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Preface

This book deals with the art and science of power system engineering for those engineers who work
in electricity-related industries such as power utilities, manufacturing enterprises, engineering
companies, or for students of electrical engineering in universities and colleges. Each engineer’s
relationship with power system engineering is extremely varied, depending on the types of
companies they work for and their positions. We expect readers to study the characteristics of
power systems theoretically as a multi-dimensional concept by means of this book, regardless
of readers’ business roles or specialties.

We have endeavoured to deal with the following three points as major features of the book:

First, as listed in the Contents, the book covers the theories of several subsystems, such as
generating plants, transmission lines and substations, total network control, equipment-based local
control, protection, and so on, as well as phenomena ranging from power (fundamental) frequency
to lightning and switching surges, as the integrally unified art and science of power systems. Any
equipment in a power system network plays its role by closely linking with all other equipment, and
any theory, technology or phenomenon of one network is only a viewpoint of the profound dynamic
behaviour of the network. This is the reason why we have covered different categories of theories
combined in a single hierarchy in this book.

Secondly, readers can learn about the essential dynamics of power systems mostly through
mathematical approaches. We explain our approach by starting from physically understandable
equations and then move on to the final solutions that illustrate actual phenomena, and never skip
explanations or adopt half-measures in the derivations.

Another point here is the difference in meaning between ‘pure mathematically solvable’ and
‘engineering analytically solvable’. For example, a person (even if expert in transient analysis) cannot
derive transient voltage and current solutions of a simple circuit with only a few LCR constants
connected in series or parallel because the equational process is too complicated, except in special
cases. Therefore only solutions of special cases are demonstrated in books on transient analysis.
However, engineers often have to find solutions of such circuits by manual calculation. As they usually
know the actual values of LCR constants in such cases, they can derive ‘exact solutions’ by
theoretically justified approximation. Also, an appropriate approximation is an important technique
to find the correct solution. Readers will also find such approximation techniques in this book.

Thirdly, the book deals with scientific theories of power system networks that will essentially
never change. We intentionally excluded descriptions of advanced technologies, expecting such
technologies to continue to advance year by year.

In recent years, analytical computation or simulation of the behaviour of large power system or
complicated circuits has been executed by the application of powerful computers with outstanding
software. However, it is quite easy to mishandle the analysis or the results because of the number of
so many influential parameters. In this book, most of the theoretical explanation is based on typical
simple circuits with one or two generators and one or two transmission lines. Precise understanding
of the phenomena in such simple systems must always be the basis of understanding actual large
systems and the incidents that may occur on them. This is the reason why power system behaviour
is studied using small models.






Acknowledgements

This book contains the various experiences and knowledge of many people. I am deeply indebted to
these people, although I can only humbly acknowledge them in a general way.

Also, I wish to acknowledge all my former colleagues and friends who gave me various
opportunities to work and study together over many years throughout my engineering career.

I would also like to deeply thank Simone Taylor, Lucy Bryan, Emily Bone and all the other
associated staff of John Wiley & Sons, Ltd, and in particular Kelly Board and Wendy Hunter for
their encouragement and patient support. Finally, I wish to sincerely acknowledge Neville Hankins
who accomplished the editing and amendments and Neetu Kalra who accomplished the type-
setting, both hard tasks to my work.






About the author

Yohshihide Hase was born in Gifu Prefecture, Japan, in 1937. After graduating in electrical
engineering from Kyoto University, he joined the Toshiba Corporation in 1960 and took charge of
various power system projects, both at home and abroad, including the engineering of generating
station equipment, substation equipment, as well as power system control and protection, until
1996. During that time, he held the positions of general manager, senior executive of technology for
the energy systems sector, and chief fellow. In 1996, he joined Showa Electric Wire & Cable
Company as the senior managing director and representative director and served on the board for
eight years. He has been a lecturer at Kokushikan University since 2004. He was the vice president
of the IEEJ (1995-96) and was also the representative officer of the Japanese National Committee
of CIGRE (1987-1996) and has been bestowed as a distinguished member of CIGRE.






Introduction

‘Utilization of fire’, ‘agricultural cultivation’ and ‘written communication’: these three items are
sometimes quoted as the greatest accomplishments of humankind. As a fourth item, ‘social
structures based on an electrical infrastructure’, which was created by humans mostly within
the twentieth century, may be added.

Within the last hundred years, we have passed through the era of ‘electricity as a convenient tool’
to the point where electricity has become an inevitable part of our infrastructure as a means of
energy acquisition, transport and utilization as well as in communication media. Today, without
electricity we cannot carry out any of our living activities such as ‘making fire’, ‘getting food and
water’ ‘manufacturing tools’, ‘moving’, ‘communicating with others’, and so on. Humans in most
part of the world have thus become very dependent on electricity. Of course, such an important
electrical infrastructure means our modern power system network.

A power system network can be likened to the human body. A trial comparison between the two
may be useful for a better understanding of the essential characteristics of the power system.

First, the human body is composed of a great many subsystems (individual organs, bones,
muscles, etc.), and all are composed in turn of an enormous number of minute cells. A power
system network of a large arbitrary region is composed of a single unified system. Within this
region, electricity is made available in any town, public utility, house and room by means of metal
wires as a totally integrated huge network.

Generating plants, substations and transmission lines; generators, transformers, switchgear and
other high-voltage equipment; several types of control equipment, protection equipment and
auxiliary equipment; control and communication facilities in a dispatching or control centre; and
the various kinds of load facilities — all these are also composed of a very large number of small
parts or members. Individual parts play their important roles by linking with the rest of the network
system. Human operators at any part of the network can be added as important members of the
power system. We might say that a power system network is the largest and greatest artificial
system ever produced by people in the modern era.

Secondly, the human body maintains life by getting energy from the external environment, and
by processing and utilizing this energy. New cellular tissue is consequently created and old tissue is
discarded. In such a procedure, the human body continues to grow and change.

A power system can be compared in the same way. A prerequisite condition of a power system
network is that it is operated continuously as a single unified system, always adding new parts and
discarding old ones. Since long-distance power transmission was first established about a hundred
years ago, power systems have been operating and continuing to grow and change in this way, and,
apart from the failure of localized parts, have never stopped. Further, no new power system isolated
from the existing system in the same region has ever been constructed. A power system is the
ultimate inheritance succeeded by every generation of humankind.

Thirdly, humans experience hunger in just a few hours after their last meal; their energy storage
capacity is negligible in comparison with their lifetimes. In a power system such as a pumped-
storage hydro-station, for example, the capacity of any kind of battery storage system is a very small
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part of the total capacity. The power generation balance has to be maintained every second to
correspond to fluctuations or sudden changes in total load consumption. In other words, ‘Simulta-
neity and Equality of energy generation and energy consumption’ is a vital characteristic of
power system as well as of human body.

Fourthly, humans can continue to live even if parts of the body or organs are removed. At the
other extreme, a minute disorder in cellular tissue may be life-threatening. Such opposites can be
seen in power systems.

A power system will have been planned and constructed, and be operated, to maintain reasonable
redundancy as an essential characteristic. Thus the system may continue to operate successfully in
most cases even if a large part of it is suddenly cut off. On the contrary, the rare failure of one tiny
part, for example a protective relay (or just one of its components), may trigger a kind of domino
effect leading to a black-out.

Disruption of large part of power system network by ‘domino-effect’ means big power failure
leaded by abrupt segmentation of power system network, which may be probably caused by cascade
trips of generators caused by total imbalance of power generation and consumption which leads to
‘abnormal power frequency exceeding over or under frequency capability limits (OF/UF) of
individual generators’, ‘cascade trips of generators caused by power stability limits, Q-V stability
limits or by any other operational capability limits’, ‘cascade trips of trunk-lines/stations equipment
caused by abnormal current flow exceeding individual current capacity limits (OC), or by over or
under voltage limits (OV/UV)’, ¢ succeeding cascade trips after fault tripping failure due to a
breaker set back or caused by mal-operation of a protective relay’ and so on, and may be perhaps
caused as of ‘these composite phenomena’. These nature of power systems is the outcome that all
the equipment and parts of the power system, regardless of their size, are closely linked and
coordinated. The opposites of toughnees with well redundancy and delicacy are the essential
nature of power systems.

Fifthly, as with the human body, a power system cannot tolerate maltreatment, serious system
disability or damage, which may cause chronic power cuts, and moreover would probably causes
extremely fatal social damages. Recovery of a damaged power system is not easy. It takes a very
long time and is expensive, or may actually be impossible. Power systems can be kept sound only
by the endeavours of dedicated engineers and other professional people.

Sixthly, and finally, almost as elaborate as the human body, all the parts of power system
networks today (including all kinds of loads) are masterpieces of the latest technology, based on a
century of accumulated knowledge, something which all electrical engineers can share proudly
together with mechanical engineers. Also all these things have to be succeeded to our next
generations as the indispensable social structures.
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Overhead Transmission Lines and
Their Circuit Constants

In order to understand fully the nature of power systems, we need to study the nature of transmission
lines as the first step. In this chapter we examine the characteristics and basic equations of three-
phase overhead transmission lines. However, the actual quantities of the constants are described in
Chapter 2.

1.1 Overhead Transmission Lines with LR Constants

1.1.1 Three-phase single circuit line without overhead
grounding wire

1.1.1.1 Voltage and current equations, and equivalent circuits

A three-phase single circuit line between a point m and a point n with only L and R and without an
overhead grounding wire (OGW) can be written as shown in Figure 1.1a. In the figure, r; and L, are the
equivalent resistance and inductance of the earth, respectively. The outer circuits I and II connected at
points m and n can theoretically be three-phase circuits of any kind.

All the voltages V,, Vj, V. and currents I,,, I, I are vector quantities and the symbolic arrows show
the measuring directions of the three-phase voltages and currents which have to be written in the same
direction for the three phases as a basic rule to describe the electrical quantities of three-phase circuits.

In Figure 1.1, the currents /,, I, I in each phase conductor flow from left to right (from point m to
pointn). Accordingly, the composite current I, + I, + I has to return from right to left (from point n to
m) through the earth—ground pass. In other words, the three-phase circuit has to be treated as the set of
‘three phase conductors + one earth circuit’ pass.

In Figure 1.1a, the equations of the transmission line between m and n can be easily described as
follows. Here, voltages V and currents / are complex-number vector values:

mVa = nVa = (ra + joLaag)la + jooLapely + joLacgle — man @)
Vo =V = jWLhagIa + (r;, + jWthg)Ib + ijhchC - man @) (LD
mVe = nVe = joLeagla + joLepgly + (re + jorLeeg)le — mnvg ©) .

@

where ., V, = (rg + joLg)l, = —(rg + jooLg)(Ia + 1 + 1)

mn'g

Handbook of Power System Engineering Yoshihide Hase
© 2007 John Wiley & Sons, Ltd
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Figure 1.1 Single circuit line with LR constants

Substituting @) into (), and then eliminating man, I,

mVa = nVa = (ra+rg + joLaag + Lg)la + (rg + joLapg + Lg)lp+(rg + jwLacg + Lg)le
Substituting @ into Q) and () in the same way,

mVe = uVp = (rg + joLpag + L)l + (rp+ rg + joLppg + Lg)Ip+ (rgtjoLpeg+Le)Ie

mVe — Vo= (rg + joLeag + Lo)la + (rg + joLepg + Lo )y + (re + 1 + jwLecg + L)

®

©®

@
(1.2)

Now, the original Equation 1.1 and the derived Equation 1.2 are the equivalent of each other, so

Figure 1.1b, showing Equation 1.2, is also the equivalent of Figure 1.1a.

Equation 1.2 can be expressed in the form of a matrix equation and the following equations are

derived accordingly (refer to Appendix B for the matrix equation notation):

mVa nVa
mVp - 2V
mVe nVe
Tq + 71+ ja)L,mg + Lg re + ja)Labg + Lg re + ja)Lm.g + Lg 1,
= g + ja)Lbag + Lg rp, + g + j(/‘)Lbbg + Lg g + jWLbcg + Lg . Iy
rg + joLeag + Lg rg + joLepg + Ly Te +rg + joLeeg + Lg 1.
Tag + JOLag Tab + joLap Tac + joLac I,
=\ rba t joLig I'pb + joOLpp Tpe + jOLpe || Ip
rL'(l + ijL'll rcb + ijCb rL'L' + ijL'L' IL'
Zaa Zab Zac I,
= | Zpa Zop | Zpe || Ip
Zea Zcb Zec I

(1.3)



1.1 OVERHEAD TRANSMISSION LINES WITH [R CONSTANTS 3

where Zya = Yaa + joLag = (ra + 1g) + jo(Lagg + Lg) }

Zpp, Zcc are written in similar equation forms (1.4)
and Z,., Zp. are also written in similar forms
Now, we can apply symbolic expressions for the above matrix equation as follows:
mV ape = nVave = Zabe * Labe (1.5)
where
m Va n Va Zaa Zab Zac 1 a
mVabc = mV ’ "VﬂbC = Vb ’ lebL‘ = Zpa Zpp ZLpe ) Iabc = 1 (1.6)
m VC n Vc an Zcb ZCC I c

Summarizing the above equations, Figure 1.1a can be described as Equations 1.3 and 1.6 or
Equations 1.5 and 1.6, in which the resistance r, and inductance L, of the earth return pass are already
reflected in all these four equations, although I, and ,,, V, are eliminated in Equations 1.5 and 1.6. We
can consider Figure 1.1b as the equivalent circuit of Equations 1.3 and 1.4 or Equations 1.5 and 1.6. In
Figure 1.1b, earth resistance r, and earth inductance L, are already included in the line constants Z,,
Zap, etc., so the earth in the equivalent circuit of Figure 1.1b is ‘the ideal earth’ with zero impedance.
Therefore the earth can be expressed in the figure as the equal-potential (zero-potential) earth plane at
any point. It is clear that the mutual relation between the constants of Figure 1.1a and Figure 1.1b is
defined by Equation 1.4. It should be noted that the self-impedance Z,, and mutual impedance Z,, of
phase a, for example, involve the earth resistance r, and earth inductance Lg.

Generally, in actual engineering tasks, Figure 1.1b and Equations 1.3 and 1.4 or Equations 1.5 and
1.6 are applied instead of Figure 1.1a and Equations 1.1 and 1.2; in other words, the line impedances
are given as Zuq, Zap, etc., instead of Zy4g, Zap,e. The line impedances Zyy, Zyp, Zcc are named ‘the self-
impedances of the line including the earth—ground effect’, and Z,;,, Z,., Z., etc., are named ‘the
mutual impedances of the line including the earth—ground effect’.

1.1.1.2 Measurement of line impedances Z,,, Z ), Z

Let us consider how to measure the line impedances taking the earth effect into account.

As we know from Figure 1.1b and Equations 1.3 and 1.4, the impedances Z,4, Z,p, Zuc, €tc., can be
measured by the circuit connection shown in Figure 1.2a.

The conductors of the three phases are grounded to earth at point n, and the phase b and ¢ conductors
are opened at point m. Accordingly, the boundary conditions, V, = |V, = V.= 0,1, = I. = Ocanbe
adopted for Equation 1.3:

mVa 0 Zaa Zab Zac 1,
Ve |71 0 =] Zpa Zppy Zbe 0 D 17
ch 0 Zea Zeh Zec 0
mva/lﬂ :Zal/h me/Ia:Zbch ch/Ia:ZCa @
]a — — ]a
O Iy=0—p — ,=-1, ::I
° I,=0—p —1.-0
O
B @YD
/.
> Ig:_la —»Ig:()

(@) (b)

Figure 1.2 Measuring circuit of line impedance
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Therefore the impedances Zyq, Zy,, Zge can be calculated from the measurement results of |V,
mVpr mVe and Iy,

All the impedance elements in the impedance matrix Z 4. of Equation 1.7 can be measured in the
same way.

1.1.1.3 Working inductance (Loq — Lgp)

Figure 1.2b shows the case where the current / flows along the phase a conductor from point m to n and
comes back from n to m only through the phase b conductor as the return pass. The equation is

with boundary conditions [, = —I =1, I. =0, WVe=aVp:
m Va n Va Zua Zab Zuc 1
Vo |71 Y% | =1 Zoa | Zob | Zbe || 1 (1.8a)
m Vc n Vc an Zcb ch 0
Therefore
wVa— Ve = (Zaa — ,,;,)I : voltage drop of the phase a conductor between points m and n D
mVe — nVy = —(Zpb — Zpa)I = voltage drop of the phase b conductor between points m and n
V= mVa - th = {(Zaa - Zl/lb) + (Zhb - Zhll)}l @
VII=(,V, = V)T = (Zaa — Zap) + (Zby — Zpa) = {twice values of working impedance} }

(1.8b)

Equation 1.8(D) indicates the voltage drop of the parallel circuit wires a, b under the condition of the
‘go-and-return-current’ connection. The current / flows out at point m on the phase a conductor and
returns to m only through the phase b conductor, so any other current flowing does not exist on the
phase ¢ conductor or earth—ground pass. In other words, Equation 1.8b(]) is satisfied regardless of the
existence of the third wire or earth—ground pass. Therefore the impedance (Z,, — Z,;,) as well as
(Zpp — Zpy) should be specific values which are determined only by the relative condition of the phase
a and b conductors, and they are not affected by the existence or absence of the third wire or earth—
ground pass. (Z,, — Zup) is called the working impedance and the corresponding (Lyq — Lgp) is
called the working inductance of the phase a conductor with the phase b conductor.

Furthermore, as the conductors a and b are generally of the same specification (the same dimension,
same resistivity, etc.), the ipedance drop between m and n of the phase a and b conductors should be the
same. Accordingly, the working inductances of both conductors are clearly the same, namely
(Laa - Lab) = (Lbb - Lba)-

The value of the working inductance can be calculated from the well-known equation below, which
is derived by an electromagnetic analytical approach as a function only of the conductor radius » and
the parallel distance s, between the two conductors:

Laa — Lap = Ly — Lpa = 0.4605 1oglos“7b +0.05  [mH/km] (1.9)
This is the equation for the working inductance of the parallel conductors a and b, which can be
quoted from analytical books on electromagnetism. The equation shows that the working inductance
Lyq — Ly, for the two parallel conductors is determined only by the relative distance between the two
conductors s, and the radius 7, so it is not affected by any other conditions such as other conductors or
the distance from the earth surface.
The working inductance can also be measured as the value (1/2)V/I by using Equation 1.8b(®).

1.1.1.4 Self- and mutual impedances including the earth-ground
eﬁecf Laa, Lab

Now we evaluate the actual numerical values for the line inductances contained in the impedance
matrix of Equation 1.3.

The currents I, I, I flow through each conductor from point m ton and I, + I, + I returns fromn
to m through the ideal earth return pass. All the impedances of this circuit can be measured by the
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method of Figure 1.2a. However, these measured impedances are experimentally a little larger than
those obtained by pure analytical calculation based on the electromagnetic equations with the
assumption of an ideal, conductive, earth plane surface.

In order to compensate for these differences between the analytical result and the measured values,
we can use an imaginary ideal conductive earth plane at some deep level from the ground surface as
shown in Figure 1.3.

In this figure, the imaginary perfect conductive earth plane is shown at the depth H,, and the three
imaginary conductors o, 3, y are located at symmetrical positions to conductors a, b, c, respectively,
based on this datum plane.

The inductances can be calculated by adopting the equations of the electromagnetic analytical
approach to Figure 1.3.

1.1.1.4.1 Self-inductances Lyq, Lpp, Lcc  In Figure 1.3, the conductor a (radius 7) and
the imaginary returning conductor o are symmetrically located on the datum plane, and the distance
between a and o is h, + H,. Thus the inductance of conductor a can be calculated by the following
equation which is a special case of Equation 1.9 under the condition s, — h, + Hy:

ha + H,
r

Laag = 0.4605 log;

4+0.05  [mH/km] (1.10a)

Conversely, the inductance of the imaginary conductor « (the radius is H,, because the actual
grounding current reaches up to the ground surface), namely the inductance of earth, is

ha + H,
L, = 0.4605log, “; £ +0.05[mH/km]=0.05 [mH/km] (1.10b)
a
Therefore,
h Ha
Laa = Laag + Lg = 0.4605 log; o~ Tl o [mH/km] (1.11)
r

Lpp, Lee can be derived in the same way.

Incidentally, the depth of the imaginary datum plane can be checked experimentally and is mostly
within the range of Hy = 300 — 1000 m. On the whole H, is rather shallow, say 300 — 600 m in the

radius  [m]

b

+1,

H,=(300-900 m

] earth surface
--- imaginary datum plane

Figure 1.3 Earth—ground as conductor pass
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geological younger strata after the Quaternary period, but is generally deep, say 800 — 1000 m, in the
older strata of the Tertiary period or earlier.

1.1.1.4.2 Mutual inductances Ly, Lo, Lcg  The mutual inductance L, can be derived
by subtracting L,, from Equation 1.11 and the working inductance (Lyq — Lyp) from Equation 1.9:

hy + H
atHa 605 [mH/km|

Lab = Lga — (Lau — Lab) = 0.4605 10%10 Sb (] 1 )
ca .lza

=0.4605logy Sap +0.05 [mH/km]
Sab

Similarly

hy + H
b L 0,05 [mH/km]
sy (1.12b)
':.0.460510g,0s—“+0.05 [mH/km]
ab

Lha = 0.4605 loglo

where h, + H, = 2H, =2H, and so on.

Incidentally, the depth of the imaginary datum plane H, = H, = (h, + H,)/2 would be between
300 and 1000 m, while the height of the transmission tower A, is within the range of 10-100 m (UHV
towers of 800—1000 kV would be approximately 100 m). Furthermore, the phase-to-phase distance S,
is of order 10 m, while the radius of conductor r is a few centimetres (the equivalent radius r.; of EHV/
UHYV multi-bundled conductor lines may be of the order of 10-50 cm).

Accordingly,
Hy=Hp=He =2H, > ha =hy =he > Sap = Spe = Sca > ' Teft (1.13a)
sa[i.;sha.:.ha +H, =2H,=hy,+ Hy .
Then, from Equations 1.9, 1.11 and 1.12,
Laa=Lppy =Lec, Lap=Lpe =Lea (1.13b)

1.1.1.4.3 Numerical check 1ct us assume conditions sy, = 10m, r=0.05m,
H, = (ha+H,)/2= Hg = 900m.
Then calculating the result by Equation 1.11 and 1.12,

Ly =220mH/km, L, = 1.09 mH/km

If H, = (hga+H)/2=300m, then L, =1.98mH/km, L, =0.87mH/km. As h,+ H, is
contained in the logarithmic term of the equations, constant values L,,, Ly, and so on are not
largely affected by h, + H,, neither is radius r nor rer as well as the phase-to-phase distance s,p.
Besides, 0.1 and 0.05 in the second term on the right of Equations 1.9-1.12 do not make a lot of
sense.

Further, if transmission lines are reasonably transpositioned, Z,, = Zpp = Z¢cs Zap = Zpe = Zea Can
be justified so that Equation 1.3 is simplified into Equation 2.13 of Chapter 2.

1.1.1.5 Reactance of multi-bundled conductors

For most of the recent large-capacity transmission lines, multi-bundled conductor lines (n =2 — 8
per phase) are utilized as shown in Figure 1.4. In the case of n conductors (the radius of
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Figure 1.4 Overhead double circuit transmission line

each conductor is r), Luqg of Equation 1.10a can be calculated from the following modified

equation: )
ha + Hg 0.05
Laag = 0.4605 lOglO m + T [mH/km]
ha+H, 0.05
=0.4605 log;( — a0 [mH /km] \
Teff n
where  regt = r'/" x w"=1/" is the equivalent radius and
w[m] is the geometrical averaged distance of bundled conductors J (1.14a)

Since the self-inductance Lg of the virtual conductor « given by Equation 1.10b is not affected by
the adoption of multi-bundled phase a conductors, accordingly

h, + H,
Teff

1
Laa = Laag + Lg = 0.4605log, +0.05 (1 + ﬁ) [mH/km]} (1.14b)

1.1.1.5.1 Numerical check Using TACSR = 810 mm? (see Chapter 2), 2r = 40 mm and
four bundled conductors (n = 4), with the square allocation w = 50 cm averaged distance
W= (W12 - W13 - Wig - w3 - wag - wag)/©
= (50-50v2-50-50-50v/2 - 50)/6 = 57.24cm (1.14c)
rese = /Mo wD/m = 2014 572534 = 44.0mm

The equivalent radius reff = 44 mmis 2.2 times r = 20 mm, so that the line self-inductance L,, can
also be reduced by the application of bundled conductors. The mutual inductance L,, of
Equation 1.12a is not affected by the adoption of multi-bundled conductor lines.
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1.1.1.6 Line resistance

Earth resistance r, in Figure 1.1a and Equation 1.2 can be regarded as negligibly small. Accordingly,
the so-called mutual resistances 74, ¢, g in Equation 1.4 become zero. Therefore, the specific
resistances of the conductors r,, rp, 1. are actually equal to the resistances 744, rpp, F'ec in the impedance
matrix of Equation 1.3.

In addition to the power loss caused by the linear resistance of conductors, non-linear
losses called the skin-effect loss and corona loss occur on the conductors. These losses would
become progressionally larger in higher frequency zones, so they must be major influential
factors for the attenuation of travelling waves in surge phenomena. However, they can usually
be neglected for power frequency phenomena because they are smaller than the linear resistive
loss and, further, very much smaller than the reactance value of the line, at least for power
frequency.

In regard to the bundled conductors, due to the result of the enlarged equivalent radius, the
dielectric strength around the bundled conductors is somewhat relaxed, so that corona losses can
also be relatively reduced. Skin-effect losses of bundled conductors are obviously far smaller than that
of a single conductor whose aluminium cross-section is the same as the total sections of the bundled
conductors.

1.1.2 Three-phase single circuit line with OGW, OPGW

Most high-voltage transmission lines are equipped with OGW (overhead grounding wires) and/or
OPGW (OGW with optical fibres for communication use).

In the case of a single circuit line with single OGW, the circuit includes four conductors and the
fourth conductor (x in Figure 1.5) is earth grounded at all the transmission towers. Therefore, using the
figure for the circuit, Equation 1.3 has to be replaced by the following equation:

m Va n Va Zaa Zab Zac Zax I,
VY _ Yy _ | Zba Zpb Zpe Zpx I (1.152)
m Vc n Vc Zea Zcb Zee Zex I
mVX = 0 ﬂvX = 0 Zxa be ZX(,‘ ZXX IX
Extracting the fourth row,
1
I, =— Z_ (Zxala + thlb + thlc) (115b)
‘XX
point m I, — a point n x

7'7,V

a £X
mV j(li o - * - g V.
\ ¢ Ve / WVe )
— — U, + I+ 1,+1,) 7 /K /
overhead grounding wire  earth grounded at every tower

Figure 1.5 Single circuit line with OGW

L, —> b ao oc
/ I(, —» C \
b
ﬂ'LV,

\
i
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Substituting I, into the first, second and third rows of Equation 1.15a,

m Vu nVa Zaa Zab Zac Iy Zaxl X
mVb = W =1 Zpa Zpb Zpe | I | Zpelx
m VC n V(,' Z('ll ZCb ZL'C IL' ZCXIX
ZuxZ. ZaxZ. ZaxZ.
Zaa _ aZx xa Zab _ aZx xb Zac _ aZx xc
XX Xx xXx ;
Z, Z, Z 4
=| Zpa— —2 = | Zp— —]g L Zpe— —}; = Iy
XX XX XX
I.
ZexZ, ZoiZ ZexZ,
Zeq — C; = Zep — L; b Zee — CZX = (1.16)
xXx XX xx
chla Zzlzb chzc la
— / ! !
= Zba be Zbc ’ Iy
Zéa Zéb Zéc I
where Zyx = Zy, Zpy = Zyp, Zex = Zie
chla = Laa — 5aa7 Zzllb =Zap — 5ab
ZaxZxa ZaxZxp
Soa = - 2050 5, = Lutab
aa 7 a Zo

This is the fundamental equation of the three-phase single circuit line with OGW in which I, has
already been eliminated and the impedance elements of the grounding wire are slotted into the three-
phase impedance matrix. Equation 1.16 is obviously of the same form as Equation 1.3, while all the
elements of the rows and columns in the impedance matrix have been revised to smaller values with
corrective terms Oy = —ZgxZxa/Zsx €tC.

The above equations indicate that the three-phase single circuit line with OGW can be
expressed as a 3 x 3 impedance matrix equation in the form of Equation 1.16 regardless of the
existence of OGW, as was the case with Equation 1.3. Also, we can comprehend that OGW has roles
not only to shield lines against lightning but also to reduce the self- and mutual reactances of
transmission lines.

1.1.3 Three-phase double circuit line with LR constants

The three-phase double circuit line can be written as in Figure 1.6 and Equation 1.17 regardless of the
existence or absence of OGW:

mVa nVa Zaa Zab Zac ZaA ZB ZaC I,
mVb 2V Zpg Zpp Zpc Zpa Zpg Zpc Iy
mVYc _ n Vc _ Zcu Zcb ch ZcA ZCB ZCC . I c (1 1 7)
mVa nVa ZAq Zab Zac ZaaA ZaB Zac Ia
mVB VB ZBa ZBb Zpc Zpa ZpB Zpc Ip
mVe Ve Zca Zco Zcc Zca Zcs Zcc Ic

In addition, if the line is appropriately phase balanced, the equation can be expressed by
Equation 2.17 of Chapter 2.
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m n

— IA

— Ip

— I
/ — Ia \

mVA mVBm C / —> Ib \ nV(,‘ nVB nVA
V * n a

N2 WVen)e)

Figure 1.6 Three-phase double circuit line with LR constants
1.2 Stray Capacitance of Overhead Transmission Lines
1.2.1 Stray capacitance of three-phase single circuit line

1.2.1.1 Equation for electric charges and voltages on conductors

Figure 1.7a shows a single circuit line, where electric charges g, g», g [C/m] are applied to phase a, b,
¢ conductors and cause voltages v,, vp, Ve [ V], respectively. The equation of this circuit is given by

Vg Paa Pab Pac qa
Yo | = | Pba Dbb Pbc || qp | - Vabe = Pabe " Dabe
Ve Pca Pcb Pcc qc (1 1 8)
—p— Ne——
Vabe Pape Yabe
where g [C/m)], v[V] are instantaneous real numbers
radius b b
e
7’ \
) 2~ G
charge q, N . Q\//\ H /\ e
/6“: ol O Vi
Vea - q. | ca q
v, I I I
oo T T T T
( 1 1 1 f
]
/ / /
(a) (b)
< 9
K [\
@G&“//(\/Q\\ c
a /Cab ; //< be
P e e v
0} C:zpﬁ‘ e b
[ TTer) N
Vo G O Co V,
\ o] )
(©

Figure 1.7 Stray capacitance of single circuit line



1.2 STRAY CAPACITANCE OF OVERHEAD TRANSMISSION LINES 11

The inverse matrix equation can be derived from the above equation as

da kaa kap kac Va
ap | =| kea | kpb | kee || Vb | - 4abe = Kabe * Vabe (1.19)
dc kca kcb k(;(' Ve
SN—— N——
Gabe Kape Vabe

Here, p,;. and kg are inverse 3 x 3 matrices of each other, so that p;,. - kg =1 (1isthe 3 x 3
unit matrix; refer to Appendix B).

Accordingly,
kaa = (pbbpcc - pzc)/A F/m]
kbb = (pccpau - pczu)/A F/m]
kee = (paapbb - pr)/A F/m]

[
[
[
kab = kpa = 7(pabpcc - pacphc)/A F/m] (1.20)
[
[

koe = ke = —(Pbe Paa — PbaPea)/A F/m]
kea = kae = *(pcapbb - Pchah)/A F/m]3
A = paa Pob Pec + 2 Pab Pbe Pac — (paa Pic + Pvb P(%a + Pec pih) m/F]

where p [m/F] are the coefficients of the potential and & [F/m)] are the electrostatic coefficients of
static capacity.
Moditying Equation 1.19 a little,

qa = kaaVa + kapvp + Kacve

= (kaa + kab + kac)va + (7kah)( - Vb) + ( )(Va - VC) [C/m] (] 21)
qp = (kba + kpb + kpe )V + (—kbe) (Vo — ve) + (—kba) (Vb — va) [C/m] '
gc = (kea + kep + kee)ve + (=kea) (Ve = va) + (—kea) + (ve — vp) [C/m]
then
qa = Caava + Cab(va - Vb) + Cac(Va - Vc) [C/m]
ap = Cppvp + Coc(vp — ve) 4 Coa(vp — va) [C/m] (1.22)
ge = Cecve + Cea(ve — va) + Cep(ve — vp) [C/m]

with g4, qp, gc [C/m], vp, vp, v [V] and

Cua = kaa + kap + kac [F/m
Cpp = kpa + kpp + ke [F/m
Cee = kca + kcb + kcc' [F/ m

} Cap = —kap [F/ m]

)
Cac = —kac [F/m}

]

]

Cpe = —kpe [F/m]
Cea = —kea [F/ m]

(1.23)
Cra = —kpa [F/m
ch = —Keb [F/m 5

Equations 1.22 and 1.23 are the fundamental equations of stray capacitances of a three-phase single
circuit overhead line. Noting the form of Equation 1.22, Figure 1.7b can be used for another
expression of Figure 1.7a: C,,, Cpp, Cee are the phase-to-ground capacitances and C,p = Cpy,
Cpe = Cep, Ceq = C4c are the phase-to-phase capacitances between two conductors.

1.2.1.2 Fundamental voltage and current equations

Itis usually convenient in actual engineering to adopt current i(= dg/dr) [A] instead of charging value
¢[C], and furthermore to adopt effective (rms: root mean square) voltage and current of complex-
number V, [ instead of instantaneous value v(¢), i(z).
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As electric charge ¢ is the integration over time of current i, the following relations can be derived:
d
g= Jidz, i= d—f D
i(1) = Re(vV21) = Re(V2 1] - /@ *0)) = V2 |1 | cos(wrt + 0) @
Re() shows the real part of the complex number(Re(a + jb) = a).
(1) = Re(V2V) = Re(V2| V| - e/(@1+02))
= V2|V |cos(wt + 0;) ©)

() = Jidz - JRe(\/E 7] @ 0)) g
=Re(V2]I]- | /@) ar) (note that, in this book,
e L) () S
Equation 1.22 can be modified to the following form by adopting Equation 1.24(@) and by
replacement of v, — \/QVQ etc.:

Re (*ﬁ)’“) =Re{Caa- V2Va+ Cap - V2(Vy — Vi) + Cuc - V2(Vy — Ve)}

(1.24)

Re (%) =Re{Cpp - V2Vy + Cpe - V2(Vyy — Vi) + Cpa - V2(Vj — Vo)) (1.25)
Re (%) = Re{CL-L- . \/EVL + Cea - \/E(VL - Va) + ch : \/E(VL - Vb)}

Therefore . . .
I, = joCuo V4 + chab(va - Vb) + /U)Cac(va - Vc)

Iy = joCpp Vi + joCpe(Vy = Ve) + joCpa(Vy — Va) (1.26a)
I. = joCeVe + joCou(Ve — Vo) + jdCep(Ve — V)

or, with a small modification,

Ia Caa + Cab + Cac —Cab 7Cac Va
I, |=jo —Cha Cpa + Cpp + Cpe —Che |V | (1.26b)
I c _Cca —LCob Cca + Cch + Ccc Vc

This is the fundamental equation for stray capacitances of a three-phase single circuit transmission
line. Also Figure 1.7c is derived from one-to-one correspondence with Equation 1.26.

1.2.1.3 Coefficients of potential (p,.. Pab), coefficients of static capacity
(kaa, kop) and capacitances (Cqq, Cop)

The earth surface can be taken as a perfect equal-potential plane, so that we can use Figure 1.8, in which
the three imaginary conductors «, 3, y are located at symmetrical positions of conductors a, b, c,
respectively, based on the earth surface plane. By assuming electric charges +q,, +¢p, +¢q. and —q,,
—gp, —q. per unit length on conductors a, b, ¢, and a, 3, y respectively, the following voltage equation
can be derived:

2h

Va = (voltage of conductor a due to + ¢, of conductor a, & : 2¢, log, —= x9 x 10° [V])
r

(voltage of conductor a due to + g, of conductor b, f§ : 2¢;, 10ge Sap ><9 x 10° [V})

+<voltage of conductor a due to & g, of conductor ¢, y : 2¢. logeﬂ x9 x 10° [V]) ®
S,

vac



1.2 STRAY CAPACITANCE OF OVERHEAD TRANSMISSION LINES 13

radius r[m]

+q.

Sba

ha hb
'\ ’\/ —qe
14
44 Y

N

o

T earth surface
T Sap | Say p

’

Y
\Li=qy

Figure 1.8 Three parallel overhead conductors

Equations for vy, v, can be derived in the same way. Then

Va Paa Pab Pac da
Vb = Pba Pbb Pbc ! qb
Ve Pca Pcb Pcc dc
2h, Sap Say
log, — log— log, —
ge , g Sub Ee Sme -
s, 2h Shy 4
=2x9x10° x| log,~2 | log. =2 | log.2 |-[ ¢, |@ (1.27)
Sha r She g
S, Se 2h ¢
log, -~ log, —ef log, —
ca Sch r

where 5,5 = Spy = \/{sgb — (ha — hp)*} + (ha + hp)* = \ /52, + dhahy.
Refer to the supplement at the end of this chapter for the derivation of Equation 1.27(D.

The equation indicates that the coefficients of potential (pu4, pup, €tc.) are calculated as a
function of the conductor’s radius r, height (h,, hp, he) from the earth surface, and phase-to-phase
distances (s,p, Sqc, €tc.) of the conductors. paq, pap, €tc., are determined only by physical allocations
of each phase conductor (in other words, by the structure of towers), and relations like p,, = pp, are
obvious.

In conclusion, the coefficients of potential (paq, pap, €tc.), the coefficients of static capacity (kqq,
kap, etc.) and the capacitance (Caq, Cyp, etc.) are calculated from Equations 1.27, 1.20 and 1.23,
respectively. Again, all these values are determined only by the physical allocation of conductors and
are not affected by the applied voltage.
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1.2.1.4 Stray capacitances of phase-balanced transmission lines

Referring to Figure 1.8, a well-phase-balanced transmission line, probably by transposition, can be
assumed. Then

h=hy=hy=he, 81 =Sab = Spa =Sbe = Scb =Sca = Sac (1.28)
Saf = Sbo = Say = Sco = Shy =Scp

Ps ipazz = Dbb : Pce . } (1.29)
Pm = Pab = Pba = Pac = Pca = Pbc = Pcb

Accordingly, Equation 1.20 can be simplified as follows:

A =piyt 2P§,,2— 3psp3,
= (ps = pm)" (s +2pm) N
] ] ) Ps T Pm
ks  =kaa =kpp =kee = 2'_ 72" A=
(r; — pm)/ (Ps — pr)(Ps + 2pm)
km  =kap = kpa =kac = kea =kpe = kep = —(Pmps - p'Z")/A (1.30)
(Ps = Pm)(Ps +2pm)
1
Ps +2pm

ks+2ky, =

and from Equation 1.23

C‘\‘ = Cuu = Cbb = CL'L‘ = ks + 2km - m
Cn=Cup = Cpa=Couc = Cea =Cpe = Cepp = —kip, (1.31)

(ps - Pm)(Ps + 2pm) Ps — Pm .
and from Equation 1.27

Cs

\
_ . . o, 2h
Ps = Paa = Pbb = Pec =2 %9 % 10 log67 m/K] @
N
Pm = Pab = Pbc = Pea =2 X 9 X 10910gesL; [m/F]
2 2 1.32)
55+ (2h) (
=2 % 9 x 10°log,
Sit
2
=2><9><10910ge{1+<) } [m/F] Q [
Sit

where generally

20\ 2
h> sy, (—) >1
i

and

2h
S pm=2x9 % 10° loges—” [m/F| Q'
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Substituting ps, p,, from Equation 1.32 into Equation 1.31,

1 1 1
&= et o 2h 2 8
2 x9 x 10°( log, — +2log, — 2 x 9 x 10°log, —
r Sin ¢ rsh
0.02413 _ 0.02413
— S K10 ] = = k) ®
log;g— log;g—
210 ”5/2[ 210 rslzl
(zero-sequence capacitance)
hil
whtte (1.33)
lo 2h lo 2h
P Ee o _ g10 st
- : 2h 2h Sil
Ps — Pm = ] —
log, r log, ” 08107,
log 2h lo 2h
007 0.02413 O8I0
s m log o — logm? log;o—
i

In conclusion, a well-phase-balanced transmission line can be expressed by Figure 1.9al and
Equation 1.26b is simplified into Equation 1.34, where the stray capacitances Cs, Cy, can be calculated
from Equation 1.33:

I, Cs +2Cy, —Cp, —Cp, Va
Iy = jo —Cp, Cy +2Cy, —Cp, : Vi (1.34)
I —Cy, —Cpy Cs +2Cy, Ve
\—p— (\——
Tope Cape Vave

S agpe = jwcabc “Vabe

Incidentally, Figure 1.9al can be modified to Figure 1.9a2, where the total capacitance of one phase
C=Cs + 3C,, is called the working capacitance of single circuit transmission lines, and can be
calculated by the following equation:

1 3\
¢ EC5+3C = (k5+2km)+3(_km) :ks—km =
1 ! Ps — Pm
- = F/m]
2h 2h S [
2 %9 x 109(10ge__10ge_) 2x9x 10910ge7
r Si
0.02413
= 57 [WF/km] (positive sequence capacitance) D
logyo— > (1.35)
r

In case of multi-bundled (n) conductor lines, the radius r is replaced by the
equivalent radius refr,

Feff = rl/n X W(rhl)/n [m] @

where w is the geometrical averaged distance between bundled conductors.

J

1.2.1.4.1 Numerical check Taking the conditions conductor radius » = 0.05 m, averaged
phase-to-phase distance s;; = 10 m and average height 4 = 60 m, then by Equations 1.33 and 1.35, we
have

C; = 0.00436 pF/km, C,, = 0.00204 pF/km and C = C; + 3C,, = 0.01048 wF/km
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16 1
C”VW
Cm\\ /\ Cm
b ~SiH
C
2/ {

b e, " Y/

C C C m
cfclec] IREATIE Tl To 6T To
171 fi1—= 9[9[

(b) double circuit line

(al) single circuit line (a2) single circuit line
Figure 1.9 Stray capacitances of overhead line (well balanced)

1.2.2 Three-phase single circuit line with OGW
Four conductors of phase names a, b, ¢, x exist in this case, so the following equation can be derived as

an extended form of Equation 1.26a:

Iy = joCuoVa + jooCap(Va — Vi) + jooCac(Vy — Ve) + jooCax (Vg — Vi) (1.36a)
where V, = 0, because OGW is earth grounded at every tower. Accordingly,
Iy Caa + Cab + Cac + Cax —Cab —Cac Va
I, |=jo —Cha Cpa + Cop + Cpc + Cpx —Coe Ve
18 —Cea —Cob Cea + Cep + Coc + Cex Ve
(1.36b)

This matrix equation is again in the same form as Equation 1.26b. However, the phase-to-ground
capacitance values (diagonal elements of the matrix C) are increased (the value of C,, is increased for

the phase a conductor, from C,y + Cup + Cye t0 Cyy + Cap + Coe + Cux)

1.2.3 Three-phase double circuit line
Six conductors of phase names a, b, c, A, B, C exist in this case, so the following equation can be

derived as an extended form of Equation 1.26a:

1, = jw[CaaVa + Cab(Va — Vb) + Cae(Va — Vc) + CaA(Va — VA) + CaB(Va — VB)
(1.37a)

+ Cuc(Va — Ve)]
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Then
Cua + Cap+
Cae + CaA+ —LCab *Cae —LaA *CuB —LaC
CaB + CuC
Cha + Cppt+
—Cpa Cpe + Cpa+ —Cpe —Cpa —Cip —Cic
Cpg + Cpc v
C«.‘a + Cch+ 4
—Cea —Ceb Cee + Cea+ —Ceca —Cep —Cec Vb
Ce + Cec Ve
Caa + Cap+ Vi
—Caa —Cap —Cac Cac + Caat+ —Cas —Cac Va
Cab + Cac %
Cpa + Cpp+ ¢
—Cga —Cap —Cpe —Cpa Cpc + Cpat —Csc
Cap + Che
Cca + Cep+
—Cca —Ccp —Cee —Cca —Ccn Ccc + Ceat
Cop + Cee (1.37b)

It is obvious that the double circuit line with OGW can be expressed in the same form.
The case of a well-transposed double circuit line is as shown in Figure 1.9b:

Cs +2Cn

43C, —Cn —Cp —Ch —Ch —Ch
Cs +2G,
1, a - Cm J+ 3 C/ " - Cm - C;n - C;n - Cl/ﬂ Va
m
Iy Cs +2Cp / / ’ Vb
L o —Cn —Cn 3c, —Cin —Cn —Cn Az
IA - Cl/ﬂ _Crln - C;n CX * 2/C " _Cm - Cm VA
IB +3Cm VB
Cs + 2G,
Ic —Chy —Chy —Cn —Cn 13 c, " —Cn Ve
Cy +2C,
_ C/ _Cl _ C/ —C —C s m
m m m m m +3C;n
Cs=Cuq =Cpp=Cer =Caa =Cpp=Ccc :one phase-to-ground capacitance
Cn=Cp=Cpc=-+=Cap=Cpc=--- : capacitance between two conductors of the same circuit
C,’n =Cia=Cpc=--=Cay=Cpp=--- :capacitance between two conductors of a different circuit
(1.38)

Above, we have studied the fundamental equations and circuit models of transmission lines and the
actual calculation method for the L, C, R constants. Concrete values of the constants are investigated in
Chapter 2.

1.3 Supplement: Additional Explanation for Equation 1.27

Equation 1.27(D can be explained by the following steps.
Step-1: The induced voltage v at arbitrary point y in Figure a

Figure a shows two parallel conductors x, x' (radius ) whose mutual distance is s [m] and the
conductor length is / [m], where /> s.

When charges +¢, —q are applied to per unit length of the conductors x, x’ respectively, the voltage
potential v at the arbitrary single pointy is given by the following equation (expressed in MKS units):

2 :
p=-"2 1og,2 =249 x 10° log, -2 (1)
S1

" 4neg S1
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where

4mey = (refer the Equation (4) in the next page.)

1
9 x 109

The voltage of the centre line g is obviously zero.

Step-2: The induced voltage v at arbitrary point y when +qq is
applied to the overhead conductor a in Figure b

This is a special case shown in Figure b in which the names of the conductors have been changed
(x— a, ¥ — o). The upper half zones of Figures a and b (the open space above the earth surface)
are completely the same. Accordingly, under the state of a single overhead conductor a with an
existing charge +g¢, the voltage v at the arbitrary point y in the open space can be calculated from
Equation 1.

Step-3: The induced voltage v, on the conductor a when +qq is
applied to conductor a

This case corresponds to choosing the arbitrary point y on the conductor surface in Figure b. Therefore
the voltage v, can be derived by replacing s; — r, s, — 2k in Equation 1:

2h

CoVa =244 -9 x 10° log, — )

Step-4: The induced voltage v, on the conductor a when +qy is
applied to conductor b

This case corresponds to replacement of x—b, ' =, y—a in Figure a. Accordingly,
$1 = Sab, $2 —qp in Equation 1,

Ve =2qp 9 % 10° log, -2 (3)
Sab
Equations 2 and 3 are the first and second terms on the right-hand side of Equation 1.27(D. The
equation is the expanded case for three conductors by applying the theorem of superposition. Clearly,
the equation can be expanded to the cases of parallel multi-conductors of arbitrary number n. (Note that
dmey = 1/(9 x 10%).)

(a) b= 2q log. 2
= log, =
4ng S1
(b) lines of electric force ) .
conductor x / ?}qulpotentlal surface
i

\
1
Ly
w7l Ov
gTolflnd surface

conductor x* —q

conductor)
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In the rationalized MKS system of units, 47¢g is given by the equation

1 1 1
dngg = — 100 = ———— 10" = ——
TEQ c% (3 « 108)2 9 % 109

where
co is the velocity of electromagnetic waves (light), co = 3 X 108 [m/s]
107 is the coefficient of translation from CGS to MKS units, namely

energy = (force) - (distance) = ((kg - m/s?) - m) = ((g - cm/s?) - cm) x 10’

“4)

Coffee break 1: Electricity, its substance
and methodology

The new steam engine of James Watt (1736-1819) ushered in the great dawn of the Industrial
Revolution in the 1770s. Applications of the steam engine began to appear quickly in factories,
mines, railways, and so on, and the curtain of modern mechanical engineering was raised. The
first steam locomotive, designed by George Stephenson (1781-1848), appeared in 1830.

Conversely, electrical engineering had to wait until Volta began to provide ‘stable
electricity’ from his voltaic pile to other electrical scientists in the 1800s. Since then, scientific
investigations of the unseen electricity on one hand and practical applications for telegraphic
communication on the other hand have been conducted by scientists or electricians simulta-
neously, often the same people. In the first half of the nineteenth century, the worth of electricity
was recognized for telegraphic applications, but its commercial application was actually
realized in the 1840s. Commercial telegraphic communication through wires between New
York and Boston took place in 1846, followed at Dover through a submarine cable in 1851.
However, it took another 40 years for the realization of commercial applications of electricity as
the replacement energy for steam power or in lighting.







Symmetrical Coordinate Method
(Symmetrical Components)

The three-phase circuit generally has four electric conducting passes (phase a, b, ¢ passes and an earth
pass) and these four electric passes are closely coupled by mutual inductances L and mutual
capacitances C. Therefore phenomena on any pass of a three-phase circuit cannot be independent
of phenomena on the other passes. For this reason, the three-phase circuit is always very complicated,
even for smaller system models. Furthermore, rotating machines including generators cannot be
treated as adequate circuit elements to be combined with transmission line or transformers. Accordingly,
the analysis of three-phase circuits by straightforward methods is not easy, even for only small models.
Symmetrical components is the vital method to describe transmission lines, solid-state machines,
rotating machines and combined total power systems as ‘precise and simple circuits’ instead of
‘connection diagrams’ by which circuit analysis can be conducted. Surge phenomena as well as power
frequency phenomena of total networks or partial three-phase circuits cannot actually be solved without
symmetrical components regardless of the purposes of analysis or the sizes of the networks.

In this chapter, the essential concept of the symmetrical coordinate method is examined first,
followed by a circuit description of three-phase transmission lines and other equipment by symme-
trical components.

2.1 Fundamental Concept of Symmetrical Components

It should be noted that the direct three-phase analytical circuits of power systems cannot be obtained
even for a small, local part of a network, although their connection diagrams can be obtained. First,
mutual inductances/mutual capacitances existing between different phases (typically of generators)
cannot be adequately drawn as analytical circuits of phases a, b, c. Furthermore, the analytical solution
of such circuits, including some mutual inductances or capacitances, is quite hard and even impossible
for smaller circuits. In other words, straightforward analysis of three-phase circuit quantities is
actually impossible regardless of steady-state phenomena or transient phenomena of small circuits.
The symmetrical coordinate method can give us a good way to draw the analytical circuit of a
three-phase system and to solve the transient phenomena (including surge phenomena) as well as
steady-state phenomena.

The symmetrical coordinate method (symmetrical components) is a kind of variable transforma-
tion technique from a mathematical viewpoint. That is, three electrical quantities on a, b, ¢ phases are
always handled as one set in the a—b—c domain, and these three variables are then transformed into
another set of three variables named positive (1), negative (2) and zero (0) sequence quantities in the
newly defined 0-1-2 domain. An arbitrary set of three variables in the a-b—c domain and the
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transformed set of three variables in the 0—1-2 domain are mathematically in one-to-one correspon-
dence with for each other. Therefore, the phenomena of a—b—c phase quantities in any frequency zone
can be transformed into the 0—1-2 domain and can be observed, examined and solved from the
standpoint in the defined 0—1-2 domain. Then the obtained behaviour or the solution in the 0-1-2
domain can be retransformed into the original a—b—c domain.

It can be safely said that the symmetrical coordinate method is an essential analytical tool for any
kind of three-phase circuit phenomenon, and inevitably utilized in every kind of engineering work of
power systems. Only symmetrical components can provide ways to obtain the large and precise
analytical circuits of integrated power systems including generators, transmission lines, station
equipment as well as loads.

Figure 2.1 shows the concept of such a transformation between the two domains in one-to-one
correspondence. One set of a, b, ¢ phase currents I, I, I. (or phase voltages V,, Vj,, V) atan
arbitrary point in the three-phase network based on the a—b—c domain is transformed to another set of
three variables named Iy, I1, I (or Vy, V1, V3) in the 0—1-2 domain, by the particularly defined
transformation rule. The equations of the original a—b—c domain will be changed into new equations of
the 0—1-2 domain, by which three-phase power systems can be described as precise and quite simple
circuits. Therefore, rather complex subjects in the a—b—c domain can be treated and resolved easily in
the 0-1-2 domain, and the solution in this domain is easily inverse transformed as the correct solution
in the original a—b—c domain.

There are two other important transformation methods:

a) a — B — 0 transformation method, (I, 1), I.) < (I, Ig, Ip): This is also useful as a
complementary analytical tool of symmetrical components. In some special circuits, o — § —
0 components provide easier solutions for the problems for which symmetrical components
may not give good solutions.

b) d—q—0 transformation method, (/,, I, I.) < (14, 1, Ip): This is a very powerful transfor-
mation specialized for the treatment of generators and other rotating machinery. Rotating
machines can be described as precise and simple circuits only by the d—q—0 method. Due to the
precise description of generator characteristics by the d—q—0 method, dynamic system
behaviour can be analysed.

We will learn more about these methods in later chapters.

Analytical-
subject [transform] ——
I,I, I d-q-0
0-1-2 method v 0-f3-0 method , method
circuit circuit circuit cireuit

| equation |<— “6&0":‘0\_ equation “%ao\“‘“\_, equation eq_ughpn
| D1y wr fAalp ) | &% | fUalply Fligiyig)
. *
| caleulation calculation calculation calculation
| * luti luti luti
| solution | A solution solution S(')u. 19n
. L L I, 11, I 141, tq g %
| Y
\ |— [inverse-transform]—1 L[inverse-transform] J
L [inverse-transform]

Figure 2.1 Concept of transformation
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2.2 Definition of Symmetrical Components

2.2.1 Definition

Let us imagine a.c. voltages and currents at an arbitrary point of a three-phase circuit and name these
quantities by complex-number variables V,, V;, V. and 1, I, I.. In association with this set of
voltages and currents, we introduce a new set of complex-number voltages and currents Vg, Vi, V;

and Iy, I1, I, defining them in the following equations:

1
VO = g(Va + Vh + Vc)

1
Vi =3(Va+av, + a®V,)

1
V, = g(va +ad*Vy +aV,)

or
Vi 1(1]1 V,
1 1 a a2 _'.V012:a.Vb
3 > abc
l|a"| a
L S —
Vo= a Vabe
1 3\
I() = g(]a + [b +IL)
1 2
L = g(la +aly +a’l.)
1 2
L= g(lu +al, + alc)
or >

| 1 1
0| =51 el [B] o =aTa
1|d%| a
~ —
Io= a + Lape /

a and a? are called vector operators and are defined as follows:

1 3 e
a= —§+j§ = /120" —[120° =cos 120° + jsin 120°
1 3 120°
a> = ,E,j;z[ = e /120" = -120° = cos 120° — jsin 120°

2

1 V3
—M20° = (-~
(-3+%)

where 120° = 2n/3 [rad].

2.1)

2.2)

(2.32)
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The vector operators a, a> can be modified into the following equations and written as vectors as

shown in Figure 2.2: 3
a=e"" [120° & =e /120" | —120° [F120°
P +a+1=0 @ —1=(a-1)(a+a+1)=0
=1 a+a=-—
@ +1=-a a+1=-d*
d=a-a=ua @ =a ¢ =d \ (2.3b)
a'=a'"d=d al=a?d=a
la) = |a* =1 a—a*=j\V3
l—a=d(1-a)=d*(a—a*)=da* jV3
A—1=(@+1)(a-1)=-d*(a—1)=—-d*(-d> - jV3)=a-j\3

where j = /0" =|90°, — j = /90" =[90°. J

The defined set of voltages Vg, Vi, V, are named the zero (0), positive (1) , negative (2) sequence
voltages, respectively, and the set of currents Iy, /1, I> are also named zero (0), positive (1), negative
(2) sequence currents in the newly defined 0—1-2 domain.

As Vy, Vy, Ve, I, Ip, I, are expressed as complex-number quantities (effective valued or peak
valued) in the a—b—c domain, then Vy, Vi, V, Iy, I1, I are consequently complex-number quantities
(effective valued or peak valued) in the 0—1-2 domain.

The inverse matrix equations of Equations 2.1 and 2.2 can be easily introduced as follows:

Vo=Vo+Vi+ Vo
Vi, =V +a2V1 +aV, or
Ve =Vy+aV; +a2VQ

1|a?|al. v (2.4)
A

IL,=h+L+1 1111
I, =Io+d*l, +al, or 1|d?| a (2.5)
I = Iy +al, + ¢’ 1]a|d®

1..V38
G=-gtiTy av
1200 4 1LV=Vv
120° 120°
] 1 .V3
2__ 4 _ N9 2
) v

(a) (b)

Figure 2.2 Vector operators a, a

2



2.2 DEFINITION OF SYMMETRICAL COMPONENTS 25

The equations for transformation to the 0—1-2 domain, Equations 2.1 and 2.2, and the equations for
inverse transformation to the a—b—c domain, Equations 2.3 and 2.4, are the basic definitions of the
symmetrical components transformation. Incidentally, the vector operator matrices a and a~! are
inverse matrices of each other, namely

1111 1111
-1 1 2 2
a-a :gl ala 1|a
1|a? 1 a?
a a!
14141 |14+ +a | l4+a+d® 1{0[0

=3 l4+a+ad® |1+ +dP | 1+d2+a*|=]0|1]|0|=1
1+ +al|ll+d+d?| 1+ +d° 0/0|1

(2.3¢)

All the quantities in the above defined equations are assigned as complex-number quantities;
however, any assignment does not exist in the definition with regard to frequency or waveforms. In
other words, the quantities may contain d.c. and/or higher harmonics. It should be noted that the
symmetrical components transformation can be applied not only for power frequency steady-state
phenomena but also for transient phenomena of any kind or even for travelling surges.

