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SUMMARY

In both rich and poor nations, public resources for health care are inadequate
to meet demand. Policy makers and health care providers must determine
how to provide the most effective health care to citizens using the limited
resources that are available. This chapter describes current and future
challenges in the delivery of health care, and outlines the role that operations
research (OR) models can play in helping to solve those problems. The
chapter concludes with an overview of this book – its intended audience, the
areas covered, and a description of the subsequent chapters.
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1.1 WORLDWIDE HEALTH: THE PAST 50 YEARS

Human health has improved significantly in the last 50 years. In 1950,
global life expectancy was 46 years [1]. That figure rose to 61 years by
1980 and to 67 years by 1998 [2]. Much of these gains occurred in low- and
middle-income countries, and were due in large part to improved nutrition
and sanitation, medical innovations, and improvements in public health
infrastructure.

However, not all countries have experienced an increase in life expectancy
in recent years. In countries of the former Soviet Union, life expectancy
dropped from 70 years in 1986 to 64 years in 1994, with an even more
marked drop among men [3]. Factors contributing to this decline include
economic and social instability, high rates of tobacco and alcohol
consumption, poor nutrition, depression, and deterioration of the health care
system [4]. In many African nations, life expectancy has been significantly
diminished by HIV/AIDS. In seven African countries life expectancy is now
less than 40 years and falling [5].

Worldwide, infectious diseases kill 13 million people per year [6]. In 1999,
2.8 million people died from AIDS alone [7]. Infectious diseases once
confined to specific geographic regions have spread across country borders
as a result of increasing global travel. New infectious diseases continue to
emerge [8]. Noncommunicable diseases such as heart disease, cerebro-
vascular disease (stroke), cancer, and diabetes are the primary cause of death
in high-income countries. Such diseases currently account for less than half
of all deaths in low-income countries, but in the next 20 years are expected
to account for 70% of deaths [9]. In low-income countries, malnutrition
remains a serious health problem, whereas in high-income countries, obesity
is increasingly becoming a health problem. Tobacco, alcohol, and drug use
have led to significant health problems worldwide. Tobacco use currently
accounts for almost 5 million premature deaths per year. This figure is
projected to rise to more than 8 million deaths per year by 2020, with many
of these in low- and middle-income countries [10]. Food and water
contamination cause at least 2 million premature deaths per year, primarily
in low- and middle-income countries. Environmental agents (e.g., arsenic,
lead, silica) also pose significant health risks in some areas. In addition,
manmade chemical and biological weapons are a potential threat to public
health.

1.2 HEALTH CARE DELIVERY CHALLENGES

Governments and health care providers face a variety of challenges in the
delivery of health care. Below we describe current and future health care
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challenges. Because low- and middle-income countries face significantly
different challenges in health provision than do high-income countries, we
describe their current health care challenges separately. We then describe
the future challenges in health care delivery that are common to all
countries.

1.2.1 Current health care delivery challenges in low-income and middle-
income countries

In low- and middle-income countries, where 80% of the world’s population
lives, malnutrition and infectious diseases account for significant numbers of
premature deaths. Half of young child deaths in low-income countries are
caused by malnutrition [11]. Although vaccines are available for a number
of infectious diseases that cause childhood deaths, 25% of the world’s
children have not received these vaccines [12]. Many people in low- and
middle-income countries do not receive even basic health care. Health
facilities are often located in urban areas, far from rural areas and frequently
difficult to access by public transportation. The care that is provided can be
costly and substandard. In recent years, low- and middle-income countries
have seen a significant shift in population from rural to urban areas, but have
had no commensurate increase in urban health services. Inadequate
infrastructure (e.g., inadequate roads, storage and distribution systems,
electricity, clean water) and poorly functioning public health systems also
impede the provision of health care.

Resources for health care in low-income countries are quite limited. Among
the world’s 60 poorest nations, annual per capita health spending in the year
2000 was less than $15 [13], and approximately one third of this funding
came from international aid. Such an amount is insufficient to provide even
the most basic health services. In contrast, annual per capita health spending
in the industrialized world was on the order of $2,000, and was $4,500 in the
United States [13]. Even if low-income countries were to devote more of
their scarce public funds to health care, as recently recommended by the
World Health Organization [13], per capita spending would still be at levels
far below that in the industrialized world.

The lack of health care funding in low- and middle-income countries is
exacerbated by rising health care needs and costs. Countries severely
affected by HIV/AIDS are facing far greater demands for health care than
they can meet. In other low- and middle-income countries, aging
populations have increased overall demand for health care. Health care costs
have risen as a result of new health care technologies and procedures.
Moreover, many medicines that are routinely used in high-income countries
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(so-called “essential medicines”) are not affordable in low-income countries.
In some cases, even basic vaccines are too expensive.

1.2.2 Current health care delivery challenges in high-income countries

In high-income countries, resources for health care are orders of magnitude
greater than in low-income countries. However, high-income countries face
their own health care challenges. Although such countries spend much more
on health than low-income countries, performance of health care systems
varies markedly among high-income countries. For example, the United
States spends almost twice as much per capita on annual health care as many
other high-income nations, without achieving any greater life expectancy or
any lower “burden of disease” (measured in terms of life years lived,
adjusted for health disabilities) [14]. A recent report by the World Health
Organization ranked the U.S. in overall health systems performance
among 191 Member States [14]. France, which spends half as much as the
U.S. on per capita annual health care, was ranked first in overall health
systems performance [14]. (Health systems performance as measured in the
report included not only measures of health, but also measures of health
system fairness and responsiveness.)

Inequities in health care provision exist within high-income countries. In
countries with no national health system, such as the U.S., a significant
fraction of individuals have no health insurance coverage and thus have only
limited access to health care. Poor people and those in rural areas also often
have only limited access to health care. In some high-income countries,
including the U.S., the gap in life expectancy between rich and poor people
is as great as the gap in life expectancy between high- and low-income
countries [15].

Like low-income countries, high-income countries have experienced
significant increases in demand for and cost of health care. Aging
populations are making disproportionately heavy demands on health systems
in high-income countries. Chronic conditions have become more prevalent.
While new health care technologies and procedures have improved health,
they have also increased costs. Patients are not only consuming more health
services, but are consuming more intensive health services. Prescription
drugs have also become increasingly expensive. In many high-income
countries, health care spending has significantly outpaced economic growth.
In the U.S., for example, health care spending accounted for 5% the Gross
Domestic Product (GDP) in 1960 (or $143 per person); by 2001, health care
spending accounted for 14.1% of the GDP (or $5,035 per person) [16]. As a
result of these increases in demand for and cost of health care in high-
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income countries, national health systems, insurers, and health care
providers are all under strain.

1.2.3 Future health care delivery challenges

As we begin the century, many of the health care challenges described
above will continue. Preventable diseases will persist. Inequities in access
to health care within and across countries will persist. Health care costs will
continue to increase, as will demands for health care. Advances in medical
knowledge will continue, along with costly new technologies and medicines.
Aging populations will consume increasing amounts of health care services.
Patients will have increasing expectations for cures and treatments of more
health problems. New means of delivering health care (e.g., telemedicine)
will continue to emerge, creating a need for improved communication and
information management systems.

In both rich and poor nations, public resources for health care will remain
inadequate to meet the demand. Policy makers and health care providers
must determine how to provide the most effective health care to citizens
using the limited resources that are available. Governments and health care
providers must strive to meet basic health needs for all their citizens.
Moreover, they must work to improve health and health-related quality of
life for citizens in all stages of their lengthening life span. They must set
health care priorities (e.g., between disease prevention and treatment or
between alternate means of health care delivery) and develop health care
systems that can deliver the needed health care in the most effective and
efficient manner possible. Worldwide health improved dramatically during
the century. The challenge of the century will be to continue this
improvement.

1.3 PROVIDING EFFECTIVE AND EFFICIENT HEALTH CARE

To provide the best health care given the limited resources that are available,
policy makers need effective methods for planning, prioritization, and
decision making, as well as effective methods for management and
improvement of health care systems. The planning and management
decisions facing policy makers and planners can be grouped into two broad
areas: health care planning and organizing, and health care delivery.

1.3.1 Health care planning and organizing

Health care planning and organizing involves relatively high-level policy
decisions about the economics of health care systems (e.g., health care
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resources, pricing, and financing), the structure of health care systems, and
other aspects of public policy regarding health care.

Economics of health care systems At the highest level of planning,
governments and other health care providers must determine the level of
resources they will devote to health care, and how much they will spend on
individual patients. Governments must decide which goods and services are
to be paid for through public funding and who will receive those goods and
services. Because funds are not available to meet all health care needs,
governments must set priorities and determine how they will ration the
health services they pay for. Health care providers must determine the cost
of services and set prices. Government agencies and other large insurers
must negotiate prices for drugs and vaccines. Insurers, including
governments, must determine who will receive health insurance coverage
and what that coverage will consist of. They must develop affordable,
workable payment schemes for physicians and other health care providers,
and must determine what fees patients must pay for health care services.
Such financing schemes must provide proper incentives for health system
efficiency.

Structure of health care systems Another set of high-level decisions
concerns the structure and organization of health care delivery systems.
Health care providers must determine which goods and services they will
provide and how to allocate resources among them. Governments must
decide to whom the goods and services will be provided. Resources must be
allocated among different levels of the health service – for example, among
primary care and public health programs versus hospital services. Resources
must be allocated between capital development and operating costs, and
between salary and nonsalary expenditures. Resources must be allocated
among geographic areas – for example, different regions of a country, or
urban versus rural areas. Resources must be allocated among specific
programs – for example, programs for control of specific diseases,
immunization programs, or reproductive health programs. Resources must
also be allocated among specific health care goods and services – for
example, doctor visits, procedures, or medications.

Other public policy issues In addition to economic and structural issues,
decision makers face a variety of other policy decisions that have a broad
effect on the delivery of health care. Policy makers must develop strategic
plans for national and regional health improvement. These include
identifying risks to public health (e.g., environmental contaminants,
infectious disease epidemics, or unhealthy lifestyles) and developing plans
for mitigating such risks. Such plans may include, for example, national or
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regional disease screening and prevention programs, health promotion
programs, mass vaccination programs, programs to control biological pests
(e.g., spraying against malaria-transmitting mosquitoes), programs for the
control of illicit drugs, or programs for response to potential bioterrorist
attacks. Policy makers must develop plans for the provision of health care
that address the availability of and access to health care among those whom
the health care system serves, with consideration given to the impact of
insurance and regulatory policies on such access. Other population-level
policy issues include policies for the allocation of transplant organs among
potential recipients, for managing national blood supplies, and for managing
national vaccine and pharmaceutical stockpiles.

1.3.2 Health care delivery

Planning and managing health care delivery involves decisions about the
management of health care operations and about clinical practice.

Operations management for health care delivery Operations management
problems that arise in the delivery of health care are similar in many ways to
traditional problems in operations management. These include strategic
planning problems such as design of services (e.g., inclusion of neonatal
intensive care units in some hospitals, or provision of free-standing urgent
care clinics or rural health workers), design of the health care supply chain
(e.g., design of a network of hospitals, outpatient clinics, and laboratory
services), facility planning and design (e.g., location and layout of hospitals
and outpatient clinics, or design of material handling systems), equipment
evaluation and selection, process selection, and capacity planning. Other
planning problems include demand and capacity forecasting, capacity
management, scheduling and workforce planning, job design, and
management of the health care supply chain. Managers of health care
systems must manage inventory (e.g., drugs, supplies, or blood), measure
and manage system performance and quality, and assess the performance of
health care technologies. Decision support systems must be designed and
implemented to support all of these activities.

Clinical Practice Clinicians face a number of important planning and
management problems in the delivery of health care. These include
assessing health risks and diagnosing diseases and conditions of individual
patients. Clinicians must design and plan treatment for their patients. For
example, they must assess how disease is likely to progress in a patient and
then they must select appropriate drugs and dosages and design other aspects
of a treatment regimen (e.g., surgery, radiation, rehabilitation). Clinicians
must determine appropriate disease prevention strategies for individual
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patients (e.g., vaccination, disease screening, drug treatment, lifestyle
changes). The goal of these clinical activities is to provide the highest
quality care given the resources that are available. Doing so requires
ongoing assessment of clinical quality and well as assessment of the cost and
effectiveness of different health care interventions. A recent innovation in
clinical practice has been the development of broad-based practice
guidelines that specify the recommended standard of care for various
diseases and conditions. Such guidelines are developed based on cost-
effectiveness analysis of alternative interventions, and vary according to the
population and setting (e.g., guidelines for treating a disease in a low-income
country will differ from guidelines for treating the same disease in a high-
income country). Finally, given the explosion of new medical knowledge,
information management and decision support systems can play a crucial
role in supporting effective and efficient clinical practice.

1.4 OVERVIEW OF THIS BOOK

Operations research techniques, tools, and theories have long been applied to
a wide range of issues and problems in health care. However, to date, no
single handbook has synthesized the wide applicability of such techniques
and presented future challenges and avenues for research. In fact,
practitioners, students, and researchers in this field have had difficulty
finding a comprehensive reference that can help them improve their ability
to apply such techniques, learn new techniques, explore new issues and
challenges, and pursue new research avenues. This handbook aims to fill that
need.

This book covers applications of operations research in health care, with
particular emphasis on health care delivery. The book is geared toward a
multidisciplinary audience that includes OR practitioners, students, scientists
and researchers with interest in health care (either new interest or existing
expertise), as well as health practitioners (such as clinicians, administrators,
and managers), students, scientists, and researchers in health sciences, health
administration, public health, health care delivery, and health policy.

Three main areas are covered: (1) health care operations management, (2)
public policy and economic analysis, and (3) clinical applications. Within
each area, a broad range of topics is addressed. Each chapter details a
problem area, a state-of-the-art application, the methodology employed, and
research issues raised. Each topic is structured and addressed in such a way
that a wide audience – with varying levels of knowledge of the subject area
or the methodology employed – will be able to access and use the material
presented.
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This book covers topics as diverse as hospital capacity planning and
management, supply chain management for blood banking, evaluation of
hospital efficiency, vaccine pricing policies, national drug control policy,
decision making for bioterror preparedness, breast cancer diagnosis, optimal
design of radiation treatments, and analysis of asthma treatments. Although
they cover diverse topics, all of the chapters show how operations research
can be applied to help make health care delivery more effective and
efficient.

1.4.1 Health care operations management

The first main section of the book comprises chapters describing the
application of OR models to problems in health care operations
management. In Chapter 2, Linda Green describes how OR models have
been and can be used for hospital capacity planning. In Chapter 3, Mark
Daskin and Latoya Dean review the application of facility location models in
health care. They also present a novel application of the classical set
covering model to the analysis of cytological samples. In Chapter 4, Shane
Henderson and Andrew Mason discuss the application of a customized
simulation model to assist in decision making by a New Zealand ambulance
service. In Chapter 5, William Pierskalla discusses the management of
blood bank supply chains. In Chapter 6, Liam O’Neill and Franklin Dexter
present a method to identify best practices among hospitals’ perioperative
services using data envelopment analysis (DEA). In Chapter 7, Yasar
Ozcan, Elizabeth Merwin, Kwangsoo Lee, and Joseph Morrissey describe
the application of DEA to develop a methodology for analyzing
organizational performance of community mental health centers. They also
present measures of efficiency that can be used as a basis for improving
productivity in behavioral health care. In Chapter 8, Michael Carter and
John Blake describe four case studies of simulation applied to problems in
hospital operations management. They describe the obstacles encountered in
these applications, and the lessons learned.

1.4.2 Public policy and economic analysis

The second main section of the book comprises chapters that illustrate the
application of OR to problems of health care policy and economic analysis.
In Chapter 9, Rose Baker describes applications of conditional likelihood
methods for estimating risks to public health. In Chapter 10, Thitima
Kongnakorn and François Sainfort describe how medical outcomes can be
modeled in order to facilitate economic analysis of health care policy
problems. In Chapter 11, Anke Richter presents three case studies of the
application of OR techniques to evaluate the economic consequences and
health benefits of new medications and treatments. In Chapter 12, Jonathan
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Caulkins provides an overview of the ways in which OR models have been
applied to evaluate policies for the control of illicit drugs. In Chapter 13,
Gregory Zaric reviews recent OR advances in modeling maintenance
treatment programs for opiate addicts. In Chapter 14, Harold Pollack
describes how OR models have been used to evaluate syringe exchange
programs and substance abuse treatment programs for injection drug users,
and how such models can assist policy makers. In Chapter 15, Douglas
Owens, Donna Edwards, John Cavallaro, and Ross Shachter apply a
simulation model and economic analysis to evaluate the cost effectiveness of
potential vaccines against HIV, the virus that causes AIDS. In Chapter 16,
Sheldon Jacobson and Edward Sewell review the application of linear
programming models to address a variety of economic issues surrounding
pediatric vaccine formulary design and pricing. In Chapter 17, Margaret
Brandeau reviews OR models that have been developed to assist in the
allocation of resources to control infectious diseases. In Chapter 18, Stephen
Chick, Sada Soorapanth, and James Koopman evaluate the public health
benefits of two interventions for controlling infectious microbes in the water
supply – improvements to centralized water treatment facilities, and
localized point-of-use treatments in the homes of particularly susceptible
individuals. In Chapter 19, Ruth Davies and Sally Brailsford present a
model that evaluates policies for public health screening to detect diabetic
retinopathy (which is early indications of eye disease caused by diabetes).
In Chapter 20, Edward Kaplan and Lawrence Wein review the recent
smallpox vaccination policy debate in the U.S., and describe the successful
use of OR methods to influence policy in this arena. In Chapter 21, Stefanos
Zenios reviews OR models that have been used to evaluate policies for
allocating donor kidneys to transplant recipients. In Chapter 22, Mike
Cushman and Jonathan Rosenhead describe the application of a model-based
approach to the redesign of children’s health services in inner London.

1.4.3 Clinical applications

The third main section of the book comprises chapters that describe the
application of OR techniques to clinical problems. In Chapter 23, Andrew
Schaefer, Matthew Bailey, Steven Shechter, and Mark Roberts review the
application of Markov decision process models to guide medical treatment
decisions. In Chapter 24, Gordon Hazen describes how dynamic influence
diagrams can be applied to model clinical decision problems. In Chapter 25,
Elisabeth Paté-Cornell describes the application of risk analysis to evaluate
policies for reducing risk during anesthesia procedures. In Chapter 26,
David Paltiel, Karen Kuntz, Scott Weiss, and Anne Fuhlbrigge present a
model that simulates health and economic outcomes among patients with
asthma, and they illustrate the application of the model to assess the cost
effectiveness of inhaled corticosterioids among certain adult patients. In
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Chapter 27, Daniel Rubin, Elizabeth Burnside, and Ross Shachter present a
Bayesian network model that can help radiologists interpret mammograms
and determine appropriate followup. In Chapter 28, Eva Lee and Marco
Zaider describe an optimization model and decision support system to help
plan radiation treatment for patients with cancer. In Chapter 29, Allen
Holder describes linear optimization models that can be used to help design
radiation treatments. In Chapter 30, Michael Ferris, Jinho Lim, and David
Shepard describe the application of Matlab for radiation treatment planning.
In Chapter 31, James Koopman, Ximin Lin, Stephen Chick, and Janet
Gilsdorf present a transmission model of a common bacteria that colonizes
the human nose and throat, and they show how the model can be used to
evaluate the relative effectiveness of different vaccines (in particular,
vaccines that reduce transmission of the bacteria versus vaccines that prevent
disease once a person’s throat has been colonized). Finally, in Chapter 32,
David Craft, Lawrence Wein, and Dennis Selkoe present a model of the
accumulation of amyloid, in the brain during the course of
treatment for Alzheimer’s disease, and show how the model can be used to
determine appropriate treatments.

1.4.4 Conclusion

In a recent report [6], the World Health Organization stated that, “One of the
most important roles of the World Health Organization is to assist countries
in making optimum use of scarce health resources.” This, too, is a role for
operations researchers, as this book demonstrates.
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SUMMARY

Faced with diminishing government subsidies, competition, and the
increasing influence of managed care, hospitals are under enormous pressure
to cut costs. In response to these pressures, many hospitals have made
drastic changes including downsizing beds, cutting staff, and merging with
other hospitals. These critical capacity decisions generally have been made
without the help of OR model-based analyses, routinely used in other service
industries, to determine their impact. Not surprisingly, this has often
resulted in diminished patient access without any significant reductions in
costs. Moreover, payers and patients are increasingly demanding improved
clinical outcomes and service quality. These factors, combined with their
complex dynamics, make hospitals an important and rich area for the
development and use of OR/MS tools and frameworks to help identify
capacity needs and ways to use existing capacity more efficiently and
effectively. In this chapter we describe the general background and issues
involved in hospital capacity planning, provide examples of how OR models
can be used to provide important insights into operational strategies and
practices, and identify opportunities and challenges for future research.

