 

0.3529 
0.3692 
0.3854 
0.4014 
0.4173 
0.4331 
0.4488 
0.4643 
0.4797 

0.3557 
0.3719 
0.3881 
0.4041 
0.4200 
0.4358 
0.4514 
0.4669 
0.4823 

0.3584 
0.3746 
0.3907 
0.4067 
0.4226 

0.4540 
0.4695 
0.4848 

0.4384 

69 
68 
67 
66 
65 
64 
63 
62 
61 

29 0.4848 0.4874 0.4899 0.4924 0.4950 0.4975 0.5000 60 
(Contd.) 
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Sine 0' .... 45' 

Minutes for sine 
Deg. 0' 10' 20' 30' 40' 50' 60' 

30 0.5000 0.5025 0.5050 0.5075 0.5100 0.5125 0.51 50 59 
31 0.5150 0.51 75 0.5200 0.5225 0.5250 0.5275 0.5299 58 
32 0.5299 0.5324 0.5348 0.5373 0.5398 0.5422 0.5446 57 

. 33 0.5446 0.5471 0.5495 0.5519 0.5544 0.5568 0.5592 56 
34 0.5592 0.5616 0.5640 0.5664 0.5688 0.5712 0.5736 55 
35 0.5736 0.5760 0.5783 0.5807 0.5831 0.5854 0.5878 54 
36 0.5878 0.5901 0.5925 0.5948 0.5972 0.5995 0.6018 53 
37 0.6018 0.6041 0.6065 0.6088 0.6111 0.6134 0.6157 52 
38 0.6157 0.6180 0.6202 0.6225 0.6248 0.6271 0.6293 51 
39 0.6293 0.6316 0.6338 0.6361 0.6383 0.6406 0.6428 50 

40 0.6428 0.6450 0.6472 0.6494 0.651 7 0.6539 0.6561 49 
41 0.6561 0.6583 0.6604 0.6626 0.6648 0.6670 0.6691 48 
42 0.6691 0.6713 0.6734 0.6756 0.6777 0.6799 ' 0.6820 47 
43 0.6820 0.6841 0.6862 0.6884 0.6905 0.6926 0.6947 46 
44 0.6947 0.6967 0.6988 0.7009 0.7030 0.7050 0.7071 45 

60' 50' 40' 30' 20' 10' 0' Deg. 
Minutes for cosine 

Cosine 45'. . .90' 

Sine 45' ....90' 

Minutes for sine 
Deg. 0' 10' 20' 30' 40' 50' 60' 

45 0.7071 0.7092 0.7112 0.7133 0.7153 0.7173 0.7193 44 
46 0.71 93 0.7214 0.7234 0.7254 0.7274 0.7294 0.731 4 43 
47 0.7314 0.7333 0.7353 0.7373 0.7392 0.741 2 7.7431 42 
48 0.7431 0.7451 0.7470 0.7490 0.7509 0.7528 0.7547 41 
49 0.7547 0.7566 0.7585 0.7604 0.7623 0.7642 0.7660 40 

50 
51 
52 
53 
54 
55 
56 
57 
58 
59 

0.7660 
0.7771 
0.7880 
0.7986 
0.8090 
0.8192 
0.8290 
0.8387 
0.8480 
0.8572 

0.7679 
0.7790 
0.7898 
0.8004 
0.8107 
0.8208 
0.8307 
0.8403 
0.8496 
0.8587 

0.7698 
0.7808 
0.7916 
0.8021 
0.81 24 
0.8225 
0.8323 
0.8418 
0.851 1 
0.8601 

0.7716 
0.7826 
0.7934 
0.8039 
0.8141 
0.824 1 
0.8339 
0.8434 
0.8526 
0.8616 

0.7735 
0.7844 
0.7951 
0.8056 
0.81 58 
0.8258 
0.8355 
0.8450 
0.8542 
0.8631 

0.7753 
0.7862 
0.7969 
0.8073 
0.81 75 
0.8274 
0.8371 
0.8465 
0.8557 
0.8646 

0.7771 
0.7880 
0.7986 
0.8090 
0.8192 
0.8290 
0.8387 
0.0480 
0.8572 
0.8660 

39 
38 
37 

,36 
35 
34 
33 
32 
31 
30 

~~ 

(Contd) 
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(Contd) 

Sine 45' ....W 

Minutes for sine 
Deg. 0' 10' 20' 30' 40' 50' 60' 

60 
61 
62 
63 
64 
65 
66 
67 
68 
69 

70 
71 
72 
73 
74 
75 
76 
77 
78 
79 

0.8660 
0.8746 
0.8829 
0.8910 
0.8988 
0.9063 
0.91 35 
0.9205 
0.9272 
0.9336 

0.9397 
0.9455 
0.951 1 
0.9563 
0.9613 
0.9659 
0.9703 
0.9744 
0.9781 
0.9816 

0.8675 
0.8760 
0.8843 
0.8923 
0.9001 
0.9075 
0.91 47 
0.9216 
0.9283 
0.9346 

0.9407 
0.9465 
0.9520 
0.9572 
0.9621 
0.9667 
0.9710 
0.9750 
0.9787 
0.9822 

0.8689 
0.8774 
0.8857 
0.8936 
0.9013 
0.9088 
0.91 59 
0.9228 
0.9293 
0.9356 

0.941 7 
0.9474 
0.9528 
0.9580 
0.9628 
0.9674 
0.971 7 
0.9757 
0.9793 
0.9827 

0.8704 
0.8788 
0.8700 
0.8949 
0.9026 
0.9100 
0.91 71 
0.9239 
0.9304 
0.9367 

0.9426 
0.9483 
0.9537 
0.9588 
0.9636 
0.9681 
0.9724 
0.9763 
0.9799 
0.9833 

0.8718 
0.8802 
0.8884 
0.8962 
0.9038 
0.91 12 
0.9182 
0.9250 
0.9315 
0.9377 

0.8732 
0.8816 
0.8897 
0.8975 
0.9051 
0.91 24 
0.9194 
0.9261 
0.9325 
0.9387 

0.8746 
0.8829 
0.8910 
0.8988 
0.9063 
0.91 35 
0.9205 
0.9272 
0.9336 
0.9397 

29 
28 
27 
26 
25 
24 
23 
22 
21 
20 

0.9436 
0.9492 
0.9546 
0.9596 
0.9644 
0.9689 
0.9730 
0.9769 
0.9805 
0.9838 

0.9446 
0.9502 
0.9555 
0.9605 
0.9652 
0.9696 
0.9737 
0.9775 
0.981 1 
0.9843 

0.9455 
0.951 1 
0.9563 
0.9613 
0.9659 
0.9703 
0.9744 
0.9781 
0.9816 
0.9848 

19 
18 
17 
16 
15 
14 
13 
12 
11 
10 

80 
81 
82 
83 
84 
85 
86 
87 
88 
89 

0.9848 
0.9877 
0.9903 
0.9925 
0.9945 
0.9962 
0.9976 
0.9986 
0.9994 
0.99985 

0.9853 
0.9881 
0.9907 
0.9929 
0.9948 
0.9964 
0.9978 
0.9988 
0.9995 
0.99989 

0.9858 
0.9886 
0.991 1 
0.9932 
0.9951 
0.9967 
0.9980 
0.9989 
0.9996 
0.99993 

0.9863 
0.9890 
0.9914 
0.9936 
0.9954 
0.9969 
0.9981 
0.9990 
0.9997 
0.99996 

0.9868 
0.9894 
0.9918 
0.9939 
0.9957 
0.9971 
0.9983 
0.9992 
0.9997 
0.99998 

0.9872 
0.9899 
0.9922 
0.9942 
0.9959 
0.9974 
0.9985 
0.9993 
0.9998 
0.99999 

0.9877 
0.9903 
0.9925 
0.9945 
0.9962 
0.9976 
0.9986 
0.9994 
0.99985 
1 .oooo 

~ 

9 
8 
7 
6 
5 
4 
3 
2 
1 
0 

60' 50' . 30' 20 10' 0' aa. 
Minutes for cosine - 

Cosine 0'...45' 



Appendix G A.29 

(Contd) 

Tangent 0' .... 45' 

Minutes for tangent 
Dea. 0' 10' 20' 30. 40' 50' 60' 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

0.0000 
0.01 75 
0.0349 
0.0524 
0.0699 
0.0875 
0.1051 
0.1228 
0.1405 
0.1584 

0.0029 
0.0204 
0.0378 
0.0553 
0.0729 
0.0904 
0.1080 
0.1257 
0.1435 
0.1614 

0.0058 
0.0233 
0.0407 
0.0582 
0.0758 
0.0934 
0.1110 
0.1287 
0.1465 
0.1644 

0.0087 
0.0262 
0.0437 
0.0612 
0.0787 
0.0963 
0.1139 
0.1317 
0.1495 
0.1673 

0.01 16 
0.02Q1 
0.0466 
0.0641 
0.0816 
0.0992 
0.1169 
0.1346 
0.1524 
0.1703 

0.0145 
0.0320 
0.0495 
0.0670 
0.0846 
0.1022 
0.1198 
0.1376 
0.1554 
0.1733 

0.0175 
0.0349 
0.0524 
0.0699 
0.0875 
0.1051 
0.1228 
0.1405 
0.1584 
0.1763 

89 
88 
87 
86 
85 
84 
83 
82 
81 
80 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

0.1763 
0.1944 
0.21 26 
0.2309 
0.2493 
0.2679 
0.2867 
0.3057 
0.3249 
0.3443 

0.1793 
0.1974 
0.2156 
0.2339 
0.2524 
0.271 1 
0.2899 
0.3089 
0.3281 
0.3476 

0.1823 
0.2004 
0.2186 
0.2370 
0.2555 
0.2742 
0.2931 
0.31 21 
0.3314 
0.3508 

0.1853 
0.2035 
0.221 7 
0.2401 
0.2586 
0.2773 
0.2962 
0.3153 
0.3346 
0.354 1 

0.1883 
0.2065 
0.2247 
0.2432 
0.261 7 
0.2805 
0.2994 
0.3185 
0.3378 
0.3574 

0.1914 
0.2095 
0.2278 
0.2462 
0.2648 
0.2836 
0.3026 
0.321 7 
0.341 1 
0.3607 

0.1944 
0.2126 
0.2309 
0.2493 
0.2679 
0.2867 
0.3057 
0.3249 
0.3443 
0.3640 

79 
78 
77 
76 
75 
74 
73 
72 
71 
70 

20 0.3640 0.3673 0.3706 0.3739 0.3772 0.3805 0.3839 69 
21 0.3839 0.3872 0.3906 0.3939 0.3973 0.4006 0.4040 68 
22 0.4040 0.4074 0.4108 0.4142 0.4176 0.4210 0.4245 67 
23 0.4245 0.4279 0.4314 0.4348 0.4383 0.4417 0.4452 66 
24 0.4452 0.4487 0.4522 0.4557 0.4592 0.4628 0.4663 65 
25 0.4663 0.4699 0.4734 0.4770 0.4806 0.4841 0.4877 64 
26 0.4877 0.49 13 0.4950 0.4986 0.5022 0.5059 0.5095 63 
27 0.5095 0.5132 0.5169 0.5206 0.5243 0.5280 0.5317 62 
28 0.531 7 0.5354 0.5392 0.5430 0.5467 0.5505 0.5543 61 
29 0.5543 0.5581 0.5619 0.5658 0.5696 0.5735 0.5774 60 

30 0.5774 0.581 2 0.5851 0.5890 0.5930 0.5969 0.6009 59 
31 0.6009 0.6048 0.6088 0.6128 0.6168 0.6208 0.6249 58 
32 0.6249 0.6289 0.6330 0.6371 
33 0.6494 0.6536 0.6577 0.6619 
34 0.6745 0.6787 0.6830 0.6873 
35 0 7002 0.7046 0.7089 0.7133 
36 0.7265 0 7310 0.7355 0.740 
37 0.7536 0 7581 07627 07673 
38 0 7813 0 7860 07907 07954 
39 0 8098 0 8146 08195 08243 

- 

0.6412 
0.6661 
0.6916 
0.71 77 
0.734 
0.7720 
0.8002 
0.8292 

0.6453 
0.6703 
0.6959 
0.7221 
0.7490 
0.7766 
0.8050 
0.8342 

0.6494 
0.6745 
0.7002 
0.7265 
0.7536 
0.7813 
0.8098 
0.8391 

57 
56 
5s 
54 
53 
52 
51 
50 

(Contd) 
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(Contd) 
~~ ~ ~ 

Tangent 45' ....90' 

Minutes for tangent 
0' 10' 20' 30 * 40' 50' So' 

40 0.8391 0.8441 0.8491 0.0541 0.0591 0.8642 0.8693 49 
41 0.8693 0.8744 0.8796 0.8847 0.8899 0.8952 0.9004 48 
42 0.9004 0.9057 0.9110 0.9163 0.9217 0.9271 0.9325 47 
43 0.9325 0.8380 0.9435 0.9490 0.9545 0.9601 0.9657 46 
44 0.9657 0.9713 0.9770 0.9827 0.9884 0.9942 1 .oooo 45 

60' 50' 40' 30' 20' IO' 0' D.g. 
Minutes for cotangent 

Cotangent 45'. . .90' 

Tangent 45' ....go' 

Minutes for tangent 
WJ. 0' 10' 20' 30' 40' 50' 60' 

45 1 .woo 1.0058 1.0117 1.0176 1.0235 1.0295 1.0355 44 
46 1.0355 1 .M16 1.0477 1.0538 1.0599 1.0661 1.0724 43 
47 1.0724 1.0786 1.0850 1.0913 1.0977 1.1041 1.1106 42 
48 1.1106 1.1171 1.1237 1.1303 1.1369 1.1436 1.1504 41 
49 1.1504 1.1571 1.1640 1.1708 1.1778 1.1847 1.1918 40 

50 1.1918 1.1988 1.2059 1.2131 1.2203 1.2276 1.2349 39 
51 1.2349 1.2423 1.2497 1.2572 1.2647 1.2723 1.2799 38 
52 1.2799 1.2876 1.2954 1.3032 1.3111 1.3190 1.3270 37 
53 1.3270 1.3351 1.3432 1.3514 1.3597 1.3680 1.3764 36 
54 1.3764 1.3848 1.3934 1.4019 1.4106 1.4193 1.428 1 35 
55 1.4281 1.4370 1.4460 1.4550 1.4641 1.4733 1.4826 34 
56 1 .4826 1.4919 1.5013 1.5108 1.5204 1 .so1 1.5399 33 
57 1.5399 1.5497 1.5597 1.5697 1.5798 1.5900 1.6003 32 
58 1.6003 1.61 07 1.6213 1.6318 1.6426 1.6534 1.6643 31 
59 1 6643 1.6753 1.6864 1.6977 1.7090 1.7205 1.7321 30 

80 1 .M21 1.7438 1.7556 1.7675 1.7796 1.7917 1.8041 29 
61 1.8041 1 .E165 1.8291 1.8418 1.8546 1.8676 1.8807 28 
62 1.8807 1.8940 1.9074 1.9210 1.9347 1.9486 1.9626 27 
69 1.9626 1.9768 1.9912 2.0057 2.0204 2.0353 2.0503 26 
64 2.0503 2.0655 2.0809 2.0965 2.1123 2.1283 2.1445 25 
65 2.1445 2.1609 2.1775 2.1943 2.21 13 2.2286 2.2460 24 
66 2.2460 2.2637 2.2817 2.2998 2.3183 2.3369 2.3559 23 
67 2.3559 2.3750 2.3945 2.4142 2.4342 2.4545 2.4751 22 
60 2.4751 2.4960 2.5172 2.5387 2.5605 2.5826 2.6051 21 
69 2.6051 2.6279 2.6511 2.6746 2.6985 2.7228 2.7475 20 

(Contd) 
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(Contd) 

Tangent 45' ....We 

Minutes for tangent 
Deg. 0' 10' 20' 30' 40' 50 * 60' 

70 
71 
72 
73 
74 
75 
76 
77 
78 
79 

2.7475 
2.9042 
3.0777 
3.2709 
3.4874 
3.7321 
4.0100 
4.3315 
4.7046 
5.1446 

2.7725 
2.9319 
3.1084 
3.3052 
3.5261 
3.7760 
4.061 1 
4.3897 
4.7729 
5.2257 

2.7980 
2.9600 
3.1397 
3.3402 
3.5656 
3:8208 
4.1126 
4.4494 
4.8430 
5.3093 

2.8239 
2.9887 
3.1716 
3.3759 
3.6059 
3.8667 
4.1653 
4.5107 
4.9152 
5.3955 

2.8502 
3.01 78 
3.2041 
3.41 24 
3.6470 
3.91 36 
4.2193 
4.5736 
4.9894 
5.4845 