The voltage and current quantities are assigned as complex numbers in the above definitions, so that
the corresponding real-number equations (or imaginary-number equations) can be extracted from
them, which indicates the real behaviour of the actual voltage and current quantities in the a—b—c
domain as well as the 0—1-2 domain.

Lastly, needless to say, all the electrical quantities in the a—b-c domain such as electric charge g,
electric lines E, flux ¢, etc., can be transformed into the O—1-2 domain using the same definitions with
the above vector operators.

2.2.2 Implication of symmetrical components

We need to examine more aspects of the symmetrical components defined by the above equations. The
explanation below is followed by the current I, and obviously the same analogy can be applied to all
other quantities.

2.2.2.1 Transformation from a-b-c quantities to 0-1-2 quantities

Equation 2.2 can be transformed into Equation 2.2’ by multiplying by 3 both sides of the
equations:

3l = Iy |+| I
3 = aly |+ | d?I, (2.2)
3L = azlh + aly,

o For the first term: the same current components
o For the second term: counterclockwise balanced current components
o For the third term: clockwise balanced current components.
Whenever the current quantities are composed of only power frequency components (sinusoidal

waveform), they can be visualized by drawing them as vectors in complex-number domain coordi-
nates. Figure 2.3a shows the composition process of Iy, I1, I from I, I, I..
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2.2.2.2 Inverse transformation from 0-1-2 quantities to a-b-c quantities

Equation 2.5 can be examined as follows:

L=+ I |+| b
Iy = |Io| + |a® | + | al, (2.6)
IC = Io + all + a2[2

o Clockwise balanced complex-number currents I;, a*I;, al; are the components of the phase a,
phase b, phase c currents, respectively (positive-sequence components).

« Counterclockwise balanced complex-number currents I, al», a*I, are the components of the phase
a, phase b, phase c currents, respectively. (negative-sequence components).

o The three same-value quantities Iy, Iy, Iy are the components of the phase a, phase b, phase ¢
currents, respectively (zero-sequence components).

Figure 2.3b shows the composition process of I, I, I from 1y, Iy, I>.(Figure 2.3a and b are drawn
as a mutually paired case; however, the vectors in Figure 2.3a are drawn in half-dimensional length.)

Again, the quantities of the a—b—c and 0—1-2 domains are bilaterally transformable by the above
definition.

2.2.2.3 Three-phase-balanced condition

Figure 2.4 shows the special case where three phase currents are balanced with a sinusoidal waveform.
As 1, I, 1. are clockwise phase balanced, then

I, =1, I, = a*l,, I.=al, (2.72)
and
1 1 5
[0 :g(la+1b+lc):§]a(l+a +a):0
1 1
L =(a+aly+al)=l(1+a-a*+a -a)=1I,
? ? (2.7b)
2z 2 _ ! 2.2
)53 —3(Iu+a Iy +al;) —3Iu(1+a -a“+a-a)
1
:§Ia(1+a+a2) =0

Under the three-phase-balanced condition, the zero-phase current /y and negative-phase currents /,
are zero (or ‘do not exist’) and only positive current /; exists with the same vector value as /.

The three phase quantities I, I, I, or the transformed Iy, /1, I> under steady-state conditions (i.e.
including only power frequency terms) can be visualized as vectors in Gauss coordinates whether
balanced or unbalanced. Although transient quantities or multi-frequency quantities may not be
simply visualized, the equational relations between the a—b—c and 0—1-2 domains are always justified.

Note that the currents /,, I, I, at an arbitrary point in a three-phase circuit and the corresponding
currents I1, I, Iy in positive, negative and zero circuits should be marked by arrows ( — ) in the same
direction as the symbolic rule. The arrows of voltage polarities have to be selected analogously.

2.3 Conversion of Three-phase Circuit into Symmetrical
Coordinated Circuit

As the first step in studying the symmetrical components transformation, we need to study how the
equations and the related drawn circuits in the a—b—c domain are transformed into those in the
symmetrical 0—1-2 domain.
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zero-sequence —= Slo=1,+ 1 + 1, —1, — I — Ig
positive-sequence — 3L =L, +al,+a’l, _ 1l + —al + =L
negative-sequence — 3l =1, + a’I, + al, 1, s d’I, _yal,
4_3(10'!'114'12) 4_3111 (]
IC
2
a1l
al, a ~ o aly
.t
Y -
I, Ly Ly ol
1, \‘
1, 2y
3L, =1, +d’l, +al, phase-b current ate

phase-c current

Symmetrical sequence currents phase-a current

a phase == Li=ly+ L +1 —1 — 1 — I
pphase == L=ly+@h+aly _ 1l + a2l —»al,
I =Iy+al,+a2l, 7 7 3,
cphase == fc=fot @l + 4%y - —»al; _p a2l
- & 0
I, + 1+
a?l,
A
CLZI]’ = -
<(:,—/‘/' I aly
aly I,

I
I, =1y + a2l + aly

phase-a, -b, -c currents negative-sequence

current

zZero-sequence  positive-sequence
current current

()
Figure 2.3 (a) Composition of Iy, I, I from I,, I},, I.. (b) Composition of 1,, I, I. from Iy, I}, I

Let us try to transform Equations 1.3, 1.5 and 1.6 of the transmission line and Figure 1.1b in
Chapter 1 into symmetrical components. The equations of the transmission line (between points m and
n), Equations 1.5 and 1.6, are written again here:

mVave = nVabe = Zabe * Labe 2.8)
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5=,

Iy=1,=0

I,=d"I,

(a) three phase balanced current (b) current by symmetrical components

Figure 2.4 Symmetrical components of three-phase-balanced currents

Also we have transformation equations with regard to voltages and currents at points m and n. For
point m

-1
mVOIZ =a- mVabc mVabc =a - mV012 } (2.9
Toix = a - Igpe Lape =a " Iop
and for point n
-1
nV012 =a-: nVubc nVubc =a -y, V012 } (2.10)
Toix = a-Igpe Tape =a ' - Iop

As the currents at point m and n are assumed to be equal (because leakage current through the stray
capacitance of the line is neglected), suffix m or n is omitted for symbol 7 ;5.

Multiplying by a at the top (i.e. left-multiplying) of both sides in Equation 2.8, it can easily be
changed into a symmetric equation, namely

a- mVabc —a- nVabc = aZahc' Iuhc

T 1 7

mVo12 Vo2 a ' Iy

_ 2.11
wVorr = Vo = Zape -a " - Ion=Zo12 - Ion 21D

ie. mVo12 = nVor2 =Zo12 - Lo }
!

Zoiy=a -Zgpe-a_
Equation 2.8 was transformed into Equation 2.11 by symmetrical coordinates. The a—b—c

impedance matrix Z ;. was transformed into the 0—1-2 sequence impedance matrix Zyj» which
is defined by Equation 2.11.

2.4 Transmission Lines by Symmetrical Components
2.4.1 Single circuit line with LR constants

Assuming that the transmission line of Figure 1.1b is well phase transposed,

Zau =7 .:.Za' S5 Z.\'
bb } (2.12)

Zub ‘:.Zhu i.th .;Zcb = Zc‘a =Zac=Zn
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then Equations 1.5 and 1.6 can be simplified as follows:

mVa| |1V Zo | Z | Z
me - an =\Zn|Zs |Zn (2.13)
Ve Ve I | Zn | Zs
m Vabc - nVabc = Z ape
Accordingly Zg, of Equation 2.11 is
Z abe a’!
Zs | Zim | Zn 1111
Zo]2:a~ZabC~a71 =a|Zy| Zs | Zy | |1 a?
I | Zw | Zs | | 1] a|d?
Zs + 27 | Zs + (@® 4+ a)Zy | Zs+ (a + a®)Zy
=a| Zs+2Zy | ?Zs+ (1 +a)Zy | aZs + (1 + a®)Zp
Zs +2Zy | aZg+ (1 4 a*)Zy | a*Zs + (1 + a)Zy
(2.14)
] [z 22| 2 -2, Ze — Zom
=311]a @ || Zs+ 22y | a*(Zs — Zn) | a(Zs — Zn)
V| d®| a| |Zs+2Zn| alZs — Zn) | 6*(Zs — Zn)
a Z pe-a”!
Zs + 27y 0 0
= 0 Zs —Zn 0
0 0 Zs — Znm
Namely,
nVo| |aVo| | Z+2Z] O 0 Z|0]0
wnVi| = V1| = 0 Zs —Zm 0 ‘E 0170
RAmAZ 0 0 |7 —7n 0l0[z
e s——
Zoin Toi Zonn 2
mVy, Vo (2.15)
or ’

mVO - nVO = (ZX + 2Zm)IO = Zply
Vi-,Vi= (ZY — Zm)ll =711
wVo— Vo= (Zs—Zy)h =721,
where Zy =27, +27Z,, Z| =Z; —Zy

m

This is the equation of a single circuit transmission line in the symmetrical components domain.
Zy)2 is a simple diagonal matrix in which all the off-diagonal elements vanish (become zero). This
means that the positive-, negative- and zero-sequence equations are mutually independent of each
other because mutual impedances do not exist among them. Now we can conclude that, if the original
three-phase circuit is phase balanced (this assumption is acceptable for most cases only with small
errors), positive (1) sequence, negative (2) sequence and zero (0) sequence circuits can be indepen-
dently handled. Figure 2.5 shows the equivalent circuit of a three-phase (single circuit) transmission
line by symmetrical components, which is drawn from Equation 2.15.
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point m point n

Zoy=Zs+2Z, n

outer circuit outer circuit

— Lo
I zero-sequence circuit
0
ml 0 nro
Z 1= Z s Z m
" I positive-sequence circuit
mVI nvl

I negative-sequence circuit

V-
|

Figure 2.5 The equivalent circuit of three-phase single circuit transmission line (impedances)

Symmetrical impedances Zy, Z;, Z, are defined by Equation 2.15 in relation to the original
impedances Zs, Z,, while from the relation

h>Z1 =2y (2.16)

That is, for the transmission line, the positive-sequence impedance Z; and the negative-sequence
impedance Z, are equal and smaller than the zero-sequence impedance Z.

Note that, as the transmission line is not perfectly phase balanced, very small off-diagonal elements
may exist in the impedance matrix Zy,, so that positive-, negative- and zero- sequence circuits are
mutually linked by small mutual inductances. If necessary, we can examine the strict impedance
matrix by calculating equation Zg1o = a - Zyp. - = without any assumption of Equation 2.12.

2.4.2 Double circuit line with LR constants

Let us examine a double circuit transmission line as shown in Figure 1.5, assuming that the first
and second circuits are well phase transposed. The symbols 'V, 1T and 2V, 2I below refer to the
voltages and currents of the first and second circuits:

v, v, Zs | Zn| Zn| 2\ | 20 | 2 | |,
Wl ]z z ]zl 2 2] 2] [,
LV, Vel \Zw|Zn| 2|2, 2,1 2| |1,
vl v z]zz] 2]z 2]
wVo | 2Vl |Zn|Zn|Zn|Zn| Zs | Zn| |°1y
AARBARAAAEEARAREA
or
wVave| [ nVabe | Za | Y e _ Zon Mo + 25, 2Ly 2.17)
Y abe 7V abe Zy | Zon| | Mave Zy Mo+ Zon | ) .
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where we assume

Zs=Zga =Zpp =Zcc =Zpn = . self-impedance
Iy =Zgpy =Zpe =Zeg =Zpap =Zpc = : mutual impedance between the conductors of the same circuit
7 =Zup =7 =Zac =Zpa : mutual impedance between the conductors of another circuit

Symmetrical quantities of double circuit line r1nV0127 ,11V012, ,2"V0127 %Vonv 110127 21012 are

introduced in conjunction with a-b-c domain quantities LV, .. 2V . 2V 2V,
1 27 .
Iabc7 Iubc'

ly  _a.lypy ly 4. lpy Iy _a.l7

m? 012 = @ m¥ abe: n? 012 = 4" n¥ abes o2 =@ Lapc D

2 _ 2 2 _ 2 2 _ 2

Vo012 =@ 5V apes 2Vorz=a- 3V, Loy =a "1, (2.18)

1 _ -1 1 1 _ -1 1
mVabc_a 'mV0127 nVabC—a ’ V0127 I

The equation of circuit 1 in Equation 2.17 can be transformed to the 0—1-2 domain by utilizing
Equation 2.18:

1 1 _ 1
mVabc - nVabc =Zsn -1

abc

+2Z, -1

abc
11 11 _ 11 ;12
a - Vop—a Voo =Zm-a - Ly, +2Z,-a= -1y,

Left-multiplying by a and recalling that a -a~! =1,

for circuit 1 W= Wopn=(a-Zgy-a™t) Uy +(a-Z,-a) -2,
and for circuit 2 analogously (2.19)

Vo —wWon=(a-Z,-a') "Iy, +(a-Zy-a') Iy,

a-Zg,-a~' in the above equation is equal to Zgy, of the single circuit line in Equation 2.14,
)

Zs + 27y 0 0
a-Zy-a'= 0 Zs — Zm
0 0 Zs — Zn
and

zZ\zZ, 111

a-Z,-a'=a |7 12 17| |1|a* a

Z 1z 2 1] al|d

1 1111 32,/ 0] 0 3zZ,| 0
:glaa2'3Z,/,,00:000

1|a®| al| |32,/ 0|0 010

a zZ. a!
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Accordingly,
\
WVor|  [aVor e Zy-aa Z,, a! . Uoi| | Zow2| Zou . Ty
WVor| |[WVon ez, a M aZgat| | Plon| | Zow|Zon| |y
n¥o Vo Zs+2Z,| 0 0 3z, 0 0 ',
Wil 0 |Z-Zu| o0 0 0 0 o
wVal W2 |0 0 |Z-Zu| o 0 0 ',
v v, | 37, 0 0o |z +2z.] o 0 21,
2V, 2y, 0 0 0 |Z~Zu| 0 2y
Vol Vs 0 0 0 0 0 |Z—2Zu| |2,
Zy | 0 Zom| O | O 1,
0|z 0|00 1
|lofojlz|o|o]|oO '1,
[ Zom| 0 Zy| 0|0 21,
010 Zi| 0| |%
010 0| 7 2,
where (2.20a) )
2 =Zs — Zpm, Zo = Zs + 27, Zom = 3Z),
Equation 2.20a can be recast into the following equation:
ranO rllVo Zy | Zom l10
AARBEAREIE | °ly
lanl rlzvl Z1| 0 111
AR EARDIARE? (2.20b)
rlnv2 ,11V2 Z1| 0 l12
1211V2 B %Vz B 017 . 212

where Zy = Z; + 27, Zom = 3Z:n’ \=2Zy—7Zy

Figure 2.6 shows the equivalent circuit of the three-phase double circuit transmission line by
symmetrical components, which is drawn from Equation 2.20a or 2.20b.

The positive-, negative- and zero-sequence circuits are independent (mutual inductances do not
exist) of each other. In the positive- and negative-sequence circuits, the mutual inductances do not
exist between lines 1 and 2. However in the zero-sequence circuit, lines 1 and 2 are mutually coupled
together by Zoy = 3Z,,.

Zs and Z,, are actually the averaged values of Z,,, Zpp, Zqc and Zyp, Zpe, Zcq respectively, so
that Z; and Z,, can be calculated by using Equations 1.10 and 1.12. The positive-sequence impedance
Z| = Zs — Z, is derived from the working inductance L,, — L, given by Equation 1.9.

Also we learned in Chapter 1 that the values of L,,, L, are not so largely affected by rated voltage
classes because of the logarithmic term of these equations. Consequently Z; = Z,, Zj are not also
largely affected by rated voltage classes. Typical examples are shown in Table 2.1.
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Z()M = 3Z7;1

point m L point n
i Ze=z,+27,

circuit #1
zero-sequence circuit

- S )
O e # .
e | 174s— Ly, positive-sequence circuit

1y, #2

-
=
s

—
/O 4i1z Zo=I=ZLs—Z,, O\ #l negative-sequence circuit
)%1V2 (; W ? )IZVZ #2

2 P
mVZ ﬁ YZ

Figure 2.6 The equivalent circuit of three-phase double circuit transmission line (impedance)

2.4.3 Single circuit line with stray capacitance C

The stray capacitances of a well-phase-transposed single circuit line are shown by Figures 1.9a and b
and Equation 1.34. Equation 1.34 is repeated here:

Cs + 2Cm _Cm _Cm
—Cn Cs +2Cy, —Cn ’ (2.21)
~Cu | —Cu |Ci+2C,
Lope = joo x Cape XV ape

The transformation of this equation into symmetrical components is as follows:

Iop=a Igpe =a- jo - Cape - Vape = jo(a@ - Cape - @ " )Vo12 = joCo12Vora

where Cyio = a- Cype - a’!

a Cape a
—N— ——
(L (6426 ~Ca —Cp L1t
szzg 1lala®|| —=Cn |Cs+2Cn| —Cu |-|1|d?* a (2.22a)
1|a®| a —Cp —Cn Cs 4+ 2Cy, 1| a|d?
Cs 0 0

=10 |Cs+3Cy 0
0 0 Cs +3Cy

then
0 0 Colofo
C+3Ca] 0 |-[vi|=jolo]|c]o] |v]
0 Cs +3Cy, 01]0]|C (2.22b)
_ ==
Iz = jo x Coiz X Voiz Corz Voiz

where Cy = C;, C;=C,=C;+3C, C:working capacitance of single circuit line
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Figure 2.7 The equivalent circuit of three-phase single circuit transmission line (capacitance)

This is the equation of stray capacitances of a single circuit transmission line in the symmetrical
components domain. Cpj» is a simple diagonal matrix in which all the oft-diagonal elements vanish
(become zero).

Figure 2.7a shows the equivalent circuit of a three-phase (single circuit) transmission line by
symmetrical components, which is drawn from Equation (2.22b). The positive (1), negative (2) and
zero (0) sequence circuits of the phase-balanced three-phase transmission line are obviously
independent of each other.

Symmetrical capacitances Cy, C;, C, are defined by Equation (2.22b) in relation to the original
impedances Cs, C,, shown by Equation 1.33.

The physical meaning of the relations Cyp = C;, Cy = Cs+3C,, can be understood by
Figure 2.7b, where zero-sequence current cannot flow in the circuit branch of 3C,, because point
n is not earth grounded.

2.4.4 Double circuit line with C constants

The stray capacitances of a well-phase-transposed double circuit line are shown by Figure 1.9. The
symbols 'V, I and 2V, 2I are adopted as quantities of circuits 1 and 2, respectively, below.
Concerning the phase a current of circuit 1,

', = joClV, + {joCu('V, = 'V,) + joCu('V, = 'V)} + {joC, (v, —2V,)
+joC, (', =2V,) + joC,('V, = V.)} @
- (2.23a)
1, = jo(Cs +3Cn +3C)'V, = Cu('V, + 1V, +1v,) = PV, +2V, +2V,)
= jo(Cy +3Cy +3C )V, —3C,' vy —3C, 2V, @
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Similar equations are derived for the phase b and ¢ currents. Accordingly,

1Vo 2V0
Wol —3C,12V, (2.23b)
"WVo Vo

This equation is easily transformed into symmetrical components:

Iy = jo(Cs +3Cy +3C) 'V — BwC,'Vy — B3oCl 2V,
= jo(Cs +3C,)'V, = 300G, 2V, = joC'Vy + 3oC, (Vo —2Vy) (2.242)
' = jo(Cs +3Cw +3C))'V, ’
', = jo(Cs +3Cy +3C,)'V,
Accordingly,
0 0 —3C, 0 0
Cs +3Cp +3C), 0 0 0 0
0 Cys +3Cy, +3C, 0 0 0
0 0 C, +3C, 0 0
0 0 0 Cs +3Cy +3C), 0
0 0 0 0 Cy +3Cn +3C,
(2.24b)
Namely,
A ¢ +3c,| -3C, A
= jo .
21, -3C, | Cs+3C, | |*V,
|GV +3G,('Vy = 2V)
= jw
Cs-2Vy +3C, %V, — V)
G-+ GV =2V (G Gyl —Ch ||V 0
=jo = jo
Co -2V, + Cy(PVy — V) -Gy |Co+Cyl|?,
A |Gy +3C,+3C, 0 v,
= jw .
21 0 Cy+3Cn +3C, | |?V,
(2.24¢)
140 'V o)
= jo .
0|Ci| |V,
7, .| Cs+3Cy +3C), 0 v,
= jo .
21, 0 Cs +3Cu +3C), | |?V,
|Cijol |y, 3
= jo .
0Ci| |V,
where
positive-sequence capacitance: C; = C; = Cs + 3Cy, +3C, @
zero-sequence capacitance: Cp = Cs, Cy = 3C),
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Figure 2.8 The equivalent circuit of three-phase double circuit transmission line (capacitance)

Ci=Cy=C,+3C,,+3C",

This is the equation of the stray capacitances of double circuit lines, from which the equivalent
circuit of Figure 2.8 is derived.

2.5 Typical Transmission Line Constants
2.5.1 Typical line constants

L, C constant values of individual overhead transmission lines are different because the allocations of
conductors (in other words, the physical length r, &, Sy, etc., of the tower design) and the geological
characteristics of the earth—ground are individually different. However, the line constants are not so
different for lines of similar voltage classes, because the physical dimensions of the conductors are not
so different, at least for the same voltage class of transmission lines. In addition, the constants would
not be so different even for lines of different voltages, because the variables of the physical length r, A,
Sy, etc., of the tower design would be included in the logarithmic terms of the equations for L, C.

Table 2.1 shows typical L, C values of single circuit lines and double circuit lines. In Table 2.1, in
addition to the quoted four cases of real measured examples, we have indicated typically ‘easy-to-
remember L, C values’ which would be applicable as approximate values for most high-voltage
transmission lines. At least, readers can consider that the orders of the L, C constants of individual lines
could be appropriate as common values, regardless of the differences of area, utility companies or
countries. (The zero-sequence constants for circuit lane 1 and 2 shown in Table 2.1 will be explained in
Chapter 4.)

Typical constants of power cables are shown in Table 2.2 for convenience of comparison with
overhead lines; the details of power cables will be examined in Chapter 23.

Further, besides R, L, C constants, the leakage resistance G exists as the fourth line constant.
This is typically the creepage resistance of insulators of transmission lines or station equipment that
are parallel resistances with stray admittance jwC, and usually has extraordinarily large ohmic
values. G is an important constant which would be largely affected by the insulation characteristics
of individual high-voltage insulators, attenuation ratio of surge phenomena, and so on. However, G
can be neglected for most ordinary circuit analysis (except for surge analysis), because it has a quite
large resistance of, say, megaohm order.
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Table 2.2 Typical line constants of power cables (see also Chapter 23)

CV cables
¢ 2 8 5
2 £ 5 E z ¢
» 3 E £ 8 % k= s £ g
@ 5 s £ B 8 £ £ 5 S
< o = ot o >4 3] %] 3]
S T ¢ £ = = = 2 o = g E
S 5 2 & £ =2 £ Z £ g g <
g £ s = T | £ 5 = 2 = 20
3 & S £ & © = = s & S &
2r D S R Ly—-L, C jX Ic \/I%
(kV) (mm?) (mm) (mm) (mm) (mm) (Q/km) (mH/km) (wF/km) (Q/km) (A/km/¢) (q)
500 2500 61.2 27 142 163 0.00746 0.383 0.25 0.112 227 39.1
2000 53.8 27 134 155 0.00933 0.400 0.23 0.116 209 41.7
275 2500 61.2 23 133 160 0.00746 0.381 0.28 0.108 14.0 36.9
2000 53.8 23 125 149 0.00933 0.392 0.25 0.112 12.5 39.6
1200 41.7 23 112 134 0.01560 0.422 0.21 0.122 10.5 44.8
154 2000 53.8 17 108 122 0.00933 0.352 0.26 0.103 7.3 36.8
1200 41.7 17 96 110 0.01560 0.382 0.22 0.112 8.7 41.7
800 340 17 88 100  0.02310 0.404 0.19 0.119 5.3 46.1
66 2000 53.8 10 95 95 0.00933 0.302 0.53 0.086 6.3 239
1200 41.7 10 82 82 0.0156  0.324 0.43 0.092 5.1 29.6
800 340 10 73 73 0.0231  0.340 0.37 0.097 44 30.3
33 1200 41.7 8 73 73 0.0156  0.301 0.46 0.086 2.8 25.6
600 295 8 58 58 0.0308 0.324 0.38 0.092 2.3 29.2
200 170 8 45 45 0.0915 0.383 0.26 0.108 1.6 38.4
6.6 600 295 5 47 47 0.0308  0.282 0.71 0.089 0.8 19.9
200 170 4 32 32 0.0915 0.315 0.51 0.102 0.6 24.9
OF cables
(kV) (mm?) (mm) (mm) (mm) (mm) (km) (mH/km) (wF/km) (Vkm) (A/km/d) (Q)
500 2500 68.0 250 132 153 0.00732 0.305 0.37 0.101 335 28.7
2000 59.1 33.0 139 160 0.00915 0.388 0.27 0.113 245 37.9
275 2000 57.5 19.5 107 137 0.00915 0.363 0.41 0.098 204 29.8
1200 457 195 94 124 0.001510 0.389 0.34 0.105 17.0 33.8
154 2000 57.5 13,5 94 119 0.00915 0.333 0.57 0.09 159 24.2
1200 45.7 13.5 81 106  0.01510 0.367 0.45 0.095 12.6 28.6
800 40.6 125 74 96 0.02260 0.361 0.44 0.097 12.3 28.6
66 2000 570 80 82 106  0.00910 0.312 0.96 0.082 11.5 18.0
1200 452 80 69 92 0.01510 0.331 0.80 0.086 9.6 20.3
800 396 7.0 61 82 0.02230 0.334 0.79 0.087 9.5 20.6

Notes: The working inductance is calculated under the three-phase allocation of touched triangles. Accordingly,
(Ls — L) = 0.4605 log(D/r) + 0.05 mH/km
where (Sap - Spe  Sea)> = (D-D-D)'/? = D.
If the averaged phase-to-phase distance S is larger, the inductance would become slightly larger.
The reactance is calculated from jX = ;27 - 50(Ls — L,,) based on 50 Hz. Then the values should be
multiplied 1.2 times for the 60 Hz system.
The leakage current is calculated from I. = 27 - 50 - C(1/+/3)V.

The surge impedance is calculated from /(Ls — Ly)/C.
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The transmission lines are described as distributed-constant circuits in a strict expression.
However, provided that the evaluation of accuracy or percentage error is adequately investigated,
approximation by concentrated-constant circuits can be justified for most analytical work. Approx-
imation techniques including accuracy (or error percentage) estimation are essential in actual
engineering activities. This theme is investigated in Chapter 18 in more detail.

2.5.2 L, C constant values derived from typical travelling-wave
velocity and surge impedance

The velocity of travelling-wave propagation on transmission lines and the surge impedance are defined
by the following equations whose reasons are investigated in detail in Chapter 18:

velocity of travelling-wave propagation : u = 1/v/LC[m/s]

L (2.25a)
surge impedance ¢ Zourge = ol Q]
The inverse forms are
L— Zsurge
u

(2.25b)

c—_ 1

Zsurge tu

There are typical values for velocity u and surge impedance Zgyrge of overhead transmission lines
and power cables that are very easy to remember. Therefore we can find typical L and C values
from these typical u and Zgyge values by an inverse process.

For overhead transmission lines,

u = 300000 [km/s] = 3 x 10® [m/s] (velocity of light in air,300m/us)
Zsurge = 300 [Q)] (typically 200 — 500 )

Accordingly,

- %[H/ m] = 107° [H/m] = 1 [mH/km]

¢ 300 x 3 x 108 0.011 x 107" [F/m] = 0.011[uF/km]

This is almost the same as the typical L and C values in Table 2.1.

For power cables,

u = 150000 [km/s] = 1.5 x 10% [m/s] (1/2the velocity of light in air typically,
135000 — 150000 km/s, 135 — 150 m/pus)

Zsurge = 30 [Q} (typically 20 — 30 Q)
Accordingly,

Lo 30
T 15x%x 108

= 0.2[mH/km](about 1/5 of overhead transmission line)

[H/m] = 0.2 x 10~°[H/m]
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Table 2.3 Large-current-capacity types of conductors for overhead transmission lines (typical example)

Continuous Temporary
Maximum Maximum Maximum Maximum
temperature [°C] current [A] temperature [°C] current [A]
ACSR* 90 829 120 1125
TACSR 150 1323 180 1508
ZTACSR 210 1675 240 1831
XTACIR 230 1715 290 2004

#Aluminium alloy metal conductors.

1
T30x15x 108

= 0.22[pF/km] (about 20 times overhead transmission line)

c =0.22 x 10~°[F/m]

This is also very close to the typical L and C values in Table 2.2.

In total, the inductance L of the cable is smaller by about 1/2 or 1/5 while capacitance C'is larger by
about 20 times in comparison with that of the overhead line.

Table 2.3 and Figure 2.9 show typical advanced ACSR (Aluminium Conductor Steel Rein-
forced) conductors for overhead transmission lines. Due to recent advanced metal—-alloy production
and wire-drawing technology, large-current-capacity conductors with high-temperature-withstanding
characteristics even at 230°C and of light weight have beenrealized as is shown in the table. Furthermore,
ACFR conductors (where the tension member in steel twisted wires is replaced in carbon fibre string
twisted wires) have been experimentally adopted in order to realize lightweight conductors.

Figure 2.9 High-temperature-withstandable aluminium-clad steel wire (TACSR)

2.6 Generator by Symmetrical Components
(Easy Description)

2.6.1 Simplified symmetrical equations

A synchronous generator (or synchronous motor) may be considered as a machine containing three-
phase-balanced ideal power sources and three-phase-balanced leakage impedances, so that the
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generator may be simply expressed by Figure 2.10 as an approximate circuit. (Detailed approaches are
discussed in Chapter 10.)
Now, we have from Figure 2.10

Eq Z; | 2y | 2,
E, = azEa =\ Vo|=1Zn | Zs |Zn |- - @
E. = aE, Zon | Zn | Z,
Eupe Ve = Z ape e  — Va (2.26)

Vo = *Zn(la +1p +Ic) = 72”(310) = 73Z” o @

E,, Ep, E. : the generated source voltages of three-phase-balanced design

Equation (2.26) can be transformed into symmetrical components by left-hand multiplication of
the symmetric operator a:

a- E(lbL‘ —a- V(lbL' = aZabL' . Iabc —a- Vn
| (2.27a)
. Eon—Vor=aZge-a -lop—a-Vy

where

111 | Ea

E012==a’Eabc=* 1| al|d®| |dE,| =

1 612 a aEa

The first term on the right (a - Z 4 - a~ 1) is the same form as in Equation 2.14. The second term on
the right (a - V) is

| 1|1]1 —-3Z,- 1y
a-V,= § 1] a ll2 . = 0
1|d?| a 0
virtual generating source terminal generator terminal
Z S &, l

O 00
m
Ey=a?E, Z, Z

o -
Vn Vb
Z'IZ VC
I,+1,+1,=3I]

Figure 2.10 Generator (easy concept)
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Accordingly,
Zy| 0|0
—-wvi|=]olz|o]
0] 0/0]|z
or (2.27b)
—Vo = (Zo +3Zy)1o
E,— Vi =211
Vo =240

This is the transformed symmetrical equation of the generator and Table 2.1 shows the symmetrical
equivalent circuits of Equation (2.27b). The figure shows that a power source exists only in the
positive-sequence circuit, and the negative- and zero-sequence circuits are only made of passive
impedances. A generator may be theoretically named a ‘positive-sequence power generator’.

2.6.2 Reactance of generator

Equation 2.27b derived from Figure 2.10 shows that the generator has time-independent constant
symmetrical reactances and the positive- and negative-sequence reactances are the same quantities.
However, this is not correct.

The generator reactances will change from time to time under transient conditions, and, moreover,
the positive- and negative-sequence reactances as well as the zero-sequence reactances are different.
The generator can strictly be treated only by the d—q—0 transformation method in which the new
concept of direct-axis reactances (x, x);, x;) and quadrature-axis reactances (x;, x;, x,) are
introduced.

Now, by applying the reactances (x/}, x;, x4) as positive-sequence reactances, Figure 2.11 can be
treated as the mostly correct equivalent circuit of the generator while the positive-sequence reactance
will change from time to time as shown in Table 2.1 under transient conditions.

For most analyses of mainly power frequency phenomena (fault analysis, for example),
Equation 2.27b and Figure 2.11 can be applied as the satisfactory equivalent circuit of the synchronous

xgq (3~60 cycles time)

xq (Isec~)

xg (0 ~3cycles time)
ope . . X1 =
positive-sequence cirecuit 1

zero-sequence circuit

Figure 2.11 Generator (easy concept)
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generator while the following reactances are used in equivalent circuits (details are examined in
Chapter 10).
For the positive-sequence reactance,

¥l direct-axis subtransient reactance (0 — 3 cycle time, 0 ~45 or 60ms)
x1 =< /¢ direct-axis transient reactance (3 — 50 or 60 cycle time, ~ 1 sec)
xq ¢ direct-axis steady-state reactance (1 sec ~)

The time in parentheses means duration just after a sudden change of circuit condition.

For the negative-sequence reactance, x; can be treated as constant for most cases, although it may
change slightly just after a sudden change of circuit condition.

And for the zero—sequence reactance, xo can always be treated as constant.

The values of x/}, x;, x4, x2, xo for asynchronous generator are given on the name-plate in terms
of ratings. Figure 10.1 in Chapter 10 shows typical values of generator reactances.

2.7 Description of Three-phase Load Circuit
by Symmetrical Components

In power-receiving substations, feeder lines are connected to one of the HV, MV or LV buses, some of
them are connected to other generating stations and substations through the lines, and others to load
stations.

The equation for the totalized load is approximately written as follows.

(2.28)

or by symmetrical components

Vo Zy| 010 Il
Vil=101Z|0]| |1 (2.29)
%3 010|2 b

where Z, =2, =272y —Zy, 2o =25+ 27, >7) = 2».

It is obvious that the 1-, 2-, 0-sequence networks are mutually independent and the load can be
approximately expressed simply by Z;, Z,, Zj, respectively.



Fault Analysis by Symmetrical
Components

We learned in the previous chapters that three-phase power systems can be described as simple
equations and simple equivalent circuits by symmetrical components transformation. In this chapter
we will study fault analysis using symmetrical components.

The analytical method explained in this chapter is called traditionally fault analysis. However,
this is a very important analytical method invariably applied for the analysis of ‘all’ (instead
of ‘most’) kinds of phenomena such as normal states/irregular states (including faults, switch-
ing, etc.), steady states/transient states, d.c./power frequency/higher harmonic frequency/
surge (switching and lightning surges). In addition, this method is also applied for analysis
by manual calculation by simple model as well as by computer-based detail analysis for large
systems.

3.1 Fundamental Concept of Symmetrical
Coordinate Method

Electric quantities in three phases are phase balanced in normal states because every part of the
power system is more or less three-phase balanced. The balanced states are broken whenever line-
to-line faults or line-to-ground faults occur. Straightforward calculation of such an imbalanced
condition and, further, the transient condition in the a—b—c domain is impossible not only by
manual calculation but also by using computers. One serious reason is the existence of many
mutual inductances on lines and equipment; however, theoretically the reason is the fact that
generators cannot be actually described as accurate circuits in the a—b—c domain. Synchronous
generators can be described as accurate circuits only by application of the transformation
technique of symmetrical components together with the d—q—0 method (refer to Chapter 10).
As a matter of fact, a power system can be written as one circuit including various lines and
machines only in the symmetrical domain. In other words, the symmetrical coordinate method is
an essential analytical technique not only for drastic simplification to handle circuits but also for
precise analysis.

Figure 3.1 shows the process flow of fault analysis using symmetrical components. The first
step is to transform the power system connection and fault condition into the 0—1-2 domain circuit.
The second step is to find the circuit solution in the 0—-1-2 domain. The last step is to inverse-
transform the solution into the a—b—c domain.

Handbook of Power System Engineering Yoshihide Hase
© 2007 John Wiley & Sons, Ltd
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al) system equation
Sabc (Vabm Iabc, Zab(’)

b1) fault condition at point f
ffabc (fVabc: anbc)

transform ; x @

transform ; x @

a-b-c¢ domain

X

a2) system equation b2) fault condition
So12 (Voiz, Loz, Zo12) oz (Voiz, Aor2)
T T

1

¢ solution on 0-1-2 domain ‘

—1—

inverse-transform ; x -1

e

’ d) solution on a-b-¢ domain

e

0-1-2 domain

a-b-c domain

Figure 3.1 Procedure of fault analysis
3.2 Line-to-ground Fault (Phase a to Ground Fault: 1¢G)

It should be recalled that a three-phase power system can be drawn only as a connection diagram in the
a—b—c domain and not as a circuit in the a—b—c domain.

Let us examine a phase a to ground short-circuit fault (say, phase a 1¢G) at an arbitrary point f on a
transmission line. Figure 3.2a shows the partial situation of the connection diagram of the power
system including point f, where virtual a—b—c terminals branch out at fault point f.

The power system before the fault at point f can be drawn as a symmetrical circuit in the 1-2-0
domain as shown within the dashed lines of Figure 3.2b, where the corresponding virtual terminals
branch out at point f.

The related equations are

Vi=E — i, =E, — ;ZI,
Vo= _f221’2 = _fZ;I; @®

nn

fVO = _fZOIO == onlo

=1+
f12 :Iz +12 @
=1+ 1 o, 3.1
7= (21,2 =448
2y = (/] fy) = ————
y FE 4+ 7
Z/ ‘Z//
o 1P
Z, = (y2,/] 12,) = —; O
4 £y 4+ 2,
Z/ Z”
/ " 40 40
Zy=(s2y/] tZp) = ———

where

Z) : positive-sequence impedance looking into the circuit at point

#Z; : positive-sequence impedance looking into the left-hand side at point f
Z : positive-sequence impedance looking into the right-hand side at point f
(the // symbol means parallel impedance values)
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power network

point  fault point

I
m f X
-\\3\ : virtual terminal
I
\ —>fIa '/ .
7l \ R :arc-resistance

I
—>fic

S _ .
\ fVa (or may be tree-resistance)
R ()

3R (b)

Figure 3.2 Phase a line-to-ground fault

3.2.1 Condition before the fault

The outgoing currents o> (s flcon the virtual a—b—c terminals at point f are zero before the fault, so
the corresponding symmetrical sequence currents s fhs flg are also zero, namely

o=y = .=0

o=l =L, =0 (3.2)

Vo= 4V2=0
In the negative- and zero-sequence circuits, because any power source does not exist and the virtual
terminals are open, all the quantities including s fVas flys fVy at point f are therefore zero
before the fault.

In the positive-sequence circuit, we have I, = I/1 + 1'1' = 0. Accordingly, for the three-phase-
balanced load current flowing through point f before the fault,

E, - E,

L =1 (3.3)
2+ 1z
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Therefore

, iz
Vi=E - i, =— B+ — E| (3.4)

3.2.2 Condition of phase a to ground fault

Now, the phase a conductor to ground short-circuit fault at point f means that the phase a virtual
terminal is earth grounded (switch S closed through arc resistance R) at point f, while the phase band ¢
virtual terminals remain in the open condition in Figure 3.2. Therefore,

V —R- I
fla fla (3.5)
=l =0

Transforming the above equation from the a—b—c domain into the 0-1-2 domain,

do+d -y +a- = dy+a- Iy +a - 1, =0 '

Utilizing the relation a® +a = —1,

Iy = 1) = 41
ffo— 1T 2 (3.7)

This is the equation in the 0—1-2 domain transformed from Equation 3.5. The condition of Equation
3.7 can be expressed as the drawing circuit shown on the right-hand side outside the dashed line in
Figure 3.2b. Figure 3.2b is the equivalent circuit for the phase a to ground fault (phase a 1¢G) by
symmetrical components.

3.2.3 Voltages and currents at virtual terminal point f in the
0-1-2 domain

Now, phase a to ground faults are realized by switching on the virtual switch S in Figure 3.2b; in other
words, connecting the outside impedance L+ Zy+ 3R to the virtual terminals () Q) of the
positive-sequence circuit. The current flowing through terminals (1) 2) and the voltage can be easily
found by applying Thévenin’s theorem.

The current through terminals (D Q) at point f is given by

A4
I, =
PV 20+ (2 + 2y +3R)

o (3.8)
=l =gy =——;V,
f“total

Lol = fZ1 + §Zy + §Zy+ 3R
and the voltage at point f by
Vo=—s2y flo=—1Zy- I
Vo=—52y jIh=— 2, - 4l 3.9
Vi=—=(Vo+ Vo) +3R- I, = (;Zy+ ;Z, +3R) /I,
The voltage ¢V, in Equation 3.4 and 3.9 is the voltage between terminals (D and is glven by

Equation 3.4 as an already known initial quantity before the switch S closes, where E and E are
known quantities.
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Finally, the above solution of symmetrical voltages and currents on virtual terminals at point f are
inverse transformed into a~-b—c phase quantities at point f:

3
fla 1]1 ‘ 1 f[O(: fll) 3f]1 fVl
A 5 thotal
| = la‘a : 1 =10 0 @®
rle 1 a‘ a*| | rh(= ) 0 0
Vo 111 ~ % sh SR
ol =|1|a*|a|-|(sZy+ fZ, +3R)fI,| = (@* = 1) fZy + (¢* —a) yZy + a* - 3R| - 2
Ve 1 ala? — 1Z, I, (a—1)sZy+ (a—a*)sZ, +a-3R
3R
gl
thotal
(@* = 1) ;Zy + (@*> — a) ;Z, + a* - 3R v
= 7 fad! @
f*“total
(a—1);Zy+(a—d?) ;Z,+a-3R v
Z £
f“total
where (Ziya = (Z; + (Z, + ;Zy+ 3R
Z// . Z/ ,
fVI = ,f ! T El + /f ] //E]
fZI + fZ] fZl + /-Z]
(3.10)

All the solutions 1, oIy, (I, (Vg (V. (V. in the a—b—c domain were found.

Incidentally, £V, is the positive-sequence voltage (i.e. the phase a voltage) at point f before the
fault. If the load flow current on the line at point f before the fault is zero, the voltage at point fis of the
same value as that of the generator source voltage, namely E=E = vy

3.2.4 Voltages and currents at an arbitrary point under fault
conditions

Let us examine the voltages and currents at point m under the phase a 1¢G fault condition at point f
shown in Figure 3.2.

Figure 3.2b is the mathematical representation at any point of the system connection
diagram Figure 3.2a. Therefore, voltages and currents at points m(,,V, ,,Va, Vo> mlis mlas mlo)

and (,,V,, Vo> mVer mdas mly» ml.) are in correspondence to each other by the symmetrical
transformation:
VieE — 71 <E — .21
™M /1 //j 14 17 41 1} (.11a)
=L+
. Z// El E//
- 1 —
I = i S & + A= =Cr L+l D
2t 14 2+ 14
—— ————

the fault current supplied from the the load current before fault

left-hand side through point m to point f
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The load current is not included in the negative- and zero-sequence circuits, so
ZH
g f2 —
=——— H=Cr x (I, ®)
Lt !
7 * (3.11b)

Iy=——— 1y=Co- /] (©)

Pt b

21 ) .
where C} = ———— (C,, Cp are defined by the same equation forms)
e )

Cy is the coefficient of the branched current ,,/; / I, from the left hand-side through point m from
the total current fll, and is the vector value of 0—1.0/0. C,, Co/ are a¥so defined in the same way.

As we know already the value of Iy =¢I} =¢1I>, the currents I}, I,, I, at point m are calculated by
Equation 3.11. Finally the currents in the a—b—c domain at point m are

Ly 1 1 Co 1 1 1 0
L (=1 2| a || ¢ |fhit] 1 > a || Do (3.12)
1;_ 1 a a? C 1 a a* 0

fa\ult current term load current term

The second term on the right-hand side is the load current components that existed before the fault,
and the first term is the fault current components caused by the fault at point f.

This equation explains the fact that the fault current component at any point of the system is not
affected by the load current component just before the fault. In other words, we can calculate any
fault under the condition of zero load current, and then use vectors to superpose the load current if
necessary.

The voltages at point m can be calculated from the voltages and current quantities already found at
point f by utilizing the following equations:

m Vé fVO mZ() 0 0 12)
WSV l= Y+ o wZi 0o || 1 (3.13)
V) na 0 0 mZy A

Finally, the voltages can be inverse transformed into the a—b—c domain.

3.2.5 Fault under no-load conditions

A fault under no-load conditions is a special case of E/1 = E/l/ = fV1 in Figure 3.2b and Equ-
ation 3.10 @). The power system looking from point f under this condition can be regarded as a black
box with an internal power source, whos”e voltage across the terminals (DQ) is 4 (= E/1 = E’ll) and
internal impedance is ,Z;, = ( 2 // 2 ). On the other hand, as shown in Figure 3.3, the equivalent
circuit of the phase a to ground fault at point f connects the outer impedance 12y + ;Zy+ 3R to the
terminals (D) of the black box. Accordingly, the flow current at the terminals (DQ) is easily found by
Thévenin’s theorem. That is, the currentis I, = ,V,/{ ;Z; + (;Z, + ;Z, + 3R)}. This s of course
in accordance with Equation 3.8.

In conclusion of the above explanation, we can apply Figure 3.3 as the equivalent circuit, instead of
Figure 3.2b, whenever we need fault current components only (without load currents). Then we can
superpose load currents if necessary.
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voltage at point { before fault [V} = " = Ey’

o - Ly O S oar

E T 9 09 .
: , . y
: s Z<e Ly Z<e ol
: o/ o
' @

Figure 3.3 No-load fault calculation

3.3 Fault Analysis at Various Fault Modes

Voltage and current equations for cases of different mode faults are summarized in Tables 3.1a and b
in which equations in the 1-2—-0-sequence domain and a—b—c phase domain, as well as the equivalent
circuits, are indicated. Case 7 is that of the phase a to ground fault which we have already examined in
detail. The voltage and current equations and equivalent circuits for different fault modes can be
derived by the same procedure.

Note, incidentally, that the generator impedances are jx,| # jxg in a strict sense, while transmis-
sion line impedances are exactly Z; = Z,. Therefore, in case of a line fault at a great distance from the
generator, the condition jx,1, jxg < Zi,Z; and the approximationjx,| + Z1 = jxg2 + Z would be
justified, so the accuracy of calculation would be improved by the dominant line impedances.

Currents at point m for the case of a different mode fault at point f can be found by the following
procedure:

mli =Cr o,y =Co ¢y, 0o =Co- £l (3.14)

where C; = fZ” /( fZ/l + fZIII) etc. The inverse transformed currents are

k. CO'flo‘f‘Cl 'fll +C2'f12
wly | =] Co- g +aCi- 1y +aCy- I, (3.15)
wle Co- fly+aCy- I, +a*Cy- /I,

Voltage equations are derived analogously.

3.4 Conductor Opening

The cases of one- and two-phase conductor openings are examined in this section.

Conductor openings (or cut-offs) of one or two phases seldom happen as accidents in actual power
systems. However, the state of a single phase breaker tripping as a procedure of single phase reclosing is a
kind of one-phase conductor opening. Moreover, in the case of three-phase tripping by a circuit-breaker,
current tripping by breaker—pole opening of each phase occurs sequentially in time and the timing of
each phase tripping is different. In other words, a three-phase circuit is opened by the breaker through the
transient states of trip-start— 1¢ opening—2¢ opening and 3¢ opening. Furthermore, breaker tripping
failure may occur and give rise to severe situations. Phase-imbalanced opening occurs often and at
various places in practical engineering. (Breaker tripping phenomena will be explained in Chapter 19.)

3.4.1 Single phase (phase a) conductor opening

Referring to Table 3.2(1A), the phase a conductor is opened between the points p and q; v, vp, Ve, are
the voltages across the points p and q of each phase, and i, ip, i, are the phase currents at points p and q.
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Table 3.1a Equations and equivalent circuit for various fault modes

Fault conditions (a—b—c domain)

I, point f

#1 3¢S N ERNEI o+ fly+ ;1. =0 (14)
three-phase R |rle Va= V=4V
line-to-line fault V)

# 34G AR AL Vo= Vy=,Ve=0 (2A)
three-phase -
line-to-ground fault Vel

s — ] =
#3  19G & %X\V A= fle=0 (34)
phase a £><\f y fva =0
line-to-ground fault Ve

J[ney ST

1,
1= A, =0

I ==
#4248 > . Ay + 1. =0 (4A)
phase b to ¢ —
line-to-line fault Ve Vo iVa
77777777777

Vo= Ve

#5  2¢G
phase b, c double
line-to-ground fault

#6  3¢G
three-phase
line-to-ground fault

Va=rfla= gV =1 fly
= Vo—r- I, (6A)
= ROl + fly+ 5L

#7 146G
phase a
line-to-ground fault

L=, =0
o = fle (7A)
Va=R-f,

( 9ouRISISAI OIv) J[NEy OIY

#8  2¢G
phase b, ¢
line-to-ground fault

(8A)
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Table 3.1b Equations and equivalent circuit for various fault modes

Fault condition at point f and the equivalent circuits: Metallic fault

#1

#2

#3

#4

#5

3¢S
phase a, b, ¢

Iy =0 /Ea

f o=l =0, 7 :71

Vi= V=0 (1B) = 4 (10)
o =0, ;, =0, ;Vy=0 Vo= Vi=,V=0

E
Vo= Vi= V=0 o= b =0, f’lzfz”
(2B) = e (20)
th= =0
M=M=V =0
E,
_ o g _tEfa
o=l =rh="
[/
%0
Vo=—,7 -0 =—L 2 F
o= I = /b Vo= =r%0 flo=—x" sk
GB)=  _ _htsb (30)
Mot Vit V=0 A
V., = — .7 I :LZZ..E
Vo=l fh ==k
where A = 7y + ;Z, + ;Z,
Iy=0 E,
o I=0,I = — = —L
PR R A A
h=—h ety
(4B) = ;Vy =0 (4C)
_ 7
h= it Vi= Vy=— 2y I B g
1= f2== T
V=0 AL A A A
rEa
=
Z1+ (21 52)
ZZ' ZO
where(le//fzo)zg
4T %
o+ i+ =0
5B)= , % % 50
Vie Vo= .V y— Ay gy = s
o= =2 f 12+ 2, s A f
/‘V0:/‘V1 :/‘VZZ*/'Zz‘/'lz
z, 7
4 1%
= h=(;2,/] 52) - ¢y
f22+fZOf f f f

Continued



54 3 FAULT ANALYSIS BY SYMMETRICAL COMPONENTS

Table 3.1b Continued

Fault condition at point f and the equivalent circuits: Arc fault (arc resistance R)

#6 3¢G
phase a, b, ¢
Vo—r- gy =3R- (I .
Vi =r- I Ip= 1, =0, Jd = u
gl 7 rlo=rh2 M=z
Va=r- gl (6B) = Vo= ,V, =0 (6C)
=l =0 M=rh =gt
fvzzfvozo
#7 146G
phase a E,

— _ _f
o=l =rh="%
— 7
fe0
fVO:*on'f’O:iA - E,

Iy = (1, = /I = .
oo }(713@fv‘zfl(fzv"fzfévww Moo
Mo+ Vit Va=3R- 4, _ 1% fAz JE,

7fZZ

V2=
A= ,Zy+ 2 + 47, ¥ 3R

fZZ'fIZZT‘fE

a

j = tha =82
#8 I A +A2»A0‘f° Ay +4Ap /!
'TA A
—A8a0
L=—"0 ]
27 M+ I
ZyAy
Vo==s% flo =3~ asrh
Ay - Ay (8C)
V, =
V= A2+Ao) rh
Z,A
rfota
2=yt fh =3 e
where
Ay =7, +r
D=7, +r

Ao = jZy+r+3R

Notes: All the quantities of the negative- and zero-sequence circuits becomes zero in cases 1(3¢S), 2(3¢G) and
6(3¢G), because power sources do not exist in these circuits.
Ea is the voltage at point f before the fault.
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Table 3.1c¢ Equations and equivalent circuit for various fault modes

Phase voltages and currents

#2

#3

#4

#5

ey OIERN

#6

#7

#3

(Y 9oUR)SISaI OIR) JNR) DIV

3¢S
phase a, b, ¢

3¢G
phase a, b, ¢

1¢G
phase a

2¢S
phase b, ¢

2¢G
phase b, ¢

3¢G
phase a, b, ¢

1¢G
phase a

2¢G
phase b, ¢

2
la= sl fly =a" ¢l (. =a I,
/= (E/ /2, (1D)
Va= V= ;Ve=0

Same as above (2D)

i, =30y =3/E,/A where A= Zy+ Z, + (7,

Ay =yl =0, fI,=0

(3D)
v 7(a271)f20+(a27a)f22 Py 7(a71)f-20+(a7a2)f22 :
Vo= A fRa Ve = A “1Ea
E
IIM:O,I;,:fflt.:(azfa)/Il:(azfa)»#
Z + Z
P N ) 7z (4D)
faz)
V,=2,:Vy, V)= ,V.= —,V,, where  V|=-—"—F
f Vo Ve = Ve g 14! le""fzzf“
Lo :(azfa)fZOJr(azfl)szA .
o= gl £h
2ot 5%
2
= Zy+(a—1),Z
fIC:(“ a)fo (a )f 2';’1 (5D)
H Tt it
3 Z, - 7, E
fe2 7 70 fFa
V,=—"—— /1, /V, = ;V.=0, where /I =———"——F7~
ez gz, 1 fre Nz + (4] 12
E
2 fa
fla= ¢l fly=a" ¢y, fl. =agl,, where jllzﬁ
) o , (6D)
Vo= Vi, (Vy=d® V), [Vo=aV,, where fvlzm-fEa
Ay =30 =3 E /A, I, = 1. =0
3R (@ = 1) ;Zy+(a® —a) ;Z, + &> - 3R
Va=3R Iy =" rEus 1V = A “rEa (7D)

(a— l)f-Zo+<a7d2)f-Zz +a-3R

fV‘. = A 'fEav where A = fZO + fZ| + fZZ + 3R
B (@ = a)Ag + (a* — 1)Ay _(a—a*)Ay+(a—1)A,
rla=0: sly = Ay + 4 rh e = Ao+ Ay rh
ZyAy + DoA; + fZZAO Ay - Ay
{ Ao + 4y +r}fll where sl = fEa/<A] * Ay + AO)
8D
{fzo My +a?MoAy +a ,Z, - A0+2}I Av =, Z +r (8D)
a‘r
Ao + 4, 7 A= fZ+r
Zy - Ay +aloAy 4+ a ,Z, - A
20 2 022 2 0 _
{ At +ar}f11 AoffZO+r+3R

where a — d?

\/§ a 71:j\/§a, lfa:j\/gaz.

This condition can be described by the following equations:

vp=ve=0
=0 } (3.16)
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Table 3.2 Phase opening modes (equations and equivalent circuits)

Phase a opening

Phase b, ¢ opening

pointp  point q

1q=0

050 v laz
Al |&— P
£ Ve 25
ig=0
Vve=ve=0 ] (14)
pqintp poin?:q
i R ¢ —\
p g: Z1<:‘:P¥/\E g{l::%lzl ~ F
BT —
—Z% <—V2 12
[1B] § 4
n é’ Z2<":10‘12 e g%z %
I BT )
o |8 L i 3
Qg+ 1y =1lg=
o+ i1=1p 0] (1B)
Vo=Vi=V2
i = GEa gEa
1 7+ Zy - 72y
"Th+z
i = % i
Zr + 7y
. -7
ip = -0
T vz (10)
Z -2y .
Vo=V =V = i
0 1 2 %+ 7 1
7= 7+ 7,
Zy = pZZ + q22
ZO = pZO + qZO
i,=0
(@ —a)Zy+ (P -1)Z
ip = -0
b ZZ+ZO 1
o (@a—d®)Zy+(a—1)Zy
le = 3|
¢ Z +Zy (1D)
32,7
= q
Zr+ 7y !
i = GEa_gEa
1= 74 VLRVA)
1
7+ 7y

lo /Va\.l.“.
ib_io Vi ”1_:'0
RA] | iez e 50 |
h=1c=0
2A
vy 0 } @A)
,— v, 4
nga:’:E:;‘. Z1<:':p/\&7:}1 D21 :g:g
[ —
22 AfVZ 2
281 0 |6 [z N b 9
_ig [V io»
f
o é’ Z()<::pV0 qVQ:>qZ0 %
== .} @B
Vo+ Vit ve=
o= iy = iy — GFa —sFa
o=h=h=7—"r
vi = (Z2 + Zp)iy
Vo = —27p 0
vo = —Z i1 (20)
where
7= ,7, + 7
Zr = p22 + qzz
2= 7+ 4%
. . 3(GEa B gEa)
iy =31 =——-+°>—~
21+ + 7y
iy =ic=0,v,=0
vy = {(@® = NZo+ (&> —a)Zp}ir [ (2D)

ve ={(a—1)Zp+ (a— az)Zz}il
GEa T g-a

="
! 21+ + 7y

&
&
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The transformed equation in the 0—1-2 domain is

Vo =V] =V

. 3.17

io+ii+ir=0 } ( )
This equation can be exactly described as the figure of equivalent circuits in Table 3.2 (1B). In the
figure, the negative- and zero-sequence circuits are connected in parallel to the positive-sequence
circuit. pZI, pZZ, pZO are the impedances of the left-hand side circuit at point p, and qZI, qZZ, qZO
are the impedances of the right-hand side circuit at point q. Then, from the equivalent circuit,

i1 = 6P sla ip = % i1, ip= 2 “i1
7+ 24 H+2y Z+ 7
L+ 2
2, -7 (3.18)

Vo=V] =V = -0
Zr +Zy

Zi= 2+ 2 L=yl + 2y Zo = 2o+ 2o

This equation is written again in Table 3.2 (1C), and the inverse transformed equation for a—b—c
phases is shown in Table 3.2 (1D).