KEY WORDS

Hospitals, Capacity management, Queueing theory
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2.1 INTRODUCTION

2.1.1  Background

Hospitals are the locus of acute episodes of care for most serious illnesses
and form the backbone of the emergency medical care system. Over the
years, hospitals have been successful in using medical and technical
innovations to deliver more effective clinical treatments while reducing
patients’ time spent in the hospital. However, hospitals are typically rife
with inefficiencies and delays. Patients spend hours and sometimes days in
emergency rooms and recovery rooms waiting for beds. Procedures and
surgeries have to be cancelled and rescheduled. Inpatients are placed in
inappropriate beds and transferred multiple times from one unit to another.
Nurses and other staff are often in short supply to handle peak loads.

These inefficiencies have their roots in the regulatory and financing
environment in which most hospitals existed until recently. Until the mid-
1980’s, U.S. hospitals were paid by insurers on a “fee for service” basis and
capacity expansions were subsidized by state governments. With the
increased prevalence of managed care and reduced government subsidies,
hospital managers have been under increasing pressure to cut costs and have
undertaken large-scale changes to do so. Hospitals have been merged,
downsized, and in many cases, closed. Beds have been reorganized, units
closed, and patients discharged earlier to increase utilization and throughput.
Emergency rooms are getting more crowded and there are increasing reports
of ambulance diversions due to a lack of beds. Yet, most hospitals struggle
to operate in the black.

In this environment, it is more important than ever for hospital managers to
identify ways to “right-size” their facilities and deploy their resources more
effectively. Yet, hospitals do not generally use the kind of OR/MS
methodologies used in many other service industries to help with capacity
planning and management.

2.1.2 Capacity planning in hospitals: overview

The most fundamental measure of hospital capacity is the number of inpatient
beds. Hospital bed capacity decisions have traditionally been made based on
target occupancy levels – the average percentage of occupied beds. Historically,
the most commonly used occupancy target has been 85%. Certain nursing units
in the hospital, such as intensive care units (ICUs) are often run at much higher
utilization levels because of their high costs.
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Until recently, the number of hospital beds was regulated in most states under the
Certificate of Need (CON) process, under which hospitals could not be built or
expanded without state review and approval. (In the last few years, most of these
states have either relaxed or totally eliminated CON bed requirements.) Target
occupancy levels were the major basis for these approvals. Though there has
been fairly extensive literature on the use of queueing, simulation, and
optimization models to support hospital planning [1-6], occupancy targets have
been and continue to be the primary measure for determining bed requirements at
the individual hospital and even hospital unit level. Faced with increased
pressure to be more cost efficient, some hospitals are now setting target levels
that exceed 90% without understanding and addressing the issues of bottlenecks
and congestion in what is usually a highly stochastic, interdependent system.

The other major component of capacity is personnel, particularly nurses. Nurses
are the chief caregivers as well as managers of the clinical units. In recent
studies, nursing has been found to have a significant impact on clinical outcomes
[7]. In addition, nursing costs comprise a very substantial fraction of hospital
budgets. In most hospitals, the number of nurses assigned to a unit is determined
by a specified ratio of patients to nurses. The norm for most types of clinical
units has been 8:1, while for intensive care units it could be as little as 1:1.
Though most hospitals subscribe to these standards, cost pressures and a national
nursing shortage have resulted in these ratios being exceeded in many cases.
Sometimes, however, this is the result of a failure to adequately plan for the daily,
weekly and sometimes seasonal variations in hospital census that are common in
most clinical units of virtually every hospital. Though there have been many
articles on the use of optimization models to determine nurse staffing (see
references in [3, 8, 9]), hospitals often lack basic data, such as patient census by
time of day, that would be needed to use such models [10].

Another significant component of capacity is operating rooms. Surgical
procedures are usually a critical source of revenues for hospitals. The efficient
use of operating rooms, which are often bottlenecks, can be central to the smooth
functioning of the hospital as a whole. Substantial work on scheduling operating
rooms has appeared in the OR literature (see references in [3, 11, 12]), though
there is evidence that this resource is still a source of operational problems.

Major diagnostic equipment, such as magnetic resonance imaging devices
(MRIs), comprise another important category of capacity. These machines are
extremely expensive, so operating policies are usually oriented toward achieving
100% utilization. In order to avoid “excess” capacity and “unnecessary” usage,
these purchases are regulated by the states under a certificate of need (CON)
process. Hospital policies governing the use of MRIs are very varied. For
example, in some hospitals, outpatients are scheduled on a dedicated facility
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while in others, inpatients, outpatients and emergency patients all use the same
machine. Policies and priority rules are constructed and implemented without
any OR analysis and often result in long lead times for outpatient appointments
as well as on-site delays. See [13] for a dynamic programming approach to the
allocation of capacity for a shared facility.

2.2   AN ILLUSTRATION OF THE ISSUES: EMERGENCY ROOM
DELAYS

2.2.1 Understanding the problem

Newspapers, magazines and television have recently reported on severe
overcrowding of emergency departments (EDs) and increases in the amount of
time that ambulances are being turned away from hospitals [14-16]. Though
troubling even on the surface, these reports are even more ominous given the
current environment of terrorist threats. So what needs to be done to improve
hospitals’ ability to respond to emergencies?

Before looking for solutions, it is critical to first understand the nature of the
problem. This should begin with the question: “How long should patients
wait?” Reports of excessive delays and overcrowding can be very misleading
unless there is an understanding of what performance standards should be
applied. This, in turn, necessitates an understanding of the potential medical
consequences of specific delays for each category of patients. Many patients
who arrive to an ED are “non-urgent” and would not be harmed by significant
delays in seeing a physician. Most, however, are either “emergent” (requiring
“immediate” care) or “urgent” (requiring care within a “short” period of time).
Within each of these broad categories, however, there is considerable variety in
the exact nature of the illness or injury and extremely little clinical evidence
supporting specific delay standards. Unlike, say, telephone call centers, there are
no industry-wide standards for what constitutes excessive delays in an ED. Nor
are there generally accepted standards for how long a patient requiring admission
from the ED should wait for a bed. It is this latter delay that directors of EDs
generally cite as most responsible for ED overcrowding and ambulance
diversions.

2.2.2 Complexities of capacity planning

Even without specific standards, there is clearly a problem when patients wait for
the better part of the day for a bed, when filled stretchers block walkways and
hallways, or when a hospital must routinely turn ambulances away. What causes
these problems? Though one likely cause (and the one most widely cited in the
media) is the reduction of inpatient beds over the last ten years, many other
factors must be considered. From a capacity planning perspective, the entire
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process from patient arrival in the ED to placement in a bed must be examined.
Considering only the major steps, the process begins with the triage nurse, who
determines the acuity of the patent’s condition, and registration which is usually a
clerical function. Next, the patient is seen by an ED physician. Often this results
in a request for diagnostic testing such as blood analysis and x-rays. Laboratory
specimens are generally collected by technicians or nurses and sent to a central
testing facility of the hospital. If the patient needs to be taken to another location
in the hospital for a diagnostic test, transport personnel are needed. When all
tests are completed, the physician reviews them and determines whether the
patient requires admission to the hospital. If so, a bed is requested in the
appropriate nursing unit (e.g., medical, surgical, intensive care). The availability
of a bed is affected not only by the capacity of the relevant unit, but also by the
admission and scheduling policies of elective patients, particularly surgical
patients who compete for the same beds as many emergency patients [17], and by
transfer and discharge policies and procedures. Even if a suitable bed is vacant, it
must be located and identified as empty, and then cleaned, if necessary. In
addition, a floor nurse must be available to admit the patient. When everything is
ready, a request is made for transport and when it is available, the patient is
finally moved to the assigned bed. Clearly, there is the potential for a mismatch
between the demand and availability of capacity in each step of the process.

This description of the ED admission process illustrates the complexities of
hospital capacity planning and management. First, it demonstrates the
interdependencies of the various parts of the hospital and the need to identify
bottlenecks. These bottlenecks may change from hour to hour, shift to shift,
daily, weekly and seasonally. Second, it shows the variety of both fixed
capacity (e.g., inpatient beds, ED beds, diagnostic equipment) and variable
capacity (e.g., nurses, physicians, technicians, housekeepers, transport staff)
that must be managed. Third, much of the capacity required for ED
admissions – such as inpatient beds, labs, diagnostic equipment and transport
staff – is shared by other patients in the hospital, and thus policies and
procedures are required to allocate these resources among the various patient
groupings. Fourth, ED admissions are generally time-dependent with
distinct time-of-day and day-of-week patterns as well as some seasonality.
Therefore, it is imperative that managers develop appropriately flexible
staffing policies as well as strategies for using fixed capacity to handle peak
loads efficiently and effectively. Finally, in order to create a true emergency
response system, capacity needs must be considered on a regional basis and
ambulance dispatch and diversion policies developed to assure timely access
to care for the most urgent patients. Given that hospitals within the same
geographic area are likely to experience many of the same peaks in demand,
this means that enough regional capacity should be available so that the
probability of all hospitals within a given area being on ambulance diversion
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simultaneously is extremely small. This is well illustrated by the case of
New York City which experienced a severe and protracted citywide shortage
of inpatient hospital beds in 1987/1988 [18]. During this period, ambulances
were routinely turned away from full hospitals and urgently sick patients
experienced delays of days waiting for an open bed.

2.3 HOW MANY HOSPITAL BEDS?

2.3.1 The problem with occupancy levels

As mentioned previously, hospitals often rely on target occupancy levels to
plan and evaluate bed capacity. Until recent reports on ED overcrowding
and increased ambulance diversion started surfacing, the widespread
perception among policymakers and hospital managers was that there were
too many hospital beds in the U.S. This belief was primarily supported by
the discrepancy between what has usually been considered the “optimal”
occupancy figure of 85% (see, e.g., [19], p.55) and the actual average
occupancy rate for nonprofit hospitals which has recently been about 64%
[20]. This and other related target occupancy levels were originally
developed at the federal government level in the 1970’s as a response to
accelerating health care costs and the perception that more hospital beds
resulted in greater demand for hospital care (which was shown to occur
under fee for service reimbursement). These occupancy targets were the
result of analytical modeling for “typical” hospitals in various size categories
and were based on estimates of “acceptable” delays [21].

What is wrong with using occupancy levels to manage capacity? First,
reported occupancy levels are generally based on the average “midnight
census”. This refers to the time when hospitals count patients for billing
purposes. However, the midnight census usually measures the lowest
occupancy level of the day. One reason is the phenomenon known as the
“23-hour patient” who is admitted in the morning and discharged in the
evening. Managed care companies have encouraged this practice as a way
of allowing evaluation of a patient while avoiding unnecessary
hospitalization. More generally, most patients are admitted in the morning
or early afternoon and are not discharged until after attending physicians
have conducted examinations, so that the peak census is in the middle of the
day and can easily be 20% higher than at midnight [22]. In addition, the
utilization of hospital facilities is far from uniform across the week or across
the year. Very few procedures are scheduled for weekends, so elective
patients are not usually admitted on weekends when the average daily census
is considerably lower. Summer and holiday periods are also slower [23] and
other seasonal effects have been observed in specific hospitals and/or for
specific units. Reported occupancy levels are yearly averages and hence do
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not reflect significantly higher levels that may exist for extensive periods of
time. For all of these reasons, reported occupancy levels are not reliable
measures of general bed utilization.

More importantly, bed occupancy levels do not measure or even indicate
patients’ delays for beds. Yet, hospitals do not typically measure bed delays
nor do they use queueing or simulation models to estimate the delays that
would result from changes in demand or the number or organization of beds.

2.3.2 Target occupancy levels, bed delays and size

Evaluating bed capacity based on a target probability of bed availability or other
measure of delay can lead to very different conclusions than would be reached
from the use of a target occupancy level. This can be illustrated in considering
obstetrics units. Obstetrics is generally operated independently of other services,
so its capacity needs can be determined without regard to other parts of the
hospital. It is also one for which the use of a standard M/M/s queueing model is
quite good. Most obstetrics patients are unscheduled and the assumption of
Poisson arrivals has been shown to be a good one in studies of unscheduled
hospital admissions [24]. In addition, the coefficient of variation (CV) of length
of stay (LOS), which is defined as the ratio of the standard deviation to the mean,
is typically very close to 1.0 [6] satisfying the service time assumption of the
M/M/s model.

Since obstetrics patients are considered emergent, the American College of
Obstetrics and Gynecology (ACOG) recommends that occupancy levels of
obstetrics units not exceed 75% [25]. Many hospitals have obstetrics units
operating below this level. For example, based on the 1997 Institutional
Cost Reports (ICRs), 117 of the 148 or 79% of New York State hospitals
had average occupancy levels below this standard. Some have eliminated
beds to reduce “excess” capacity and costs [26]. Conversely, fewer than
20% of these hospitals had obstetrics units that would be considered over-
utilized by this standard.

But evaluation of capacity based on a delay target leads to a very different
conclusion. Though there is no standard delay target, Schneider [27]
suggested that the probability of delay for an obstetrics bed should not
exceed 1%. Applying this criterion and using the ICR data in an M/M/s
model results in 40% of the hospitals having insufficient capacity by this
standard. The major reason for this is size. From queueing theory, we know
that larger service systems can operate at higher utilization levels than
smaller ones while attaining the same level of delays [28]. While obstetrics
units are usually not the smallest units in the hospital, there are many small
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hospitals, particularly in rural areas, and the units in these may only contain
5 to 10 beds.  Of the New York State hospitals represented in this data, more
than 50% had maternity units with 25 or fewer beds. How large would an
obstetrics unit need to be to operate at a 75% occupancy level and have a
probability of delay not exceeding 1%? The estimate based on the M/M/s
model is that at least 67 beds are needed. Only 3 of the 148, or 2% of the
New York hospitals represented in the 1997 ICR reports had units at least
this large.

2.3.3 The impact of seasonality

The above discussion illustrates that policies based on target occupancy
levels can result in less than desirable access to beds. Indeed, actual results
are likely to be worse than described above. This is because the above
analyses were based on average annual occupancy levels and obstetrics units
typically experience a significant degree of seasonality in admissions. For
example, data from Beth Israel Deaconess Hospital in Boston [6] revealed
that the average occupancy levels varied from a low of about 68% in January
to about 88% in July. With 56 beds, the probability of delay for an
obstetrics bed, as estimated from the M/M/s model, for a patient giving birth
in January is likely to be negligible, while in July, it would be about 25%.
And if, as is likely, there are several days when actual arrivals exceed this
latter monthly average by say 10%, this delay probability would shoot up to
over 65%. The result of such substantial delays can vary from backups into
the labor rooms and patients on stretchers in the hallways to the early
discharge of patients. Clearly, hospitals need to plan for this type of
predictable demand increase by keeping extra bed capacity that can be used
during peak times, or by using “swing” beds that can be shared by clinical
units that have countercyclical demand patterns.

2.3.4 The impact of clinical organization

Hospital beds are not all the same. In most general care hospitals, beds are
organized into nursing units. A nursing unit generally corresponds to a specific
physical location with a dedicated nursing staff headed by a general nurse
manager. Each nursing unit is used for one or more clinical services, such as
medicine, surgery, cardiology, neurology, and so forth. With the exception of a
few services such as pediatrics, obstetrics and psychiatry, which are always
operated as dedicated units, hospitals vary in the number and types of nursing
units. For example, in some hospitals, nursing units may house both general
medical and surgical patients, while others operate strictly dedicated units for
each. In addition, hospitals generally have one or more intensive care units
(ICUs). Some hospitals have many specific types of ICUs including
neurological, surgical, medical and cardiac. One of the distinctive features of
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ICUs is that all beds have telemetry so that vital functions can be continually
monitored. However, other hospital beds may have telemetry as well and some
patients who do not require care in an ICU may nevertheless require a telemetry
bed.

Hospital managers are often aware that higher occupancy levels can be
achieved if beds are used more flexibly. Hence some have engaged in
efforts to cross-train nurses and/or invest in more telemetry in order to treat a
greater variety of patient types within a single unit. In addition, small
clinical services are often combined with other services because of physical
constraints and overhead considerations. For example, cardiac and thoracic
surgery patients are often treated in a single unit since thoracic patients are
relatively few and require similar nursing skills as cardiac patients. From a
strictly operational point of view, is it always beneficial to combine clinical
services? What factors need to be considered in evaluating alternative
clinical organizations?

As an example, consider the cardiac and thoracic surgery unit of Beth Israel
Deaconess Hospital in Boston. Based on data collected for three years, the
average arrival rate of cardiac patients in Beth Israel was 1.91 bed requests
per day versus .42 for thoracic patients. Since no information was available
on the pattern of admissions to these services, we assumed Poisson arrivals.
Since most surgical patients are elective, this assumption could result in an
overestimate of delays. However, as described in [6], other factors are likely
to more than compensate for this. The CV of LOS was sufficiently close to
one so that an M/M/s model produces estimates that are sufficiently reliable
for examining the relative performance of alternative policies.

Table 2.1a shows the number of beds required to meet several performance
targets by each of the two services operating independently as well as in a
combined unit. Delay in this context usually measures the time a patient
coming out of surgery spends waiting in a recovery unit or intensive care
unit until a bed in the surgical unit is available. Long delays are problematic
since they cause backups in the operating room and emergency room and
can result in surgeries being cancelled and the hospital going on ambulance
diversion. Table 2.1a shows that for each delay target, the combined unit
results in a savings of one bed out of a total of about 20 beds.

However, this assumes that the admissions policy is the same for all patients.
In Beth Israel Deaconess, as in other hospitals, cardiac patients have priority
over thoracic patients. Table 2.1b shows the results of using a non-
preemptive priority queueing model to estimate delays for both patient types
[29]. Focusing on Beth Israel’s target of expected delay of less than one



CAPACITY PLANNING AND MANAGEMENT IN HOSPITALS 25

day, we see again that 21 beds is the minimum that produces this result.
However, the resulting expected delay for the low priority thoracic patients
is now more than three days. This long delay is due to the fact that thoracic
patients represent less than 20% of the total arrivals and thus will often be
bumped in queue by the far more prevalent cardiac patients. Even worse, this
predicted expected delay for thoracic patients of 3.2 days is actually an
underestimate. This is because the model assumes the same (weighted)
average service time for both customer classes while in reality, the higher
priority cardiac patients have an average LOS of 7.7 days versus 3.8 for
thoracic patients resulting in even longer delays than predicted for the
thoracic patients. If an additional bed is added, the resulting delay for
thoracic patients goes down to 1.5 days, a more reasonable level, but there
will be no savings over operating the units separately. And to maintain a
maximum expected delay of one day for each patient group, the combined
unit would actually require one more bed than the separate units.

Therefore, the “increased efficiency” in terms of reduced beds (and thus
higher occupancy level) is at best small and may actually be nonexistent. Of
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course, a unit of just three beds is likely to be inefficient from a physical
space and overhead perspective. Therefore, it might be beneficial to operate
the two services in one unit but employ a policy, such as a dynamic priority
scheme, that would better balance the delays experienced by the two patient
types. As a simple example, an admissions policy could give priority to
cardiac patients as long as no thoracic patient has been waiting for T days.
As soon as this threshold is reached, the policy reverts to first-come, first-
served.

Another factor that needs to be considered in evaluating the benefits of a
nursing unit with several clinical services is the degree of disparity in the
LOS profile of the patients. Smith and Whitt [30] give examples of how
combining customers who have different average service times can increase
the variance of the service time in the combined queue and result in longer
average delays. It is also possible that the average LOS could increase for
one or more patient groups due to the reduced expertise that comes with a
more generally trained staff.

2.3.5 The seven-day hospital?

In most hospitals, elective procedures and diagnostic testing come to a virtual
stop on weekends. As a result, average bed occupancy levels are considerably
lower and heavily demanded equipment such as MRIs are idle. Pressures to
increase patient throughput are causing hospitals to think about the potential
benefits of a “seven-day hospital”. On the cost side, scheduling elective
procedures and tests on weekends would require additional staffing, perhaps at
overtime rates in some cases. What might be gained?

To illustrate the possible impact of a seven-day hospital on capacity needs,
consider the case of a surgical intensive care unit (SICU). Most patients in an
SICU are elective and therefore admissions drop significantly on the weekend.
The data from one such unit, shown in Table 2.2, illustrate a typical pattern, with
the average admission rate peaking at 4.42 patients per day on Tuesday and
dropping to only 1.44 patients on Sunday. Given this demand profile and an
average LOS of 3.05 days, how many beds are needed in this unit?