2.8770 
3.0475 
3.2371 
3.4495 
3.689 1 
3.96Y 7 
4.2747 
4.6383 
5.0658 
5.5764 

2.9042 
3.0777 
3.2709 
3.4874 
3.7321 
4.0108 
3.331 5 
4.7046 
5.1446 
5.6713 

19 
18 
17 
16 
15 
14 
13 
12 
11 
10 

80 
81 
82 
83 
84 
85 
86 
87 
88 
89 

5.6713 
6.3138 
7.1154 
8.1444 
9.5144 

1 1.4301 
14.3007 
19.0811 
28.6363 
57.2900 

5.7694 
6.4348 
7.2687 
8.3450 
9.7882 

1 1.8262 
14.9244 
20.2056 
31.2416 
68.7501 

5.8708 
6.5605 
7.4287 
8.5556 

10.0780 
12.2505 
15.6048 
21.4704 
34.3678 
85.9398 

5.9758 
6.6912 
7.5958 
8.7769 

10.3854 
12.7062 
16.3499 
22.9038 
38.1885 

114.5887 

6.0844 
6.8269 
7.7704 
9.0098 

10.71 19 
13.1969 
17.1693 
24.54 18 
42.9641 

171.8854 

6.1970 
6.9682 
7.9530 
9.2553 

1 1.0594 
1.3.7267 
18.0750 
26.4316 
49.1039 

343.7737 

6.3138 
7.1154 
8.1444 
9.5144 

1 1.4301 
14.3007 
19.081 1 
28.6363 
57.2900 

OD 

9 
8 
7 
6 
5 
4 
3 
2 
1 
0 

60' 50' 40' 30' 20' 10' 0' Deg 
Minutes for cotangent 

Cotangent 0' ... 45' 



APPENDIX H 

Involute Functions 

Angle CY inv (I = tan (I - n (radians) 

Degrees 

Minutes 
10 11 12 13 14 

0 
1 
2 
3. 
4 
5 
6 
7 
8 
9 

10 

0.00179 41 
0.00180 31 

1 22 
2 13 
3 05 
3 97 
4 89 
5 81 
6 74 
7 67 
8 60 

0.00239 41 
0.00240 51 

161 
2 72 
3 83 
4 95 
6 07 
7 19 
8 31. 
9 44 

0.00250 57 

0.00311 71 
3 02 
434 
5 67 
699 
8 32 
966 

0.00321 00 
2 34 
3 69 
504 

0.00397 54 
9 09 

0.00400 65 
2 21 
3 77 
534 
6 92 
8 49 

0.00410 08 
166 
3 25 

0.00498 19 
0.00500 00 

1 82 
3 64 
5 46 
729 
9 12 

0.00510 96 
2 80 
4 65 
650 

11 0 00189 54 0 00251 71 0 00326 39 0 00414 85 0.00518 35 
12 0 00190 48 2 85 7 75 6 44 0.00520 22 
13 142 3 99 9 11 8 05 208 
14 2 37 5 13 0 00330 40 9 65 3 95 
15 3 32 6 28 1 85 000421 26 5 82 
16 4 27 7 44 3 22 2 88 7 70 
17 5 23 8 59 4 60 450 958 
18 6 19 9 75 5 98 6 12 000531 47 
19 7 15 0 00260 91 7 36 7 75 3 36 
20 8 12 2 08 8 75 9 38 526 

21 0 00199 09 0 00263 25 0 00340 14 0 0 4 3 1  02 0.00537 16 
22 0 00200 06 4 43 154 2 66 9 07 
23 1 03 5 60 2 94 4 30 0.00540 98 
24 2 01 6 78 4 34 5 95 290 
25 2 99 7 97 5 75 7 60 4 82 
26 3 98 9 16 7 16 9 26 6 74 
27 4 97 0 00270 35 8 58 0 00440 92 8 67 
28 5 96 1 54 0 00350 00 2 59 0 00550 60 
29 6 95 2 74 142 4 26 254 
30 7 95 3 94 2 85 5 93- 4 48 

(Contd) 
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(Contd) 

Angle a inv a = tan a - a (radians) 

Degrees 

Minutes 
10 11 12 13 14 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

0.00208 95 
9 95 

0.00210 96 
1 97 
299 
400 
5 02 
6 05 
7 07 
8 10 

0.00275 15 
636 
7 57 
8 79 

0.00280 01 
1 23 
2 46 
3 69 
4 93 
6 16 

0.00354 28 
5 72 
7 16 
860 

0.00360 05 
150 
296 
4 41 
588 
7 35 

0.00447 61 
9 29 

0.00450 98 
2 67 
4 37 
6 07 
7 77 
9 48 

0.00461 20 
2 91 

0.00556 43 
838 

0.00560 34 
2 30 
4 27 
6 24 
8 22 

0.00570 20 
2 18 
4 17 

41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

0.00219 14 
0.00220 17 

121 
226 
3 30 
4 35 
5 41 
6 47 
7 53 
8 59 

0.00287 41 
8 65 
990 

0.00291 15 
2 41 
3 67 
4 9 4  
6 20 
7 47 
8 75 

0.00368 82 
0.00370 29 

177 
326 
4 74 
6 23 
773 
9 23 

0.00380 73 
22 24 

0.00464 64 
6 36 
809 
9 83 

0.00471 57 
3 31 
506 
6 81 
8 57 

0.00480 33 

0.00576 17 
8 17 

0.00580 17 
2 18 
4 20 
6 22 
8 24 

0.00590 28 
230 
434 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

0.00229 66 
0.00230 73 

180 
288 
396 
5 0 4  
6 13 
7 22 
8 31 

0.00239 41 

0.00300 03 
131 
260 
3 89 
5 18 
6 48 
7 78 
9 08 

0.00310 39 
0.00311 71 

0.00383 75 
5 27 
679 
8 31 
984 

0.00391 37 
2 91 
4 45 
599 

0.00397 54 

0.00482 10 
3 87 
564  
7 42 
9 21 

0.00490 99 
2 79 
458 
6 39 

0.00498 19 

0.00596 38 
8 43 

0.00600 48 
254 
4 6 0  
6 67 
8 74 

0.00610 81 
2 89 

0.00614 98 

Angle a 

Llegrees 

Minutes 

inv n = tan n - a (radians) 

15 16 17 18 19 

0 0.00614 98 0.00749 3 0.00902 5 0.01076 0 0.01271 5 

1 7 07 51 7 05 2 79 1 75 0 
2 9 17 541 07 9 82 2 78 4 
3 0.00621 27 565 10 7 85 3 81 9 
4 3 37 589 13 4 884 85 4 
5 5 48 61 3 16 1 91 5 888 

(COfltd), 



A.34 Appendices 

(Contd) 

Angle a inv a = tan a - a (radians) 

Degrees 

Minutes 
15 16 17 18 19 

6 7 60 
7 9 72 
8 0.00631 84 
9 3 97 

10 6 11 

63 7 
661 
686 
71 0 
73 5 

18 9 946 92 3 
21 6 97 7 95 8 
24 4 0.01 100 8 993 
27 2 03 9 0.01302 8 
29 9 07 1 063 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

0.00638 25 
0.00640 39 

2 54 
4 70 
6 86 
9 02 

0.00651 19 
3 37 
5 55 
7 73 

0.00775 9 
78 4 
80 8 
83 3 
85 7 
a82 
907 
93 2 
95 7 
982 

0.00932 7 
35 5 
383 
41 1 
43 9 
46 7 
49 5 
52 3 
552  
580 

0.01 110 2 
13 3 
16 5 
19 6 
22 8 
260 
291 
32 3 
355 
387 

0.01309 8 
13 4 
16 9 
204 
24 0 
27 5 
31 1 
346 
382 
41 8 

21 0 00659 92 0.00800 7 0.00960 8 0.01141 9 0.01345 4 
22 0.00662 11 03 2 637 451 49 0 
23 4 31 05 7 665 483 52 6 
24 6 52 08 2 69 4 51 5 562 
25 8 73 10 7 72 2 547 598 
26 0 00670 94 13 3 75 1 580 634 
27 3 16 15 8 78 0 61 2 67 0 
28 5 39 18 3 808 644 70 7 
29 7 62 209 83 7 67 7 74 3 
30 9 85 23 4 866 70 9 779 

31 0.00682 09 0.00826 0 0.00989 5 0.01 174 2 0.01381 6 
32 434 28 5 92 4 775 852 
33 6 59 31 1 95 3 807 889 
34 884 33 7 982 840 92 6 
35 0.00691 10 36 2 0.01001 2 87 3 963 
36 3 37 388 04 1 906 999 
37 5 64 41 4 07 0 93 9 0.01403 6 
38 7 91 44 0 099 97 2 07 3 
39 0.00700 19 46 6 12 9 0.01200 5 11 0 
40 2 48 49 2 15 8 03 8 14 8 

41 0.00704 77 0.00851 8 0.01018 8 0.01207 1 0.01418 5 
42 706 5 4 4  21 7 10 5 222 
43 936 57 1 24 7 13 8 25 9 
44 0.00711 67 59 7 27 7 17 2 297 
45 398 62 3 307 205 334 
46 230 65 0 336 23 9 37 2 
47 8 62 67 6 366 27 2 409 
48 0.00720 95 70 2 396 306 447 
49 3 28 72 9 42 6 340 485 
50 5 61 75 6 45 6 37 3 52 3 

(Contd) 

, 



Appendix H A.35 

(Contd) 

Angle a inv a = tan a - a (radians) 

Degrees 

Minutes 
15 16 17 18 19 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 - 

0.00727 96 
0.00730 30 

266 
5 01 
738 
9 75 

0.W742 12 
459 
688 

0.00749 27 

0.00878 2 
809 
83 6 
86 3 
889 
91 6 
94 3 
97 0 
998 

0.00902 5 

0.01048 6 
51 7 
547 
57 7 
608 
63 8 
669 
69 9 
73 0 

0.01076 0 

0.01 240'7 
44 1 
47 5 
509 
543 
57 8 
61 2 
646 
681 

0.01271 5 

0.01456 0 
59 8 
636 
67 4 
71 3 
75 1 
78 9 
82 7 
866 

0.01490 4 

Angle a inv a = tan a - a (radians) 

Degmes 

Minutes 
20 21 22 23 24 

0 1 .  

2 
3 
4 
5 
6 
7 
8 
9 

10 

0.01490 4 
94 3 
98 2 

0.01502 0 
05 9 
098 
13 7 
17 6 
21 5 
25 4 

0.01529 3 

0.01734 5 
388 
43 1 
47 4 
51 7 
560 
603 
647 
69 0 
73 4 

0.01777 7 

0.02005 4 
10 1 
14 9 
19 7 
24 4 
292 
340 
388 
43 6 
484 

0.02053 3 

0.02304 9 
10 2 
15 4 
207 
25 9 
31 2 
365 
41 8 
47 1 
52 4 

0.02357 7 

0.02635 0 
407 
46 5 
52 3 
581 
639 
69 7 
75 6 
81 4 
87 2 

0.02693 1 

1 1  
12 
13 
14 
15 
16 
17 
18 
19 
20 

33 3 
37 2 
41 1 
45 1 
49 0 
53 0 
57 0 
609 
649 

0.01568 9 

82 1 
865 
908 
95 2 
996 

0.0180 4 
084 
12 9 
17 3 

0.01821 7 

581 
62 9 
67 8 
72 6 
77 5 
82 4 
87 3 
92 1 
97 0 

0.02101 9 

631 
684 
73 8 
31 
845 
89 9 
95 2 

0.02400 6 
060 

0.02411 4 

989 
0.02704 8 

10 7 
16 6 
22 5 
28 4 
343 
402 
462 

0.02752 1 

21 72 9 
22 76 9 
23 809 - 
24 85 0 

262 
306 
351 
395 

069 16 9 58' 
1 1  8 22 3 6 4 1  
16 7 27 7 70 0 
21 7 332 76 0 

( C o w  



A.36 Appendices 

(Contd) 

Angk a inv a ., tan a - a (radians) 

Degrees 

Minutes 
20 21 22 

25 89 0 440 266 386 82 0 
26 93 0 485 31 6 441 8 8 0  
27 97 1 530 365 49 5 940 
28 0.01601 1 57 5 41 5 550 0.02800 0 
29 05 2 62 0 46 5 605 060 
30 0.01609 2 0.01866 5 0.02151 4 0.02466 0 0.02812 1 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

13 3 
17 4 
21 5 
25 5 
296 
337 
37 9 
42 0 
46 1 

0.01650 2 

71 0 
75 5 
800 
846 
89 1 
937 
983 

0.01902 8 
07 4 

0.01912 0 

5 6 4  
61 4 
665 
71 5 
76 5 
81 5 
866 
91 6 
967 

0.02201 8 

71 5 
77 0 
82 5 
881 
93 6 
992 

0.02504 7 
10 3 
15 9 

0.02521 4 

~ ~~ 

18 1 

302 
363 
42 4 
485 
546 
607 
668 

0.02872 9 

24 2 

41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

544 
5 8 5  
62 7 
66 9 
7 . 0  
75 2 
794  
836 
87 8 

0.01692 0 

16 6 
21 2 
25 8 
3 0 4  
350 
39 7 
44 3 
49 0 
536 

0.01958 3 

068 
11 9 
170 
22 1 
27 2 
32 4 
37 5 
42 6 
47 8 

0.02252 9 

27 0 
32 6 
382 
43 9 
49 5 
55 1 
608 
664 
72 1 

0.02577 7 

791 
8 5 2  
91 4 
97 6 

0.02903 7 
099 
16 1 
22 3 
285 

0.02934 8 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

962 
0.01700 4 

047 
089 
13 2 
17 4 
21 7 
25 9 
302 

0.01734 5 

630 
67 6 
72 3 
770 

8 6 4  
91 2 
959 

0.02Ooo 7 
0.02005 4 

81. 7 

581 
633 
684 
736 
788 
840 
892 
9 4 4  
997 

0.02304 9 

034 
89 1 
948 

0.02600 5 
062 
12 0 
17 7 
235 
292 

0.02635 0 

41 0 
47 2 
535 
598 
660 
72 3 
78 6 
849 
91 2 

0.02997 5 



Appendix H 37 

(Confd) 

Angle a inv a = tan a - a (radians) 

bgrees 

Minutes 
25 26 27 28 29 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0.02997 5 
0.03003 9 

10 2 
16 6 
22 9 
293 
35 7 
42 0 
48 4 
549 
61 3 

0.03394 7 
0.05401 6 

086 
15 5 
22 5 
294 
36 4 
43 4 
504 
57 4 
644 

0.03828 7 
362 
438 
51 4 
59 0 
666 
74 2 
81 8 
89 4 
97 1 

0.03904 7 

0.04301 7 
10 0 
18 2 
26 4 
34 7 
43 0 
51 3 
59 6 
67 9 
76 2 
845 

0.04816 4 
25 3 
343 
43 2 
52 2 
61 2 
70 2 
79 2 
883 
97 3 

0.04906 4 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

0.03067 7 
74 1 
80 6 
87 0 
93 5 

0.03100 0 
065 
13 0 
19 5 
26 0 

0.03471 4 
78 5 
85 5 
92 6 
997 

0.03506 7 
13 8 
209 
28 0 
35 2 

0.03912 4 
20 1 
27 8 
35 5 
43 2 
509 
586 
66 4 
74 1 
81 9 

0.04392 9 
0.04401 2 

096 
18 0 
26 4 
348 
43 2 
51 6 
601 
68 5 

0.04915 4 
24 5 
33 6 
42 7 
51 8 
609 
70 1 
792 
884 
97 6 

21 0.03132 5 0.03542 3 0.03989 7 0.04477 0 0.05006 8 
22 39 0 49 4 97 4 85 5 16 0 
23 45 6 566 0.04005 2 93 9 25 2 
24 52 1 63 7 13 1 0.04502 4 344 
25 587 70 9 209 11 0 43 7 
26 653 78 1 28 7 19 5 529 
27 71 8 85 3 36 6 28 0 62 2 
28 78 4 92 5 44 4 366 71 5 
29 850 997 52 3 45 1 808 
30 91 7 0.03606 9 602 53 7 901 