3.4.2 Two-phases (phase b, c) conductor opening

Voltages and currents in this case are found in a similar way and the resulting equations as well as the
equivalent circuits are shown in Table 3.2 (2A, 2B, 2C, 2D).
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Coffee break 2: Dawn of the world of electricity,
from Coulomb to Ampeére and Ohm

It may be said that the modern history of electricity actually began with the great character
Coulomb. Any review of the legacy left by the great scientists Coulomb, Ampeére and Ohm
cannot be omitted from the historical stories of electricity.

Charles Augustin Coulomb (1736-1806)
wrote seven important treatises on electricity and
magnetism between 1785 and 1791. He obtained
some remarkable results by using the torsion balance
method on ‘electric point charges’, ‘magnetic
poles’, the distribution of electricity on the surface
of charged bodies and others, and in particular
the ‘law of attraction and repulsion’, which was
the theory of attraction and repulsion between
bodies of the same and opposite electrical charge.
He demonstrated an inverse square law for
attractive and repulsive forces (F = g; - ¢2/1?)
using accurate measures of his own design. He
also suggested that there was no perfect dielectric,
proposing that every substance has a limit above
which it will conduct electricity.

In 1800, Alessandro Volta (1745-1827) built Charles Augustin Coulomb (1736-1806)
the voltaic pile, which was the first battery to
produce a reliable, steady current of electricity.
He discovered, so to speak, the first practical method
of generating electricity. Needless to say, Volta was
a great benefactor to many electrical scientists as the
person who provided stable electricity for their
laboratory experiments at that time.

Hans Christian Oersted (1777-1851) discov-
ered in 1820 that a compass needle deflects
from magnetic north when an electric current is
switched on or off in a nearby wire. This showed
that electricity and magnetism were related phenom-
ena. This eventually led him to the conclusion that
‘an electric current creates a magnetic field” and thus
‘electromagnetism’ was born.

André Marie Ampere (1775-1836), a mathe-
matician, immediately on hearing about Oersted’s
experimental results, formulated a circuit force law
and treated magnetism by postulating small closed
circuits inside a magnetized substance. He also Alessandro Volta (1745-1827)
discovered ‘electro-dynamical forces’ between lin-
ear wires through his experiment in 1820, the same year as Oersted’s discovery. Ampere proved
that electric current also creates flux and furthermore mechanical force. ‘Ampere’s
corkscrew rule’ and ‘Ampere’s circuit law’ clearly indicate that current and flux are
equivalent to each other because one can create the other.
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Hans Christian Oersted (1777-1851)

Georg Simon Ohm (1787-1854) in 1825 was
convinced of the truth of what we today call
‘Ohm’slaw’ and gave its mathematical description
in his 1826 paper. His law showed that the current
through most materials is directly proportional to
the potential difference applied across the material.
He also published a fully mathematical approach to
his complete theory of electricity in a book pub-
lished in 1827, although the physics at that time
rested mostly on a non-mathematical approach. His
mathematical approach also had an impact in
showing the true scientific method.

Now, the facts that ‘electricity and magnetism
are likely to be mutually related’ and ‘current
produced mechanical force’ were almost recog-
nized in the works of Coulomb, Oersted, Ampeere
and Ohm. However, no one knew then that ‘mag-
netism can produce electricity’, much less that
‘mechanical power can make electrical power by
moving magnetism’.

>
comprpE—— !
£ b e =

QOersted proved that electric current set
up a magnetic field

Georg Simon Ohm (1787-1854)







A

Fault Analysis of Parallel Circuit
Lines (Including Simultaneous
Double Circuit Fault)

Simultaneous line faults are often caused in power systems and can become serious, so a detailed
examination and appropriate countermeasures are required to prevent serious power outages. Fault
analysis for double circuit lines is rather complicated because mutual inductances as well as mutual
capacitances exist between the double circuits. Moreover, fault analysis of simultaneous double faults
is very hard work. Study of the principles of analogue methods for such complicated system behaviour
is important regardless of whether we approach networks using computational or manual calculations.

So-called two-phase circuit theory is introduced as an effective approach in this chapter, and then
the principles of faults analysis on double circuit lines, including double faults, is examined.

4.1 Two-phase Circuit and its Symmetrical
Coordinate Method

4.1.1 Definition and meaning

Figures 4.1a and b show the two-phase circuit in comparison with the three-phase circuit. Although the
two-phase circuit has not been utilized as a practical power system, positive-, negative- and zero-
sequence circuits of double circuit transmission lines as are shown in Figures 2.6 and 2.8 for example
are types of two-phase circuit lines, because they are the same as in Figure 4.1(b) if the double circuits
are connected to the same single bus at the substation terminal.

Itis assumed below that parallel circuits 1 and 2 of the same double circuit line are well balanced and,
furthermore, each circuit is also well phase balanced by transposition. As is shown in Figures 2.6 and 2.8
of Chapter 2, mutual inductance and mutual capacitance between the first circuit 1 and the second circuit
2 exist on the zero-sequence circuit, but do not exist on the positive and negative-sequence circuits.

We have already learned that mutual inductances and capacitances of three-phase single circuit
transmission lines are extinguished by symmetrical coordinate transformation. Analogously, mutual
inductances and capacitances of the two-phase circuit must be extinguished by adopting a two-phase
symmetrical coordinate transformation. This is the reason why we are going to apply two-phase
symmetrical components as analytical tools for double circuit transmission lines. The so-called
double phase circuit theory is indeed the theory of symmetrical coordinates for double phase
circuits and is mathematically a kind of two-variable transformation.

Handbook of Power System Engineering Yoshihide Hase
© 2007 John Wiley & Sons, Ltd
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RN P,

(a) three phase circuit (b) two phase circuit

Figure 4.1 Three-phase and two-phase circuits

The relevant equations are defined by the following equation.
For the transformation

e[ ] [ v . -
= == : o Vior = aag - Vi
2[1 | a 21 | =1 P, g (4.12)
—— ——
Vioi 73 2y, LN 2y,
where a = e/3%%°/2 = c0s180° + jsin180° = —1

For the inverse transformation

'V, L] 1] Vil

.12 -1
= .. V,=a,, - VkOl (41b)
vl [ ] -1 ke
2y, a, Viot

This definition by Equations 4.1a, 4.1b is in the same form as in Chapter 2, with the size of matrix
equations being changed and the size of the operational matrix @, @ ' changed from 3 x 3t02 x 2;
the vector operator is changed from a = e/ 120° 4 ary = /180" — 1,

The transformation equation above is applied to the quantities of the double circuits 1 and 2 on the
positive-, negative- and zero-sequence double circuit lines. The suffix k = 1, 2 or 0 corresponds to 1-,
2- or 0-sequence quantities.

For the transformation

Zero—sequence components

o I V=1(1V+2V)
2 I T N 7 [ SRR O
Vo 201 | —1] [V

Positive-sequence components

=]
<
=
)
Il
2L
<
4
[
=~

1 1

:5 1 1 re or @

10

V1o (4.2a)
n

Negative-sequence components

] My ] V20=1(1V2+2V2)
[Vaol I N . 2 ®

1
va] 2[00 [ -1] Py
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For the inverse transformation

Zero-sequence components
Vo _ |11 Voo Vo= Voo + Vo
% 1| -1 Vo 2V, = Voo — Vou

Positive-sequence components

] [T 1] vl 1V1=V10+V11}®

2_\/1 1| —1] [V 2y, =Vio— Vi1

Negative-sequence components

vl [ ] = v kv
Z 1| =1 |Va 2V, = Vo — Vay

where

Voo, Vo1 : first- and second-lane voltages on the zero-sequence circuit

Vio, V11 : first- and second-lane voltages on the positive-sequence circuit
Va0, Va1 ¢ first- and second-lane voltages on the negative-sequence circuit
'V,,2V, : first- and second-circuit voltages in the zero-sequence domain

lVl , 2V1 : first- and second-circuit voltages in the positive-sequence domain
'v,,2V, : first- and second-circuit voltages in the negative-sequence domain

The equations for the current or any other quantities are defined similarly.

Let us refer to the transformed new circuits as the ‘Ist-lane circuit’ and ‘2nd-lane circuit’.

4.1.2 Transformation process of double circuit line

(4.2b)

The symmetrical equations of the double circuit line are quoted from Equations 2.20b and 2.24c. The

positive-sequence circuit (the negative-sequence circuit is of the same form) is

lV lV l[
m n

2V 2V Z 2r,
where Zy\=2Zy—Zy

1 1

1211 C, IZV1
where Cy =C;+3Cy +3C),

and the zero-sequence circuit is

1 1 1

VoVl [ %[ Zom 2y 12 g 12y
2y~ 2y = T Tz | | O o Vo=Zo-
m_’ 0 n'0) oM 0 0

12V

m ' 0

12 12
Vo Z, 1,

where Zy =Zs+ 27, Zoy = SZ,'11

—jo G ] G | Vol 21, = joCo -V,
G |Ga+q
1210 CO 12V[)

where Cyp=C,, C,=3C,

(4.3a)

(4.3b)
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The transformation of the above symmetrical equations into 1st- and 2nd-lane circuit equations can
be done using the following process and modifications:

wVio1 = nVior = (@29 X Zy - ayg) - Lo
2Ly = jolazg - Cr - ayy) - Vior

where

k=1,2,0

4.4)

axy - Zy - ag(; and apy - Cy - a2*¢1 can easily be calculated and the following transformed equations
are derived:

For the positive-sequence circuit

mVIO _ nVIO — Z110 i 110 _ Zs —Zm 0 ) 110 )
2V [V 0]Zi] |[In 0 Zs —Zm | |l
> (4.52)
:jw ci]o :jw Cs +3C, +3C, 0 Vgl
I 0] Ci 0 Cy+3Cn+3C, | [Vu]
For the negative-sequence circuit
mVZO _ nVZO — Z1]0 16X _ Zs — Zn 0 . )
mV21 n 017, D 0 Zs — Zm
L\ (4.5b)
I . |1C1 | 0 V2o . Cs +3C, + 3C;n 0 Vo
= jw . = jw — -
D n Ci| [Va 0 Cs +3Cy +3C), )
For the zero-sequence circuit
mVYoo| _ |nYoo| _ | Zo + Zom 0 |oo| _| Z+2Zn +37), 0 oo
Vo1 o1 0 Zy — Zom | |loi 0 Zs+2Z,, — 37}, | |l
loo| _ ;| Co 0 e o |
Iy 0 |Co+2Cy ||Vor 0 |G +6Cy,
(4.5¢)

These derived equations are in coincidence with the figures in Table 2.1. The transformed
zero-sequence equation shows that the mutual inductance as well as the mutual capacitance vanished,
so that the 1st- and 2nd-lane circuits can be treated as circuits with self-impedance and self-
capacitance only.

Figure 4.2 shows the vector relations between (1107 210) and (Iyg, Io1).

1 c
Ipy =5 (', =*Iy)

(b)

Figure 4.2 Vector diagram of two-phase symmetrical coordinates transformation

(a)
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4.2 Double Circuit Line by Two-phase Symmetrical
Transformation

4.2.1 Transformation of typical two-phase circuits

Figure 4.3(a)is a typical two-phase circuit. The circuit can be regarded as a zero-sequence circuit of the
double circuit line (putting suffix kK = 0), or as the positive-/negative-sequence circuits by further
omitting the mutual inductance and mutual capacitance between the first and second circuits (putting
k = 1,2). The circuit equations are

2 2

Vi eZul oZ 1 2V
#Vk_ZcO.ﬁ_ p2u| |nke
2vfoz217zz21+®
m'k c Lm k| BM| n-kl nv

1% AVARY E

e a2 kiraka £] ©) (4.6)
nV nZ nZ nIk

1 1 1 1

,21k _ glk N ?Ik N ,;1,@

!
1 nlk P
‘1,Q+21,Q=0 ®
Ly
Vi = nVi =Z I O]
point point point

@ [ _Tosectiong - m w——sectimf—wn
1st phase :l_lik I”_Iﬁ L, I+2 IE
| 7 lS&J N1 Ik, ’D’O“Z wg[ ntk™ n k.
2nd phase/- 2_Z£k o [Zfo‘]aZMf ‘7\)12 1., B ﬁzmm ’”_l» )j
1 ‘,/ 1 7z ZC’ Z
Vk | a B K
\%4

5V | 1ka ZoT ZeT Vi n
! m -|_ -|12m[ k

(b) i LILCO A ﬂZ + /iZM ﬁ{k0| i

Q 30N oo :

/: /']} mIkO 1 /'I 277,Z:

1st-lane cireuit  1Vro! Vo T Zo==— s NoE
l T JjaC N |

i lIkO aZ - aZM ﬁZ - /JZM nIIcll i

= ¢ 7T = !

ﬁ / ] k\l‘ mIkl I !

2nd-lane circuit Vi1 Vit 7 o= 4d _ 1 :
: 2 j2eC’ !

where Z ;= -

oC

Figure 4.3 Circuit transformation by two-phase symmetrical components
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The equations can be transformed into that of 1st- and 2nd-lane variables by the same transforma-
tion process as Equation 4.3:

from Equation (4.6) (D

Vi 1[0 [WZ]eZu] 1] 1 ,+ka0
211 -1 (xZM atZ 1 -1 llkl mvkl

— aZ+aZM‘ 0 . + kaO @
0 ‘ aZ _chM l]kl kal

from Equation (4.6) ©

WVl L[] 1] [Z]o] [1 ] 1] |k
Vol 201 [ 1] Jolz] [ ] 1] [

]z 2| L] ] ke L[] 1] Y]
2[1 | -1 |z, 2

cAmViol | Ze] O o
vl [0z

_ 162t pZu| O '+
0 sZ — pZuM 0 =

from Equation (4.6) 3

K% 4.7)

1
2[1 [ 1] |

1 1 V4

ozl ool M LT 1] HE

1
201 [ 1) [zlz] [ ] 1] L "2l [ 1] |E]

n

WY [2z]o] Lk | |E 3
o] 010 0

from Equation (4.6) @

ﬁ + mIkO + mII/cO @
n kl mIkl mll/cl

from Equation (4.6) 5
1 2 :
mII,(O = E(rlnll,c + mII,() =0 s mlllc() =0 @

N

from Equation (4.6) ®
(nVio + Vi) = GuVio = mVi) = Ze - Gulio + mlin)

!

Z.
. mvkl = ?C 'mll/cl ©®

The equivalent circuit in Figure 4.3(b) can be written from the above transformed equations.
It consists of two independent circuits which are named the 1st-lane circuit and the 2nd-lane circuit
of the positive-, negative- or zero-sequence domain for k = 1,2,0 respectively. In Figure 4.3(b), mutual
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inductances as well as mutual capacitances between the 1st lane and 2nd lane have already vanished. It
should be noted that in the 1st-lane circuit 2, Z is inserted, while in the 2nd-lane circuit, the first and
second circuits are short-circuited at the bus terminal n and so C + 2C6 is inserted.

4.2.2 Transformation of double circuit line

Figure 4.4a is the symmetrical equivalent circuit of the double circuit transmission line, in that the
mutual inductance and capacitance between the first and second circuits exist only for the zero
sequence. The figure can be easily transformed into the 1st- and 2nd-lane circuits of Figure 4.4b in the
same way as described by Figure 4.3.

The original three-phase double circuit line (of a—b—c and A—B—C phases, Figure 1.5 in Chapter 1)
has been transformed into Figure 4.4b, in which there are six mutually independent circuits. Mutual
constants between the 1st and 2nd lanes for the zero sequence have already vanished. Each 2nd-lane
circuit of the 1-2-0 sequence domain is a closed-circuit composed only of parallel line part constants.

R I M I

positive-seq. positive-seq. 15t-lane

nZ1 271 % ¢z 2,7
3 N
2 V1 om 1E A Vo o o
/ \
positive-seq. 2nd-lane 41 A
V11=0 :l_?ll T Cl 2V11=0

negative-seq. negative-seq. 1st-lane

L+ 21/{2 1Z1 nZ1
00
7 N
n/VZ
negative-seq. 2nd-lane  ,Z; 1
Vo1=0 :_7121 T (O nV21=0
zero-seq. . st-
) q / ZOIZIO ;fZOM 7, IZOM zero-seq. 1st-lane o= Zoo=
= 00 ZLZO pZO + pZOM qZ() + qZ()M 2”Z0
[l —
Voo Hoo Co V.
l {)0 o -l—]YO:]wCOﬂ/ 00
7
pZ01 = o=

zero-seq. 20d-lane  pZo— pZom 90— gZom
Vor=0 Z_f(n TCO +200 |, V=0
JYo1=jo (Cy+2Cy)

(a) Symmetrical circuit (b) 1st- 2nd_ Jane circuit

Figure 4.4 Equivalent circuit of double circuit line in 1st- and 2nd-lane circuit domain



68 4 FAULT ANALYSIS OF PARALLEL CIRCUIT LINES

The circuit constants in Figure 4.4(b) are given by the following equations:

\

2y =Zs—Zp Ziw=21=Zs— Zn Znw=21=7Z;— Zn
7Y = joC JY10 = joCi JYin = joC
= jo(Cy +3Cp = jo(Cy + 3Cp = jo(Cy +3Cp
+3C,) +3C,) +3C),)

Zy =Zs + 27y Zoo = Zo + Zom Zor = Zo — Zom > (4.8)
Zow = 3Z), = Zy+ 22y + 37, = Zo + 22 — 32,
Yo = jwCo 7Yoo = jwCo JYo1 = jo(Co +2Cp)

= jwC; = jwCs = ja)(CS+6C,/n)
jY(l) = ja)C6

= jw-3C), J

where
Zoos Zo1: 1st- and 2nd-lane impedances in the zero-sequence domain

Y00, Yo1: 1st- and 2nd-lane admittances in the zero-sequence domain

Typical values of these lane impedances and admittances (capacitances) are shown in Table 2.1 in
Chapter 2.

It must be remembered that the impedances of 2 ,Z,,,2 ,Z,,2,Z,,2 ,Z, (instead of | Z,, ,Z,), ,Z,, ,Z,)
are inserted in the 1st-lane circuits in Figure 4.4(b).

The 2nd-lane circuit of each positive-, negative- and zero-sequence circuit is of closed circuit
without power source. Accordingly all the quantities in the 2nd-lane circuit are zero before the fault.
However, if the double circuit line is not necessarily well balanced, a so-called circulating current
would flow through the 2nd-lane circuits.

Let us now examine oo, lo; in the 1st- and 2nd-lane circuit of the zero-sequence domain:

1 1
Ioo = 5(110 + 210) = 6{(110 + llb + llc) + (2Ia + 2117 + 21(')}

4.9)
1 1
Ip1 = 5(110 =) = 6{(lla + 1,4+ 1) = CL, + 21, +%1,)}

Accordingly, if zero-sequence current exists under normal load conditions, then /y; of the 2nd lane
also exists and flows through the 2nd-lane closed loop circuit. Iy, is the so-called circulating current
of the double or multiple circuit line and is the zero-sequence current component which actually
circulates through the first and second circuits.

Further, Ioo, Io] are quantities which can be measured as the addition or subtraction of the current
transformer (CT) residual currents 1, = (1/3)('1, + '1, + '1,),%1, = (1/3)(?1, + I, +21,) at
the CT secondary terminals of the first and second circuits.

In the practical engineering field of protective relaying, the zero-sequence circulating current /o)
sometimes causes severe problems for certain types of protective relays, in particular for double circuit
lines of a highly resistive neutral grounding system, for which special countermeasures may be
required to prevent malfunction of the relays.
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4.3 Fault Analysis of Double Circuit Line
(General Process)

Figure 4.5 is the process flow diagram of fault analysis for the double circuit line. The steps with the
marks *1, *2 in the diagram correspond to the Figure 4.4(a), (b) respectively.

Tables 4.1a and b summarize the related equations and the corresponding equivalent circuits for the
cases of a single circuit fault and a double circuit fault at the same point f on a double circuit
transmission line. The double circuit transmission line before the fault is shown as Figure 1 in
Table 4.1, where a set of virtual terminals is prepared at point f for the connection of fault conditions
(Figure 1 corresponds to the process step *1).

In relation to Figure 1 in Table 4.1, Figure 2 shows the circuits in the symmetrical coordinate
domain (corresponding to *2) and Figure 3 the 1st- and 2nd-lane circuits in the symmetrical coordinate
domain (corresponding to *3). Capacitances can be of course added to these circuits if necessary.

The 1st- and 2nd-lane circuits in the symmetrical coordinate domain of Figure 3 can be described
by the following equation:

Vio=rEa — sZiy- fljo
f f f @

fVll = _qu ’ flll
Vo = =220 ¢l
Vo — g @) (4.10)
2= fe21 0 i1
Voo = =200+ floo 3
fVOl = *me ’ fIOI

where fZlo, fZ”, fZZO’ fZ217 fZOO, me are the 1Ist- and 2nd-lane impedances looking into
the circuit from point f in Figure 3, all of which can be found from Figure 3 as known quantities.

a-b-c¢ domain [
0-1-2 domain

1st, 2nd Jane domain

network condition

fault condition

*1
phase a,b,c
Table 4-1 Figure.1 phase a,b,c
l X agy l X ag, transformation
2
0-1-2 seq.
(Table 4.1 Figure.2) 0-1-2 seq.
l X dgg l X Gy transformation
1st, 2nd lanes ©ond
(Table 4-1 Figure.3) 1st, 2nd Jane

{

solution by 1st, 2nd Jane
Voo Vo1 Vio Vi1 Ve Ve ete.

l X Gg471
1VO 2V0 1V1 2V1 IVZ 2V2 ete. |
l x ag4! inverse-transformation

1V, 2V, 1V, 2V, 1V, 2V, |

0-1-2 domain { |

a-b-c¢ domain { |

Figure 4.5 General procedure for fault analysis of double circuit line
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For example,
#Zyp = {the parallel impedance of (,Z, +2u21), (,Z, +2,Z,)}
= (pZ1 +2,2))//(;Z) +2,Z,)
#Zyy = {the parallel impedance of ,Z;, .Z,} = ,Z,// ,Z,
and fE . 18 the known voltage at point f before the fault in Figure 4.3.

Now we complete our arrangement of circuit conditions before the fault.
4.4 Single Circuit Fault on the Double Circuit Line
Let us examine the phase b to phase c line-to-line fault at point f on the first circuit of the double circuit
transmission line.
4.4.1 Line-to-ground fault (1¢G) on one side circuit

The fault condition of this case is connection of the virtual terminals 71, #7 through the arc resistance R
(see Figure 1A):

1 1
flb = f]c = 0} : circuit 1

1,»v =R- lfI (4.11a)
fI = flh - fI — () : circuit2
and in the 1-2-0 domain
1 1 1
o= yh=ysh } - circuit 1
LV + }Vl + }Vz =3R- _lflo (4.11b)

2 2 2 . circui
f[0 = f11 = f12 =0 : circuit 2

The equation is in one-to-one correspondence to Figure 2A, which is the equivalent circuit of this
case. The calculation of this circuit is not easy, because mutual impedance exists in the zero-sequence

circuit. Therefore we try to transform the condition into the 1st- and 2nd-lane circuits.
Substituting Equation 4.2b into Equation 4.11b,

(tloo + flor) = (plio + pli1) = (o + f1o1)

(Voo + Vo) + (Vie+ fVin) + (Voo + fVar) = 3R (plog + flo1)

(tIoo = flor) = (plio — fli1) = (g — f151) =0 4.12)
oo = ot = pho = i = plao = flo

(Voo + Vo) + (fVio+ Vi) + (Voo + fVar) = 6R - 4l

Figure 3A is the equivalent circuit of this fault case because it is strictly in one-to-one correspon-
dence to the above equation. All the mutual impedance has already disappeared in Figure 3A, so the
voltage and current quantities at point f under the terminal condition of Figure 3A can easily be found
by calculation.

The resolved quantities are transformed into the symmetrical quantities by applying Equation 4.2b
for the inverse transformation, and are finally transformed into the three-phase quantities.
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4.4.2 Various one-side circuit faults

We can solve one-side circuit faults of various other modes by the same method. The related equations
and the equivalent circuits for these are also described in Table 4.1.

In the case of a phase b to ¢ line-to-ground fault (Figure 1B), for example, the equivalent circuit in
the symmetrical domain and the further transformed circuit are given by Figures 2B and 3B,
respectively. The calculation of Figure 3B is easy because the circuit is a single loop circuit without
mutual inductances. On the other hand, the manual calculation of Figure 2B is quite hard.

In the case of a phase b to ¢ line-to-line fault (Figure 1C), as another example, the calculation by
Figure 3C is easier than by Figure 2C in spite of the fact that the zero-sequence circuit with mutual
inductances is not even included.

4.5 Double Circuit Fault at Single Point f

4.5.1 Circuit 1 phase a line-to-ground fault and circuit 2
phases b and c line-to-line faults at point f

The fault condition in this case is shown in Figure 1E, where arc resistance is neglected.
The fault condition in the three-phase domain (see Figure 1E) is

W, ="%1.=0,  4v,=0 : circuit 1
(4.13a)
M,=0, G+ %.=0, GV, =%V, :circuit2
The fault condition in the 1-2-0 domain (see Figure 2E) is
_lfIO = }11 = }127 ‘fvo =+ _lfVl + _IfVZ =0 : circuitl
(4.13b)

y=0, L +%3L,=0, 3V, =%V, : circuit2
and the fault condition in the 1st- and 2nd-lane domain (see Figure 3E) is, on substituting
Equation 4.2b into Equation 4.13b,
(floo + flor) = (flio + fliy) = (phho + flo1)
(Voo + Vo) + (Vio+ Vi) + (Voo + V1) =0, (floo = flo1) =0

(tho = ) + (o — 1) =0, (Vo= Vi) = (Va0 = £Va1)

Then
oo = flon o = #la
f111:f120 2f100:(f110+f111) o
(4.14a)
Vot V= Vi + ¢V }
(Voo + Vo) = =2(;Vig + fVa1)

The equivalent circuit for Equation 4.14ais shown in Figure 3E. In this figure, one ideal transformer
(of turn ratio 1:2) is inserted in the equivalent circuit in order to satisfy Equation 4.14a completely.
Figure 3E can be redrawn as a quite simple circuit so that the calculation is easy, but on the other hand,
manual calculation of Figure 2E is almost impossible.
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For any other simultaneous double circuit fault modes, we can introduce solutions like
Equation 4.14a in the same manner. However, the corresponding equivalent circuits would not be
able to be drawn for most of the cases. We have to bear in mind that those cases where we can draw the
equivalent circuits are actually exceptional.

In other words, we have to find solutions only from the related equations for most of the cases
without having equivalent circuits. Therefore let us examine the above fault further as a typical
example and find the solution only from the related equations.

We have the six equations of Equation (4.10) as system side conditions and the other six equations
of Equation 4.14a as fault terminal conditions. Twelve variables (six for currents and six for voltages)
and twelve equations exist in total, so the equations can be solved as a set of simultaneous equations of
twelve dimensions and single order. Next, the simultaneous equations can be easily modified into a set
of six dimensions and single order only, with six current variables in this case.

Eliminating variables V by substituting Equation 4.10 into Equation 4.14a (Q),

2o tho = fZi - fln = 2oy pho t+ iZy - fly = 4E, }

(4.14b)
200 floo + fZo1 - flor T+ 25Z1g - flio + 252y - fly =2 4E,

All the variables for voltages have vanished, so Equations 4.14a and 4.14b can be rearranged as
simultaneous equations of six current variables:

= Tl [0
2 1| o, 0
1 —1
—1 -1 . ';j—:(l) = g (4.15)
Zio |75l |~ oo | FZa b E,
Zoo| £Zo1| 2 tZ1o 2427, E 2-,E,

This set of simultaneous equations is of six dimensions and single order only. These particular
equations can be solved manually, although this is not generally easy.

4.5.2 Circuit 1 phase a line-to-ground fault and circuit 2
phase b line-to-ground fault at point f (method 1)

A plain equivalent circuit would not exist in most cases of double circuit faults, so we have to execute a
complicated step-by-step calculation. As a typical case let us try to solve the circuit 1 phase a 1¢G and
circuit 2 phase b 1¢G fault. The fault condition in this case is shown as follows where we neglect arc
resistance.

The fault condition in the three-phase domain is

circuit 1 : Phase a to ground fault _I/Ib = }I . =0, _lfV =0

(4.16)
circuit 2 : Phase b to ground fault 2}-1“ = 3010 =0, Zth =0
The fault condition in the 1-2-0 domain is
circuit] LI, =11, =LI,, LV +Lv,+Lv, =0
f f f f f f “.17)

circuit 2 3010 =a?. ?11 =a- _2,-12, _2fV0 +d?- ?Vl +a- ?Vz =0
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The fault condition in the 1st- and 2nd-lane domain is, substituting Equation (4.2b) into
Equation (4.17),
(loo + flor) = (plio + (i) = (tlho + flo1)
(Voo + Vo) + (Vio+ ;Vi) + (Voo + Voy) =0 “18)
(oo = for) = a*(ho — ;) = alshg — ) .
(

Voo = Vo) + @ (;Vig = ;Vin) +a(;Vag — Vi) =0

Equation (4.10) as the system condition and Equation 4.18 as the fault condition include
12 equations in total so that a set of simultaneous equations of 12 dimensions and single order
can be prepared.

The six voltage variables can be eliminated by substituting Equation (4.10) into Equation (4.18) to
obtain the following equations:

oo+ flot = fho — s =0

oo+ flot = plo — sy =0

oo = ploy —a® plig + @ ;1 =0

rloo = plor —ayhy +azh; =0

200 - oo+ tZo1 - for + fZio - ot pZin fi t oo flao t pZy iy = 4B,

2 2
7Zoo - floo = sZor - flor T a (;Zio - slho — fZi1 - fln) +a(yZyy - 1o — 42y, - In1) = a” - (E,

(4.19a)
namely
11 -1 -1 oo 0
1| 1 -1 1 oy 0
1 -1 —a? +a? 1 0
Vil (4.19b)
1 -1 —a +a fIl 1 0
rZoo| 2ot | o Zn 1220 1221 +ho E,
2 P 2
Zoo| —fZot| @ fZio| a2y | acplyy | —a Doy (fhy| a7 pE,

This set of simultaneous equations is of six dimensions and single order for the current-variables
where all the impedances are known. We can solve the equations perhaps by using a PC, because
solution by hand may be too hard.

Incidentally, whenever voltage and current quantities ( fVOO’ fIOO’ etc.) at point f are found,
quantities at different arbitrary points can be found in the 1st- and 2nd-lane domain by straightforward
additional calculation.

4.5.3 Circuit 1 phase a line-to-ground fault and circuit 2
phase b line-to-ground fault at point f (method 2)

The current values of Equation 4.19b can be easily calculated by a computational approach as the
problem to obtain a 6 x 6 inverse matrix equation. However, considering the purpose of this book, a
method to find a solution manually is demonstrated here.
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The fault condition in the three-phase domain is

circuit 1 : Phase a to ground fault }Ib = lfIC =0, }Va =0 (4.20)
circuit2 : Phase b to ground fault ?f-l = ?16 =0, %”Vb =0 .
The transformed symmetrical current equations are
1 1 1
3-%ly =41, +0+0="1, 3.1y =0+%1,+0=73I,
3-Y =Y, +a-0+a-0="Y1,, 3.3, =0+4a-%l,+d* 0=a-%l, (4.21)

3- Y=Y, +a - 0+a-0="1,, 3.3,=0+d %, +a-0=ad*2I,

Accordingly,
Top = 2o+ 20g) = X(h, +21,)
rloo = 50rlo +75lo) = gUpla +51p
L 2 1 2
oy = E(flo =) = g(fla = 51p)
1 1
o :*(}11 +§Jl) :*(}Iu +a'2f1h)
2 6 4.22)
I —1(11 —21)—1(11 —a-2I)
=300 =h) = e(pla —a- 5l

1 1 2 1 1 2.2
f120 :E(flz + f12) :g(fla +a” - fIb)

1 2 1 2 2
£ :E(flz ) :g(fla —a”-%l,)

The transformed symmetrical voltage equations of Equation 4.20 are
0="v, =4vo+ v, + v,
= (Voo + Vo) + (Vio + (Vi) + (Vg + Va1) 23
0=2V,=2Vy+a* -3V, +a -2V, '
= (fVOO - fVOI) + az(fVIO - an) + a(fV20 - fVZI)
Substituting Equation 4.10 into Equation 4.23,
(tZoo" floo + rZor flo1) + (rZio" flio + fZir- flin) + (5Zao- oo + 21" fl1) = fE, }
(Zoo" floo = yZor* flor) +a*(;Zao- tho = yZuy- fIn) +alyZog - tloo = yZoy - ) = @+ E,
(4.24)

In Equation 4.22, all the currents in 1st- and 2nd-lane circuits in the 0—1-2 domain are shown as
functions only of ! I, and %Jh. Then, substituting Equation 4.22 into Equation 4.24,

{(sZo0 + sZo0) + (sZ10 + sZ10) + (sZ0 + sZ0)} - Yl

(1 Zoo — yZo1) +alyZio = Z1y) + @ (yZo0 = sZo1)} - 1y = 6 4E,
{200 = Zo1) + az(_leo = Z1) +a( 1 Zyy — ;Zy0)} - Y,

H(Zoo + fZo) + (sZio + tZ01) + (pZag + sZ51)} - ?11; =6a’ - 7Ea

(4.25)
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This set of simultaneous equations is of two dimensions and single order in only the two variables
lfla, 301[7, and all other variables have vanished. Equation 4.25 can be solved easily by hand:

, _Ai—Ad® o —BitALd

Fa™ A2 a8 I70 TP AT _a,B
where

Ar = (pZoo + tZo1) + (tZiog+ ;Z11) + (;Zy0 + (Z51) (4.26a)

Ay = (;Zoo — Zo1) +a( ;Zig — sZ1)) + @ (;Zog — Z1)

By = (200 — tZ01) +a*(;Zyo — (Z1y) + a( ;Zag — 1Z3y)

Furthermore, 7= ;Zyj and ,Z;; = ,Z,, in Figure 3 of Table 4.1b so that the terms including

vector operators ¢ and a~ ' disappear as follows:

A= (pZog + §Z01) +2(5Zy0 + 4Zy) } (4.26b)

A=Bi= (4200 — pZ01) — (1210 — sZ11)

We have found directly the fault phase currents lfla and ?Ih on the virtual terminals at point f.

On the other hand, the sound phase currents other than }I , and 21 , on the virtual terminals at point f
are zero. Therefore all the phase currents at the virtual terminals of point f have been found. Quantities
at other arbitrary points can be found consequently by additional calculation.

The characteristic of this method is to express all the lane circuit quantities of Figure 3 of Table 4.1b
as parameters of the fault phase currents only. The method is generally a very valuable calculation
technique to study various complicated fault conditions in double circuit lines. Furthermore, the
analogy may be applied to other types of calculation in practical engineering.

4.5.4 Various double circuit faults at single point f

Double circuit faults of other modes at point f can be analysed by method 1 or method 2, regardless of
the existence of visual equivalent circuits.

4.6 Simulitaneous Double Circuit Faults at Different
Points f, F on the Same Line

4.6.1 Circuit condition before fault

If lightning strikes a phase a conductor at point f, for example, it may cause flashover of other
phases or other circuits at different point F. These cascade flashover phenomena at different two
points are actually simultaneous faults at different points on the basis of a millisecond-order
timescale. In other words, simultaneous faults of various modes would occur very often in power
system networks. These phenomena have to be investigated from various engineering viewpoints.
In particular, the behaviour of directional distance relays has to be carefully examined in order to
prevent malfunction.

The analogy of fault analysis in case of a simultaneous fault at two different points is the same as
that shown in Figures 1 of Table 4.1. However, we have to imagine virtual terminals at the two different
points f, F as shown in Figures 4.6a—c.
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point point  point point

.oom F n )
section section section
ne i P q ” i n— The following relations exist
§ q ¢ among Figures a—c.
= ilu mZ10=2-mZ1  nZ10=2-,71
_ '}Ib mZ2O =2'mZ2 71Z20:2-71Z2

C?[J c/c‘%%; mZo0=2-mZo 2 Z00=2-1,2
@)Ei& 1Va ) = pZ10=p2Z1 pZu=pZ1

pZi20 = pZi2 pZlo1=pZ2
p4o0=pZotpZn pZor =pZo—pZu
(4Z, +Z by analogy)

zIa

ZI«”CA \e
(a) three- fVll ”\ 2V N

phase circuit 7 b zV 7 b zV

My +ih Y ;}11—111 . .
positive- - = point  point
méil

»Z1 aZ1 AT sZ10 f F 1Z10
Y O )
10 2210 7Z10 2w wlio

seq.

—_—

}Iz + ‘}Iz ‘}Iz }Jg —(}Iz
negative-  ,,Z» 7 7 7
pz q4i2 r42 nZZ

seq.

(b) Symmetrical circuit
(\

%QJ
O @
q%b,\‘fy

(e) 1% 2" 1ane circuit

Figure 4.6 Simultaneous double circuit faults at different points

The equations of the power system corresponding to Figure 4.6¢ are, for the positive-sequence, 1st
lane

Vo= —Zio(tho + gli0)s FVio = nEa — Z1o(plio — ¢l10)

fV10 — Vo= quO : 4110
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accordingly,

Vio = mEa — Zio( o + 4l10)
FVio=nEq — zZm(FIlo - qllo) ®

(4Z10 + sZ10 T 1Z10)gh10 = mEa — wEa — sZ10 * fhio +Z1o - Flio

for the positive-sequence, 2nd lane

Vi =—pZu( sy + 1)
Vi == Ziu (el — ) @

(gZi + 20+, Zi) g = —pZu - iy + 21 pln

for the negative-sequence, Ist lane

Voo = —5Zao( shho + 41a0)
FV20 = —1Zo0(rlao — 4120) ©) (4.27)

(4220 + 5Z20 + 1Z20) gla0 = —Z20 " flao + 1220 " Flo
for the negative-sequence, 2nd lane

Va1 = = pZo1 (g + 411)
FVor = *rzzl(Flzl - q121) @

(4Zor + pZo1 +,Z01) glo1 = — pZo1 * oy + 201 plyy

for the zero-sequence, 1st lane

Voo = —sZoo( floo + 4lo0)
V00 = —Zoo(rloo — ¢loo) ®
(4Z00 + sZo0 + 1Z00)gloo = —sZoo * floo + +Zoo " Floo

and for the zero-sequence, 2nd lane

Vor == pZoi (o1 + 4lo1)
Vo1 = = Zoi (ploy — 4lo1) ®

(¢Zor + pZor ++Zo1) lor = — pZor * (Lot + +Zo1 * Floa

Equation 4.27 and Figure 4.6(c) are in one-to-one correspondence to each other.
Equation (4.27) (D, 4110> can be deleted so that voltages Vo and V,, can be written as functions
of current variables rho and /|, and the given source voltages , E, and ,E,.



80 4 FAULT ANALYSIS OF PARALLEL CIRCUIT LINES

By a similar treatment, Equation 4.27 can be reformed as follows by the general forms for the
equations of a power system.
for the positive-sequence, 1st lane

Vio = piomEasnEas £1ios rlho) }
V10 = FfrolmEas nEa> tlios rlho)
for the positive-sequence, 2nd lane

fVll = ffll(flll’Flll)v FVi :Ffll(flll’Flll)

for the nagative-sequence, 1st lane

fVZO = ff20(f1207F120)1 Vo = Ff20(f1207F120)
(4.28)

for the nagative-sequence, 2nd lane

Vor= (b pln)s Vo = phor (s ploy)
for the 0-sequence, 1st lane

fVOO = ffoo(fIOOvFloo)a Voo = FfOO(fIO()7FIOO)

for the 0-sequence, 2nd lane

Vor= sl (o plon)s #Vor = pfor (tlors lor)

These are the equations of the power system before the fault.

4.6.2 Circuit 1 phase a line-to-ground fault and circuit 2
phase b line-to-ground fault at different points f, F

Fault analysis of this sort of double fault is very challenging. To understand the logical analogy for the
solution of such cases it is essential that readers can find solutions by either computer analysis or
manual calculation.

Now, the process of the double fault will be demonstrated using method 2, which was discussed
above.

The fault condition in the three-phase domain is,

at point f, -lflb = _lflc =0
20p _27 _27 _
o =751 =7 =0
I
Va= 0

. (4.29)
at point F
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The fault condition in the 1-2—0 domain is, by transforming Equation 4.29,

for point f lfI0 = lfl1 = }Iz = %lfla

for point F (4.30)

12 _1 2 2, Lo
sl Fhi =34 Fl, P =347 Fl,

2Vo+a* 2V, +a -2V, =0

Then
Too = S (hly +20) = Vr = =2 = L @31)
100 2f0 fro 6f7 fro1 2f0 o 6fa .

In the same way, all the equations of Equation 4.30 can be transformed into the equations of the 1st-
and 2nd-lane circuits in the 0—1-2 domain, where the 1st- and 2nd-lane currents are expressed only by
the parameters of fault phase currents }I , and %I - That is,

1

1
oo = flor = rho = It = sho =l = ¢ fla @®
—1
2 2
Floo =¢rlp: - Flor = Fly
[ -1 5
Fllozg“'FIha rli :?a‘FIh @ (4.32)

155 -1,
Fho =@ Fly,  ply =—a"Fl,

(Voo + #Vor) + (Vio+ ¢Vi) + (Voo + V1) =0 (©)
(FVoo = #Vo) + @ (Vg — #Vir) + a(pVag = pV)) =0 @

Now we have an equation showing the fault condition, namely Equation 4.32, and equations
showing the system, namely Equation 4.27 or its modified Equation 4.28. Therefore we can solve the
problem by combining all these equations. By substituting Equation 4.32 (1) ) into Equation 4. 27 or
its modified Equation 4.28, all the 1st- and 2nd-lane voltages can be expressed as parameters of ! a
and FIh only. Next, by substituting the six 1st- and 2nd-lane voltages into Equatlon 432 3@, we
obtain simultaneous equations of two dimensions in only two variables, fI , and FI ;- Then we can
obtain the final solution.

4.6.3 Various double circuit faults at different points

In conclusion of the chapter, double circuits fault at different points of various modes can be solved by
utilizing the three-phase and two-phase symmetrical components together. It must be remembered that
actual power system analyses, even by large computers, are conducted mostly by utilizing these
transformations in order to eliminate mutual inductances of the lines.






Per Unit Method and Introduction
of Transformer Circuit

The per unit (PU) method (or % method) is a technique for handling any kind of quantity with its
particular dimensions as quantities of dimensionless ratio value based on 1.0 pu or 100%. This practice
is a very useful approach applied widely in many engineering fields, eliminating the troublesome
handling of several different kinds of quantities.

However, in power system engineering, the PU method has various meanings such as a ‘technique
for describing electrical circuits, and far exceeding the simple meaning of the only convenient method
to remove troublesome dimensions’. Many individual structuring members of power systems can be
combined together as one circuit (instead of a connection diagram) only by using the PU method.
Furthermore, transformers can be handled by PU expressions as equipment in which Kirchhoff’s law
are applied.

In this chapter we study the fundamental concept of the PU method first, and then study the circuit
description of transformers. Finally we try to describe the circuit for a typical power system model
containing several lines and various equipment.

5.1 Fundamental Concept of the PU Method

The PU method is quite important in power system engineering, the reasons for which are summarized
as follows:

a) Kirchhoff’s law is satisfied among currents of transformer primary, secondary and tertiary
windings so that transformers can be described as very simple circuits.

b) Generators can also be described as accurate and simple circuits (see Chapter 10).

¢) Transmission lines, generators, transformers, loads and other equipment of different types and
ratings can all be combined together as one circuit. practically only by applying PU method.

d) Relief from troublesome handling of practical dimensions (V, A, MVA, (), Wb, etc.).

For power system engineers, the first three items are the essential reasons and the last item is just a
supplementary reason.

Handbook of Power System Engineering Yoshihide Hase
© 2007 John Wiley & Sons, Ltd
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5.1.1 PU method of single phase circuit

Let us consider the PU method for a single phase circuit first. The basic equations of voltage, current
and apparent power are

V [volt] = Z [ohm] - I [ampere]
VA [volt - ampere] = P + jQ [volt - ampere] = V [volt] - I* [ampere] (5.1
where V, I, Z, VA (orS) : complex-number quantities, /* : the conjugate of 1

Now, in order to unitize the V, Z, I, VA quantities, the base quantities by sign of Vi,
Tvase, Zbase, VApase are introduced. All the base quantities are scalars (real numbers, or a vector of
/0°) and have to satisfy the equations below:

Vbase [VOIt] = Zpase [0hm] - Tase [ampere] (520)
VApase [Volt - ampere] = Viyge [VOIt] - Tpase [ampere] .
or
VApas It -
Vbase [Volt] (5.2b)
Voase [volt] V2. [ :

Zpase [ohm] = -
base [Ohm] ITvase [ampere]  VApase

We can select any arbitrary value for voltage base Vpase and capacity base VAp,ge, but the current
base Ipase and impedance base Zp,se have to be decided as depending on Viase and VApgge to satisfy
Equation 5.2a 5.2b.

Equation 5.1 can be unitized by the base quantities of Equation 5.2a as follows:

vz 1
Vbase Zbase I'base i (5 3)
VA _Pt+jo__ P . 0 vV oI
= = j fry .
VAbase VAbase VAbase VAbase Vbase Ibase
By using an overbar as the symbol for unitized quantities,
V=21 ®
VA=P+j0=V-I* @
_ \% - VA - I - \%
where V = Z= = = ©) 54
base Zbase Tpase Vbase
— VA — P —
A = P= 0= Q @
VAbase VAbase VAbdse

The unitized quantities V,Z, 1 *, VA, P + jO are non-dimensional complex numbers.

Equation 5.4 is the same as the original Equation 5.1, and the vector phase relations in Equation 5.1 are
preserved in Equation 5.4 because all the base quantities are selected as scalars (namely, a vector of /0°).

Unitized quantities can obviously be changed into actual values with individual dimensions using
the equations below:

V(VOIt) =V- Voase, Z = Z- Zopse, 1= I- Ibase } (5.5)

VA = m . VAbaseu P=P. VAbase7 0= @ - VApase

Figure 5.1 summarizes the PU method.
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system condition per-unitization ] ]
by practical unit values . conversion to the
V,1,%,VA —O—| _ |, | analysis —=| practical unit values
) b b V:
Vbase V= ‘—/ v
= V" Vbase

base quantities
VAbase, Vbase

!

I base, Z base

Figure 5.1 The concept of the PU method

5.1.2 Unitization of a single phase three-winding transformer
and its equivalent circuit

5.1.2.1 The fundamental equations before unitization

A single phase three-winding transformer can be written as the circuit of Figure 5.2a, at least for power
frequency phenomena, where pN - (N - N are the numbers of turns of the primary (P), secondary (S),
tertiary (T) windings, respectively. The transformer excitation current under a no-load condition can
usually be neglected (the excitation impedance is large enough) except under the situation of core
saturation caused by abnormally higher charging voltages. Therefore the relation of voltages and
currents in this transformer may be described by the following equation in which leakage impedances
of only three windings are taken into consideration:

PV Zpp Zps Zpr pl

sV |=| Zsp Zss Zst || ol ®

v Zir | Zrs | ZoN A (5.6)
ol pN + gl - N + ol - N =0 0)
Zps = Zsp, Zpr =Zrp, Zst =Z1s ®

where Zpp, Zss, Zrr are the self-impedances of the primary (P), secondary (S) and tertiary (T)
windings and Zpg, Zpr, Zst are the mutual impedances between the three windings.

% secondary /
V N T
primary pV p. V 3
J % N T TI] tertiary , rV

|
(a) (b) The equivalent circuit by Pu basis
pZ = (psZ + p_1Z - 5-1Z)/2
sZ = (p-sZ + s-1Z — p-1Z)I2
1Z = (p-1Z + 3-1Z — p-32)/2
P_SZ_, p_TZ, S_TZ_, are given on the name-plate

Figure 5.2 Single phase three-winding transformer
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5.1.2.2 Determination of base quantities for unitization

Each base quantity for unitization of this transformer must be determined so that the following
equations are satisfied:

VAbase = pVbase * Plbase = 5Vbase * Slbase = 1 Voase * Tlbase @

vaase — vaase — TVbase @ (5 7)
Y N
Plbase : PN = SIbase 'SN = TIbase ’ TN ©)

In other words:
*1 Capacity bases (VApase) of the primary (P), secondary (S) and tertiary (T) windings are selected
to have equal value (Equation (D).

*2 Voltage bases of the primary (P), secondary (S) and tertiary (T) windings are proportional to the
turns ratio (transformation ratio) of three windings (Equation (2)).

*3 Ampere bases of the primary (P), secondary (S) and tertiary (T) windings are dependently
determined as values of ‘capacity base (*1) divided by each voltage base (*2)’. That is, the
ampere-turn bases of the primary (P), secondary (S) and tertiary (T) windings have the same
value (Equation (3)).

5.1.2.3 Unitization of the original equation

Let us unitize the original Equation 5.6 using the base quantities of Equation 5.7 (recall that unitized
quantities are indicated by an overbar, e.g. pV — p V):

PV = PV “PVoaser sV = SV “sVoaser TV = TV “7Vbase

5 5 VAbase 5 5 VAbase
I = pl - pl =pl - —— 1= ¢,.=¢ —
P P* " P'bas P v S S% " S'bas N
e P Vbase e S Vbase (5 . 8)
_ - VA
I =7l e = 71 'Tm
T " base

The equation for ,V from Equation 5.6 (D) can be unitized as shown below:

pV = PV “PVoase = ZpPP - P7 “ plpase +Zps - S7 * sthase T ZpT - T7 “Tlhase

VAbase F

VAbase 5 VAbase 7
T

=Zpp-———pl +Zps- I +Zpr -
P " base S " base T " base

_ VApas - VApas - VAp.s _
PVZ Zpp - l;dse 'PI+ Zps-$ -S[+ ZPT'$ 'TI
P " base PVbase ’ vaase vaase ’ TVbase

=Zpp-pl +Zps- gl +Zpr - 11

o (5.9a)
sV, 7V can be unitized analogously.
Next, Equation 5.6 () can be unitized by Equation 5.7 (3) as follows:

Il - ,N I- N - N
plopV stV N
Plbase pN S[base ’ SN TIbase N (5.9b)
pl+gl+71=0
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Accordingly,
VA VA VA
Zpp - Vgase Zps - v I.Jasi/ Zpr - v ?ES;

v P " base P "base S base P "base T "base Vi
P‘_/ o Zsp - VAbase Zss - VAbase Zsr - VApase PT
SV N PVbase 'S Vbase Svl%ase N Vbase ’ TVbase Sj
T 7 VApase 7 VAbase 7 VAbase T

it | Ve Ve v
P%~base T“base SV base T "base T " base
Zpp Zps Zpr Pl
=| Zsp Zss Zsr || sl @
Zrp Zrs Zpp 7l
pl+sl+71=0 )
= VA
where Zpp = %
PVbase
= VApas VApas —
Zps =Zps - % bas:/ =Zsp - v b‘h; =Zgpetc.
PVbase * S " base P Vbase " S " base
(5.10)

In conclusion, Equation 5.10 is the unitized equation of Equation 5.6 by the base quantities of
Equation 5.8. In Equation 5.10, the summation of the unitized vector currents of the primary (P),
secondary (S) and tertiary (T) windings is zero. In other words, the unitized transformer circuit
equations are as if able to satisfy Kirchhoff’s law.

5.1.2.4 Introduction of unitized equivalent circuit

We have introduced Equation 5.10 as the unitized fundamental equations of a transformer in which the
vector sum of the currents is zero. Therefore, it would be useful if the equation could be written as the
one-to-one corresponding equivalent circuit of Figure 5.2b. We can indeed do that. It is clear that
Figure 5.2b satisfies Equation 5.10 . Then, if we define the impedances pZ, Z, ;Z in the figure so
that the circuits satisfies Equation 5.10 (D), the figure is the perfect equivalent circuit of the transformer
which satisfies Equation 5.10. Now let us find such a condition below:

(i) Under the condition 5/ = 0 (with the tertiary terminal opened), Figure 5.2b and Equation 5.10
have to coincide (with the tertiary terminal opened). Putting 7/ = 0 in Equation 5.10, we have
pV —sV = Zpp-pl +Zps-gl) — (Zsp - pl +Zss - l)
= (Zpp +Zss — 2Zps) - pl

On the other hand, putting 7/ = 0 in Figure 5.2b, we have

PV =5V =GZ+sZ) pl = p_sZ - pl,
oI+ =0

pZ+sZ=p sZ

The following equation has to be satisfied in order for the two equations above to coincide with
each other under the tertiary terminal open condition:

P—SZ = PZ + SZ =7Zpp + ZSS - 22})5

In the same way, the following conditions have to be satisfied.
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(ii) The required condition in order that Figure 5.2b and Equation 5.10 coincide under the
secondary terminal open condition (57 =0)is

P*TZ = PZ + TZ = ZPP + ZTT —2Zpr
(iii) The required condition in order that Figure 5.2b and Equation 5.10 coincide with each other
under the primary terminal open condition (p/ = 0) is
s-1Z = sZ + 1Z =Zss + Zrr — 2 Zsr

Summarizing, Figure 5.2b can be the precise equivalent circuit of the transformer by satisfying the
above three equations for the impedances.
Accordingly, for the transformer equations,

tertiary terminal open: pV — V= (pZ 4+ Z)-pl = p_¢Z - pl, pl+I =0
secondary terminal open: pV — V= (pZ +7Z) - pl = p_tZ-pl, pl+71=0 (5.11)
terminal openprimary: §V — ;V = (Z +7Z) I =g 7Z -, d+71=0

where the definitions of impedances are
leakage impedance between P and S under the condition 7/ = 0 :
P*SZ = PZ + 57 = ZPP + ZSS - ZZPS

leakage impedance between P and T under the condition ¢/ = 0 :

© HMpEaanee pEEen A . (5.12a)
p_sZ =pZ +4Z =Zpp+Zrr —2Zpr
leakage impedance between S and T under the condition pI = 0 :
s-1Z =sZ +1Z =Zss +Zr7 — 2 Zst
or, using the definition of pZ, ¢Z, ;Z in the equivalent circuit in Figure 5.2b,
e psZApgl—g 4L _
pZ =55 PzT ST = Zpp + Zsr — Zps — Zpr
_ Z+¢iZ—p 2 — _ _
§Z =P=5="5 ; PT= = Zss +Zpr — Zps — Zst (5.12b)
e pglHsiZ—-s 12 - = = =
rZ =0T S2T ST= = Zrr + Zps — Zpr — Zst

Figure 5.2b with the impedances pZ, (Z, 7Z becomes the unitized equivalent circuit of the transformer
by defining the impedances as in Equation 5.12b. The equivalent circuit of course satisfies Kirchhoff’s
law by unitization.

The impedances Zpp, Zps, etc., are the self- and mutual impedances (actually reactances) so that
the physical concept can be imagined from the winding structures, and the values can be estimated
by engineers in their transformer designs.

The impedance ,_Z can be measured as the leakage reactance between the primary and secondary
terminal under the tertiary winding open condition, and p_;Z, ¢_+Z can also be measured similarly.

On the other hand, pZ, (Z, +Z are the impedances defined only by Equations 5.12a and 5.12b in
order to obtain the equivalent circuit of Figure 5.2b, and we cannot find any other physical meaning for
that. However, transformers can be treated as kinds of black boxes by utilizing the above defined
equivalent circuits at least for power frequency phenomena of the power system networks.

Incidentally, the resistances of the transformer windings are negligibly small so that the above-
described Zcan be replaced by j X or jw L. Zpp = jXpp, Zps = jXpsaswellasjp_sX, jp_1X, js_7X,
etc., and have positive values (namely reactances). However, one of jpX, jsX, jrX could even have
negative values, just like a series capacitive element in the equivalent circuit.
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In regard to practical engineering, the percentage impedance drop voltages (%1Z) of individual
transformers are indicated on their name-plates, and are actually the percentage expression of leakage
reactances p_¢X, p_rX,¢_yX. Accordingly, utilizing these values, pZ, (Z, 7Z can be derived from
Equation 5.12b. In practical engineering, the percentage value p_ X is usually given by the MVA base
of the primary winding side, while p_¢X, ¢_X may be given by the MVA base of the tertiary winding
side on a name-plate, so that the base value conversion is required to derive the equivalent circuit. This
matter will be discussed in Sections 5.4 and 5.5.

The treatment for a two-winding transformer without tertiary winding can be done only by omitting
+Z in the equivalent circuit.

5.2 PU Method for Three-phase Circuits

Now the PU method for three-phase circuits needs to be introduced, followed by the unitized equations
and equivalent circuit of three-phase transformers and other power system members.

5.2.1 Base quantities by PU method for three-phase circuits

In regard to the PU method for three-phase circuits, the line-to-line (I-1) base quantities and line-to-

ground (I-g) base quantities are defined and both of them have to be strictly distinguished as the

premise of three-phase circuit analysis for any investigation purpose. These base quantities are defined
as follows:

VASd)base =3 VAld)buse =3 Vlfgbase ' Ilfgbase

=3 Vi_tpase * l1—tbase = \/§ * Vi_tbase - [lfgbase @

Vi_ibase = \/§ . Vlfgbase @

\/g 11— ppase = Ilfgbase @

(5.13a)

Bases of capacity (VA or MVA) and voltage (Vor kV) are defined first, and then bases for currents
[A], impedances Z [ohm], admittances [mho], etc., are dependently defined as follows:

A VAlqbbase _ VA3¢base
Tgbase Vl—gbase \/§ Vi_Ibase
kVA y MVA3ppas
_ 3gbase 3¢base %103 @
\/§ - KVi_base \/§ - KV pase
Z1_gbase = Vicgnase _ (Vitase)” _ (KVi-toase)’ %103
—gbase T)gbase VA; base kVA3¢base
2
Wi ® 513)
M VA3¢base
1 MVA3pbase
Y, ebase = = ©
ghase Zl—gbase (le—lbase)2
Vi Ibas
Z)—pase = ﬁ @
—Libase
1 11— jpase
Yi_tbase = =v ®
e Zi—Ibase Vi-Ibase .