Using numerical integration to solve the differential equations that describe this
nonstationary queueing process, we find that 17 beds are needed to assure that
the daily probability of delay is below 10%. Now assume that the same number
of admissions is smoothed over the entire seven-day week. Using the average
daily arrival rate of 3.34 patients in an M/M/s model indicates that only 15 beds
are now needed to meet this target performance. What if 15 beds are used but the
demand is not smoothed over the week? Then the nonstationary model indicates
that while the average probability of delay over the week would be about 11%,
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the daily probability of delay would peak on Fridays at about 18% with an
expected delay of over 13 hours for those who are delayed [6]. The result of this
might be a backup of patients in the surgical recovery room which could result in
the cancellation of some surgeries scheduled for the end of the week. The
“optimal” capacity and operating policy could be determined by weighing the
expected revenue loss against the alternatives of expanded bed capacity and the
additional staffing costs associated with conducting a regular surgical schedule
on weekends

2.4 STAFFING THE ED: HOW SHOULD LEVELS VARY ACROSS
THE DAY?

2.4.1 Overview

Visits to emergency departments (EDs) have been increasing while the
number of emergency departments has been decreasing. This has put a
significant strain on the directors of emergency departments to keep patient
delays in receiving treatment reasonable. The most critical resource for
controlling delays is the physician staff. However, unlike hospital beds, the
number of available physicians can be adjusted to accommodate varying
arrival volumes.

Hospital managers are aware that arrivals to EDs are very variable with
time-of-day, day-of-week and even seasonal patterns. Under federal law,
emergency rooms are required to allow all patients access to care 24 hours a
day, regardless of ability to pay. Therefore, people who lack health
insurance (currently more than 44 million in the U.S.), as well as others who
may have difficulty gaining access to primary care physicians, use hospital
emergency rooms as their sole source of treatment.
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Matching physician capacity to patient needs is critical to the ED’s ability to
provide timely care to urgently ill or injured patients. Given the substantial
variability and unpredictability of demand, as well as the diversity of
patients and their medical needs, determining physician staffing levels is
very challenging. Yet, as in other areas of the hospital, decisions are not
generally based on the use of OR models.

2.4.2 Using queueing models to determine physician staffing: an example

Figure 2.1 illustrates the arrival pattern for the busiest weekday of an ED in
a mid-sized urban medical center, which shows a low of about .9 arrivals per
hour in the middle of the night to over 5 per hour in the middle of the day.
Also shown are physician staffing levels over the day based on the judgment
of the ED directors. No explicit data was kept on the duration of physician
examination times, and though no data was kept on patients’ delays before
seeing a physician, delays were observed to be very long, particularly during
the late afternoon and evening hours. This resulted in a high rate of
“walkouts” - patients who leave after registering but before being seen by a
physician - a matter of great concern to the ED directors as well as senior
management.

At the time of this study, a request for additional physician hours was under
consideration by senior hospital officials. To determine the appropriateness
of using queueing models to guide the allocation of any additional staffing,
current performance was estimated by using the empirical demand data, the
mean physician exam time (estimated to be 45 minutes) and the staffing
levels shown in Figure 2.1, and solving the differential equations that
describe the time-varying behavior of the system based on Poisson arrivals
and exponential service times [31]. In order to represent the true workload
in the system, the realized demand for physicians was derived from the
arrival data shown in Figure 2.1 by adjusting for walkouts. The walkout rate
was about 14.1% over the day. Based on a survey of U.S. ED directors [32]
and discussions with ED managers, we adopted as our primary performance
measure the probability of delay exceeding one hour, or Pr(D > 1). Figure
2.2 shows the time-varying behavior of this performance measure resulting
from the staffing pattern shown in Figure 2.1 (see [33] for the derivation of
this calculation). The results, showing Pr(D > 1) ranging from a low of .25
at 5 a.m. to a high of .87 at 1 la.m., were considered by the ED managers as
consistent with empirical observations.

To help identify the number and scheduling of ED physicians that would
yield more acceptable performance, we used a target of Pr (D > 1) < .10.
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Figure 2.1 Monday arrival rate and staffing levels

Figure 2.2 Actual staffing levels and estimated
Pr (Delay > 1 hour)
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Traditionally, in a service system with time-varying arrivals, the desired
staffing levels would be determined by the stationary independent period by
period or SIPP approach which begins by dividing the workday into
planning periods, such as shifts, hours, half-hours, or quarter-hours. Then a
series of stationary queueing models, most often M/M/s type models, are
constructed, one for each planning period. Each of these period-specific
models is independently solved for the minimum number of servers
needed to meet the service target in that period. In a similar vein,
Vassilacopoulos [34] used a dynamic programming model to determine
physician staffing levels in an ED assuming that the allocation in each hour
should be proportional to the corresponding arrival rate for that hour. In
[31], the SIPP approach was shown in many cases to seriously underestimate
the number of servers needed to meet a given delay performance target.
This is particularly true when the mean service times are high (e.g., 30
minutes or more) and planning periods are long (two hours or more). In
these situations, it was demonstrated that a simple variant of SIPP, called
Lag SIPP, performs far better than the simple SIPP approach. The major
reason is that in cyclical demand systems, there is a time lag between the
peak in the arrival rate and the peak in system congestion. This lag is
significant when the mean service time is long. Lag SIPP corrects for this
factor.

We used both the SIPP and Lag SIPP approaches with the unadjusted
empirical arrival data to compare the current staffing levels with the staffing
levels the models suggest would be needed to serve the total demand at the
targeted level of performance. As expected, both the SIPP and Lag SIPP
approaches indicated that current staffing of 55 hours per day would need to
increase substantially, by about 63% to meet this target. Though both the
SIPP and Lag SIPP methods suggested a total of 90 physician hours per day,
the staffing pattern suggested by the SIPP approach resulted in Pr(D > 1)
exceeding the target of .10 by more than 10% for 4 hours of the day and
attaining a maximum of .22 for one 2-hour period. In contrast, the Lag SIPP
method yielded staffing estimates that met the target delay in every period.
Figure 2.3 shows the Lag SIPP proposed staffing levels as well as the
predicted Pr (D>1) curve.

Though the hospital was not in a position to hire this many new physicians,
the ED director was interested in the staffing pattern suggested by Figure
2.3. One important insight was that the changes in staffing levels generally
lag the changes in the arrival rate by one planning period.

The Lag SIPP model was also used to explore other alternatives. First, the
performance target was relaxed so that Pr(D > 1) < .2. In this case, the Lag
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Figure 2.3 LAG SIPP Staffing, Pr (Delay> 1 hour) < .10

Figure 2.4 LAG SIPP staffing, Pr (Delay > 1 hour) < .2
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SIPP results indicated that the staffing would need to increase by about 50%
to 82. (Interestingly, the SIPP model suggested a total of 84 physician-hours
for this case.) This was still considered too expensive. However, Lag SIPP
does not necessarily result in an optimal allocation and looking at the
predicted resulting curve for Pr(D>1) shown in Figure 2.4, we noticed that
this probability dips significantly between 7 a.m. and 2 p.m. Therefore, we
postulated that we could reduce the staffing by one physician in each of the
2-hour periods starting at 8 a.m. The result, shown in Figure 2.5, shows that
the delay target is still never exceeded by more than 10% in any 2-hour
period. This pattern was used by the ED directors as a guide to reallocating
their current physician staff over the day.

To refine the model’s recommendations, it would have been helpful to
consider priority classes since it is most important that the emergent and
urgent patients be seen by a physician within a given time window.
However, no reliable data was kept on arrivals by priority class and the
hospital had no immediate plans to do so.

2.4.3 Transport staffing: another potential source of delays

Though a lack of appropriate inpatient beds is usually cited as the major
reason for ED overcrowding, patients often experience delays even when
beds are available. In fact, as illustrated in Figure 2.6, which shows
ambulance diversions by time of day for all hospitals in Manhattan from
1999 through 2001, one of the two most frequent times for ED
overcrowding and hence diversions is from midnight to 2 a.m. However,
this is the time period when hospital occupancy levels are lowest.

One reason for this seeming anomaly was identified in one large New York
hospital where a data collection effort showed that the time between bed
assignment and the patient leaving the ED peaked from an average of 2.1
hours to between 3 and 4 hours during the midnight to 4 a.m. time interval.
Further analysis revealed three reasons for this. First, the demand for
transports peaked to about 8 patients per hour starting at midnight from a
daytime average of about 7. This counterintuitive finding was due to the
combination of peak arrival rates that started at about noon and stayed high
until early evening, and an average duration of 8.2 hours between arrival
time and bed assignment. However, because ED arrival rates drop to near
their lowest during this time, hospital managers had decided that transport
staff should be reduced starting at midnight from two to one. In addition, it
was found that while the average transport during daytime hours was about
20 minutes, this increased to 27 minutes starting at midnight. This was
attributed to the fact that during the day, ED transport personnel were used
for transporting patients to diagnostic facilities located within the ED as well
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Figure 2.5 Modified lag SIPP staffing, Pr (Delay > 1 hour)

Figure 2.6 Manhattan ambulance diversions (1999-2001)
by time of day
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as to inpatient beds; while at night, when these facilities are closed,
personnel were used only for transporting patients to beds. As a result of a
queueing analysis that incorporated these factors, the hospital added a
transporter during the midnight to 4 a.m. period with a subsequent average
decrease of over an hour in transport delays.

In addition to transport personnel, most hospitals reduce other support staff
at midnight. Many of these, such as nurses, who are needed to physically
receive patients on the floors, housekeepers, who must make sure beds are
prepared, and other personnel who are responsible for locating beds, impact
ED delays. The above demonstrates the need to properly identify and
analyze the impact of time-varying effects of both demands and processing
times throughout the hospital in order to alleviate ED overcrowding

2.5 FUTURE RESEARCH OPPORTUNITIES AND CHALLENGES

2.5.1 Creating flexibility

As indicated in the examples above, patients often experience serious delays
due to highly variable patient demands and capacity constraints. Yet,
hospitals are often reluctant or unable to add capacity because of cost
pressures, regulatory constraints, or a shortage of appropriate personnel.
This makes it extremely important to use existing capacity most efficiently.
Increasing bed flexibility can be a key strategy in alleviating congestion.
However, no comprehensive analysis has evaluated alternatives or identified
good policies regarding bed flexibility. Two approaches that have been used
in some hospitals are worthy of comprehensive analysis.

As noted before, the degree to which inpatient beds are segregated into
nursing units dedicated to one or more clinical services varies across
hospitals. From a medical perspective, there may be benefits derived from
having patients clustered by diagnostic categories in dedicated units
managed and staffed by specialized nurses. These include shorter LOS,
fewer adverse events and fewer readmits. Yet, many hospital managers
believe that nurses can be successfully cross-trained and that increasing bed
flexibility is ultimately in the best interests of patients by increasing speedy
access to beds and minimizing the number of bed transfers. By
incorporating waiting times, percentage of “off-placements” and the effects
on LOS, OR models can be used to address some important research
questions dealing with these tradeoffs including:

1. For a given predicted set of demands and a fixed number of nursing
units of a given size, how should clinical services be clustered into
nursing units?
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What is the minimum amount of flexibility needed to assure
timely access to beds? Can this best be achieved by assigning each
clinical service to only one nursing unit, or by allowing some
diagnostic categories to be served in multiple units?

a.

b. Which services should be consolidated into a common unit? How
should this be affected by LOS characteristics? By nursing
requirements? By other resource requirements?

2.

3.

For a given nursing unit configuration, what is an optimal real-time bed
allocation policy? For example, in the event that there is no appropriate
bed available when needed by a new patient, should the patient be
placed in another available bed or wait (e.g. in the emergency room or
recovery room) until the “right” bed becomes available?

When services share a common nursing unit, what admissions policy
should be used if there are differing levels of urgency associated with
different patient types? For example, in the case of the cardiac and
thoracic surgery unit described previously, what type of dynamic
priority rule should be used to assure an appropriate level of bed
availability for both patient types?

Another approach for increasing bed flexibility is the use of “overflow” units
or “swing” beds. These often exist in hospitals that have downsized by
closing units without converting them to another use. This results in beds
that are not normally staffed but may be used when bed demand increases
substantially. A related strategy is to use units that generally have more
predictable demand and lower occupancy levels to serve as overflow units
for those that frequently fill up. These practices raise several important
planning and policy issues such as the following:

Given the associated fixed and variable costs, what are the optimal
policies for opening and shutting a normally unused overflow unit?

How many swing beds should a hospital have and for which clinical
services?

How should clinical units be used to “back up” each other so as to
minimize overall off-service placements without jeopardizing the
timely provision of care?

1.

2.

3.

The above strategies increase “horizontal” bed flexibility. Some hospitals
have increased “vertical” bed flexibility by reducing the number of different
areas in which certain categories of patients reside during their stay. For
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example, the traditional patient flow model for maternity patients is to move
from a labor room to a delivery room to a recovery room and then, finally, to
a postpartum bed. Similarly, critically ill patients may spend time in an ICU
followed by a “step-down” unit and finally a non-monitored inpatient bed
before being discharged. Yet some maternity units have combined
labor/delivery/recovery rooms, and some hospitals do not have “step-down”
units. OR-based analyses could help shed light on which of these
alternatives is more attractive and under what conditions.

2.5.2 Allocating capacity among competing patient groups

Many hospitals provide service to three distinct categories of patients:
inpatients, outpatients and emergency patients. These patient groups have
differing medical, financial and service requirement profiles, but often
require the same set of resources including laboratories, imaging facilities
and operating rooms. One important example is magnetic resonance
imaging machines (MRIs). A hospital MRI or “magnet” is a very expensive
piece of equipment and is critical in diagnosing a broad variety of illnesses,
each of which may require a unique examination protocol and duration. For
these reasons, utilization of MRIs tends to very heavy and unpredictable and,
consequently, significant delays are common. Delays are compounded by
late arrivals, cancellations and “no-shows. Operating rooms have very
similar characteristics.

Research on operational policies for these types of shared resources could be
very useful in increasing their efficiency and service performance.
Important questions include:

How should outpatient (or elective patient) schedules be designed so as
to allow for timely access by emergency patients and/or inpatients
without resulting in unacceptable backups?

Given the costs of delay for each patient type, what dynamic priority
rules are optimal for allocating time slots during the day when more
than one type of patient is waiting? (See [13] for some work on this
issue.)

Assuming that the likelihood of cancellations and “no-shows” increases
with the duration of time between when an appointment is made and
the scheduled examination date, what is the optimal length of the
scheduling horizon?

When a hospital has multiple diagnostic or treatment facilities, how
many and which patient categories should be assigned to each?

1.

2.

3.

4.
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2.5.3 Regional capacity planning

The merger activity of the 1990’s has resulted in networks of hospitals
within certain geographical regions that have various sorts of contractual
commitments to coordinate their planning and activities to some degree.
Though these types of associations are often formed primarily to enhance
hospitals’ bargaining power with payers and suppliers, in some cases an
important goal is to streamline and improve the delivery of health care. One
possible means of increasing operational efficiency is through clinical
consolidation or “regionalization” of one or more clinical services. In other
words, it could be advantageous to offer a particular clinical service in a
single location. One example of a service that has been considered for such
treatment is obstetrics. As discussed above, most obstetrics patients require
quick access to beds and most obstetrics units are relatively small. The
result is that average occupancy levels must be quite low to provide timely
provision of beds. Consolidating obstetrics units across two or more
hospitals in a region would clearly result in bed savings and likely result in
greater administrative and staffing efficiencies. Other candidates for
regionalization are clinical services with small patient demands or those that
involve unique technologies and/or skills such as burn units. However, in
assessing the desirability of any clinical regionalization, patient travel
distances and times must be considered. OR-based analyses could be very
helpful in identifying candidate services for regionalization and in
determining which hospitals in a given geographic region might be best able
to provide a given clinical service.

Another dimension of regional planning is emergency responsiveness.
Increasingly, hospitals are coordinating efforts to communicate and respond
to unanticipated spikes in demand for emergency department services and
inpatient capacity. This has become more of a priority since the events of
September 2001, and the resulting increased concern with preparedness
in the event of terrorist attacks. Initial efforts have focused on developing
better communications and information systems to collect and disseminate
relevant information quickly among hospitals and public agencies. Little
attention has been given to identifying which hospitals, clinical units and
resources might be vulnerable given sudden, unanticipated surges in demand
within and across a given region. (See [26] for some initial work on this
issue.) More fundamentally, there is no widely accepted definition of
emergency room overcrowding nor agreement on hospital policies for
ambulance diversion. Emergency planning is a complex, multi-dimensional
issue involving a high degree of unpredictability. The following questions
illustrate some broad areas of potential research:
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How should hospital planning regions be defined? Should this
definition differ by clinical service?

1.

When should a hospital go on ambulance diversion? How should this
be affected by conditions at the other hospitals in the region?

How should a hospital’s “surge capacity” (the percentage increase in
demand above normal levels that can be “adequately” accommodated),
be defined and predicted?

2.

3.

2.5.4 Conclusion

Hospital managers are increasingly aware of the need to use their resources
as efficiently as possible in order to continue to assure that their institutions
survive and prosper. As this chapter has attempted to demonstrate, effective
capacity management is critical to this objective as well as to improving
patients’ ability to receive the most appropriate care in a timely fashion.
Yet, effective capacity management must deal with complexities such as
tradeoffs between bed flexibility and quality of care, demands from
competing sources and types of patients, time-varying demands, and the
often differing perspectives of administrators, physicians, nurses and
patients. All of these are chronic and pervasive challenges affecting the
ability of hospital managers to control the cost and improve the quality of
healthcare delivery.

From an analytical perspective, these capacity management issues involve
complex dynamics that will require the development of new optimization,
queueing and simulation models in order to gain insights to guide strategies
and decisions. However, a major obstacle to developing and applying these
much needed models is a lack of relevant operational data. Hopefully, as
management information systems continue to be developed and enhanced,
hospitals will prove to be an extremely rich area for using OR/MS models to
improve the quality of healthcare delivery and, perhaps, ultimately save lives
as well as money.
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SUMMARY

This chapter reviews the location set covering model, maximal covering
model and P-median model. These models form the heart of the models
used in location planning in health care. The health care and related location
literature is then classified into one of three broad areas: accessibility
models, adaptability models and availability models. Each class is reviewed
and selected formulations are presented. A novel application of the set
covering model to the analysis of cytological samples is then discussed. The
chapter concludes with directions for future work.
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3.1 INTRODUCTION

The location of facilities is critical in both industry and in health care. In
industry, poorly located facilities or the use of too many or too few facilities
will result in increased expenses and/or degraded customer service. If too
many facilities are deployed, capital costs and inventory carrying costs are
likely to exceed the desirable value. If too few facilities are used, customer
service can be severely degraded. Even if the correct number of facilities is
used, poorly sited facilities will result in unnecessarily poor customer
service.

In health care, the implications of poor location decisions extend well
beyond cost and customer service considerations. If too few facilities are
utilized and/or if they are not located well, increases in mortality (death) and
morbidity (disease) can result. Thus, facility location modeling takes on an
even greater importance when applied to the siting of health care facilities.

This chapter begins with a review of three basic facility location models
from which most other models are derived: the set covering model, the
maximal covering model, and the P-median model. Next, we discuss three
major focal points of the location literature as it applies to health care
facilities: accessibility, adaptability and availability. In the course of doing
so, we review selected models and applications that have appeared in the
literature. Our purpose is not to provide a comprehensive survey; rather our
goal is to give the reader a feel for the models that have been proposed and
the problems to which they have been applied. The reader interested in a
more general introduction to facility location modeling should consult [1-4].
More recently Marianov and ReVelle [5] reviewed emergency siting models,
Current, Daskin and Schilling [6] summarized general location models,
Marianov and Serra [7] discussed the application of facility location models
to problems in the public sector and Berman and Krass [8] summarized the
state of the art in modeling problems with uncertainty and congestion, two
issues we will return to below. We conclude the chapter by discussing an
emerging health care application of facility location models that has nothing
to do with the location of new physical facilities. We see such applications
and adaptations of existing models as an important area for future research.