31 0.03198 3 0.03614 2 0.04068 0 0.04562 3 0.05099 4 
32 0.03204 9 21 4 75 9 70 9 0.05108 7 
33 11 6 28 7 839 79 5 18 1 
34 18 2 35 9 91 8 881 27 4 
35 24 9 43 2 997 967 368 
36 31 5 505 0.04107 6 0.04605 4 462 
37 382 57 8 15 6 14 0 556 
38 44 9 65 1 23 6 22 7 650 
39 51 6 72 4 31 6 31 3 74 4 
40 583 79 8 39 5 40 0 83 8 

~ ~ - 

(Confd) 



A.30 Appendices 

(Confd) 
~ ~ ~- 

Angle a inv a = tan a - a (radians) 

& Q W S  

25 26 27 28 29 
Minutes 

41 0.03265 1 0.03687 1 0.04147 5 0.04648 7 0.05193 3 
57 5 0.05202 7 42 71 8 945 556 

43 78 5 0.03701 8 636 662 12 2 
44 85 3 092 71 6 74 9 21 7 
45 92 0 16 6 79 7 837 31 2 
46 988 24 0 87 7 92 4 407 
47 0.03305 6 31 4 95 8 0.04701 2 502 
48 12 4 388 0.04203 9 10 0 597 
49 19 2 462 12 0 18 8 69 3 
50 260 537 201 27 6 700 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

0.03332 8 
39 7 
46 5 
53 4 
602 
67 1 
74 0 
80 9 
87 8 

0.03394 7 

0.03761 1 
686 
76 1 
835 
91 0 
98 5 

0.0386 0 
13 6 

' 21 1 
0.03828 7 

0.04228 2 
363 
44 4 
52 6 
607 
689 
77 1 
85 3 
93 5 

0.04301 7 

0.04736 4 
45 2 
541 
63 0 
71 8 
807 
89 6 
9 8 5  

0.04807 4 
0.04816 4 

~ 

0.05288 4 
9 8 0  

0.05307 6 
17 2 
268 
365 
46 1 
558 
655 

0.05375 1 

~ ~ ~ ~~~ 

Angle Q inv a = tan a - a (radians) 

o e s m s  
30 31 32 33 34 

Minutes 

0 005373 1 0.05980 9 0.06636 4 0.07344 9 0.08109 7 
1 849 91 4 47 8 57 2 22 9 
2 946 0.o60019 59 1 69 5 362 
3 0.05404 3 12 4 70 5 81 8 49 4 
4 14 0 23 0 81 9 941 62 7 
5 23 8 335 93 4 0.07406 4 76 0 
6 336 441 0.06704 8 18 8 894 
7 433 547 16 3 31 2 0.08202 7 

9 62 9 75 9 392 559 2 9 4  

11 0.05482 6 0.06097 2 0.06762 2 0.074808 0.08256 2 

8 531 653 27 7 435 16 1 

10 72 8 866 507 684 42 8 

12 92 4 0 06107 9 73 8 93 2 69 7 
13 0.05502 3 18 6 85 3 0.07505 7 83 1 
14 12 2 292 969 18 2 966 
15 22 1 40 0 0.06808 4 307 0 08310 0 
16 32 0 507 200 43 2 23 5 

(Contd) 



Appendix H A.39 

(Conrd) 

Angle a inv a = tan a - OL (radians) 

Degrees 

Minutes 
30 31 32 33 34 

17 41 9 
18 51 8 
19 61 7 
20 71 7 

61 4 
72 1 
82 9 
93 7 

31 6 557 37 1 
43 2 683 506 
549 80 8 641 
66 5 93 4 77 7 

21 0.05581 7 0.06204 5 0.06878 2 0.07606 0 0.08391 3 
22 91 6 15 3 89 9 18 6 0.08404 9 
23 0.05601 6 26 1 0.06901 6 31 2 18 5 
24 11 6 36 9 13 3 43 9 32 1 
25 21 7 47 8 25 0 5 6 5  45 7 
26 31 7 58 6 367 69 2 59 4 
27 41 7 69 5 48 5 81 9 73 1 
28 51 8 80 4 602 946 868 
29 61 9 91 3 72 0 0.07707 3 0.08500 5 
30 72 0 0.06302 2 83 8 20 0 14 2 

31 0.05682 1 0.06313 1 0.06995 1 0.07732 8 0.08528 0 
32 92 2 24 1 0.07007 5 45 5 41 8 
33 0.05702 3 35 0 19 3 583 55 5 
34 12 4 46 0 31 2 71 1 69 3 
35 22 6 57 0 43 0 83 9 832 
36 32 8 680 549 968 97 0 
37 42 9 79 0 66 8 0.07809 6 0.08610 8 
38 53 1 901 78 7 22 5 24 7 
39 63 3 0.06401 1 907 35 4 386 
40 73 6 12 2 0.07102 6 48 3 52 5 

41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

0.05783 8 
94 0 

0.05804 3 
14 6 
24 9 
352 
45 5 
55 8 
662 
76 5 

0.06423 2 
34 3 
45 4 
5 6 5  
67 7 
78 8 
900 

0.06501 2 
12 3 
23 6 

0.071 14 6 
266 
386 
506 
62 6 
74 7 
867 
988 

0.07210 9 
23 0 

0.07861 2 
74 1 
87 1 

0.07900 0 
13 0 
260 
39 0 
52 0 
65 1 
78 1 

0.08666 4 
804 
943 

0.08708 3 
22 3 
363 
503 
644 
784 
92 5 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

~~ ~ 

0.05886 9 
97 3 

0.05907 7 
18 1 
28 5 
39 0 
49 4 
59 9 
70 4 

0.05980 9 

0.06534 8 
46 0 
57 3 
685 
79 8 
91 1 

0.06602 4 
13 7 
25 0 

0.06636 4 

0.07235 1 
47 3 
59 4 
71 6 
83 8 
95 9 

0.07308 2 
20 4 
32 6 

0.07344 9 

0.07991 2 
0.O8004 3 

17 4 
306 
43 7 
569 
70 0 
83 2 
964 

0.08109 7 

0.08806 6 
207 
348 
49 0 
63 1 
77 3 
91 5 

0.08905 7 
200 

0.08934 2 



A.40 Appendices 

Angle a inv a = tan a - a (radians) 

Degrees 

Minutes 
35 36 37 38 39 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0.08934 2 
48 5 
62 8 
77 1 
91 4 

0.09005 8 
20 1 
34 5 
48 9 
63 3 
77 7 

0.09822 
838 
853 
869 
884 
899 
915 
930 
946 
96 1 
977 

0.10778 
795 
81 1 
828 
844 
06 1 
8 78 
894 
91 1 
928 
944 

0.11806 
824 
842 
859 
877 
895 
913 
93 1 
949 
957 
985 

0.12911 
930 
949 
968 
987 

0.13006 
025 
045 
064 
083 
102 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

0.09092 2 
0.09106 7 

21 1 
35 6 
50 2 
64 7 
79 3 
93 8 

0.09208 4 
23 0 

0.09992 
0.10008 

024 
039 
055 
070 
086 
102 
118 
133 

0.10961 
978 
995 

0.1 101 1 
028 
045 
062 
079 
096 
113 

0.12003 
021 
039 
057 
075 
093 
111 
129 
147 
165 

0.13122 
141 
160 
180 
199 
219 
238 
258 
277 
297 

~ 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

~ 

0 09237 7 
52 3 
67 0 
81 6 
963 

0.09311 1 
25 8 
40 6 
55 3 
70 1 

0.101 49 
165 
181 
196 
212 
228 
244 
260 
2 76 
292 

~ 

0.11130 
146 
163 
180 
197 
215 
232 
249 
266 
283 

0.012184 
202 
220 
238 
257 
275 
293 
312 
330 
348 

~ 

0.13316 
336 
355 
375 
395 
414 
434 
454 
473 
493 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

0.09384 9 
998 

0.09414 6 
295 
44 3 
59 2 
74 2 
89 1 

0.09504 1 
19 0 

0.10308 
323 
339 
355 
371 
388 
404 
4 20 
436 
452 

0.10300 
317 
334 
352 
369 
386 
403 
421 
438 
455 

0.12367 
385 
404 
422 
441 
459 
4 78 
496 
515 
534 

0.13513 
533 
553 
5 72 
592 
612 
632 
652 
672 
692 

(Contd) 



Appendix H A.41 

(Contd) 

Angle a inv a = tan a - a (radians) 

Degrees 

Minutes 
35 36 37 38 39 

41 0.09534 0 0.10468 0.11473 0.12552 0.13712 
42 49 0 484 490 571 732 
43 64 1 500 507 590 752 
44 79 1 516 525 608 772 
45 942 533 542 627 792 
46 0.09609 3 549 560 646 812 
47 24 4 565 577 664 833 
48 39 5 58 1 595 683 853 
49 546 598 612 702 873 
50 69 8 614 630 721 893 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

0.09685 0 
0.09700 2 

15 4 
306 
45 9 
61 1 
76 4 
91 7 

0.09807 1 
0.09822 4 

0.10630 
647 
663 
679 
696 
712 
729 
745 
762 

0.10778 

0.11647 
665 
682 
700 
718 
735 
753 
771 
788 

0.11806 

0.12740 
759 
778 
797 
815 
834 
853 
872 
891 

0.12911 

0.139 13 
934 
954 
974 
995 

0.14015 
035 
056 
076 

0.14097 

Angle a inv a = tan a - a (radians) 

Degrees 

Minutes 
40 41 42 43 44 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0.14097 
117 
138 
158 
179 
200 
220 
24 1 
26 1 
282 
303 

0.15370 
392 
414 
436 
458 
480 
503 
525 
547 
569 
59 1 

0.16737 
760 
784 
807 
831 
855 
879 
902 
926 
950 
974 

0.18202 
228 
253 
278 
304 
329 
355 
380 
406 
431 
457 

0.19774 
802 
829 
856 
883 
910 
938 
965 
992 

0.20020 
047 

11 
12 
13 
14 
15 

0.14324 
344 
365 
386 
407 

0.15614 0.16998 0.18482 0.20075 
636 0.17022 508 102 
658 045 534 130 
68D 069 559 157 
703 093 585 185 

(ConM) 



A.42 Appendices 

(Contd) 

Angle a inv a = tan a - a (radians) 

Degms 
40 41 42 43 44 

16 428 725 117 61 1 212 
17 448 748 142 637 240 
18 469 770 166 662 268 
19 490 793 190 688 296 
20 51 1 815 214 714 323 

21 0.14532 0 15838 0 17238 0 18740 0.20351 
22 553 860 262 766 379 
23 5 74 883 28f 792 407 
24 595 905 31 818 435 
25 616 928 335 844 463 
26 638 950 359 870 490 
27 659 973 383 896 518 
28 680 996 408 922 546 
29 701 0.16019 432 948 575 
30 722 04 1 457 9 75 603 

Minutes 

____ - __ __ 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

0.14743 
765 
786 
807 
829 
850 
871 
893 
914 
936 

0.16064 
087 
110 
133 
156 
1 78 
20 1 
224 
247 
270 

0.17481 
506 
530 
555 
579 
604 
628 
653 
678 
702 

0.19001 
027 
053 
080 
106 
132 
159 
185 
212 
238 

0.20631 
659 
687 
715 
743 
772 
800 
828 
857 
885 

41 
42 
43 
44 
45 
46 
47 
40 
49 
50 

0.14957 
979 

0.15000 
022 
043 
065 
087 
108 
130 
152 

0.16293 
317 
340 
363 
386 
409 
432 
456 
479 
502 

0.17727 
752 
777 
801 
826 
851 
876 
90 1 
926 
95 1 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

0.15173 
195 
217 
239 
26 1 
282 
304 
326 
348 

015370 

0.16525 
549 
572 
596 
619 
642 
666 
689 
713 

016737 

0.17976 
0.18001 

026 
051 
076 
101 
127 
152 
177 

018202 

0.19265 
29 1 
318 
344 
371 
398 
424 
451 
4 78 
505 

0.19532 
558 
585 
612 
639 
666 
693 
720 
747 

019774 

0.20914 
942 
971 
999 

0 21028 
056 
085 
114 
142 
171 

0.21200 
229 
257 
zd6 
315 
344 
373 
402 
431 

012460 



Appendix H A.43 

(Contd) 

(Contd)Angle a inv a = tan a - a (radians) 

Degrees 

Minutes 
45 46 47 48 49 

0 0.21460 
1 489 
2 518 
3 ,  548 
4 5 77 
5 606 
6 635 
7 665 
8 694 
9 723 

10 753 

0.23268 
299 
330 
362 
393 
424 
456 
487 
519 
550 
582 

0.25206 
240 
273 
307 
34 1 
374 
408 
442 
4 75 
509 
543 

0.27285 
32 1 
357 
393 
429 
465 
50 1 
538 
574 
610 
646 

0.29516 
554 
593 
631 
670 
709 
747 
786 
825 
864 
903 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

0.21 782 
812 
841 
871 
900 
930 
960 
989 

0.220 19 
049 

0.23613 
645 
6 76 
708 
740 
772 
803 
835 
867 
899 

0.25577 
61 1 
645 
679 
713 
747 
78 1 
815 
849 
883 

0.27683 
719 
755 
792 
828 
865 
902 
938 
9 75 

0.28012 

0.29942 
98 1 

0.30020 
059 
098 
137 
177 
216 
255 

0.30295 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

0.22079 
108 
138 
168 
198 
228. 
258 
288 
318 
348 

0.23931 
963 
995 

0.24027 
059 
09 1 
123 
156 
1 88 
220 

0.25918 
952 
986 

0.2602 1 
055 
089 
124 
159 
193 
228 

0.28048 
085 
122 
159 
196 
233 
270 
307 
344 
38 1 

0.30334 
374 
413 
453 
492 
532 

61 1 
651 
691 

572 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

0.22378 
409 
439 
469 
499 
530 
560 
590 
621 
65 1 

0.24253 
285 
317 
350 
382 
415 
447 
480 
512 
545 

0.26262 
297 
332 
368 
401 
436 
471 
506 
54 1 
576 

0.284 1 8 
455 
493 
530 

' 567 
605 
642 
680 
717 
755 

0.30731 
771 
811 
851 
891 
931 
971 

0.31012 
052 
092 

(Contd) 
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(Contd) 

Angle a inv a = tan a - a (radians) 

Degrees 

Minutes 
45 46 47 48 49 

41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

0.22682 
712 
743 
773 
804 
835 
865 
896 
927 
958 

0.24578 
61 1 
643 
676 
709 
742 
775 
808 
841 
874 

0.2661 1 
646 
682 
717 
752 
787 
823 
858 
893 
929 

0.28792 
830 
868 
906 
943 
98 1 

0.29019 
057 
095 
1 33 

0.31 133 
1 73 
214 
254 
295 
335 
3 76 
417 
457 
498 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

0.22989 
0.23020 

050 
081 
112 
143 
1 74 
206 
237 

0.23268 

0.24907 
940 
9 73 

0.25006 
040 
0 73 
106 
140 
1 73 

0.25206 

0.26964 
0.27000 

035 
071 
107 
142 
1 78 
214 
250 

0.27285 

0.291 71 
209 
247 
286 
324 
362 
400 
439 
4 77 

0.29516 

0.31539 
580 
621 
662 
703 
744 
785 
826 
868 

0.31909 

Angle a inv a = tan a - a (radians) 

Degrees 

Minutes 
50 51 52 53 54 

0.43390 0 0.31909 0.34478 0.37237 
1 950 522 285 253 446 
2 992 567 332 305 50 1 
3 0.32033 61 1 380 356 556 
4 075 656 428 407 61 1 
5 116 700 476 459 667 
6 158 745 524 51 1 722 
7 199 790 572 562 778 
8 24 1 834 620 614 833 
9 283 879 668 666 889 

10 3 24 924 716 717 945 

11 0.32366 0.34969 0.37765 0.40769 0.44001 
12 408 0.350 14 813 821 057 
13 450 059 86 1 873 113 
14 492 104 910 925 169 

0.40202 

(Contd) 
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(Contd) 

Angle a 

- ~ _ _ ~  _ _  

inv a = tan a - a (radians) 

Degrees 

Minutes 
50 51 52 53 54 

15 
16 
17 
18 
19 
20 

534 
576 
618 
661 
703 
745 

149 958 977 225 
194 038007 0 41030 281 
240 055 082 337 
285 104 1 3  393 
330 153 187 4 50 
3 76 202 239 506 