The values of all the unitized quantities based on the 1-1 bases are written as variables with the suffix
! — [, and those based on the l-g bases with the suffix symbol / — g as the description rule.
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5.2.2 Unitization of three-phase circuit equations

Let us try to unitize Equation 2.26 and Figure 2.10 for the generator in Chapter 2 as a typical example.
The generator’s voltage equation from Equation 2.26 is

Ea Va ZA‘ Zm Zm I, a Vn
Ey=a®Eq || Vo |=| Zn | Zs | Zn || I |—| Va
E. = aE, Ve Zw | Zw | Z I, v, @
E e —V abe Z ape A gpe— Vn

Vo=-ZyIa+ 1y +1.) = =Z,(31p) = =3Z, - Iy
the voltage base quantity equation

Vlfgbase = Zlfgbase . Ilfgbase @
the unitized generator equation
E, Zi | Zn | Zn Iy Va (5.14)
Ep, = a2 ‘Eq = Zy Zs Zm 1 - Vi
Ec =a- Ea Zm Zm Zs 76 V”
Vo= Zo(a+ 1y +1) = ~Zy (31o) = —3Zy - I
— E — E, - E - v,
E, = . s Lb = b s Le = . sy VYn = — @
Vl—gbase Vl—gbase Vl—gbase Vl—gbase
_Z Zn o Z
Zs = sy fm = s Ln =
Zlfgbase Zlfgbase Vlfgbase
- 1 - I, - 1.
Ia = < 9 Ib = b sy e = -
Ilfgbase Ilfgbase Ilfgbase

The unitized generator Equation (3) is derived by dividing all the terms of Equation () by the above
base quantities (2). The unitized equation has the same form as that before unitization.

Equation 5.14 can obviously be transformed into the following equation as the one in the
symmetrical coordinate domain:

0 Vo Zo 0 0 To 3Z, 1o
Ea - Vl - 0 Zl 0 71 +
0 V) 0 0 Z I 0
= = = = = 5.15
or —Vo=2y-I0+32Z,- 1y ( )

—Vo=2Zr-1h

Equation 5.15 is also of the same form as Equation 2.27b.

As demonstrated in the above example, the base quantities of the PU method for three-phase
circuits are defined by Equations 5.13a and 5.13b and the unitized equations can be written in the same
form as that before unitization. In other words, the forms of equations and the equivalent circuits of the
usual three-phase circuits (generators, transmission line loads, etc.) are preserved unchanged by
unitization.
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5.3 Three-phase Three-winding Transformer,
its Symmetrical Components Equations
and the Equivalent Circuit

5.3.1 A — A — A-connected three-phase transformer

Figure 5.3b shows a typical three-phase three-winding transformer with A — A — A-connected wind-
ings, whose connection diagram with the terminal code names is printed on the name-plate as shown in
Figure 5.3a. This connection is called the ‘tertiary 30° lagging connection’, because the phase angle of the
low-tension bushing terminal a is 30° lagging in comparison with the bushing U and u terminals.

The code names of all the bushing terminals have been changed in Figure 5.3b because the special
names of the terminals are used only for analytical purposes, as is shown below:

primary (U, V, W — R, S, T), secondary (u, v, w — 1, s, t), tertiary (a, b, c — b, c, a)

The tertiary terminal names a, b, ¢ are intentionally changed by a 120° rotation, so the vector
directions of newly named a, b, ¢ terminals (the original c, a, b terminals, respectively) are rectangular
tothe phases R, S, Tandr, s, t, respectively. Moreover, the quantities inside each tertiary winding (with
suffix A) and the quantities outside each tertiary bushing (with suffix T) have to be strictly
distinguished from each other.

5.3.1.1 The fundamental equations before unitization

There are three of the single phase three-winding transformers with the same ratings, whose winding
connection is written in Figure 5.2. These three single phase transformers can be composed as one bank
of three-phases transformer as is shown in Figure 5.3b by simply connecting the bushing terminals.
Accordingly, Equation 5.16 is introduced as the fundamental equation of the three-phase transformer
in Figure 5.3b:

PV PV Zpp Zps Zpp 0 0 0 0 0 0 rl,
v, 7 Zse | Zss | Zsa 0 0 0 0 0 0 o,
N2 0 Zrp | Zns | Zan 0 0 0 0 0 0 N
WV, v 0 0 0 | Zr | Zrs | Zmn | O 0 0 W,
sV, | = sV | = 0 0 0 Zsp Zss Zsp 0 0 0 sl ()
AVp 0 0 0 0 Znp Zps Zan 0 0 0 Al
V. v 0 0 0 0 0 Zrp | Zps | Zpn L.
V. A 0 0 0 0 0 Zse | Zss | Zsa o,
K2 0 0 0 0 0 0 0 Znp | Zns | Zan N2
where  Zpg = Vsp, Zpp = Zpp
PV = pZy ply = pZ,(pla + ply + pl.) = pZ, - 3ply @
sV =52y sy = sZu(sla + sly + s1e) = 52, - 35k ®
TIa AIC AIIJ
rhy | = ala |~ | al @
e alp ala
2V ™V Ve
AV =1 rVe |~V ®
aVe Va ™V
pla-pN +sly - sN +al, - AN =0
Ply-pN + gl - N + 51, - AN =0 ©®
pLopN + gl N + oI - \N =0

(5.16)
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H-tension M-tension L-tension

U u a
)\ )\ ¢
(0] w 0 >y
W A% : b
(a) Phase name on name-plate

(Phase a of the tertiary winding is 30° lagging)

primary secondary tertiary

*Sla *Slb <T£l

sV sV,
@ SZn " AN turn TVc TVb
P
/
The tertiary phase a is 90° leadin,
1, = ply+ ply+ pl. 1,=sly+ sly+ sl ¢ yp g
Pin ?I; ‘;+P b* Ple Stn ; C}+S b+sle towards the primary phase a)
=9opio =98540

(b) The winding connection with the phase name for analytical purposes

sl
-~  x() B
\ al=-jrh ~ rl
s A - -~ — — — -
positive- e _ _ X pZ=(p.sZ+paZ — 5 aZ)I2
seq. sV1 aVi=-jrV1 - yl SZ: (Pst"'S—AZ —p,AZ)/z
|~ 1= (paZ + 547 —ps2)I2
To= il al
negative- | \ 4 Z;]_T z =~ 21_2
seq. X
% = — —
P/ 2 E‘/Z\AVZ =jrVe j Ve
|
- TIO
zero-
seq. X
Vo
/

Zexo ; Zero-sequence excitation impedance
(c) The equivalent circuit in the symmetrical domain

Figure 5.3 A — A — A transformer (low-tension winding 30° lagging connection)
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The submatrix of Equation (D) is equal to Equation 5.6. Equations (2) and (3) correspond to the
neutral connection of primary and secondary windings; equations @) and (5) correspond to the delta
connection of tertiary windings. Equation () is a physical premise for any transformer.

5.3.1.2 Determination of base quantities for unitization

The base quantities for the unitization of this transformer are determined so that the following
equations are satisfied:

1
gVA3q’>base = VAlq’)base :PVl—gbase 'Pll—gbase :SVl—gbase-sIl—gbase
1
= AVlflbase ’ Allflbase = (\/§ ’ TVl*gbase) <ﬁ 'TI[—gbase)
= TVlfgbase'TIlfgbase( =kika) @
AVictase = V3 17V gbase @
1
M- ipase = ﬁ T Il—gbase (©)
PVl—gbase _ SVl—gbase _ Avlflbase _ \/§ : TVl—gbase( Ekl)
pN N AN AN @
P[lfgbase pN= SIl—gbase sV = Al _ppase - AN G.17)
1
= 7§'T117gbase : AN( =k) ®
2
7 _ (Pvlfgbase) @
P%~l—gbase VA](j)base
2
7 _ (S Vlfgbase) @
S“1—gbase VAl¢base
2 2 2
7 _ (AVl—gbase) _ (\/§ ' TVl—gbase) —3. (TVl—gbase)
AT Tbase VAM)base VAId)base VA](/)base
=3 TZl—gbase

In other words:

*1 Capacity bases (VAp,se) Of the primary (P), secondary (S) and tertiary (T) windings have the same
value (Equation (7)).

*2 Voltage bases of the primary (P), secondary (S) and tertiary (T) windings are proportional to the
turns ratio (transformation ratio) of H(high)-/M(medium)-/L(low)-tension windings (Equation
@). This condition is satisfied simply by applying the rated voltages of each winding as base

voltages.

*3 Ampere bases of the primary (P), secondary (S) and tertiary (T) windings are dependently
determined as values of ‘capacity base (*1) divided by each voltage base (*2)’. In other words, the
ampere-turn bases of the primary (P), secondary (S) and tertiary (T) windings are to be of equal

value (Equations Q3@ (%).
*4 Impedance bases are dependently determined (Equations ©@)®)).
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5.3.1.3 Unitization of the original equation

Equation 5.16 can be divided by the appropriate base quantities which are defined by Equation 5.17, so
that the unitized equations are derived as follows:

V. Vo Zpp | Zps | Zpa rla
Vs sV Zsp Zss Zsp sly
N2 0 Zap | Zas | Zaa ala
va Pvn pr Zps ZPA Pib
sVo | =] V. | = Zsp | Zss | Zsa sy )
NG 0 Zap Zas Zaa aly
P Vr pv,, ZPP ZPS ZPA P7r_'
sVe V. Zsp | Zss | Zsa sl
aVe 0 Zap | Zas | Zaa RA
where
VA VA VA
Zpp 1pbase . Zps - lt/)ba‘s/e Zpa v ](f)ba;e
rPYi— P l—gbase S I—gbase P 7 l—gbase A" I[—gbase
( Vl gbase) & ’ ’
Zpp Zps Zpa
— — — z VA, ¢pbase z VA, pbase W VA, ¢pbase
— SP A — Y SA T
Zsp Zss Zsa PVI—gbase : SVl—gbase (SVI—gbase>2 SVI—gbase ‘A Vl—gbase
Zsp Zss Zaa
VA, ¢pbase VA, Pbase VA, ¢pbase
Zap - v v Zs - v v I3
PV l—gbase " A" I-gbase S Vi-gbase " A Y I—gbase (Avlfgbase)
and @)
Zps =Zsp, Zpa = Zyp, etc.,
PV =pZo ply = pZy - (ply + pI, + pl.) = pZ, - 3pIy (©)
sV =52y shy = sZy (sla + slp + 51.) = sZ, - 35y @
V34, ale aly 0 -1 1 ala
V300, |=| AI, |=| AL |=| 1 0 -1 RA ®
\/j . TT(‘ Aib Aja -1 1 0 Ajc
V34V, v Ve 0 1 -1 ™V
V3 AVe |=| 1Ve || Ve | = -1 0 1 Vo ©®
V3,4V, Va v 1 -1 0 Ve
ply+sl,+al, =0
ply + sl + 4T, =0 @
pletsle+al.=0

(5.18)
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5.3.1.4 Symmetrical equations and the equivalent circuit

The fundamental equations of Equation 5.18 for this transformer can be transformed into the
symmetrical domain to derive Equation 5.19 below. (The process of transformation is shown in

the supplement at the end of this chapter.)

»Yo PV Zer | Zps | Zpa ol
Vo sVa Zsp | Zss | Zsa oIy
AVo 0 Zap | Zas | Zaa Ao
Vi 0 Zpp Zps Zpa ply
Vi |- o |= Zsp | Zss | Zsa Lsh | @
NZ 0 Zap | Zas | Zaa aly
PVs 0 Zpp Zps Zpa ply
Vs 0 Zsp Zss Zsa sh
AV, 0 Zap Zs ZaA A
P‘_/n = Pzn Pin =3pZ, - ply @
sV =sZy sl = 3sZ, - sl ©)
TZO 0 1707 0
| =] il or —jrly | =1 Al @
! —jal Jrls R
9 AVB 0_ AYO
Vi =] iV or | =iV, | =] AV, ®
V2 —iaVa irVs AV2
plo+slo+alp =0
pli sl +,1 =0 ®
ph+ sl +4,1, =0
(5.19)

Itis clear from Equation 5.19 that mutual inductances do not exist between positive-, negative- and
zero-sequence quantities. The above equations can be recast as follows, and the positive-, negative-
and zero-sequence quantities can be treated independently.

For the positive sequence

pY] ?PP zPS ?PA Pll p7_1 + 511 +_A71 =0 @
Vi | = Zoe | Zss | Zsa i ol =gl } 3 (5.20a)
AVI Zap Zas Zaa 511 Avl = —jTV1
for the negative sequence
pV> Zer | Zps | Zpa ply ph+sh+,,=0 @
SKZ = gsp gss zm S{Z N jTIZ_ 3 (5.20b)
NG Zar | Zas | Zaa N AVa=irVs
and for the zero sequence
— = = = = = Io+ o+ alp=0
Vo PV Zep | Zps | Zpa rlo PTO fSoO VA ° 0 } @
V, Vv 7 7 iz 7 770 =Y AV0 T
Vo | = sV | =] Zsp Zsg Zgp sy | © Vo—37 7
Vo v Zo | Zas | Zaa | [ ] "y sy il
& — sV =352, slo

(5.20c)
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These are the unitized equations in the symmetrical coordinate domain.

Positive-sequence Equation 5.20a is completely the same as Equation 5.10 for a single-
phase transformer, so the equivalent circuit must be the same as in Figure 5.2b by the same analogy
described in Section 5.1.2. The negative- and zero-sequence quantities can be treated in the same
way.

The symmetrical equivalent circuits corresponding to Equations 5.20a—c can be written as in
Figure 5.3c, where impedances ,Z, ;Z, ,Z are defined by the equation

~_psZtp Al =5 a2

7 —
P 2
7 _pst s al = p s
§ 2
7= paZ s a2 —psZ (5.21)
2

P—SZ = PZ+SZ :ZPP+ZSS 722})5‘
P—AZ = PZ +AZ :pr +ZAA _ZZPA
S—AZ :SZ +AZ =27Zss +Zap — ZZSA

The expression on the right-hand side and the neutral grounding terminal in Figure 5.3c are strictly
in one-to-one correspondence to Equations Q)(3) of Equation 5.20a—c.

Numerical check
As a typical example for a 1000 MVA, 500 kV transformer for substation use with:

o Rated capacity H: 1000 MVA, M:1000 MVA, L: 300 MVA

o Rated voltage 500 kV/275 kV/63 kV

percentage impedances p X =14% (1000 MVApsse), p-.aX=44% (1000 MVAy.s.) and
s AX=26% (1000 MVAy,.),

the equivalent circuit reactance of the transformer can be calculated as follows by Equation 5.21,
where X takes capacitive values

pL=jpX =16% =j0.16 pu, Z=jsX=2%=—j0.02 pu, sZ=jsX=28% =;0.28 pu

Now let us consider Equation 5.20c and the corresponding zero-sequence equivalent circuit. As we
have the equations AVO = 0and ;/, = 0, the A terminal is earth grounded and the tertiary (T) terminal
is open. This means that the zero-sequence current from the tertiary (T) outside circuit cannot flow into
the (delta windings of the) transformer, though the zero-sequence current from the primary (P) or
secondary (S) outside circuit can flow into the (delta windings of the) transformer.

On the other hand, the equations for ,V,, and ¢V, in Equation 5.20c require us to insert 3,Z,, and
3¢Z,, into the primary and secondary branches respectively.

Therefore, if the primary and secondary neutral terminals are solidly earth grounded, the zero-
sequence current inflow from outside to the primary terminal flows partly into the delta winding (as the
circulating current) and partly out through the secondary terminal. If the neutral terminal on the
secondary side is opened or highly resistive grounded ( SZ, = 00), all the zero-sequence inflow current
from the primary side circulates through the delta windings.
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Equations 5.20a-5.20c and the equivalent circuit in Figure 5.3 as the expression for the three-phase
three-winding transformer in the symmetrical sequence domain are important because:

*1 The 1-2-0 sequence circuits are mutually independent.
*2 The unitized simple circuits allow the use of Kirchhoft’s law.
*3 They contain common reactances for 1-2-0 sequence circuits.

We know that an actual large power system can be expressed as a precise large single circuit,
combining both lines and equipment with various rated capacities and voltages. It is satisfying to think
that the largest key factor of such a technique owes much to the above-mentioned Equations 5.20a—c
and the equivalent circuit in Figure 5.3 for three-phase transformers, realized by the symmetrical
coordinate transformation and appropriate unitization.

Finally, the zero-sequence excitation impedance Z,( in Figure 5.3 will be discussed later.

5.3.2 Three-phase transformers with various winding
connections

Three-phase transformers with various different winding connection and their unitized equations
and equivalent circuits are shown in Table 5.1. Figure a in the table is just the case of Figure 5.3.
The equations and the equivalent circuits for transformers of other winding connections can be described
in the same way as Figure a. Autotransformers can be expressed by the same equivalent circuits.

5.3.3 Core structure and the zero-sequence excitation impedance

Table 5.2 shows a typical core structure of a transformer bank.

Say we want to impose three-phase-balanced voltages (i.e. positive- or negative-sequence
voltages) from primary terminals. The induced fluxes by the balanced voltage charging are also
three-phase balanced, so that any flux pass on the laminate steel core will not be saturated under normal
voltage operation. This is the reason why the excatition impedance Z,, can be neglected as very large
impedance values under the condition three-phase-balanced voltages and currents.

Next, let us impose zero-sequence voltages from the primary terminals shown in the figures of
Table 5.2. In the case of the transformers of Figures B and C, the caused zero-sequence flux ¢, may be
saturated because the return pass of ¢, is absent or of high magnetic reluctance, so that flux saturation
would be caused, and an abnormal temperature rise on the saturated flux pass would occur, if saturation
by ¢ were to continue for a long time. Of course the excitation current increases under saturation
phenomena, which means that the excitation impedance for zero-sequence voltage Z,. as a part of the
equivalent circuit would have smaller values.

The transformers of Figure D have the auxiliary fourth magnetic pass of the laminated steel core by
which zero-sequence flux saturation can be prevented. The transformers of Figure A (one bank of three
single phase transformers) do not have such a limitation in nature.

Although excitation impedance Z,, can be neglected for most cases, Z,( may rarely have to be
taken into account in the zero-sequence circuit as shown in Figure 5.3c.

5.3.4 Various winding methods and the effect of delta windings

Figures a—e of Table 5.1 show typical transformer winding constructions and the symmetrical
equivalent circuits. Due to the existence of the delta windings, the zero-sequence circuit of the delta
winding side is isolated from the Y winding side circuits. Moreover, AZ is earth grounded in the zero-
sequence equivalent circuit. These are two very important reasons why the role of the delta windings is
explained below.



‘uoryenbe o) £q uore[moes 8Y) a.10foq payrun aq prnoys XV ‘xV-d ‘xSd jo eseq VAN
719 St JoULIOJSURI) 9y} JO
aye[d-awreu ay) uo uaALd aae XV S ‘xVd ‘xSd yorym ut {(1z'¢)'bi Aq pajemores aae XV XS ‘xd seourjoral oy, ;910N

‘bos-o010z

‘bes-aane3ou

‘bes-aansod

9-2an31,] p-oan3L 2-2an31,{ q-oan3L ] ©-9.n31,]

JOULIOJSURI) SUIPUIM-0M] aseyd-0oay], JOULIOJSUR.T) SUIPULM-23.1 9sBYd-9a.1],

JOWIOJSURI) Y} JO STUIPUIM SNOLIBA JO JINDII judfeanbo oyl [°S d[qe]



5.3 THREE-PHASE THREE-WINDING TRANSFORMER 99

Table 5.2 Typical structures of thee-phase transformers

3 x Single phase transformers Shell type Core type(three-poles)| Core type(four poles)
Figure-A Figure-B Figure-C Figure-D
otly o4y ¢ty Lye Ly 4L 9y 94y 9tlo oily o1y TUO

[ ]L

Note: The zero-sequence flux ¢, induced by the zero-sequence current /y passes only through the core.
Accordingly, zero-sequence excitation impedance Z.yq is usually neglected as of quite large values.

*2: The hatched part is apt to be saturated by zero-sequence current Iy. Accordingly, the zero-sequence excitation
impedance Zey is relatively small, say Zexo = 1.0— 5.0 per unit.

*3: When the zero-sequence current Iy is forced to flow into the transformer windings, the induced flux return pass
could be through clamps, the inner wall of the tank, air gaps, rather than the laminated core. The counter
electromotive force and the flux ¢ induced by the zero-sequence current Iy are rather small (because the
magnetic reluctance of the return pass in particular air gaps is large). Accordingly, Zexo in the zero-sequence
equivalent circuit is rather small, say Zexo=0.3 — 1.0 per unit.

Main (step-up) transformers for large power stations contain the windings of Figure b or d and
generators as well as local power station circuits are connected to the delta windings. High-voltage
substation transformers would have the windings of Figure a, b, c or d. The transformer in Figure ¢ has
A — A connected windings and the third internal delta windings, although these windings are not fed
out by the bushing terminals.

In total, all the transformers installed at stations in power networks probably have set-in delta
windings today. The advantages gained by adopting delta windings as general practice are summarized
as follows and all of them can be explained by the above-mentioned unique characteristics of the zero-
sequence domain:

To isolate the zero-sequence circuit of the delta winding side from that of the A winding side. In
other words, to intercept zero-sequence current Iy flowing across the different winding side circuits.

To reduce largely zero-sequence reactance of the transformer, thus to reduce and stabilize neutral
point voltages, and then to reduce phase overvoltages under normal conditions or temporary
overvoltage (TOV) during faults or any other power system disturbance.

To intercept the through pass of d.c. or harmonic currents from the high-tension (HT) to medium-
tension (MT) side equipment, in particular to protect generators or motors against abnormal
operation or damage.

To protect the transformer itself from damage which may be caused by zero-sequence in-flow
current or by d.c. or 3nth (3, 6, 9,...) harmonic currents (overheating, vibration, overvoltages,
waveform distortion, etc.) in the cores, insulated windings, yokes, clamps or any other structural
part.
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o To reduce zero-sequence impedance and to stabilize the neutral (zero-sequence) voltages under
normal condition or during system faults.

5.3.5 Harmonic frequency voltages/currents in the
0-1-2 domain

Power system voltages and currents may include more or less higher harmonic components for various
reasons. Therefore, it is worthwhile to verify the reasons why the delta winding connection of the
transformers can intercept the through pass of d.c. or 3nth (3, 6, 9,...) harmonic currents. For this
purpose, let us examine the behaviour of harmonic currents in the a—b—c phase would behave in the
symmetrical domain. Note that symmetrical components are defined for currents of any waveform
distortion as we discussed in Section 2.2.

5.3.5.1 Case 1: three-phase-balanced nth harmonic currents

Three-phase-balanced nth harmonic currents are
I, = Iejmut
I, = Iejn(wt—lZO") _ (e—jIZO" )n 1, = an. I, (5.22)
I = Ie_in(wt+l20°) _ (ej120° )n I, = a4 I

Stationary harmonics caused by solid-state power conditioners (inverters, converters, rectifiers,
etc.) or very little waveform distortion from generators may be classified into this category.
Transforming Equation 5.22 into the 1-2-0 domain,

I il 1 1 I, | 1+d" +a"
I | = 3 1 a a? a'l, | = 3 1+a®t a2 |-, (5.23a)
I 1 a2 a a'l, 1+ a2nt2 4 ey

Then, for the case of n =3m (0, 3,6,9, ...)

Iy 1
I = 0 (5.23b)
163 0

andof n=3m+1(1,4,7,...)
Iy 0
I =| I, (5.23¢)
153 0

and of n =3m+2(2,5,8,...)
Iy 0
I = 0 (5.23d)
A 1,

That is, the behaviour of three-phase-balanced nth harmonic currents has characteristics of:

n=1,4,7,...: behaviour as positive-sequence currents
n=2,58,...: behaviour as negative-sequence currents
n=0,3,6,9,...: behaviour as zero-sequence currents

This is the reason why transformers with delta windings can intercept 0(d.c.), 3rd, 6th, . . . harmonic
currents.
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5.3.5.2 Case 2: nth harmonic current flow in phase a

Here

__ Jajnot
;;, = ;e_ o } (5.24)
=1 =

A waveform-distorted single phase load may cause harmonic currents of this sort of category:

1 .
I() = 11 = ]2 = g[ejnwt (525)

In this case, negative- and zero-sequence currents of nth order flow through the circuit.

5.3.5.3 Case 3: nth harmonic current of synchronized delay
with power frequency

Here
Ia — Iejnmr
I, = I/ =120 — g2, (5.26)
I = [ej(nwt+120°) —a-1,
Then
Iy 1 1 1 1, 0
1 2 2
L =3 1 a a a*-I, |=| I (5.27)
b 1 a? a a-l, 0

The harmonic current of Equation 5.26 consists of only positive-sequence components. In other
words, the current including harmonics of Equation 5.26 is the positive-sequence current (120° phase-
balanced current) with harmonic distortion.

Transient phenomena with harmonics or waveform distortion will be examined again in Chapters 7
and 22.

5.4 Base Quantity Modification of Unitized Impedance

In practical engineering, the quantities (M VA capacity, voltage, current, impedance, etc.) of individual
members of a power system network (generators, transformers, transmission lines, etc.) are probably
dictated by ohmic values or by PU values with different individual PU bases. On the other hand, in
order to obtain a total combined system circuit for these members, M VAp,ses have to be unified for all of
the system first, and, furthermore, voltage bases for each section have to be selected to satisfy the turn
ratio of the transformers (or typically to adopt rated voltages for each section). Accordingly,
impedance bases of individual equipment may often have to be changed to another base value.
Therefore we need to examine how to change the base quantities of impedances.

There is an impedance element of Z [(}], which can be written as unitized impedance by two
different base quantities:

VA [‘Q] = Zald * Zold base = Znew * Znew base
where 5 5
(Voldlflbase) (kvoldlflbase)

Zoids base [(Y] = =
oI e [ ] VAold 3¢base MVAold 3¢base (5.28)

Znew base [Q] = (Vnewlflbase)2 _ (kVHEWF[base)z
new base VAnew 3pbase MVA e 3¢base
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Accordingly, the formula to change both the capacity base and voltage base is

2
= = Zold base = VAnew 3¢pbase Vold i—Ibase
Znew =Zold 5 =Zold .

old old
Znew base VAol 3¢base Vhew I-Ibase

(5.29)
-7 |- (MVAnew3¢base) . (kvoldl—lbase)2
° MVAgq 3¢pbase kVnew [—Ibase
the formula to change only the capacity base is
_ _ VA — MVA
Zoew = Zold - ( new 3(/)base) = Zoid - ( new 3(/)base) (5.30)
VAold 3¢pbase MVAold 3¢pbase

and the formula to change only the voltage base is

2 2

_ — Vold I—Ibas = kVold I—Ibas

7o = Zud ( old! lbase) 7 ( old! /bdse) (531)
Vhew I—Ibase kVnew [—Ibase

As general practice, one unified value of MVAp, has to be selected, and then kVi,s values of
individual sections across each transformer have to be decided. Through these processes, Zp,ge as well
as Ipase are dependently determined for each section. Then, the derived impedance base is adopted as
the Zyewbase t0 obtain the unified circuit.

5.4.1 Note on % IZ of three-winding transformer

Primary and secondary MVA ratings of typical substations using three-winding transformers are
usually the same, while tertiary MVA ratings may be smaller (say 30 or 35%). The %IZ described on
the name-plate is usually given by different MVA bases as follows:

« Between the primary and secondary p_(Z: by primary and secondary MVA base
o Between the primary and tertiary p_;Z: by tertiary MVA base
« Between the secondary and tertiary 57T7: by tertiary MVA base.

In order to find the equivalent circuit of the transformer, the above PU impedance values have to
be modified into new PU values based on a single, common M VA base. In other words, P—TZ S_TZ are
probably modified to new PU values based on primary and secondary MVA capacity and then
the new p_;Z, s ;Z obtained, as well as p_¢Z, are put into Equation 5.21 to find ,Z, (Z, ;Z. (The
calculation is demonstrated in the next section.)

5.5 Auvutotransformer

Figure 5.4 shows a single-phase three-winding transformer, in which one terminal of the primary and
one terminal of the secondary winding are connected. A transformer with this type of connection is
called an autotransformer. The related equations of this transformer connection are written as follows:

pY Zpp Zpg Zpr pi
v | =] Zsp Zss Zst || i )
Vv ZTP ZTS ZTT Ti
where (5:32)
pv=pV =V pi = pl
sv =5V Q si=pltl ®
V=,V vi= gl
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tertiary

\ secondary
Vv

|

()

Figure 5.4 Autotransformer

Equation 5.32 (D corresponds to Equation 5.6 except that the symbols of variables V, I are replaced
by v, i.

By substitution of Equation 5.32 @@ into () and by modification, the following equation is
derived:

2% Zpp + Zss + Zps + Zsp Zps + Zss Zpr + Zst rl
sV | = Zsp + Zss Zss Zst | sl (5.33)
TV Zrp + Z1s Zrs Zrr Tl

Equation 5.33 is of the same form as Equation 5.6, which means that a transformer of rated value
pVs sV, v and pi, ¢i, 71 can be applied as the transformer of new rated value pV, ¢V, 7V and pl, ¢, 71
under the condition that the voltage insulation of the primary winding can withstand the voltage of the
primary side network pV = pv + ¢v and the current capacity of the secondary winding is for the
secondary side ¢/ = pi + gi.

In other words, Equation 5.33 and Equation 5.6 are equivalent only when the impedance matrix of
Equation 5.6 is replaced by that of Equation 5.33. Accordingly, the explanation from Equation 5.6 to
Equation 5.31 in this chapter (including the application to the three-phase winding transformer and the
unitization) can also be adopted for the autotransformer of Equation 5.33.

The following equations in regard to MVA capacity are derived for the transformer whose MVA
capacity on the primary and secondary sides are the same:

self-winding capacity

MVAgeif = pv - pi = gv - gi

where )
Y _sY 1V
pN N N

. (5.34)
autotransformer capacity

MVAuio=pV - pl =(pv+gv) - gi=gv - (pi +4i) =gV -l
where o)

pV =5V __ P
14 pvt+gv

co-ratio o =
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Comparing the ratio of the MVA capacities,

MVAauto _ pV : pI (pV +SV) : Pi _ pY +SV
MVAseit  pv - pi pV - pi pVv

B (5.35)

1
T

The MVA capacity with autotransformer connection can be enlarged f§ times, but of course with
appropriate design of the insulation and current capacity of the windings. The primary winding for
pV, pl is called the series coil because the current from the primary side flows directly to the
secondary side through this coil. The series winding coil is not earth grounded and is required to
have an insulation level for the rated value of ,V. The secondary winding (shunt coil) is required to
have a current capacity of (I = pi + gi.

As a numerical check,

Autotransformer 500kV/275kV /66 kV

500 — 275
=22 04
o 500 0.45
p=1/045=22

The weight of an autotransformer can generally be reduced in comparison with an ordinal
transformer of the same MVA capacity. However, it must be noted that the percentage impedance
pZ, ¢Z,Z would become quite small without appropriate countermeasures in design work. It can
be determined by recalculating the equivalent impedance of Equation 5.12a based on the new
impedance matrix of Equation 5.33 instead of Equation 5.32, although a description is omitted
here.

5.6 Numerical Example to Find the Unitized Symmetrical
Equivalent Circuit

The basic theory of power system circuit analysis has been examined in Chapters 1-4 and the
sections above. Now, a numerical calculation is demonstrated where a symmetrical equivalent
circuit of a model system will be derived by utilizing the previously studied theories.

Table 5.3 contains the diagram of a model system including overhead lines, cable lines,
generating station, substations and some loads. Although the model system may not be very
realistic, it is suitable for reviewing the theoretical process and for obtaining a unified power
system network circuit.

The subject of exercise is to derive the symmetrical equivalent circuit of the model system
given in Table 5.3 under the condition that 1000 MVA is assigned as the MVA base quantity and
the rated voltages of each section are to be selected as the voltage bases of each section.

The derived answer for this exercise is shown in Table 5.4. The calculation process is demonstrated
item by item below.

1. Determination of PU base quantities

MVAypse = 1000 MVA is given, while the rated voltages of 22, 500, 66, 154, 66 kV of Sections A, B,
C, D, E respectively are selected as the V},g for each section. Then, all the base quantities at each
section of the model system are calculated by applying Equations 5.13a and b, and the result is
summarized in Table 5.4.
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2. Generator: G;

The given reactances are the percentage reactances based on the 625 MVA rated capacity of the
generator. Accordingly, they should be modified into PU values (i.e. [pu]) based on 1000 MVA:

1000
/A 9 — 04
Jx; = j0.25 x 5 j0.400[pu]

Jxi =< jxl, = j0.29 x % = j0.464[pu]
jxg = j1.56 x % = j2.495[pu]

jxa = j0.23 x %: 70.368[pu]

xp = jO.12 x %: 70.192[pu]

3. The neutral resistance of the generator Rg,

The neutral earthing by 100 A resistance means the resistance value for which a current of 100 A
would flow when the phase voltage 22/+/3kV is charged to the generator neutral point:

22/V3kV x 10° =R x 100

127
c R=127[0] = lpu] =262 [pu] 3R =786 pu]

4. The transformer Try

The impedance of 13% is based on the rated 1000 MVA, 22/500 kV base so that base quantities need
not be changed. The transformer is solidly grounded at the high-tension neutral point. Accordingly, the
neutral resistance in Figure d of Table 5.1 would be zero. Then

Jx1 = jxp = jO.13 [pu]
Jjxo = jO.13 [pu]
pZ,=0 Zexy) = 00

The high-tension side of the zero-sequence circuit is earth grounded through jxo while the low-tension
side is open.
5. 500 kV double circuit transmission line L;

Each phase of this line consists of four bundled conductors. As all the conductor sizes and allocations
are given, the inductances L and capacitances C can be calculated by applying the equations of
Section 1.1 in Chapter 1.

The equivalent radius of the four bundled conductors is (refer to Equations 1.14a—c)

r=0.0192m, w=02m
Fegg = 1o w'n = 0.01928 x 0.208 = 0.1113 [m]

The radius of the overhead grounding wire is

re = 0.0143 [m]
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The height of the conductors from the imaginary datum plane (see Figure 1.3) is

H, = 300 [m]
hg+Hy=hy + Hy= -+ =hy + Hy= - =Hy +hy = 2H = 600 [m]

The averaged phase-to-phase distance within the same circuit is

Sy = (Sup - Spe - Sea)’ = (13.54 x 13.54 x 27)F = 17.04 [m]
The averaged distance between one phase of circuit 1 and one phase of circuit 2, Sy, is

1 1 11
Sit = {(Saa - Sap - Sac)? - (Sba - SeB - Spc)* - (Sca - Ses - Sec)* )
= {(18 x 23.3 x 32.45)5 - (23.3 x 20 x 23.3) - (18 x 23.3 x 32.45)7}5
= {23.87 x 22.14 x 23.87)F = 23.28 [m]

The averaged distance between the phase conductor and OGW, S, is

St = (Sax - Spx - Sex)’ = (13.45 x 25.53 x 38.08) = 23.55 [m]

Finally, the height of the OGW is
hy = 67 [m]

5(a) Calculation of inductances, impedances

(al) Self-inductances and impedances including earth grounding effect (but before modification
by OGW effect)
Referring to Equation 1.14b, and putting regs = 0.1113 and s, + H, = 600 m,

h, + H, 1 600 1
Lg = 0.4605 1 0.05(1+-) =0.46051 —— +0.05(1+-
s o810 ( +n> °2105 7773 ( +4)
= 1.781 [mH /km]
Zs=Zawa=Zpp=ZaaA=2Zpp=" -
= jXs = j21-50- 1.781 x 1073 = j0.559 [Q)/km] where f = 50Hz

(a2) Mutual inductance between phases of the same circuit including earth grounding effect (but
before modification by OGW effect)
Referring to Equation 1.12a, and putting S;; = 17.04 [m],

hy + H,
L, = 0.4605log o ”;r 2

1
In=Za =2 =2ap = = jX;m = j21-50 X 0.762 x 1073 = 70.239 [Q)/km]

600
+0.05 = 0.4605 log; 1 +0.05 = 0.762 [mH /km]

(a3) Mutual inductance between one phase of circuit 1 and one phase of circuit 2 including earth
grounding effect (but before modification by OGW effect)
Referring to Equation 1.12a, and putting S;;, = 23.28,

hq + H, 600
L = 0.4605log;, ";r £40.05 = 0.4605 logjg 53¢ +0.05 = 0.700 [mH/km]
IL .

2 =T =T =T =Ta = = X = j27-50 X 0.700 x 1073 = j0.220 [ /km]
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(ad) Correction of impedances Zs, Z,,, Z,, by OGW effect

Referring to Equations 1.15a,b and 1.16, the correction factor d,, by the OGW effect has to be
subtracted from each impedance matrix element in the case of a single circuit line. But for double
circuits, the equation before the correction by the OGW effect is given by Equation 1.17. Furthermore,
the following equation is obtained as the OGW effect:

Ix = Zxala + beIb + Zxclc + ZxAIA + ZxBIB + ZxCIC)

_a(

Thus, the correction factor d, is subtracted from all the elements of the 6 x 6 impedance matrix, in the
same way as that of the single circuit line.
Referring to Equation 1.11, and putting r, = 0.0143mand &, + H, = 600 m,

he + H;
rX

600
Ly, = 0.46051log +0.1=0.46051og;, 00143 + 0.1 =2.22 [mH/km]
" Zue = j21-50 x 2.18 x 1072 = j0.697 [Q/km|
Referring to Equation 1.12b, and putting sy + Hy = 600m and S;; = 23.55m,

le :Lax.:. be.:-ch.:-LAx':. o .:.an.:."'
hy + Hy

= 0.4605 log, +0.05 = 0.4605 log, % +0.05 = 0.698 [mH,/km]

Ix

S Z = j21-50 x 0.698 x 1072 = j0.219 [Q/km]
The correction factor by OGW is

Zi -7, 10.219)?
_ w2 JO219)7 i 060 1) k)

B
Zex j0.697

Accordingly, all the self- and mutual impedance elements have to be subtracted by the same correction
factor, 6 = j0.069 )/km:

Zy, Zm, Z,, after correction by OGW effect
Zs = j0.559 — j0.069 = j0.490 [Q}/km]
Zm = j0.239 — j0.069 = j0.170 [(2/km]
Z), = j0.220 — j0.069 = j0.151 [Q/km]

This is the final calculated result for the transmission line self-/mutual impedance matrix.

(a5) Symmetrical impedance: Z;, Z,, Zy, Zyy
Referring to Equation 2.20a,

Zy =2y = Zy — Zpy = j0.489 — j0.169 = j0.320 [Q)/km]
Z0 = Zs+ 27y = j0.492 +2 x j0.169 = j0.830 [/km]
Zow = 37!, =3 x j0.151 = j0.450 [Q)/km]
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(a6) Unitization of symmetrical impedance
Z)_gbase = 25041, line length / = 90 km:

o j0320
Z1=2Zy= 250 %90 = j0.115 [pu]
_ j0.830 ,
Zy = 0 = ;0.303
0="555 X0 =1J [pu]
_ j0.453 _
Zoy = 90 = j0.162
oM 250~ J [pu]

5(b) Calculation of stray capacitance

(b1) Capacitances Cs, Cy,, C,, before correction by OGW effect
The averaged height of phase conductors is

h=(hg hy-he)’ = (30 x 43.5 x 57) = 42.05 [m]

The averaged distance between phases of the same circuit is
Sy = 17.04 [m]

The averaged distance between one phase of circuit 1 and one phase of circuit 2 is
Sip = 23.28 [m]

The equivalent conductor radius is

Feff = 0.1113 [m]
Referring to Equation 1.33,

0.02413 0.02413
Cs= 3= +— = 0.00566 [wF/km]
o BT 84205
810,57 PBI00T113 x 17.042
long_h og) 24205
o Su _o017.04
Cn = C, S = 0.00566 x 7 — 0.00180 [F /km]
glo”eff 81001113
log o 2 oy, 2% 4205
o o413 B0, 0.02413 OB0T358 0 00145 bk
S TSV A 27 X : R &
10, s Ve OBI001TI3 % 23282 T 001113

Then, the capacitance matrix elements of Equation 1.38 are

Cs+2Cp +3C,, =0.0129 [wF/km]
—Cpp = —0.00180 [F /km]
—C/, = —0.00145 [uF/km]
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(b2) The effect of OGW on the capacitances

Referring to Figure 1.9, one OGW (symbol x below) is to be added to the situation in the figure. Under
this condition, Equation 1.37a for I, is to be modified by addition of the term Cgy(V, — Vi), where
Vx = 0. The modified new equation is

Ia = jw[caava + Cah(Va - Vb) + Cac(Va - Vc) + CaA(Va - VA)

+C03(Va — VB) + CaC(Va — Vc) + Cax(va — VX)]

= jw[(caa + Cab + Cac + CaA + Cup + CaC + Cfax) Va _Cabvb_CaL'VC_CaA Va _CaBVB_CaCVc}
= jo[(Cs + Caxr +2Ci +3Cy,) Va — CuVp — CuVe — C,Va — C,,. Vg — C Vel

Comparing both equations, the resulting modification is Cy;, — Caq + Cay. That is, it can be said that
the self-capacitance C,, becomes a little larger by addition of OGW. In other words, referring to
Equations 1.37b and 1.38 and Equations 2.24b and 2.24c, C; would probably become a few per cent
larger value by modification of Cy — Cs + Cj, in comparison with that for the line with the same
conductor allocation and without OGW. (Details of this calculation are omitted in this book.)

(b3) Symmetrical capacitance
The modification of the value of Cs by addition of OGW is ignored below (C, =0) because it is only a
few per cent.

Referring to Equation 2.24c¢ and the Figures 2.8 and 4.4,

C1 = C = C; + 3Gy + 3C,, = 0.00566 + 3 x 0.00180 + 3 x 0.00145 = 0.0154 [l.F /km]

Co = Cy = 0.00566 [wF/km]

Cy =3C), =3 x 0.00145 = 0.00435 [|.F/km|
1 —J

X = = = —j206 x 10* [Q/k
el = = S % 00154 x 106 /200 X 107 [ /km]
i
— X = —
e 2 )
. —j : 3
— Xy = — = = —j562 x 10° [Q/k
X0 = = 50 % 0.00566 x 106 /202 % 107 [Q/km]
1

—j712 x 10° [Q/km]

X = = =
F20 = Gyr T 2150 x 0.00435 x 106

Incidentally, assuming a modification effect of 3% of Cs by OGW in the above calculation, Cy = C; is
also modified by 1.05 times, whereas C; = Cy = Cs + Cj + 3Gy, + 3C;n is modified 1.01 times. In
other words, positive-/negative-sequence capacitances C;, C; are almost not affected by the existence
of the OGW, whereas the zero-sequence capacitance Cy has a little larger value.

(b4) Unitization of symmetrical capacitance
Unitizing the ohmic values by the 250 () base,

—jXe = —j206 x 103/250 = —j824 [pu/km]

—jX.0 = —j562 x 103/250 = — ;2248 [pu/km]

*ino = —j712 x 103/250 = — ;2848 [pu/km]
From the concentrated constants of 90 km length,

—jXe1 = —j864 x 90 = —j9.2 [pu]
— X0 = —j2248/90 = —j25.0 [pu]
—jX.o = —j2848/90 = — j31.6 [pu]

Accordingly, the charging current per circuit per phase under normal condition is

I=1/9.2=0.109 [pu] = 0.109 x 1155 [A]/90 [km] = 126 [A]/90km
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6. The transformer Tr,

p_sZ = j0.23 [pu] (750 MVA base)
p_7Z = j0.18 [pu] (250 MV A base)
s_7Z = j0.09 [pu] (250 MV A base)

The above %IZ values are written in two different bases where 750 MVA is the rated capacity of the
primary and secondary windings, while 250 MVA is that of the tertiary winding. The PU values have to
be modified into those for the 1000 MVA base:

1000
psZ = j0.23 x = j0.307[pul(1000MVA base)
1000
P—AZ = ]O 18 x ﬁ = jO 72[pu](1000MVA base)
1000
5-aZ = j0.09 x = = j0.36[pu] (1000 MVA base)
Then
Z+ paZ— ¢ nZ j(0.307 +0.72 — 0.36
pz =TS LA ST 70307 + 5 ) j0.334pu] (1000 MVA base)
Z4 g Z—p sZ (0307 +036—0.72
Z =15 S*é paZ _J( i 5 )__ 70.027[pu] (1000 MVA base)
Z4 g \Z— pZ (07240360307
R B 072+ : ) — 70.387[pu](1000 MVA base)

The equivalent circuit in Figure a of Table 5.1 has been obtained. The derived impedance element sZ
has a minus sign, so that the element in the equivalent circuit is a series capacitive unit (condenser).

7. The neutral resistance NGR; and the neutral reactor NL

For NGR; the resistance value for 154/ V3kV and 200 A is

154/3

3 _
S00 < 107 =445 (0]

ry =
For NL; the reactance value for 154/4/3kV and 15000kVA is

j(154/\/§)2 x 103

iXo = = j527[Q
7o 15000 3271
Unitizing by the impedance base 23.7 (),
445
NGR; : r =37= = 18.8 [pu], 3ryp = 56.4[pu](1000 MV A base)

j527
NL; : jxo =

BT = j22.2[pu], j3xp = j66.6[pu](1000 MVA base)

8. 66 kV, 80 MVA reactor bank for voltage regulation LT

The single phase capacity of the reactor is 80/3 MVA. Then

66 2

—x10°

(Vl g)2 (\/§ ) .

JX1=jxa=j =] = j54.45[Q)
VA 1 80 % 106
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Unitizing by the impedance base 4.36 (),

j54.45
436

X1 = jxy = = j12.49 [pu] (1000 MVA base)
Jxo = 00

The zero-sequence impedance is infinitely large because the neutral reactor is open.

9. 154 KV single circuit transmission line L,

The constants Lg, L,,, Cs, Cy, are given. Referring to Equations 2.15 and 2.22b, the impedance for
30 km length is

jx1=jxa = j2n f(Ly — L) = j2m x 50(2.4 — 1.1) x 1073 x 30

123
= ioen
jxo= j2m f(Ls + 2 Ly) = j21 x 50(2.4 +2 x 1.1) x 1073 x 30

= j12.3[Q] =j0.52 [pu]

. 433 .
= j433[Q] = ]m— j1.83  [pu]

and the capacitance for 30 km is

Vel = jyer = 21 f(Cs + 3 Cp) = j2m x 50(0.0052 + 3 x 0.0013) x 1076 x 30 = j85.8 x 1070 [Q7!]
Jyeo = 2mfCs = j21 x 50(0.0052) x 1076 x 30 = j49.0 x 1076 [Q7]

o 1 o _—j11655

.= JXel = —Jxo = 58 X106~ Jj11655[Q] = BT 7492 [pu]
. 1 . —j20 408 .

0 = a5 06 = 20 40810 = a0 = 86l [pu]

The leakage current per phase for 30 km is

1
195 = 0002 [pu] = 0.002 x 3749[A] =75 [A]

10. 154 kV, 15 km power cable line (three single core cables) L3

The line consists of three single core cables, so that Co = C; = C,.
The leakage current for 15 km is 210 A per phase. Then
154
154 %103

—jXel = —jXe = —jxeo = = —j423[Q)

210
. . . . 423 .
= JXel = —JXe2 = T X0 = _Jﬁ =—j17.9 [pu]
Inductance is neglected.

11. The transformer Tr; and NGR;

Modifying the capacity base from 250 MVA to 1000 MVA,

1000
Jp_sx = j0.12 x 750 j0.48[pu](1000 MVA base)

1000
JXo = j0.10 x 750 = j0.4[pu] (1000 MVA base)
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There is also the relation p_g¢x >xp, because jxo includes the parallel effect of Zexo in the zero-
sequence equivalent circuit of Figure d in Table 5.1.
For NGR; at 100 A

154/V3 4
=11 %10’ = Q
ro 00> 0° =889 [Q]
_ 889 . _
rofﬁ7375 [pu] .. 37'()7 112.5 [pu]
12. 66 kV, 200 MW load
At 200 MW with power factor cos ¢ = 0.8, 250
1.02 200 — j150 ¢
—— =P —jQ=200— j150[MVA] = —" " N
Z jo 7150 ] 000 Pul ) &
= 0.20 — j0.15[pu] (1000 MVA base)
1
2 =————7——=320+ ;2.40
1= 020— 015 + 2400py]

= 4.0/37°[pu](1000 MVA base)

Z| =7, is assumed for the load, although the impedance of a rotating load would generally be Z; # Z,.

Table 5.4 shows the symmetrical equivalent circuits of the power system in Table 5.3 which has been
obtained by combining all the results in 1-12 above. This is the circuit, instead of connection diagram,
of the given power system which includes visually all the effective LRC constant elements. This is of
course the first step of any system analysis.

5.7 Supplement: Transformation from Equation 5.18
to Equation 5.19

a) Transformation from Equation 5.18 (1) to Equation 5.19 (D

Pva Pvn _ Pja _ S 7a B AI a
PV | = pVa | =Zpp| ply |+ Zps| sl | +Zpa| Iy )
PV(' PVn Plc SIc A[c
or PT/abr - Pvn = ZPP ’ PIabc + ZPS ' Siabc + ZPA ! Ajabc
Multiplying the left-hand side by a,
a- Pvahf —a- PVn = ZPP ca- Pjub(' +ZPS a- Siahc +ZPA ca- Aiahc
1 1 T r T
PYoi PV plorz slon alor2
0
0 2
»Vo PV 7 rlo _ 570 B ATO
PVi |- 0 =Zpp| ply | =Zps| sl\ | =Zpa| 4l
A% 0 pl> sh aly
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This is the symmetrical equation in regard to primary voltages. The secondary and tertiary side
equations are derived analogously.

b) Transformation from Equation 5.18 Q)@ to Equation 5.19 Q3
This is self-explanatory.

¢) Transformation from Equation 5.18(5) to Equation 5.19 @
Equation 5.18(%) is

0 -1 1
V3, =] 1 0 | =1 | alue 3)
—1 1 0
Then
i o 0 | -1 ] 1 o 0T
T1012:“'Tlabc:73~'“' 1 0 -1 '“71'A1012:7§ (a_az)'A{I
-1 1 0 (@®—a)- I,
0-a1y
= j‘All 4)
—J-ah

This is Equation 5.19 @). Equation 5.19 (5 can be derived from Equation 5.18 () analogously.
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Coffee break 3: Faraday and Henry, the discoverers
of the principle of electric energy application

Michael Faraday (1791-1867), probably the greatest experimentalist in electricity and
magnetism in the nineteenth century, was not only a famous contributor to chemistry as the
discoverer of various new organic com-
pounds, among them benzene, but also .

the first to liquefy a ‘permanent’ gas. _,.%‘!"_' -

In 1821, the year following Oer- e ? -
sted’s discovery, Faraday had already . AN
presumed his idea that magnetic flux
should be able to be changed to electric
current in contrast to Volta’s current-
produced magnetic flux. Faraday
worked persistently trying to prove that
magnetism could induce electricity.

In 1831, after 10 years, Faraday
finally succeeded in producing an elec-
tric current from a magnetic field. He
prepared two coils of wire wound
around opposite sides of a ring of soft
iron. The first coil was switched on and
off by a battery, so the iron ring was
magnetized, while a wire from the sec-
ond coil extended to a compass needle a
metre away, far enough so that it was
not directly affected by any current in
the first coil. When the first coil was Michael Faraday (1791-1867)
turned on, Faraday observed a momen-
tary deflection of the compass needle and its immediate return to its original position. When
the primary current was switched off, a similar defection of the compass needle occurred but
in the opposite direction. Faraday showed that changes in the magnetic field around the first
coil are responsible for inducing the current in the second coil. He also showed that an electric
current can be induced by moving a magnet, by turning an electromagnet on and off.

This achievement is Faraday’s crowning discovery, because magnetic induction means that
‘electricity can be steadily produced by a moving magnet which can be driven by mechanical
power’. In effect, this became the foundation of the electric dynamo or generator or motor. It
was the dawn of a new source of cheap and plentiful energy that was to outpace the conventional
steam engine very quickly and revolutionize the world. Until Faraday came along, electricity
and magnetism were seen as interesting but useless. However, after the invention of magnetic
induction, electromagnetism became the subject of industrial energy application.

Joseph Henry (1797-1878) discovered the same principle of electromagnetic induction
quite independently in 1830, but his results were not published until after he had received news
of Faraday’s 1831 work, nor did he develop the discovery as fully as Faraday. Henry wrote in his
paper ‘self-induction’ which he showed by producing large electric arcs from a long helical
conductor when it was disconnected from a battery. It is said that Henry met Faraday in 1837,
when Henry presented a demonstration of self-induction to both Faraday and Charles
Wheatstone (1802-1875). Faraday clapped his hands in delight and exclaimed, ‘Hurrah for
the Yankee experiment!’

5 PER UNIT METHOD AND INTRODUCTION OF TRANSFORMER CIRCUIT
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Faraday wrote that the electromotive
force induced by magnetic induction is
proportional to the ratio of linking flux.
He also introduced the concepts of elec-
tric field and magnetic field in which
the forces of electricity and magnetism
respectively exist, although they were
not yet derived as mathematical equa-
tions. Furthermore, he believed in and
wrote about the mutual relation between
electricity and heat, between electricity
and gravity, between magnetism and
gravitation, as analogous to the relation
between electricity and magnetism. It is
believed that he almost reached the con-
cept of the law of energy conservation.

Joseph Henry (1797-1878)

Faraday's electro-magnetic induction ring







The «—f—0 Coordinate Method
(Clarke Components) and its
Application

The «—f—0 coordinate method («— f—0 components or Clarke components) is a useful analytical tool
of almost comparable rank with the symmetrical coordinate method (0—1-2 components). Although
0-1-2 components is a very powerful approach for most phenomena, there are some cases where we
encounter obstacles. The «—i—0 coordinate method is another useful analytical approach which can
often supplement 0—1-2 components, and by which some limitations of the symmetrical coordinate
method are overcome. As a matter of fact, there are some circuits which can be solved
only by «—f—0 components instead of 0—1-2 components. A typical example will be introduced
in Chapter 19.

The a—f—0 components method is also mathematically a kind of variable transformation
by the 3 x 3 matrix operators ., o~ !, and the important characteristic of «—f—0 components is
that the transformation operators contain only real-number matrix elements, while the symme-
trical components method contains matrix operators a,a”' based on complex numbers
a,a”!. Voltage or current waveforms observed on an oscillograph, for example, have time-
dependent scalar values as a matter of course, so they can be handled as vector (or complex-
number) values only when the real-number equations are given for the waveforms. In other words,
badly distorted waveform quantities with harmonics would usually be observed on an oscillo-
graph as phenomena of unknown equations and so cannot be transformed into symmetrical
components. Conversely, the observed real-time quantities on the oscillograph can be transformed
into o—f{—0 components by time sequential composition, regardless of whether the equations are
known or unknown.

In this chapter we study the definition and conceptual meanings of the «—f—0 coordinate method
first, and then study the mutual relationship of a—b—c phase quantities, o—f—0 quantities and 0—1-2
quantities. Finally, we study system modelling and fault analysis by a—f—0 components.

6.1 Definition of «— -0 Coordinate Method
(e—B—0 Components)

The a— f—0 voltage and current quantities in the «— f—0 coordinate method (z— f—0 components) are
defined by the following equations.

Handbook of Power System Engineering Yoshihide Hase
© 2007 John Wiley & Sons, Ltd
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The transformation is

Vs
Vj =
Vo
~——
Vago = ©.1)
Iy
I.| =
Iy
~—~
Iy =
and the inverse transformation is
1 0 |1 -
Vs
1 3
2 % L. Vape=a"" - szBO
-1 -8
~——
M Vapo
o (6.2)
1 0 1
7% ? 1 Iope= o~ 'Ia[fO
_1|_¥3 1
2 2
|
o)
where
axa '=ca'-@a=1 (1is the unit matrix)

1

o, o : inverse matrices of each other

The transform operator matrices o, o~ !

are real-number matrices in the a— §—0 coordinate method.
Therefore if V,, V},, V.. are given as real-number quantities, V,, Vg, Vo are also real-number quantities,
while if V,, V},, V. are given as complex-number quantities, V,, Vg, Vo are also complex-number
quantities.

The relation a—b—c phase quantities < «—{—0 quantities is shown in Figure 6.1 a and b, where
both quantities are demonstrated as vector values.

6.2 Interrelation Between a— -0 Components
and Symmetrical Components

The symmetrical components method is a kind of one-to-one transformation between the domains
ab,c<0,1,2. The a—f—0 components method is also of one-to-one transformation between
the domains a,b,c < «, §, 0. Therefore symmetrical components and «—f—0 components should also
be the same kind of one-to-one transformation between the domains 0,1,2 < «, 8, 0 for each other.
Let us examine the relation between 0, 1, 2 quantities and o, ,0 quantities in detail. We
will examine the relation by using voltage symbols here, where lower case letter v means instantaneous
real-number voltages, and upper case letter V means instantaneous complex-number voltages.



6.2

INTERRELATION BETWEEN «—f—0 COMPONENTS

o-circuit current

B-circuit current  O-circuit current

a phase lo= Iq oy +1 = L = 3_ ()
—- Ib:_%la"'%lﬂ"'lo —>_%1a — %Iﬁ - I
b phase i = + &
- L=-t1- 10l -5, —~-3 -
¢ phase
-— 0 -— 0 ~— 3] earth
1
\‘\ “ota IO
N 1
1o 0
e &ohy / e
2/, --
Iy
N3
Ib:*%IaJ“%Iﬁ*‘IO
(a)
phase-a current ~ phase-b current phase-c current
2 1 1 2
aCirCUit_,Ia=§Ia—§Ib—§IC - 2 - -1 L
Lo B B, B, LBy
3 3 ¢ 3 3 ¢
B circuit 1 1 1 - 1 + 1 + 1
—>IO:§IQ+§II,+§IC — Ela — glb — EIC
0 circuit
35, i 5 5
«—1a+1ﬁ+10=1a+%1,,—%10 ~ I, -~ %1,, -~ -%18
I(

o~quantity: The currents Iy, -1/2 Iy, —1/2 I, flow out on the phase a, b, ¢ circuits respectively in the
same direction. In other words, the current I goes out from phase a and the half current 1/2 I, comes
back from phase b and another half current 1/2 I, from phase c. As a result, the current through the
ground pass is zero.