3.2 BASIC LOCATION MODELS

In this section we review three classic facility location models that form the
basis for almost all of the facility location models that are used in health care
applications. These are the set covering model, the maximal covering
model, and the P-median model.
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All three models are in the class of discrete facility location models, as
opposed to the class of continuous location models. Discrete location
models assume that demands can be aggregated to a finite number of
discrete points. Thus, we might represent a city by several hundred or even
several thousand points or nodes (e.g., census tracts or even census blocks).
Similarly, discrete location models assume that there is a finite set of
candidate locations or nodes at which facilities can be sited. Continuous
location models assume that demands are distributed continuously across a
region much the way peanut butter might be spread on a piece of bread.
These models do not necessarily assume that demands are uniformly
distributed, though this is a common assumption. Likewise, facilities can
generally be located anywhere in the region in continuous location models.
Throughout this chapter we restrict our attention to discrete location models
since they have been used far more extensively in health care location
problems.

At the heart of the set covering and maximal covering models is the notion
of coverage. Demands at a node are generally said to be covered by a
facility located at some other node if the distance between the two nodes is
less than or equal to some exogenously specified coverage distance.
Typically, the coverage distance is the same for all demand nodes, though
additional restrictions on the set of candidate locations that can cover any
particular demand node may be added. Such additional restrictions might
reflect the ease of travel between population centers and a candidate site for
a local clinic. For example, significant elevation changes might be penalized
relative to flat terrain [9, 10]. Whether or not additional restrictions are
placed on the cover sets, the mathematics is basically the same.

We define an indicator variable as follows:

The set covering model [11] attempts to minimize the cost of the facilities
that are selected so that all demand nodes are covered. To formulate this
model, we need the following additional sets and inputs.

I = set of demand nodes

J = set of candidate facility sites

= fixed cost of locating a facility at candidate site j

In addition, we need the following decision variable.
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With this notation, we write the set covering problem as follows:

The objective function (1) minimizes the total cost of all selected facilities.
Constraint (2) stipulates that each demand node must be covered by at least
one of the selected facilities. The left hand side of (2) represents the total
number of selected facilities that can cover demand node i. Finally,
constraints (3) are standard integrality conditions.

In location problems, we are often interested in minimizing the number of
facilities that are located, and not the cost of locating them. Such a situation
might arise when the fixed facility costs are approximately equal and the
dominant costs are operating costs that depend on the number of located
facilities. In that case, the objective function becomes:

To distinguish between these two model variants, we will refer to the
problem with (1) as the objective function as the set covering problem or
model; when (4) is used, we will call the problem the location set covering
problem. A number of row and column reduction rules can be applied to the
location set covering problem to reduce the size of the problem. Daskin [4]
discussed and illustrated these rules.

In practice, at least two major problems occur with the set covering model.
First, if (1) is used as the objective function, the cost of covering all
demands is often prohibitive. If (4) is used as the objective function, the
number of facilities required to cover all demands is often too large.
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Second, the model fails to distinguish between demand nodes that generate a
lot of demand per unit time and those that generate relatively little demand.
Clearly, if we cannot cover all demands because the cost of doing so is
prohibitive, we would prefer to cover those demand nodes that generate a lot
of demand rather than those that generate relatively little demand. These
two concerns motivated Church and ReVelle [12] to formulate the maximal
covering problem. This model requires the following two additional inputs

= demand at node i

P = number of facilities to locate

as well as the following additional decision variable

With this additional notation, the maximal covering location problem can be
formulated as follows:

The objective function (5) maximizes the number of covered demands.
Again, it is important to note that this model maximizes demands that are
covered and not simply nodes. Constraint (6) states that demand node i
cannot be counted as covered unless we locate at least one facility that is
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able to cover the demand node. Constraint (7) states that exactly P facilities
are to be located and constraints (8) and (9) are standard integrality
constraints.

A variety of heuristic and exact algorithms have been proposed for this
model. In our experience, Lagrangian relaxation [13, 14] provides the most
effective means of solving the problem. When constraint (6) is relaxed, the
problem decomposes into two separate problems: one for the coverage
variables and one for the location variables. The subproblem for the
coverage variables can be solved by inspection and the location variable
subproblem requires only sorting. This approach can typically solve
instances of the problem with hundreds of demand nodes and candidate sites
to optimality in a few seconds or minutes on today’s computers even though
the problem is technically NP-hard [15, 16]. Schilling, Jayaraman and
Barkhi [17] reviewed the general class of location covering models.

The P-center model addresses the problem of needing too many facilities to
cover all demands by relaxing the service standard (i.e., by increasing the
coverage distance). This model finds the location of P facilities to minimize
the coverage distance subject to a requirement that all demands are covered.
Daskin [4] provided a traditional formulation of this problem. More
recently, Elloumi, Labbé and Pochet [18] presented an innovative
formulation of the problem that exhibits improved computational
characteristics when compared to the traditional formulation.

The three models outlined so far – the location set covering model, the
maximal covering location model, and the P-center model – treat service as
binary: a demand node is either covered or not covered. While the notion of
coverage is well established in health care applications, in many cases we
are interested in the average distance that a client has to travel to receive
service or the average distance that a provider must travel to reach his/her
patients. To address such problems we turn to the P-median problem [19,
20], which minimizes the demand weighted total (or average) distance. To
formulate this problem, we need the following additional input

= distance from demand node i to candidate location j

as well as the following new decision variable
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With this notation, the P-median problem can be formulated as follows:

The objective function (10) minimizes the demand weighted total distance.
This is equivalent to minimizing the demand weighted average distance
since the total demand is a constant. Constraint (11) states that each demand
node must be assigned to exactly one facility site. Constraint (12) stipulates
that demand nodes can only be assigned to open facility sites. Constraint
(13) is identical to (7) above and states that we are to locate exactly P
facilities. Constraints (14) and (15) are standard integrality constraints.
Constraint (15) can be relaxed to a simple non-negativity constraint since
each demand node will naturally be assigned to the closest open facility.

As in the case of the maximal covering problem, a variety of heuristic
algorithms have been proposed for the P-median problem. The two best-
known algorithms are the neighborhood search algorithm [21] and the
exchange algorithm [22]. More recently, genetic algorithms [23], tabu
search [24, 25] and a variable neighborhood search algorithm [26] have been
proposed for this problem. Correa et al. [27] developed a genetic algorithm
for a capacitated P-median problem in which each facility can serve a
limited number of demands. They compared their algorithm to a tabu search
algorithm and found that the genetic algorithm slightly outperformed the
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tabu search approach when the GA was accompanied by a heuristic
hypermutation procedure. The latter simply performs an exchange algorithm
on selected elements of the initial GA population and on population
elements at a small number of randomly selected generations.

For moderate-sized problems, Lagrangian relaxation works quite well for the
uncapacitated P-median problem. Constraint (11) is relaxed resulting in a
set of subproblems for each candidate node that can easily be solved by
inspection. Daskin [4] outlined the use of Lagrangian relaxation for both the
P-median problem and the maximal covering model in detail. Daskin [28]
reported solution times for a Lagrangian relaxation algorithm for the P-
median and vertex P-center problems with up to 900 nodes.

Some authors have transformed the maximal covering problem into a P-
median formulation. This can be done by replacing the distance between
demand node i and candidate site j by the following modified distance:

where denotes the coverage distance. This has the effect of minimizing
the total uncovered demand which is equivalent to maximizing the covered
demand.

The uncapacitated fixed charge location (UFL) problem is a close cousin of
the P-median problem. The UFL problem is derived from the P-median
problem by eliminating constraint (13) and adding the objective function (1)
to objective function (10) multiplied by a suitable constant to convert
demand-miles into cost units. The problem then becomes that of
determining the optimal number of facilities as well as their locations and
the allocation of demands to those facilities to minimize the combined fixed
facility location costs and the transport costs.

3.3 LOCATION MODELS IN HEALTH CARE

Having formulated three basic location models (the set covering model, the
maximal covering model and the P-median model) and having qualitatively
discussed two other classical models (the P-center problem and the
uncapacitated fixed charge model) we now turn to applications and
extensions of these models in health care. The health care location literature
has tended to address three major topics, which we refer to as accessibility,
adaptability and availability.
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By accessibility we mean the ability of patients or clients to reach the health
care facility or, in the case of emergency services, the ability of the health
care providers to reach patients. Papers that deal with accessibility tend to
ignore the needs of the system to evolve in response to changing conditions
as well as short-term fluctuations in the availability of service providers as a
result of their being busy serving other patients. Papers that focus on
availability tend to be direct applications of one or more of the models above
or are minor extensions of these models.

It is relatively easy and straightforward to site facilities based on a snapshot
of the current or recent past conditions. Unfortunately, there is no guarantee
that the future will replicate the past. Predicting future demand rates and
operating conditions is exceptionally difficult. Thus, some recent
applications and modeling efforts have focused on identifying solutions that
can be implemented in the short term but that can adapt to changing future
conditions relatively easily.

For some health care systems, and for emergency services in particular,
some portion of the nominal capacity is likely to be unusable by new
demands at any point in time as it is already in use by current demands.
Thus, an ambulance may be busy responding to one emergency when
another call for service within its district arises. To handle such situations, a
significant literature has focused on designing systems to maximize some
measure of the availability of the servers.

In short, accessibility models tend to take a snapshot of the system and plan
for those conditions. As such, they are static models. Adaptability models
often consider multiple future conditions and try to find good compromise
solutions. As such, they tend to take a long-term view of the world.
Availability models focus on the short-term balance between the ever-
changing demand for services and the supply of those services.

3.3.1 Accessibility models and applications

Accessibility models attempt to find facility locations that perform well with
respect to static inputs. In particular, demand, cost and travel distance or
travel time data are generally assumed to be fixed and non-random in this
class of models. Thus, the models are often relatively straightforward
extensions of the classic models outlined in section 1 above.

Indeed, federal legislation has encouraged the use of such models. The EMS
(Emergency Medical Services) Act of 1973 stipulated that 95% of service
requests had to be served within 30 minutes in a rural area and within 10
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minutes in an urban area. This encouraged the use of models like the
maximal covering model. Eaton et al. [29] used the maximal covering
model to assist planners in Austin, TX in selecting permanent bases for their
emergency medical service. The model was solved using the greedy adding
and greedy adding and substitution algorithms. More recently, Adenso-Díaz
and Rodríguez [30] also used the model to locate ambulances in Leon,
Spain. They developed a tabu search algorithm to solve the problem.

Sinuany-Stern et al. [31] and Mehrez et al. [32] used two discrete models,
the P-median model and a variant of the fixed charge location model in
which they constrained the travel time to any hospital and also invoke
penalties for the assignment of demand to a hospital in excess of the
hospital’s capacity. These models were used, along with qualitative
techniques, to generate alternative locations, which were then analyzed using
the analytic hierarchy method. It is worth noting that the sites that were
ultimately preferred tended to be those that were identified using one or
more of the analytic methods, as opposed to those identified using
qualitative techniques.

Jacobs, Silan and Clemson [33] used a capacitated P-median model to
optimize collection, testing and distribution of blood products in Virginia
and North Carolina. McAleer and Naqvi [34] also used a P-median model,
in this case to relocate ambulances in Belfast, Ireland. Their problem was to
locate four facilities to serve 54 demand nodes. The authors used a heuristic
approach that decomposed the demand nodes into four sectors and ranked
the possible single facility locations within each sector. This led to a number
of acceptable solutions in each sector. All combinations of acceptable
locations were then evaluated using all 54 demand nodes. While such a
heuristic decomposition approach may make intuitive sense, it is not
guaranteed to result in an optimal solution. Modern algorithms (e.g.,
Lagrangian relaxation embedded in branch and bound as implemented in
SITATION [35]) can readily solve such problems to optimality on today’s
computers in seconds. Practitioners can also use such models to identify
near optimal solutions, particularly when the number of facilities being
located is small.

In hierarchical location modeling, a number of different services are
simultaneously located. These might be, for example, local clinics,
community health centers and regional hospitals. Lower level facilities (e.g.,
clinics) are generally assigned lower numbers (e.g., 1), while the highest
level facilities (e.g., regional hospitals) are assigned the top number (e.g., 3).
Another common application of hierarchical modeling is the location of
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basic life support vehicles (BLS or level 1 facilities) and advanced life
support vehicles (ALS or level 2 facilities).

At least three factors need to be considered in hierarchical location problems
[36]. The first is whether a level m facility can provide only level m service
or whether or not it can also provide services at all lower levels (1, …, m).
Clearly, an ALS vehicle can provide all levels of service that a BLS vehicle
can provide. It is less clear that a regional hospital will be designed or
staffed to provide all levels of support provided by a local clinic. For
example, regional hospitals may not stock flu vaccines and, as such, may not
be able to vaccinate individuals against the flu, while local clinics may be
able to do so. A successively inclusive hierarchy is one in which a level m
service can provide level m and all lower level services, while a successively
exclusive hierarchy is one in which each level of service is provided by a
unique facility. The second issue is, in a successively inclusive service,
whether a level m facility can provide all m levels of service to all demand
nodes, or a level m facility can provide all m levels of service only to
demands at the node at which the facility is located and level m service only
to other nodes. The former is referred to as a successively inclusive service
hierarchy while the latter is termed a locally inclusive service hierarchy. A
successively exclusive service hierarchy is one in which a level m facility
provides only level m service to all nodes. Finally, there will generally be
fewer high level facilities (e.g., regional hospitals) than low level facilities
(e.g., local clinics). If high-level facilities can only be located at sites
housing a lower level facility, the system is termed nested; otherwise it is not
nested.

Finally, Price and Turcotte [37] used a center of gravity model to locate a
blood donor clinic in Quebec. The model was used with a variety of inputs
to identify a number of different locations from which a final choice was
made. The center of gravity model minimizes the demand-weighted average
distance between a facility that can be located anywhere in the plane and a
discrete set of points. It is in the class of continuous location models (since
the single facility location can be anywhere in the plane), which we are not
explicitly reviewing and that have seen relatively little use in the health care
location field. Nevertheless, Sinuany-Stern et al. [31] and Mehrez et al. [32]
used two different continuous models in identifying candidate sites for a new
hospital in the Negev. The first was the Weber model, which minimizes the
demand weighted average Euclidean distance between a facility that can be
anywhere in the plane and fixed demand locations, while the second was
similar but used the square of the Weber objective function. (The reader
interested in the Weber problem should consult the excellent review by
Drezner et al.[38]).
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3.3.2 Adaptability models

Location decisions must be robust with respect to uncertain future
conditions, particularly for facilities such as hospitals that are difficult if not
impossible to relocate as conditions change. A number of approaches have
been developed to deal with future uncertainty. Scenario planning [39-41] is
frequently used to handle future uncertainty. A number of future conditions
are defined and plans are developed that do well in all (or most) scenarios.

In scenario planning, some decisions are made before the true scenario is
revealed while others can be made after knowledge of the true scenario is
gained. In location planning, the facility sites must generally be chosen
before we know which scenario will evolve; the assignment of demand
nodes to sites can generally be done after we know which scenario will
occur.

Designing a robust system often entails compromises. The “best”
compromise plan may not be optimal under any particular scenario but will
do well across all scenarios. The regret associated with a compromise
solution and a scenario measures the difference between the performance
measure using the compromise solution for that scenario and the
performance measure when the optimal solution is used for that scenario.

Three performance measures are often used in scenario planning:
optimizing the expected performance, minimizing the worst case
performance, and minimizing the worst case regret. Minimizing the
expected regret is identical to optimizing the expected performance.

In what follows, we formulate scenario-based extensions to the P-median
problem. We define the following additional set and input

S = set of scenarios

= probability that scenario s will occur

With this additional notation, the problem of minimizing the expected
demand weighted total distance is formulated as follows, where we have
added the subscript s to the demands and distances as well as the allocation
variables:
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The objective function (16) minimizes the expected demand weighted total
distance over all scenarios. Constraint (17) states that each demand node is
assigned to a facility in each scenario. Constraint (18) stipulates that these
assignments can only be made to open facilities. Constraints (19) and (20)
are identical to (13) and (14), respectively, and (21) is a standard integrality
constraint.

To minimize the worst-case performance, the problem is restructured as
follows:

and (17) – (21)
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where W is the maximum demand weighted total distance across all
scenarios.

Finally, to minimize the maximum regret, we solve the following problem:

and (17) – (21)

where is the optimal objective function value (smallest demand
weighted total distance) for scenario s.

Both the minimax model (22)-(23) and the minimax regret model (24)-(25)
avoid the need for scenario probabilities, which can be difficult to estimate.
However, these models suffer from the fact that an unlikely scenario can
drive the entire solution. At the other extreme, the problem of minimizing
the expected performance (or equivalently the expected regret) tends to
undervalue scenarios in which the compromise solution performs poorly if
those scenarios are low probability events. To handle these problems,
Daskin, Hesse and ReVelle [42] introduced an minimax regret
model. The model minimizes the maximum regret over an endogenously
determined subset of the scenarios whose total probability must be at least

Carson and Batta [43] considered the problem of locating an ambulance on
the campus of the State University of New York at Buffalo in response to
changing daily conditions. This is a particular problem on a large university
campus since the center of gravity of the population shifts from dormitories
to classrooms and offices over the course of the day. They determined that
modeling four different time periods would suffice. By relocating the
ambulance for each period, they were able to reduce the predicted average
response time by 30% from 3.38 minutes (with a single static location) to
2.28 minutes (with four periods of unequal duration). The actual decrease in
travel time when the solution was implemented was closer to 6% with the
difference attributed to the non-linear nature of travel times. This work
should not technically be viewed as part of the scenario planning literature
since the decisions for each time period are unlinked. However, the work
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does highlight the value of being able to modify ambulance locations in
response to changing daily conditions. The work also emphasized the need
for careful modeling of travel time relationships, particularly when the
average time is likely to be small.

ReVelle, Schweitzer and Snyder [44] proposed a number of variants of a
conditional covering model in which demands at a node that houses a facility
must be covered by a facility located elsewhere. In such models, the original
demand nodes must be covered and each facility located by the model must
be covered by a different facility. The rationale for such models is that if an
emergency occurs at node j (e.g., an earthquake), then any emergency
services at that location must be assumed to be damaged or unavailable for
service at that node. Therefore, the node must be covered by some other
facility.

In many important cases, the actual number of facilities that can be
constructed in the long term is uncertain when the planning begins. Then, it
is often important to be able to locate a known number of facilities now,
accounting for the possibility that additional facilities could be built in future
years. Current, Ratick and ReVelle [45] addressed this uncertainty with two
models. In each model, the first stage decision entails locating facilities
now and facilities in future state s, which occurs with probability The
objective of the first problem is to minimize the expected opportunity loss
(or regret) while the second problem minimizes the maximum regret. They
illustrated the results using a small problem with 20 nodes, of which 10 were
candidate facilities, and 4 future states allowing for 0, 1, 2, or 3 additional
facilities to be constructed. The models were solved using a standard LP/IP
solver on a personal computer.

3.3.3 Models of facility availability

Adaptability reflects long-term uncertainty about the conditions under which
a system will operate. Availability, in contrast, addresses very short-term
changes in the condition of the system that result from facilities being busy.
Such models are most applicable to emergency service systems
(ambulances) in which a vehicle may be busy serving one demand at the
time it is needed to respond to another emergency.

Deterministic models One simple, but somewhat crude, way of dealing with
vehicle busy periods is to find solutions that cover demand nodes multiple
times. The Hierarchical Objective Set Covering (HOSC) model [46] first
minimizes the number of facilities needed to cover all demand nodes. Then,
from among all the alternate optima to this problem – and there often are
multiple alternate optima – the model selects the solution that maximizes the
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system-wide multiple coverage. The multiple coverage of a node is given by
the total number of times the node is covered in addition to the one time
needed to satisfy the set covering requirement. The system-wide multiple
coverage is the sum of the nodal multiple coverage over all nodes. In
essence, the model introduces an explicit surplus variable into constraint (2)
and maximizes the sum of the surplus variables as a secondary objective to
objective (4).

Benedict [47] modified the HOSC model to account for node demands and
termed this excess coverage. To do so, he weighted the surplus variable by
the node’s demand. Eaton et al. [48] independently formulated and solved a
similar model for locating ambulances in Santo Domingo. Hogan and
ReVelle [49] considered a similar model that they termed backup coverage
in which only a single additional cover of each node was counted and the
additional cover of the node was weighted by the demand at the node.

Benedict also modified the maximal covering model to account for excess
coverage. In this model the primary objective is to maximize the covered
demand while the secondary objective is to maximize the excess coverage in
the system. Benedict’s third model was termed the hierarchical objective
excess coverage model. In this model, the primary objective is to maximize
excess coverage within T time units using the minimum number needed to
cover all demand within T; the secondary objective is to maximize the
demand that is covered within S, where S is less than T. Daskin, Hogan and
ReVelle [50] reviewed a variety of models of multiple, excess and backup
coverage as well as the expected covering model discussed below.