21 0 32787 0 35421 0 38251 0 41292 
22 830 467 299 344 
23 872 512 348 397 
24 915 558 397 450 
25 957 604 446 502 
26 0 33000 649 496 555 
27 042 695 545 608 
28 085 74 1 594 66 i 
29 1 28 787 643 714 
30 171 833 693 767 

31 0 33213 0 35879 0 38742 0 41820 
32 256 925 792 8 74 
33 299 971 841 927 
34 342 0 36017 89 1 980 
35 385 063 94 1 0 42034 
36 428 110 990 087 
37 471 156 0 39040 141 
38 515 202 090 194 
39 558 249 140 248 
40 601 295 190 302 

__- - 

0 44563 
619 
6 76 
733 
789 
846 
903 
960 

0.4501 7 
047 

0.45132 
189 
246 
304 
36 1 
419 
4 76 
534 
592 
650 

41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

0.33645 
688 
731 
775 
818 
862 
906 
949 
993 

0.34037 

0.36342 
388 
435 
482 
529 
575 
622 
669 
716 
763 

0.39240 
290 
340 
390 
44 1 
49 1 
541 
592 
642 
693 

0.42355 
409 
463 
517 
571 
6 25 
680 
734 
788 
843 

0.45708 
766 
824 
882 
940 
998 

0.46057 
115 
173 
232 

51 0.3408 I 
52 1 25 
53 169 
54 215 

0.36810 0.39743 0.42897 0.46291 
858 794 952 349 
905 845 0.43006 408 
952 896 061 467 

(Sontd) 
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(Contd) 

Angle u inv a = tan a - a (radians) 

Degrees 

Ynutes 

_~ 

55 
56 
57 
58 
59 
60 

50 51 52 53 54 

257 
30 1 
345 
389 
434 

0.344 78 

999 947 116 526 
0.37047 998 171 585 

094 0.40049 225 644 
142 100 280 703 
189 151 335 762 

0.37237 0.40202 0.43390 0.46822 

Angle u 

Degrees 

Minutes 

inv a = tan a - a (radians) 

55 56 57 58 59 

-0 0.46822 
1 881 
2 940 
3 0.47000 
4 060 
5 119 
6 
7 
8 
9 

10 

1 79 
239 
299 
359 
419 

0.50518 0.54503 058804 0.63454 
582 572 879 534 
646 64 1 954 615 
710 710 0.59028 696 
774 779 1 03 777 
838 849 1 78 858 
903 918 253 939 
967 988 328 0.64020 

0.51032 0.55057 403 102 
096 127 479 183 
161 197 554 265 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

0.47479 
539 
599 
660 
720 
780 
84 1 
902 
962 

0.48023 

0.51226 
29 1 
356 
421 
406 
551 
616 
682 
74 7 
813 

0.55267 
337 
407 
477 
547 
618 
688 
759 
829 
900 

0.59630 
705 
78 1 
857 
933 

0.60009 
085 
161 
237 
314 

0.64346 
428 
510 
592 
674 
756 
839 
921 

0.65004 
086 

21 0 . 4 @ 4  
22 145 
23 206 
24 267 
25 328 

~ 

0 M 8 78 0.55971 0.60390 0.65160 
944 0.56042 467 252 

0.52010 113 544 335 
076 184 620 418 
141 255 697 501 

(Conrd) 
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(Confd) 
~ 

Angle a inv a = tan a - a (radians) 

Degrees 
55 56 57 58 59 

Minutes 

26 
27 
28 
29 
30 

389 
451 
512 
574 
635 

207 
274 
340 
406 
472 

326 774 585 
398 851 668 
469 929 752 
54 1 0.61006 835 
612 083 919 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

0.48697 
758 
820 
882 
944 

0.49006 
068 
130 
192 
255 

0.52539 
605 
672 
739 
805 
872 
939 

0.53006 
073 
141 

0.56684 
756 
828 
900 
972 

0.57044 
116 
1W 
261 
333 

0.61 161 
239 
316 
394 
472 
550 
628 
706 
785 
863 

0.66003 
087 
171 
255 
340 
424 
509 
593 
670 
763 

41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

0.493 17 
380 
442 
505 
568 
630 
693 
756 
819 
882 

0.53208 
275 
343 
410 
4 78 
546 
613 
681 
749 
81 7 

0.57406 
479 
552 
625 
698 
771 
844 
917 
991 

0.58064 

0.61942 
0.62020 

099 
1 78 
257 
336 
415 
494 
574 
653 

0.66848 
933 

0.67019 
104 
189 
275 
361 
447 
532 
618 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 

0.49945 
0.50009 

072 
135 
199 
263 
326 
390 
454 

0.50518 

~~ 

0.53885 
954 

054022 
090 
159 
228 
296 
365 
434 

0.54503 

0.58138 
211 
285 
359 
433 
507 
581 
656 
730 

0.58804 

0.62733 
812 
892 
9 72 

0.63052 
132 
212 
293 
273 

0.63454 

0.67705 
79 1 
877 
964 

0.68050 
137 
224 
31 1 
398 

0 .baa85 
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Tolerances on Gear Blanks 

DIAL INDICATOR 

ERENCE SURFACE 
AXIAL RUNOUT 
RADIAL RUNOUT 

I 

DIAL INDICATOR 

1 BORE DIAMETER 

TIP DIAM=R da 

Tolerances on Gear Blanks 
(All values in microns except tip diameter in mm) 

Quality 3 4 5 6 7 8 9 10 11 12 

Bore size tolerance IT4 IT4 IT5 IT6 IT7 IT7 IT8 IT8 IT8 IT8 
Shaft size tolerance IT4 IT4 IT5 IT5 IT6 IT6 IT7 IT7 IT8 IT8 

Radial run-out of tip cylinder 
Radial run-out of reference 

Axial run-out of reference 
surtace 0.01 da+ 5 0.016 da + 10 0,025 da + 15 0.04 da + 25 0.04 da + 25 

surface 

Blank diameter ( d a )  h7 h7 h7 h8 h8 h6 h9 h9 hll hll 



APPENDIX J 

Table of Tooth Thickness Tolerances 

Based on Zahnraeder, Zirpke, 11 th edition, 1980, table no. 10, p. 21 0, VEB Fachbuchverlag, Leipzig. 

MODULE 
> 0.6-1.6 - 
> 4-10 



APPENDIX K 

Table of Tooth Distance Tolerances 

Basedon Zahnraeder, Zirpke, 11 th edition, 1980, table no. 10, p. 21 0, VEB Fachbuchverlag, Leipzig. 

A%+ 

MODULE 

'o.6-1.6 MOC t > 1.6-4 
>4-10 



APPENDIX L 

ABOVE ABOVE ABOVE ABOVE ABOVE ABOVE CENTRE 
16 40 1 0 0  250 630 DISTANCE QUAL- 6.3 

ITY UPTO UPTO UpTO UPTO UPTO UPTO TOLERANCE ’ 

Table of Centre Distance Tolerances 

4 ,  

5 ,  

6 ,  

7 ,  

8 ,  

9 -  

10 - 



APPENDIX M 

Standard Shaft Diameters 

If no other values for special applications are mentioned, the figures in this table are valid for 
toleranced diameters for shafts, shaft steps and shaft ends including the truncated cones which 
run in journal or anti-friction bearings or which are meant for receiving couplings, gears, 
travelling wheels and other wearing parts. 

Dimensions in rnrn 

10 

12 
40 

45 
" 4)  

15 
16 50 

(1  7) 
(18) 55 

20 
60 

(22) 

25 

30 

70 

(38) 100 

(42) 120 
110 

130 

(48) 150 
1 40 

160 

180 

200 

220 
(65) 

240 

260 

300 

340 

250 

(75) 280 

(85) 320 

(95) 
360 

(190) 560 

710 

800 

900 

1000 

750 

850 

950 

Bracketed sizes are not preferred. 
Diameters in bold types are preferred. 

1 -  - -  



APPENDIX N 

Table of Fillet Radii for Stepped Shafts in Torsion 

12 16 20 25 30 40 50 60 80 100 120 140 160 180 200 220 250 280 (300) 320 (340) 360 (380) 400 

10 0.5 1.0 

12 1.0 1.5 

14 0.5 1.0 

16 1.0 1.5 

18 1 5  

20 1 5  2 0  

22 10 1 5  

25 1 5  2 0  

28 1 0  2 0  

30 2 0  

(32) 1 5  2 5  

35 15 2 5  

(Contd) 



(Conrd) 
P 

\ D  b 
12 16 20 25 30 40 50 60 80 100 120 140 160 180 200 220 250 280 (300) 320 (340) 360 (380) 400 6 x d \ 3 

38 1.0 2.5 

40 2.5 3.0 

(42) 2.0 3.0 

45 1.5 3.0 

(W 1.0 2.5 
50 2.5 

55 1.5 4.0 
60 4.0 

3.5 
2.5 5.0 
1.5 5.0 

5.0 6.0 

3.5 6.0 
2.5 6.0 
2.0 5.5 6.5 

5.0 6.5 

3.5 6.5 
2.5 6.0 8.0 

5.0 8.0 
3.0 7.5 8.5 



(-4 

12 16 20 25 30 40 50 60 80 100 120 140 160 180 200 220 250 280 (300) 320 (340) 360 (380) 400 

~ ~~~ 

130 2.5 7.0 8.5 
140 5.0 8.5 10.0 
?!io 3.0 7.5 .10.0 
160 5.0 9.5 11.0 

(1 70) 3.0 7.5 11.0 
180 5.5 9.5 12:o 

(1W 3.0 8.0 12.0 
200 5.5 11.0 14.0 

3.0 10.0 14.0 
8.0 13.0 16.0 
6.0 12.0 15.0 
5.0 11.0 15.0 17.0 

250 7.5 13.0 16.0 17.0 
5.5 11.0 14.0 16.0 17.0 * m 260 

280 5.5 10.0 13.0 16.0 18.0 20.0 f 
300 6.0 10.0 15.0 18.0 20.0 $ 

ST 
Z The fillet radii (F) given in the above table are meant for ordinary applications only. For applications where stress concentration 

and notch effect are predominant design criteria, the shapes of fillets should be decided by the relevant design codes. In such 
cases, undercuts or fillet curves comprising two or more radii may be recommended. VI 



APPENDIX 0 

Parallel Key for Power Transmission 

~ ~ ~ ~~~~ 

Range of Key Keyway 
shaft dia, 

d b x h  Tolerance on b 

Running lir Light drive fit Force fit 
Above Upto b 

Shaft Hub Shaft Hub Shaftand 
H9 Dl0 N9 j59 hub P9 

6 8 2 x 2  2 +0.025 +0.060 -0.004 +0.0125 -0.006 
8 10 3 x 3  3 0 +0.020 -0.029 -0.0125 -0.031 

10 12 4 x 4  4 +0:030 +0.078 0 4.0150 -0.012 
12 17 5 x 5  5 0 +0.030 -0.030 -0.0150 -0.042 
17 22 6 x 6  6 

22 30 8 x 7  8 4.036 4.098 0 +0.0180 -0.015 
30 38 10x8 10 0 4.040 -0.030 -0,0180 -0.051 

38 44 12x8 12 
44 50 14x9  14 4.043 4.120 0 4.0215 -0.018 
50 58 16x10 16 0 +0.050 -0.043 -0.0215 -0.061 
58 65 18x11 18 

65 75 20x12 20 

85 95 25x 14 25 0 +0.065 -0.052 -0.0260 -0.074 
95 110 28x 16 28 

75 85 22x14 22 4.052 +0.149 0 4.0260 -0.022 

110 130 32x18 32 
130 150 36x20 36 4.062 4.180 0 4.0310 -0.026 
150 170 40x22 40 0 4.080 -0.062 -0.0310 -0.088 
170 200 45x25 45 
200 230 50x28 50 

230 260 56x32 56 
260 290 63x32 63 +0.074 +0.220 0 +0.0370 -0.032 
290 330 70x36 70 0 +o. 100 -0.074 -0.0370 -0.106 
330 380 80x40 80 

+0.0435 -0.037 
440 500 100x50 100 0 4.120 -0.087 -0.0435 -0.124 
380 440 90x45 90 +0.087 +0.260 0 
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Parallel key, also known as feather key, is the most commonly used type ofkey. It  is usually used 
in the case of unidirectional torque. Where axial movement of the hub is required, a clearance 
fit is provided between the shaft and the hub and between the hub and the key. The key is usually 
screwed to the shaft key-way for such type of application. Parallel keys are not suitable for the 
transmission of reversible o r  fluctuating torques. 

Parallel keys given here are based on IS : 2048-1975. The relevant data are given below. 

Types Types range from A to J. Only types Aand B are shown in the adjoining table. These are 
usually meant for non-sliding applications and the remaining types for sliding applications. 
Further details for the remaining types may be obtained from the relevant IS code. 

Tolerances : h, for both width and height in case of square section keys, 
h, on width and h,, on height in case of rectangular section keys. 

Keyway 
Range 

Tolerance Tolerance r of key 
On on length L 

11 11 12 12 Min Max 
Min Max 

1.2 1 .o 0.08 0.16 6 20 
1.8 +0.1 1.4 +o. 1 0.08 0.16 6 36 
2.5 0 1.8 0 0.08 0.16 8 45 
3.0 2.3 0.16 0.25 10 56 
3.5 2.8 0.16 0.25 14 70 

4.0 
5.0 
5.0 
5.5 
6.0 
7.0 
7.5 
9.0 
9.0 

10.0 
11.0 

3.3 
3.3 
3.3 
3.8 
4.3 

+0.2 4.4 
0 4.9 

5.4 
5.4 
6.4 
7.4 

0.16 
0.25 
0.25 
0.25 
0.25 

+0.2 0.25 
0 0.40 

0.40 
0.40 
0.40 
0.40 

0.25 
0.40 
0.40 
0.40 
0.40 
0.40 
0.60 
0.60 
0.60 
0.60 
0.60 

18 90 
22 110 
28 140 
36 160 
45 180 
50 200 
56 220 
63 250 
70 280 
80 320 
90 360 

12.0 
13.0 
15.0 
17.0 
20.0 
20.0 
22.0 
25.0 
28.0 
31 .O 

8.4 
9.4 

10.4 
11.4 

+0.3 12.4 
0 12.4 

14.4 
15.4 
17.4 
19.5 

0.70 
0.70 
0.70 
0.70 

+0.3 1.20 
0 1.20 

1.20 
2.00 
2.00 
2 .00 

1 .00 
1 .00 
1 .OO 
1 .OO 
1.60 
1.60 
1.60 
2.50 
2.50 
2.50 

100 
110 
125 
140 
160 
1 80 
200 
220 
250 
280 

400 
400 
400 
400 
400 
400 
400 
400 
400 
400 
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ALL DIMENSIONS IN mm 

px 

/ b/ 
I 

TYPE B 

n TYPE A 

KEY 

SECTION --cl X x -45" CHAMFER Lx 

CHAMFER OF KEY KEY WAY RAD I US 
IN SHAFT AND HUB 

PARALLEL KEY 

Tolerances on width of key-way (b) are given in the table. 
Tolerances on length of keys and key-ways are as follows. 

Length of key (mm) Tol. on key length (mm) Tol. on key-way length (mm) 

0 to + 0.2 

0 to + 0.3 
0 to + 0.5 

up to 28 0 to - 0.2 

0 to - 0.3 
0 to - 0.5 

32 to 80 

90 and above 

Material ofkey Steel of tensile strength not less than 600 N/mm2. 

Designation 
length 50 mm, shall be designated as 

A parallel key of type A, having dimensions width 12 mm, height 8 mm and 

Parallel Key A, 12 x 8 x 50, IS: 2048 

Calculation 
Calculation is usually not necessary for normal applications as the key size along with its key- 
way is simultaneously decided once the value ofthe shaft diameter becomes fixed after the usual 
calculations for determining the shaft diameter have been carried out. The key can be selected 
according to the shaft diameter as per the given table. 

However, calculation may become necessary in some cases. The main disadvantage of a key 
type joint is the reduction of the effective cross-section as well as tress concentration leading to 
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high localised stresses. To reduce this effect, the shaft diameter within the hub length may be 
increasedbyabout30% oritmay also be strengthened byhardening. The followingrelations may 
be used for hub using a steel shaft 

where Lh (cm) = Length of hub, s (cm) = Thickness of hub, (OD-ID of hub)/2 
T (N cm) = Torque, and x and y are coefficients as follows 

x = 0.53 to  0.70 for CI hub = 0.35 to  0.46 for steel hub 

y = 0.18 to 0.21 for CI hub = 0.14 to 0.18 for steel hub 

Circumferential force F ilv), transmitted by key = 2 T/d = p(h  - t , )  Li 
whered (cm) = Diameter of shaft, h (cm) = Height ofkey, t ,  (cm) = Depth of key inside shaft only, 
L (cm) = Length of key, i = Number ofkeys,p (N/cm2) = Bearing pressure = 5000 for CI hub = 9000 
for steel hub. 