B-quantity: The currents + +/3/2 Ip, —\/g/ZIﬂ, flow in phase b, ¢ respectively in the same direction. In
other words, current v'3/2 I goes out from phase b and comes back from phase c. As a result, the
current through phase a and the ground pass are zero.

0-quantity: The currents of the same value Iy flow out from phase a, phase b, phase ¢ respectively in
the same direction and the current 31, comes back from the ground pass. In other words, the definition
of 0-quantitiy is exactly the same as the zero-sequence quantity in symmetrical components.

Figure 6.1 Correlation of vectors I, I, I. and I, Ig, Ip
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6.2.1 The transformation of arbitrary waveform quantities

Suppose voltages are of an arbitrary waveform which may include d.c. components, harmonic
components as well as power frequency components. Then

n
Valt) = 3, [V - el60r )
k=0
n
Vp(t) = Y |Vi| - ¢/ (keor-+01) complex-number expression (6.3a)
k=0
n
Vc(t) = z |Vck| - eftkortto)
k=0
n
va(t) = z [Vak|cos(kot + Oqk)
k=0
n
vp(t) = 2 |Vii|cos(kwt + Op) preal-number expression (6.3b)
k=0

ve(t) = Y, [Var|cos(kort + 0.)
k=0

These quantities in the a-b—c domain are transformed into two different domains as follows.
For symmetrical coordinates, referring to Equations 2.1 and 2.4 and recalling that a = e/ 120

a* = e /120 then the complex-number expression is

Vo(1) 11 V() + Vi (1) + Ve(2)

Vi) =3|Va(t) +aVs(r) + a?V.(1)
Va(t) Va(t) 4+ a*Vy (1) + aVe(r)
n n n
2 |Vak| . e](kwt+9uk) + z |th| ) e](kwt+9bk) + Z |Vck| . e./(kwt+6’u'k>
k=0 k=0 k=0
11& ) i ) o 1t ) .
_ § z |Vak| . e<1(k(")t+9"") + z |ka| . e](ka)t+6hk+120 ) + Z |Vck| . ej(kthreL-k*lZO )
kiO - kio - - kiO : -
Z |Vak| X e](kwt+64,,\) + Z |ka| . e](kwt+0,,k7120 ) + Z |Vck| . e}(kwt+6‘.,{+120 )
k=0 k=0 k=0

(6.4a)
For the real-number expression, taking the real part of the above equation,

vo(t)] |Re{Vo(1)}
vi(t)| = |Re{Vi(r)}
va (1) Re{V, (1)}

n n n
z |Vak|cos(kwt + Og4) + Z |Vii|cos(kwt + Opr) + 2 |Vek|cos(kawt + 0 )
k=0 k=0 k=0

=~ |3 [Var|cos(kart +0u) + Y, |Vir|cos(kert + Opp 4+ 120" )4+Y, [Ver|cos (ko + 04 — 120°7)
k=0 k=0 k=0

n n n
N [Var|cos(kort +04) + Y |Vik|cos (kart 4+ 0pp—120") +3., [Vex [cos (kart 404 +120)
k=0 k=0 k=0

(6.4b)
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The a—f—0 components are defined for complex-number and real-number expressions by the same
equations, 6.1 and 6.2. Then, for the complex-number expression,

L0 2%l 0 Vel
Vs(| =3 V3{Vi(t) = Ve(1)}
Vo(?) Va(t) + Vi(t) 4+ V(1)

n n n
22 |Vak|ej(kwt+9"‘> _ 2 |ka|ej(kwt+0bk) _ Z ‘Vck‘ej(kerrGLk)
k=0 k=0 k=0 (6.5a)

n n
_ \/§{ Z |ka‘e./(kwt+‘9lzk> _ 2 |Vck|ej(kwt+9vk)}
k=0

k=0

W —

n

n n
2 ‘Vak|ej(kmt+0"k) + 2 ‘th|ej(k(ut+0bk) + z |Vck|ej(k"”+0‘*)
k=0 k=0

and for the real-number expression

ve (1) 2v4(1) — vp(t) — ve(t)
()| =5 | V3{w (1) —ve(n)}
vo(2) va(t) + vp(£) + ve (1)

n n n
22 |Vak|cos(kwt + O4) — z |Vii|cos(kwt + Op) — z |Ver|cos(kwt + Oc)
k=0 k=0 k=0

W =

n n
\/5{2 [Vik|cos(kwt + Opr) — Z |V |cos (ket + Hﬁk)}
k=0

k=0

n n n
Z |Vak|cos(kwt + O4) + 2 | Vi [cos(ket + Opr) + Z |Ver|cos(kawt + O)
k=0 k=0 k=0

(6.5b)

6.2.2 Interrelation between o—8—0 and symmetrical
components

Now we need to examine the mutual relation of both domains. Applying the complex-number
expression,

The equations of symmetrical components by Equations 2.1 and 2.4:
Von=a-Vae O Vae=a'-Voo @

The equations of «— §—0 components by Equations 6.1 and 6.2: 6.6)
Vapo = Vape (©) Vabe = a ! Veago @
Accordingly,
Vipo =0 Vape = (@' - Vo) = (a@-a™') - Vopa 67
Vo =a-Vape =a- (- Vogo) = (a-a') - Vypo
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where o -a~! and a - o!

are calculated below:

2l =1 -t 1 1
a~a*1§0\/§—3~1a2a
1 1 1 1 a?
110 2—(®+a)|2—(a+d?) 0] 1]1
=310] V3(@—a)| V3a-a) | =|0-j|
3| 14a*+a | 1+a+d? 11 0|0
Qi 1] 01 Jo[ o2
ae'=2[1]ala |- |-3 2 1= [0
31 a| a Ll V3| 21 —ilo
2|72 J
Therefore
v, of 1]1] vy ©F
= o[ , Vo(t) = Vi(r) + Va(2)
L vg(n) = —j{vi() — Va(0)}
L ofof ] vy = vo(r)
Vapo (oat) Vo
or
_1‘1) S Vo(r) = Volt)
o2 L Vi(t) = H{Val(t) + jVp(0)}
=il o | .
Voiz (aa ) V2(t) = i{vtx(l) - ]Vﬂ(l)}

(6.8)

(6.9)

(6.10)

Equations 6.9 and 6.10 show the relation between o«—f—0 components and symmetrical

components that are written in complex-number quantities.

In words, V,, is the vector sum of positive-sequence voltage V| and negative-sequence voltage V5,
namely V| + V,. Vg is the product of () and (V| — V3), or the vector which is obtained by a 90’

clockwise rotation of subtracted vector (V; — V).

For the relation for power frequency components, the symmetrical components are

By complex number expression By real number expression
Vo(t) = [V e/@r+to) vo(t) = |Vo| cos(wr + o)
Vi(t) = V| el t0) vi(f) = |Vi| cos(wt + 0;)
Va(t) = |Vo| e/(@1+02) (1) = |V cos(wt + 6,)

and the o—f—0 components are, for the complex-number expression,
V(1) = Vi (1) + Va(r) = |Vi]e/@H0) 4 vy |efl@r+02)
V(1) = —j{Vi(r) = Va(n)} = e/ {1 [e/H0) — |yl
Vo(r) = [Vole/ ™)
and for the real-number expression
vy (1) = |V1| cos(wt + 01) + | V2| cos(wr + 07)
vg(t)=|Vi| cos(wt + 0y — 90°) — |Va|cos(wt + 0, —90)

= |V1|sin(wt 4 01) — | V2| sin(wt + 6,)
vo(t) = |Vo| cos(wt + 6p)

)

®

6.11)

(6.12)
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Figure 6.2 Correlation of a~b—c, 0—~1-2 and «—f—0 domains

Figure 6.2 is a summary of the concept showing mutual relations of the a~b—c, 0-1-2 and a—f—0
domains.

6.3 Circuit Equation and Impedance by the «— -0
Coordinate Method

The general equation for a three-phase circuit is expressed by
Eupe —Vabe = Zabe - Labe (6.13)
The equation is transformed into the 0—1-2 domain as follows:
Epe=a"'Eop, Vae=a" Vo, Iac=a"Iop
S Eon = Vo = (@ Zape -a™') - Ton =Zo1a - Tona
where Zy;, = (a ~Zape - ail) (614)

Equation 6.13 can be transformed into the ¢—{—0 domain in a similar way.
The definition of a—f—0 components is
Ea[f() = Eupe, Egpe = Ot71 ' Eot[iO
V(xﬁ() =a Ve, Vape = ail . Vo(/?() (6.15)
Io:ﬂOZa'Iahc: 1ape =(¥71 'IotﬂO
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Substituting this equation into Equation 6.13,

—1 —1 —1
o 'Ea/io —o Vx/i() =Lgpc " 'Ix/fo

Left-multiplying by & and recalling that & - &~! = 1, the equation in the a—f—0 domain is

Eupo—Vapo = (00 Zape -0 ") - Tup0=Zp0 - Lopo 6.16)
—1 .
where Z,50 =a-Zgye-a
Extracting the equations for the impedances from Equations 6.14 and 6.16,
Zop=a Zuyc-a ' } Zpe=a -Z012~a}
_ or _ (6.17a)
Zypo =0 Zagpe - A ! Zye =a”! “Zypo - o

S Zypo = Zape el =a- (a_1 -Zo12 - a) ol = (o - a_l) -Zop - (a- Ol_l) (6.17b)

Accordingly, the circuit equation and impedance in the ¢—f—0 domain is

E,p0 — Vapo = Zopo - Lopo

where Z,p0 = o - Zup, - ol = (o - a_l) -Zop - (a- oc_l) } 6.18)

o-a~! and a-a~! in the above equation have been already derived in Equations 6.8.

Now we can draw the conclusion that the impedances in «—f—0 domain circuits are given by
Equations 6.18. Further, Equation 6.13 for the a—b—c domain, Equation 6.14 for the 0—1-2 domain and
equation 6.18 for the o—f—0 domain are in one-to-one correspondence to each other.

In the next section we will investigate Z, g for lines and other equipment.

6.4 Three-phase Circuit in a—3—0 Components
6.4.1 Single circuit transmission line
A well-balanced three-phase single circuit transmission line between points m and n as shown in

Figure 1.1 has its impedance matrix Zgj2 given by Equation 2.15 and Figure 2.5, and is again
quoted here:

Zo| 010
5 2y =2y =25 —Zn
Zop=10(27]0 Zo =7, + 27, (6.19)
00| 2 )
Accordingly,
Zo, Zoc[)’ Zy0
Zypo = |Zgs | Zpp | Zpo | = (o - al) - Zoy- (a- ol
Zoy | Zop | Zoo
o[ 111] [z[o]o] |°ol0]2
_ 1 i |0
=10/ =j| | |0]Zi| 05"}/ (6.20)
tfolol [o]o]z| [1]-j]o0
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- ]a ZIZZZZZS_Zm
700

f

o-cireuit Vg Vo

- Iﬁ Zl= Z2= Z.s_Zm
00

[-circuit mlvp g

— [y Zy=Zg+ 27y,
700

O-circuit V) Vo

Figure 6.3 The equivalent circuit of a transmission line in «a—f—0 components (single circuit line)

As Z) = 7, is always correct for transmission lines, then

WVl vl zlofo

2y =2, =Zs — Zy

mVﬁ 1.V =10]Z]0 Zo = Zs + 270, (6.21)
m VO n V() 0|0 ZO
wVapo Vo Zyp0

This is the fundamental equation of the transmission line in «—f—0 components and the equivalent
circuit of the equation is given in Figure 6.3. The impedance matrix Z,p is the same as Zop2,
namely Z,50 = Zp12. In other words, the major feature of «—B—0 components is that a well-
balanced transmission line can be expressed by the same impedance matrix and the same equivalent
circuits in the «—f—0 domain as well as in the 0—1-2 domain. The strange coefficient :I:m in
the definition of a—f—0 components was a device to obtain this advantage.

6.4.2 Double circuit transmission line

A well-balanced double circuit line is shown by Equations 2.20a and b in the 0—1-2 domain, and is
again quoted here:

1 1 1

mV012 _ nVO]2 _ ZOI2 ZOM . 1012

2 2 - 2

mV012 nV(JlZ ZOM ZOIZ 1012
or

wVorr = Vo = Zowz - oy + Zow - 21y,
, , 1 ) (6.22)
wVorz = aVorz =Zom - I +Zowz "Iy
Zyl 010 Zom | O
where Zoin=101(Z1|0 Zoy=1] 0 |0
00|27 010

[} Rl N v




128 6 THE o—p—0 COORDINATE METHOD AND ITS APPLICATION

Equation 6.22 can be transformed into equations in the o—fi—0 domain in the same way as that of
Equation 6.14 to Equation 6.18:

wVapo = nVapo =(@-a™) - Zoyp - (a-at) 1L
+(oe-a ') Zoy - (a-aT) 2 I

mVapo = nVapo =(@-a') - Zoy - (a-o ') 1 L
Ha-a) Zon-(a-at) 21

tln VaﬁO rllVa[iO

or - 6.23
ﬁVotﬁO 3Vozﬂ0 ( )

2
a0 Zapo 11/30

Z 0 18 in the same form as Equation 6.15

Z1010
Zyo=(a-a') Zon-@-a)y=]0]z]0
, 002
and also Ziﬁ0 is
Zgo=(-a™') Zoy (a o)
ol 11| |zou| 0] 0 0| 02 0lo| o
=10|—j| j 0 [0[0]-} jilol=1lolo] o
1 0[0 0 |o0]o0 1| —jl o] |o|o|Zow

Therefore the fundamental equation of the double circuit line in «—f—0 components is

Wl v, Jzlol o ool o] |4
Wel 1wl [ofz] o oo o] |y
wVol [aVel [010] Z |00 | Zm| 'k (6.24a)
v, |2V, olo| 0 |z]| 0] 0| |°,
anﬁ ﬁvﬁ olol o|lo]|z]| o 21,),
2vol 12V, 0[0| Zm| 0| 0] Z| |2
or
1 1 17 ]
.. v, v, Z1 0 I
o-circuit '2” 8 - 5 2 = otz 1 21“
mVCX Vl‘/O( 1 :OC
1 1 1
V 14 Zi| 0
p-circuit 5 Bl _ 5 VA — Tﬁ (6.24b)
Vsl 2V 0z | |’
0-circuit ’I”VO — ’I'VO = Zo| Zom .i
2ol Vo] %] Zo| [Py

The equivalent circuit corresponding to the above equation is given in Figure 6.4. Now we can conclude
that the o-circuit and f-circuit of the double circuit transmission line can be expressed by the positive-
sequence equivalent circuit, and the O-circuit of course by the zero-sequence equivalent circuit.
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o-circuit
3o Ve |
—»1]ﬁ Z1=Z2_Z9_Zm
O 00
— 2l Z1=2Zy O\
v ? 00 ? iy
B-circuit m B n'p
2 |

0-circuit Yo . Four= 3Z"” }L‘]IO

Figure 6.4 The equivalent circuit of a transmission line in o—f—0 components (double circuit line)

6.4.3 Generator

The generator circuit is described by Equation 2.27b and Figure 2.11 in the 0—1-2 domain, and is again

quoted here:

(0] ARIK 32, Iy
E—vi|=lo]lz]o|-|[n]+] o
0]

ol oz 0
M~ —— N ——
Eoip — Voo = Zy, I+ 3Z,-1y

Left-multiplying by o - a~!

s

" Eypo = Vapo = Zopo - Lypo + (- a™ ') -3Z, - Iy

where Z, is in the same form as Equation 6.20, and

0| 1
Eupo = (a-a”') Eg;2 = |0]|—
1| 0
0| 1)1
(-a ') 32,00 =|0|—j]| j
1100

Therefore the generator equation in the a—f—0 domain is

E, W2 +2) | 3j(Zi—7Z) | O

_JE,| - =1z -2)| Xzi+2) | 0

0 0 0 Z
where Zy = jx1, Zp=jxa, Zop= jxo

(6.25)

(6.26)
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Jx
00—
Ia
o-circuit  E, ia
Jxy = Jxg
00 —
Ip
B-eireuit —5 E, Vg
Jxo
0 ——
I
0-circuit Vo
37, l
T

Figure 6.5 Equivalent circuit of a generator under the assumption jx;= jx,

Furthermore, the equation becomes simpler, as follows, if the assumption Z;=2;(jx1= jx2) is
justified for fault analysis distant from the generator terminal, for example:

E. | [vo] [zi]o]o] [4] 0

—JE —|Vg|=]0]z] o] || +] 0 (6.27a)

0 0| 0]z 37,10

or

E,—Vy =211,
—JjEq. — Vﬂ =27 - [ﬂ (6.27b)
Vo= (Zo+3Z,) - Ip

Figure 6.5 is the equivalent circuit of Equations 6.27a and b. As they are based on the assumption of
Jjx1 = jx2, some errors may appear if they are adopted for analysis of phenomena around the
generator terminal. However, Equation 6.26 before the assumption is the precise equation of the
generator by the a—f—0 method where the circuit is described by the known symmetrical
reactances, although the equation cannot be replaced by a simple equivalent circuit. Besides, it must
be remembered that the generator source voltages E,, —jE, exist on the «- and f-circuits,
respectively, in the o—f—0 domain.

6.4.4 Transformer impedances and load impedances
in the «—8—0 domain

Transformers do not include mutual impedances in the 0—1-2 domain as shown in Table 5.1, so
Equations 6.19 and 6.20 can be applied. Moreover Z; = Z; is always correct, so Equations 6.21 and
Figure 6.3 can be applied for the transformer. In other words, positive-sequence impedance Z; = jX|
is applied for the o- and f-circuits, and Zg = jXj is applied for the O-circuit.

Load circuit equations assumed in Equations 2.28 and 2.29 are in the same form as Equations 2.15
and 6.19 for a single circuit line. Therefore Equation 6.21 shows the load equations in the o—f—0
domain under the approximation by Zj=2,.
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6.5 Fault Analysis by «——0 Components

As the transformed equations and the equivalent circuit of three-phase circuits in the «—f—0 domain
have been completed, we can begin fault analysis by the o.—ff—0 method which can be executed using
the process in Figure 2.1 or the similar one in Figure 3.1.

6.5.1 The b-c phase line to ground fault

Suppose the b—c phase /-g fault at point f is as shown in Figure 6.6. The fault condition at f is

V= Ve=0, ;1,=0 (6.28)

fault point

Figure 6.6 b-c phase /-g fault

Substituting Equation 6.2 into Equation 6.28, the fault terminal equations become

1 V3 1 V3
Vet 5 Vet Vo= 5 Va =5 Vet Vo =0
LV, =2,V D V=0 @
the network equations:
Ea— [V, = 12, I, @
—JEa— Vg = 42y flg © (6.30)
RACER ®©
or = (2:Vo) =1(242) sl ©

The equivalent circuit which satisfies both Equations 6.29 and 6.30 is shown in Table 6.1 #1A.
In order to satisfy Equations (1) and ) together, the zero-sequence circuit is expressed by @)’
(instead of @) with terminal voltage 2 Vo and impedance 2 %o
From the equivalent circuit, the following equations are obtained:

E,
I =— J =—"9% 2.7
flo= 7o ="775 7 V=2, Vy=Ey— 10
B e A R ey ) (6.31)
g = 7 sVp=0

These are the solutions ( /1y, g, (Iy), (Vs Vg, ;Vp)inthe a—B—0 domain. Then these solutions
can be inverse transformed into the a—b—c domain by Equation 6.2, or into the 0—1-2 domain by Equation
6.10 as our final solution. The obtained final solution coincides with Equations 5C and 5D in Table 3.1.



132 6 THE o—p—0 COORDINATE METHOD AND ITS APPLICATION

Table 6.1 The equivalent circuits for various faults in the «—f—0 coordinates domain

faultfpomt the system equations in the o-f3-0 domain

Ea_fVa= fZI'fIa

JE.=Vp= Zilp

=Vo= sZo o
Eq.(6 - 27b)

B q: the voltage at point f before the fault

21 = 4, fZ0: the system impedances at
point f

#1 phase b-c line-to-ground fault

#1A #1B #1C

be :fVC =0 ]
Vy=0
V=2V,
Vp=0

fIDC +f10 =0

i
AN T T
ocircuit (’\bEa: E, [ af}\/ o

00 O
- AR
B-cireuit ] E'(J: :}i,flﬁ Vs
O

0
20 T.oh
0-cireuit 20 Iy2.v,
0

Zero-sequence circuit is from
the modified equation
_szO = (2ZO) 'fIO

#2 phase a line- #3 phasebtoc #4 three-phase fault
to-ground fault line-to-line fault
fVa = 0 fVO( +fV0 = 0 be :fVC fVﬁ = 0 fVa =be =fVC: 0] fVDC = 0
fIb:fICZO fIB=0 fla:O fVIX:O fIa=fIb=fIc fVﬂ=O
fl(l:zflo flb:fIc:O fVO=O fIO:O

N A <= 5 o
E.,=E, afVa Easzllx roz fVa E =fg'l fTafVa
a o Y
SN 1 v N 1T
L M Q) E=uf P Vs
O
Eﬂ —
Zy fIO Mo Zy Iy fVO
——

Zero-sequence circuit is inverse transform equation to a-b-c domain

from the modified Vo=V,

. Z
equation —V, = (%) 2y |V :—% Vg + ‘% V+ Vot Eq.(6.2)

o2 2 IOfVO
S

Ve=-3Vo- B4 v,
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Figures# 1B and # 1C in Table 6.1 show the same equivalent circuit but for a circuit with a double
source line and double circuit line.

6.5.2 Other mode short-circuit faults

The equations and equivalent circuits for the other mode faults are shown in Table 6.1, cases #2,
#3 and #4.In case # 2, the phase al-g fault, the figure for the zero-sequence circuit shows voltage fVO,
current 2 o and impedance Zj/2, because the related zero-sequence circuit equation is modified as

%o

6.5.3 Open-conductor mode faults

The equivalent circuits of open-conductor mode faults in o—f—0 components can be obtained
analogously. Table 6.2 shows the equations and the equivalent circuits.

Let us try here to compare the equivalent circuits in symmetrical components, Tables 3.1 and 3.2,
with those in a—f—0 components, Tables 6.1 and 6.2. The following conclusion may be derived.

In the cases of Tables 3.1 and 3.2 in the symmetrical method, there is one complicate equivalent
circuit in which positive-, negative- and zero-sequence impedances are connected in series and/or
parallel. On the other hand, in the cases of Tables 6.1 and 6.2 there are two or three simple and
independent circuits. To solve three simple equations would generally be easier than solving one
complicated equation, whether or not a computer was used. This is one of the reasons why the o—f—0
method is a worthy approach as a complement of the symmetrical method.

Again it must be stressed that the «— f—0 method is as precise as the symmetrical method, at least
for Equation 6.26, instead of Equation 6.27a, which is adopted for generator equations.

Table 6.2 Equivalent circuit of conductor opening in the «—f—0 domain

#5 phase a conductor opening #6 phase b,c conductors opening
— l Vo=
2 — 1 AN -
) e b =07 Ve )

Vg=ve=0 } Vet vy=0
iy=1,= 1= 21,

ig=0

/]t{l
— Vo~
{i\)’ wEa mZ1 ; / nZ i‘nEa
%
. . . N 7 Vs nZ1 \_7‘ E
L s bl o )" e
. 214
2mZ0 ZVO 2ILZ0 mZ0/2 Yo n,Zl)/2

Zero-sequence circuit is from modified equation | Zero-sequence circuit is from modified equation
2vg = (2Zy)1y, instead of vy = Zyiy vo = (%) (2i,) instead of vy = Ziy
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generator Py A Trl transmission line T2
| pz a p3 0
Ry = W T— x
N\ NN L Ry
77— /% | I .
<_c O:, b 0
B-current o-current 0-current

Figure 6.7 The «—f—0 component currents through transformers under /-g fault

Finally, Figure 6.7 shows current flow under the condition of a phase a /—g fault. The phase currents
are represented by arrows indicating the relative magnitudes of currents in each circuit. This is the
original figure for o—f—0 components first developed by W. W. Lewis. In the figure, the currents
through points p;, ps, ps3 are the f5-, a- and O-currents, respectively. Physical current flow based on
Kirchhoff’s law and the cancellation law of ampere-turns can be imagined from this figure as either
real-number currents or complex-number currents.
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Symmetrical and a—f—0
Components as Analytical Tools
for Transient Phenomena

Most analytical engineering tasks may concern transient phenomena of three-phase circuits
(whether of large networks or small partial circuits), typically system stability analysis, dynamic
analysis of generators, fault analysis, switching and lightning surge analysis, harmonic resonance
analysis, insulation design, analysis of factory testing of equipment, and so on. Inevitably we have
to apply symmetrical and o—f-0 components as essential analytical tools for practical engineering
management of these phenomena.

From such a viewpoint, it is strange that most textbooks on symmetrical components cover
applications only for power frequency phenomena, while a—f—0 components are seldom
explained. Perhaps this is the reason why confusion is apt to arise often in applying symmetrical
or o.—f—0 components, especially for transient phenomena. Typical misunderstanding may arise
in the application of symmetrical components to transient phenomena which may often involve
complex-number vector operators a, a_ .

Symmetrical and a—f—0 components have proved their merit, especially for transient
phenomena. In this chapter, we look back briefly to the origin of transient analysis for a
single-phase circuit (a review of the complex-number symbolic method) first, and then
demonstrate short-circuit transient analysis for a three-phase network using symmetrical compo-
nents and «—f—0 components.

7.1 The Symbolic Method and its Application to
Transient Phenomena

First, let us review the switching transient phenomena of a single phase circuit with series LCR
elements and an a.c. power source as shown in Table 7.1.

The table shows the solution for the transient current caused just after closing the switch at time
t = 0. The three different expressions in cases 1, 2 and 3 are demonstrated for the same phenomena
for comparison.

In case 1, the power source with a sinusoidal waveform-induced voltage is written as
Ecos(wt + 0), and the same source is written as E sin(wt + 0) in case 2. In case 3, by contrast,
the same power source is written as the complex number Ee/(“'+0) = E{cos(wt + 0) + jsin(wt + 0)}.

Handbook of Power System Engineering Yoshihide Hase
© 2007 John Wiley & Sons, Ltd
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In other words, the power source is written in three different ways by the symbolic relation of
(#1) + j(#2) = (#3). Note especially that, for these three different approaches for the same circuit
analysis, the symbolic relation is perfectly preserved for the voltage and current quantities at any
arbitrary point in the circuit and for arbitrary timing under any condition, regardless of steady-state or
transient phenomena.

This review is expanded to include transient phenomena. The symbolic method using complex-
number notation for electric circuit analysis is mathematically an application of Euler’s formula
e/? = cos ¢ + jsin @, which was first introduced in this field by A. E. Kennelly and C. P. Steinmetz
separately in 1893.

In Table 7.1, the symbolic relation of (#1) + j(#2) = (#3) is obviously preserved for steady-state
terms as well as for transient terms of the current equations obtained in cases 1, 2 and 3.

The above explanation is always effective for cases where multiple numbers of transient terms are
included, although this example contains a single transient term. Furthermore, the same symbolic
relation is preserved not only for single phase circuit phenomena, but also for three-phase circuit
phenomena.

7.2 Transient Analysis by Symmetrical and «—3-0
Components

Now let us examine the equations of a three-phase circuit for transient phenomena.

Equations 1.3 and 1.4 in Chapter 1 are the steady-state equations for the transmission line shown in
the Figure 1.1b. The original equation in regard to a phase a conductor covering transient phenomena is
a differential equation

mVa(t) - nVa(t) = {(r” + rg) + (Laag +Lg) %}Iu(t) + {rg + (Labg +Lg) %}Ib(t)
7.1

+{rg + (Lacg + Lg) %}IC(I)

where V(r), I(r) are complex-number expressions.

Equation 7.1 and Equations 1.3 and 1.4 are in the same form as each other except for the
displacement of jw < d/dt. In exact terms, the general form of the equation was originally a
differential equation in d/dt, which can be replaced by jw for limited applications of steady-state
analysis.

The matrix Equation 1.3 using d/dt (instead of jw) can be transformed into the symmetrical
domain by the same procedure explained in Chapter 2, resulting in the equation

0 +Lo% 0 0
n"o(0) Vo(0) 4 Io(1)
W10 = V0] = 0 rtLio 0 L)
V20| Va0 7] 20
0 0 ry+ Ly 7 (7.2)

where ro =rs + 2rp, Lo=Ls+2L,
rl:rs—zrrm Ly =L;— Ly

and V(z), I(f)are complex-number quantities
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Extracting the real part of the above equation,

ro + Lo i 0 0
dt -
mVO(t) nVO(t) d l()(l‘)
a1 (O] = |1 ()| = 0 ntLio 0 iy (1) (7.3)
mVZ(Z) nVZ(I) d iZ(t)
0 0 r+L—
dt

where v(t), i(t) are real-number quantities. Equations 7.2 and 7.3 correspond to Equation 2.15.

Now we can recognize by the same analogy that all the equations and the transformation
procedures described in the previous chapters are perfectly preserved for transient phenomena with
symbolic replacement of jw < d/dt (or the symbol s = d/dt of the Laplace transform). Of course,
correlations among the a~—b—c, 0—1-2 and «—ff—0 domains are also preserved by the same transform/
inverse transform equations.

7.3 Comparison of Transient Analysis by Symmetrical
and «— -0 Components

The transient analysis for a phase b—c /- short-circuit fault (2¢)S) is demonstrated in Table 7.2 in which
the following four approaches are compared:

Case Al: symmetrical component method (by the symbolic method with complex numbers)
Case A2: symmetrical component method (by real-number expressions)
Case al: o—f—0 component method (by the symbolic method with complex numbers)

Case al: o—f—0 component method (by real-number expressions).

These different approaches are equivalent to each other from a mathematical viewpoint, but ease of
use is actually quite different.

In the demonstrated fault analysis, the o—f—0 component method provides the solution with or
without the symbolic method. In contrast, the symmetrical components method only provides the
solution together with the symbolic method. In practical engineering, good senses is required to
select the most appropriate method for the individual occasion from the approaches indicated in
Table 7.2.

Reviewing Tables 7.1 and 7.2 overall, the following comments may be made.

The symmetrical coordinates method and the z—f—0 coordinates method are vital basic analytical
methods which enable three-phase circuit analysis as practically very effective approaches whether for
steady-state or transient phenomena. However, the powerful analytical capability of these methods is
especially displayed when they are used in combination with the symbolic method of complex-
number variables.
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Coffee break 4: Weber and other pioneers

In the years following Faraday’s great discovery, scientists made mathematical connections
between electricity, magnetism and optics.

For example, Heinrich Lenz (1804-1865) formulated Lenz’s law in 1833, which stated
that an induced electric current flows in a direction such that the current opposes the change that
induced it; this was later explained as a special case of the law of conservation of energy.
Besides the law named after him, Lenz also independently discovered Joules’s law in 1842.

Franz Ernst Neumann (1798-1895) derived the equation U = d¢/dt (where U is
electromotive force (emf) and ¢ the flux density) in 1841, which was actually a mathematical
formulation of Faraday’s law explained as ‘electrical induction induced on one circuit is
proportional to the decreasing rate of linking flux’.

Hermann Ludwig Helmholtz (1821-1894), William Thomson (Lord Kelvin) (1824—
1907) and other scientists clarified the relationship between electricity and other forms of
energy. James Prescott Joule (1818—1889) investigated the quantitative relationship between
electric currents and heat during the 1840s and formulated the theory of heating effects that
accompany the flow of electricity in conductors. Gustav Kirchhoff (1824-1887), Kelvin,
Henry and George Gabriel Stokes (1819-1903) also extended the theory of the conduction
and propagation of electricity.

Wilhelm Eduard Weber (1804-1891) also has to be specially mentioned as a great
physicist. As a young assistant to Karl Friedrich Gauss (1777-1855), Weber started working
on the experimental validation of the ampere-force. He needed to devise a new apparatus, an
‘electrodynamometer’, which could directly measure the angular displacement produced in a
multiply wound electric coil by another coil perpendicular to it. His investigation of the force in
relation to electricity and magnetism was continued over the period of 1832-1846 by a
theoretical deductive approach as well as by experiment. Finally, in 1846, he published his book
Electrodynamical measurement in which he hypothesized the existence of positive and
negative electrical charged particles within
the conductor and presented a force law
which was dependent on velocity and accel-
eration. In 1846, this was at least 50 years
before the concepts of the proton and electron
were advocated.

Prior to 1846, there existed three see-
mingly valid descriptions of the electrical
interaction:

(1) Coulomb’s law, describing the interaction
of two electrical masses; (2) Ampre’s law,
describing the interaction of elements of
moving electricity; and (3) a description of
the laws of induction, elaborated by Lenz and
Neumann. Weber achieved unification of
these various phenomena under a single con-
cept, the fundamental electrical law. All the
above laws were well explained by the
assumption that the presence of ‘an electrical
tension caused the positive and negative par-
ticles to move at equal velocities but in

opposite directions’. For example, two Wilhelm Eduard Weber (1804—1891)
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parallel conducting wires attract each other when the current in the two wires flows in the same
direction, but repel each other when the opposite is the case. Coulomb’s electrostatic law is of
course a special case of Weber’s general law, when the particles are at relative rest.

Considering all the phenomena of induction, Weber was able to formulate a general
statement of the fundamental electrical law. This showed that the general law describing
the force of interaction of two electrical particles depends upon the relative velocities and the
relative accelerations of the positive and negative (plus and minus) particles.

Incidentally, in his work of 1855 he showed that there is a relative velocity, corresponding to
constant c in his formula, at which the force between a pair of electrical positive and negative
particles becomes zero. He gave the value 3.1074 x 108 m /s to the constant ¢, but failed to
notice the fact that this was closely related to the speed of light. However, this unexpected link
between electricity and optics became quite important and crucial to Maxwell for his theory of
electromagnetic waves.

‘Weber put forward in 1871 the view that atoms contain positive charges that are surrounded
by rotating negative particles and that the application of an electric potential to a conductor
causes the negative particles to migrate from one atom to another. This is yet another prediction
of the proton and electron.

Weber’s discovery in regard to electricity had important revolutionary meanings in physics,
because it led to the construction of a strict scientific unit system based on the theory of
conservation of energy. First, it led to systematic approaches to combine various different
phenomena, then to modern physics based on the concept of the proton and electron, and then
further to today’s quantum physics.




Neutral Grounding Methods

Neutral grounding methods can be classified into the effective neutral grounding (or solidly neutral
grounding) method and the non-effective neutral grounding method. The difference between the
two practices is the difference of the zero-sequence circuit from the viewpoint of power network
theory. Therefore all power system behaviour characterized by the neutral grounding method can be
explained as phenomena caused by the characteristics of the zero-sequence circuit.

Accordingly, neutral grounding methods have a wide effect on the actual practices of various
engineering fields, for example in planning or operational engineering of short-circuit capacity,
insulation coordination, surge protection, structure of transmission lines and towers, transformer
insulation, breaker capability, protective relaying, noise interference, etc. In this section, some typical
features of different neutral grounding methods are presented and their bases set out.

8.1 Comparison of Neutral Grounding Methods

The neutral grounding method of power systems can be classified as follows:

a) Effective neutral grounded system:
e Solidly grounded system

b) Non-effective neutral grounded system:
o Resistive neutral grounded system
e Arc-suppression coil (Peterson coil) neutral grounded system
o Neutral ungrounded system (may be called neutral minute-grounded system), but only adopted
for distribution systems.

Table 8.1 explains in some detail the above classified neutral grounding methods.

The features of each method can be explained as features based on the zero-sequence circuit.
By using a plain expression for the non-effective grounded system, grounding fault currents
can be reduced considerably, but on the contrary higher temporary overvoltages would be caused
during faults. The effective neutral grounded systems (solidly grounded system) has the opposite
features.

Table 8.2 provides typical features of the two different grounding methods from various
viewpoints.

Today’s power systems are the result of continuous growth of networks since they were first
constructed many years ago. Individual power systems have their own history, which has led to the
applied practices of the neutral grounding method as well as the applied power frequency and nominal

Handbook of Power System Engineering Yoshihide Hase
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Table 8.1 Various neutral grounded systems

A Solidly neutral grounded system All the transformers installed at substations
(effectively neutral grounded belonging to the same rated voltage are solidly
system) neutral grounded

B Resistive neutral grounded system All or some selected key transformers installed at
(impedance neutral grounded substations belonging to the same rated voltage section
system) are neutral grounded through a neutral grounding

resistor (NGR). The resistive value [€)] of NGR is
determined mostly so that the grounding current

Ry HRY through the NGR in one phase to ground fault is
limited to 100 A or within 1000 A
C  Arc-suppression coil neutral Some key transformers are neutral grounded through
grounded system (resonant tap-changeable reactors (inductance L,,.), whose taps
neutral grounded system) are selectively controlled so that the inductive reactances

(j2n f - Lpc) are well tuned with the capacitive
reactances (—j/2n f - Cp) of transmission lines over time.

- C The zero-sequence circuit is kept under parallel
Xpc3 IR T quasi-resonant conditions and the zero-sequence

impedance on of the systems have quite large values;

therefore quite effective arc extinction can be expected
during one phase to ground lightning faults:

1 1

7 = —
f 1 : .
O some T JoCs ](_ ol + wCo)
where
Lot 1
@) =
PC= 3wCy

fZOHOO fIO.:'O

D Resistive neutral grounded system This is essentially the same system as that of B,

with neutral compensation reactor except the neutral compensation reactors are
equipped to compensate for stray capacitances Cy
) i of the transmission line, in particular of long
R E]XN TG transmission lines or cable lines
E Neutral ungrounded (isolated This is a typical practice which is adopted only for
neutral ungrounded) systems distribution networks. In this system intentional neutral

grounding connections do not exist, except through
potential-indicating or measuring devices or other very
@_@r high-impedance devices. The grounding current caused
by one phase to ground fault would be limited to values
é‘:@ R of 10 mA to 1 A by a large neutral impedance ,Z,

(the order of a few thousand ohms or more; actually

Ly =00 from an analytical viewpoint)

voltages of today. Therefore, the various applied neutral grounding methods may differ somewhat, in
particular for lower voltage classes with an older history. However, EHV (say, over 200 kV) and UHV
(say, 500 kVor higher) trunk line networks with a younger history have actually been unified by solidly
grounded systems all over the world, mainly to realize EHV/UHV networks with reduced insulation
levels.

In contrast, non-effective (high-impedance) neutral grounding methods have still been widely
adopted for lower voltage lines and distribution networks by several countries for reasons of traditional
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history on one hand, and engineering viewpoints on the other hand. The latter may be summarized as
follows:

o The largest feature of the non-effective neutral grounding method is that the continuous/temporary
earth—ground flowing current (31y) is considerably reduced under normal or fault conditions. Its
greatest advantages in particular for distribution systems concern human security and suppression of
noise interference. These are quite important matters, especially in residential areas covered by
distribution networks.

Remarkable reductions in the system insulation level or cost by adopting the solidly grounded
method cannot be expected in the lower voltage or distribution networks.

Changing the neutral grounding method of existing networks is practically almost impossible,
because major modifications or reform of existing engineering practices would be required. For
example, the basic design of substation earth grounding practices (grounding varied mats, counter-
poise, etc.) would have to be revised. Most arresters, protective relays and some other substation
equipment would have to be replaced and so on.

8.2 Overvoltages on the Unfaulted Phases Caused
by a Line-to-ground fault

If a phase a [-g fault (1¢G, V, = 0) occurs, the power frequency voltages on the unfaulted phases
Vi, V. are given by Equation 3.10. Accordingly, the phase ¢ power frequency voltage V. would
become the value of the following equation during the phase a fault:

(a—l)f—ZO—O—(a—az)
2
. 174 :(a—l)on-i-(a—a)fZl: iZ,
/E, 2o 242 o,
le
, o+ jv .
~ V33
- o~ 8.1)
0% 04y
o+ J
where  ,Z,= (R\+jpXy 2= R+ X
s iR %o R shy ot
fX1 fX1 fX1 le ot
Z1=r%

In this equation, voltage V. is expressed as a ratio of normal line-to neutral voltage (operating
voltage) E - k=V./ fE is the ratio of temporary overvoltage with power frequency caused on
unfaulted phase c lines during the phase a to ground fault. The absolute values of k for unfaulted
phase voltages V},, V. are the same.

Equation 8.1 for the ratio can be expressed as curves with parameters J, v and ¢ on a coordinated
graph. Figure 8.1 is a typical example under the parametric conditions of 0 = fR /fX =0~
400, v=—10 to +10, where ¢ = fR /fX =0 is assumed. Also see Figure 21.2 in Chapter 21
for 1oca1 detail of the same curve.

The term v = /X 0 / X . should have a positive value of probably 0—4 so that the zone v <0 is of
course unrealistic under the practical conditions of a power system. The condition 6 =0 to + 1 corres-
ponds to a solidly grounded system and d =5 to +o0 to a non-effective neutral grounded system.
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where (R = 0 is assumed
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Figure 8.1 Overvoltage ratio of sound phase (phase ¢) under phase a /-g fault

Figure 8.1 as well as Figure 21.2 indicate the following.

For the non-effective neutral grounded system (6 =5 to + oo, v = X0 / X =0to+ 4), when-
ever the phase a [-g fault occurs, the unfaulted (sound) phase voltages Vj, V. increase and the
temporary phase voltages become approximately k = /3 times nominal voltages.

For the solidly neutral grounded system (6=0to+1, v= ,X;/ X, =0 to+4), assuming
0= 1.0, the temporary overvoltages caused by the same fault would increase by k = 1.2—1.3 times,
and furthermore k would be around 1.0-0.8 for the range 0 <d < 1.

The above-described temporary overvoltages caused on the sound phase conductors by 1¢G is
actually one of the very important bases affecting the concept of insulation coordination of individual
power system networks. In other words, the required insulation level against continuous/temporary
power frequency overvoltages of individual power systems would be decided from the overvoltage
coefficient k. This will be discussed in detail in Chapters 20 and 21.

Incidentally, the overvoltages caused by a double /-g fault (2¢)G) would be generally lower than
those caused by 1¢G. However, the overvoltage ratio by 2¢G as well as 1¢G should preferably be
investigated in the same way. In contrast, three-phase faults (3¢S, 3¢G) and line-line faults (2¢S) are
of no interest.

8.3 Possibility of Voltage Resonance

We have learned that the solidly neutral grounding method is advantageous from the viewpoint of
temporary overvoltages and consequently from that of the required insulation levels. However, one
potential weak spot of the solidly neutral grounded system has to be considered, that is the potential
possibility of series resonance (or quasi-resonance) phenomena.

Figure 8.1 indicates the existence of a serious series resonant area in v < X0 / X < 0. In Figure
3.2b, showing a single phase-to-ground fault, or in Figures 1b and 2b, showing conductor opening,
we can imagine that for the cases where Cy, C, and Cj exist in positive-, negative- and zero-sequence
circuits, LC series resonant local loops would arise in the circuits. If ijO or ij | become negative
(capacitive value), regardless of the time interval, serious abnormal overvoltages would be caused.
Although such resonance conditions seldom occur, engineers would still have to examine several
irregular conditions including unbalanced short-circuit modes and open-conductor modes under
different network connections.
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It must be stressed that there are serious reasons why the stray capacitance C of networks has been
increasing in today’s networks, in particular in big cities. First of all, trunk lines as well as low-voltage
distribution lines of large city areas, are based on cable lines whose line constants are one-fifth smaller
L and 20 times larger C per kilometre in comparison with those of overhead lines. Moreover, the
system may be a meshed network with several routes and a number of parallel circuits per route to meet
large-load capacity. As a matter of fact, networks in big city areas contain very ‘overcrowded’ L and C
constants.

Accordingly, careful examination is preferable in order to remove potential reasons for such
possible local resonance, or to reduce continuous waveform distortion caused similarly. (These
problems will be investigated further in Chapters 20 and 22).

8.4 Supplement: Arc-suppression Coil (Petersen Coil)
Nevutral Grounded Method

The principle of the arc-suppression coil (Petersen coil, PC coil) neutral grounded method is shown in
Table 8.1(C). The actual transmission line has stray capacitances Cy, C», Cy so that the zero-sequence
circuit is a parallel circuit of the impedance at neutral grounding part Z,. and zero-sequence line
capacitance C. Now we recall Equation 3.10 and the equivalent circuit in Figure 3.2 of the fault 1 $G.
If the zero-sequence impedance of the neutral point Z . is tuned with — jX., = 1/jwC, this means
that 12y =00, Ly — 0 and A= 3 Ip — 0 in Equation 3.10, so we can expect easy extinction
of the grounding current whenever the 1¢$G fault occurs.

This practice was developed in Germany around 1918 and then spread to several countries as a good
instance of the solidly grounding method. However, the practice had some weak points as follows:

o Tuning of Z ) to — jX,, in the zero-sequence circuit may be easy for smaller power systems with
radial feeder connections. However, it is not so easy for large power systems which include several
substations that must be neutral grounded, and/or for loop-connected power systems.

o High-speed detection of the 1¢G fault by protective relay is not necessarily easy because
/-Ia = 3f10 —0.

o The practice is useless against double phase faults.

o If a transformer with a suppression coil is tripped for any reason, the tuning condition of the system
would be at least broken, or the power system might lose its neutral grounding point as the worst case
and suffer unstable overvoltages.

Consequently, most of the power systems where the PC coil used to be adopted have been switched to a
resistive grounded system or solidly neutral grounded system. It may be said that the PC coil neutral
grounding method has actually become a historical feature which can be accommodated in smaller
power systems based on mainly radial connections.
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Visual Vector Diagrams of Voltages
and Currents under Fault Conditions

In this chapter, diagrammatic solution of voltages and currents under various fault conditions is
introduced. Simple and plain knowledge in regard to the behaviour of three-phase voltages and
currents under various fault conditions and the easily derived method for that are quite important in
various practical engineering activities.

9.1 Three-phase Fault: 3¢S, 3¢G (Solidly Neutral
Grounding System, High-resistive Neutral
Grounding System)

The equivalent circuit of a three-phase line-to-line fault (3¢S, 3¢G) and the voltage distribution by
distance between the generator and the faulting point f are shown in Figures 9.1a and b, where x| is the
positive sequence reactance of total line length. The voltage at arbitrary midpoint m can be derived as a
function of k(k; = 0 ~ 1) by the equation

X] .
ky :q)c_17 X=Xty = (I =kp)x1 +kix;, A=jx D
E E
II—K:_]_ L=1Iy= @)
X1
V, =0, V,=,V,=0 ©)
1 s V2=V
1% I V. v, ©-h
m”1 1 i m'2 _m'0
= g, m2_m0_
E _JVET T BT OE @
Vo= Vo=4V.=0 ®
\% .
=k, mob =k, "= aki ©

Accordingly, the voltage vectors at point m can be drawn as shown in Figure 9.1c by the parameter
of k. Finally we can draw the three-dimensional vector diagram, Figure 9.1d, where the current
vectors are the same at any point because leakage current is neglected, and the phase angle is
approximately 90° (say 85°, considering line resistances) lagged from the voltages.

Handbook of Power System Engineering Yoshihide Hase
© 2007 John Wiley & Sons, Ltd



152 9 VISUAL VECTOR DIAGRAMS OF VOLTAGES AND CURRENTS

( the figure for
A k1=04
Vi=kE
point f E AR
point m I A

/V

P ! m\Vl fixlxl v t—p*1 — |1 >

\ / 4(1—]{:1))61 >|<»k1)€1->
X ———>

(@) ()

Figure 9.1 Three-phase fault: 3¢S,3¢G (solidly neutral grounding system, high-resistive neutral
grounding system)

9.2 Phase b-c Fault: 2¢S (for Solidly Neutral Grounding
System, High-resistive Neutral Grounding System)

The equivalent circuit and the related voltage distribution through the series circuit of positive- and
negative-sequence reactances are shown in Figures 9.2a and b.
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Figure 9.2 Phase b—c fault: 2¢S (for solidly neutral grounding system, high-resistive neutral grounding

system)
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The related equations are

71
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9.2)

The vector diagram in Figure 9.2c¢ for arbitrary point m is derived from Equation 9.2(7), and the
diagram in Figure 9.2d for fault point f is a special case with k=0.

The fault currents in the case of 2¢S become

V3
Iyl = It =

which is 0.87 times the current in the case of

3¢S

E
X1

E

X1

Zero-sequence voltage and current are zero in this case, so that neutral voltage is zero potential at
any point. Accordingly, the equation £ = [V, = fVa (where I, = 0) is found and the phase a to
ground voltage ,,V, at an arbitrary point m is almost not affected by the distance from point f.
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9.3 Phase a to Ground Fault: 1¢G (Solidly Neutral

Grounding System)

The equivalent circuit of this case is given by Figure 9.3a, from which the related Equation 9.3 as well

as the diagrams in Figures 9.3bl and b2 are derived in a similar way to that of Section 9.2.

Figure 9.3b1 is drawn to satisfy precisely the circuit condition of Figure 9.3a, that is the straight line

ad is divided by points b and ¢ which are determined to satisfy

the ratio

ab:bc:cd=x;:x;:x9=1:1:v

f Vi, 7 V, are drawn at point b and Voat point c. The arrows for fVZ, I V,, are in the opposite direction

to that of ,V because (V| = —(,V, + ;Vp).

VY is drawn at the point b/, which divides ab by ab’ : b’b = pX1 ¢ gX1e Vo, Vo are derived

analogously.

Figure 9.3b2 is obtained by folding Figure 9.3b1. The related equations are
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Figure 9.3 Phase a to ground fault: 1¢G (solidly neutral grounding system)
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point m
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(d) voltages, currents at points f, m

source voltage

(e) voltages and currents overview

Figure 9.3 (Continued)

Accordingly, Vi Vo, fVoand Vs,V are easily calculated by referring to Equation 9.3(D—@
or Figure 9.3b2. Then, referring to Equation 9.3(5), the phase voltages at fault point f,
7 Vs 7 Vy, ¢ Ves can be drawn with the parameter v = xo/x; as is shown in Figure 9.3c. The
parameter v is v = xo/x; = 0to2or3 at most for the solidly neutral grounding system, so that the
magnitudes of unfaulted phase voltages Vi fV, are around 0.8-1.1. In other words, jumping
overvoltage phenomena of unfaulted phases do not occur for 1 ¢ G in the solidly neutral grounding
system, which is obviously a great advantage from the viewpoint of reducing the level of insulation
coordination. This is the essential reason why modern EHV and UHV systems over 200 or 300 kV
utilize the solidly neutral grounding system without exception (see Chapters 20 and 21).
Figure 9.3d shows the vector diagrams at points f and m and Figure 9.3e is the three-dimensional
overview of the vector diagram of the total system.

Incidentally, Figure 9.3c corresponds to the case which was studied in Section 8.2 and the resulting
Figure 8.1 (where 6 = 0). If a high-reactance neutral grounded system of large V (say, v = 8 or 10) is
assumed, unfaulted phase voltages Vo fVe would become /3 times E as shown in Figures 9.3c—e.

9.4 Double Line-to-ground (Phases b and c) Fault:
2¢4G (Solidly Neutral Grounding System)

Equation 9.4 and Figure 9.4 can be derived in the same manner as in the previous section. The related
equations are
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Figure 9.4 Double line-to-ground (phases b and c) fault: 2¢G (solidly neutral grounding system)
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9.5 Phase a Line-to-ground Fault: 1¢G
(High-resistive Neutral Grounding System)

Equation 9.5 and Figure 9.5 can be derived in the same way. The related equations are
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9.6 Double Line-to-ground (Phases b and c) Fault:
24$G (High-resistive Neutral Grounding System)

Equation 9.6 and Figure 9.6 are derived in a similar fashion:
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Figure 9.6 Double line-to-ground (phases b and ¢) fault: 2¢G (high-resistive neutral grounding system)



164 9 VISUAL VECTOR DIAGRAMS OF VOLTAGES AND CURRENTS

Coffee break 5: Maxwell, the greatest scientist
of the nineteenth century

James Clerk Maxwell (1831-1879), physicist and mathematician, appeared on the stage of
scientific history in the 1850s.

Maxwell, obeying Lord Kelvin’s advice, started his career as a physicist by reading
Faraday’s results of years of experimentation on magnets and wires. Faraday, virtually
uneducated, was weak in mathematics, so his experiments and achievements were more
intuitive than based on mathematics. His pioneering works had made little sense to mathe-
maticians or scientists of that time, although in his earnest and methodical character he recorded
his experiments in neat notes and papers over 30 years. Maxwell, himself a mathematician,
systematically went back and climbed inside Faraday’s head. Maxwell wrote at the outset,
‘Before I began the study of electricity I resolved to read no mathematics on the subject until I
had read [Faraday].’

Maxwell published his first paper ‘On Faraday’s lines of forces’ in 1855 and 1856, in which
he mathematically formulated Faraday’s theories of electricity and magnetic lines of force as
equations of streamlines. This was the starting point for Maxwell to investigate the true physical
meaning of ‘electric and magnetic fields’. It should be recalled that the existence of ‘ether’ as the
‘unknown medium carrying particles of electricity as well as light’ through space was believed
by most scientists at that time.

James Clerk Maxwell (1831-1879)

Maxwell published his second paper ‘On physical line of forces’ in 1862 and the third,
‘Dynamic theory of the electromagnetic fields’, in 1864, in which he introduced his new
concept that a dielectric material receives tensile stress or compressive stress in the space of a
dielectric field and also introduced displacement current as his logical result.

In 1873, he published his corpus Treatise on Electricity and Magnetism in which his great
presumption of electromagnetic waves in the form of partial differential equations was
disclosed in fully developed form, known today as ‘Maxwell’s fundamental equations of the
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electromagnetic field’ or ‘Maxwell’s four equations’. Maxwell’s original equations were
later reformed by Heaviside into four partial differential equations without impairment, namely

. _ _ oD oD 0D \
leD—p(— 0x+8y+ 8z> (@)
divB =0 (b)
oD (M
tH =1+ —
1o ; + o (c)
B
E+—=0 d
rotE + o (d)

where D: electric displacement or electric flux density (in uniform free space D = ¢ E, %
where ¢ is the dielectric constant)

p: density of charge

H: intensity of magnetic field

E: intensity of electric field (E = —grad V[V /m)], definition of voltage)

I: conduction current or current in a conductor

(divI = —0p/0r, definition of current; I = 0 in an insulated space)

B: magnetic flux density (in uniform free space B = p H, where u is permeability)

Maxwell showed that the above equations could express the behaviour of electric and
magnetic fields and their interrelation, and that all the already discovered phenomena or
equations by other scientists in regard to electricity and magnetism, from Coulomb to
Neumann, could be explained as special cases of his equations.

Maxwell also showed in this paper that the above equations can be reformed into new
equations having the form of wave properties.

These are
O2E O2E
o e @
2
PH  O°H ©
a2~ e

E=E|(x—ct)+Ex(x+ct) (a)
H=H(x—ct)+ Hy(x+ct) (b) 3)

where ¢ = 1/,/eu[m/sec]

Equations 2 and 3 are the wave equation and its solution respectively, and are of course the
same as Equations 18.5 and 18.6 in Chapter 18 of this book for travelling waves on overhead
transmission lines.

The constant ¢ in Equation 3 is the speed of the electromagnetic wave travelling in uniform
space of dielectric constant ¢ and permeability x, which was calculated by Maxwell as the
travelling velocity of the wave in a vacuum, ¢ = 1/,/eu=30 x 108 m/sec.

Electromagnetic waves can travel in a pure vacuum without ‘ether’. Maxwell of course
presumed from this result that light would also be an electromagnetic wave having the
same properties as in electricity and magnetism, and presumed that light as well as electro-
magnetic fields would have the same velocity in free space. He wrote, ‘We can scarcely avoid
the conclusion that light consists in transverse undulations of the same medium which is the
cause of electric and magnetic phenomena.’
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However, it was said that most scientists of that time could not understand Maxwell’s
presumptions and the ‘ether’ was slow to disappear, although Hermann Helmholtz (1821-
1894) and Ludwig Boltzmann (1844-1906) soon made important discoveries justifying
Maxwell’s theory.

Maxwell also continued his work in the kinetic theory of gases. By treating gases
statistically in 1866, he and Boltzmann formulated independently the ‘Maxwell-Boltzmann
kinetic theory of gases’, which showed that temperature and heat involved only molecular
movement, instead of any particle, under statistical conditions.

Maxwell’s great discovery of electromagnetic waves in 1873 was 15 years before experi-
mental proof of his theory by Heinrich Hertz in 1888 and 22 years before the success of
wireless communication by Guglielmo Marconi (1874-1937) in 1895. Einstein’s theory of
relativity was disclosed over the period 1905-1916. It is well known that Albert Einstein
(1879-1955) examined deeply the scientific meanings of the ‘essence of light’ and ‘rest and
motion’, so Maxwell’s theory was always central to Einstein. It is interesting that Maxwell’s
equations needed no revision when Einstein disclosed his theories some 40 years later, although
Newton’s laws had to be revised. Richard Feynmann, Noble laureate and influential
twentieth-century physicist, paid his respects in this way: ‘From a long view of the history
of mankind, seen from, say, 1000 years from now, there can be little doubt that the most
significant event of the nineteenth century will be judged as Maxwell’s discovery of the laws of
electrodynamics.’