Gendreau, Laporte and Semet [51] considered the problem of maximizing
the number of demands that are covered by (at least) two ambulances in a
distance while ensuring that each demand is covered within and
that at least of the demand is covered within A total of P ambulances
are to be located. Like other multiple coverage models, this formulation is
designed to increase the likelihood of there being an available ambulance
within the coverage distance of a demand. Gendreau, Laporte and Semet
solved the problem using tabu search for problem instances with up to 400
demand nodes and 70 candidate sites and 45 facilities.

Pirkul and Schilling [52] developed a model that minimizes the sum of the
fixed facility costs, the costs of primary service and the costs of secondary
service. Each demand node must be assigned to both a primary and a
secondary facility. They developed a Lagrangian heuristic for solving the
problem. The algorithm was embedded in a branch and bound algorithm to
ensure optimality. They applied the algorithm to test problems ranging in
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size from 100 demand nodes and 10 candidate sites to 300 demand nodes
and 30 candidate locations. They also tested the algorithm on a fire station
location problem with 30 candidate sites and 625 demand nodes. By varying
the weight on the fixed cost term of the objective function, the tradeoff
between the number of facilities located and the average (primary and
secondary) distance was identified for this larger problem.

Narasimhan, Pirkul and Schilling [53] considered the problem of locating a
fixed number of facilities to maximize the amount of covered demand across
a number of different levels of coverage, subject to a constraint that the total
demand assigned to a facility across all levels of coverage cannot exceed a
given value (the facility capacity). The model converts the maximal
covering model into a P-median model and then introduces multiple levels
of coverage and facility capacities. They argued that this “service level” can
represent the order in which the facility providing service is called for
service at a node. This is somewhat problematic since the order in which a
facility at node j is called upon to respond to demands at node i depends on
the location of other facilities, which is determined endogenously.
Specifying this order exogenously seems extraordinarily difficult. They
used a Lagrangian approach to solve the problem heuristically relaxing the
assignment constraints. The authors solved the problem with up to 200
demand nodes, 30 candidate sites, 5 levels of service and 15 facilities being
sited. Optimality gaps tended to be small, though for some (smaller)
problems the maximum gap was 3 percent.

Probabilistic models The models discussed above take a deterministic
approach to increasing the likelihood that a demand will be covered by an
available vehicle or served adequately. Two different probabilistic
approaches have been developed. The first approach is based on queuing
theory while the second is based on Bernoulli trials.

Fitzsimmons [54] approximated the number of busy ambulances using an
queuing model. The average service time in his model depends on

the number of busy vehicles, which, in turn, depends on the average service
time. Thus, the two quantities are jointly estimated using an iterative
sampling procedure. This is embedded in a search routine for finding
improved ambulance locations. Eaton [55] provided an introduction to the
use of this model in siting ambulances. While Fitzsimmons’ approach can
readily be embedded in a heuristic facility location model, it does not fully
account for spatial differences in the probability of a vehicle being busy.

To address this shortcoming, Larson [56] developed a hypercube queuing
model that accounts for spatially distributed service systems. The hypercube
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model is essentially an M/M/N queuing model with distinguishable servers.
A binary string whose length is equal to the number of servers represents
each state of the queuing system. For a system with n servers (ambulances)
the model requires the solution of simultaneous linear equations. Larson
[57] proposed an approximation to the exact hypercube that entails solving n
non-linear equations. Because of the difficulty in solving these models with
known locations, they have tended not to be used in optimization modeling.
Jarvis [58], however, embedded an approximation to the hypercube model in
a heuristic search algorithm. Brandeau and Larson [59] used the hypercube
model to locate ambulances in Boston.

An alternate, though less exact, approach involves representing the
probability that a vehicle at any site j will be available as the outcome of a
Bernoulli trial with probability of success (available) of q. Then, assuming
that the probability q is the same throughout the system, the probability that

all k vehicles that can cover a demand node i are busy is The

probability that at least one of these k vehicles is available is and the

incremental probability of at least one being available given that k vehicles
can cover the demand node rather than just k-1 vehicles is

This argument is at the heart of the maximum expected covering location
model proposed by Daskin [60, 61]. To formulate this model, we define the
following decision variable:

With this notation, the maximum expected covering model can be
formulated as follows:
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Under the independence assumption implicit in the Bernoulli trials model
and the assumption that a single system-wide probability of a vehicle being
busy (q) can be estimated, the objective function (26) maximizes the
expected demand covered by an available vehicle. Constraint (27) links the
location variables to the coverage variables and states that a demand node
cannot be counted as being covered k time unless there are at least k vehicles
that can cover the node. Constraint (28) states that exactly P vehicles are to
be located. Constraint (29) states that an integer number of vehicles must be
located at any node, and constraint (30) states that the counting variables

are binary. Note that constraint (29) does not restrict the number of

vehicles at any location to be either 0 or 1. Daskin [61] proposed an
exchange-based heuristic that approximates the solution for all values of q,
the probability of a vehicle being busy.

Repende and Bernardo [62] extended the maximal expected covering
location model to incorporate different time periods. The model allowed
planners to reduce ambulance response time in Louisville, Kentucky, by
36%. They used simulation to validate the results of the time-variant
expected covering model and to get better approximations of the actual
expected coverage.

The maximum expected covering location model has two major limitations.
Batta, Dolan and Krishnamurthy [63] showed that the independence
assumption does not generally hold. They propose a number of ways of
handling this including a formulation of an adjusted maximum expected
covering location model that uses a correction term similar to that used by
Larson [57] in developing the hypercube queuing model approximation.
The second limitation of the maximum expected covering model has to do
with the computation of the system-wide busy probability. Daskin [61]
suggested computing system-wide busy probability as

where service time (in hours).
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ReVelle and Hogan [64, 65] extended the computation of the system-wide
busy period to account for local conditions by approximating

where

= set of demand nodes that are within the coverage distance of node i

= set of candidate sites that can cover demand node i and

= Probability that a vehicle located at i will be busy

With this local busy probability, ReVelle and Hogan [64] formulated the
probabilistic set covering model as follows:

In this model, node i must be covered times, where is the is the smallest
value satisfying
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and is the required probability of a node being covered by an available
vehicle. Thus, this model is essentially a set covering model except that the
right hand side of (33) is greater than 1 and we can locate more than one
vehicle at a node. The model finds the minimum number of vehicles
required to ensure that each demand node is covered by an available vehicle
with probability using the local busy probability estimates given by (31).

ReVelle and Hogan [64] defined the P-center problem and the
maximum reliability location problem. The P-center problem
finds the smallest coverage distance such that all demands are covered with
probability by an available vehicle. This is solved by solving the problem
above (32)-(34) for successively smaller values of the coverage distance
until the objective function exceeds P. The maximum reliability location
problem is to find the locations of P facilities such that the reliability is
maximized. This can be solved by fixing a feasible value of and then
solving the problem above. The value of is then increased until the
required number of vehicles increases above P.

Similarly, ReVelle and Hogan [65] formulated the maximum availability
location problem (MALP) as the problem of locating P vehicles to maximize
the number of demands that are covered by an available vehicle with
probability at least Using the notation defined above, this model
becomes:
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The objective function (35) maximizes the total demand that is covered by
an available vehicle with probability at least Constraint (36) links the
coverage and location variables. Constraint (37) states that a node cannot be
counted as being covered k times unless it is also counted as being covered
k-1 times. This constraint is not needed in the maximum expected covering
problem since the decreasing value of the objective function coefficients for
0<q<1 ensures that the coverage variables will enter the solution in this
order. Constraint (38) states that P vehicles are to be located. Constraints
(39) and (40) are integrality constraints. Again, we do not limit the number
of vehicles located at a node to 0 or 1.

Ball and Lin [66] developed a model that is similar to the maximum
availability location problem of ReVelle and Hogan [65], but do so from
first principles. This helps identify the assumptions necessary for the
development of the model. They then outlined a number of constraints that
can be added to the formulation to tighten its linear programming relaxation,
thereby facilitating the solution of the problem.

Goldberg et al. [67] developed a highly non-linear model that accounts for
vehicle busy periods as a function of assignments. Assignments are for the

vehicle to respond to a demand in a region. The model was solved
heuristically and was applied to the location of ambulances in Tucson, AZ.
The model objectives include maximizing the number of calls responded to
in 8 minutes (success rate), maximizing the worst node’s success rate, and
balancing workload. The approach was used primarily to evaluate a given
set of sites though they did do some limited experimentation with an
exchange algorithm.

Mandell [68] formulated a hierarchical ambulance location model in which
demands are not covered unless either (1) a basic life support (BLS) unit can
arrive at the scene within and an advanced life support unit (ALS) can
arrive within with or (2) an ALS unit can arrive within The
model was formulated in terms of the probability that a demand is served
adequately given that there are r ALS units within    r’ ALS units within
and s BLS units within Mandel used a two-dimensional Markov model
(with states representing the number of ALS units within of a demand
node and the number of BLS units within of the node) to estimate the
required probabilities. The Markov model used demand-area specific arrival
rates. The model was tested on a 55-node network. Computation times
were under 1.5 seconds in all cases for the IP problem as formulated.
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In the models described above, the primary objective was to account for
vehicle busy periods. Another source of randomness arises from the location
of the demands. Recognizing that demands occur over a region and not at
discrete points, Aly and White [69] considered a probabilistic extension of
the set covering model and of the P-median model. In both models the
location of demands is uncertain, making the travel times random variables.
Demand locations are uniformly distributed in rectangular regions. The
distribution of travel time to a random point from a base with given
coordinates is derived. From this the probability of being able to cover
demands in a region from the base within a given time limit is derived. This
results in the probabilistic set covering model – minimize the number of
facilities need to ensure that each region is covered with probability –
becoming a standard set covering model. Similarly, once we have the
distribution of travel times, we can compute the expected travel time from a
base at j with known coordinates to a point that is randomly distributed in
some rectangular region i. This makes the probabilistic P-median problem –
minimize the demand weighted expected travel time – a standard P-median
problem as well. They concluded that the probabilistic formulation requires
more facilities than does the deterministic formulation. Specifically, they
stated, “In summary, using an aggregate point to represent a densely
populated area may yield a less expensive siting cost. However, by ignoring
the probabilistic element the actual service level will be much less than the
one anticipated by the decision-maker.” (p. 1176)

Whether it arises from uncertain demand locations, vehicle busy periods, or
changing and uncertain underlying conditions, stochasticity will degrade the
performance of the system for a fixed set of resources.

3.4 ANOTHER APPLICATION OF LOCATION MODELS IN
HEALTH CARE

The location set covering model – objective function (4) subject to (2) and
(3) – has recently been used in a new health care application. Laporte et al.
[70] reported on the use of this model to determine the minimum number of
fields of view (FOV) to read a cytological sample (PAP test). A field of
view is the area that a microscope can see without moving the slide being
analyzed. All areas of interest on a slide need to be examined (i.e., need to
be in at least one FOV). At the same time, one would like to minimize the
number of required FOVs so as to minimize the time needed to analyze each
sample.

While the set covering model used by Laporte et al. is identical to that used
in the location problems discussed above, there is an important difference.
Typical location problems involve several hundred demand nodes and
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candidate locations. Solution time is not generally a problem in these
instances because the problems are small and they do not have to be solved
in real time. In the cytological example, the number of points to be covered
can range from 2,500 to 55,000, approximately two orders of magnitude
more than is typically found in a facility location example. Furthermore, the
problems have to be solved very quickly as decisions about how to read a
sample need to be made in real time. Furthermore, once appropriate FOVs
have been identified, a routing problem needs to be solved to guide the
microscope from one FOV to the next.

Laporte et al. [70] employed a series of heuristics to attack the problem.
First, a mesh of FOVs was generated to cover all of the points of interest.
Within each square, the smallest rectangle containing all of the points in the
square was identified and up to four additional FOVs were generated, one
located at each of the corners of this rectangle. A number of heuristics were
then used to identify FOVs to include in the solution and others that could be
excluded. Then a greedy heuristic proposed by Balas and Ho [71] was
applied to solve the remaining problem. The routing heuristic was a
straightforward adaptation of the strip heuristic proposed by Daganzo [72].
Solution times for the combined heuristic were typically under two minutes
and thus were satisfactory for this application.

Brotcorne, Laporte and Semet [73] subsequently developed even faster
heuristics for the tiling problem. It is worth noting that the best results in
terms of a compromise between solution quality and execution time were
generally not those that involve using the heuristic solution to the set
covering model; instead, they used a variety of improvement heuristics.

3.5 SUMMARY AND DIRECTIONS FOR FUTURE WORK

In this chapter we have presented the formulations of three location models
that underlie most of the facility location models used in health care. The set
covering model finds the minimum number (or cost) of facilities needed to
cover all demands within a specified time or distance. The maximal
covering location model relaxes the condition that all demands must be
served within the covering standard and maximizes the number of covered
demands using a fixed number of facilities. Finally, the P-median model
drops the notion of coverage and minimizes the demand-weighted total
distance between demand nodes and the nearest facilities.

We identified three approaches to location modeling that have been used in
health care applications. Accessibility models are typically straightforward
extensions or applications of one of the basic location models. The goals of
accessibility models are generally to maximize coverage or to minimize
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average distance. Adaptability models recognize that future conditions are
difficult, if not impossible, to predict. These models attempt to find
solutions that perform well across a range of future scenarios. Generally, a
single set of locations must be identified for all scenarios, but the assignment
of demands to facilities can be scenario-dependent. Typical objectives
include optimizing the expected system performance, minimizing the worst-
case performance, and minimizing the maximum regret. Regret measures
the difference in the performance of the system for a given scenario between
the compromise solution and the solution that would have been optimal for
the specified scenario. Availability models attempt to account for the short-
term unavailability of vehicles or facilities. Many such models have been
applied to ambulance location problems. An ambulance might not be
available when called upon for service because it is already serving another
demand. A variety of deterministic, queuing-based and probabilistic
availability models were reviewed.

We also outlined a health care application of the set covering model that
results in problems that are approximately two orders of magnitude bigger
than typical location problems and that has to be solved in real time. The
application has to do with screening cytological samples and finding the
minimum number of fields of view needed to read a sample.

In our view, the accessibility literature and the availability literature are quite
mature, at least as applied to health care location problems. Considerably
less work has been done on applying well-known concepts of scenario
planning, or adaptability modeling, to health care problems. This seems to
be a potentially fertile area for future work. Related to this is the area of
reliability modeling. Reliability differs from adaptability in that adaptability
(or robustness as it is sometimes termed) refers to the ability of a system to
perform well in the face of uncertain future conditions. The uncertainty is
typically in the input conditions including the costs and demands.
Reliability, on the other hand, refers to the ability of a system to perform
well when parts of the designed system fail [74]. Failures might result from
capacity limitations or simply facility closures. Menezes, Berman and Krass
[75] discussed reliability problems associated with Toronto hospitals. They
noted that it is common for emergency rooms to be at capacity and to request
that the citywide system redirect emergencies to some other facility. Also,
some hospitals were actually closed due to the SARS outbreak. Daskin and
Snyder [76] presented two extensions of the P-median model designed to
consider reliability, while Snyder [74] formulated and solved a variety or
reliability extensions to location models. We believe that adaptability,
robustness and reliability will become increasingly important in future
applications in health care.
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Finally, the application of location constructs to problems that do not involve
locating any facilities seems to be an exciting area for future research and
development. The use of location models in improving the efficiency of
cytological diagnostic procedures outlined above is but one example of this
line of research. Another application involves locating radioactive sources
or seeds in the treatment of prostate cancer [77]. Applications of facility
location-like models in the diagnosis and treatment of medical conditions is
likely to be an important area of future work.
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SUMMARY

The ambulance-planning problem includes operational decisions such as
choice of dispatching policy, strategic decisions such as where ambulances
should be stationed and at what times they should operate, and tactical
decisions such as station location selection. Any solution to this problem
requires careful balancing of political, economic and medical objectives.
Quantitative decision processes are becoming increasingly important in
providing public accountability for the resource decisions that have to be
made. This chapter discusses a simulation and analysis software tool
‘BARTSIM’ that was developed as a decision support tool for use within the
St. John Ambulance Service (Auckland Region) in New Zealand (St. Johns).
The novel features incorporated within this study include

the use of a detailed time-varying travel model for modelling travel
times in the simulation,

methods for reducing the computational overhead associated with
computing time-dependent shortest paths in the travel model,

the direct reuse of real data as recorded in a database (trace-driven
simulation), and

the development of a geographic information sub-system (GIS) within
BARTSIM that provides spatial visualisation of both historical data and
the results of what-if simulations.

Our experience with St. Johns, and discussions with emergency operators in
Australia, North America, and Europe, suggest that emergency services do
not have good tools to support their operations management at all levels
(operational, strategic and tactical). Our experience has shown that a
customized system such as BARTSIM can successfully combine GIS and
simulation approaches to provide a quantitative decision support tool highly
valued by management. Further evidence of the value of our system is
provided by the recent selection of BARTSIM by the Metropolitan
Ambulance Service for simulation of their operations in Melbourne,
Australia. This work has led to the development of BARTSIM’s successor,
SIREN (Simulation for Improving Response times in Emergency Networks),
which includes many enhancements to handle the greater complexities of the
Melbourne operations.

KEY WORDS

Ambulance service planning, Simulation
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4.1 INTRODUCTION

In 1997 we were contacted by the St. Johns Ambulance Service (Auckland
region) in New Zealand, henceforth referred to as St. Johns. St. Johns
wanted assistance in developing rosters for their ambulance personnel. This
initial contact led to our study of ambulance service management, and to the
development of a comprehensive simulation and analysis tool to assist in
decision making. (We should emphasize that here the word “simulation”
refers to a computer software tool, and not to the replication of realistic
incident conditions where volunteers pretend to have certain injuries.) This
chapter reviews some of the issues faced by St. Johns managers, and indeed
ambulance service managers all over the world, and discusses the methods
and tools that we developed to assist them.

The manager of an ambulance service faces a host of difficult policy
questions related to operation of the service. The following list is only a
sample.

How many ambulances should be employed and where should they be
stationed?

What policies and procedures should be followed as calls for assistance
are received in order to ensure rapid response to calls while obtaining
quality information to allow appropriate dispatching?

Should ambulances be used for non-urgent patient transfers in addition to
the usual emergency response function?

How should dispatching decisions be made when multiple vehicles are
available for dispatch?

How can one examine the tradeoffs associated with sharing a limited
number of ambulances between a high-demand metropolitan area and a
low-demand rural area? Here the issue is “fairness” in the sense of
coverage, versus “efficiency” in the sense of placing ambulances where
they will be in high demand.

This is a rather daunting list of problems, to which a great deal of research
effort has been focused in the past. Swersey [1] provides a survey of work in
emergency service planning that serves as an excellent entry point for the
literature. There is a very large literature on such problems, so one might
very well ask, what is the motivation for revisiting these problems?

A key difference between the ambulance-planning problem as faced before
1994 and the problem as faced today is the prevalence of data. Virtually all
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ambulance operations now employ some form of computer-aided dispatch
(CAD) system that automatically logs the details of calls as they are
received. This information is a veritable goldmine for planners! Without
CAD data, ambulance studies typically relied on manual collection of data;
see, for example, Swoveland et al. [2], where some of the required data was
manually recorded over a period of two weeks.

A second factor that motivated much of the developments discussed in this
chapter is the difference in the questions that are being asked. Much of the
early development of ambulance theory focused on the questions of where
and when ambulances should be operated. While this question is central to
much of what we do, we are also motivated by “finer granularity” questions
such as how call taking and dispatching should be performed.

To answer these and other questions at St. Johns, we developed a discrete-
event simulation of ambulance operations. By manipulating the parameters
of the simulation, it is possible to address, in a quantitative manner, many of
the questions mentioned earlier. The flexibility of discrete-event simulation
means that one can avoid simplifying assumptions that are otherwise needed
to obtain performance measure predictions using other methods, such as
queueing theory or Markov chain analysis. Perhaps the biggest advantage of
simulation is that it is easy to explain as a decision tool to both managers and
frontline personnel, so that after they understand the model, they place great
store in its results. Obtaining this “buy-in” from decision makers and
frontline personnel is crucial in moving from model predictions to decisions
and implementation.