APPENDIX P 

Gib-Head Key for Power Transm'ission 

Dimensions of gib-head keys are as per the following table based on IS: 2293-1974. Tolerances 
on key length and material for the key are the same as those ofparallel keys. Designation system 
is also similar. For gib-head keys, the shaft key-way must be longer than the key so that enough 
space is provided for driving the key tight while fitting. Compared to parallel keys, the gib-head 
keys can transmit more torque. 

ALL DIMENSIONS IN mm 

x-sL.l 
1 

KEY 

w SECTION X-X 

:lo0 

GI8 HEAD KEY 
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All dimensions in millimetres 

Range of shaft Key Keyway 
Dia. Range of 

d b x h  b Tolerance tl Tolerance t2 Tolerance r key 
on b on on length L hl 

Above Up to Dl0 4 r2 Min Max 
Min Max 

10 
12 
17 
22 
30 
38 
44 
50 
58 
65 
75 
85 
95 

110 
130 
150 
1 70 
200 
230 
260 
290 
330 
380 
440 

12 
17 
22 
30 
38 
44 
50 
58 
65 
75 
85 
95 

110 
130 
150 
1 70 
200 
230 
260 
290 
330 
380 
440 
500 

4 x 4  
5 x 5  
6 x 6  
8 x 7  
1 0 x 8  
1 2 x 8  
1 4 x 9  
16x 10 
18 x l l  
20 x i 2  
22x  14 
25x 14 
28 x16 
32 x 18 
36 x 20 
40 x 22 
45 x 25 
50 x 28 
56 x 32 
63 x 32 
70 x 36 
80 x 40 
90 x 45 
100 x 50 

4 2.5 
5 +0.078 3.0 
6 i0.030 3.5 
8 i0.098 4.0 

10 +0.040 5.0 
12 5.0 
14 +0.120 5.5 
16 +q.050 6.0 
18 7.0 
20 7.5 
22 i0.149 9.0 
25 4.065 9.0 
28 10.0 
32 11.0 
36 12.0 
40 +0.180 13.0 
45 +0.080 15.0 
50 1 7.0 
56 20.0 
63 +0.220 20.0 
70 +0.100 22.0 
80 25.0 
90 t0.260 28.0 

100 t0.120 31.0 

1.2 
i o .  1 1.7 
0 2.2 

2.4 
2.4 
2.4 
2.9 
3.4 

+0.2 3.4 
0 3.9 

4.4 
4.4 
5.4 
6.4 
7.1 
8.1 
9.1 

10.1 
+0.3 11.1 
0 11.1 

13.1 
14.1 
16.1 
18.1 

0.08 0.16 
+0.1 0.16 0.25 
0 0.16 0.25 

0.16 0.25 
0.25 0.40 
0.25 0.40 
0.25 0.40 
0.25 0.40 

+0.2 0.25 0.40 
0 0.40 0.60 

0.40 0.60 
0.40 0.60 
0.40 0.60 
0.40 0.60 
0.70 1.00 
0.70 1.00 
0.70 1.00 
0.70 1.00 

+0.3 1.20 1.60 
0 1.20 1.60 

1.20 1.60 
2.00 2.50 
2.00 2.50 
2.00 2.50 

14 
14 
16 
20 
25 
32 
40 
45 
50 
56 
63 
70 
80 
90 

100 
110 
125 
140 

45 
56 
70 
90 

110 
140 
160 
180 
200 
220 
250 
280 
320 
360 
400 
400 
400 
400 

7 
8 

10 
11 
12 
12 
14 
16 
18 
20 
22 
22 
25 
28 
32 
36 
40 
45 
50 
50 
56 
63 
70 
80 



APPENDIX Q 

Tangent Key for Power Transmission 

All Dimensions in mm 

T 

Tangent key is meant for service conditions where a large amount of impact type of load is to be 
transmitted in both directions of rotations as in the case of fly-wheels, rolling mills, etc. The 
angle between the keys can be 180' also, if necessary. 

Tangent Key 

Shaft Keyway Key 
diameter 

Chamfer D Depth Width Radius 
t b r a 

100 10 30 2 3 
110 1 1  33 2 3 
120 12 36 2 3 
130 13 39 2 3 
140 14 42 2 3 
150 15 45 2 3 
160 16 48 2 3 
170 17 51 2 3 
1 8 0  18 54 2 3 

(Conrd) 



Appendix Q A.63 

(Contd) 
____ 

Shaft Keyway Key 
diameter 
0 Depth Width Radius Chamfer 

t b r a 

190 
200 
210 
220 
230 
240 
250 
260 
270 
280 
290 
300 
320 
340 
360 
380 
400 
420 
440 
460 
480 
500 
520 
540 
560 
580 
600 
620 
640 
660 
680 
700 
720 
740 
760 
700 
800 
820 
840 
860 
880 
900 
920 
940 
960 
980 
lo00 

19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
32 
34 
36 
38 
40 
42 
44 
46 
48 
50 
52 
54 
56 
58 
60 
62 
64 
66 
68 
70 
72 
74 
76 
78 
80 
82 
84 
86 
88 
90 
92 
94 
96 
98 
100 

57 
60 
63 
66 
69 
72 
75 
78 
81 
84 
87 
90 
96 
102 
108 
114 
120 
1 26 
132 
138 
144 
150 
156 
162 
168 
1 74 
180 
186 
192 
198 
204 
210 
216 
222 
228 
234 
240 
246 
252 
258 
264 
2 70 
276 
282 
288 
294 
300 

2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
3 
3 
3 
4 
4 
4 
4 
4 
5 
5 
5 
5 
5 
5 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
8 
8 
8 
8 
8 
8 
8 

3 
3 
3 
3 
3 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
5 
5 
5 
5 
5 
6 
6 
6 
6 
6 
6 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
7 
9 
9 
9 
9 
9 
9 
9 



APPENDIX R 

Straight-Sided Splines for 
Power Transmission 

ALL DIMENSIONS IN rnm 

SPLINE BORE PROFILE ' SPLINE SHAFT PROFILE 

DETAILS NOT SHOWN TO BE SELECTED 
ACCORDING TO SUITABILITY 

THE FLANK OF EACH SPLINE KEY MUST BE PARALLEL 
UP TO THE MEETING POINT WITH THE INSIDE DIA. 

(NO. OF SPLINE-KEYS SHOWN HERE = 6) 

STRAIGHT-SIDED SPLINES 

Light Duty Series 

No. of 
spline Centering dl 4 b 4 e f g k r 
keys min max mar mar max 

On 23 25 6 22.1 1,25 3.54 03 03 0.2 
6 inside 26 30 6 24.6 1 ,a 3.85 0.3 0.3 0.2 

diameter 28 32 7 26.7 1 .n 4,03 03 0,3 0 2  

32 36 6 30.42 1.89 2.71 0.4 0,4 03 
On inside 36 40 7 34,5 t ,78 3,46 0.4 0-4 03 
diameter 42 46 0 40,4 1,68 5,03 0.4 0.4 03 

8 orflanks 46 50 9 44,62 1,61 5,75 0 4  0,4 03 
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Ught Duty Series (Contd) 

No. of 

keys min max max max max 

52 58 10 49,7 2,72 4-89 0.5 0.5 0.5 

On 62 68 12 59,82 2.48 7,31 0-5 0,5 03 

spline Centering dj 4 b 4 e f 9 k r 

56 62 10 53.6 2.76 6 3  0,s 0.5 0,5 

inside 
diameter 72 78 12. 69,6 2.54 5,45 0.5 03 0.5 

or 82 88 12 79.32 2.67 8,62 0.5 0,5 0.5 

10 102 108 16 99,9 2,23 1199 03 03 0.5 
112 120 18 108.8 3,23 10.72 0.5 03 05 

flanks 92 98 14 89,44 2,36 1OP8 03 03 0,5 

Designation 
outer diameter = 32 mm, is given as 

Designation of a spline with number of spline keys = 6, inner diameter = 28 mm, 

Spline 6 X 28x32, IS: 2327 

Medium Duty Series 

No. of 
spline Centering dl d2 b d3 e f 9 k r 
keys min max max max max 

1 1  14 3 
13 16 3.5 
16 20 4 

On inside 18 22 5 
6 diameter 21 25 5 

23 28 6 
26 32 6 
28 34 7 

9.9 
12.0 
14.54 
16.7 
19.5 
21.3 
23.4 
25.9 

1.55 - 
1.5 0.32 
2.1 0.16 
1.95 0.45 
1.98 1.95 
2.3 1.34 
2.94 1.65 
2.94 1.70 

0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.4 
0.4 

0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.4 
0.4 

0.2 
0.2 
0.2 
0.2 
0.2 
0.2 
0.3 
0.3 

32 38 6 29.4 3.3 0.15 0.4 0.4 0.3 
36 42 7 33.5 3.01 1.02 0.4 0.4 0.3 
42 48 8 39.5 2.91 2.57 0.4 0.4 0.3 

8 46 54 9 42.7 4.1 0.86 0.5 0.5 0.5 
On inside 52 60 10 48.7 4.0 2.44 0.5 0.5 0.5 
diameter 56 65 10 52.2 4.74 2.5 0.5 0.5 0.5 

or 62 72 12 57.8 5.0 2.4 0.5 0.5 0.5 

72 82 12 67.4 5.43 - 0.5 0.5 0.5 
82 92 12 77.1 5.4 3.0 0.5 0.5 0.5 

10 92 102 14 87.3 5.2 4.5 0.5 0.5 0.5 
102 112 16 97.7 4.9 6.3 0.5 0.5 0.5 
112 125 18 106.3 6.4 4.4 0.5 0.5 0.5 

flanks 
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Heavy Duty Series 
~ ~ ~ ~~~ 

No. of 
spline Centermg dl 4 b d3 9 k r 
keys mm may max max 

10 

16 
18 

On inside 21 
diameter 23 

or 26 
flanks 28 

32 
36 
42 
46 

20 
23 
26 
29 
32 
35 
40 
45 
52 
56 

2.5 
3 
3 
4 
4 
4 
5 
5 
6 
7 

14 0.3 
15.6 0.3 
18.44 0.3 
20.3 0.3 
23 0.4 
24.4 0.4 
28 0.4 
31.3 0.4 
36.9 0.5 
40.9 0.5 

0.3 0.15 
0.3 0.15 
0.3 0.15 
0.3 0.15 
0.4 0.15 
0.4 0.25 
0.4 0.25 
0.4 0.25 
0.4 0.4 
0.5 0.4 

52 60 5 47 0.5 0.5 0.4 
16 56 65 5 50.6 0.5 0.5 0.4 

62 72 6 56.1 0.5 0.5 0.4 
On 72 82 65.9 0.5 0.5 0.4 7 

flanks 

20 

82 92 6 75.6 0.5 0.5 0.4 
92 102 7 85.5 0.5 0.5 0.4 
102 115 8 93.7 0.5 0.5 0.4 
112 125 9 103.7 0.5 0.5 0.4 

Tolerances for Spline Hub and Shafl 
-~ ~~~~~~~~~~~ ~ 

b 
dl 4 

Hub Hub Hub Hub 
unhardened hardened hardened hardened 

or or 
unhardened unhardened 

Spline hub For centering on inside D9 F10 H7 H11 
diameter or on flanks 

Shaft sliding h8 e8 f7 

P6 h6 is 

Staff sliding h8 e8 - 

For centering inside hub 
on inside a1 1 
diameter Shaft fixed 

inside hub 
Spline shaft 

For centering inside hub 
on inside a1 1 

flanks Shaft fixed u6 
inside hub 

k6 - 
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Tables of Dimensional Tolerances 

500 

400 

300 

200 

100 

TOLERANCE VALUES IN p m 

Tolerances for Nominal Dimensions 450 mm pictorially 
represented (as an example) 

- 
JSS 
+ 1 2 .  
- 1 2 .  
+ 15 
- 15 
+ 18 - 18 
+ 21.. 
- 21.. 
+ 2 6  
- 2 6  
+ 31 
- 31 
+ 37 
- 37 
+ 43.: 
- 43, 
+ w  - 50 
+ 57.. 
- 57.. 
+ 6 5  
-65 
+ 70 
- 70 
+ 77.: 
9 
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e11 
+120 
+ B o  
+145 
+70  
+170 
+80  