To derive Equation 2 from Equation 1 above, in uniform free space

B = pH, where pis constant(the permeability) (a)
D = ¢E, where¢is constant(the dielectric constant) (b)
From Equations 1d
OH
tE = —pu——
1o Ko (©)
From Equations 1c
OE
tH=1+¢ — d
10 te g (d)
Thus
OH O(rot H)
t(rot E) = —rot( pi—— | = —u—>—=
rot(rot E) 1o (,u E)t) =
5 ()
__oua+objor) g_'_ F[)—E
- ot B T
From vector analysis
rot(rot E) = grad(div E) — V2E = —V?E ()
OE OE OFE
dvE=|—+—"4+")=p=
iv (8x+8y+(9z> p=0 ()

in uniform space, where the Laplacian is

»*r PP
2 — [ _ [
V= (8}62 * Oy? * 6z2) ®
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Maxwell’s graph of a magnetic field

From (e), (f) and (g)

? PP or O*E
2p_ (2 R
ViE= (8x2 + 0y? * (9z2)

We now imagine a conductor laid in a uniform medium of conductivity k(= 1/0) along the
direction of the x-axis in orthogonal coordinates.
Ohm’s law is justified for any type of medium, regardless of its conductivity. Then

I=0E )]

However, the air space (or vacuum) of a transmission line is actually an insulated medium of
k =1/ = oo, so the current flowing through the insulation free space is zero. Then

or
I = = k
0, so B 0 (k)
and
Ex=E,E,=E; =0 O]

Accordingly, substituting (k) and (/) into (i) gives the differential Equation 2(a). By a similar
process, Equation 2(b) can be derived by calculating rot (rot H) using Equations (c) (d) (h)
(k) (). The derivation of Equation 3 from Equation 2 is given in Chapter 18.

Maxwell’s graph of a magnetic field surrounding two cylindrical magnets is shown in the
above.
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Theory of Generators

The generator model in Figure 2.10 and its equivalent circuit by symmetrical components in
Figure 2.11 are not strictly correct in the strict sense stated in Chapter 2.

The generator’s appropriate mathematical model is an essential concept with which most engineers
in the field of power system engineering are required to be familiar, because any kind of behaviour
analysis of power systems cannot be conducted without appropriate generator model circuits,
regardless of the analysis for large or small systems and for total or partial systems. It must be
remembered that the so-called ‘connection diagram’ and ‘the circuit’ of generators or any power
system networks are important but quite different, and analytical works are always based on ‘the
circuit’ instead of ‘the connection diagram’.

Our generator model has to be accurate primarily and then easily connected to other power system
networks (such as transmission lines, transformers, other generators, loads, and so on) in the
symmetrical sequence domain. Park’s generator model and equations and the resulting equations
in the d—q—0 domain gives us a satisfactory answer for the above requirement. Due to these theoretical
results, generators can be connected with other network facilities in the symmetrical coordinate
domain, and we acquire the circuit of the power system by which we can analyse the power system
accurately whether by hand or by computer or by analogue simulation.

In this chapter, starting from the basic concept of a three-phase rotating machine, we introduce
Park’s theory for generators based on d—q—0 transformation first, and then examine the generator’s
equations and equivalent circuits in relation to the 0—1-2 domain as well as the d—q—0 domain, and
furthermore demonstrate transient analysis of the generator for short-circuit faults.

10.1 Mathematical Description of a Synchronous Generator

A generator is an electromechanical machine composed of a static part (the stator) and a rotating part
(the rotor) whose relative position is changed periodically by rotating angle wz. In other words, a
generator is a three-phase electromagnetic machine composed of /() and resistance r of stator and
rotor windings (we neglect leakage capacitances of the stator), while the inductance /() should be
periodically changed depending on the relative angular position 0 = wt between the stator and rotor
windings. The voltages v(¢) [V], currents i(r) [A], flux linkage /(¢) [weber-turn] and the magnetic
reluctances of the related magnetic passes should also be functions of wr.

10.1.1 The fundamental model

A generator’s fundamental electrical structure can be expressed as shown in Figure 10.1. Although a
two-pole machine is shown, a multi-pole machine with any number of pairs of poles can be treated as a

Handbook of Power System Engineering Yoshihide Hase
© 2007 John Wiley & Sons, Ltd
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neutral

0 1 (@) + 1) + i(D)
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Figure 10.1 Electrical concept of a synchronous generator

two-pole machine electrically, because armature (stator) windings are identically arranged with
respect to each pair of poles.

We have to investigate Figure 10.1 in detail because it is the starting point for developing the
mathematical model.

10.1.1.1 Rotor

As the rotor has two axes of mechanical rectangular symmetry, we call them the ‘d-axis’ and ‘g-axis’.
Namely:

o d-axis or direct-axis: the axis from the axial centre point o in the pole direction

o g-axis or quadrature-axis: the axis from the axial centre point o in the direction 90° ahead (leading)
of the d-axis.

As the rotor is designed symmetrically for the d-axis and g-axis, we can assume the rotor is as follows.

10.1.1.1.1 Field windings The field winding (named ‘d-axis filed coil’) is a closed circuit
connected to a source of d.c. voltage Ef, and with an inductance to produce flux only in the direction of
the d-axis.

The flux may flow into the left-hand side (i.e. the +-q-axis component) and right-hand side (i.e. the
—(-axis component) of the d-axis, but such +q-axis components would be balanced because of the
design symmetry and must actually be cancelled in total. Therefore we can assume that the field
windings produce flux only in the d-axis direction and not in the g-axis direction. This is the reason why
we can justify the ‘d-axis field coil’ as a very good approximation that the field winding circuit exists
only in the d-axis direction (d-axis field coil.).

10.1.1.1.2 Damper windings Typical hydraulic-turbine-driven generators (vertical type
with salient poles) have amortisseur or squirrel-cage windings in the pole face (damper windings),
which consists of copper bars through the pole connected at their ends as a closed circuit.
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Thermal or nuclear-turbine-driven generators (horizontal type with cylindrical non-salient poles)
have field windings only and do not have such damper windings. However, eddy currents are forced to
flow into the pass of the rotor solid steel for the duration of transient or currrent-unbalanced conditions.
Therefore we have to assume that steam-driven generators also have damper windings.

The currents in these damper windings may be assumed to flow in only two closed circuits, one in
the d-axis and the other in the g-axis as an approximate electrical model again because of the rotor’s
symmetrical design for the d-axis and g-axis.

With all these bases, the rotor circuit model consists of one field coil and one damper coil in the
d-axis and one damper coil in the g-axis, as shown in Figure 10.1.

10.1.1.2 Stator (armature)

The stator has three stator windings in name for phases a, b and ¢ connected at their ends commonly as
the neutral terminal. The three windings are arranged electrically by 120° symmetrically to each other.
We can justify the assumption that the stator windings are sinusoidally distributed along with the air
gap as far as all the mutual effects of the rotor are concerned, because the generator windings are
distributed so as to minimize harmonics in its design.

On these bases, the stator circuit model consists of three star-connected phase a, b, c coils, each of
which has its own self-inductance and resistance as well as mutual inductances between all other stator
coils and rotor coils, as shown in Figure 10.1.

10.1.1.3 Relative angular position between rotor and stator

The stator is immovable and the rotor is rotating counterclockwise at an angular speed of «w = df/dr,
therefore the relative position between the rotor and the stator is measured by the rotating angle of the
rotor d-axis. That is, the rotating position of each coil in time can be written as follows on a d-axis basis:

Stator a phase coil O, =0=wt=2nft
b phase coil i 0, =0+4240° =0 — 120° = wr — 120°
¢ phase coil : 0. =0+ 120° = ot + 120° 10.1)
Rotor field coil : 0° ’
damper d-axis coil : 0°

damper g-axis coil : +90°
The position of each stator coil is a function of time ¢ on the d-axis basis.
Now, refer to Figure 10.1 which has been prepared as the electrical model of the generator in the
phase a—b—c domain in order to introduce the equations of the generator.
10.1.2 Fundamental three-phase circuit equations

We define the quantities of each coil in Figure 10.1 as follows:

W, (), ¥, (1), (r) : total flux linkage of phase a, b, c coil, respectively [Wb-turn]

eq(t),ep(t),ec(r) : terminal voltage of phase a, b, ¢ coil, respectively [V]
iq(1),ip(),ic(1) : terminal current of phase a, b, ¢ coil, respectively [A]
Yra( : total flux linkage of d-axis field coil [Wb-turn]

Via(t) : total flux linkage of d-axis damper coil [Wb-turn]

Yig (1) : total flux linkage of g-axis damper coil [Wb-turn]

Eq : field excitation voltage [V]

i (1) :current in d-axis field coil [A]

i (t) : current in d-axis damper coil [A]

ikg (1) : current in g-axis damper coil [A]
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With the above definitions, the following equations can be derived.
The equation of the stator (armature) coils voltage is

ea(t) %l//a(t) ia(t)
et) | =1 Ly,(0) |—r| ip(r) (10.2)
ec(?) %'//L(t) ic(t)
——— — —— N———
€abc (t) d iabc(t)
dr '/’abc(t)
the equation of the rotor coils voltage is
Epy L ra(1) rfa i (t)
0 | =] &) |+] 1 iat) (10.3)
0 %l//kq(t) Tkq - ikq(l)
Er(1) d voltage drop
I Vr(1)

the equation of the stator (armature) coils flux linkage is

v, (1) — L) | Lp(@) | L) | Jia)|  aga @) | Laka(t) | Larg(2) | |iga(2)
o) | = | Ipa(t) | —lep(t) | Ipc(t) |- [ip(t) |+ |lopa(t) | loka(t) | lokg(t) | - |ika(t) (10.4)
lpc(t) lca (t) lcb (t) _lcc(t) ic(t) lcfd(t) lckd(t) lckq(t) ikq(t)
Vabe (1) Lapc(1) fape (1) Lipe—r (1) ip(1)
and the equation of the rotor coils flux linkage is
Yra(t) laa(®)| Lpa(t) | Lrea(t)| |ia(2) Lyi | Lga| O ia(t)
lpkd(t) = - lkad(t) lkbd(t) lkcd(t) . ib(l‘) + Lﬂcd Ly O |- ikd(t) (10.5)
Yy (1) lkag (1) | lig(t) | lkeq(1) | |ic(1) 0 | 0 |Likg| |ing(t)
—_—— [ S — e —
V(1) Ir_ape(1) Eabe (1) Lr i (1)
where
r : resistance of each stator coil [(]
Tfd> Tkd> Thq : resistance of field d-axis, damper d-axis coil, damper g-axis coil
Luse (1) Laa(2), Ipp(2), lec(t)  : self-inductances of stator coils [H]
abe Lap (1), Ipe(f),etc.  : mutual inductances among stator coils [H]
Lape—r (1) . mutual inductance matrix between stator coils and rotor coils. [H]
Ip_ape(2) : the same as the above. [H]
Ly : mutual inductance matrix among three rotor coils. [H]

The matrices ,p.—p(t) and Ip_qpc(t) are obviously dependent on time ¢, because all the mutual
inductances between stator phase coils and rotor coils (Iy(f), laka(1), lakg()) are affected by the
changing relative position over time between the stator and the rotor. Therefore lafd(t), Luka (1), lakq(t),
etc., include the symbol (¢) to emphasize their time dependency by rotation. Matrices /. (f) and
Ir_ape (1) also include (¢) for the same reason.

The relative position between the phase a stator coil and phase b stator coil does not change all the
time. However, the self-inductance /,,4(f) of the phase a coil and the mutual inductance /() between
phase a and b coils may be affected by the changing rotor position over time, because the flux passes of
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V. as well as ,;, may flow partly through the periodically changing air gap and rotor structure.
Therefore self- and mutual inductances l,4(t), /45 (f) must be time dependent. By such reasoning the
matrix /4. () also has time-dependent inductances and thus symbol (¢).

The self-inductances of each rotor coil Ly, Lika, Likg in the incident matrix I are not affected
by wt. In other words, they are time independent because the field d-axis, damper d-axis and damper
g-axis coils are fixed on the d-axis or g-axis, and all the linking flux of these coils in the rotor are not
affected by the relative position of stator phase coils from the rotor.

The mutual inductance Ly = Lisz between the rotor d-axis coil and the damper d-axis coil also
exists as time-independent mutual inductance. On the other hand, the mutual inductance between the
rotor d-axis coil and the rotor g-axis does not exist physically. Therefore the matrix L is not time
dependent and includes some zero elements as seen in Equation10.5.

10.1.3 Characteristics of inductances in the equations

Now, we have to examine how lpc (1), Lgpe—r(t), Ip—apc(t) can be written as time-dependent (wr)
inductance matrices.

The conclusive equations are shown first by the equations below, followed by our reasons for
justifying these equations.

10.1.3.1 Inductance matrix of stator coils
_laa(t) lab(t) ldt‘(t)
Lape(t) = | Ipa(0) 0] Ipe (1)
lﬂ'l/l (t) le(t) 71&'([)

_ {Ltlll() + Lau2 CQSZQU}

Lapo — Laa2 COS(@a + eb)

Lapo — Laa2 COS(@a + BL)

Lapo — Laa2 COS(Qa + 0[7)

7{Laa0 + Laa2 COSZOb}

Lapo — Laa2 COS(Hh + 95)

Lavo — Laa2 COS(Ou + 0()

Lavo — Laa2 COS(Ob + 06)

—{Laa0 + Laa2 0820, }

Lapo Lapo
—{Laa0 + Laap cos20 “
{Laa0 + Laa2 } — Lo cos(20 — 120°) —Laaz - c0s(20 + 120°)
—{L
_ Laro i {Laao . Lapo — Lagp €020
—Lag - cos(20 — 120°) +Laap - cos(20 4+ 120°)}
Lah() _{Laa()
Lapo — Lag 0820
—Lya - cos(20 + 120°) abo aa +Laa - cos(20 — 120°)}

0, =0, 0,=0—120°

0. =0+ 120°

(10.6)

10.1.3.2 Mutual inductance matrix between stator coils and rotor coils

lufd(l‘) lakd(f) lakq(t)
Lape—F(1) = | Ippa(t) | Iora(t) | lpag(t)

qud(t) ll-kd(l‘) lckq(l‘)
Lypi €080, | Lakg €080, | —Lagg sin0,

= |Lggy €080y | Layq c0s0p | —Lgig sin0), (10.7)
Lyji c080c | Lagg €080 | —Lagg sin0,

Ly cosO Lyjq cost —Lgjq sin0

= | Laga c0s(0 — 120°) | Lagg cos(0 — 120°) | —Lgq sin(6 — 120°)

Laga cos(0 4 120°) | Lagg cos(0 4 120°) | —Lggg sin(6 4 120°)
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lfad(t) lﬂid(t) lfcd(t)
Ip—abe(t) = | lkaa(t) | bpa(t) | lica(t)
lkaq(t) lkbq (t) lk('q(t)

Ly cosO, Ly cosOp Ly cosO,
= Lgka cosOq Loia cos0p | Lagg cosO. (10.8)

— Lagg sin0, | —Lgpg sinOp | —Lgkg sind,

Lyggcos0 | Lyggcos(0 — 120°) | Lygy cos(0 + 120°)
=| Lygcosd | Lyggcos(0 —120°) | Lyggcos(6 + 120°) | = [lape—r(1)]'
— Laig sin0 | —Lgp, sin(0 — 120°)| —Lg, sin(0 4 120°)

where the matrix []’ is the transposed matrix of [], that is the rows and columns are interchanged.

Now let us examine how Equations 10.6, 10.7 and 10.8 are derived.
The total flux linkage of the phase a armature coil can be described as follows:

!pa(t) = - !paa(t) + lpab(t) + lﬁm‘(l‘) + lpafa’(l‘) + ngd(t) + l//akq(l‘)
= _laa(l) : ia(t) + lab(’) : ib(t) + lac(t) : ic(t) (10.9)
+ laa (1) - ira(t) + laka (1) - ika (1) + lakg (1) - ikg (1)

Here ly4(t) = ¥ ,,(t) /ia(2) is the self-inductance of the phase a stator coil (the flux linkage of phase a
coil induced by unit current of phase a coil); I, (¢) = Y4, (7)/ip(¢) is the mutual inductance between the
phase a stator coil and phase b coil (the flux linkage of phase a coil induced by unit current of phase b
c0il); lysa(t) = W op4(2) /iga(t) is the mutual inductance between the phase a stator coil and rotor d-axis
coil (the flux linkage of phase a coil induced by unit current of rotor d-axis coil); and so on.

10.1.3.2.1 Introduction of Equation 10.6: [, (f) The surface of any rotor is uneven
and the air-gap length between the stator and rotor varies depending on the relative position of the rotor
to the stator. In other words, any rotor is not a uniform cylinder from the viewpoint of magnetic passes.
This means that the magnetic reluctance /. (¢) varies depending on the relative angular position from
the d-axis.

Therefore, the self-inductance of any armature winding varies periodically as a function of wt, and
it must become a maximum when the pole (d-axis) is in line with the phase axis, and a minimum when
the interpole (g-axis) is in line with the phase axis. That is, /4, (f) must be a periodic function by
electrical angle 180° and an even function by 6,. In other words, /,,(#) can be written as an equation in
the Fourier series expansion

laa(t) = Lgqo + Lag2 €08204 + Laga 0840, + Lyge cos 60, + - - -

laa(t) = Lggo + Lagy  c0s 20,
) (1)
= ot

The actual armature coil is designed as sinusoidal distribution windings, so that the third term and
other smaller terms on the right-hand side can be neglected. Figure 10.2 shows the state.

The equation of Iy (t) = lp4() is presumed below in the same way:
lap(t) = lpa(t) = Lapo — Lapz c0s(0a + 0) @
here 0, = wt, 0, = wt — 120°
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l(m(t) = L(m() + L3 0820,
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Figure 10.2 Self-inductance of phase a coil

However, the reasoning behind Equation 2 is not still clear, and moreover the physical images and
values of Lyq0, Laa2, Lapo, Lap2 cannot be obtained by the above explanation. Let us examine this
further from the viewpoint of electromagnetism.

The equation of a magnetic circuit is

magnetic motive force (mmyf) = flux (¢) x magnetic reluctance (‘R)
Using symbols
Jnmf, ;¢ : magnetic motive force and flux induced by phase a current i,(t) = 1.0 (unit value).
a®a(t), ,¢4(1) : d-axis and g-axix component of ,¢

Ra, Ry : magnetic reluctance of flux pass for ,¢,(¢) in d-axis direction and for ,¢,() in g-axis

direction

The flux ,¢ induced by current i,(z) = 1.0 can be into the d-axix component ,¢,(r)

and g-axix component ,¢,4(t) as shown in Figure 10.3, where the reluctance R, for ,¢,()
and Ry for 4, (1) are of time-independent constants because 4¢,(7), ap,(t)as well as
i(t) are in synchronization with the rotating d-axix and g-axix.

then
mm
a¢d([) = aER f cos O,
: 3)
ad)q(t) —_ _ ammf cos (Ga + 900) I ammf Sin Ga

Ry Ry

The self inductance /,,(¢) is defined as the number of linking flux induced by i(r) = 1.0 and links
with the phase a coil. Referring the Figure 4.3, the stator phase a coil links to ,¢,() by angle 6, and link
to ,¢, (1) by angle 0, +90°

laa(t) = ;4(t) cosOq + 4, (1) cos(90° + 0,)
mmf 5 mmf . 5. mmf 1+ cos20, — mmf 1— cos20,
”md cos“0, + ”9{7 sin“0, = ”md . 5 %, . 5

(1LY (11
-2 <md+s}zq T \w R, ) 082

A+ Bcos20, = A + Bcos20

mmf (1 1 mmf (1 1
A=q ), ="
2 (md + mq) ) 2 (snd mq) )

“

Here




176 10 THEORY OF GENERATORS

%
3]
. =
o0 5
i u¢ [f) ‘f:?é
9;2 a®y (1) cos (6,+90%) /L\’
.
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aa(l) cos6, = —“mﬂ . Cl‘lS‘Zﬂﬂ.

Figure 10.3 Linking flux of phase a winding coil

The mutual inductance Iy, (¢) is defined as the number of linking flux induced by i,(¢) = 1.0 and links
with the phase b coil. While the stator phase b coil links to ,¢, but by angle 0, and links to a(f)q(t) by

angle (0, + 90°).

then
lba(t) = 44(t) cosOp + 4, (1) cos(6 + 90°)
= onmf cosl, coslp, + onmf sind, sind},
Ry "

_gmmf cos(0q — 0p) + cos(0, + 0p) Jrammf cos(0, — 0p) — cos(0, + 0p)

Ry 2 R, 2
L (LY o e (11
= (‘.Rd +qu cos(0, — 0p) + > \w W, cos(0, + 0p)

= A cos(0, — 0p) + Bcos(0, + 0,) = Acos120° + Bcos(6, + 6)
1
= _{EA — Bcos(0, + Gb)}
Therefore, arranging Equations 4, 5 and 6,

laa([) = lpaa([)/ia (t) = Lyqa0 + Lya2 c0s20, @
Ipa(t) = Wpo (1) /ia(t) = Lapo — Laaz 0804 +0) @

where
A gmmf 1 3

1 1
Lo = —— = ) =2L,
@ =50 i) 2(%d+iﬁq) v

B mmf 1/ 1 1
Luo = —— =" 2V
2= 00 W) 2( ) @

(6

@)

Equation 7 proves that the intuitively written Equations 1 and 2 are correct. Also, L, in Equation 2
is the same as L,y in Equation 7(2), so it can be replaced by L,,». Furthermore, Equation 73)@
indicates Lgq0 > Lagp. Accordingly, /,4(f) of Equation 1 can be represented as the curve drawn in

Figure 10.2.

The time-dependent inductances lp,(2), lec (t), Lac (2), Ipe (1), etc., can be derived analogously. Now,
arranging all these inductances, the inductance matrix of the armature coil, Equation 10.6, is obtained.

10.1.3.2.2 Introduction of Equations 10.7 and 10.8: I, (1), Ir_gpc(t)
For lufy = lfaa(t), lafa (t) is the mutual inductance by the linkage of field flux ¢y, (induced by if(1)) to
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the stator phase a coil. From Figure 10.1, [, (f) reaches its peak value when the field d-axis coil and
the stator phase-a coil are in line, and have a negative peak value at the 180° reverse position.
Accordingly,

Laa(t) = laa(t) = Lyga cos 0, (8

The mutual inductance is obtained as only the term of fundamental sinusoidal form cosfl, without
including higher harmonic components, because generators are mechanically designed so that the
stator mmf is sinusoidally distributed. For l,;y(f) = l;qq(t), the damper d-axis coil is in line with the
field d-axis coil, s0 4z () = ljq(f) is in the same form as Equation 8, namely

lakd (1) = lkad (t) = Laka c0s 04 ©)
For luiq(1) = lag(t), the damper g-axis coil is in the position of 90° ahead of the d-axis. Therefore

Lakg(t) = lkaq(t) = Lagg c08(04 + 90°) = —Leyy sin 0, (10)

In the same way, the mutual inductances (1), o4 (1), etc., in regard to the phase b coil and phase ¢
coil can be obtained by replacing 0, in Equations 8, 9 and 10 with 0 and 0,.

From all the explanation above, the mutual inductance matrices between the stator and the rotor,
Equations 10.7 and 10.8, are obtained.

In conclusion, Equations 10.1-10.8 are the equations for the generator in the a—b—c domain.

10.2 Introduction of d-q-0 Method (d-g-0 Components)

The derived equations are of no use as they are, because inductances are periodically time-dependent
variables and, secondly, the equations cannot be connected with transmission lines and other
equipment. Consequently, we now need to introduce the d—q—0 method.

10.2.1 Definition of d-q-0 method

10.2.1.1 Mathematical definition

The d—q—0 method is a transformation from three variables in the a—b—c domain to the another three vari-
ables in the d—q—0 domain from a mathematical viewpoint. The d—q—0 method is defined by the following
equations including ot in its transformation matrix and e (¢) by real number crest value expression

eall) cos 6, cos 0, cos 0, eall)
21 _sin0, —sin 0, —sin 0, 8
_z S = . 10.10:

o) | =5 ! ! es(1) (10.10a)
eo(?) 5 5 5 ec(t)

edq()(t) D(l) eabc(t)

; cos 0, cos 0, cos 0,

1q(t 17103

.d( ) 21 _—sind, —sin 0, —sin 0, .a( )

ig(t) | =3 ] i : a0) (10.10b)
io (t) 5 5 5 ic (t)

N—— ——
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o) cos 0, cos 0, cos 0, 0
_ 2| —sing —sin 0 —sin 0, )
Bgl) | =3 —sinla | i nle |0
[210) 5 5 5 V(1) (10.10c)
= 2 2 2 ¢
![’qu(t) D(Z) ![’abc (t)
eq(t) cosly —sin0, 1 eq(1)
ep(t) | =1 cosl —sin 0, L[] eq(r) (10.11a)
ec(t) cosl, —sin 0, 1 eo(r)
N—— N——
eabc(t) D71 (t) equ(l)
iq(1) cosl, —sinf, 1 iq(1)
ip(t) | =| cosbt —sin 6, 1| ig(n) (10.11b)
ic(f) cosl, —sin 0, 1 io(1)
N—— ——
iabe(1) D '(1) igq0(1)
W, (1) cos 0, —sind, 1 W ,(1)
V() | = cos0, —sin 0, 1 b, (1) (10.11c¢)
V(1) cos 0, —sin 0, 1 Wo(t)
S—— SN——
where Vape(t) D' (1) Vago(t)
0o =0=wt, 0,=0-120°=wt—120°, 0, =0+ 120° = wr + 120° (10.12)

The transformation matrices D(z), D~ (¢) are functions of time ¢ because they include 0, 0, 0...

10.2.1.2 Physical meaning of d-q-0 transformation method

Now we examine the physical meaning of the d—q—0 transformation by using stator flux linkage

Wo(1), (1), ¥.(¢) and their transformed flux linkages (1), ¥, (1), (1)
The positions of stator phase a, b, ¢ coils to the d-axis are 0,4, 0p, 0., respectively, so that the

components in the d-axis direction of W, (¢), ¥,,(¢), Y. (¢) are Y, (¢) cos 04, Y, (1) cos Op, Y. () cos O,
respectively. Then the definition of y,(¢) by Equation 10.10c is

Va(6)=3{114(1) <03 0, + (1) cos O + (1) cos O}
= %{(d—axis component of ,(t)) + (d-axis component of ¥, (7))
+ (d-axis component of /.(¢))}
The components in the g-axis direction of ,(¢), ¥, (¢), ¥ (r) are ,(t) cos(0, +90°) =

—,(t) sin Oy, Y (t) cos(0p +90°) = —i,(2) sin O, Y.(¢) cos(0, +90°) = —ip.(¢) sin O, respec-
tively. Then, the equation for ,(¢) from Equation 10.10c is

W) = %{—1//[,(;) sin O — W, (¢) sin 0, — (1) sin 0}

= %{ (g-axis component of ¥, (¢)) + (q-axis component of ,,())

(10.13a)

(10.13b)

+ (g-axis component of y.(¢))}

In other words, the physical meaning of y,(¢) is 2/3 times the values of the total sum of the d-axis
components of Y, (¢), ¥ (¢), Y.(r). The meaning of () is the same but for the g-axis.
Vo (¢) from Equation 10.10c is the same as that of the zero-sequence symmetrical component:

Volt) =3 1Wa(t) + (1) + 4 (1)) (10.13¢)

The voltages and currents in the d—q—0 domain are defined analogously.
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10.2.2 Mutual relation of d-q-0, a-b-c and 0-1-2 domains

The theory of the double axes armature reaction, which appears in books on synchronous machine
design, can be said to be the same as the d—q—0 transformation but eliminating zero-sequence
quantities in principle. Although the theory is worthy for generator design, it may be imperfect
and useless as a theoretical tool because it cannot explain unbalanced or transient phenomena,
neither can it provide the method to connect the generator to other network equipment. On
the other hand, the d—q—0 method is a mathematical transformation from the a—b—c domain to the
d—q—0 domain by three variables, covering precisely any phenomenon, and furthermore provides a
‘generator circuit’ to be connected to other network equipments.

Let us examine the mutual relations of the a-b—c, d—q—0 and 0-1-2 domains, put together. The
relations of quantities in the three different domains are defined by the equations below.

For the 0-1-2 < a-b—c domain:

eo12(1) = a - egpc(1) }
10.14
eape(t) = a~" - eqra(1) (1019
For the d—q-0 < a-b—c domain:
equ(l) = D(t) ‘Re [eabc(t)] (10.15)
Re [eqpe(t)] = D71(1) - eqqo () .
For the d—-q-0 < 0-1-2 domain:
eaqo(t) = D(1) - Re[a™ eo1a(1)] } (10.16)
Re[eoi2(1)] = Re[a- D71 (1) - egg0(1)] '

It is obvious that the transformation between the d—q—0 and 0—1-2 domains is defined by Equation
10.16, which is to be derived from Equations 10.14 and 10.15.

However it is to be reminded that e, (t) and e, (t) by Equation 10.10 and Equation 10.11 are defined
as real number quantities, because they are d.c. values under three phase balanced condition as is soon
mathematically confirmed. Therefore, the three phase quantities epc(7), fape(t), Wap(f) in the
Equation 10.10 and Equation 10.11 should be of real number expression.

10.2.3 Characteristics of d-q-0 domain quantities

Now we examine how arbitrary power frequency quantities having positive; negative, zero sequence
components are transferred into d-q-0 domain quantities.

_ o o
ea() coswt | cos(wt — 120°) | cos(wt + 120°)
_ 2| -sinwr |—sin(wr — 120°) | —ssin(wr 4 120°)
eg(t) | = 3
1 1 1
eo(t) 5 5 5
Cag(1) ~ D‘(,) -
t
Eg cos(wt + o) Egp cos(wt + o) E o cos(wt + o)
X< |Eq1 cos(wt + o — 120°)|+ |Eqa cos(wt + op + 120°) | 4| Eqo cos(wt + o)
Egq cos(wr + oy 4+ 120°)|  |Eg cos(wt 4+ 0p — 120°) | |Eqo cos(wt + o)

Positive-seq negative-seq zero-seq
E,1 cos g Ezp cos(2wt + o) 0
=|Eg sinag |+ [—Egsin(Rowr + o) | + 0 (10.17)
0 0 E 0 cos(wt + op)

p-seq n-seq Zero-seq
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namely
eq(t) = Eqp cosay + Egp cos(2mt + o)
eq(t) = Eg41 sinoy — Eg sin(2w1 + 03) (10.18)
eo(t) = Eqo cos(wt + og)

Equation 10.17 and 10.18 explain that positive sequence component appears as d.c. component on
d.q.0 domain which is time independent, while negative sequence component appears as double
frequency component.

Equation 10.18 can be recasted as

{ea(t) +jeq(t)} = Eq1e/* + Eqqe/20M+) (a) 10.19)
{ea(t) +jeq (1)} = Eqyd @) + Eppe@r+22) (b '
or
{ea(t) — jeg(1)} = Eqpe ™™ + EgelCorte)l (a)
(10.20)

{eq(?) —jeq(t)}e*jw’ = Egedortn) 4 |, ellorts) (b)

Therefore, positive and negative sequence quantities by complex number expression and real
number expression can be derived from Equation 10.19(b) and Equation 10.20(b) respectively. Then
symmetrical component quantities by complex number expression as well as real number expression
are written as follows in terms of d- and g-axes quantities.

Positive sequence quantities

e1(1) = Eq ) = {e4(t) + jey (1)} (10.21)
e (1) = Eg cos(wt + o) = Re[{eq(r) + jey(t) }(cos wt + jsin wr)]

= ¢q(t) coswt — e4(t) sinwt (10.22)

Negative sequence quantities

e (1) = Eqe ) = {e4(1) — jey(1)}e 7! (10.23)
es(t) = Eq cos(wt + o) = Re[{eq(r) — jeq(t)}(cos wr — jsin wt)]
= ¢4(t) coswt — ey(t) sinwt (10.24)

Zero sequence quantities
eo(t) = Eqel (@) (10.25)

eo (1) = Eqo cos(wt + op) (10.26)
Now, we have found that:
« Positive-sequence voltage is rotating by angular velocity w in synchronization with the rotor or

d-axis and g-axis, so that it is at a standstill from the d- and g-axes viewpoints. Therefore positive
sequence voltage appears as d-c variables E, ¢! in e4(t) and e,(2).

« Negative-sequence voltage is rotating on a-b-c domain by inverse rotation (angular velocity —w) to
the rotor or d- and g-axis, so that it appears as voltage components of angular velocity 2 in ey(t),
eq(1).

o Zero-sequence voltage is the same as that of symmetrical components.
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Equation 10.19(a), 20(a) is just the symmetrical components voltages looking from the stator, and
Equation 10.19(b), 20(b) may be said to be the same but looking from the rotor.

10.3 Transformation of Generator Equations from a-b-c to
d-g-0 Domain

10.3.1 Transformation of generator equations to d-q-0 domain

We examine the transformation of a generator’s equations, Equations 10.2-10.8, to equations in the

d—q—0 domain using the definitions in Equations 10.10 and 10.11.

10.3.1.1 Transformation of equation 10.2

Now

d .
eapc(t) = E'/’abc(t) — Figpe(1) (10.27)
Reminding D(¢), D~ (r) are the matrices of real number elements,

Left-multiplying both sides by D(),
es0) = ReD0)ea (1] = Re DO § hnel1) | = DO 0)

D(1) { T (O¥ago(1)} = D(O)rD™ (1)iago (1)

:D<r>{%b*<z>}¢dqo<>+n<) 04 Y00 0) — a1

D~'(t) and ¥, (¢) are functions of time #, so the first term on the right-hand side in the
above equation should be expressed as follows by applying a differential equation formula:
(Appendix A.3)

SO0 Vo) = {070 Vo) + D70 )
 ean(t) = DL 5070 [0 + 5 ¥al0) — ria) (1028)

where

0, =owt, 0, =owt—120°, 0,= wt+ 120°

sinf, @ cos 0, d_@a 0
cos 0, —sin 0,1 dt di —sin 0,|—cos 0,0
do iy _d . L doy doy| | do
ED (1) = AL Op| —sinOp| 1] = _S“‘de_ —cos 9;,7 0| = | —sin0p —cos 0,0 I
cos 0.|—sin 6, 1 ! ! —sin 0—cosf,. |0
sinf d0 cosb, 0. 0
¢ dt  dt

di, _d, _do. _do _
At At At dt
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Then
do
cosf, | cosO | cosl. | —sin®. | —cos0.]0 0 |- m 0
d o 2|~ sin 0, —sin 0, —sin 0] — < “— di
D(t) ED (l) = § 1 1 1 - —Slneb —COSG[, 0 'E: di 0 0
3 3 3 —sin0.|—cos 0. 0 !
0 0 |0
D(1) 4D (1)
That is, the d—-q—0 domain equation transformed from Equation 10.2 is
do d
0|-=0 —Valt) :
0] al’| [wal) | | ia()
eq(1)| = |d0 o lol 1L ¥a® |+ E‘/’ HONEIRAG Park’s equation  (10.29)
eo(r)] |4t Yo(1) d io(1)
o] oo 2 Vol)
where
% =w =2nf

10.3.1.2 Transformation of equation 10.3

The equations include only d—q—0 domain quantities, so we do not need the transformation. It is again
written below:

d
— (1)
Ep Zt T rpaifa (1)
0 = El//kd(t) + | rkaika(t) (10.30)
0 di rkqikq(t)
Ewkq(t)
10.3.1.3 Transformation of equation 10.4
Now
'pabc([) = labc(t)iabc(t) + labc,p(l)l'p(l‘) (10.31)
Then
Vaqot) = {DWlasc (D (1) Yiago (1) + {D(lape—r (1) i (10.32)

D)Ly (1)D~(¢)} and {D(t)l,p._r(¢)} in this equation can be calculated from /. (¢) and Lype_r (1)
in Equations 10.6 and 10.7, and the equations below are derived. The result can be proved manually,
although the process is rather time consuming and the demonstration is omitted in this book:

3
Laao + Lapo + ELaaZ 0 0
D(Z)lubc(t)D_l (t) == 0 Lua() + LabO _ §Lua2 0
2
0 0 Laao — 2Lapo
Ly 0 0
=-] 0 L, 0
0 0 Lo
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Lafa Laka 0
D([)labch([) = 0 0 Lakq
0 0 0

Accordingly, the following equations in the d—q—0 domain have been derived as the transformation
of the original Equation 10.4 from the a—b—c to the d—q—0 domain:

l//d(l) L;| 0] 0 id(l‘) Lufd Laka 0 ifd(l‘)
Vo) | == 0| Lg| O] |ig(t) +{ O O | Lakg | " |ixa(1)
l//o(l) 0| 0Ly i()(l‘) 0 0 0 ikq(l)
where 3 (10.33)
self-inductance of stator d-axis coil Lg = Laao + Lapo + iLaaZ
self-inductance of stator g-axis coil Ly = Laao + Lapo — %L,wz
self-inductance of stator zero-sequence coil Ly = Lyu0 — 2Lgp0
10.3.1.4 Transformation of equation 10.5
Here
1/[,:([) = —lp_a},c(l)iahc-(l‘) +LFiF(t) (10.34)
Accordingly,
'/’F(t) = _{lFfabc(t)D_l (Z)}iqu(t) + LFiF(t) (10.35)
and
{IFfabc(t)D_l (t)}
Lggy costly | Lagg cosOp, | Ly cost, cosb, | —sinf, |1 Lyy| 0 | O
= | Lgg €080y | Lakg c080p | Lagg cosOc | - | cosOp | —sinfy |1] = % Laal 0 | O
— Lakg sin0y| —Lgyy sin0p | =Ly sin0, cosO. | — sinf, |1 0 |Lug| O

This equation is the same as the transposed matrix of D(t) I p.—r(¢) multiplied by 3/2. Then

e () =5 DOl (1))

That is, the d—-q—0 domain equation transformed from Equation 10.5 is

Vpa(1) s L] 0 [0] Jia@] | Ly Lpa | O | [iu(r)
V()| = ) Laa| 0 O]~ |ig(t)| + Lga| Lika| O |- ira (1) (10.36)
Vg (1) 0 |Lakg|0]| |io(r) 0] 0 |Lug| |ikg(®)

In conclusion, a generator’s equations in the d—q—0 domain are shown by Equations 10.29, 10.30,
10.33 and 10.36. Note that all these equations are described using only fixed inductances
L (independent of wt), and all the wt-dependent inductances have disappeared.
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Equation 10.29 is Park’s equation, named after R. H. Park, which is simply written as
d , do
1) = —g(t) = rig(t) = (t) &2
eq(?) d[lﬂd( ) — ria(t) — (1) ot

eq(t) = %l//q(t) — rig(t) + wd(z)‘(’;—(z Park’s equation (10.37)
d
“olt) — rio(s)

eo(t) =

10.3.2 Unitization of generator d-g-0 domain equations

Next, Equations 10.37 or 10.29 and 10.36 have to be unitized to obtain mathematical models and to
enable generators to be connected to transmission lines and other equipment.

10.3.2.1 Examination of self-inductances of stator Ly and Lq

On the unitization procedure, first we need to examine what the inductances L; and L, mean
physically.

The inductances Ly and L, are the self-inductances of the stator coils, which can be presumed as
below, from a physical viewpoint.

Ly and L, are made up of two parts:

L, = {the stator d-axis inductance due to flux which does not link any rotor circuits (the leakage
inductance) (*1)}

+ {the inductance due to flux which does link the rotor d-axis circuit (the mutual inductance)}

L, = {the stator g-axis inductance due to flux which does not link any rotor circuits (the leakage
inductance) (*2)}

+ {the inductance due to flux which does link the rotor g-axis circuit (the mutual inductance)}
where

(the stator d-axis leakage inductance) (*1)
= d-axis component of {(slot leakage) + (air-gap leakage) + (end-coil leakage)}

(the stator g-axis leakage inductance) (*2)
= g-axis component of {(slot leakage) + (air-gap leakage) + (end-coil leakage)}

The structure of stator windings, air gaps and end-coil parts (except the rotor) is designed almost
uniformly in any round section. Accordingly, we can justify the assumption *1 = *2 = L.
Therefore

Li=L;+ Layy } (10.38)

Ly =L+ Ly

where L;: the stator d-axis and g-axis leakage inductances caused by leakage flux in the stator which
does not link the rotor coils

L,q: the mutual inductances between the stator and rotor in the d-axis

Lgg: the mutual inductances between the stator and rotor in the g-axis

Now we replace Ly — L; + Lyq and Ly — L; + Lyq in Equation 10.33. Recall that the base rotor
currents for the unitization are defined in terms of inductances L, and L, (instead of L, and L), as
shown later in Equation 10.41, where L,4 and L, are based on so-called ‘effective interlinking flux
between stator and rotor coils’.



10.3 TRANSFORMATION OF GENERATOR EQUATIONS 185

10.3.2.2 Setting the base quantities for unitization

10.3.2.2.1 Notation of base quantities for unitization The base quantities for
the stator quantities (suffix s means stator) are (e, .. sfpacer s¥baser sZbaser shbaser €C-» Where

stase = 27 foase * sLbase @
s¥base — A'Lbase ' xibase @ (10.39a)

s€base = sLbase * shbase = 27 Soase * sLiase * sibase

=2n fbase : s'//base @

The base quantities for the rotor field coil quantities (suffix f means field) are /hase> fibase,

flpbase>fzbasevabase, where

bease =27 foase - bease @

fl//base :bease ' fibase ® (10.39b)

Fevase = fZbase " flbase = 27 foase * fLpase * flvase
=27 foase- fWbase ©®
The base quantities for the rotor damper coil quantities (suffix kK means damper coil) are e, .,
kibaser kVbases kZpase? kLpase> Where

Zbase = 27 foase * Liase )
Woase = iloase * kibase
kCbase = klbase " kibase = 2T Joase * iLpase * klbase (10.39¢)
= 27 foase * 1Wbase ©®
Opase = 27 foase| 1ad/s], foase = 50 Hz or 60 Hz @)

10.3.2.2.2 Definition of base quantities for s-coils, f-coil and k-coils

1. Capacity bases (VApase Or MVAp,se) for s-coils, f-coil and k-coils are unified into the rated stator
winding capacity of the generator. Namely,

€1 s i 3
_ s%base s'base | _ : _ ; — P
VASgbbase = 3( \/é ) ( \/E ) - 5 s€base " slbase = fCbase * flbase = k€base " klbase

where

$€hase> slbase : Voltage and current bases by crest value (10.40)

Chase/ V2, sivase/ V2 ¢ voltage and current bases by rms value

VA3 pbase © VA capacity as multiplication of rms voltage and current

Recall that the voltage and current bases of f-coils and k-coils as well as s-coils are defined so that
the VA capacity base of each coil coincides with that of the stator three-phase-rated VA capacity
base. In other words, the base capacity for the rotor should be selected with the same value as the
rated capacity of stator coils, even though the actual rated capacity of the excitor is far smaller
(about 10%) than that of the stator.

2. Current bases for s-coils, f-coil and k-coils are defined as

Lad * sivase = Laa * plvase = Lakd * klvase } (10.41)

Lag - sipase = Lakg " klbase



186 10 THEORY OF GENERATORS

Base rotor currents are then defined in terms of inductances L4 and L. In other words, base rotor
current and base stator current are defined so that the base of effective flux linkage Y, = (Lbase * ibase)
of the s-, f- and k-coils coincide, instead of L, L, as was explained in Equation 10.38.

3. Voltage bases for s-coils, f-coil and k-coils are subordinately defined from Equations 10.40 and
10.41.

4. Time ¢is unitized below from seconds to radians by the base quantity wpase = 27 foase [ rad/sec] for
simplicity, although it does not necessarily have to be unitized:

= Wpase * | = 27 foase - 1 [rad/sec], df = Opase I = 27 foase - dt [rad/sec] (10.42)

~

Unitized ¢ is counted in electrical angle 7 radians, instead of ¢ seconds. Accordingly, the written
symbols are changed as e, (1) — e4(F), ifa(t) — i (7).
10.3.2.3 Unitization of equations 10.29, 10.30, 10.33 and 10.36

10.3.2.3.1 Unitization of equation 10.29 Recalling df = 27 fi5 - dt, the firstrow of
Equation 10.29 can be unitized as

_ do _ d _ _
ed(t) = 727bease$lpq(t) + 27 foase Efwd(t) - rid(t)

Dividing both sides by Equation 10.39a(7),

ea(F) d@( 1 wq(f)) d ( 1 t//d(t’)) r da(f)
= -2n se = . +2n se = . — C—
s€base fba%e di 27'Cfbage xl//base fba@e di \2n fbase sl//base .s'Zbase stbase
Then ut) = = 0,0 + L0,0) ~ ()
eq4(1) and ey(f) are unitized in the same way.
Unitized Park’s equation is
d- -
_do E— “g(F) —
70) O Ta | % [ - (D)
g() | = %ﬂ 0 0 Ug(0) |+ | %@ | =7 [ (10.43)
eo(f f P io(f
%0(0) 0 o |o Yol©) 210! o)

d-and g-axix quantities are not independent for each other, because ¢, is related with ¥, and e, is
related with y,.

10.3.2.3.2 Unitization of equation 10.30 Recalling df = 27 fi,s. - dt, and dividing
the first equation of Equation 10.30 by Equation 10.39b®),

Ep d( 1 _l//fa(f)>+ i ia(7)

f€base “Cdr\2n JSoase fwbase bease fbase

— d - -
Therefore Ey = d—z_l//_fd(t_) + Fpa i (F)
The second and third equations are divided by Equation 10.3909):

L0 _

Eja o - ifa (F)
0 = El//kd(t) —+ Tid - l_kd(f) (1044)
0 ’qu(t_)

dr r Tig
Eflpkq(t) 1
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10.3.2.3.3 Unitization of equation 10.33 From Equations 10.33 and 10.39Q),

recalling Ly = L; + Lyg,

L

s~base sLbzlse

Ya(f) :7< L L ) Jalf) | Laga(1) .ifd(’_)+ Lya  ira(F)
s'base sl‘base . sl'base fibusc SLbase . sl.base kibasc

s‘pbase
f Ibase k'base

base * Slbase/flbase SLbase .vlbase/klbase

The terms in the large parentheses of the above equation are rearranged below:

Lya= Lafa Lo pivae Lad - gipase  Lad L,
a - . . - . - . - - ‘a
.&‘Lbase ’ Slbase/flbase sLbase " slbase .YLbase " slbase A‘Lbase
P Lakd _ Lakd - glvase _ Lad * sipase _ Lad _ 7
Loa = - - = S = =7 = Laa
sLbase ’ lease/klbase SLbase " slbase SLbase " slbase s™base
Therefore, the unitized first equation is
Vg(f) = —(Li + Lag) - 1a(F) + Laa - i7a(7) + Laa - ika (F)
and the second equation can be unitized in the same way, namely
_ . Lu ]
_ - q -
D) = (L Lag) 10+ (i)
sLbase s'base/ k"base
where
Lo = ( L“kll ) _ Lflkfl ) kibase _ Lag - sipase _ Lag I
akqg = ; ; = . = . = = Lagq
sLpase * slbase/klbase slvase * stbase  sLbase " stbase  sLbase

The unitized first equation is thus

Ug(D) = —(Li+ Lag) - iq(7) + Lag - ikg(7)
The third equation can be unitized by dividing by Equation 10.39aQ):
o(7) = —Lo(D) - io(7)

Accordingly, the unitized equation of Equation 10.33 is

Va(D) Lg | 0 | 0 a(7)
i | == 0 | L, [ o |-["id
Jo(d 01 0 | L [ a0

I:ud Zud 0 l_fd (f)

0 | 0 | La (D

0 0 0 G

where Ly = L; + Ly, I:q =0+ an

W Wg(f) = — (L + Laa) - 1a(F) + (LLW> “ia(7) + (ﬂ) I (F)

(10.45)
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10.3.2.3.4 Unitization

of equation 10.36 From Equations 10.36 and 10.39

*1 *2
S Laa L
7 - - - d -
VD) = — | —2—— |- @ + La - @) + | —L— |- TuaD)
L .f base L ‘f base
S base sibase S base kibase
3 *3 *
. 5 Lakd - Laa - -
Yra(f) = BT A () + ] A “ifa () + Lia * ika (7)
ase ase
kLbase' i kl’base‘ i
s“base f"base
3 *5
. 5 Lakg . o
g D) = — D) + Lug g ()
L . k’base
k™~base i
s“base

Substituting Equation 10.39(3)
%27‘[ fbase : sLbase

©®© into Equation 10.40,

s 2 : 2 : 2
* glbase = 27 foase ‘/’Lbage * flbase = 27 foase * ]{Lbase * klbase

.3 -2 L2 -2
.. 5 sLbase * slbase = thzlse 'flbase = kLbase * klbase
Then
wl = 2 afd _ ELaﬁ] _ Lafa 'fibase _ Lag - slpase _ Lo =Ly
= : = - = " = n = = La
L .flbase 3 L. . .Slbﬂ sLbuse " s'base sl’base " s'base sl’base
fHbase” sbase i
L s“base I f"base
*2 = ﬂ(d, = ﬂ(d, :*4EL_ﬂ“/
flbase . k'base
beasc : kLbase i
k'base fbase
%3 = E akd _ E akd Lakd 'kibase _ Lad ‘sibase Lad o Z J
= - = - = . = - = =1L,
Lb . k'base 3 . Slbﬁ SLbase " sbase SLbase " shbase .vaase
k™base 2 base i
shbase k"base
EL“kq EL“kq Lakq 'kibase Laq “sibase Laq F
= o T A A A R A
Ly Kbase 3 csthase  sTpase  slbase  sTbase T slbase  sTbase
k™base i 28 base i
s"base k"base
Accordingly, the unitized equation of Equation 10.36 is
Va(f) La| 0 10| [@®)] [Lga| Lpa| O | |Gu(®)
GIE 0 [i,())] + | Lpa| Lira| 0 |- |7al) (10.46)
Wi (F) 0 | Lag| O [ig(F) 0 0 | Likg| |ikg(F)

In total, the unitized equations
Lafa, Laka in Equation 10.33

of the generator are Equations 10.43-10.46.
and EL“fd’ Laka in Equation 10.36 are unified into L,4. Also, Lekg in

2

Equation 10.33 and %Lakq in Equation 10.36 are unified into L,,. Furthermore, the stator inductance

matrices in Equations 10.45 and 10.46 are the transposed matrices of each other, which represents the
reciprocal mutual inductances between the stator and the rotor.

10.3.3 Introduction of d-q-0 domain equivalent circuits

Now let us introduce the equivalent circuits for Equations 10.43-10.46. Below we omit (7), and replace
d0/df by s0(s — d/dt) to avoid symbolic complications.



10.3 TRANSFORMATION OF GENERATOR EQUATIONS 189

Differentiating Equation 10.45 and substituting the result into the second term of Equation 10.43 so
that, eliminating the flux variables,

—(ea+50-,) =L+ sig+ 7+ iq+ Laa - s(ia — g — ixa)
—(eg — s0-y,)=1L,- sig + F iy + Lag - $(iy — ikg) (10.47)
—ég = Lo - sio +7- o
Differentiating Equation 10.46 and substituting into the second term of Equation 10.44, then by
clever modification

Ey = —Loa-s(a—itg — ira) + (Lga — Laa) - s(ita + Txa)
+ (L — La) - sipa + Ta - g

0  =—Lu-5(ia— g — Ira) + (Lga — Laa) - s(ifa + ika) (10.48)
+ (Likd — Lixa) - Sikd + T * Trd

0 = —Lag S(ig — irg) + (Ling — Lag) - Sikg + g  ikq

Equations 10.47 and 10.48 are the unitized equations of a generator in the d—q—0 domain, which
were derived from the physical concept of Figure 10.1 and were introduced through a very accurate
mathematical procedure. Furthermore, the quite accurate equivalent circuit of these derived equations
can be drawn as shown in Figure 10.4, which corresponds one-to-one correspondent with the
equations. The related flux linkage can be added to the figure in the form of = L - i if necessary.

Incidentally, we need to examine the inductive element Lgy — Lyg in Figure 10.4. The damper
windings and the stator winding are very close across the narrow air gap so that most of the flux induced
by field current iz; reaches not only to the damper coil but also to the stator coils (see Figure 16.7¢). In
other words, the flux linkage induced by 77z on the damper d-axis coil (Lgq X ifz) and the flux linkage
induced by if; on the stator winding (L X Izz) can be considered to have similar magnitudes, which
then means Ly = Lafa. Next, Ly = Lyq is found by comparing Equations 10.45 and 10.33.

Then

L_ﬂcd =L or L_ﬂ<d —Lw=0 (10.49a)
Accordingly, the inductance (Lgq — Log) in the d-axis circuit can actually be neglected.
Note : d-axis eircuit and g-axis circuit are not
independent for each other, because e,

is related with , and €, is related with
Vi (refer Equation 10.43.)

d-axis _ - - _ _
cirenit— L= Ltd = Liga = Lad = Lya
e
d _ _ _ _ _
S Likd = Lied = Liekd = Lad = Lid
field-branch
" damper-branch
q-axis _ i__ Yy _l gy g 2 Ty
eleus %—SB W’_) ¥ '.Vr!. Lm} E.l-}.'r; __ur,- - E}.‘rﬂ'
7|

« L (unitized inductance) can be replaced by @ (unitized reactance)
0-axis because L = T
cireuit * ¥ (y,) is the total flux linkage of the d-axis (g-axis) circuit, which

corresponds to the d-axis (q-axis) component of the total
stator flux linkage defined by Eq. (10-13a, b)

Figure 10.4 Equivalent circuit of generator in the d—q—0 domain
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Here, we introduce new symbols for inductances Zfd, L, I:kq as are defined by the equations below
and shown in the equivalent circuits:

Ly =Ly — Laa=Lyga — Lpa
Lyg = Likd — Laa = Lika — Lpra (10.49b)
I:kq = kaq — an

The relations between inductances L and reactances X in unitized equations are the same because

_ L 2 -L
[—-L o Mhwe L X o (10.50)
Lvase 27 foase " Lbase  Xbase

Therefore, all the inductances of symbol L can be replaced by reactances of symbol .
Next, we have the relation below in regard to the resistances.

For the comparison of 7 and 7y, rfg < ryg is obvious by nature, so the per unit magnitudes of the
common rotor impedance base are also 7y < Fiq.

For the comparison of 7 and 7y, the rated capacity of the field winding is of the order of 10% in
comparison with the rated capacity of the stator windings in general. However, the per unit base capacity
of the rotor is selected to coincide with the rated capacity of the stator windings by Equation 10.40. This
means that the selected current bases of the rotor flbase, Ibase are approximately 10 times larger than the
actual rated current of the field winding. Accordingly, the impedance bases bease, ZLbase aTE VETy
small in comparison with the stator impedance base Zpse. Then we can justify 7 < 7 as the per unit
value.

In total,

f<<ffd<<fkd, r fkq (10.51)
Summarizing the above sections:

1.  We introduced the fundamental equations of the generator based on the physical model shown in
Figure 10.1,which included wz-dependent inductances.

2. The d—q—0 transformation was introduced and the relations of the quantities in the d—q—0, 0—1-2
and a-b—c domains were examined. Then, the generator equations were transformed into the
d-q-0 domain.

3. The unitized generator equations in the d—q—0 domain and the equivalent circuit in Figure 10.4
were introduced by clever unitization, in that all the inductances are written as wt-independent
constants L, and furthermore with the reciprocal mutual inductances between the stator and rotor.

The relation between the above-derived d—q—0 circuit and the 0O—1-2 domain equivalent circuit will
be examined later.

Further to the summary above, some comments on the linearity of a generator were introduced.
Typical non-linear characteristics of a generator are hysteresis of the core, skin effects of the windings,
and so on. Such non-linearities can be neglected by good design, and any generator can usually be
treated as a linear machine for normal operating voltage range.

Special non-linear saturation phenomena which may be caused by unbalanced currents, higher
harmonic currents and/or overvoltages will be discussed in Chapters 16, 20 and 22.

10.4 Generator operating characteristics and it’s Vector

Diagrams on d-and qg-axes plain

In this section we examine a generator’s dynamic operating characteristics and derive the vector
diagrams on d-and g-axes plain, which enables us visualization of the dynamic behavior.
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We start with the following equation of three-phase-balanced quantities as the initial condition of
generator dynamic behavior (note that all the quantities here are unitized):

eu(f) = Egicos(f+ay) = é1(7)  iy(f) = Iy cos(F+ ) = i1(r)
_ 2 - = ~ 2
éb(f) = Eal Cos (f+ 01 *?ﬂ:) lb(f) =141 COS(ZT+ ﬁ] - ?TE> (1052)

_ _ 2 - = I 2
e.(f) = Egn c0s<t+ ap +?7r> ic(f) = I, cos (T+ﬂ1 +?n)

E,1, I, are the sinusoidal real-number crest values. The transformed equations in the d—q—0
domain are written below, referring to Equation 10.17:

24(f) = Eg1 cosdy  iy(F) = Iy cospy
/() = Eq singy i, (F) = Iy sinf5, (10.53)
&(f) = 0 (@) =0
The quantities under the three phase balanced initial condition on the d-axis and g-axis are d.c.
values (time independent). The situation is the same for flux quantities v, (7), l/;q(f). Equation 10.53
can be modified into the equations

24(7) + jeq(7) = Eq - /™

- _ . (10.54)
ia(F) + jig(D) = Loy - &/

or

e (f) = {eq(d) + jéq(t')}eﬁ =E, - /™) . positive - sequence voltage by complex number
i1 (F) = {ig(F) + jiy(D}e’" = Iy - /") . positive - sequence current by complex number
(10.55)

The following conditions are justified under the initial condition.