To reinforce these points, consider the hypercube model as surveyed in
Larson and Odoni [3], and the specialization of this model to ambulance
planning in Brandeau and Larson [4]. The hypercube model, while
possessing great predictive power, also requires several assumptions with
regard to the way that ambulances are dispatched, gives only steady-state
results, and requires certain assumptions about the form of “service time”
distributions, at least in the case where calls queue when all units are busy.
Moreover, explaining how it works to managers is a somewhat daunting
task, so that it is hard to instill a feeling of confidence in decision makers as
to its predictions. In spite of these disadvantages, it seems to work very well
in practice, so it remains a powerful modeling approach that, for a subset of
the questions considered here, is a viable alternative to simulation.

Of course, simulation is not new to the ambulance-planning problem. Early
examples are Savas [5] for ambulance operations in New York City, and
Fitzsimmons [6, 7] for operations in the San Fernando Valley in Los
Angeles. Swoveland et al. [2] used simulation to fit the parameters of a
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metamodel that predicts expected ambulance response time. The expected
response time as predicted by the metamodel was then optimized using
branch and bound. Simulation was used by Fujiwara et al. [8] to carefully
examine a small number of alternative plans that were obtained from an
optimization model developed in Daskin [9]. Lubicz and Mielczarek [10]
developed a simulation model of rural ambulance operations in Poland.
Ingolfsson, Erkut and Budge [11] used simulation to help in siting a “single-
start station,” i.e., a station from which multiple ambulances begin their
shifts. In addition, the use of simulation as a tool to validate the selections
of optimization models is almost universal in the literature, and continues to
this day. For recent examples see Erkut et al. [12], Harewood [13] and
Ingolfsson, Budge and Erkut [14]. For a recent survey of optimization
methods in ambulance location problems see Brotcorne, Laporte and Semet
[15]. Larson and Odoni ([3], Chapter 7) discuss general considerations
related to the simulation of problems similar in form to the ambulance-
planning problem.

So what is new in this study?

First, our simulation directly reuses the data recorded in the CAD database.
Real calls are fed through the simulation, rather than calls generated using
the usual simulation techniques. Justification for our use of trace-driven
simulation and discussion of some of the key issues can be found in Section
4.3. Such an approach resolves many difficulties, including accurate
modeling of the complex dependence structure of the information related to
calls including time of occurrence, location, need for transport and so forth,
Of course, it also introduces other problems.

Second, we employ a sophisticated model, adapted from a model developed
and used by the Auckland Regional Council [16] for regional planning
purposes, to compute travel times. These travel times are used to determine
which ambulance to dispatch to a call, the travel time for the ambulance to
reach the call, and so forth. The effort we devote to this topic is justified by
the great sensitivity of results to travel time assumptions, as noted both by
the authors in a preliminary queueing analysis, and by a large proportion of
the papers dealing with ambulance planning. For example, Carson and Batta
[17] describe how the 30% savings predicted by their model turned into a
6% savings in actual tests, primarily due to the model not effectively
capturing a certain travel time/distance relationship. The use of a simpler
model based on the “square root law” [18, 19] or other approximations leads
to rather large errors due to the highly irregular geography of Auckland; it is
basically an isthmus between two oceans, containing many dormant volcano
vents. The complex waterways and vents provide significant barriers to
travel, leading to a somewhat convoluted road network. A further
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complication is that travel times are heavily time-dependent. The simulation
makes extensive use of the travel model, and we employ several heuristics to
reduce the computational effort involved. Many of the techniques used here
could be used in other applications requiring travel time calculations where
the travel time is time-dependent.

Third, we employ a geographic information system (GIS) to display
simulation results and to examine historical performance calculated from
real data. To our surprise, none of the ambulance service providers that we
have talked with have used such tools in the past, and all have been
tremendously excited by their potential. This has occurred in spite of the
growing number of sites where a GIS is being used to draw insights from
recorded data; see Peters and Hall [20]. Of course, GISs have been used
many times to obtain input for simulation models (see, e.g., [21]), but GISs
are not often used for displaying discrete-event simulation output. The
graphical displays produced by GIS programs allow decision makers to
digest copious amounts of information that were previously given in large
tables. GIS output displays are currently under-utilized in discrete-event
simulation studies, perhaps because of the form of the models involved. But
as the ability to link discrete-event simulation software, databases, and
standard GIS packages together increases, the use of GIS output display
should become more prevalent.

We have been contacted many times by individuals interested in applying
BARTSIM methodology to planning problems in the other emergency
services, namely fire and police departments. There are many potential
applications to these areas from the work presented here, and we believe that
such extensions could be tremendously helpful from the practical standpoint.
However, it is important to recognize some of the vital differences in these
problems from the ambulance-planning problem. These differences mean
that substantial effort would be required to tailor the planning methods used
here. For example, the utilization rates of fire appliances are typically on the
order of a few percent, while it is not uncommon to have ambulance
utilization rates, at least in metropolitan areas in New Zealand, as high as
60%. In terms of police patrol planning, an important function of police
patrols is to maintain police visibility, so the problems one faces can be quite
different.

The remainder of this chapter is organized as follows. In Section 4.2 we
discuss some of the particulars of the St. Johns problem, and outline the
process that is followed when St. Johns receives an emergency call. Section
4.3 provides an overview of the simulation model underlying BARTSIM and
describes some of the data-reuse issues alluded to above. Section 4.4
describes the travel model and the heuristics used to reduce computational
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overhead. In Section 4.5 we introduce BARTSIM itself, outline some of its
GIS-based analysis capabilities, and describe how these analysis capabilities
were used to provide useful insights into several decisions faced by St.
Johns. Conclusions and suggestions for future research are offered in
Section 4.6.

Further details on BARTSIM can be found on the BARTSIM web site
(www.esc.auckland.ac.nz/stjohn).

4.2 THE PROBLEM FACED BY ST. JOHNS

St. Johns contracts to Crown Health Enterprises to supply emergency
medical transport. The contracts stipulate that St. Johns supplies a minimum
level of service as specified by certain performance targets. These targets
relate to response time, which is defined as the time interval between
receiving a call to the time that an ambulance first arrives at the scene. The
performance targets are broken down by the location of the call (whether the
call is in metropolitan Auckland, or in a rural area) and the priority of the
call. St. Johns classifies its emergency calls, as opposed to patient transfers
and other non-emergency calls, into two levels. Priority 1 calls are those for
which an ambulance should respond at all possible speed, including the use
of lights and sirens. Priority 2 calls are calls for which an ambulance may
respond at standard traffic speeds. The performance targets that St. Johns
faces are shown in Table 4.1.

It is interesting to note that no guidance is given in the contract as to how
these figures need to be interpreted. Interpreting the targets as applying, for
example, to the entire Auckland area over the entire year in aggregate will
lead to far lower resource requirements than assuming, for example, that the
targets must be met in each suburb during each hour of each day. One of the
goals of this project has been to develop tools to assist management in
exploring performance under a range of possible interpretations of the
contract.
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St. Johns uses a computer-aided dispatch (CAD) system that logs, in a
database, information on every call that is received. The database then
enables St. Johns to prepare monthly reports that describe how well they
meet their performance targets. When St. Johns first contacted us, these
reports indicated that the organization was finding it more and more difficult
to meet its service targets. It was (and continues to be) believed that this is
primarily due to increasing congestion on Auckland roads.

To fully understand these service targets it is necessary to understand the
ambulance dispatch and service delivery process. Figure 4.1 shows this
process, and identifies the contractual response time discussed earlier. This
flowchart also helps to explain the key steps that are captured within the
simulation model. When a call arrives at St. Johns, staff in the control room
identify an available ambulance (i.e., an ambulance either idle at its base
station or returning from a previous job) and dispatch this vehicle to the
scene. After initial treatment at the scene, the ambulance typically transports
the patient to a hospital, performs a ‘handover’ to hospital staff, and then
returns to its base station. If transport is not required, the ambulance returns
directly to its base from the scene. In either case, the vehicle is considered
available to receive calls as soon as it begins returning to base.

Figure 4.1 The ambulance dispatch and service delivery process
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4.3 THE SIMULATION MODEL

The simulation model is written using a high-level programming language
without using specialist simulation software. The simulation is trace-driven,
and ambulances are routed using a time-dependent travel model. Each of
these aspects of the simulation is now discussed in more detail.

We decided not to use an “off-the-shelf package for simulating St. Johns’
operations for several reasons. First, the logical complexity of the decisions
that must be made within the model would be difficult to code in a standard
package. For example, the dispatcher may redirect an ambulance that is
responding to a Priority 2 call to a Priority 1 call. Such a decision requires
detailed knowledge of travel times, ambulance locations and so forth. This
decision is far easier to code using custom software in a high-level language
(C) than standard simulation packages. The second reason was speed. The
simulation must be very fast to facilitate the large number of what-if
analyses that need to be performed. Consequently, we decided to code the
simulation in C, and then embed the simulation program within a custom-
developed Microsoft Visual C++ application to provide a user-friendly
interface. Third, this approach has allowed us to tightly couple the
simulation with specialized data visualization (GIS) tools, providing
integration benefits that would have been hard to achieve using any of the
off-the-shelf systems that were available at the time. (Since the software
development was completed, simulation software has made great strides in
allowing integration with database software and code segments written in
other languages.)

We were very lucky in that several years’ worth of historical data was made
available to us. We used this data by running trace-driven simulations: the
calls that we simulate are real calls that are read in from a stored file. See p.
133 of Bratley, Fox and Schrage [22] for a discussion of issues relating to
the direct reuse of historical data from the general perspective of discrete-
event simulation. We confine our remarks to specifics related to the
ambulance-planning problem.

The data used from each call are call arrival time, call priority, call location,
time spent by an ambulance at the scene, destination to which the patient
was transported (if any) and time spent at the destination. The use of this
historical data obviates the need to develop a statistical model for generating
calls. This is a decisive advantage, as the correlation structure of calls, both
temporally and spatially, is rather complex; see, for example, Lubicz and
Mielczarek [10]. For example, the location of a call is somewhat correlated
with the time of day at which it is received.



86 OPERATIONS RESEARCH AND HEALTH CARE

Of course, if we were to use BARTSIM for long-range planning (say more
than two years into the future), we might be more wary about using
historical data, because the existing data may not be representative of
conditions in the future. In such a case, one might want to use an approach
similar to that used in the development of the United Network for Organ
Sharing Liver Allocation Model [23]. That model uses non-homogeneous
Poisson processes to generate “arrival times”; other information about the
“arrival” is obtained through a bootstrapping procedure.

An area of concern that arises in using historical data in this fashion is data
validity. Indeed, many of the logged calls contain entries that are difficult to
believe. For example, it is not uncommon to see durations of 1 second for
the time spent at the scene of an incident. Discussions with ambulance
personnel revealed that this can occur when personnel forget to notify the
CAD system (through a button situated on the dashboard of an ambulance)
that they have arrived at the scene. When they realize their error, they
“catch up” by pushing the button multiple times. This sort of error not only
corrupts the recorded time spent at the scene, but also any surrounding times,
such as travel times, that are used elsewhere. Identifying such errors and
devising methods for dealing with them are important research areas that we
have not explored. Instead, we adopted an ad-hoc procedure where the data
for a particular call is “cleaned” if it is “close” to being reasonable, or the
call is deleted if the logged data is beyond repair. Of course, if too many
calls require cleaning or deletion then we should be concerned, and this is
the reason why more research is required in this area. Fortunately, in the St.
Johns application such calls appear to occupy a very small percentage of the
total calls processed, so they cannot greatly sway the overall results.

The use of trace-driven simulation allows one to deal effectively with many
other issues, such as that of multiple-response calls. Multiple response calls
occur, for example, because the personnel who initially respond are not
legally qualified to administer needed drugs, or because the number of
injured parties is large. Each response to a multiple response call is logged
in the St. Johns CAD database and linked to previous entries. Within our
simulation we simply replay these calls. This very simple approach could
lead to potential errors when the personnel that initially respond in the
simulation are qualified to assist the patient, so that further ambulance
responses are not necessary. A more sophisticated simulation approach
might avoid such errors by carefully analyzing the data record, but we did
not do this. In any case the number of such multiple response calls is quite
small.

Ambulance availability is specified in terms of when and where an
ambulance is to be brought into operation, and when it is to be removed
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from circulation. This allows shifts to be effectively captured, along with
(for example) meal breaks that must be held at the ambulance’s base and
have a certain minimum duration.

A vital component of the simulation is a travel time model that computes
travel times between any pair of locations in Auckland at any time. An
important step in this project has been to establish collaborative links
between St. Johns and the Auckland Regional Council, a local government
body actively involved in developing strategic policy for the city of
Auckland. The Auckland Regional Council made available a road network
model that details both road layout information and travel times along roads
(arcs) at various times of the day, including the morning and evening rush
periods. The use of this data in BARTSIM is discussed in more detail in the
next section.

It is possible to run the simulation and see ambulance operations unfolding
on the screen. In particular, one sees ambulances traveling along the road
network to and from calls. As calls arrive, they are plotted on the screen in a
color indicating their priority. As calls are assigned to an ambulance, the
calls change color, indicating that they are being served. This animation is
extremely useful for verification and validation purposes, and for visualizing
St. Johns’ operations. It is also tremendously helpful in getting St. Johns
personnel to accept the simulation model as a reasonable reflection of
reality, and has proven invaluable in communicating our work to staff and
management throughout the organization. This aspect of the simulation may
seem somewhat trivial from a theoretical point of view, but has been
absolutely critical in obtaining “buy in” from the decision makers. We view
this selling point as a key advantage of simulation over other operations
research methodologies for the ambulance-planning problem. The BARTSIM

approach is intuitive and easy to understand for people with non-technical
backgrounds.

When one wishes to collect performance measures, the animation is an
unnecessary computational overhead. In this case, animation is turned off,
and the simulation proceeds without graphical feedback. We do not report
confidence intervals for our performance measures. This is mostly due to
the fact that the theory of error estimation from trace-driven simulations is
not well understood, so that it is not clear how to develop confidence
intervals. This is an area where more research could certainly help.

A simulation model on the scale of BARTSIM requires a great deal of effort
in verification and validation to ensure that the model that has been
implemented is indeed what was desired, and that the model appropriately
represents reality. Instead of entering into a full discussion of our efforts in
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this regard, which are mostly direct applications of the usual methods as
outlined in Law and Kelton [24], we content ourselves with a few examples.

The animation facilities of BARTSIM proved invaluable in verifying the
model. By watching simulated ambulance operations over extended periods,
many errors in the database of real calls were identified. As well as
replaying existing calls, BARTSIM also has a facility for interactively
generating calls. This was used to place calls at strategic locations for
checking that the ambulance responses were as expected. Shortest paths
were generated and displayed over the road network to verify the quality of
the chosen routes.

The validation of a model involves ensuring that the model appropriately
represents reality. In this regard, we worked very closely with a number of
individuals at St. Johns. These people were closely involved in the
development phase, and also assisted in performing test runs. Furthermore,
we demonstrated the software and described the simulation model to groups
of ambulance drivers, who provided feedback on the quality of the model.
These steps also helped in the accreditation of the model, where the model is
accepted and trusted by decision makers. The decision makers were so
closely involved in the development and testing of the model that they felt
some form of “ownership” over the system.

4.4 THE TRAVEL TIME MODEL

Auckland is built around two large harbors between two coastlines, and is
dotted with dormant volcano vents. Consequently it has a highly irregular
topology. Any plausible simulation of road travel cannot rely on ‘as the
crow flies’ routes, or simple modifications of these to take into account a
moderate number of obstacles, but must incorporate knowledge of the road
network including the effects of motorways and major highways.
Furthermore, the model must also incorporate the often dramatic changes in
travel times that arise from varying congestion levels across the day and the
week.

We obtained road data from the Auckland Regional Council detailing a
network with about 2,200 nodes and 5,000 directed arcs. This Auckland
Regional Transport Model (ART) is a relatively detailed transport model
developed for medium term (15-25 years) project and policy planning and
evaluation of regional transport strategy [16]. Traffic volumes are
determined in ART using equilibrium solutions driven by origin-destination
trip demands. Because the trip demands are determined using an underlying
demographic model, travel times can be predicted over any planning horizon
for which population forecasts are available. This ability to perform long-
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term planning is most useful when evaluating strategic decisions such as the
location of ambulance bases.

We denote the ART road network by G = (V, A), where V is the set of nodes,
and A is the set of directed arcs (i, j) from node to By entering trip
demands for different times of the day, a range of equilibrium solutions can
be found, each with different travel times for the arcs. The ARC data

includes the 8 a.m. morning peak travel time 12 p.m. midday travel time

and 5 p.m. evening peak travel time for each arc (i, j). Weighted

combinations of these times are used to estimate the travel time during

any other hour h of the day. The weights are chosen using regression models
based on actual travel times available in the St. Johns database.

We could use this model to compute dynamic shortest paths for ambulances
based on time-dependent travel times whenever the simulation requires such
paths. However, this would be a time-consuming computation that would
greatly slow down the simulation. As a reasonable approximation, we
instead pre-compute and store a range of shortest paths as follows. Of the
2,200 nodes in the network, 1,435 are used to spatially locate bends in the
roads, while 765 are ‘decision nodes’ that define points at which a driver has
a choice of direction (ignoring U-turn options). More formally, a node j
belongs to the set D of decision nodes, if there exists both an arc

and two distinct arcs from j, with and

For each pair of decision nodes and we pre-compute three shortest

paths, and using the morning peak, midday and evening peak

travel times respectively. This decision-node path information is stored in
memory.

During the simulation we need to find the shortest path between any
arbitrary start point S and arbitrary finish point F. The shortest path process
we use is heuristic, but nevertheless appears to provide a good level of
accuracy.

We note that S and F need not correspond to nodes in the network. The first
step in our process is to determine the spatially closest non-motorway nodes,

and to S and F, respectively. We next determine the sets of
decision nodes, and that are ‘immediately connected’ to s
and f. The set of decision nodes D(s) is given by where is
a tree with root s and with branches each constructed by adding ‘outward
pointing’ arcs until the first decision node is reached. More formally, is
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initialized with root and then is grown by iteratively adding each
arc/node pair Similarly D(f) is determined from

where is a tree built at f by adding all ‘inward pointing arcs’,
i.e., adding each arc/node pair

We then consider all the paths given by

where (and denotes ‘as the crow flies’ travel from S to s (and f to
F), denotes the unique path from s to in

denotes the pre-computed shortest path from decision node to decision
node at hour h, and denotes the unique path from   to
f  in Each of these paths is then evaluated using the interpolated travel
times for the hour in which the journey begins. The and travel is
at some assumed off-network speed. The fastest of these paths is deemed
the shortest path.

The decision node concept provides two primary benefits. First, without the
use of this concept, we would need to solve an ‘all shortest paths’ problem
on 2,200 nodes for each of the three sets of travel times. An ‘all shortest
paths’ problem on n nodes can be solved using the Floyd-Warshall algorithm
in time (Papadimitriou and Steiglitz [25], p. 133). With the decision
node concept, we solve an ‘all shortest paths’ problem on approximately one
third (765) of the nodes, and therefore reduce the computational effort by a
factor of We also reduce the memory required to store the shortest
path solutions by a factor of Second, we consider several paths
involving different combinations of decision nodes when deciding which
route to take between any origin and destination. This means that the chosen
route is a compromise between a pre-solved single fixed route, and the true
shortest path as would be determined by solving a dynamic shortest path
problem while the simulation is running.

When an ambulance responds to a Priority 1 call, it travels at ‘lights and
sirens’ speed. We have captured this effect within the simulation using a
multiplicative factor to decrease travel times from more standard travel
speeds. This factor was fitted to data available in the database. We are
currently exploring other improvements to the modeling of travel speeds.
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4.5 BARTSIM

BARTSIM consists of the simulation program, the travel model, and various
analysis tools. The simulation and travel models have been outlined in
previous sections. This section describes the analysis capabilities of
BARTSIM. These capabilities may be applied to historical data as recorded
by the St. Johns organization, as well as simulated data generated by the
simulation component of BARTSIM. Informed comparisons can then be
generated between alternative strategies for operating the ambulance service.
These analysis capabilities have proven very useful in St. Johns’ decision
making, several instances of which are mentioned below.

To protect St. Johns’ confidentiality, all figures presented in this section are
based on simulated data, rather than actual historical data. Road travel times
have been perturbed, and all performance figures subjected to random
perturbation. The number of ambulances operating out of each base has also
been modified, with the result that we see a lower level of performance and
greater variability over the Auckland region in terms of response time than is
actually the case with historical data.

We record the response time performance on every call, so that a call can be
classified according to which performance targets have been met. These
“micro-statistics” may be aggregated into response time performance within
every suburb of Auckland, within every half hour of the week. When a run
consists of multiple weeks of real data (the runs usually consist of several
months of real data), then results in the same time period in different weeks
are accumulated together. Statistics are also collected on ambulance
utilization.