+205 
+95 

+240 

+I10 

+280 
+120 

+m 
+130 
+330 
+140 

+340 
+I50 
+390 
+170 

400 
+180 
4 0  
+m 
+460 
+210 
+480 
+230 
t530 
+240 

- 

__ 

- 

- 

- 

t550 

t570 
t280 
t620 

e650 
e330  

t 720 
e360 

P760 
F4w 
la40 

- 
t880 
d.80 

j5 
+ 2 
- 2 
+ 3 
- 2 
+ 4 
- 2 

+ 5 

- 3 

+ 5 

- 4 

+ 6 

- 5 

+ 6 

- 7 

+ 6 

- 9 

+ 7 
- 1 1  

+ 7 - 13 

c 3 0 0 + 7  

- 16 

+ 7 

- 18 

w + 7  

- 2 0  

BORE SHAFT RANGE OF 
NOMIML 

DIMENSION 
P6 - 
- 6  
- 12 
- 9  
- 17 
- 12 
- 21 

- 15 
- 26  
- 

- 18 
- 31 

R 
+ 16 
+ 6  
+ 22 
+ 10 
+ 28 
+ 13 

- 

+ 3 4  

+ 16 
- 

+ 41 

+ 2 0  

N7 

- 4  
- 14 
- 4  
- 16 

- 4  
- 19 

- 

- 5  

- 23 

ss r6 u7 x7 f8 

- 6  
- - 3 0  
- 10 
- 28 

- 13 
- 3 5  

- 16 

- 4 3  

- 

- 

u9 
- 2  
- 8  
- 4  
- 12 
- 5  
- 14 

- 6  

- 17 

+ 16 
+ 10 
+ 23 
+ 15 
+ 28 
+ 19 

+ 3 4  
+ 23 

- 

+ 28 
+ 18 
+ 3 5  
+ 2 3  

+ 4 3  
+28 

+ 51 

+ 3 3  

+ 30 
+ 2 0  
+ 40 
+ 28 
+ 4 9  

+ 5 8  
+ 40 

+ 6 3  

+ 75 
+ 5 4  

+34 

- 

- 
- 
+ 5 3  
+ 2 3  
+ 6 4  
+ 28 

+ 76 

+ 3 3  

- 2 0  
- 4 5  
- 30 
- 6 0  
- 40 
- 76 

- 50 

- 9 3  

OVER 3 
UPTO 6 
OVER 6 
UPTO 10 
OVER 10 
UPTO 14 

OVER 14 
UPTO 18 
OVER 18 
UPTO 24 

OVER 24 
UPTO 30 

OVER 30 
UPTO 40 

OVER 40 
UPTO 50 

OVER 50 
UPTO 65 

OVER 65 
UPTO 80 
OVER 80 
UPTO 100 

OVER 100 
UPTO 120 
OVER 120 
UPTO 140 

OVER 140 
UPTO 160 
OVER 160 
UPTO 180 

OVER 180 
UPTO m 
OVER 

- 7  

- P8 
- 7  

- 2 0  
- 

- 9  

- 2 5  
- 

- 10 

- 2 9  
- 

- 12 

- 3 4  

+ 6 2  

+ 41 

- 2 0  
- 5 3  

- 6 5  

- 117 

+ 41 

+ 28 
- 
+ 50 

+ 3 4  
- 
+ 6 0  
+ 41 

+ 6 2  
+ 4 3  
+ 73 
+ 51 

- 

+ 8 5  

+61 
+ lo5 
+ 8 0  

+ 122 
- 

t 152 e 
+ 176 

+ 213 
t 178 

+ 100 
48 

+ 122 
+ 6 0  

+ 132 
+ 70 
+ 161 
+ 87 

+ 176 
+ 102 

+ 211 
+ 124 

- 

- 

+ 8 5  
+ 6 0  

+ 9 5  
- 

+70 
+ 117 

+ 132 
+1M 
+ 159 
t 124 

t 175 
- 

+144 
t 210 
t 170 

c 2 3 0  
t 190 
t 250 

- 

- 

t 282 

G!?K 

c258 

c284 

* 
c350 

t 301 

t330 

c 367 

P 4 0 2  

c 447 
F 3 9 0  

1492 
- 

r435 
L 5 5 3  
b 490 - 
.603 

EL 

- 21 

- 37 
- 

-25 

- 45  

+ 50 

+ 2 5  

- 8  

- 3 3  

- 

- 9  

- 3 9  
___ 

- 10 

- 45 

- 2 5  

- 6 4  

- 

- 3 0  

- 76 

- 8 0  

- 142 

- 100 

- 174 

+ 6 0  

+ 30 

-30 

- 52 

+ 71 

+ 36 
- 

+ 8 3  
+ 4 3  

- 120 

- 207 
- 

- 145 
- 245 

- 3 6  

- 9 0  
- 

- 42 
- 1s 

+ 76 
+ 5 4  
+ 8 8  
+ 6 3  

+ 9 0  
+ 6 5  
+ 9 3  
+ 6 8  

+ 106 
+ 77 
+ 109 
+ 8 0  
+ 113 
+ a 4  
+ 126 

- 

- 

- 

- 

*91 

e 
+ 130 

+ 144 
t 108 

t 150 
- 
+114 
t 166 
t 128 

t 172 
- 
a 

t 245 

t m  
t 240 
t m  
- 

t2.E 
- 

+ 231 
+ 144 
+ 270 
+ 170 

+290 
+ 190 
+ 310 
+ 210 

+ 351 
+236 

+ 373 
*258 
+399 
+284 

+J45 
+ 315 

+a 
+350 
+530 
+390 

+ 575 

___ 

- 

- 

- 

+*35 
t645 
+ m  
tm5 
- 

-36 
- 61 

- 12 
- 5 2  

- 14 
- 3 9  

- 41 
- 70 

+ 9 6  
t 50 

- 14 
- 6 0  

- 15 
- 4 4  

- 50 
- 122 

- 

- 5 8  

- 137 

- 170 
- 285 

- 190 

-320 

UPTO 250 

UPTO 290 

UPTO 315 

OVER 315 
UPTO 355 

- 47 

- 7s  

c lae 

t 56 

- 14 

- 6 6  

- 17 

- 4 9  

- 16 

- 73 

- 

- 17 

- 8 0  - 

- 18 

-54 
- 

-2 0  
-6 0  - 

- 6 2  

- 151 

- 
- a 8  
- 165 - 

- 210 

- 3 5 0  

-230 
-395 - 

- 51 

- 87 
- 

-55 

-s 
F UPTO 450 



-M%E OF 
NOMIML 

DIMENSION 

1 TO 3 

OVER 3 
UPTO 6 
OVER 6 
UPTO 10 
OVER 10 
UPTO 14 
OVER 14 
UPTO 18 
OVER 18 
UPTO 24 

OVER 24 
UPTO 30 
OVER 30 
UPTO 40 

OVER 40 
UPTO 50 

OVER 50 
UPTO 65 

OVER 65 
UPTO 80 
OVER 80 
UPTO 100 

OVER 100 
UPTO 120 
OVER 120 
UPTO 140 

OVER 140 
UPTO 160 

OVER 160 
UPTO 180 
OVER 180 
UPTO 200 
OVER 2yM 

UPTO 225 

OVER 225 
UPTO 250 

OVER 250 
UPTO 280 

OVER 280 
UPTO 315 
OVER 315 
UPTO 355 

OVER 355 
UPTO 400 

OVER 4W 
UPTO 450 

OVER 450 
UPTO 500 

m D9 
+ 45 
+20 
+&I 

+ 30 
+ 7 6  
+ 40 

+ 93 
+ 50 

+I17 

+65 

+I42 

+ 80 

+I74 

+I00 

+207 

+I20 

+245 
+145 

+285 
+I70 

+320 
+I90 

450 

+210 

485 

+230 

UB 
+ 32 
+ 
+ 41 
+ 23 
+ 50 
+ 2E 

+ 60 
+ 33 

+ 74 
+ 41 

+ 81 
+ 48 
+ 99 
+ 60 

x8 
+ 3 4  

1 8 + 2 0  
+ 46 
+ 28 
+ 5 6  
+ 3 4  
+ 87 
+ 4 0  

+ 7 2  
+ 4 5  

+ 87 
+ 54 

+ 97 
+ 6 4  

+ 119 
+ B o  

+ 109 
+ Yo 
+ 133 
+ 87 

+ 148 
+ 102 
+ 178 
+ 124 

+ 1.98 
+ 144 
+ 233 

+I36 
+ 97 
+1m 
+I22 

+I92 
+ 146 
+232 
+ 178 

+m 
+210 
+311 

BORE - 
E5 

- 
H I 0  
+ 4 0  

0 
+ 4 8  

0 
+ 5 8  

0 

- 
- 
- 

+ 70 

0 

E9 H5 H 6  H9 
+ 2 5  

0 
+ 30 

0 
+ 36 

0 

- 

+ 4 3  
0 

- 
+ 52 

0 

- 

+ 6 2  

0 

- 

+ 74 

0 

H I 3  
t 140 
- 
c 0 
t 180 

0 

t 2 2 0  

0 

c 270 

0 

H I 2  
t 100 

0 
t 120 

0 
+ I50 

0 

t 180 

0 

+ 2 0  
+ 14 
+ 28 

+ 3 4  
+ 2 5  

+ 4 3  
+ 3 2  
- 
+ 5 3  

+ 4 0  
- 

+ 6 6  

+ 50 

+ 4  
0 

+ 5  
0 

+ 6  

0 

- 

+ 8  

0 

- 

+ 9  

0 

- 

+ 11  

0 

+ 6  
0 

+ 8  
0 

+ 9  

0 

- 
- 
- 

+ 11 

0 

- 

+ 13 

0 

- 

+ 16 

0 

+ 3 9  
+ 14 
+ 50 
+ 2 0  
+ 61 
+ 2 5  

+ 75 

+ 3 2  

+ 92 

40 

+ 112 

+ 50 

+ 8 4  

0 

+ 210 

0 

t 330 

0 

+520 

0 

+ 100 

0 

,390 

0 

+6m 

0 

t 250 

0 
-- 

+ 300 
0 

+ 350 
0 

+ 400 
0 

t 460 

0 

- 

+ 540 

0 

- 

*630 
0 

- 

+ 710 
0 

+ 740 

0 

- 

+ 870 

0 

+ 79 

+ 6 0  
+ 134 

+ 6 0  

+ 13 

0 

+ 19 

0 

+ 120 
0 

- 

+ 140 

0 

- 

+ 160  
0 

- 

+ 185 
0 

+ 159 

+ 72 

+ 2 2  

0 

- 

+ 2 5  
0 

+ 87 

0 

- 

+ 100 
0 

+ 9 4  

+ 72 

+ 15 

0 

- 

+ 18 
0 

+ 110 
+ 8 5  

+ I85 
+ 8 5  

+ loo0 
0 

- 

+ 1150 
0 

+ 129 
+ 100 

- 
+ 142 

+ 110 

+20 
0 

- 
i n  

0 

+ 115 
0 

+a0 
0 

+ 215 
+ 100 

+ 240 

+ 110 

+ 130 
0 

- 
+ 140 

0 

+ 210 

0 

- 
+ 230 

0 

+ 810 

0 

- 
+ m  

0 

+ 1300 

0 

+520  

0 

+ 570 

0 

+ lJ00 
0 

+ 161 

+ 125 

+25 

0 

- 

+ 27 

0 

7 

+265 

+ 125 

+ m  
+ I35 

+ 1550 

0 - 
+ 175 

+ 135 

+ 155 

0 - 
+250 

0 - 
+ 970 

0 - 
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OVER 250 + 52 + 81 
UPTO 280 0 0 

UPTO 315 

UPTO 355 

UPTO 400 

UPTO 150 
OVER 450 + 6 3  + 97 
UPTO 5W 0 0 

BORE RANGE OF 
NOMINU 

DIMENSION 

1 TO 3 + 10 + 14 

nml H7 HE 

SHAFT 
I I I I I I 

+ 250 0 -460 +I4 + 28 + 40 + 52 + 68 - 43 I -  85 
0 - 1 1  + 3 + 15 + 27 + 43 - 83 , - I 4 8  - 2 5 0  -710 

+250 +I4 + 2 8  0 -520 + 4 0  + 5 2  + 68 - 43 - 85 
0 - 11 + 3 + 15 + 27 + 43 - 83 - 148 - 250 -770 

+ 2 5 0  +I4 + 2 8  + 4 0  0 -580 + 5 2  + 68 - 43 - 85 
0 - 1 1  + 3 + 15 + 27 + 43 - 63 - 148 -250 -630 

+290  +I6 + 3 3  + 4 6  + 6 0  + 79 - 50 - 1 0 0  0 -660 
0 -13 + 4 + 17 + 31 + 50 - 96 -172 -290- 

+ 2 9 0  +I6 + 3 3  + 4 6  + 6 0  + 79 - 50 - 1 0 0  0 - 740 
0 -13 + 4 + 17 + 31 + 50 - 96 -172 -290 -1030 

+290 +I6 + 3 3  + 4 6  + 6 0  + 79 - 50 -lW 0 -620 
0 - 13 + 4 + 17 + 31 + 50 - 96 -172 -290 -1110 

+320 +I6 + 3 6  + 5 2  + 6 6  + 88 - 56 - 1 1 0  0 -920 
0 -16 + 4 + 2 0  + 34 + 56 - 108  -191 -320 -1240 

+ 5 2  + 66 + 88 - 56 - 1 1 0  - 0 -1W 
+ 20 + 34 + 56 - 108 - 191 - 320 -1370 

+360 + I 8  + 4 0  + 5 7  + 7 3  + 9 8  - 62 - 1 2 5  0 -1200 
0 - 18 + 4 + 21 + 37 + 62 - 119 - 214 - 360 -1560 

+ 360 + I 8  + 40 + 57 + 73 + 98 - 62 - 125 0 -1350 
0 - 18 t 4 + 21 + 37 + 62 - 119 - 214 - 360 -1710 

+4w +20 + 1 5  + 6 3  + 8 0  +lW - 68 - 1 3 5  0 -1500 
0 - 20 + 5 + 2 3  + 40 + 68 -131 -232 -400 -1900 

+4w +20 + I s  + w  + 8 0 + l a e  - 68 - 1 3 5  0 -1650 
0 -20 + '5 + 2 3  + 40 + 68 - 131 -232 -400 -2050 

1 

a 
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Tables of SI Units and Conversion Factors 

Base Units 

SI. No. Quantity Unit Symbol 

Length 
Mass 
Time 
Electric current 
Thermodynamic temperature 
Luminous intensity 
Amount of substance 

metre 
kilogram 
second 
ampere 
kelvin 
candela 
mole 

m 
kg 
S 

A 
K 
cd 
mol 

Definitions 

1. The metre is the length equal to 1,650, 763.73 wavelengths in vacuum of the radiation 
corresponding t o  the transition between the energy levels 2,,, and !jd5 of the krypton-86 atom. 

2. The kilogram is the mass of the international prototype of the kilogram which is in  the 
custody of the Bureau International des Poids et. Mesures (BIPM) at Serves, near Paris. 

3. The second is the duration of 9,192,631,770 periods of the radiation corresponding to the 
transition between the two hyperfine levels of the ground state of the caesium-133 atom. 

4. The ampereis the constant current which, ifmaintained in two straight parallel conductors 
of infinite length, of negligible circular cross-section, and placed at a distance of 1 metre apart 
in a vacuum, would produce between the conductors a force equal to  2 x lo-' newton per metre 
of length. 

5. The kelvin, unit of thermodynamic temperature, is the fraction - of the thermo- 

6. The candela is the luminous intensity in the perpendicular direction, of a surface of 

square metre of a black body at the temperature offreezing plantinum under apressure 

273.16 
dynamic temperature of the triplex point of water. 

600,000 
of 101,325 newtons per square metre. 

entities as there are atoms in 0.012 kilogram of carbon 12. 
7. The mole is the amount of substance of a system which contains as many elementary 
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Supplementary Units 

In addition to the main units discussed above, there are two supplementary units measurement 
covering plane angle and solid angle. * 

1. The radian is the plane angle which, having its vertex at the centre of a circle, cuts off a 
length on the circumference of the circle equal to the radius of the circle. 

2. The steradian is the solid angle which, having its vertex at the centre of a sphere, cuts off 
an area on the surface of the sphere equal t o  that of a square with sides of length equal to the 
radius of the sphere. 

Derived Units with Special Units Symbol 

The SI units are augmented by the derived units. Special names have been adopted for some of 
the derived SI units, together with special unit symbols, which are given below. 

The symbols appearing in the Quantity column below correspond to the recommendations of 
the ISO. It is preferred that these symbols are used in equations and formulae to  effect overall 
uniformity in scientific and technical writings. For example, such symbol for force isFand is no 
longer P or Q or K or any other letter or symbol. 

IS0 Symbols end Definitions 

Quantity Unit Definition 

Force (F) N 

Work ( W) J 

Power (P) W 

Pressure (P ) Pa 

Normal stress (0) 

Shear stress (7) 

Frequency ( f )  HZ 

newton is that force which, when applied to a body having 
a mass of 1 kilogram gives it an acceleration of 1 metre per 
second squared 
1 N = 1 kg m/s2 

joule is the work done when the point of application of a 
force of 1 newton is displaced through a distance of 1 
metre in the direction of the force 
1 J - 1  Nm=W.s 

Watt is one Joule per second 
1 W = 1 J/s 

pascal is the pressure equally exerted on an area of 1 m2 
by a force of 1 newton acting vertically 

1 Pa= 1 Nlm2 

hertz is equal to the frequency of one cyde per second 
1 HZ = 11s 
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Derived Units with Complex Names 

Some derived SI units with complex names are in use. 

SI. No Quantity SI unit Unit symbol 

1 Area 
2 Volume 
3 Density (mass density) 
4 Velocity 
5 Angular velocity 
6 Acceleration 
7 Angular acceleration 

A Square metre m2 
V Cubic metre m3 
P Kilograms per cubic metre kglm3 
V Metres per second m/s 
o Radians p e r  second radls 
a Metres per second squared m/s2 
a Radians per second squared rad/$ 

Decimal fractions and multiples of SI units along with the relevant prefixes are given in the 
following table. These are approved factors by which the base units are to be multiplied to arrive 
at a higher or a smaller new unit convenient for the purpose of calculation. 

Multiples of SI Units 

Fraction Prefix Symbol Multiple Prefix Symbol 

lo-’ 
10-2 
10.3 
10-6 
10-9 

10-12 
10.15 
10.18 

deci 
centi 
milli 
micro 
nano 
pic0 
femto 
atto 

10’ 
102 
103 
106 
109 
10’2 

deka da 
hecto h 
kilo k 
mega M 
gigs G 
tera T 

I 

Note: Compound prefixes should not be used, namely, lo-’ metre is represented by 1 nm, and 
not 1 m pm. 