~do w
0= E - Whase =10 @

d - d - _ d - .
wad(a = Equ(t) = d—t_lpo(f) =0 ©) (10.56)
de(f) = lqu(f) =0 @

Referring to Equation 10.54, y,4(7), ,(7), o (7) are the d.c. components under the three-phase-
balanced condition so that their derivatives are obviously zero (Equation (2)).
Referring to Equation 10.44, 1, are also d.c. quantities so that si/;; = —7g - itg = 0. In other
words, damper currents i;; and szq are zero under the three-phase-balanced condition (Equation (3)).
Equation (3) may be explained in another way referring to the d-axis and g-axis circuits of
Figure 10.4. Recalling that L - di/dt = 0 for d.c. current, all the inductance elements in the equivalent
circuit are actually short-circuited for d.c. currents iy, i,. Accordingly, the d.c. current distribution of
the three branched passes of the d-axis circuit is dominated by only the inverse ratio of resistances.
Therefore, d.c. current cannot flow in the damper branch at extremely large 7, (see Equation 10.51), so
ira = 0 under steady-state operation.
Now, substituting Equation 10.56 into Equations 10.43 and 10.45, and replacing L by unitized
reactances £ (because L = %), then
ea =Y, —Fig
e, = _de —F- qu (10.57)
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l/zd = —Xy -gd + Xgq * i_fd =—X; iy +Ef
V=% 1y (10.58)
1/70 = —Xp -ip where Ef =Xyq - l}d

Substituting Equation 10.58 into Equation 10.57,

Eg =Xy lg—F-lg
eq = Ef — X4 le -7 qu (10.59)
where Ef =44 - ifg

Rearranging the above equations in the form of &; + jé,,

ea+ jeg = j(q+ jlpq) — (iq + Jjig)
= Xy iy —Fig) + j(—Fg - ig + Xaq - la — T 1y)
= —(F+ j%g)(ia + Jjig) — j(%a — %g) - ia + j%ad * Ifa
then

](‘pd + J‘/;q) = (e_d + je_q) + f({d + ]l_q)
(g + jeg) + (F+ jig) (g + jig) + j(Xa — %) - ig = jRaa - i = jEf (10.60)
Egy -/ + (F4 jig) Tt - P + j(5g — %) - ia = jTaa - i1 = JEy

In Equation 10.60, we define jEf, which is the voltage proportional to the amount of excitation
current ig.

Equation 10.60 is the equation of voltage and current in the d—q—0 domain under three-
phase-balanced conditions. The equations can also be written as the vector diagram of
Figure 10.5, in which the stator voltage and current quantities are drawn as time-independent vector
(complex-number) quantities in d—q—0 coordinates.

Incidentally, as shown in Table 10.1, the magnitudes of %, and %, for the cylindrical-rotor-type
machine (two poles for thermal, four poles for nuclear) are equal:

Xi=% (10.61)

: — e\
O\ Ene'=g+jq, )\
\ s

<

d-axis

Figure 10.5 Vector diagram of generator in the d—q—0 domain under three-phase balanced condition
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Thus the term j(%; — %;) can be neglected, and Equation 10.60 is further simplified as
Eq - e 4 (74 j%,) I e = JXad g = jEr @
Multiplying by e”, (10.62)
Eg - e/ 4 (74 %) Tt LB — J¥ad T - el = JEy - NANG))
It may be said that Equation 10.62(]) explains the generator behaviour which an observer riding on
the rotor can see on the generator, while (2) explains the same behaviour which an observer, standing on

the floor looking into the generator, can see. Equation 10.62 can be written as follows. For the generator
terminal voltage and current equation,

Eat (1) + (F+ jg) - it (1) = jEy - &7 = &(7)
where
positive-sequence voltage : &, (7)) = E, Ced(H) = (eq + jéq) et g (10.63)

positive-sequence current : fal(f) =1, -elFh) = (ia + jig) - e/

generator back-source voltage :  é(f) = jE - el = j%u - ifa - e/t )

From this equation, we can derive Figure 10.6, which is the positive-sequence equivalent circuit for
a synchronous machine under steady-state conditions, and with constant speed and constant field
excitation approximated by ¥y =¥,.

The positive-sequence equivalent circuit of the simple generator model shown in Figure 2.11 is in
the same form as Figure 10.6, although the figure was drawn intuitively without theoretical
explanation.

In case of a salient-pole machine (for hydro-generators of multi-poles), X; and %, differ to some
extent as shown in Table 10.1. If the term j(X; — %;)iy cannot be neglected, there is no simple
equivalent circuit, so Equation 10.61 should be used for detailed analysis.

Table 10.1 Generator’s typical reactances, time constants (non-saturable values)

Ratings Reactances [ %] Time constants [s]

Capacity Frequency Pole X4 Xq Xy Xg Xy X3 Xo T)y T; T) T,
[MVA] [Hz] number

Turbine generator 1300 50 4 W 185 185 38 29 29 29 19 6.9 1.50.03 0.25
800 60 2 W 179 177 34 26 25 25 12 6.4 1.2 0.02 0.40
585 50 4 W 180 175 36 27 27 27 13 8.0 2.3 0.03 0.22
556 60 2 HD 174 172 29 25 24 24 10 5.2 0.9 0.02 0.55
270 60 2 HI 183 183 31 24 24 24 13 6.0 0.9 0.03 0.40
53 60 2 A 2051942217 17179 6.3 0.7 0.03 0.25

Hydro-generator 280 60 24 A 110 78 34 22 24 23 17 7.6 2.3 0.04 0.31
26 60 72 A 11276 42 33 41 37 15 33 1.2 0.03 0.16
21 50 12 A 12371 3323212214 49 1.3 0.06 0.17

Generator motor for 390 50 14 A 13584 271617 17 14 11.0 2.3 0.06 0.35

pumped storage
DG 6 50 8 A 190 1023522192013 49 0.9 0.05 0.08

DG: diegel generator. W: hydro-cooling. HD: hydrogen gas direct cooling. HI: hydrogen gas indirect cooling.
A: air cooling.
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F”| (?) = TM(_“;U_* ﬁ-il

Figure 10.6 Positive-sequence equivalent circuit under approximation Xy =%,

10.5 Transient Phenomena and the Generator’s
Transient Reactances

Now we examine the transient behaviour of a generator caused by sudden disturbances in
the power system (phase faults, feeder switching, sudden load changes, rapid dynamic instability,
etc.).

10.5.1 Initial condition just before sudden change

A generator’s equivalent circuit in the d—q—0 domain is given by Figure 10.4, in which the d-axis
circuit is an active circuit including a d.c. source, while the g-axis and 0-axis circuits are passive
circuits composed only of reactances and resistances. However, recall that these circuits are not
electrically independent. In other words, they are mutually coupled through the flux linkage terms
l/zd, 1/7q. The reason can be explained by Equations 10.43 and 10.57, where ¢, is related to the term
V4> and &, is related to ;.

Next, our generator is connected to the outer part of the power system network (let us call
it the ‘outer system’), which usually includes other generators. The outer system can also be
transformed into the ‘outer circuit in the d—q—0 domain’, and the transformed d-axis circuit
includes d.c. sources if other generators exist. The equivalent circuits of the total power
system can be obtained by connecting each d-, q- and O-axis equivalent circuits of our
generator and the ‘outer circuit’ as shown in Figure 10.8. If we assume three-phase-
balanced steady-state operation of this total system, all the flux/voltage/current quantities
flowing through our generator circuit as well as the outer circuit are of d.c. components in the
d—q-0 domain.

Now, referring to Equations 10.57 and 10.58, the three-phase-balanced initial conditions before
system disturbance are

24(0) = 4(0) — 7 iy (0) (10.64)
2(0) =0, 7(0) =0

V4(0) = %4 - 1a(0) + Ey

4(0) = —34 - 4(0)

"\ (10.65)
lﬁo(o): )

where Ef = Xad * l}d
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Referring to Equation 10.60,

{ea(0) + jeg(0)} + (F+ jxq) - {ia(0) + jig(0)} + j(Xa — %g) - ia(0) = jEf
{ea(0) + jeq(0)} + H{ia(0) + jig(0)} = j{a(0) + b, (0)} (10.66)
20(0) =0, i(0) =0, (0)=

This is the initial condition at ¢ = 0, the time just before sudden system disturbance.

10.5.2 Assorted d-axis and g-axis reactances for
transient phenomena

Now we examine how our generator circuit in the d—q—0 domain behaves over time when the ‘outer
circuit’ is suddenly changed by the system disturbance. The initial conditions at = 0— are given by
Equation 10.64, 10.65, 10.66.

Just after system disturbance at + = 0+, the circuit quantities in our generator circuits would
become the situation described by

Va(0) = 0a(0) + Ay ea(d) = 2(0) + deq  14(7) = ia(0) + Aiy
Va) = (0) + A, &4(1) =4(0) + 42, iy(7) = ig(0) + A, (10.67)
Yo(D) = A &o(f) = A2 io(7) = Ai

10.5.2.1 Time interval t = 0-3 cycles (0-45 or 60 ms)

It should be remembered that the voltage across any L and r series-connected circuitisv = Ldi/dt + ri,
and ri dominates for constant d.c. current because di/dt = 0, while Ldi/dt dominates for sudden large
changes of i because di/dt is large.

Now, we observe the transient phenomena caused at = 0 on the d-axis equivalent circuit of Figure 10.4.

In the first interval just after the disturbance (#=0-3 cycles), all the branches of the d-axis circuit are
dominated by each inductance instead of resistance. Therefore it is obvious that the terminal voltages
of the d-axis are dominated by the composite total inductance looking into the d-axis circuit at the
terminal. In other words, the inductance I:Z in this time interval becomes the composite value of L; and
the three branched inductances Ly, Efd, Lyq. Of course, the g-axis circuit can be derived similarly.
Therefore the generator reactances in this period are

d-axis sub-transient reactance

_ A _ 1
G=la=- Alpd L=
ld
—t—++
Lai Ly L 10.68
g-axis sub-transient reactance (10.68)
_ Ay _ 1
/" " g _
7 B
Lig Lig
The flux linkage of the stator d-and g-axis coils in this period are
‘/;_d(t_) = I/Zd(o) + Ay = 14(0) *fg Aig = yrq(0) + 55 - 14 (0) — %5 - ta (D) (10.69)
wq(f) = lpq(o) + Alpq lwbq (O) S l//q(o) X lq(O) - _Z : ll](f)

The transient terms Aiy, Ai, as well as Aigy, Aigq, Aix, appear in this period.
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10.5.2.2 Time interval t = 3 to approximately 60 cycles
(45 or 60 ms to 1 sec)

As transient phenomena have already been attenuated to some extent, domination of the damper coil
branch by 7, instead of sL;; will begin in this period. As 74 is much larger than Ffa inthe d-axis circuit,
the magnitudes of the three branched pass impedances become the relative orders of magnitude of
SLaa, sLya + g < Fra = (sLga + Frq) (Where s = d/df) so that the damper current is extinguished at all
(ixg = 0). In other words, the damper’s effect has already disappeared in this time. Therefore the
generator reactances in this period are obtained as

- A _ 1
d-axis transient reactance fﬁi =L;=- % =L+ T 1
ld
—
. Lia Ly (10.70)
. . P Ny,
g-axis transient reactance X, = L'y = = Li+Lig =%y
q

The inductance of the g-axis circuit can be derived analogously.
Here, the g-axis reactance x; = ¥, can be justified because the g-axis circuit will not be changed in
the third period described below. The flux linkages of the stator d- and q- axis coils in this period are

Va(f) = Pa(0) + Ay = 4 (0) = % - Aiq = Y14(0) + %5 - 14 (0) — 5 - 1a(7) }

_ _ _ _ N _ _ _ 10.71
By 0) = 0,(0) + ATy =, (0) — 5y - Ay = 0y (0) + 5, - 4(0) — 4 7D 1070

The damper flux terms Aiy, Afy, disappear in this period.

10.5.2.3 Time interval t = 1 sec to steady-state condition

In this period, the field coil branch in the d-axis circuit is already dominated by 7y instead of sL.
As a result, the impedance magnitudes of the two branches reach the relative condition
of sLyg < Fra= (sl}d + rffd), so that the d-axis circuit terminal reactances are obtained from
the following equation (the reactance % in this period is obviously the same as the already derived
)E;):

_ Ay _
d-axis steady-state reactance X; =Lg; = — # =L+ Ly
i
/;" (10.72)
_ l _
g-axis steady-state reactance X, = Ly = — A—_q =L+ Ly
lq
The flux linkage of the stator d- and g-axis coils in this period are
Va(®) = Ya(0) + Mg = 4(0) — %a - Aig = P 4(0) + %4 - 14(0) — %4 - ia(7) (10.73)
l//q(f) = Wq(o) + AWq = ‘//q(o) — Xy A{q = l//q(o) + Xy qu(O) —Xq - Zq(l_)

The transient term Az}d disappears in this period.

10.6 Symmetrical Equivalent Circuits of Generators

The generator’s equations and the equivalent circuits in the d—q—0 domain have been derived. Now we
need to find the equations and the equivalent circuits in the 0—1-2 domain.
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10.6.1 Positive-sequence circuit

The positive-sequence circuit of a generator under transient conditions can be checked by studying the
three-phase short-circuit fault at the generator terminal.

The following conditions are given as the generator’s initial conditions just before a sudden change
at f = 0+:

s0 = 1.0 (the rotor is rotating at constant speed) (D
- - (10.74)
Fa(0) = si,(0) = 0 @}

Equation 10.74(2) does not mean that ,;(7), ,,(7) are unchangeable constants after the disturbance
at f = 0+. It means that only the fundamental frequency components of the fault current can be
calculated after 7 = 0, and the d.c. offset does not appear in the solution.

The flux ;(7) at f = 0+ cannot be changed suddenly from the magnitude of the d.c. quantity i/ ;(0),
because any flux can be changed continuously over time. Accordingly, the voltage quantities sy ,;(7),
sy q (f) in Equation 10.43 must be terms corresponding to the transient components. Therefore, if only
the fundamental currents are to be calculated, this can be accomplished by putting sy ;(7) = s/, (7) = 0.
Applying this initial condition in the calculation does not mean assuming that ,(7), ¥, (7) are
constants, which is why the fundamental frequency components can be calculated accurately.

Now, Equation 10.43 is simplified under the conditions of Equations 10.74 and 10.75:

2q() = =Y, () — 7 iy

() = 0,0 ~ 71} 1075,
2q(7) = Y4(0) — 7+ iy (D)

‘We start our examination of the three-phase short-circuit fault at the generator terminal atf = O thus:

forf =0 eq,(f) =ép(f) =e.(f) =0 (10.76)
Then

forf =0 eq(f) =e4(f) =ey(f) =0 (10.77)

From Equations 10.75 and 10.77, for r = 0

0=eql) = —y(0) = r L) | Wy(0) = —7+al)
Ozéq(f):‘/;d(%—f-fq(f) } 0 @Z(f):ffq(f) } (10.78)

10.6.1.1 Sub-transient period: t = 0-3 cycles (0-45 or 60 ms)
From Equations 10.78 and 10.69, eliminating y/4(7), (7).

l/zd(O)Jer'le(o):f'qu(f) + 5 - 1a(7) ®} (10.79)
Vg (0) + % - 74(0) = —F - ia(7) + % - iy (1) @ '

Putting the above equations in the form of j{(D + jQ} and modifying,

(7 + %) {ia(F) + jig()} + j(%g — %) - ia(D)

T 7 s - o (10.80)
= {Pa(0) + 1y (0)} + % {ia(0) + jig(0)} + j(Xg — %) - ia(0)
From this equation and the second equation of Equation 10.66,
(7 + jig){ia(5) + jig(D)} + j(5g — %) - ia(D)
.y (10.81)

= {2a(0) + j&g(0)} + (7 + jig){ia(0) + jig(0)} + j(xy — %7) - 1a(0) =E
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Now, let us simplify the equation by imagining a cylindrical type of machine:
0 ‘=,x;’ (10.82)
Then

. T .7 =/
(7 + jm){ia(®) + jig (O} = E
or (10833)
(F+ i) (a(D) + gD} - = £ e
Referring to Equation 10.55, the positive-sequence complex-number current of fundamental
frequency can be written as )
0(7) = {ia(?) + jig(D)} -
Then

(r+ 7)) = E" - o

=11 - _ B (10.83b)
where E" = {24(0) + jeg(0)} + (F+ jx,){ia(0) + jig(0)} + j(x5 — x7) - ia(0)

Recall that Equation 10.81 is quite a precise equation only under the condition of Equation
10.74(D®Q), although the equivalent circuit cannot be written. Under the additional condition of

X = )EZ , Equation 10.83b and the equivalent circuit in Figure 10.7a have also been obtained.

10.6.1.2 Transient period: t = 3 to approximately 60 cycles
(45 or 60 ms to 1 sec)

Eliminating y,(f), ¥, () from Equations 10.79 and 10.71,

Gal0) 45 a(0) = 7 50 +5- 70 D -
Ug(0) + %g - 1 (0) = =7+ ia(F) + %4 - 1g(7) @ '
Using the form j{@ + j@} and referring to Equation 10.66,
(F+ i) + gD} + (5 = 5) - 1) 1055

= {24(0) + jeq(0)} + (F+ jig){1a(0) + jig (0)} + (%) — %g) - a(0) =

We assume the equation below in order to find the equivalent circuit, although this is a bold as seen
in Table 10.1:

=5, (10.86)
Then

(F+ ) {ia(t) + jig(t)} = E
or (10.87a)

(74 ) a(®) + jig()}e = E &
In the form of i, () = {iy() + Jig(D)} e

(F+ %) - () = E' - }
where £ = {24(0) + jeg(0)} + (F4 i) {7a(0) + jiy(0)} + J(%) — %) - 14(0)

(10.87b)

This is the positive-sequence equation of a generator for the period of 3-60 cycles and the
corresponding equivalent circuit is shown in Figure 10.7a.
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T rixd — e R
t = 0-3 cycles ) ? ) }_
Eq.(10 - 83) E"é E,Tn eaa(®)
& e o
f%{f\d _.",-‘i a1(®) X2 = e anl r!; %y
t = 3-60 cycles 5 ‘f (b) negative-sequence
Eq.(10 - 87) E et ca1(f) equivalent circuit (f = 0—=)
T+ Jxd __,_V [ L p—— i
’ifﬁ“ i ul(t) "
t=1sectoo i { _}
Eq.(10 - 90) Ed' e?mf) Cant)
(a) positive-sequence (c) zero-sequence
equivalent circuit equivalent cireuit (f = 0—o)

Figure 10.7 Symmetrical equivalent circuit of generator

Recall that Equation 10.85 is quite precise, while Equations 10.87a and b are under bold
approximations of X, =¥,.

10.6.1.3 Steady-state period: t = 1sec
Eliminating y4(f), ,,(f) from Equations 10.78 and 10.73,

l%d(())+fd‘{d(0) =7ig() +%4-ia()) D (10.88)
Uy (0) + 5, - 7g(0) = —F- ig(D) + %4 - Tg() @ '
Using the form j{@ + j@} and referring to Equation 10.66,
(F+ %) {ia(D) + jig(D} + (% — %) - TalF) (10.89)

= {24(0) + jeg(0)} + (F+ jxg){ia(0) + jig(0)} + j(Xa — X%4) - 1a(0) =

This is quite a precise equation, while the equivalent circuit cannot be drawn. Then, we assume
X4 = X4 in order to obtain the equivalent circuit, although this is a little bold for hydro-generators as
seen in Table 10.1:
(F+ jEa)ia(@) + jig(D} = E
or (10.90a)
(F+ jEa){ia(D) + jig()}e/ = E- &/
In the form of i (7) = {iz(7) + ji,(F)} - &/
PRy (D) = B-e = & (i
(F+ %) 510 = E-ef = e - } (10900)
E = {24(0) +jeg(0)} + (7 + j%g){ia(0) + Jjig(0)} + j(¥a — %g) - i4(0)

10.6.2 Negative-sequence circuit

We start from the equations below for the negative-sequence fundamental frequency voltage and
current.
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The real-number expression is

2a(t) = Eq cos(7+ &2) a(1) = Lua cos(f+ p,)
2p(t) = E Fra ot t i(1) =1, i+p L2
ép = L4 COS (%) 3 lp = Iz COS 2 3 (10.91)
_ 2 - - =~ 2
ec(t) = Eg cos <f+ o — ?n) ic(t) = I cos (f—i— B — g)
The corresponding equation in the d—q—0 domain is, referring to Equation 10.17,
e'd(t) =E, COS(2f+ 072) le(l) =1p COS(2f+ 52)
ey(t) = —Eqpp sin(2f+ @) iy(t) = —Ip sin(27+ ) (10.92)

The complex-number expression is

Euae!® %) = euf) = ey (1) |
Tpel PR = 7(7) — ji, (7)

> ) (10.93)
€3(7) =Epe/™%) = {e4(F) — je ()} - e 5

B(0) =T/ = {iy(7) - ji (D)} e

Equation 10.93 explains that the negative-sequence current of Equation 10.91 in the a—b—c domain
flowing through a generator is equivalent to the double frequency current of Equation 10.92 or 10.93
flowing through a generator circuit in the d—-q—0 domain of Figure 10.4.

Now we examine the difference in behaviour of positive- and negative-sequence quantities in the
d-axis circuit of Figure 10.4.

10.6.2.1 Case: positive-sequence current behaviour on
d-axis circuit

Positive-sequence quantities are d.c. quantities in the d—q—0 domain. Accordingly, in the d-axis
equivalent circuit, just after a sudden change in generator condition, 7, soon dominates sL;4 in the
damper branch, and presently 7;; dominates sL in the field branch. Finally the current from the outer
circuit flows only through sL,;. By this reason, the d-axis terminal reactance of the generator will
change from time to time. The behaviour in the g-axis circuit is similar.

10.6.2.2 Case: negative-sequence current behaviour on d-axis
circuit

In this case, all the quantities are of double frequency in the d-axis equivalent circuit. Therefore for the
time just after the sudden change of generator condition, sL;, continues to dominate 7 in the damper
branch, and sl_,fd continues to dominate 7y, in the field branch. By this reason, the d-axis terminal
reactance of the generator for the negative-sequence quantities has the same magnitude as £ (given by
Equation 10.68) and will not change over time. The g-axis terminal reactance of the generator for the
negative-sequence quantities )EZ (given by Equation 10.68) will similarly not be changed over
time.
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Accordingly, for the negative-sequence quantities,

— P4 . ,
VD _ o gy = a0
ia(7)
v () i (10.94)
- ,qu(f) =% U0 =-5ig(?)
Substituting this equation into Equation 10.43,
eald) = 0D + 5540 — 7 1a(0) = & 40 = %4314 — 7 1) 1095,
2q(0) = Wg(0) + s (1) = 7 ig(0) = = - 1a(F) — 5 - sig (1) — 7+ iy (D) '
ig(t) and i,(r) are given by Equation 10.92, and the derivatives are
s de e
sig(f) = d—t_zd(f) = =2l sin(2f + f,) (10.96)
sig(f) = =2l cos(2F + B)

Substituting the current terms of Equations 10.92 and 10.96 into Equation 10.95, and neglecting the
stator resistance (7= 0),

2q(i) = (255 — %)la sin(27 + f,) } (10.97)

e4(7) = (2%, — 51z cos(27 + f,)

Now, refering Equation 10.93 the relation between the negative-sequence voltage é; and the d—q—0
sequence voltages &4, &, is, for the real-number expression,

& (1) = Egp cos(f+ @) = Re[éy(f)] = Re[E e/ (@)
— RelE e/@ta@) o =it
Re[E e e (10.98)
— Re[{eulr) — je, (1)} (cosT— j sind)]
=¢&4(7) cost — &,()sint
Substituting Equation 10.97 into Equation 10.98,
ea(r) = (28 — ;)2 sin(27 + B,) cosf— (2% — 5yl cos(2f + B,) sinf
1 _ = .- 5
=5( Ty — X)L {(sin(37 + f) + sin(T+ B>)}
1 . e 5 P
— 525 — Tl {sin(37 + Br) — sin(i + B)}
S - 10.99)
45 _ 3 _ (
& (f) =~ 5 LI sin(7+ Bo) +§(fg — %)z sin(37+ f)
=35I, sin(f+ f,) + (the third - harmonic term)
_f,/ +x//
where 1 = d a

This is the equation of negative-sequence circuit quantities. The negative-sequence reactance ¥, is
given by (& + X;’ )/2 and will not obviously be changed over time.

Equation 10.99 shows that the negative-sequence current consists of the fundamental frequency
component and the third-frequency term. As a matter of fact, the third-frequency current will appear,
although the magnitude is very small because the term is proportional to (¥ — x;’ ). The negative-
sequence equivalent circuit is shown in Figure 10.7b under the condition of neglecting the third-
frequency term.
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Incidentally, if negative-sequence current flows into a generator for some duration
(which means the second-harmonic current continues to flow in the equivalent circuit of
Figure 10.4), serious problems will arise at the generator. This scheme will be discussed in
Chapter 16.

10.6.3 Zero-sequence circuit

The generator’s zero-sequence circuit is shown as the third equation of Equation 10.47 and the
equivalent circuit is shown in Figure 10.4.

The examination of the zero-sequence fundamental frequency current flowing into the generator is
quite simple. It is given by (real-number expression)

io(f) = %{Za(f) + i (D) + ie(D)} = Lpe/ %) (10.100)

The generator’s zero-sequence circuit equation has already been derived as the third equation of
Equation 10.47 and the equivalent circuit in Figure 10.4, namely

éo(f) = —(F+ j%o) - io (D) (10.101)
The equivalent circuit is again shown in Figure 10.7c.

Now we have found the generator’s symmetrical equivalent circuit in Figure 10.7, we need to
recollect that the equivalent circuit was drawn with the assumption of /) ':,)E;’ for Equation 10.83,
%/, =x, for Equation 10.87 and ¥, = £, for Equation 10.90. These assumptions would be justified for
most of the analysis of power system phenomena (with one exceptional case, namely the terminal fault
of the hydro-generator) because the inductances of transmission lines and transformers connected to the
generator mitigate the possible error in the assumptions. For accurate analysis of generator terminal
faults, we have to go back to the equations before the assumptions of Equations 10.83, 10.87 and 10.90.

Typical reactance values of generators are shown in Table 10.1.

10.7 Laplace-transformed Generator Equations
and the Time Constants

10.7.1 Laplace-transformed equations

A generator’s equivalent circuits in the 0—1-2 domain (Figure 10.7) as well as the «—f-0 domain
(Figure 6.5) include some small assumptions as already discussed. For accurate fault transient analysis
at the generator terminal or a closer point, we need to go back to Equations 10.43-10.46 before the
assumptions and solve them by applying Laplace transforms.

Our generator is rotating at constant speed. The equations of the stator quantities are given by
Equation 10.43 where d0/df = s0 = 1.0. Accordingly, Equation 10.43 can be simplified to

euld) =~y (1) + 5040 — 7 1@
24(1) = ValD) + ()~ 77y (10.102)

(1) = 0(d) — 7o)
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The Laplace-transformed equations are

l
2q(s) = Va(s) + sy (s) = 7+ iy (s) (10.103)

Obviously from Figure 10.4

s (s) = —=%q(s) - sig(s)  or Yu(s) = —%4(s) - iy(s)
slﬁq(s) = —%4(s) - sig(s) Wg(s) = —54(s) - ig(s) (10.104)
so(s) = —Fo(s) - sio(s) Wols) = —xo(s) - io(s)

Xa(s), %4(s), Xo(s) are the generator terminal impedances of Figure 10.4 in terms of the Laplace-
transformed s functions and are given by the equations below, named operational reactances:

1 1
| ) | | <s+T,—d> <s+]_~,—(£)

() =x+ T N 1 N 1 =< X+ L+L+L
T Tta Tkd X Xy X K 1 s+ 1
Xad xfd +T Tid +T ad Lfd kd T;’() -,;0

N _ ). 1
SO R W [ o A W A A
M +32 taa M)\ sH g St

Eliminating flux linkage y from Equations 10.103 and 10.104,
ea(s) = —{F+s-%4(8)} - ta(s) + x4(s) - ig(s)
eq(s) = —xa(s) - ig(s) — {F+5-34(5)} - iy(s) (10.106)
eo(s) = —{F+s-%o(s)} - io(s)

(10.105)

Thus the Laplace-transformed generator equations and the reactances have now been
derived.

10.7.1.1 Open-circuit transient time constants T;o, Tgo- T;o, Tgo
In Figures 10.8a—c, the generator is under operation in connection with the three-phase-balanced outer
circuit, where Xouid, Xomq are the d-, g-axis reactances of the outer network circuit between the
generator terminal and arbitrary point F in the network.

If a generator is suddenly tripped from the network, transient phenomena in the d-, q- axis would be
explained by Flgure 10 8,in that the switches Sw1, Sw2 are simultaneously opened. Accordingly, the

time constants Tdo, Tdo» T;O, qu can be derived as follows (the suffix 0 means opening mode).
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Note: Generator tripping: Sw1, Sw2 opening (Sw3, Sw4 are in the open condition)
Generator short-circuit fault: Sw3, Sw4 closing (Sw1, Sw2 are in the closed condition)

Fault point

‘Yu!n‘f{f Swl

= 5
Xy

/

(a) d-axis: _
transient il
- -
period “71\8“'3 :D Xd T é
T
O
v Swl
Lot
Xy
(b) d-axis: _ Xpig A
g T z % i :> X Xod
sub-transient Swa "
period Ty
- Sw2
dez;
(¢) q-axis: 3 _
transient/ Xheg
e <53y _
sub.-t} ansient ‘7& ::> Xq i E
period Sw4 =

-+ network —>|<— generator ——»

Figure 10.8 Generator’s transient analysis (tripping/short circuit) in d—q—0 domain

—/
10.7.1.1.1 T4o: Open-circuit transient d-axis time constant Sw1 is opened in
Figure 10.8a. Then the time constant is

_ X X, X, X 1 X
T :xadjrxfd [rad] :xadjrxfd - ——[sec] (:@[rad}) (10.107a)
rfd rfd 2 f rfd

=/
10.7.1.1.2 T4,: Open-circuit sub-transient d-axis time constant Swl is
opened in Figure 10.8b. Then

- 2
XadX X
- i LA Tpga — =L
= Caal PSa) ¥ 0 Faa ¥ 50 g | o Ty (10.107b)
@ Tka Tkd Tkd
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— —/1
10.7.1.1.3 T;o = Tq0: Open-circuit transient q-axis time constant Sw2 is
opened in Figure 10.8c. Then

Ty =T = Tag Mg (o) (: kg [rad]) (10.107¢)
rkq rkq

—/ I —/ I
10.7.1.2 Short-circuit transient time constants Ty, T, Tq, Tq

If a short-circuit fault occurs at the point F (Sw3, Sw4 are simultaneously closed) in Figure 10.8, the
time constants of the transient and sub-transient periods would be as follows:

7T fﬁ] + Xomd
— 1d0 < X
Xd + Xoutd
7—// _ 7—4/ XZ + Xoutd
d = 2d0 X
X4 + Xoutd
TV R
A AR UFS
Xg + Xoutq
The generator terminal fault is of course a special case of Xp,s = Xourg = O that gives the generator
transient/sub-transient short-circuit time constants

(10.108)

_ o X L . L.
T, = 7110 < short-circuit transient d-axis time constant
Xd
=/
=11 i Xq L . ..
4= 3=s short-circuit sub-transient d-axis time constant (10.109)
d

=/
qu = TZ =T,y—L short-circuit transientq-axis time constant
X
q
The time constants would become a little larger if the fault point were located far from the
generator.
The short-circuit transient current can be decomposed to the three current terms of {steady-state},
{transient}, {sub-transient} and written in the following form:

74(1) = {steady-state term} + {transient term} - ¢/ I,

i,

q

! + {sub-transient term} - e~/ 7
iy(1) = {steady-state term} + {transient term} - e~
(10.110)

10.7.1.3 Short-circuit time constant of armature winding T,

T, is the time constant of the stator required for the d.c. component of the armature current under the
transient condition of the generator terminals (typically the short-circuit fault there).

The armature phase coil is operating in a position in line with the d-axis under normal conditions
before the short circuit. Whenever a short circuit occur, the rotor d-axis and q-axis alternate rapidly in
position, so that the phase coil is forced rapidly to align with the g-axis.

Accordingly, the reactance of the short-circuited armature winding, which depends upon the mutual

coupling between the armature and rotor circuits, changes rapidly from £ to X;', and is approximately

%()EZ + )EZ) = %,. Accordingly, T, is given by the following equation as an approximate value:

GG e 6 1

= — dl =
“=Top rd =757

[sec] (10.111a)
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T, may be written as follows under the condition of ¥ =%:

_ 9 ¢ . ¢
Ta= =4 4 (10.111b)

1) A+
d

q

(Subtraction of both approximations in Equations 10.111a and 10.111b gives (&) — XZ )2 /
{2r(x) + fg)}. This is also a supplementary explanation of Equation 10.118.)
Note that all the time constants above are unitized [radian] values by base value 27 fp4se:

(1sec <27 frase = 27 X 50 = 314 rad)

Accordingly, the above radian value can be transformed into [sec] by multiplying by 1/(314) =
0.0032 for 50 Hz, or 1/(2n x 60) = 0.0027 for 60 Hz.

10.8 Relations Between the d-q-0 and «-$-0 Domains

The relations between the d—q—0 and «—f-0 domains are determined here.
Referring to Equations 10.15 and 6.6, and reminding D(r) and o~ " are matrices of real number
elements,
eaq0(t) = D(t)Re[eqpe(1)] = (D(t) - ') - Reeyp] (10.112)

where D(t) is given by Equation 10.10a and «~! is given by Equation 6.2.
Then D(r) - o~ ! can be calculated and the following equations are obtained:

eq(1) cos wt sin wt 0 eq(1)
eq(t) |=| —sinwr cos wt 0 || epr)
eo(1) 0 0 1 eo(t) (10.113a)
e4q0(1) D(t)-o! eup0(t)
Namely

eq(t) = coswtey(t) + sinwt eg(r)

eq(t) = —sinwt e, (t) + cos wt eg(r)

eo(t) = eo(t) (10.113b)

with inverse solution
ey (t) = coswtey(t) — sinwtey(t)
ep(t) = sinwtey(t) + coswtey(r)
eo(r) = eo(t)

10.9 Detailed Calculation of Generator Short-circuit
Transient Current under Load Operation

The transient analysis of a sudden three-phase short-circuit fault at the generator terminal end is
demonstrated in this section.

The generator is operating under the three-phase-balanced on-load condition and with constant
speed (d0/di = 1.0) before t = 0. Referring to Equations 10.52 and 10.53 or Figure 10.5, the initial
condition at t = 0 is

e4(0—) = E4y cosdy = E,p sinéy, ig(0—) = I cos B,
éq(O—) =E, sind; = E4 cosdy, qu(O—) =], sin Bl (10.114)

&(0-) =0, i(0-) =0
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As shown in Figure 10.5, d; is the generator’s inner operating angle and is the complementary angle of
oq (i.e. 01 +ap =90°).

Now, the three-phase short-circuit fault suddenly occurs at the generator terminal at 7 = 0 under the
above initial condition, which means, by equations, to obtain the a—b—c terminal voltages &,(¢) =
ep(r) = e.(t) =0 at £ = 0+. It also means, in the d~q—0 domain, to obtain the voltages &,(7) =
é,4(f) = éo(f) = 0at7 = 0+, or, in other words, to shorten simultaneously the d-, g-, 0-axis terminals in
Figure 10.4 or Figure 10.8. Accordingly, the transient current iy (7) in the d-axis circuit after 7 = 0 can
be calculated with the initial voltages &,(0—) but with opposite sign (based on Thévenin’s theorem).
Calculation of the g- and 0-axis circuits is done similarly. That is,

D = o1 4<0)
e, (f) = —e,(0-)1(¢t 0
‘Z(f) _o 1 where 1(¢) :{1( 0) (10.115)
2(7) =0
1(¢) is the stepping function, and its Laplace transform is £[1(r)] = 1/s. Then
euls) = Llea()] = —ea(0-) -y
1 (10.116)
s

The transient calculation can be executed by applying Equation 10.106 for the generator circuit and
Equation 10.116 for the initial condition at the generator terminals in the d—q—0 Laplace domain.
Eliminating e,4(s), e4(s), eo(s) from both equations,

(b s 529} as) + 5y (5) - Tyl) = —2a(0-) -
—5a(s) - Tals) = {4554 (9)} - Tys) = —24(0-) -5 (10.1172)
—{f+ e Xo(s)} . lT()(S) =0
This is a set of simultaneous equations in i4(s), i;(s) which can be solved as follows:
o éq(0-) - (s +xq2s)) +é4(0—)
ld(s) - 1 1 2 @
e+ (Gt o) 1w w)
(10.117b)

—24(0—) + 2,(0—) - (s 4=
Xq

—~—~| ™

Here %4(s), %4(s) are given by Equation 10.105.

Now, Equation 10.117b with Equation 10.105 is the answer to our problem in the d—q—0 and time s
domains, and accordingly what we have to do is to inverse-transform the answer into the d—q—0 and
time # domains, and finally into the a—b—c and time r domains, at least from a mathematical viewpoint.
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However, the inverse transform is very hard and we have to simplify somewhat by introducing
justifiable assumptions as follows:

a) We neglect the third term of { } including 7 in the denominator. This is not a problem because 7
is very small.

b) We apply the simplification as follows:

1 N 1 o 1+1 2
Fl —— S=ETF| 5+ |s==5
Ta(s)  x4(s) T\ X, T,
where T, =——""—

o

bt f;’

This simplification can be justified from an actual engineering viewpoint by considering assorted
reactance values.

(10.118)

¢) We neglect the term including 7 in the numerators of Equation 10.117b(D®). This is also not a
problem because 7 is very small.

Now, referring Equation 10.105, Equation 10.117b is simplified somewhat and recast into the
equations

1 1 )
e4(0—) - s+¢é,00-)}- | s+=||s+=
{ea(0—) - s+ 24(0-)} 7{ (07 s+ al07) ( +7Jdt>>< ' d0> @

le(S)_s~fd(s)'{SZJFY%XJFI}_ . s<s+71,>< T//)(s "‘%S‘H)

{~24(0-) +2,(0-) -5} - ( —)
a0 te0) s i >

’q(s): 2 1
S‘fq(s)‘{SZJFTTasJFI} xg-s<s+T,,><s2+Ts+1)
a

q

—_

(v2—|—2v—|—1)—< +_i—j l—l>(s—|—_1+j 1—1)
7, T, 7 T, 7
3 1 1
—.(S+——a—j)<S+T—a+]) )

(10.119)

Although Equation 10.119 is still complicated, it can be solved relatively easily because the denomina-
torsare already in factorized form. The equations can be modified into expanded equations and the resulting
equations are as follows (the process of the expansion is shown in Supplement 1 and Supplement 2):
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- ki ko k3 kq /04 kq/ — 04
fa(s) =~ +—+—7+ 7 @
st— st+t—= |st+t=—-J st+t=+
/AN /A G P P
e, (0— 1 1
where k; q(_ ), ky=¢e,(0-) - (—f_—>
X X, xq

B} Ea <
ky/04= xgl—< 1+§>:§‘f,, (01 —m)
E. /. T Ea, <
kil = 0=2% (a1+§>=g2 ~ (5 —n)
_ k k k7.0 k7/— 0
q(s):?S_'_ 61 + 717 7 - 7 @
S+Tq, S+T—fa*j S+7—Ta+]
eq(0— 1 1
here ks ed(_ )7 ko= —ea(0—) | 5 ——
q q *q
Eal _ Eul T <
k7107* — /[ —d :—_Z—<——51)
Z Z)CZ 2
Ear = y/ea(0-)" +2,(0-)’
lTo(S):O @

(10.120)

Each term on the right-hand side of Equation () can be inverse transformed into the f domain by

applying Laplace transforms (see Supplement 3):

[ 17 a7 - N
i) = |ki+ky-e 7;t+k3~e 72/’-"-](4[04-6(7]“1>r+k4&4'e(71u+'/)t:|l(l‘)
[ 1 /1 1\ 7 e\ _Ea gt -
— 0-)-{— I /T, R i/ o1/, 7
_eq( ) {xd+<xfi fd) +<T,, x2> XZ e cos(f +
ig(f) = |kstke-e T k0 e G ks — 0y e ) 1(r)
[ 1 (1 ] LTI
B e"(o)'{ff(fi: q> ' } o ¢ sinGi - 81) 1)
io(f) =0
where €,(0—) = E,j cosdy = E,qsind;
&,(0—) = Eqy sindy = E,y cos by
ea(0=)? 4 ¢4(0-)* = Ey
sin(f—a;) = —cos(f+6y1), cos(f—d) = sin(7f+ )

1)

\

1(H®

(10.121)
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This is the solution of the transient current in the d—q—0 and time # domains but without load current.
Referring to Equation 10.64, the load currents are (putting 7 =0 for simplicity)

e4(0—) = %4 - iy (0—) or iz(0-) :Ef%j(o’)

24(0—) = Ep — %4 - 14(0—) i, (0-) = éd(_o—) (10.122)
Xq

6_0(0—) =0 170(0_) -0

The total fault currents are derived by addition of Equations 10.121 and 10.122, namely

- 1 1 - 1 1 - it
() =e,(0—) - L P 7 — e T
w0 =0 { (-2 )7+ (57 )e
+ _—f—#e_’/T" cos(F+dy)
Xa X4
1 1 -/ 1 1 ) _ _
= { (7—_—>e”/7id + (_—/,—T)e”/fd} - E41 cosdy
xd Xd xd xd
e (10.123)
Xa X4
- 1 1 N O L
i) = —24(0-) - (,,> e M 4 =0 oI in(7 4 5))
xq )Cq xq
1 - - E . ~
=== e i/ - Eq1 sin oy +%/l~e7’/T“ sin(7+ 01)
)Cq Xq xq
ih=0 =0

Finally, the above currents are inverse transformed from the d—q—0 domain to the a-b-c domain,
referring to Equation 10.11b:

iq(7) cos 7 — iy (7) sin 7 + iy ()
I, - 2 - 2 -
;,E?) _ id(f)cos<f—?") G sin<f—?"> (D
i (i - 2 - 2 -
k(D) iqg(F) cos<f+ ?7':) —iy(7) sin(f-i— ;) +io(7)
cosft cost
. _ 2n 2n
E - 11\ 7 S B R . Pt
B () (- e (b Do) <m0 73)
d 2n ta M i 2n
cos (f—i— ?> cos <f+ ?>
sinf
1o in(7— 2
Y . < |sin[f—=
+ T eit/yi/'Ealsil’lél' 3
S ( 271)
sin( F+=—
3
cosd| cos(2F+ 1)
< 2n _ = 2nm
s 1(1 1 cos| 01 +— 1(1 1 cos| 2f+0; — —
—Ege e {4 ] 3N+l —5 |- 3
2 x// XI/ 2 xl( f//
d *q o d 7q < 2=
cos<51 ——> cos<2f+ o1 +—>
3 3 (10.124)
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This is our final solution, where:

o The first term is the steady-state term.

e The second term is the oscillatory term with attenuation factors of time constants TJd and Tg.
e The third term is the oscillatory term with attenuation factors of time constant 7—4(1/

e The fourth term is the d.c. attenuation term with attenuation factor of time constant 7.

e The fifth term is the second-harmonic term with attenuation factor of time constant 7.

Besides the fundamental frequency terms and d.c. term, the second-harmonic transient term has

unexpectedly appeared. This term is obviously negligible for the thermal generator (. £} ':,Xz ).

As a numerical check, consider a hydro-generator with & = 0.33, )Zg = 0.41 as one example. In

this case
1{1 1 < 1{1 1 -
{ } of the last term = { ~| Z;+—; | cosdy + = | = — = | cos(27 + 01)
2\x; X 2\x; x

= {2.74cos 51 +0.29cos(2t + 91)}

Accordingly, the second-harmonic transient term is rather small in comparison with the d.c. term
even for hydro-generators.

10.9.1 Transient fault current by sudden three-phase terminal
fault under no-load condition

This is a special case of the above derived equations, where the initial condition of Equation 10.122 is
replaced by the simple equations

0= _q(o_) = éd(_o_)
Xq
= Ef — eq(O—)
0=14(0-) = o

That is,

(10.125)

eq(O—) = Eal CoS 51 = Ef Eal = Ef
and in Bquations 10.123 and 10.124 replacement of e;(0—) =0, e,(0—) = E;, 01 =0,
E, sind; = Ey is carried out.

ed(oi) :Elll Siné_l =0 or 5_1 = O- }

It must be emphasized at the end of this chapter that a power system network, regardless of its size,
can be described as ‘one combined electrical equational circuit’ by virtue of the mathematically
elegant Park’s equation explained here, together with the symmetrical components.

10.10 Supplement 1: The Equations of the Rational Function
and Their Transformation into Expanded
Sub-sequential Fractional Equations

A rational function F(s) whose numerator N(s) and denominator M(s) are of polynomial form with n
and m order respectively (where m = n) can be expressed as

NGs) §"4dis" '+ +dyis+d, b 4 b5+ b,

FO = M6 = e T amas v en o) Gos) )
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F(s) can be expanded into the sub-sequential fractional equation
A A A
Ly 22y 0

s—8] S—8 S — Sm

Fs) =

(€3

S1s 825 .., sm are the roots of M(s). Here, Ax(k =1,2,3,...,m) is a real number if s; is a real-
number root. On the contrary, Ay is a complex-number if s; is a complex-number root.

We examine the next equation as a typical example, whose denominator is a polynomial of fifth
order with three real-number roots —a;, —a, —az and two complex-number roots —o £ jfi:

(s Fan)s - s s o iR+ 25 Ih) “
_ ki ky k3 { ka /04 k41—54}
Ts4a s+a s+as s+o—jB s+a+jp

k1, k2, k3, k4 are real numbers, and the fourth and the fifth terms on the right-hand side are the
conjugates of each other.
Now we try to find k;. Multiplying both sides of Equation 3 by (s + a1),
N(s)
(s+a2)(s+az)(s+o— jp)(s+ o+ jp)

(s+a) Fls) =
C))

k k k4 /0 .
= k1+(s+a1){ 2 4 5 +{ 4 4. +(c0njugate)}]
s+ay s—+az S+O(—jﬁ
Putting s = —ay,
N(—a
ki = (s +ar) F(s),__y = (zar) 5)

(—a1 + a2)(—a1 + a3)(—a1 + o — jp)(—ar + o+ jf)
Thus k; is found. All other coefficients &z, k3, k4 /04, kg/ — 34 can be found similarly. For example,

k4 /04 = (S + m) : F(S)‘s:—ot—kjﬁ
_ N(—o+ jp)
(—a+ jp+a))(—a+ jB+ ar)(—o + jB + a3)(2jp)
ky/ =04 = (s+a+jB) “F(8)|s=s—jp
N(—o— jp)

- P
(=0 — jB+a1)(—a— jB+a2)(—a— jB+ a3)(—2jp) {ka/0a}

10.11 Supplement 2: Calculation of the Coefficients
of Equation 10.120

10.11.1 Calculation of Equation Dk, ko, k3, kg /8, ky/ — 8

24(0—) - s+ ¢é,(0— s L s L
: _{ezz(O) +24(0 )}< +7_,do><+_(;0> - .

o I 2 IS T
fg S(S-I—T,>( T”) (S +i5+1) S+7__l—d S+7_TL;

ks /0 kyl/ — 0
404 ka 4

| B |
S+,I—,—a—j S+T—a+]
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Then
{eq4(0—) - 0+¢,(0—)} (0 + 7_}) <() + _1,>
= dO do

k1=s'le(S)|s:0 =
- 1 1 2
Zeolo+= {0+ (02+Tvo+1)
’ ( 71,)( d’) Ta

The conversion ratio between [s] and [radian] is 1 s < 27 x 60 = 377 rad for 60 Hz (314 rad for
50 Hz base) so that all the associated time constants in Table 10.1 are quite larger than 1 in radians.
Namely, T, > 1, T, > 1, T;> T, T>> Tho, Tao > Tao > 1, T2 > 1, etc.. Then

_g0-) (T, ,Tt;_e-qw—)( _4)4_ _.(L_L)
S (1 7‘2) T o\ 7, =% \g 5

then

Here T)o > T, >Thy>1, T;>1, T;>1, etc, so

{j-ea(0-) +&,(0-)} 7 _ -j , -
/ = = . )= -
k4 54 3 fg ) 2]4 ZXZ {ed(o ) jeq(o )}
_ 2 = 2 =
eq(0—)" +¢,4(0— —é.(0— E,
— (0-) «(02) /tan~! % )-Z—E* Y R

2 a0 T
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E T E, - . T
Cokglog= KL%Z(&I +5) = 521(51 —mn), whered; + 0; =3

In the same way

E1 _ T E1 =
kyl — ':iz< —):LZ— 5 —
4 T %+ 27 (01 — )

Accordingly, the summation of the third and fourth terms of Equation 10.115Q) is

thalds- efe“ﬁ)u kyl — 04 e’(i“)f}

_ Eé_l,l/ e /T {ej(Sl—n+t‘) + e—j<51—ﬂ+f)}
2%
E o -
= =8 T/Ta . cos(i+6))
x
d

10.11.2 Calculation of equation 10.120Q ks, kg, k7/ 1 87

In the same way,

ks=s-1,(s)] _n= — = - =

5= lt](s‘)|570 fg Tg() )EZ fq %,
=

el (TN

6= I _TJ/ = —€4(0—- 7 %
q0 q q

. €a(0—)—jeq(0—=) En , _ _ Ea ( n
kytoy= T/ e T _Zal g el (S __)
7601 = 2% 2w M T \% Ty

Readers might like to find k7/ — 0 by themselves.

10.12 Supplement 3: The Formulae of the Laplace
Transform (see also Appendix A)

£ H =1(r), £} Lia} =T 1(r)

p
(sta)’ + 2

s+ o

Gt +p = 1

=e “cospr-1(r), L7

Also, recalling (s + & — jB)(s + a + jB) = (s + o) + fi%, then
. { A/0 A/—0

_ —at .
s+cx—j[3+s+oc+j[§]_2Ae cos(fr+0) - 1(z)
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Apparent Power and 1ts Expression in
the 0—1-2 and d—q—-0 Domains

11.1 Apparent Power and its Symbolic Expression for
Arbitrary Waveform Voltages and Currents

11.1.1 Definition of apparent power

According to custom, effective power P, reactive power Q and apparent power S=P+ JjO are defined
and applied in relation to fundamental frequency (or power frequency, as the more practical name)
voltages and currents. So, let us examine first the power for fundamental frequency voltage and current
given by the equations

V(1) = Vcos(wt + o) = V2 V, cos(wt + )
i(t) = Icos(wt + p) = V21, cos(wt + p)

where

V, I: the crest values (11.1)
V,, 1. the rms values (suffix ¢ means ‘effective’)

Here

Vv 1

Ve=—pn, l=—72
V2 V2

The instantaneous power P(t) for the above voltage and current is

P(t)=v(t) - i(t) = VI cos(wt + a)cos(wt + ff)
11.2
:%cos(rx—ﬁ) +%cos(2a)t+oc+ﬁ) (2

The first term on the right-hand side is the d.c. component without including time 7, and the second
term is the double frequency component. The instantaneous power P(¢) in this case is the offset-
biased double frequency alternating power as shown in Figure 11.1.

Handbook of Power System Engineering Yoshihide Hase
© 2007 John Wiley & Sons, Ltd
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Instantaneous effective power
P(t) = v(t) - i(t)
v(t) =Veos (ot + )
1(t) =Icos (@t + B)

Averaged effective power

e

0 Time ¢

WY X
w1,

w cos (o — fB): power factor

7
=
=k

Figure 11.1 Instantaneous power P(¢) and apparent power P

The effective power P is defined as the time-averaged power of 13():). Since the averaged value of the
second term is zero, then

P IJTPmdt W cosa—p) =2 . Lcos(a— ) = Velocos@— ) (11.3)

== =—cos(o — f) = —=-—=cos(a — ff) = cos(a — .
T Jo 2 V2 V2 o

where T = 2n/w is the time for one periodic cycle.

As an additional comment, if the voltage and current in Equation 11.1 are expressed by the sine
instead of cosine, only the sign of the second term on the right-hand side of Equation 11.2 is replaced
from + to —. Therefore the definition of P by Equation 11.3 is not affected by the selection of the cosine
or sine.

The reactive power Q is defined by the following equation in response to Equation 11.3:

0 = VI, sin(a — ff) (11.4)

The effective power P and reactive power Q have been defined for the real-number voltage and current
of observable waveforms. The defined P and Q and the apparent power S can be defined as below in the
symbolic method based on complex-number expressions. (In this chapter, all the variables with the
form of a complex number will be expressed by letters with the ‘dot’ notation just to emphasize that
they are complex-number variables.)

For the voltage and current in the symbolic method v(¢), i(f), and for the apparent power,
respectively,

ej(wt+oc) _ Veej(wt+oz)

eJOrth) — [ eilwrth) (11.5)

S=P+jQ=v(1) - i(t)" = VI,e/—F)
cos(ot — B) + jVel,sin(x — ) @

I
=
~

where VI, = (V/V?2) - (1/V2) = VI/2.

That is, the apparent power S =P + jQ is defined as the product of v(f) and i(r)*

(i(t)* is the conjugate of i(¢)). The sign = signifies that the equation is a definition. The definition

of P, Q in Equation 11.5 is the same as that in Equations 11.3 and 11.4. Further, we need to distinguish
carefully the rms values V,, I, and the crest values V, [ in the above equations.
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11.1.2 Expansion of apparent power for arbitrary waveform
voltages and currents

Letus assume a voltage of angular velocity w; and a current of angular velocity w; at an arbitrary point
in a circuit. Then
v(r) = ef(‘“' 1+o)
i(r) = [,e/(@2th) (11.6)
S(1) = 9(1) - i(1)" = Velelllon—on(a=p)

Therefore, S = P + jQ = {the averaged value of ¥(z) - i(¢)"}, that is

§— V,Le/ =P = v 1, cos(ot — f) + jVelpsin(a — f) forw; = ws (11.7)
0 forwy#w; ’

This equation means that the apparent power appears only as the product of voltage and current of the
same frequency. Bearing this result in mind, we examine the power for voltage and current with an
arbitrary waveform.

For the instantaneous voltage and current with an arbitrary waveform v(), i(f)

V(I) _ Veoejozo + Velej((utJroq) + Ve2e_j(2wt+a2) + Ve3ej(3wt+zx3) 4. }
(11.8)

l(l‘) — IeOejﬁo + [elej(f’)t+ﬂl> + ]ezej(zwt"'ﬁz) + ]e3ej(3‘01+/f3) + ...

for the instantaneous apparent power S(t) = P(1) + jO(¢)

S(1) = P(1) + jO(t) = {v(r) - i(1)"}
= {Z Vel kortau) } {z Lo ko) } (11.9)
k=0

and for the apparent power § = P + jQ

§ = P + jQ = {the averaged value of v(r) - i ()"}
= Vooloe/ 0= P) 4 v, 1,1e/=B) 4y p,e/2F) 4y g aeis=F) o

= {2 Veorloxcos(oy — /sk)} + j{z Vel oisin oy, — ﬁk)} (11.10)
k=0

k=0

The apparent power of a single phase circuit for the voltage and current of an arbitrary waveform
has thus been introduced.

11.2 Apparent Power of a Three-phase Circuit
in the 0-1-2 Domain

Applying the results of Equations 11.8—11.10 for a single phase circuit, the apparent power of a three-
phase circuit with the voltages and currents of an arbitrary waveform are introduced as follows.
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For the instantaneous apparent power per phase

$a(t) | Palt) |+l Qa0 || va(0) - da()”
Sp(t Py (1) 0(1) V(1) - ip (1)
Se) | [ Pelr 0.(0) | | elt)-iete)’ (-
or
Sabc([) = ﬁabc(t) + anbc(Z) = ‘}abc(t) 'i.abc*
and for the instantaneous apparent power for the total three phases
835(1) = Salt) + 85y(1) +Se(t) = {Pu(0) + Py(1) + Pelt)} + j{0u(1) + 0p(1) + 0o (1)}
= Va(t) ()" + (1) - 1p (1) + Ve(1) - e(1)*
(ia (1)
= va(t) | () | e(r) i (£)*
abc(t) ;([2*_/
i;zbc(t)*
or .
3'3(})0) = ti’abc(t) ' i.abc(t)*
(11.11b)

Here, the voltages and currents with arbitrary waveforms are

l‘) _ z Vakej(kwﬂroc,,k)
k

_ Ek’ thej(kwﬂrochk) D
‘)C([) _ 2 Vckej(ku)tJr:xL.k)

k
() =S el bort ) (11.12)
k

1) = Zk‘ Ibkej(kwt+ﬁhk> o)
l‘) _ 2 ]Ckej<kwt+ﬁ”k)
k

The dimensions of voltages and currents are volts [V] and amperes [A], while those for the apparent

power P, O, S are volt amperes [VA] with P also in watts [W].
Now we transform Equation 11.11 into the equation of power in symmetrical components:

Vabe (1) = a_li’mz (1) (11.13)
l:abc(t) = a71i012 (t)

Recalling the following matrix formulae,

e {A-B}='B-'A (11.14)
then 3'?(1)(1‘) = Vabc() iabc(t)*
Wape(t) ="a vy} =, (1) -fa =y, (1) - a! (11.13)
iape(t)" _{a_l .012()} =a " mz(t)*: a imz(l)*
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while
a =1 |1 1 1|1 1 |=3a
1 (a®)* (a)* =| 1 a a? P e 120 _ g
1| (a) (@) L | & | a (a 1200 _ s >
iona (1) = %lf Aape (1)
iabc(t)* =3a- 1:012(t)*
(11.16)
Accordingly,
S36(1) = Ve (1) - ape (1) = {"yp(1). @~ H{3a -ig1a(1)"}
= 312(1) dor2()" =3[ wo() [ i) | w0 | [ i)’
i (0"
l:z(l‘)* @
= 3{wo(t) - io(1)" +v1(2) - ix (1)" + 2 (1) - 22 (1) "}
= 3{S0(t) + 81 () + S2(1)}
S3p() & o 1 . .
5= bat0= 30800+ 60+ .0) o
= g{‘}a(t)l:a(t)* + 1}b(l‘) : l:b(t)* + ‘}c(l) . lL(t)*}
= 8o(t) + $1(t) + $1(1)
= Vo(t) l()(l‘)* +13](t) l1(l‘)* +V2(t) lz(t)* @)
where .
So(t) = Po(t) + jOo (1) = vo (1) - io(t)"
Si(r) = Py(1) + jO; (1) = vi (1) - i1 ()" ©)
$(t) = Pa(t) + jOu (1) = vo(1) - in(1)"

We can conclude as follows from Equation 11.17. For voltages v () and currents i .(t) with
arbitrary waveforms in a three-phase circuit:

o The apparent power of positive-, negative-, zero-sequence circuits is derived independently as §0 (1),
S1(1), 8>(1) of Equation 11.17 (3) in the 0~1-2 domain.
o The summation So(f) + S (1) + 8, (1) is equal to Sy, (1), the averaged power of S4(1), 8,(1), S (1).
Equation 11.17 is unitized as follows.
Recalling VA3gpase = 3VA1gbases
§3¢/3 _(§a+§b+§c>/3_ §1¢ _ §0 §] + §2
S3zbbase/3 Slgbbase S1¢be\se Slqﬁbase Sl¢base Sl(bbase (11.18)
_ Vo) n(@)" i) a0t () b(0)"
Vi ¢pbase I ¢pbase Vi ¢pbase I ¢pbase Vi ¢pbase I ¢pbase
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namely
S3 =515 = (Sa+ 3 +5.) /3
= S0+ 51+ 52 = Vo(0) -Io(1)" + V1 - (1) -2+ (1)" +V2(0) - ia (1)’
§3¢ (total three-phase power) and §1¢ (averaged single phase power) have the same value by
unitization.