By recording the response time performance on every call, we can generate
plots such as that given in Figure 4.2. In Figure 4.2 a black dot indicates that
a call was answered within the 80% time requirement, a gray dot means that
the call was answered within the 95% time requirement, and a white dot
indicates that neither of these response time bounds was met. (These colors
have been modified from those used in the software to improve
reproduction.) One can visually identify localized areas of poor
performance. This is a very powerful capability that St. Johns have found
extremely useful in allowing management to visually interpret data that was
previously only available in aggregated database report tables. In particular,
using these plots we were able to verify a belief held by some at the St.
Johns organization that Silverdale (a suburb of Auckland) needed more
resources, perhaps because of the strong recent growth in the region. A
long-dormant station in Silverdale has since been reopened.
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Figure 4.2 Response time performance in the Auckland region (data
is illustrative only)

Figure 4.3 Plot of the “reach” of Pitt St. Station during the late
morning/early afternoon period on weekdays (data is illustrative only)
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BARTSIM has proved to be a useful decision support tool for assisting with
the allocation of ambulances to stations. During periods of low call demand,
performance targets can be met by using just a few stations to cover the
entire Auckland region. We can identify the “reach” of a station by
producing plots like that of Figure 4.3.

In this plot, we computed the travel time from a single station to all calls.
By coloring the call locations as above, we obtain a vivid picture of the area
that can be covered by positioning an ambulance at a given station. Since
travel time varies dramatically with the time of day, we can obtain a clearer
picture of the station’s reach at a given time by filtering the calls, so that we
only display those arriving during a subset of the week. Figure 4.3 contains
only those Priority 1 calls received in the late morning/early afternoon on
weekdays. By repeating such plots for several stations, we can identify a
suitable subset of stations that may be used to cover Auckland during
various times.

As mentioned above, we can filter the calls so that one can “zoom in” on a
particular time, or a particular area of Auckland, or both. The performance
measures for the time and area of interest are then calculated, allowing one
to identify response time performance for centrally located calls, for
example. A sample screenshot of such an analysis is given in Figure 4.4.
The small window in the upper screen area contains detailed information on
contractual target performance for a case where ambulance allocation is too
light, so that the targets are not met.

The plots described above are very useful for providing an overview of
performance. In addition, plots such as those in Figure 4.4 allow one to
provide precise numerical information on performance in a localised region.
It is also desirable to be able to summarise on-time performance (relative to
the contractual targets) over the entire Auckland region at once; Figure 4.5 is
an example of such a plot. In this figure, the Auckland region has been
broken down into rectangular regions. Within each region, we compute the
percentage of Priority 1 calls reached within the required time limit (10
minutes for urban calls, 16 minutes for rural calls). To allow one to focus on
regions containing significant numbers of calls, regions containing a small
number of calls are suppressed in the output. Furthermore, the size (area) of
the rectangles reflects the number of calls received within the region. We
can also substitute other performance measures, such as the number of calls
received, or the percentage of Priority 2 calls reached within the required
time limit, in place of the performance measure used in this example.
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Figure 4.4 Filter applied to results to identify performance in the city
centre (data is illustrative only)

Figure 4.5 is perhaps the most useful of all the plots described thus far in
terms of determining required ambulance allocations. We vary the
ambulance allocations between bases (usually heuristically, but one could
also use optimisation methods), run the simulation, and then observe the
performance in terms of these plots. Using these plots, we can locate areas
with both a poor overall on-time performance and a large number of calls.
These areas are good candidates for extra ambulance resources.
Furthermore, by filtering the calls by time and producing the same plots, we
can identify times when extra ambulances are most likely to have a large
impact on the performance measures.

These plots revealed something unexpected when applied to historical data
for the St. Johns organisation. In one small suburban area (not shown), a
disproportionate (relative to neighbouring areas) number of calls were
appearing. Upon investigation it was discovered that there are several
accident and emergency clinics in this area, and such clinics generate many
calls for St. Johns. The St. Johns organisation was apparently unaware of
this situation, and is considering our recommendation that they ensure that
an ambulance be relocated close to this vicinity.

BARTSIM can also produce simple histograms of various characteristics of
calls, such as response time, time spent by an ambulance at the scene, and so
forth. One such histogram is given in Figure 4.6, showing the time between
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Figure 4.5 Plot of average service quality (indicated by the numerical
values) and the number of calls (indicated by the size of the white

squares) for grid areas in Auckland (data is illustrative only)

a call being received and an ambulance being dispatched for a set of
simulated metropolitan Priority 1 calls. The histogram shows very clearly
that for many of the calls, a large amount of time is spent before an
ambulance is dispatched to a call. Time spent in the dispatch process
reduces the amount of time that an ambulance has to reach the scene of a
callout if it is to meet the contractual performance targets. A plot similar to
this for the historical data recorded by St. Johns was one of our most
important findings for the organisation. Small decreases in these dispatch
times can have (as simulations quantified) a large impact on contractual
performance, so that it is worth devoting considerable effort to determining
ways in which the dispatch time can be reduced. Apparent inefficiencies in
the dispatch process can, when considered in view of the overall goals of the
organization, actually be viewed as efficiencies, especially when the
alternative expense of additional ambulance units is considered.
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Figure 4.6 Distribution of the interval (in minutes) between a call
being received and an ambulance responding (by radio) that it is en

route (distribution is illustrative only)

BARTSIM also produces statistics on ambulance utilisation. These statistics
may be imported into a spreadsheet (we use Microsoft Excel), and analysed
from there. An example of the type of graphs that can be produced is given
in Figure 4.7. This graph depicts the underlying demand near one of the
stations operated by St. Johns. Each row of bars reflects the performance
that can be expected over the week when a given number of ambulances are
stationed at the base. In particular, each individual bar reflects, for a given
number of ambulances and time of the week, the percentage of time that no
ambulance is available to respond to incoming calls. This information is
extremely useful for getting a first approximation to the number of
ambulances required at each individual base at different times of the week.
Of course, one would cover some proportion of these calls from other
stations, but the plot gives an impression of the underlying demand.
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Figure 4.7 Ambulance utilisation/requirements at one station (data is
illustrative only)

As a final example of the nontraditional uses of BARTSIM, we mention that
at a certain stage St. Johns was considering the use of a dispatching strategy
that was expected to have a number of effects. First, it would better match
the skills of the staff with the patient’s requirements at the scene, thus
resulting in better care. Second, it would result in fewer Priority 1
dispatches being made because the improved data collection would allow
more cases to be classified as Priority 2. Priority 2 cases have a longer target
response time so the performance targets for these cases would appear to be
easier to meet. However, vehicles on Priority 2 dispatches do not use lights
and sirens, so the time a vehicle spends on a case increases if it is changed
from Priority 1 to Priority 2. The improved case classification would come
at the cost of increased dispatch times. These changes were built into the
simulation using approximations for the extent of the effects, and then
comparisons between the current and proposed system were drawn based on
the plots discussed in this section. The analysis played a large role in
determining whether the proposed system would be adopted.

4.6 CONCLUSIONS

BARTSIM has been used to evaluate several decisions considered by St.
Johns, including the use of a dedicated non-emergency patient transfer
service, the possible introduction of a new dispatching method, and changes
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to where and when ambulances should be allocated. The results of these
studies have been used to shape policy at St. Johns, and we continue to work
with St. Johns on these and other issues, including rostering requirements for
their staff. This experience has convinced us that simulation is a powerful
tool in emergency service planning that is currently underutilized. Good
simulation visualization tools have proven invaluable as a communication
tool for describing our work to management and staff of St. Johns. The
spatial data visualization capabilities have provided management with a
significantly improved understanding of their current performance and, in
conjunction with the simulation model, allowed results from what-if
analyses to be readily communicated and understood.

It is important in vehicle simulation models to accurately capture travel time
information. We have developed heuristics that allow both accurate
modeling of travel times and rapid simulation run times. In addition, we
introduced the notion of a decision node, which dramatically decreases the
time required to compute shortest paths in the networks. This concept may
be of interest in other applications where shortest paths must be calculated in
large networks.

The travel times predicted by our model are deterministic: the same time is
always predicted for travel from one point to another at a given time on a
given day. However, travel times can vary tremendously depending on
unpredictable events such as traffic congestion, weather, and traffic
accidents. It is our belief, based on some initial analysis with very simple
models, that randomness in travel times can have a material effect on the
predictions of a model, and this is an area that we are beginning to
investigate. Some care is needed, as it is not immediately clear how to
generate random travel times. In general, there will be “macro” effects, such
as those described above, which affect many ambulance trips in the same
way, whereas other “micro” effects, such as traffic light phasing, might be
confined to a single ambulance trip.

The combined simulation and data visualization tools introduced here have
been of tremendous help to St. Johns, and several other ambulance
companies have expressed interest in using the system within their
organization. In our experience, the combination of CAD databases, CIS
visualization methods and simulation leads to more informed decision
making, and better utilization of resources, than the previous state of the art
has supplied.

Since preparing this chapter, BARTSIM has been selected in a competitive
tendering process for use in Melbourne, one of the larger cities in Australia.
As part of this work, BARTSIM has evolved into a more powerful system



AMBULANCE SERVICE PLANNING 99

known as SIREN (Simulation for Improving Response times in Emergency
Networks) (see http://www.optimal-decision.com). Enhancements include
call generation using non-homogeneous Poisson processes, introduction of
stochastic travel times, more detailed case classifications, and more
sophisticated simulation logic to handle the increased operational complexity
of this new problem. For example, SIREN can dispatch several vehicles to a
call, one of which is left at the scene while the ambulance officers travel in
the other vehicle to the hospital. Upon leaving the hospital, this vehicle then
travels back to the scene where the officers return to their original vehicles.
The transport model has also been enhanced to reduce the memory
requirements of the pre-computed shortest paths, allowing a network with
6,000 nodes and 14,000 arcs to be handled. This network also allows
shortest distance (in addition to fastest time) routes to be calculated, and
includes arc-specific times for lights and sirens travel. It is pleasing to see
the value that SIREN can add being recognized by another ambulance
organization.
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SUMMARY

The chapter starts with a strategic overview of the blood banking supply
chain. We then proceed to ask and answer questions concerning (i) the
blood banking functions that should be performed and at what locations, (ii)
which donor areas and transfusion services should be assigned to which
community blood centers, (iii) how many community blood centers should
be in a region, (iv) where they should be located and (v) how supply and
demand should be coordinated. Then the many tactical operational issues
involved in collecting blood, producing multiple products, setting and
controlling inventory levels, allocating blood to hospitals, delivery to
multiple sites, and making optimal decisions about issuing, crossmatching,
and crossmatch releasing blood and blood products are presented. The
chapter concludes with areas for future research.

KEY WORDS

Supply chains, Blood inventories, Blood bank models
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5.1 INTRODUCTION

As a supply chain, the flow of blood and blood products from the donor to
the patient would seem to be one of the simplest inventory and distribution
problems in the supply chain literature. Perhaps it is. One merely collects
whole blood from donors, processes it into its components at a regional
blood center or a community blood center and delivers the components to
hospitals where they are transfused into patients. Geographically, the
situation is shown in Figure 5.1.

Figure 5.1 A geographic region for blood supply and demand

In a geographic region, a regional blood center (RBC) with satellite
community blood centers (CBCs) or, in smaller regions just the regional
center without satellites, will be responsible for providing a supply of blood
products (components) to hospitals for patients. To do this, a schedule of
donor drawing locations is made some months in advance. Donors are
solicited to give blood at the locations as the drawing time nears. Mobile
phlebotomy vans with medical and service personnel and equipment are sent
to the sites on the scheduled days. Decisions are made to prepare various
components from the whole blood so the appropriate bags are used when
drawing the blood. The drawn whole blood is returned to a processing
location where it is recorded, tested for viruses and diseases, and the
components are prepared. The resulting components are then inventoried
and appropriate shipments are made to the hospitals based on their inventory
needs. The hospital staffs then make decisions on how and when to use the
blood components. If a particular blood component exceeds its allowable
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age it cannot be used for transfusion to a patient and must either be discarded
or, for a few products, some modest salvage is possible. Some components,
such as platelets, can be obtained directly from a donor by a process called
pheresis. In this process a donor is connected to a machine that continuously
circulates the donor’s blood through the machine. The desired component is
extracted from his/her blood and the remaining blood is returned to the
donor. The process is costlier than the extraction of platelets from donated
whole blood.

What makes this problem interesting and/or difficult from a research
perspective? First, blood is a perishable commodity and whole blood has
many components, each of which has a different shelf life before it perishes.
The preparation of different components involves significant costs. Second,
the supply of whole blood at a donor drawing location is a random variable
that often has a large variance and, for planning purposes, the donor drawing
locations and drawing dates are themselves sometimes random variables
(Figure 5.1). The supply is also impacted by the need to screen out a
growing list of viruses and diseases before the blood and its components
may be used for transfusions; more variability and more risks are introduced.
Third, the demands for blood components at a hospital in both their amounts
and frequency are random variables (Figure 5.2). Fourth, many interacting
decisions must be made at the strategic design, strategic policies, and
operational and tactical levels. All are affected by the need to control costs,
to minimize outdating and waste and, above all, to control potential
shortages. Fifth, the entire blood supply chain can be examined as an
essentially whole system and not just a subsystem of some larger system as
occurs in most other supply chains. And finally, from a research
perspective, much technically interesting, generalizable theoretical research
can be extracted from the real problem regarding perishable inventories and
regarding disease testing. In the future research section, other interesting
unresolved theory questions will be raised.

Figure 5.2 shows the daily number of whole blood units drawn by the
community blood centers in the Chicago area for one year. The drawing
amounts range from zero to over 1,100 units and the variation is very large.
It can be seen that in the January and November-December periods and in
the summer the numbers of units drawn are below average and indeed there
are often critically low inventories for patient needs.

O+ blood is one of the most common blood types. Figure 5.3 shows the
range of daily demands for patient needs from a low of less than 10 units to a
high of over 140 units and with significant daily variation throughout the
year. This variability is typical for all blood types at large and small general
hospitals that treat both emergent and elective admission patients.
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Figure 5.2 Daily phlebotomy drawings by the CBCs in the Chicago
area for one year

Figure 5.3 Daily O+ crossmatches for a large Chicago hospital for
one year

The basic supply chain for whole blood and its components is given in
Figures 5.4 – 5.7.

The organizational structure and the geographic region for a CBC or a RBC
has usually evolved as the region’s system of hospitals has grown and
changed (Figure 5.4). In the early years as blood and components came into
therapeutic use, hospitals began to draw blood and make components them-
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Figure 5.4 Hierarchical regional structure

selves. Today many very large metropolitan hospitals still do so for a
significant amount of their supply needs. But, in general, as the demands
grew, hospitals found it to be more cost effective to seek a dependable
central source for blood and components and also for the latest knowledge
and research. As this growth occurred, CBCs evolved to meet the needs of
groups of hospitals. In some regions only one CBC became dominant and
met the needs of the region, whereas in other regions several CBCs
successfully met the region’s needs. In all cases, the intent of the hospitals
was to obtain a dependable supply at minimal cost. For dependability this
supply also had to be of the highest quality (free of blood borne diseases and
meeting the best standards for therapeutic use) and always available when
needed (no shortages). Because a significant part of the cost is recruiting
donors and drawing, processing, storing, documenting and transporting
blood, in order to minimize costs it was also necessary to minimize
outdating and waste.

Depending upon the various levels of demand and the geographic location of
a hospital, the CBC will make regular shipments of whole blood and
components on a twice daily, daily, biweekly or weekly basis to the hospital.
In a metropolitan area, most regular shipments would be on a daily basis.
For outlying rural areas, the shipments may only be weekly.

In this process of inventory and distribution management the CBC must
decide:

1.

2.

its own optimal inventory levels to maintain,

its inventory allocation policy in the event demands from the Hospital
Blood Banks (HBBs) exceed the CBC inventories,
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3. a trans-shipment policy from some HBBs to others in the event that
there is an overall system shortage but some HBBs have a greater risk of
shortages than others, and

4. a recycle policy of bringing old but still useful blood at an HBB back to
the CBC for use at other HBBs with higher levels of demands and higher
probability of using that blood before its expiration (Figure 5.5).

The HBB, itself, must decide its own optimal inventory levels to maintain.
Depending on the corporate or contractual relationship between the HBB
and the CBC, these levels may be made independently of or in conjunction
with the CBC. More will be said about these optimal inventory levels later
in the chapter.

Figure 5.5 The regional supply chain

In most cases, the demands for red cells and for the various blood
components are independent random variables. However, since the red cells
and components come from the same source – donors – there is a high level
of dependence created on the supply side (Figure 5.6). Furthermore, the
process of collecting the whole blood in appropriate types of bags and then
making, storing and distributing the components can be costly, depending
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Figure 5.6 Processing whole blood into components

on the numbers and types of components made. Finally the components have
different shelf lives, further complicating the supply chain processes.

In addition to its optimal inventory levels, the HBB must decide its issuing
policy (usually last-in-first-out (LIFO) or first-in-first-out (FIFO)), its cross-
match demand and its cross-match release policy (Figure 5.7). Cross-
matching is the process of testing for incompatibilities between the patient’s
blood and the donated blood that the patient could potentially receive. The
cross-match demand policy is the number of units of blood or a component
that should be cross-matched to a patient’s blood and assigned to that patient
prior to its use. For whole blood and packed red cells (PRCs), the number of
units will often be about one to two standard deviations above the average
needed for the procedure. The cross-match release policy is the number of
days after the patient’s procedure that the unused blood or components will
stay assigned to the patient in the event of emergency needs due to
complications. For whole blood and PRCs this is often one or two days.
Obviously the units continue to lose shelf life while on cross-match to that
patient. Once released from this assignment, the units return to inventory
(older) and can be cross-matched for use by another patient when needed.
The reason for the assigned inventory is that its takes time to do the cross-
matches and in an emergent situation the patient will not be able to wait.
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Figure 5.7 Hospital i’s inventory process and decisions

5.2 LITERATURE REVIEW

Research on the regional and the local management aspects of the blood
supply essentially started in the 1960s, peaked in the late 1970s and early
1980s and then dropped off significantly to the present time. Excellent
reviews of the work to the mid-1980s can be found in Prastacos [1],
especially with regard to blood bank management policies and decisions,
and in Nahmias [2] regarding theories of perishable inventories. In the years
since these two reviews were published, almost every OR/MS researcher has
left this area of research to pursue other interests. To some extent this
exodus was caused by the collapse of federal funding for studies in the area
(which reduces support for MS and PHD students), in the increasing
difficulty of the remaining problems in the area, and in the shift of emphasis
to do research on blood supply safety.

Since the mid-1980s, the published management-oriented work in blood
banking has mostly been in the development of information systems to
support donor screening, inventory management, blood ordering, blood
usage review and compatibility testing [3]. Indeed, much prior work on
information systems (IS) has been reported in earlier decades, but the advent
of the personal computer (PC) and PC networks has driven the development
of new structures and uses for blood information. In addition to improved
IS, more new technologies are being introduced to improve the logistics and
safety of the blood supply and delivery [4]. The National Blood Service,
which is the central blood service for the United Kingdom (in a sense a super
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RBC), is considering introducing electronic tags for every blood bag with
sensors that tell all donor-specific details, blood type, and the exact location
and temperature in real time for that bag. Clearly such a technology will
greatly increase the safety and quality of the blood supply as well as provide
logistics data for optimal supply chain management.

Few studies of note in the application of OR/MS have appeared in the past
two decades. A platelet inventory management model was developed to
determine outdate and shortage rates as a function of base stock levels and
mean daily demand [5]. Using simulation, the model provided the base
stock levels for different mean daily demand such that the platelet outdates
and shortages in a region were significantly reduced. In another study, the
task of scheduling donors at a bloodmobile site was undertaken [6, 7]. This
modeling involved issues of donor motivation and psychology, layout of the
collection facility and managing serial and parallel queues. Using a
simulation model, the authors were able to improve the registration,
screening and phlebotomy processes, which in turn improved donor
satisfaction and reduced donor balking and reneging in future blood drives.
The employers at the sites that the bloodmobile visited were also better
satisfied because the new layouts and scheduling reduced employee waiting
times to donate.

5.3 THE REGIONAL BLOOD BANKING SYSTEM

5.3.1 Regional structures and economies of scale

A strategic question regarding the regional supply chain for blood and
components is: what are the economic and organizational consequences of
different forms of regionalization of blood banking services?