Conversion Factors 

The equivalent values or the conversion factors of some important units in common usage are 
given in the following table. In each table, the SI units are written within thick boxes 

Conversion Factors for Units of Force 

I I Dyne Units of force Newton (N) Kilogram force (kgf) = kp 

I I 1N 1 0.102 1 o5 

1 kgf = 9.81 1 9.81 105 

1 dyne 10-5 = 1.02 x 10-6 1 
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Units of work, 
energy and torque 

r 

Joule Kilowan- Newton- Erg kgf m 
hour metre 

I 1 joule (J) 
= 1 Watt-second (Ws) I 

Units of power 
and energy rate 

1 watt (W) = 
r 

1 joule/second (J/s) 

1 0.277778 x 1 1 o7 0.102 
10-6 

wan Kilowatt Newton-metre kgfmls Metric horse- 
per second power (PS) 

1 10-3 1 0.102 1 .36~ 
1 o - ~  

1 kilowatt-hour (kwh) 3.6 x lo6 1 3.6 x lo6 3.6 x 1013 = 0.367 x lo6 

Units of stress 

1 pascal (Pa) = 1 
N/m2 

1 Newton-metre 

1 Volt-ampere-second 
(N m) 

(VAS) 

~~ 

Pa = N/m2 M Pa = N/mm2 kgf/mm2 kgf/cm2 

1 10'6 10.4 f0.102 x = 0.102x 
10'6 10-4 

1 0.277778 x 1 
10-6 

~ 

1 o7 0.102 

1 erg 
~~ 

eo. 102 x 1 o-? 0.277778~ 10-7 1 
10-l3 10-7 

1 kilogram force metre 9.81 2.72407 x 9.81 e9.81 x 107 1 
= 1 kgfm 10-6 

1 kilowan (kW) 1 o3 1 1 03 102 1.36 

1 newton metre/second 
(1 Nm/s) 

1 10-3 1 0.102 a1.36 x 
1 o - ~  

1 
7s 

1 kilogram-force m 9.81 -9.81 x 10.3 9.81 1 - 
per second (1 kgf m/s) 

1 metric horse-power 
(PS) 

735.5 0.7355 735.5 75 1 

Conversion Factors for Units of Stress 

I 1 megapascal (MPa) I = 1 N/mm2 
1 06 1 102 0.102 10.2 

1 N/cm2 
~ _ _ _ _ _  ~ _ _ _ _ _  

1 o4 10.2 1 m0.102 x lod2 0.102 
~ ~ ~ 

1 kgf/ mm2 P9.81 X lo6 9.81 w9.81 x 102 1 102 

1 kgf/cm2 .;9.81 io4 =9.8i x io-2 9.81 10-2 1 
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1 pascal (Pa) 
= 1 N/rn2 

Conversion Factors for Units of Pressure 

I Torr Units of pressure Pa = N/m2 I Bar I kgf/crn2 Atrn 
I I I 

1 1 o - ~  E0.102 x 0.98692 x 0.75006 x 
1 o - ~  1 o - ~  10-2 

I ’ bar = lo6 = O.l dynelcm2 MPa 
1 o5 1 1.01972 0.98692 750 

1 technical atmosphere -9.81 io4 -9.81 IO-’ 1 9.67841 x IO-’ 736 
= 1 at = 1 kgf/cm2 

1 physical atmosphere ~ 1 . 0 1  x lo5 1.01325 1.03323 1 760 
= 1 atm 

1 torr 
= 1 mm of mercury ~ 1 . 3 3  x lo2 1.333224 x 1.35951 x 1.31579 x 1 
= 1 mm of Hg 10-3 1 o - ~  10-3 

The equivalent values of other units in SI units are given in the following table. 