(11.19)

11.3 Apparent Power in the d-g-0 Domain

The relation between the apparent power in the 0—1-2 domain and that in the d—q—0 domain will be
investigated now.

Effective power P, of phase-a can be calculated directly in terms of d-and g-axes quantities e4(#),
eq4(r) and i4(t), i,4(r) that are defined by Equation 10.11a and 10.11b as of real-number expression.

Pa=e,(t) - ig(t) ={cos 0, - e4(t) —sin O - e4(t)+Releg(t)]} - {cos O - iq(t) —sin O - iy (1) +Refip(r)]}
= [cos? 0] - eq(t) - ig(t) + [sin® 04] - e4(t) - ig(t) — [cos Oy sin Oa]{ey (1) - ia(t)+ - ea(t) - ig(t)}
+ Refeg (1) - ip(1)]
where 0, = ot — 120°,0, = wt — 120°,0, = wr + 120°. (11.20)

eq(t), eq(r) and iy (), ig(¢) are d.c values under three-phase balanced condition, while may not be time-
independent whenever phase-unbalanced.

Py and P, are derived as equations of the same form, then
reminding the formulae sin 0, + sin 0, + sin 0. = 0, cos?0, + cos?0, + cos?0. = 3/2 etc.,

Pu+ Py + P, = [cos® 0,+cos? O+ cos? 0] eq(t)- ig(t)+[sin® O, +sin? 0+ sin® Oc] - eq(1) - ig(t)
— [cos Ba sin Oa + cos 0, sin 0, + cos O sin Oc]{(eq(r) - iq(r) + e4(t) - ia(2)}
+ 3Releg (1) - ip(1)] = (3/2)ea(t) - ialt) + (3/2)eq(1) - iq (1) + 3Reeo(r) - ip(1)]

(Pa+ Py +Pe)/3 = (1/2){ea(r) - ia(1) + eq(1) - ig (1) } + Releo(r) - ip(1)]
= (1/2){Pa(t) + P4(1)} + Relep(1) - ip(1)] (11.21)

In next, reactive power Q, of phase-a can be calculated directly as the equation of the same form
with Equation 10.20 but by replacing 0, of current i, () to 0, + 90°.

0, = eq(t) - ig(t) = {cos O, - e4(t) — sin g - e4(r) + Im[eq(r)]} - {cos(0q + 90) - iy ()
— sin(0q + 90) - iy (r) + Im[ig ()] }
=[cos 0 sin O {(—ea (1) -ia(t)+eq(t)ig(O)} +[sin® 04)(eq (1) -ia(t)—[cos® Oalea(t) iy k)
+ Im(eo (1) - ig ()]
S Qo+ Oy + Q) = (3/2)eq(1) - ia(t) = (3/2)ea(t) - iy (1) + 3Imleo (1) - i (1)]

and then

F(Qa Q@+ Q3= (1/2){eq(t) - ia(t) — ealt) -ig (1)} + Imleo(r) - i3 (1)
(1/2){Qu(r) + Qg (1)} + Imleq (1) - i3 (1) (11.22)
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Furthermore, Equation 11.21 and 11.22 can be recasted as a complex number equation of P + jQ..

S3p3=S1p = (Pa+Pp+Pc)/3+j(Qu+ 0Oy +0Qc)/3

= (1/2){ea(t) - ia(t) + eq(t) - ig()} + (1/2) j{eg(t) - ia(t) — ea(t) - ig(1)} + eo(t) - ig (1)
= (1/2){ea(r) +j eq(1)} - {ialt) — jig(t))} + eo(t) - io” (1)
= (1/2){(Pa+] Qa) + (Pq +] @)} +eo(t) - io" (1)
= (1/2){Sa + S¢} + So (11.23)

The equations can be unitized by the same capacity base as adopted in Equation 10.40. Accordingly,
whenever the generator’s apparent power is concerned, the rated rms capacity of the generator by
[VA] or [MVA] is usually adopted as the base quantity for the unitization of the apparent power.
Thus

VA3 bas € 1 1 .
;/) ase (,\ \;%SC) . <.s \17;) =5 Chase " slbase (11.24)

s€base/ /2: rms phase voltage base

sibase/ V2 v/2: rms phase current base

Dividing Equation 11.23 by Equation 11.24, the coefficient 1/2 disappears and we have
S3p = S19=P3p + jO3¢ = P1g + j01p
=2a(t) - ia(t)" +2g(1) - ig ()" + 220 (1) - io(1)* [ D
= 84(1) + Sq(1) +280(1) (11.25)
or referring to Equation (11.19)
S3p = S1p = S1 + 52 + So = 54 + 54+ 250 %)

In the unitized equation, fortunately the coefficient 1/2 disappears. However, the zero-sequence
power of 28y has unexpectedly appeared as a term of unitized total apparent power S3¢ =S 19 .

Again in the d—q-0 domain, the apparent powers of d-axis, q-axis and zero-axis circuits Sd7 Sy So
can be independently treated in the form of e(r) - i(¢)*. The summation value Sa + S +280)is equal
to the unitized three-phase power S3¢ S 1¢-

The above derived equations of apparent power are the expanded equations which can be applied
for arbitrary unbalanced phase voltages and currents. The equations shows that apparent power S,
effective power P, reactive/capacitive power Q can be interchangeable on a-b-c domain, symmetrical
domain as well as d-q-0 domain.
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Coffee break 6: Hertz, the discoverer and inventor
of radio waves

In the 1870s and 1880s, most scientists doubted Maxwell’s theory and still continued their study
or discussion of the ‘existence of ether’, because the profound meaning of Maxwell’s equations
was not easily understood at first, and in particular any definite proof that electricity and light
were electromagnetic waves did not exist. However, Hertz’s famous experiment in 1888 and his
profound theory became very important turning points for proving Maxwell’s predictions.
Heinrich Rudolf Hertz (1857-1894) carried out his famous experiment in his laboratory in
1888, where radio waves were sent by one coil and detected by another coil (antenna coil) some

sw|tc\!:|\ interrupter spark-balls
| I air gap
battery ; I |
primary-coil ' g

secondary-coil

capacitor plate

Heinrich Rudolf Hertz (1857-1894) Hertz’s first transmitter (1986)

distance from each other. The first coil contained a metal rod with a small gap at its midpoint,
and when sparks crossed this gap, violent oscillations at high frequency were set up in the rod
and the noise signal was detected by the second coil circuit. Hertz proved that these waves were
transmitted through air from one coil to the other. This is the first instance of wave radiation by
humankind.

Hertz also showed that, like light waves, these waves were reflected and refracted and, in
particular, they travelled at the same speed as light but had a much longer wavelength. He also
noted that electrical conductors reflected the waves and that they can be focused by concave
reflectors. He found that non-conductors (including air and vacuum spaces) allow most of the
waves to pass through. These waves, of course just radio waves to us today, conclusively
confirmed Maxwell’s prediction of the existence of electromagnetic waves, in the form of both
light and radio waves, and further of electricity in telegraph cables. The Hertz dipole or Hertz’s
oscillator originated from the above experiment and became fundamentals of radio wave
applications of the twentieth century.

Itis said thatin 1891 Oliver Heaviside quoted: ‘Three years ago electromagnetic waves were
nowhere. Shortly afterwards, they were everywhere.’
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Generating Power and Steady-state
Stability

We studied generator theory in Chapter 10 as the characteristics of voltage v, current i and flux linkage
Y without using P, Q. However, in Chapter 11, we discussed what apparent power S = P + jQ means
in the a-b—c, 0—1-2 and d—q—0 domain. Now we need to extend generator theory to network theory as
the characteristics of v, i, P, Q, f.

In this chapter, we begin by examining the generator’s fundamental characteristics in combination
with the connected network. As the first step, the equations of generator operation by v, i, P, Q under
three-phase-balanced conditions are introduced, and then steady-state stability of a power system is
discussed.

Incidentally, we will study the behaviour of various power systems at fundamental frequency as
well as higher harmonics and surge frequency using simple power system models in the latter part
of the book. We would like to emphasize that the essence of power system behaviour can be clearly
understood only by studying simple models.

12.1 Generating Power and the P-é and Q-6 Curves

A generator is operating under three-phase-balanced conditions and rotating at constant speed.
This case coincides with that of Equations 10.52—-10.56 and of the vector diagram in Figure 10.5.
That is,

eq+ je ZEIBJEI
o (12.1a)
ig+ Jig = Ie/P
(eq + j?q)eﬁ = Ee/%) = 5, (7)
i S\ F = x4 - (12.1b)
(ia + Jigle =T/ ") =i (7)
eq=Ejcost; =E;sind
Eycosoy = E 12.1
e, = Eqsinoy = Ejcosd } ( ©

where 0 = (1/2) — o (the suffix and overbar on ¢ are omitted for simplicity).

The symbol (1) in &4, &, i, Iy has been omitted because all the quantities are for time-independent
d.c. components under three-phase-balanced conditions. 7 is the unitized value [rad] based on
Equation 10.42. Referring to Figure 10.5, ¢ is the angular difference between the generator’s induced
voltage jEf( = jXud - ffd, proportional to the field excitation) and the terminal voltage Eje/* (namely,
the generator’s inner angular difference) and 6 = (n/2) — @;.

Handbook of Power System Engineering Yoshihide Hase
© 2007 John Wiley & Sons, Ltd
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The apparent power is, referring to Equations 12.1a and b,
—= —- . z — L= — 2\ *
S3p =Sip=1() it (1) = (Ere/™) - (Ilem)
= (e + jeg)er - (i = Jig)e
— — f— p—— 12.2
= (eaia +24ig) + j(2qia — ealq) (22
F3¢ = le‘b =2qig + ?qiq
03p = Q19 = €gla — 2diq
This is the apparent power of the generator under three-phase-balanced conditions, and all the

d- and g-domain quantities are for d.c. components.

Next, Equation 10.59 is utilized under three-phase-balanced conditions. Rewriting the equation as

. Ef—e,—Ti
g=—"— "

X,

f’ (12.3)
s _ e +Tig
lgy=——

Xq

neglecting terms in 7 (because X4, X, >>7) and substituting Equation 12.3 into Equation 12.2,

_ _ (12.4)
_ _ _ Ese, (& @
Qgen:Q3¢:Q1¢:I&1<?+5q> @

Xd Xg Xd

On substituting Equation 12.1c into 12.4, the following very important equations are derived.
For the P-§ and Q-6 curve characteristics

P — d curve
+ =2
— — E/E E; /1 1
Poen = P3p = ; lsin§+7](f—r)sin251 )
d Xg Xd
Q — dcurve (12.5)

T T =2 =2
_ _ EE E{ /1 1 E{ /1 1
Qgen:Q3¢: J: 1C0$5——1(T+T) +—1(T—f)005251 @
Xq 2 \X; X4 2 \Xy X4

where the second terms on the right-hand sides in the Equations (D(Q) are called the ‘saliency effect’ terms.
These are very important equations which explain the generator’s essential characteristics in
terms of the P-§ curve and Q-4 curve. Figure 12.1a shows the vector diagram of the generator
quantities under three-phase-balanced operation. Figures 12.1b and c are the sets of the P—§ curve
and Q-6 curve derived from Equation 12.5 which show effective power P and reactive power Q as
parameters of 8. The saliency effect appears under the condition of X; #X.
Equation 12.5 (D Q) can be written as the combined equation

=2 T =2

- — — E 1 1 EfEy _is E 1 1 _ s

Sgen:PgenJrJQgen:?l(TﬂLT) 71‘76 _/()771<777)e 72 @
JXq JXd

JXa 2 \jX; JjXa
for the non-salient-pole machine (¥; = %) (12.6)
E] — Efefj(3

Sgen = Pgen + j@gen = El . @

JXd
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steady-state stability zone

Curve 2 (salient-pole generator)

gen / Curve 1 (non-salient-pole generator)
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Figure 12.1 P-0 and Q-0 curves of a generator
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Equations 12.5 and 12.6 show the generator’s basic characteristics in combination with the connected
outer network. In the equations overall, only X4, X4 are specified values for the generator machine; all
other variables are for electrical quantities at the generator terminal as part of the connected network.
Therefore the equations can be written as an implicit functional equation as follows:

Sunction(P,Q,v,i,0,0 =2nf) =0 12.7)

All the variables P, Q, v, i, §, = 2 f are linked to each other, and none of them can be changed
independently without affecting the others, more or less. This is true in regard to power system
networks. We may sometimes treat the phenomena of (P, 8, w = 2x f), or the phenomena of (Q, V) as
closely correlated variables in practical engineering work. However, we need to remember that such
treatments are kinds of approximations for simplification from a strict point of view. For example, in
Figure 12.1b, P can be increased to a larger value of around 6 = 90° only when E, (the terminal
voltage) is unchanged, which means large amounts of Q should be provided as shown in Figure 12.1c.
In other words, discussion of the P—§ curve without consideration of Q and E; is meaningless.

The P-§ and Q-6 curves always exist as an inseparable couple, so that the characteristics or
the behaviour of a power system cannot be adequately discussed using one curve without the other.
Both are required to describe a power system. This matter will be discussed in the next section and
Section 14.5.

12.2 Power Transfer Limit between a Generator
and a Power System Network

12.2.1 Equivalency between one-machine to infinite-bus
system and two-machine system

Figure 12.2a shows a system model with two machines in that generator 1 is connected to generator
2 through a network reactance, and Figure 12.3a shows a system model with one machine to an

X

Generator #1  — e ] generator #2
X - BYd
= X 2l Y =
Ef[(s A ; yabl E“hu.-:éoo
- .‘U-gt‘n BPhus "__r A
0 -1
@) Ep290°

graxis  r----

JF-F) =0 T +x

(c) the case of §=90°

Figure 12.2 System model with two machines
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q-axis

JE=%) 7y 20

i oo, _
X(I egen X1
— = - = o
E}Zﬁ 7 Chus = Eys£0 d-axis

(a) (b)

Figure 12.3 System model with one machine to infinite bus

infinite bus, in which generator 1 is connected to the infinite bus. The vector diagram for each case is
also shown in the figures.

First of all, let us examine the equivalence of both figures. The electrical condition of generator
1 becomes equivalent in both figures if the condition in the following equation below is satisfied:

BY T Xy =%+ X =N (12.8)

Equation 12.8 means that the d-axis circuit and the g-axis circuit of the outer system can be
considered as the same as each other in Figure 12.2a. (The difference for the zero-sequence circuit
is neglected as we are studying three-phase-balanced normal operating conditions.)

The assumption of Equation 12.8 can be justified if generator 2 is of cylindrical type (x4 = X,), or
even if generator 2 is of salient type (3X; # X q). Equation 12.8 may be approximately justified by
insertion of some line reactance X, between both generators.

In other words, at least the behaviour of generator 1 can be examined equally by a two-machine
system or by a one-machine to infinite-bus system. In an actual power system with a total number n
of generators, we can imagine that our generator 1 is connected to another equivalent generator which
actually consists of n — 1 parallel connected generators through the network.

12.2.2 Apparent power of a generator

We assume that Equation 12.8 is justified and that generator 1 is a thermal driven generator (X; = X4)
in Figures 12.2 and 12.3. Then

pus = Ebus/0° = Epus
égen = Epus + j%i

Ef = Ef/6 = Epus + j0ig +30)i,  j(Xa — %g)ia =0 (12.9)
Sbus = Prus + JObus = Eousi

Saen = Pyen + /Qgen = (Bous + j%il)

@ ® 0 0e

e
1

where the suffix gen refers to quantities of generator 1.
From Equation 12.9 @

Y 12y Y Y ;__;2
Pgen + JQgen = (Pbus + ]Qbus) + X (12.10)
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From Equation 12.9 3

= Efej(s - Ebus _ _J.Efej(S + ijus ;* _ jEfe_ja — ijus
j(jli+xl) xq + X ' Xq + X
-2 =2 R .s s
2o Ef +Ebus - EfEbus(e]() +e ]())
Pt = o (12.11)
(xq + %)
E? + Etz)us B 2EJ’EbusCOS 0
(X, +31)
Accordingly,
< 5 — . w _ jEreI — jEpu
Sbus = Pous + JQbus = Ebus - i = Epus #
— %sin 5+ J.{Ebus (E{cos 57— Ebus)} 0
Xq + X Xg + X
= = = = - ==
= — _ E/Epys . | E;x) — EpyeXq + EfEbus(X; — X1)cos d
Sgen :Pgen+]Qgen=7/ u:SlI’15+] / us qi f7u§ 4 (12.12)
Xg + X (Fy +31)
— E¢Epys .
Pgen = )ﬁsm 5 (P—édcurve) 3
— Ejz'fl - Eiu@q + EfEpus(Xg — X;)c0s &
Ogen= — (Q — dcurve)
(Xg +%1)

Pgen, Qgen have been derived as P—§ and Q-8 characteristics with the parameters of E f, Epys,
where usually Ey,s = 1.0/0°.

The equation shows that Qgen is of positive (+) magnitude (lagging operation) for large E ¢, while it
is of negative (—) magnitude (leading operation) for smaller E ; (weak excitation). Also Pgen = Ppus
is recognized because line resistance is neglected, while Qgeq 7 Opus because reactive power
consumption on the transmission line exists. The special case of X; — 0, Epys — Ef, X4 = X4 in

Equation 12.12 coincides with Equation 12.6 Q).

12.2.3 Power transfer limit of a generator
(steady-state stability)

A generator normally operates in synchronization with the connected power system. This means that
E s /6 and Epys/0° are running at the same speed and the angular /9 displacement is always within
some upper limit (6 < 90°).

Suppose generators 1 and 2 are operating in synchronization, and generator 2 is accelerated a little
for some reason and leads to  —  + Ad. Then generator 1 automatically tries to recover the delay of
A9 by releasing the kinetic energy stored in its rotor, so that the electrical output of generator 1 is
immediately increased by P — P + AP. Such inherent recovering characteristics of the generator are
called synchronizing power. The synchronizing power of the generator is effective so long as the
recovering power AP is of positive sign for some disturbance AJ.

In other words, the critical condition in which the generator can be operated with the power system
in synchronization is

Fgen

G)
Synchronizing power %5

>

3=
v
o

(12.13)
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Applying Equation 12.12 (3) to Equation 12.13,

aFgen _ EfEbus

= o= S0 £90° 12.14
3 xg+)_qcos =0 <90 ( )

The generator reaches the power transfer upper limit at large ¢ of approximately 90°. Such an
upper limit condition is called the steady-state stability limit. Using the suffix max for such
conditions,

ngax = Fgmax + j@gmax @

E tEvus
gmax %, s @
(12.15)
_ Ejx — Eows %
ngax = —a3

(Xq "’xl)z

where 0 = 90°(with the condition X; = X;)

In Figure 12.1b, the steady-state stability limit is at 6 = 90° for a generator of non-salient poles
(X4 = X4, curve 1) and is at an angle of less than 90° (say, 70°) for a generator of salient poles (X; # X,
curve 2).

It should be noted that in order to transfer such maximum power Pgnax through the line,
the corresponding large value of Qgen in Figure 12.1c must be supplied to the system so that
the terminal voltage E| is kept as the normal voltage. Otherwise, E; decreases and the P—J curve
shrinks. The necessary value for Qgen becomes quite large for the operation with J exceeding
50° as shown in Figure 12.1c. This is why we always need to treat P and Q together as coupled
quantities.

12.2.4 Visual description of generator’s apparent power
transfer limit

Fgmax, ngax are functions of Ef, E}us and so cannot be independent of each other. Therefore we want
to find an equation for Pgmax and Qgpax by elimination of Ey and Epys. For this purpose we need
one more equation besides Equation 12.15 (2) 3), which can be obtained from Figure 12.2¢c. Under
the condition of § =90°, AO : CO = AB : GB = (¥, + X,):X, so that Pythagoras’s theorem can
be applied:

_ 2 - 2
=2 X —2 X4 2

= E; E 12.16
Cgen (fq + )_CI) 7+ (xq + ’_‘1) bus ( )

Eliminating Ey, Ebys from Equations 12.15 ) (3 and 12.16, we obtain the following equation (refer
to the supplement at the end of the chapter for the process):

52 — 11 1\, \* [1/1 1\, \*
Pgmax“'{ngax_E(;—i)egen} = 5 ;l“'z €oen (12.17)
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Unitizing Fma)uémax by e

2

zen and writing them as p, g,

VAU A EIAEN AN G
P q2)_cl)_cq Cl2\w X,
where 1_7:13_;,72111 . ﬁzé_imax
e e
gen gen
the circular locus in p — g coordinates :
( 1(1 1)) (12.18)
centre: 0,z =———
2\x X4
radius:

1
diameter:  the straight line connecting the points <O, _—) and (
X

1 1+1
2\x X4

1
07 - —_
Xq

)

Figure 12.4 can be drawn from Equation 12.18. The circle in p—¢g coordinates gives the steady-state
stability limit and the generator cannot be operated outside of the circle.

Equation 12

pr - Lgry (VoL (E L\
P*q 4% 2\ X 2 X
For the circular locus in (pX,)—(gX,) coordinates:

.18 can be modified to the equation below:

1

X 12.19
centre: (0, = <¥ - ) ) ( )
2 X]
1/%
radius: - (_—q + 1)
2 X]
X,
diameter: the straight line connecting points (07 fq) and (0, 1)
Xl
lagging q Q;max —gmax
e e
R N e
X, radius % ( é . é ) lagging 2. —\
R % =05
| oh 5ot P
1(1 _1Y)10¢t 050403 %=02 1.0 N
PAE A 0.6] T 10 _
q \ 100.8 ) (0,:(]-)*-\ 2.0 — Pgmax -
N | —_ xZ N px =— — X,
stable] 1.0 __ Pomax L fe”
1 % P stable| 1.0'/ 2.0
TE non-salient pole generator leadi non-galient
Xq eading pole generator
l—l.O (Xd =Xg = 17) 1.0
(xg=xp)
leading

(a) p-q coordinates (b) i)fq—ax_q coordinates

Figure 12.4 Steady-state stability limit of a generator
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Figure 12.4b can be drawn from the equation, that is circles based on the parameter X,/X;.
If the power system capacity is relatively smaller (x; — large), the generator’s stable operating zone
shrinks. In other words, if the generator’s output power exceeds the limit, the generator has to be
stepped out in deceleration mode.

12.3 Supplement: Derivation of Equation 12.17
from Equations 12.15 2 @ and 12.16

Putting
E, E
A=oim Pon4m n
we obtain
Pgmax = AB(¥g + %) @
Ogmax = A% — B'X, 3)
Coen = APX] + B, @)
From (3) (4)
A% = M B = M 5)
(X + i) Xq(Xg +X1)
Substituting (5) into (3),
52 (Eéen + ngaqu> ‘ <E§en - ngax?f/)
- Yq H 12.17)

11 1\, > [1/1 1\, \?
= {om 355 %) +l5)%

This is Equation 12.17.
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The Generator as Rotating Machinery

We have studied the generator’s characteristics from the viewpoint of electrical theory in the previous
chapters. In this chapter we examine the generator as a rotating mechanical machine. This base
knowledge is essential in order to understand the dynamic characteristics of a generator and of the
power system as a congregation of generators.

Note that we omit the overbar symbol for the per unit value below and for all subsequent chapters,
even though most of all the quantities are in per unit values.

13.1 Mechanical (Kinetic) Power and Generating
(Electrical) Power

We examine first the relation between the generator’s mechanical input (driving force by steam turbine
or by water wheel) and electrical output (generating power).

13.1.1 Mutual relation between mechanical input power
and electrical output power

A generator connected to a power system network is operating under three-phase-balanced conditions.
The generator’s electrical quantities are given by Equation 10.43 in the d—q—0 domain, and the
apparent power is given by Equation 11.25, all in per unit values.

Substituting Equation 10.43 into Equation 11.25 to eliminate voltage variables, the following
equation is derived:

$3p = S1p = Pig + jQ1p = Salt) + S4(1) + 280 (1)
—{ =m0+ 50a0) = a0 b+ {om i)+ 00 O}y 51
20 S0 = o) ooy
835 = 816 = {Ba0igt)” = Uy (0ia0)" Jou (1)
{d . ; . d C ok d . Lk 2
S0 a0 + 00 10 425000000 b = {30 + 50+ 280} @

d
where wy, () = EO,,,(I) is the mechanical angular velocity of the rotor @)

(suffix m means mechanical quantities)

(13.1b)

Handbook of Power System Engineering Yoshihide Hase
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The angular velocity w,, in the equation is the instantaneous value of the rotor shaft, which fluctuates
and does not necessarily coincide with the electrical angular velocity of the power network @ = 27 f.

Equation 13.1b is a very important equation which combines the concepts of mechanical power
and electrical power. Now, we investigate each term on the right-hand side of this equation.

13.1.1.1 The first term

From the dynamic theory of rotating devices in physics,

(mechanical power Py,) = (torque T},;) X (revolving velocity w,,) (13.2)

Comparing the first term on the right-hand side of Equation 13.1b with Equation 13.2, the part in
{ '} corresponds to the mechanical torque Ty, and the first term itself corresponds to mechanical
power P, which is given from the prime-mover. This mechanical power P,, intervenes from flux
linkages and finally is transferred from the rotor to the stator armature windings in the form of
electrical power across the air gap. In other words, the first term on the right-hand side is the
mechanical power P,, which is given from the prime-mover to the rotor and transferred to the stator
coil windings as electrical power by the form of flux linkage through the air gap. Or, we should adopt
the above explanation for the real-number part of the equation, because mechanical power is not
directly comparable with reactive power in electrical theory.

Accordingly, the part in { } in the equation can be treated as the term for electrical torque with the
symbol T,(¢). Then

electrical torque T.(t) = I/I/d(f)l:q(t)* - ‘[/q(t)’:d(t)* } (13.3)

mechanical torque T, = Re{T.()}

13.1.1.2 The second term

This is the term for the rate of decrease of armature magnetic energy. It is zero under three-phase-
balanced conditions because ;, 1//(]7 Y are d.c. quantities under steady-state conditions and accord-
ingly their derivatives are zero. In other words, the second term corresponds to the transient term which
appears when the armature fluxes in the d—q—0 domain are being changed.

13.1.1.3 The third term

This is the term for Joule losses, caused by the resistance of armature windings. The zero-sequence
component includes the coefficient 2 as in Equation 11.25.
In total, Equation 13.1 can be understood as follows:

- rate of change of armature magnetic Joule losses of armature
S39(1) = Te(t)om (1) + energy in d-q-0 domain - windings
transient term
(13.4)

The real-number part of Equation 13.4 is, for the effective electrical output power,

rate of change of armature magnetic Joule losses of the
P3y(1) = Tn(t)om(r)  + { energy in d-q-0 domain } o { armature winding}
*1 2 3
mechanical power transient electric power caused by Joule losses of
the rotor receives from discharge (or charge) of the rotor’s kinetic the armature winding
the prime-mover energy in the transient condition of

deceleration (or acceleration) of the rotor

(13.5)
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13.1.1.4 Steady-state condition

In this case, Ty, Wy, P3y, etc., are invariable, so the second term *2 of Equation 13.5 or 13.1b(D) is
zero. The energy of revolution is also invariable because () is invariable in this condition.

13.1.1.5 Transient condition by sudden disturbance

Suppose that the load demand of the generator is suddenly increased from P to P34 + AP3g for some
reason on the outer network. This means a sudden increase on the left-hand side of Equation 13.5,
while term "1 does not vary because the term will be changed only by the prime-mover. The change in
term *3 is negligible. Accordingly, term *2 has to be increased instantaneously. Therefore, the rotor
begins to release its stored kinetic energy (k = (1/2)I1 w?n, see the next section) to compensate for the
transient power imbalance, while slowing down of the rotor (or electrical angular slip) continues until
the prime-mover begins to increase the mechanical input power Py, to the rotor (term *1); conse-
quently, the rotor begins to recover the energy imbalance caused. If the increased electrical angular
displacement of the rotor exceeds the stability limit of approximately 90°, the generator will be forced
to lose synchronization with the outer power system. In other words, capricious load fluctuations have
to be followed after mechanical input power (P,,) increase/decrease control by all the generators
within the power system from time to time as a function of the individual speed governor operation,
and, furthermore, as a function of the total automatic frequency control (AFC) of the power system.

Incidentally, the ‘simultaneity and equality of the demanding power and the supplying power’
are often referred to as the fatal characteristics of a power system. These result from the above
described generator characteristics.

Returning to Equation 13.2, the operating frequency of most power utility systems is kept typically
at 50/60 &+ 0.05 Hz by AFC system operation from the central dispatching centre. Then the angular
velocity of the power system and of all the operating generators is w (1) = w,,(f) = 1.0 £0.01=1.0ona
per unit basis. Accordingly, putting w,,(fr) = 1.0 into Equation 13.2, we find that the power and torque
actually have the same per unit values as each other (namely, P,, = T, S3p =T by PU expression),
although they are quantities with different dimensional units electrically as well as mechanically. It is also
clear that the electrical and mechanical quantities are equivalent under synchronized operation.

13.2 Kinetic Equation of the Generator

13.2.1 Dynamic characteristics of the generator
(kinetic motion equation)

A generator’s rotor can be assumed to be a homogeneous rigid cylindrical body as shown in Figure 13.1.
We introduce here the kinetic motion equation of the rotor.

m

% D: diameter

R: radius
G- axial length

Figure 13.1 Cylindrical revolving body



236 13 THE GENERATOR AS ROTATING MACHINERY

The mechanical acceleration equation (the kinetic motion equations) is

- M() da)m -
AP, = o, d wmAT kg - m/s] D
2 2
On _don _Onyp - Onyp  ATn o
dr? dt My My 1 (13.6)
] .
My =lIo? =2x <§1w3,,> =2K 3
K =2 @
=510,

where : moment of inertia kg - m/s|I = Y, m;r}
i
m; is the weight of the material point and is r; is its distance from the rotating axis

M : inertia constant, My = Iw,zn
O,y : mechanical phase angle [radian], angular velocity [rad/s]

P, : mechanical power transferred from the prime-mover to the generator rotor.

T, : mechanical torque of the rotor

— 1
K : kinetic energy of the rotor K = ~Iw?

P, : effective power transferred from the rotor to the armature windings across the air

gap [W]
T, : electrical torque of the rotor [W - s/rad]

I and w,, can be replaced by the practical scale units below:

I GR*> GD?
g e (13.7)
Wy =27 - Nrste [rad]
60[sec]
where g : gravity accelerator
G : effective axial length [m]
R, D : radius and diameter of rotor [m]
GD? : flywheel effect [kg - m?]
Nrate : rated rotating speed per minute [rpm]
Niate/60 : rated rotating speed per second [s~!]
Accordingly,
, My 1., 1(GD? Nrate |
t K=—=Z-lv,, ==[—) (2 ke -
motion energy 7 =710 2( Ig 0 (kg - m]
Nrate (13.8)
=137 x GD*( =22 ) [kW -
(1000 kW - sec]

where lkg-m=9-8[W -sec]

G, D are the axial length and diameter of the rotor, so that GD? is the volume of the cylinder. All the
values in the equation are specific mechanical values for the generator rotor.
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Now we introduce M (unit inertia constant), which is defined by M = My /Prate:

2
2.74 x GD? (M)
[

My[kW - sec] 1000
M = = [sec]
Prate[kW] Prate (13.9)
Mo =M - Praee

where Py : the rated output capacity [kW]

GD? as well as Py (the rated capacity) and N (rated rotating speed) are given on the name-plate
of each generator, as essential specifications, so the unit inertia constant M is also a specified value
for each generator. Generators with larger M obviously have larger synchronizing power, because M
is proportional to GD? and N2,.. Typical values of M are shown in Table 13.1.

GD? for thermal generators is generally smaller than that for hydro-generators of the same reted
capacity, while the rotating speed Nyye of thermal generators (3000/3600 rpm) is 3—10 (= n, where 2n
is the number of poles of hydro-generators) times faster than that of hydro-generators. Accordingly, M
for thermal generators is typically alittle larger than that for hydro-generators despite the fact that GD?
is relatively smaller.

13.2.2 Dynamic equation of generator as an electrical
expression

In Equation 13.6, the symbols of variable quantities can be replaced as follows:

APm(t) - Pm(t) - Pe(t)
Om(t)  — 0.(1)/n (13.10)
om(t) — w.(t)/n

P, (¢) : mechanical input power given by the prime-mover
(friction loss, windage loss are already subtracted)
P,(t) : electrical output power (including armature resistance loss)
2n : pole numbers: thermal generator (2n = 2), hydro-generator (2n = 6 to 20),
nuclear generator (2n = 4)
®m, W, : mechanical angular velocity, electrical angular velocity [rad]
o : rated angular velocity
we = wy = 27 fo(fo = 50 0r 60 Hz)

The mechanical acceleration Equation 13.6, can be modified as follows.
For the dynamic equation of a generator
d?0,(t)  dw.(t)  wo

dr? My

(Pu(1) — Pe(1)) (13.11)

Table 13.1 Unit inertia constants of generators (M = M /Prye)

M value
Hydro-generator 6-8
Thermal generators (forced cooling type) 7-10
Thermal generators (natural cooling type) 10-15

Synchronous motors 3-5
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P., 0., ®, in this equation are the same as the variables P,, 0,, w, in Chapter 10 for generator
electrical theory. The symbol (7) is added in order to emphasize that this is a dynamic equation
applicable to dynamic transient phenomena.

The equation can be unitized by wo/My so that the coefficient on the right-hand side
disappears:

d*0e(1) _ d@e(1)
dr? dt

:Fm(l) _Fe(t) (13.12)

Equation 13.11 or 13.12 shows that the rotating speed is constant (dw/dt = 0) under balanced
conditions of mechanical input and electrical output (P, = P,). The generator rotor is decelerated
if P, <P,, and is accelerated if P,, >P,. Therefore, whenever mechanical input power P,
from the prime-mover or electrical output power P, to the outer power system fluctuates, the
generator rotor is forced to swing towards or slip from the power system angular velocity
wo = 2n fo.

13.2.3 Speed governors, the rotating speed control equipment
for generators

The mechanical input of the hydro/thermal prime-mover must always be automatically controlled
so that the rotor speed w,, always meets the angular velocity of the power system w = 27w f.
Every generator is equipped with a speed governor, by which the prime-mover is controlled so
as immediately to increase (decrease) the mechanical input whenever the rotating speed is
decelerated (accelerated) towards power system angular velocity w = 2z f. In other words,
the governor has the function of speed restoration which tends to keep the present rotating
speed {Aw = (@, — 271 f)} — 0 within the power capacity range of 3—5% of the rated MW values
of the TG unit.

Figure 13.2 shows the operating mechanism of the speed governor (mechanical type) for hydro/
thermal turbines. Although the principle is the same, the governors for thermal turbines have quick
response characteristics in comparison with that for water-wheel turbines.

Figure 13.3 shows photographs and artwork of a typical water turbine generating unit for a pumped
storage station. The photographs show the stator—rotor unit, wheel casing with guide vane and Francis-
type runner unit for a high-head station.

In the case of a hydro-generating station, the amount of water in the long penstock system has large
kinetic energy, so rapid changes of water flow cause severe water hammer or sudden vacuum
phenomena on the penstock or on the guide-vane system, in spite of the installation of a surge tank.
Therefore, rapid water flow control cannot be expected in order to avoid damage to the penstock or
turbine systems. Accordingly, the speed governor for the hydro-unit is equipped with a dash-pot
mechanism to prevent quite rapid mechanical vane (water flow) control.

In the case of the thermal turbine unit, the control valve can be operated quickly by the speed governor
(say, order of 0.1 s), because pressure variation phenomena like hammering need not be taken into
account for the high pressure dry steam gas. Accordingly, the speed governor for this unit is not equipped
with mechanisms like dash-pots. This unit is, incidentally, equipped with an emergency governor, which
takes emergency action and closes the main stop valve whenever the rotor speed reaches the physical upper
limit.

In conclusion, the function of the speed governor is to control the rotor speed to follow the
fluctuating power system frequency. Thus the governor has an important role in maintaining
synchronization of the generator with the network. In addition to the above, it carries out a major
role in limiting fringing-fluctuated system frequency f as a supporting function of AFC (from the
central dispatching centre).
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generator motor for pumping-up station

excitor (solid type)
d.c. current

stator

rotor
& stator

runner casing

Francis-type hydro-runner
(for high-head, high-speed usage)

(a) Water TG unit for high-head pumped, storage power (b) Francis-type hydro-runner

station (360 MW, 50 Hz, 12 poles, 500 rpm) (for low-head, low-speed usage)
Courtesy of Toshiba

Figure 13.3 Hydro-turbine and generator
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Coffee break 7: Heaviside, the great benefactor
of electrical engineering

Hertz’s experiment became the great turning point when the ‘ether’ vanished and the door of
modern science and technology of electricity was opened. The history of electricity in the
nineteenth century seemed to have branched into two streams by the twentieth century. The first
concerned the science of physics in the fields of, for example, atomic and quantum physics,
radio waves, astronomy, and Einstein’s relativity. The second stream concerned, of course,
engineering for social and industrial applications of electricity, perhaps divided into three
categories, namely (a) radio wave and electron devices, (b) electric power generation and
transmission, (c) various uses of energy applied typically in lighting and motors.

Let us look at some of the ‘electricians’ who made great contributions to the analytical
methods of electricity from the engineering viewpoint, in particular in categories (b) and (c),
and closely related to power system engineering.

The first person is Oliver Heaviside (1850-1925). His contribution in the various
engineering fields as the developer of analytical methods for electricity is so direct and great
that he is the equal of Maxwell and Hertz in the nineteenth century. Heaviside was the first
physicist to recognize the worth of Maxwell’s equations and popularized them. His greatest
achievements are described below.

He was able to simplify greatly Maxwell’s quite complicated 20-odd equations and
introduce a simpler treatment of the ‘four equations’ without impairing accuracy. Maxwell’s
four equations quoted in a previous chapter may even be called the Maxwell-Heaviside
equations on this view.

In 1874, he designed the symbolic method or operational form calculus for analysing
differential equations. The Heaviside operator p was experimentally developed by him to
reduce complicated differential equations to simple algebraic ones. The stepping function 1(t) is

Oliver Heaviside (1850-1925)
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also due to Heaviside’s originality. His methods were said to be ‘imperfect’ and of ‘no
consequence’ by most mathematicians, despite the fact that they gave correct answers for most
of the cases. Later, T. J. Bromwich (1916), J. R. Carson (1918) and K. W. Wagner (1925)
vindicated Heaviside and his operational calculus was justified by the proof that it was
mathematically a functional transformation to the domain p. ‘Heaviside’s operator p’ is of
course equivalent (one-to-one correspondence, although the definition is different) to
Laplace’s operator s of the Laplace transform, which is an essential technique for every
electrical engineer today for solving transient phenomena (that is, for solving partial differential
equations) or as s-functions in the theory of automatic control or automation.

Equations 1 and 2 given in the first supplement of Chapter 10 Section 10.10 (page 211) are
called Heaviside’s expansion theorem, even though the Laplace operator s is adopted, and the
solution demonstrated in all three supplements to that chapter is Heaviside’s method of solution.
Although it is likely that the operator p-domain has been dominated by s-domain today in
practical engineering, s may be said a kind of the revival of p.

Heaviside made great contributions to establish modern scientific ‘units’ based on length L,
weight M and time T systematically, a great work that could only be done by someone who fully
understood modern physics based on theories of energy preservation in a wide sense.
Interestingly, the values of electric flux initiated from the surface of a ball of radius r (surface
area 47r%) may be counted as multiples of units of 2, or of 47r2, and of course the latter is a
rational unit. It was Heaviside who originated the rational unit system by eliminating formally
the coefficients 47 or 2+/7 that were originally included in Maxwell’s equations. His unit is
called the Heaviside—Lorentz unit because it was Hendrik Anton Lorentz (1853-1928) who
adopted it first. The unit is actually the CGS unit or the equivalent MKS rational unit, which
are practical scale units today.

Telephony by wire was invented by Alexander Graham Bell (1847-1922) in 1877, in
addition to the already utilized telegram, and the application was expanded year by year.
Soon the problems of signal attenuation or distortion for long-distance communication
became more serious. In 1881, Heaviside originated the telegram equation with four
constants L, C, R, G, which enabled the analysis of attenuation and waveform distortion
phenomena. He also showed that the condition R/L = G/C could satisfy distortion-less
transmission of a signal wave (see Equation 18.20 in Chapter 18). This work by him was
called the principle of loading cable. His analytical conclusion was soon utilized
practically under the more familiar name of the pupin-coil, which adds inductance L
intentionally to cable wire in order to obtain a matching balance of R/L = G/C and to improve
balance with the cable capacitance C. Incidentally, the conventional telegram equation at
that time was the famous Thomson equation by KR law. The equation was, so to speak, two
constant equations with R, K (K is the symbol of capacitance, today C), which was
advocated by Kelvin in 1855 in his famous paper ‘On the theory of the electrical telegraph’
and had become quite important for the engineering basis of wired telegram theory at that
time. William Thomson’s famous KR law is

v ov
e~ MR

However, the equation cannot obviously explain attenuation or distortion of waveforms (see
Chapter 18). Heaviside overcame this problem, (refer section 18. 1.1), which led to quite
important advances in wire communication engineering at the time. He emphasized the role of
metallic circuits as ‘guides’ rather than ‘conductors of a.c. currents’.

The idea of matching R/L and G/C is a basic concept of every type of communication
or signal transfer technology today. Heaviside is obviously the originator of the travelling
wave theory of transmission lines as well as telecommunications, although it was five years




13.2  KINETIC EQUATION OF THE GENERATOR

before the first practical a.c. transmission line of 2000 V, 27 km was installed in 1886, and fifteen
years before the first radio communication by Marconi, who sent radio signals across the
Atlantic. However, no one could explain why the signals were not stopped by the curvature of
the Earth.

In 1902 Heaviside’s famous prediction of an ionized layer in the atmosphere which would
deflect radio waves was published in an article titled ‘telegraphy’. The idea arose when he was
considering the analogy between the movement of electric waves along a pair of conducting
wires and a conducting earth. He thought that waves travelling around the Earth might
accommodate themselves to the surface of the sea in the same way as waves follow wires:
“There may be a sufficiently conducting layer in the upper air. If so, the waves will, so to speak,
catch on to it more or less. Then guidance will be by the sea on one side and the upper layer on
the other.” This is of course the Kennelly-Heaviside layer.

His great works can be seen in his famous book Electromagnetic Theory published in 1893,
1889 and 1912. He was a nephew of Wheatstone.

Although Heaviside was a bachelor who spent much of his time studying and writing
scientific papers in complete solitude, his contribution to modern advanced electrical engineer-
ing is without doubt one of the greatest.

Note: d/dt, d*/di*, d*/dr’, ... are replaced by p, p?, p?, ... respectively in the Heavi-
side transform, and by s, 52, 5>, ... respectively in the Laplace transform. However, the
definition in the replaced domain is different by one order. Below are some typical examples
in both transformations:

t domain pdomain sdomain
1
lim —[1(¢) — 1(r — 7)] p !
10T |
1(¢ 1 -
(1) K
e Tt p 1
pta sto
2
cos wt P u

Pt 2+o?
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Transient/Dynamic Stability, P—-Q-V
Characteristics and Voltage Stability
of a Power System

The dynamic characteristics of a power system deeply depend on the characteristics of generators,
which we studied in Chapters 10—13. In this chapter, transient and dynamic stability are examined first,
then the P—Q-V characteristics of a power system and voltage stability phenomena are examined.

14.1 Steady-state Stability, Transient Stability,
Dynamic Stability

Power system stability is typically defined as the property of the power system that it will remain in
operating equilibrium through normal and abnormal conditions. In terms of interconnected synchro-
nous machines, in order to be stable, the machines must maintain synchronism through normal and
abnormal conditions. Instability is expediently classified into three categories which will be
introduced here first.

14.1.1 Steady-state stability

Steady-state stability is defined as the operating state of a power system which is characterized by slow
and gradual changes. The steady-state stability limitis actually explained by Equations 12.5, 12.12 and
12.17 and Figures 12.1 and 12.4.

14.1.2 Transient-state stability

The transient state is defined here as the operating state of a power system which is characterized by a
sudden change in load or circuit conditions. Transient-state stability is defined as stability under such
transient states. Short-circuit fault and fault tripping/reclosing, switching of circuits, abrupt significant
load changes, sudden tripping of generators, etc., are typical disturbances. A sudden change in
excitation of generators which may be caused by some irregular conditions in automatic voltage
regulator (AVR) equipment (a sudden change in the AVR set value, for example), or in the mechanical
power of prime-movers, or a change of power flow in the network caused by changes of power

Handbook of Power System Engineering Yoshihide Hase
© 2007 John Wiley & Sons, Ltd
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distribution among generators or by changes in network connection, have to be included as kinds of
disturbances. Also, hunting phenomena among plural generators may be another kind of disturbance.

14.1.3 Dynamic stability

The power system stability limit can be improved far beyond the steady-state stability limit by the use
of appropriately designed AVR equipment. Also, automatic speed-governor control (automatically
controlling the mechanical power of the prime-movers) of each generator by detecting a sudden
significant frequency change under fault or no-fault conditions may also improve the stability limit.

Dynamic stability can be defined as the concept of improved stability by applying appropriately
quick excitation control (jEy control by AVR) as well as appropriately quick speed-governor control
(P,, control by frequency detection) at each generating station.

Dynamic stability might have been so named originally in contrast to ordinary steady-state
stability. However, it is obvious that appropriate AVR control and speed-governor control at each
generating plant improve not only steady-state stability but also transient-state stability caused by
various cascades of sudden changes in power system conditions.

The time constants of the ‘AVR + field excitation circuit’ are very small (say, 0.1-0.5 s), while
those of the ‘speed governor + prime-mover’ must be larger (say, a few seconds). Accordingly, AVR
must be more effective for an initial rapid response to serious disturbances.

14.2 Mechanical Acceleration Equation for the
Two-generator System, and Disturbance Response

The generator’s mechanical acceleration equation was derived in Equation 13.11 or 13.12. Now we
examine the power system shown in Figure 14.1, which contains generators G and B connected by a
double circuit line:

generator G generator B
dzec(l‘) (,L)G(l‘) dZHB([) (UB(I) (14.1)
= PGm — Pge = P —P
a2 Mg ( G G ) a2 Mg ( Bm Be)

There are mutual relations between generators G and B, as follows:

PGe = —Pge (line resistance neglected)

o angular difference of induced voltages
o(r) = 0g(r) — 0p(r) = J{wG(Z) — wp(t)}dt <90 <0f both generators

g (1)= wp(t) =27 fo = wo, Jo:power frequency
(14.2)
generator G generator B
Ef 7£ f b
P Ge —> -+ P Be
06'7 (@ 03) Wp
Mg Mp

Figure 14.1 Two-generator system
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0(r) is the angular difference between the two generators which must be within 490" under
synchronization. From Equation 14.2,

d?s PGm — P Pgm — P
_ 0{ 6m —Pge Pp Be} (14.3)

ar Mg Mg

Now we assume a non-salient-pole machine for simplicity and take the effective power from
Equation 12.12:

B sins (14.4)
Xq + X1
where E s, Eg: internal induced voltages of generators G and B, respectively.
The mechanical input Pg,,, Pp, cannot be changed for 0-3 s from the magnitudes just before
system disturbance (because of the inertia of the prime-mover system). Then

PGe = —Ppe =

PGn = PGe = —Ppe = —Ppn (14.5)

From Equations 14.3 and 14.5, for the mechanical acceleration equation of a generator G,

d?s 11
—5 — W0 + '(PGm_PGe)

dr? Mg Mg
o EfEp . ) MgMp
=—|Pgm — sin & where My = ———
Mo( Gm xq 0 Mg + Mp (14.6a)

where 6(¢): phase angular difference between the induced voltages of
both generators (—90° < §(¢) < 90° under normal conditions).

If generator B is of quite a large capacity in comparison with generator G, this means that Mg — oo
and My — Mg, which correspond to the one machine to infinite bus.

In Equation 14.6, wg = 27 fy (where fy = 50/60Hz) is of fixed value. M,, M3, are the specific
machine constants. Reactance x; is the network reactance connected to the generator terminal, which
would suddenly take on a large value if a fault were to occur in the network.

Therefore Equation 14.6 can be written as 6(r) = function(Pgy, E r), from the viewpoint of
controllable quantities. In other words, this indicates that we can control at the generating station only
the excitation of the generator and the mechanical input power from the prime-mover.

Incidentally, the equivalent inertia constant My for two machines is written as the weighted average
value of each generator’s inertia constants. Analogously, the equivalent inertia constant My for
multiple-machine systems can be written as the weighted average value of each generator’s inertia
constants. That is,

1

My

1
My

~M=

(14.6b)

14.3 Transient Stability and Dynamic Stability (Case Study)

Let us assume a power system with a parallel circuit transmission line as shown in Figure 14.1, and
where a short-circuit fault occurs at point f of the first circuit. A proper protective relay would detect the
fault immediately and the associated breakers of the circuit would trip to remove the fault successfully
within 3 or 6 cycles so that the remaining system could continue ordinary operation without causing
instability.
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effective power

P @

1

curve 0 (before fault)

curve 2 (after fault tripping)

curve 1 (during fault)

angular difference

& & & W0&8s & 180° 0

Figure 14.2 Transient stability (equal-area method)

We will study the concepts of transient-state stability and dynamic stability for the typical cascade
disturbances described above. The system behaviour in the face of such disturbances will be explained
step by step in Figure 14.2, which is a P—J curve explaining stability by the equal-quadrant method.

Figure 14.2 is the P—¢ curve for generator G. The condition before the fault is shown by curve 0
whose peak value is specified by Equation 12.5(]) or Equation 12.12(3). When the fault occurs at point
f, reactance x; suddenly becomes large (see the next section) so that the generator condition has to be
stepped down from curve 0 to curve 1. Next, immediately after fault tripping, the generator condition
will jump from curve 1 to curve 2, because reactance x; returns to a smaller value very close to the
original value (curve 2 is a little lower than curve 0 because of the difference due to removal of the
faulted line in this timing).

14.3.1 Transient stability

14.3.1.1 Case 1: The transient stability is successfully maintained

In this case transient stability is successfully maintained and the system continues stable operation
after removing the fault.

The generator G is operating with power output Po(dg) at point () on curve 0 before the fault (P is
the power from the prime-mover). When the fault occurs at point f, the operating point moves suddenly
from point (D Py (dp) to Q) P1(Jp) on curve 1. As the result, the generator causes an excess power of
Po(do) — P1(dp) (say, accelerating mode) so that 6 begins to increase on curve 1 from Q) Py (dg) to Q)
P1(61). Then the fault is removed by the associated breakers tripping at the timing of point 3) P1 (1),
and the generator condition jumps from 3) to (5 P,(d;). In this condition, the generator suddenly
causes a power shortage of P»(d1) — Py(d1) (say, decelerating mode). However, 4 still continues to
increase up to (6 P> (d4) because of the rotor inertia, and then in turn decreases towards the new stable
point ® Po(d;), though & may repeatedly over-swing a little across the new stable angular difference
3.

In the above process, the maximum angle d4 at point §) satisfies the following relation:

accelerating energy decelerating energy

dy 4
L (Po(60) — P1(5)}do = L (P2(5) — Pol6)}do

0



14.3 TRANSIENT STABILITY AND DYNAMIC STABILITY (CASE STUDY) 249

or

{the area D@} = {the area @G D} (14.7a)

It should be noted that & exceeds 90" at point @) for a short period.

14.3.1.2 Case 2: The system condition exceeds the transient

stability limit
This is the case when the system condition unfortunately exceeds the transient stability limit and the
system fails to continue stable operation after the fault.

After reaching point (5) P»(d1) by the same process as in case 1, if 6 still continues to increase
beyond ©), in spite of the decelerating mode, and exceeds point (9) P>(ds) at last, the generator will
again enter accelerating mode and the synchronizing force is lost entirely. As a result, the generator
will lose synchronization.

The point (9) P> (J5) is the critical point of the synchronization, where critical angle 05 has a value
exceeding 90"

The critical condition of the transient stability limit is

{area DQO@} = {area @OG® O} (14.7b)

It is obvious that ¢; should be small enough (this means fast fault tripping) to satisfy the above
condition.

14.3.1.3 Case 3: Reclosing is successfully executed and transient
stability is maintained

After reaching point (5) P>(6;) by the same process as in case 1, § continues to increase along curve 2
by inertia. Next, reclosing of the fault line is executed at the timing point P, (d,). If a faulted arc were
extinguished and the insulation at the faulted point had been recovered, the generator condition
would jump from P,(J,) to @ Py(62) by the successful reclosing and 6 would increase up to
point ® Py(03) and then turn to decrease. The point ((2) Po(d3) satisfies the following equation:

{area DQB@} = {area O @@@@ (14.7¢)

Returning to our main theme, let us now examine how transient stability can be improved.

First of all, the height of curve 1 is actually determined by 1/x; in the fault mode, so it is an out-of-
control matter (we discuss x; in the next section). Accordingly, the most effective countermeasure to
improve transient stability is to shorten the fault-tripping time, by decreasing the acceleration energy
{area DQQR@}. Clearly, the time delay of fault tripping by any reason means that point (3) in the
figure would be shifted to the right so that acceleration energy increases remarkably.

It must be stressed that stable power system operation can be secured by high-speed fault tripping.
Today, due to the advanced technology of protective relays and circuit-breakers, fast fault tripping for
high-voltage trunk lines has been realized, where typical operating times are

{fault-detecting time by the relays 1 — 3 cycles} + {tripping time by the breakers 1 — 3 cycles}
= {total tripping time2 — 6 cycles}

14.3.2 Dynamic stability

Besides high-speed fault tripping, there are two other effective countermeasures to improve stability
which can be realized by decreasing the acceleration energy {area(DQ3@} or by increasing the

deceleration energy {area @S® D}
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14.3.2.1 Quick excitation control by AVR

This is the countermeasure to increase the decelerating energy {area @3©® (D} by enlarging curve 2
immediately after the fault. The peak value of curve 2 is E rEp/(X, + X;), so it can be enlarged by
increasing excitation E ¢ of the generator.

AVR increases excitation jE; very quickly immediately after detecting voltage drop —AV
caused by a fault, so curve 2 would be enlarged and the decelerating energy would be
increased.

Today, due to the advanced technology of AVR and excitation equipment, rapid excitation control
(time constant of, say, 0.1 s) can be exercised. (This is again discussed in Chapter 15.)

14.3.2.2 Quick driving-power adjustment by speed-governor control
of the prime-mover

This is the countermeasure to decrease the accelerating energy {area DQ @@} by depressing the
mechanical input from the prime-mover immediately after the fault. The speed-governor, upon
detecting a sudden acceleration of the rotor speed, reduces the mechanical input from the prime-mover
by decreasing the water/steam flow (i.e. Po — (Po — APy) in Figure 14.2).

However, the amount of input power the speed-governor can decrease in a short time is limited
(say, APy/Py =3 — 10%). In addition, especially in the case of a hydro-unit, water flow cannot
be quickly changed because of the time delay characteristics of the water system (time constant,
say, 1-3 s). Accordingly, the contribution of the speed-governor as the countermeasure to improve
dynamic stability may be limited, especially for the initial short duration (of 0-1 s) just after
disturbance.

The function of power control by speed-governor is quite important in reducing frequency
fluctuations of the power system on the one hand, while on the other hand it may be a supplementary
countermeasure to improve dynamic stability.

As described above, dynamic stability is the concept of greatly improved stability beyond the
steady-state stability limit, which can be realized by quick excitation (AVR) control and supple-
mentary speed-governor control of the generators.

14.4 Four-terminal Circuit and the P—§ Curve
under Fault Conditions

In Figure 14.2, the peak value of the P— 0 curve is given by E sEp/(X, + X;). We conducted our study
with the understanding that curve O before the fault has a large peak value, while curve 1 during the
fault has a very small peak value, because the reactance x; (the equivalent reactance) included in the
denominator becomes quite large under fault conditions in comparison with that under normal
conditions before the fault (say, 10 or 20 times).

Why would x; become so large under the fault condition in comparison with the value before the
fault? What is the reactance x; which is included in the denominator of Equation 14.6a, or Equation
12.12, in particular under fault conditions? We need to clear up these simple questions.
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Figure 14.3 Four-terminal circuit
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Let us examine Figure 14.3, which is a single phase four-terminal circuit between the sending point
s and the receiving point r. The equation for the circuit is

ve | | A B | | v
s | | ¢ | D i
: — (14.8a)
where  y, = V /5 =V, -e/d
Vv =V,0=V
eliminating i,
. D BC—-AD
Iy = va TV,« (14.8b)
The apparent power at the sending point s is
Ss :Ps+st :Vsl?
=V 14.9
B B (14.9)
== V24 — V,V,e/

Using this equation, we compare circuits 1 and 2 in Figure 14.4.

14.4.1 Circuit 1

This case corresponds to the case of Equation 12.12 Q)3 under the relation X; < x + x’. The
equation is

Vg 1 Jjx+x) v A B v
I 0 1 i c | D i (14.10)
A=D=1, B=jx+x), €C=0

Substituting the conjugates A", B*, C*, D" into Equation 14.9,

ViV VZ_vV, 5
Se = Pyt jO, 