Some Other Conversion Factors 

SI. No. Ouantity Unit Equrvalent 

1 Length 1 angstrom 
1 inch 
1 foot 
1 yard 
1 mile 
1 nautical mile, international 
1 chain 
1 engineer’s chain 

rn 
0.0254 rn 
0.3048 rn 
0.9144 rn 
1.60934 km 
1.85318 km 

20.12 m 
30.48 m 

2 Area 1 square inch 
1 square foot 
1 square yard 
1 square mile 
1 acre 

645.16 mrn2 
0.092903 rn2 
0.836127 rn2 
2.58999 km2 
4047 rn2 

3 Velocity 1 inch per second 
1 foot per second 
1 foot per minute 
1 mile per hour 

25.4 rnmls 
0.3048 rn/s 
0.00508 m/s 
1.609 km/h 

~~~ ~ 

4 Acceleration 1 foot per second 
squared 

0.3048 m/s2 

~~ 

5 Mass 1 pound 
1 slug 

0.45359237 kg 
14.5939 kg 

6 Density 1 pound per cubic inch 2.76799 x lo4 kg m-3 
1 pound per cubic foot 16.0185 kg m-3 

(Confd) 
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(Conrd) 

SI. No. Ouantity Unit Equivelenr 

7 Force 1 dyne 
1 poundal 
1 pound-force 
1 kilogram-force 

10-5 N 
0.138255 N 
4.44822 N 
9.80655 N 

~ ~~ 

8 Pressure 1 atmosphere (phys ) 101 325 kN m-2 
1 pound force per square inch 
1 torr 

6 89476 k N m-2 
133 322 N m-2 - 

9 Energy 1 erg 10-7 J 
1 calorie (IT) 
1 calorie (15'C) 
1 calorie (thermochemtcal) 4184J 
1 Btu 1055 06 J 
1 foot poundal 
1 foot pound-force 

4 1868 J 
4 1855 J 

0 042149 J 
1 35582 J 

10 Power 1 hp (horse power) 745 7 w 

11 Volume 1 litre 10.3 m3 

1 metric horse power (PS) 7355w 

1 cubc inch 
1 cubmfoot 0 0283168 m3 
1 British gallon 

1 63871 x l o 5  m3 

0 004546092 m3 



Tables of Preferred Numbers and Sizes 

Preferred Numbers 

Basic numbers Variation of the 
Exact basic numbers Man- 

Basic series numbers from the exact tissas 
numbers 

R5 R10 R20 R40 % 

1 .OO 
1.06 

1 .OO 1.12 
1 .OO 1.12 1.18 

1 .00 1.25 1.25 1.25 
1.40 1.32 

1.40 
1.50 

1 .moo 
1.0593 
1.1220 
1.1885 
1.2589 
1.3335 
1.41 25 
1.4962 

0 
+0.07 
-0.18 
-0.71 
0.71 

-1.01 
-0.88 
+0.25 

000 
025 
050 
075 
100 
1 25 
150 
1 75 

1.60 1.5849 +0.95 200 
1.70 1.6788 +1.26 225 

1.60 1.80 1.7783 +1.22 250 
1.60 1 .eo 1.90 1.8836 +OB7 275 

1.60 2.00 2.00 2.00 1.9953 +0.24 300 
2.24 2.12 2.1135 +0.31 325 

2.24 2.2387 +0.06 350 
2.36 2.3714 -0.48 3 75 

2.50 2.51 19 4 . 4 7  400 
2.65 2.6607 -0.40 425 

2.50 2.80 2.8184 -0.65 450 
2.50 2.80 3.00 2.9854 +0.49 4 75 

2.50 3.15 3.15 3.15 3.1623 -0.39 500 
3.55 3.35 3.3497 +0.01 525 

3.55 3.5481 +0.05 550 
3.75 3.7584 -0.22 5 75 

4.00 3.981 1 +0.47 600 
4.25 4.21 70 +0.78 625 

4.00 4.50 4.4668 +0.74 650 
4.00 4.50 4.75 4.7315 +0.39 6 75 

4.00 5.00 5.00 5.00 5.01 19 -0.24 700 
5.60 5.30 5.3088 -0.17 725 

5.60 5.6234 -0.42 750 
6.00 5.9566 +0.73 775 

(Conld) 
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(Contd) 

Basic numbers Variation of the 
Exact basic numbers Man- 

Basic series numbers from the exact tissas 
numbers 

RS R10 R20 R40 % 

6.30 6.3096 -0.15 800 
6.70 6.6834 +0.25 825 

6.30 7.10 7.0795 4 .29 850 
6.30 7.10 7.50 7.4989 4 .01  875 

6.30 8.00 8.00 8.00 7.9433 4 .71 900 
9.00 8.50 8.41 40 +1.02 925 

9.00 8.9125 4 .98 950 
9.53 9.4406 4 .63 975 

Preterred Slzes 

0.1 1 

1.1 

0.12 1.2 

1.4 

1.5 

0.16 1.6 

1.8 

0.2 2 

2.2 

0.25 2.5 

2.8 

0.3 3 

3.2 

3.5 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 
2.1 
22 
23 
24 
25 
26 

28 

30 

32 

34 
35 

36 

100 
105 
110 
115 
120 
125 
130 
1 35 
140 
145 
150 
155 
160 
165 
1 70 
1 75 
180 
185 
190 
195 
200 
210 
220 
230 
240 
250 
260 
270 
280 
290 
300 
310 
315 
320 
330 
340 
350 
355 
360 

38 

0.4 4 40 

42 

4.5 
44 
45 
46 

48 

0.5 5 30 
52 
53 

5.5 55 
56 
58 

0.6 6 60 
62 
63 
65 
67 
68 

7 70 
71 
72 
75 
78 

0.8 8 80 
82 
85 
88 

9 90 
92 
95 
98 

370 
375 
380 
390 
400 
410 
420 
430 
440 
450 
460 
470 
480 
490 
500 
520 
530 
550 
560 
580 
600 

630 
650 
670 

700 
710 

750 

800 

850 

900 

950 
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Surface Quality Symbols and Their Values 

It is n-ot possible to achieve an  ideal surface ofa work-piece in practice. There will always be some 
deviations from the ideal and the actual values may be quite different. Hence, to limit such 
deviations of dimensional and surface quality values, elaborate systems of quality control 
methods have been devised. Since the ideal conditions are ordinarily not attainable in practice, 
except at exhorbitant costs which do not permit the product to be economically viable and 
competitive in market, some kind of tolerance and permissible surface conditions of the work- 
piece have to be conceded for the dimensions ofthe part as  well as for its surface. The dimensional 
tolerances have been given in Appendix S. In this appendix, the surface quality and the 
permissible values thereof are dealt with. Besides other relevant data, an engineering drawing 
must, therefore, also contain information about these allowable values of deviations. 

Surface condition is a function of the process of manufacture, machining or  finishing 
procedures adopted and sometimes, of the post heat-treatment imparted to the work- 
piece.Theoretically, it is possible to  prescribe all varieties of surface quality. In practice, 
however, the surface roughness values are determined in relation to the nominal dimension and 
the tolerance-grade of the job. There is a direct relationship between the dimensional tolerance 
on a part and the permissible surface roughness. Assigning of undue accuracy will only enhance 
the production cost of the piece. Hence, the designer should very carefully select the tolerance, 
zone and surface quality required, keeping in mind the ultimate use to which the product will 
be subjected. 

Different methods are being followed for indicating surface roughness in an engineering 
drawing. The undermentioned method is followed as per IS: 696. 

The basic grade sym bo1 consists of two legs of unequal lengths representing the surface under 
consideration as shown in Fig. V.l (a). If the removal ofmaterial by machiningis required, then 
a cross-bar is added to the basic symbol as shown in Fig. V.l (b). The condition where such 
removal is not permitted is indicated by adding a circle a s  shown in Fig. V. l  (c). When special 
surface characteristics have to be indicated, a horizontal line is added to the longer leg. [Fig. V. 1 
(d)]. Positions of the specifications of surface roughness and related data with respect to the 
symbol have been summarised in Fig. V. 1 (e). Criterion for roughness Rt indicates the value of 
the peak-to-valley height on an  (uneven) surface and Ra is the mean roughness index which is 
the arithmetic mean of the absolute values of the distances between the actual and the mean 
profiles ofthe surface under consideration. Previously, root mean square (rms) values were used 
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for R,. Details about the surface quality, its inspection, control measures, etc. are given in books 
on machining and quality control and inspection. 

The principal criterion of roughness (R,) may be indicated by the corresponding grade symbol 
as shown in Table V.l. 

Table V.l Grade symbols for roughness index 

Roughness values, R, Grade 
Pm symbol 

Roughness values. Ra 
Cvn 

Grade 
symbol 

50 
25 
12.5 
6.3 
3.2 
1.6 

N 12 
N 11 
N 10 
N 9  
N 8  
N 7  

0.8 
0.4 
0.2 
0.1 
0.05 
0.025 

N 6  
N 5  
N 4  
N 3  
N 2  
N 1  

Due to the rapid development ofmodern techniques and steadily increasing accuracy required 
for the working surfaces of the products, i t  has  become imperative in certain cases to directly 
indicate the characteristics of the surfaces by inserting the roughness value, production 
methods, etc. in the drawing itself as shown in Fig. V. 1 (e). 

d 

Fig. V.l Grade symbol 

However, indications of the surface quality by means of suitable triangular symbols on the 
drawings is also followed by many industries and design offices. Such surface quality symbols 
along with their corresponding values are given in TableV.2. These values are mainly based on 
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63 

1b 

the German Industrial Standards, DIN 3141. If the surface quality is indicated in this way, then 
the relevant “series” used is to be mentioned in the title of the drawing or on the drawing itself. 

25 

Table V.2 Surface quality symbols and their values 

a 

SERIES 
I 1 3 4 I I I 

MAXIMUM A L L O W A B L €  SURFACE ROUGHNESS Rt IN # m  

100 

1.5 

6- 3 

10 
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Checking of Gears.by Means of. 
Balls or Rollers 

In  shops and inspection departments, gears are often checked by measuring a pre-specified 
distance between two identical balls or rollers placed in diametrically opposite tooth gaps ofthe 
gear. For this purpose, pins or wires are also employed. This indirect checking oftooth thickness 
is a very accurate method ofgear inspection. The gauge distance is measured by means of Vernier 
calipers or  micrometers or similar measuring devices. Within reasonable limits, the choice of the 
diameter of the gauging balls or rollers is arbitrary, provided of course that the diameter chosen 
is accurately known. These balls, etc., used for measurement purposes are accurately ground and 
polished to the specified dimensions. 

In Sec. 2.28, we have discussed the “base tangent length” measurement system for gear 
checking. Though widely used, this method has its own limitations. For example, it cannot be 
used for checking internal gears. The method of checking by balls or rollers can be employed for 
both external as well as internal gears. 

If the actual measurement over the balls confirms to the calculated pre-determined value M, 
then it can be concluded that  the gear teeth have been accurately cut as per the specified 
requirements and size. 

Basic Principle of Measurement over Balls 

The underlying principles of this type of gear checking are explained below: 
Referring to Fig. W.l, the following relations can be established 

rb = r cos a = r, cos a, 
cos a .. r , = r -  
cos a, 

whence we get the centre distance between the two opposite balls given by 

cos a 
cos a, 

2r, = 2 r -, 

or cos a cos a 
d, = d - = mz - 

cos a, cos a, 
The angle al is found from the following relation (see Fig. W.1) 

S I 2  k +inva+-  - - d, I 2 i n v a ,  = - 
rb r z 

(W. 1) 

(all angles in radians) 

f 
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or S K + inv a +-  - - i n v a ,  = - 
2 2r z 
4 

s n  + i n v a +  - - - 
d cos a d z  

- dr - (W.2) 
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Here d, is the diameter of the balls or rollers, the other symbols and subscripts having the 
usual meanings as before. [Recall the relation: 2rb = db (base circle diameter) = d (pitch circle 

diameter) x cos a. Also, arc - dr = base circle radius, rgx subtended angle a t  the centre, or, angle 
2 

dr s 
2 rb 2 

- - -Jrb dr = -. Similarly, arc - = pitch circle radius, r x angle a t  the centre]. 

For uncorrected gears, tooth thickness at the pitch circle 

2 
For corrected gears 

nm 
2 

s = -  f 2 x m  tan -a .  (As per Eq. 2.28 and 2.29) 

Finally, we arrive a t  the following expression for the value of measurement over two opposite 
balls in case of a n  external spur gear having even number of teeth (see Fig. W.21, 

Ma = d,  +dr (W.3) 
In case of a gear having odd number of teeth, the balls are to be placed as nearly opposite to each 
other as possible (see Fig. W.3). In this case, from triangle ABC, we have, 

~ 

Fig. W.2 Measurement over balls in case of an external gear with an even number of teeth 
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whence 

and 

90" d; = d, COS - 
z 

90" Ma = d;+d, = d,  COS - + d, z 
,I d, L- 

(W.4) 

Fig. W.3 Measurement over balls in case of an external gear with an odd number of teeth 

Similarly, the dimensions and parameters for checking teeth of internal spur gears can be 
derived. The relevant equations are as follows 

cos n 
d,= d- (As in Eq. W. 1) 

cos cy, 

s 7 r  + i n v n  - - + - 
d cos cy d z  

4 i n v a ,  = - 

I n  case of an  internal gear having even number of teeth (see Fig. W..li 

M i = d l - d ,  

(W. 5 )  

(W.6) 
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Fig. W.4 Measurement over balls in case of an internal gear with even number of teeth 

I n  case of a n  internal gear having a n  odd number of teeth (see Fig. W.51, 

90' M ,  = d,  cos - -. d, 
2 

(W. 7) 

For helical gears, the above expressions are modified in view ofthe helical orientation ofthe gear 
teeth. The  relevant equations are  summarised below. As before, the subscripts n and t stand for 
the normal and transverse sections of the helical gear, respectively (see Chap. 3 on Helical 
Gears). 
For external helical gear with even or  odd teeth, we have 

d cos a, - m,; z cos a, (W.8) - - . -  d,  = 
cos a,, c o s p  cos a,, 

inv a,, = dr + i n v a ,  + - sf2 - - lr (W.9) 
m, . zcos a, m,;z z 
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Fig. W.5 Measurement over balls in case of an internal gear with an odd number of teeth 

a . m n  a . m n  or - 2 2xmn tan an, as the case may be. Withs, = - 
2 2 

90" For even number of teeth, Ma = d l  + d,, and for odd number of teeth, Ma = d, cos - + d, 

as before. In a similar manner, expressions for internal helical gears can be derived by using 
Eq. W.8 and suitably modifying Eqs W.5, W.6 and W 7 by taking cognizance of the helical aspect 
as done in Eq W.9. 

z 

Determination of ball diameter 

As stated before, the diameter of the measuring balls or rollers or wires, etc., is not a critical 
dimension as can be easily seen by studying Fig. W.l and the relevant equations thereof. As such, 
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it can be arbitrarily chosen. However, it is desirable that the balls, etc., should touch the teeth 
surfaces at the pitch circle of the gear or as near as possible, as shown in Fig. W.6. Under such 
condition, the diameter of the balls is found as follows: 

Fig. W.6 Measuring ball which touches the tooth surfaces at the pitch circle 

By applying the law of sines in the triangle ABO, we have, 

sin8 d, sin 8 - -  41 2 - 2 = -  o r -  = - 
r r sin S d s in6 ’ 

sin 8 d sin 8 sin 8 
sin 15 

whence d, = d- = d - = 
a s  Y COS (a+ e) (W.10) 

The negative sign is valid for internal toothing. 
Again 
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e = - - -  2 n  '" inrad. 
22 r 
360" s 180" in deg. = - - - - ' -  
2z 2r  K 

180" 180" . s = - -  
z mz n 

180" 
z *  

(W. 11) 

am 90" 
2 z 

In case of uncorrected gears, the circular tooth thickness, s = - , so that 8 = - If the 

available balls or rollers have diameters which are near to the values calculated as per 
Eq. W. 10, then these can also be used for measurement purposes. The following example 
illustrate the calculation procedures discussed so far. 

Example W.l The following data are given for an uncorrected internal spur gear: 

z = 35, m = 4, a = 20', quality of tolerance: 7d. 
To calculate the toleranced values of measurement over balls. 

From Appendix J, corresponding to d = 140, m = 4 and tolerance zone = 7d, we find the tooth 
thickness tolerances to be: 

Upper limit A,u = - 0.056 mm 

Lower limit AsL = - 0.084 mm 

where subscripts UandL stand for upper and lower values, respectively. The two corresponding 
values of tooth thickness are given by 

su = s - Asu = 6.283 - 0.056 = 6.227 mm 

S L  = s -AsL = 6.283 - 0.084 = 6.199 mm 

Incidentally, while calculating the above values in case of a helical gear, the tolerances in the 
normal section, calculated as per Eq. 2.129, are to be inserted in the relevant equations. 

To find the ball diameter, we use Eqs. W. 11 and W. 10, 

140 sin 2' 34' 17.14" 
cos (20' - 2" 34' 17.34") 

- - sin 8 
cos (a - 8 )  

= 6.58 mm 

d, = d 
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We can take balls of 7 mm diameter, which will serve the purpose. Balls and rollers of 

Using Eq. W.5 and the above two values of tooth thickness, we have the following two 
standard sizes are generally stocked in the shops. 

values of al 
6.227 

+ IC + i nv20 ' -  - - 
140 cos 20' 140 35 

7 inva,, = - 

= 0.006977 
whence a,, = 15' 37' 55", by interpolation from Appendix H on Involute functions. 
Similarly 

6.199 
+ IC + inv20" - - - 

140cos 20" 140 35 
7 inva,, = - 

= 0.007176 

.. a,, = 15" 46' 35" 

From Eq. W.l we get 

cos 20" 
cos 15" 37' 55" 

d~ = 140 = 136.610 mm 

cos 20" 
cos 15" 46' 35" 

d,, = 140 = 136.707 mm 

Finally, by using Eq. W.7, we get the two values of measurement between balls 

90" 90' 
z 35 

Ma = d,, cos - - d, = 136.610 cos - - 7 = 129.472mm 

90' 90' 
z 35 

Ma = d, COS - - d, = 136.707 cos - - 7 = 129.569 mm 

The tolerance between the above two values of Mi amounts t o  
129.569 - 129.472 = 0.097 mm 

Determination of Corrected Value of M 
Inmanufacturing and inspection shops, ready-made tables and charts are usually available from 
which the M values, calculated on the basis of standard ball diameters, can be directly read off 
to alleviate the tedium of elaborate calculation pdocedures. However, it may so happen that the 
shop has a set of non-standard balls. In such cases, if the M value using a standard ball diameter 
is known (from available tables, etc.), then the M value using a non-standard ball can be 
calculated, provided the difference in ball diameters is slight. The method gives sufficiently 
accurate results, and is explained below. If the deviation in ball diameters is 2 ar, then 

(W. 12) 

(W. 13) 
where Ad- is the new value of M using balls of diameter dr A d r ,  Mstandad is the M 
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value using standard balls and found from the relevant tables and Cis a factor, the value ofwhich 
is also given normally in tables and charts. The factor C can be calculated by differentiation, 
using Eqs W.3 and W.4 in case of external gears, and Eqs W.6 and W.7 in case of internal gears. 
Thus 

c = -  d (MI 
d (dr)  

where M stands for Ma or Mi as the case may be. We have the following relations by differentiation: 
1 For external spur gear with an even number of teeth: C = - + 1  

sin a, 
t 

(W.14) 

90' s cos - 
For external spur gear with an odd number of teeth: C = + 1  (W.15) 

sin a, 

For internal spur gear with an even number of teeth: C = - - 
(sinla, + 1) 

(W.16) 

90" 

sin a, 

cos - 
For internal spur gear with an odd number of teeth: C = - [ + 11 (W.17) 

Example W.2 A factory produces standard corrected gear as per the 05-system of 
toothing (see Sec. 8.12). The following data of an external spur gear are given: t = 24, m = 3, 
d,  = 6 mm, Ma = 84.064 mm and C = 3.0047 (as per chart). 
Find the corrected value of Ma if balls having a diameter of 6.1 mm are used. 

Solution 
.. 

Ad, = 6.1 - 6 = + 0.1 mm 

A Msbndard = Ad,. c = 0.1 X 3.0047 = + 0.30047 

A Mcorrected = Mstandard + A Mstandard 

(as per Eq. W. 13) 

(as per Eq. W.12) 

= 84.064 + 0.30047 

= 84.364 mm 

Check Using Eq. W.2 and takingx = + 0.5 and a = 20", we have 

inva ,  = 

- - 

1 

d, = 

3 r m / 2 +  2xm t a n a  R 
d z d cos a 
R 312 + 2 x 0.5 x '3 .x  0.36397 R + 0.014904 + - -  6 

72 x 0.93969 72 24 
0.05330, whence a, = 29" 55' 22" 

- -  dr + inv a + 

= 78.064 cos 20" 
cos 29" 55' 22" 

72 (as per Eq. W. 1) 
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Mebnbr,j = dl + d, = 78.064 + 6 = 84.064 (as per Eq. W.3) 

+ 1 = 3.0047 (as per Eq. W. 14) 
1 

sin 29" 55' 22" 
c =  

A Mshndard = Adr ' c = 0.1 X 3.0047 = + 0.30047 mm (as per Eq. W.13) 

Mcorrected = Mstandard + mstandard 

= 84.064 + 0.30047 = 84.364 mm 

(as per Eq. W. 12) 

The above value tallies with the value found previously. Using the relevant formulae, viz., 
Eqs W.l, W.2, and W.3, and takingd, = 6.1 mm, the reader may recalculate the value ofM, as 
follows: 

- 1 5  IC + 2 x 0.5 x 3 tan 20° IC _ -  - 6*1 +inv 200 + .. a, = 30" 10' 315" inva ,  = 
72cos 20" 72 24 ' 

d, = 72 cos 2O"lcos 30" 10' 315" = 78.263 :. M,=78.263 + 6.1 = 84.363 mm 
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Action 
length of 2.7 
line of 2.7 

chordal 2.4 
definition of 2.4 
of basic rack 2.2 
of ge& cutters 8.27, 8.28 

action 2.22 
approach 2.7 
recess 2.7 

Angular velocity 1.5 
Angular velocity ratio 15, 1.10 
Arc of 

Addendum 

Angle of 

action 2.5 
approach 2.5 
recess 2.7 

Axial run out 2.128 

Backlash 
definition of 2.25 
in helical gear 3.15 

normal 2.25 
torsional 2.25 

definition of 2.4 
diameter of helical gear 3.8 
diameter of, spur gear 25 

in QUI gear 2.25-233 

Base circle 

Base tangent length measurement system 
Basic rack 

of bevel gear 5.3 
of helical and spur gear 2.1 

antifriction 3.24 
journal 2.81 
loads, helical gear 3.22 
loads, spur gear 2.77 
selection of 3.24 

Bearing 

Bending stress 
in helical gears 3.26 
inspurgears 2.100 

Bevel gear, spiral 
basic relaticn of 6.4 
definition of 1.4 
forces on 6.7 
general classification of 6.1 
geometry of 6.4 
hand of spiral 6.6 
power rating 6.10 
spiral angle of 6.4 

basic rack of 5.2 
bearing loads of 5.11 
bending moments 5.12 
bending stress calculations 5.13 
contact stress calculations 5.15 
definition of 1.4 
dimensions of 5.8 
efficiency of 5.19 
force analysis 5.9 
guidelines for selection of 5.7 
modules of 5.3 
terminology and relations 5.4 
theory of 5.1 

Bevel gear, straight 

Case hardening pocesses 1.23 
CAVEX worm drive 4.19 
Clearance 

2.133 definition of 2.4 
of basic rack 2.2 

Compressive stress 2.100 
Conjugate action 1.5 
Construction of 

cycloidal tooth A.13 
involute tooth A.3 

he l id  gears 3.14 
spur gears 2.20 

Contact ratio of 
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Contact stress (see also Stress, surface) 2.92 
Cooling 8.32 
Correction 

distribution of 2.60 
effect on tooth shape 2.45 
factor, derivation of 2.42 
in helical gears 3.15 
in spur gears 2.42 
0.5-system of 8.47 
reasons for and effect of 2.40 

Crossed helical gears 3.28 
Cycloidal curve 1.16 
Cycloidal gear tooth 1.17 

advantage over involute tooth 1.17 
construction of (see Construction) 

Dedendum 
definition of 2.4 
of basic rack 2.2 
of gear cutters 8.28 

Diametral pitch 2.5 
Differential 7.15 
Drawing of gears 2.147 
Dynamic loading 2.84 

Error 2.128 
Extreme pressure lubricant (EP), (see Lubricant) 

Face 
advance 3.6 
of tooth 2.4 
width 2.4 

Failures of gear 8.38 
Fatigue 2.92 
Fits 8.57 

Gear 
bevel, spiral (see Bevel gear, spiral) 
bevel, straight (see Bevel gear, straight) 
classification of 1.4 
crossed helical (see Crossed helical gear) 
cycloidal (see Cycloidal gear tooth) 
definition of 1.4 
double helical (see Helical gear) 
herringbone (see Herringbone gear) 
internal (see Internal gear) 
invention of 1.1 
involute (see Involute gear tooth) 
materials for (see Materials) 
operation of 1.1 
spur (see Spur gear) 

worm (see Worm drive) 

housing 8.13 
power rating of 8.6 
selection procedures for 8.4 
types of 8.1 

Gear coupling 7.24 
Gear cutters 8.25 
Gear cutting processes 8.18 
Gear fdshing processes 8.24 
Gear noise 8.39 
Gearpump 8.45 
Gear train 7.1 
Geared motor 8.4 

Gear box 8.1 

Heat generation and dissipation 8.32 
Helical gear 

backlash in (see Backlash) 
bearing loads for 3.22 
characteristics of 3.1 1 
contact ratio 3.14 
correction of (see Correction) 
crossed (see Crossed helical gear) 
definition of 1.4 
design criteria of 3.18 
dimensions, standard 3.8 
double (see Herringbone gear) 
efficiency of 3.43 
equivalent spur gear 3.8 
force analysis for 3.20 
geomeey of 3.1 
helix angle of 3.4 
internal (see Internal helical gear) 
strength calculations for 3.26 
terminology and relations of 3.3 
thrust characteristics of 3.19 

Herringbone gear 3.37 
Hertz stress 2.92 

(see also Contact stress) 
Horse power rating 2.110 
Hunting tooth system 8.46 
Hypoid gear (see Bevel gear. spiral) 

Induction hardening (see Case hardening processes) 
Irreversibility of worm drive (see Worm drive) 
Inspection of gears 2.131 
Interference 

definition of 2.33 
effects of 2.33 
ways to avoid 2.34 

Intermittent gearing 7.19 
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Internal helical gears 3.17 
Internal spur gears 2.65 

characteristics of 2.65 
fouling in 2.67 
interference in 2.66 

Introduction 1.1 
Involute curve 

characteristics of 1.10 
definition of 1.10 
effect on tooth profile 1.13 

Involute functions 32 
Involute spline 7.20 

Journal and journal bearing 2.81 

Keys 
gib head A.60 
parallel A.56 
tangent A.62 

Klingelnberg system 6.15 
Kurvex system 6.19 

Land of spur and helical gears 
bottom 2.4 
top 2.4 

Law of gearing 1.7 
Lubricant 8.32 
Lubrication 8.32 

Materials 1.21, 2.70 

Module 

Motor characteristics 2.123 

guidelines for selection 1.21 

definition of 2.4 

Noncircular gears 7.16 
Novikov gears 7.30 

05-system of toothing (see Correction) 

Peaking 2.46 
Pin gearing 7.29 
Pinion 

Pitch 
definition of 2.4 

circle 2.2 
diametral 2.4 

Pitting 2.93 
Planetary gears 7.2 
Power rating 

of spur gear as per IS: 4460 2.110 
of worm drive as per IS: 7443 4.36 

Preferred numbers and sizes 8.54 
Pressure angle 

definition of 2.7 
normal 3.6 
transverse 3.6 

Principles of transmission 1.5 

Quality of gears 2.125 

Rack 
basic 2.1 
definition of 1.4 

Radial run out 2.128 
Reduction gear units 8.1 
Reduction ratio (see Transmission ratio) 
Replacement of DP gear by module gear 
Root circle 2.4 

3.39 

Scoring 2.120 
Shaft design 2.82 
Shaft diameter, standard A.52 
Shaft fillet radii A.53 
Shrink fit calculations 8.49 
SI-units 8.53 
Span system of measurement 2.133 
Spare part drawing of gear 

from sample 8.41 
Spiral bevel gear 

(see Bevel gear, spiral) 

involute 7.20 
straight sided A.64 

backlash 2.25 
basic rack 2.1 
bearing loads 2.77 
contact ratio of 2.20 
correction of (see Correction) 
definition of 1.4 
dynamic loads 2.84 
efficiency 2.145 
errors 2.128 
force analysis 2.74 
inspection 2.131 
interference 2.33 
internal 2.65 
nature of tooth engagement 2.14 
parameters of 2.5 
quality grades 2.125 
sliding phenomenon of 2.16 
strength calculations and power rating 

Splines 

Spur gear 

2.98 
Standard specifications 
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IS0 Recommendations 1.4 
Specifications 1.4 

(see Bevel gear, straight) 

bending (see Bendmg stress) 
compressive (see Compressive stress) 
concentration 2.97 
contact (see Contact stress) 
shear 2.100 

Straight bevel gear 

Stress 

Stub tooth system 2.12 
Surface durability 2.92 
Surface quality symbols 7.9 

Tolerances on 
centre distance A.51 
dimensions A.67 
gear blanks A.48 
toothdistance A.50 
tooth thickness A.49 

Tooth thickness 2.9 
Topping 

amount of 2.58 
definition of and reasons for 2.58 
standard clearance after 2.58 

acceleration 2.123 
Torque 

in spur gear drive 2.14 
Transmission ratio 2.70 
Trigonometrical functiom 26 

Undercuaing 
of spurgear 233 
radius 236 

Weat 
definition of 2.93 
relation with pitting 

and contact stress 2.93 
Worm drive 

basic parameters of 4.7 

bending stress in 4.27 
contact stress in 4.28 
correction in 4.25 
design criteria of 4.31 
effect of heat 4.29 
efficiency of 4.43 
force analysis of 4.21 
globoidal (hour glass type) 4.6 
load rating 4.36 

bearing fOFCeS h 4.23 

types of 4.3 

zk a ZK, ZN. types of worm 4.3 
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