If regionalization is to be effective, it must make a positive contribution to
the achievement of one or more of the following objectives: reducing costs,
reducing shortages and outdates, reducing extra-regional dependencies,
improving the quality of the products, and reducing the confusion of
overlapping jurisdictions. A search for economies of scale was thought to be
the most logical starting point to analyze these factors. It is already known
that by well planned operations, regionalization can reduce shortages and
outdates by smoothing the region-wide supply and demand fluctuations (law
of large numbers); however, issues of improved cost only will occur if there
are economies of scale in regional operations.

The regional structures of interest are embedded in Figure 5.4 and illustrated
in Figure 5.8. Level 1 is the Regional Blood Center, Level 2 is the
Community Blood Centers and Level 3 is the Hospital Blood Banks (HBBs)
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and other Transfusion Service (TS) locations such as clinics and surgi-
centers. (For ease of writing we will consider TSs as little HBBs and not use
the TS notation.) In a region, if Level 1 does not exist, it means all HBBs
are served by two or more CBCs only. In a region, if Level 2 does not exist,
then a single RBC serves all HBBs (effectively operating as the sole CBC).

Figure 5.8 illustrates the different regional structures of interest. These are
the single community blood center for the entire region, a collection of
independent CBCs for the region or a collection of CBCs controlled or
coordinated by an RBC. As a general rule, as the size of a region changes
due to an increase in demand or geographic reach, the single community
blood center may not adequately fill the needs of the region, and one of the
other two structures will tend to replace it over time [8, 9].

Figure 5.8 Different organizational structures for a region

In order to identify the economic and organizational consequences of
different forms of regionalization of blood banking services, data were
gathered from seven Chicago community blood centers and 66 Chicago area
hospitals, as well as five other regional blood centers from around the nation.

Because wage rates, depreciation, purchasing costs of goods and supplies,
rent, utilities and other costs vary greatly from one region to another, a proxy
for costs was used. Instead of dollar costs for the geographic regions,
man-hours per unit were used to derive the production function for each
functional area of blood banking and for combinations of functional areas.
The functional areas of main interest are:

(i) donor services (recruitment of donors and donor organizations),
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(ii) phlebotomy on mobile units (collection and transport of the whole
blood from donor locations),

(iii) phlebotomy at the community center,

(iv) processing (testing, typing and component preparation),

(v) inventory and distribution (storing and transport to hospitals), and

(vi) administration.

The overall total costs were also analyzed for scale economies.

The choice of man-hours removes the need to adjust dollar costs for the
different wage rates experienced throughout the country. Great variation in
man-hours per unit occurs across centers. Some of this variation is due to
economies of scale or may result from different geographic distances
covered, different proportional amounts of components produced, saturation
of the donor market, style of management and expansion dislocations.

To reduce some of the data variations in the workload at the different centers
for collecting, processing and inventory and distribution activities due to
different proportions of components, a study of the times required to make
the different components was undertaken. Using the results of these time
studies, time-weighted volumes of activity were defined for each blood bank
function and each center. In this manner, it was possible to compare the
workload activities at all the centers for each function. In mobile
phlebotomy, the number of units used to measure the workload were the
amounts of whole blood drawn on the mobiles. In donor recruiting, the units
were the whole blood drawn at the blood center, satellites and mobiles. In
processing, the units were the whole blood drawn, plus weighted handling
and processing times for the other components based on a normalized weight
of 1.0 for whole blood. In the inventory and distribution area, the units were
the total units shipped including whole blood and components. In the
administrative and total manpower areas, the units were the appropriate units
for each of the functional areas weighted by the percentage of the staff in
each of the areas.

Because of the nature of the supply chain processes, some or all of the
functions can be performed at Level 1 (the RBC) or at Level 2 (the CBCs).
However, the process flow determines the order in which the functions are
performed. Consequently there are only six possibilities for deciding which
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functional combinations can be performed at which levels as we analyze
what is the best organizational structure for regional blood banking.

The combinations of functional areas are the options designated 1 to 6 in
Table 5.1. For example, Option 5 reflects all tasks except inventory and
distribution to be performed at Level 1 (the RBC); Option 2 reflects all tasks
except donor services to be performed at Level 2, and so on. Using this set
of six options, it is possible to analyze the structures given in Figure 5.8.

It was hypothesized that economies of scale exist in all options, with the
possible exception of donor services. In donor services, as the geographic
area expands and the donor market reaches a saturation level, it was
hypothesized that increasingly more donor recruiter hours are needed to
obtain the additional units of blood.
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For the individual functions it was found that (i) the economies of scale
hypothesis was significant for inventory/distribution and (ii) economies of
scale occur initially, later followed by constant returns to scale in
phlebotomy at the center, mobile phlebotomy, administration and
processing. Donor services seemed to exhibit diseconomies of scale. When
all functions are performed in a single center, economies of scale exist
initially and are significant [10, 11].

For the options that correspond to specific regional organizational structures
ranging from totally centralized activities to totally decentralized activities
(Options 1 and 3-6) there are economies of scale. In particular, at the lower
volumes (10,000 red cell units annually), the economies of scale are very
significant. From 50,000-75,000 units, economies of scale are not as
dramatic. Above 75,000 units the curves tend to flatten out but still show
some small economies of scale. Caution should be exercised in using the
curves past 200,000 weighted units since they were derived with only four
data points. Option 2 exhibited economies of scale at the CBCs but
diseconomies of scale at the RBC because in this option the RBC provides
only donor services.

This analysis leads to two related conclusions. First, a regional system with
community blood centers that are operating below 50,000 weighted units can
realize significant economies of scale by increasing volume. These
economies come from a more efficient utilization of space, equipment and
vehicles, specialized skills and learning curve effects. Second, a regional
system with one community blood center is more economical than a regional
system with two CBCs, two are more economical than three, and so on. The
example in Table 5.2 shows that none of these community blood centers
should  operate at less than 50,000 red cell units annually. Thus a region
with slightly over 200,000 units annually is operated most economically
with one center. The costs of two or three community blood centers (even if
all are over 50,000 units) rise rapidly. This analysis leads to the conclusion
that a region should have only one CBC (which would also be the RBC by
definition). If a region needs more than one CBC due to geography and very
large blood volumes, then the number of CBCs should be kept to a
minimum.

Using the economies of scale results, we can gain an understanding of the
cost implications of various regional structures as a basis for planned change
in a region when such change is warranted. We can determine [12]:
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(i) the blood banking functions that should be performed and at what
locations,

(ii) which donor areas and transfusion services should be assigned to
which community blood centers,

(iii) how many community blood centers should be in a region,

(iv) where they should be located, and

(v) how supply and demand should be coordinated.

The next step in the analysis of the regional supply chain is to use the cost
analysis to construct a model and decision support system to find: the
number and location of community blood centers, the allocation of hospital
blood banks to each CBC, and the routing of delivery vehicles from the
CBCs to their HBBs to minimize (regular shipping costs + emergency
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shipping costs + operating costs) subject to constraints on: capital
availability, personnel and facilities, budget, quality assurance, system
reliability and demands for blood components. We call this model the Blood
Transportation-Allocation Problem (BTAP) [13]. BTAP is a large
constrained integer nonlinear program. BTAP is solved by decomposing the
model into two sub-models: a demand model and a supply model. The
demand model finds the best locations of the CBCs, allocation of the HBBs
to the CBCs and the routing of the delivery vehicles for the distribution of
the blood components to minimize the total costs of routine and emergency
deliveries plus the system costs of operations subject to constraints. The
supply model finds the best allocation of the donor supply locations to the
CBCs to minimize the supply-side transportation and recruiting costs subject
to constraints. This supply model is a constrained transportation-type
problem.

The demand model takes as inputs the locations of HBBs in a region, the
distances separating them, and their whole blood and component needs.
Distances can be in any metric but for the analysis, the driving time between
locations was used. The user then specifies the number of community blood
centers to be evaluated (from 1 to 10) and their desired locations. In
addition, the user specifies the desired option from Table 5.1 to be evaluated.
Locations and options are then varied to achieve the most practical optimal
locations and allocations. The results of one run of the model are shown in
Figure 5.9. In this figure, the loops indicate which HBBs are assigned to
which community blood center to meet the demands for blood at minimal
cost.

The supply model was developed to allocate the supplies of blood to each
CBC. This model takes as inputs the allocation of transfusion services with
their demands given in the previous model and the available supplies of
blood in the metropolitan area by zip code areas and then assigns the
supplies to the CBCs in such a way as to meet the demands in each center
and minimize costs of collection. Figure 5.10 illustrates the results of the
supply assignment model corresponding to Figure 5.9.

Delivery Vehicle Routing. As part of a regional blood bank design model,
the problem of vehicle routing for blood product deliveries was considered.
The basic problem involves selecting vehicle routes for each central blood
bank subsystem that minimize overall transportation costs between the CBC
and its member HBBs. For each configuration of blood banks, a “sweep”
algorithm was used. The algorithm is a heuristic method that is incorporated
into the overall regional blood bank location and central bank allocation
model (BTAP). Figure 5.11 indicates a typical regional design solution for
the metropolitan Chicago area that also contains optimal vehicle routes.
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Figure 5.9 Allocation of hospitals to three CBCs based on
emergency and routine delivery costs

In the preceding paragraphs it was concluded that some benefits of a
regionally controlled structure would be:

smoothing of the supply of blood from donors and a reduction in
competition for donors,

smoothing of the demands faced by a community blood center for blood
and components by averaging the demands from many hospital blood
banks, and

economies of scale by operating community blood centers at levels
above 50,000 units annually.

These benefits would lead to reduced shortages, outdating and costs.
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Figure 5.10 Optimal donor mobile site allocations for three CBCs

5.3.2 Tactical and operating decisions in a regional blood banking system

Before proceeding to detailed discussions of the tactical and operating
decisions for a CBC and for HBBs, it should be noted that all of the optimal
decision rules concerning inventory amounts, cross-match release policies,
issuing policies, trans-shipment policies, vehicle routes and other factors
interact with one another. That is, if one changes the policy in one area, it
could affect the policies being followed in the other areas. These interactions
will become more apparent as we proceed through this section and more will
be said about them in subsequent discussions. Since it is not possible to
present all of these policies simultaneously, each will be presented separately
and the reader should keep in mind that they all interact. Usually for smaller
changes, the interactions are not significant, i.e. the decision rules are robust.
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Figure 5.11 Daily delivery truck routes
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5.3.3 Forecasting

As in any business, the driving force for all decisions is the amount and
types of demands that the business must meet to be successful. This fact is
no different in blood bank management. Demands drive decisions. Any
organization with random demand that does not do rational forecasting is
condemned to work frequently in crisis and higher cost mode. Consequently
it is necessary to have a good understanding of the demands, past, present
and future. From our prior discussion, we know demand for the variety of
blood products carried in inventory is a major source of uncertainty in the
management of blood banks. Accurate forecasts of the quantity and timing
of future demands become key inputs to inventory control and donor
recruiting decision making. In particular, decisions relating to the quantities
of blood products to be carried in stock, the scheduling of drawings from
donor lists or mobile drawings, and ordering from other blood banks must all
be made with such forecasts in mind.

Demand for blood products can be computed by observing the number of
those patients in a hospital who may require transfusions on any given day
(cross-match requests) and the number of units requested for cross-match for
each patient. Mean or average demand (cross-match quantity) then is simply
the product of the mean number of requests times the mean number of units
per request.

In order to specify the probability distribution for the number of units of a
specific category or type, Yen [14], building on the work of Elston and
Pickrel [15, 16], demonstrated that it is sufficient to estimate two parameters,
the mean number of patients per day requiring transfusion and the mean
number of units requested for each patient Moreover, the Neyman A
distribution characterized by these two parameter values gave an adequate
representation of the demand distribution obtained from data collected from
a particular hospital. Subsequent analysis with regard to target blood bank
inventory decisions [17-19], indicated that it was not necessary to keep track
of these two components separately since effective system performance can
be obtained by basing blood inventory decisions on mean demand alone (i.e.,
the product Thus, in order to control the blood inventory effectively,
forecasts of mean daily demand must be generated.

However, most blood inventory decisions are not reevaluated on a daily
basis. In particular, target inventory levels probably would be updated on a
monthly or quarterly basis taking seasonality into consideration. Figure 5.3
illustrates such a target levels, computed on a quarterly basis.
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In order to forecast monthly demand and to identify seasonal cycles, it is
necessary to collect data for several years. Often in HBBs only aggregate
data (summed over all blood types) are available for such an extended
period. For many planning purposes such aggregate forecasts are sufficient.
In those cases where forecasts specific by blood type are needed, a
reasonable approach would be to forecast demand levels on the basis of the
aggregate data and then use estimates of the distribution of demand over
blood types as a means of disaggregating these estimates into blood type
specific forecasts. We tested the validity of this approach by examining the
standard deviation of blood type fractions over one year of observations
(Table 5.2). These standard deviations were observed to be relatively small
when compared to the mean for the more common blood types. Moreover,
the demand fraction for these blood types also was symmetrically distributed
about its mean value. The rare blood type fractions exhibited significant
variation relative to their mean and their distribution tended to be skewed.
Since the rare types do not influence the aggregate blood demand
significantly, we may conclude that forecasting of aggregate demand and
subsequent disaggregation is a reasonable approach to generating longer
term blood type specific forecasts for the common blood types. Further
analysis, however, is needed for the rare blood types. (Cohen et al. [20]
show that equation (1) can be used with reasonable accuracy for all blood
types.)

The best fit for the monthly demand series (12 years of monthly data from an
HBB) using Box-Jenkins methodology is as follows:
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where

D(t) = the forecast for month t

Z(t) = the month t actual transfusion request level

E(t) = the forecast error (Z(t)-D(t)).

This forecast equation indicates that the moving average (error) term has
cyclical components with periods of 1, 12 and 13 months. However, even for
aggregate monthly figures there is significant variance and it is difficult to
forecast monthly aggregate cross-match request quantities accurately at the
single hospital blood bank level. We will later see that the optimal inventory
order-up-to level is not very sensitive to the errors in prediction over a broad
range around this optimal inventory level.

5.3.4 Target inventory levels for an HBB

As noted previously, the major responsibility of a hospital blood bank is to
ensure that all blood-related demands are met in a manner that minimizes
wastage through outdates and spoilage, maintains high quality standards and
reduces shortages that require either emergency shipments from other blood
banks, emergency demands on donors, appeals to the hospital staff for dona-
tions or the delay of nonemergency and elective medical procedures. In
order to achieve these goals, it is important for the hospitals (HBBs) to set
inventory levels that trade off shortage versus outdate rates and minimize
total operating costs.

This section establishes a simple decision rule for an HBB which yields the
optimal inventory level for each blood type for whole blood and red cells as
a function of factors in the blood bank environment (the demand for blood
by group and Rh, i.e. the blood type, and the ages of the blood units received
from a CBC) and on the management decisions in the hospital itself (the
inventory levels, the transfusion to crossmatch ratio, the crossmatch release
period and the blood issuing policy – usually FIFO or LIFO). In using this
simple decision rule, it is not necessary for the hospital blood bank
administrator to choose a shortage rate for system operation since the
inventory level recommended by the rule reflects the optimal tradeoff be-
tween shortages and outdates [17-19].

Demand data from hospitals in the metropolitan Chicago area were used. In
order to understand the complex interactions among the environmental,
managerial and random variables affecting the hospital blood bank, a series
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of models were constructed. The analysis began with a simulation model and
a full factorial statistical design of the key variables to develop the response
surface for various inventory levels’ effects on shortages, outdates and costs.
Then from the response surface a Cobb-Douglas model was used with log-
linear regression to determine the optimal inventory order-up-to policy
(optimal target inventory levels) for any whole blood/red cells Rh-blood
type. This optimal inventory policy would apply to any hospital blood bank
whose environmental and managerial data fell within the ranges of those
variables used in the factorial design. These ranges were chosen to include
most or all of the hospital blood banks in the United States. Using the
optimal inventory policy, Cobb-Douglas models with log-linear regression
were again developed to predict the resulting shortage and outdate levels
under varying environmental and managerial decisions. These models used
as input factors the system environment and hospital managerial decision
variables. The factors considered include: parameters to specify the daily
demand distribution, the age of units supplied from donors and/or the CBC,
target inventory levels, the transfusion-to-cross-match ratio, cross-match
release time, issuing policy, shortage cost, and outdate cost.

Model outputs include detailed records of all inventory transactions and the
age distributions of both assigned (cross-matched) and unassigned
inventories. These outputs are used to estimate the “optimal decision rule”
i.e., the relationship between the cost-minimizing target inventory level, S*,
and the various factors. In a similar way, the outdate rate, and shortage
rate, were determined by relating them to the various factors as well as
the target inventory rule.

The decision rule for the target inventory level is summarized in equation
(2).

where is the mean daily demand for a blood type, p is the average
transfusion to cross-match ratio, L is the maximum shelf life for red cells
(either 35 or 42 days) and R is the cross-match release time in days. All
coefficients are significant at the 0.01 level or less and

For each blood type, the blood bank manager computes the appropriate
optimal inventory level, S*, and on a daily basis orders enough blood units
to bring the available inventory on hand up to S*. If the blood bank receives
deliveries only on a triweekly, biweekly or weekly basis then the value
that should be used in the calculation should be the mean demand over the
number of days between deliveries.
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A range of 2 to 50 units demanded per day (which corresponds to an annual
volume of between 300 to 10,000 transfusions) was considered in the
experimental design. Almost all blood banks have type-specific mean
demand volumes that fall into these ranges, and hence equation (2) has wide
applicability.

The small values of 0.1146 for the power of p, 0.1332 for the power of L and
0.0453 for the power of R in equation (2) indicate that their influence on S*
is not nearly as large as that of with its power of 0.6964. Taken singly
over the respective ranges of each variable, with the others held constant, the
effect of p, L or R on S* is, at most, 6 percent to 8 percent.

For fixed values of p, L and R, a positive exponent of 0.6964 for mean daily
demand in the optimal decision rule indicates that as the mean daily demand
increases, there is less than a proportional increase in the optimal order
quantity. Alternatively, a blood bank that doubles its activity (in terms of
mean daily demand) should increase its optimal inventory level by no more
than 62 percent (provided that p and R remain the same).

In a similar manner we can develop equations for the effects of the
environmental factors and managerial decisions on the outdate rate and the
shortage rate for a specific blood-Rh type at a hospital blood bank.

The outdate rate is the ratio of the mean number of units outdated to the
mean number of units transfused plus units outdated, and the shortage rate is
the fraction of days on which a shortage occurs. In establishing the
relationship between the outdate rate and its causal variables, it was evident
that two additional explanatory causal variables should be the deviation of
the hospital’s actual mean inventory level, S', from the optimal inventory
level, S*, and the mean age of delivered units, A, from the CBC. If S' > S*,
then outdates should increase because more blood is on hand than needed; if
S' < S*, then outdates should decrease. In each case the reverse holds for the
effect on shortages when S' differs from S*.

We also can hypothesize the effect of the other causal variables such as the
crossmatch release time, R, and the mean age of units, A. As either
increases, outdates should increase. The reverse should hold for the variables

p and L. That is, the larger the mean demand, transfusion-to-cross-match
ratio or the shelf life, the lower should be the outdates. The regression for
is given by
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where e is the base of the natural logarithm.

From the regression results in equation (3), we can see that these
expectations are true. All of the coefficients are significant at the 0.01 level
or less and their algebraic signs agree with the above hypotheses.
Furthermore, these variables explain 71 percent of the variation in the
dependent variable

This regression function captures the effects of these six variables on the
outdate rate. These same causal variables were used to explain the variation
in the shortage rate, except that instead of the deviation (S' – S*), the reverse
deviation (S* - S') was used. Consequently, if S' < S*, the shortage rate
should increase because the actual inventory level S' is below the optimal
level; and if S' > S*, the shortage rate should decrease. The other variables
are expected to have the same effect on the shortage rate as they did on the
outdate rate. As P, or L increase, the shortage rate should decrease. As
R or A increase, the shortage rate should increase.

As shown in equation (4), these expectations have been realized. All of the
coefficients are significant at the 0.01 level or less and are of the correct
sign, The log/exponential linear regression explains 59 percent of the
variation in the dependent variable. The regression equation is

where e is the base of the natural logarithms.

The variations in p and R represent examples of internal management
policies since p and R are affected by the working relationships between the
blood bank and the ordering physicians. Variations in A and
represent external management since the age and amount of arriving blood at
the hospital often depend upon the policies of a regional blood center.
Variations in L are set by government regulations (either 35 or 42 days for
red cells) and are outside the scope of managerial decision.

The amounts of shortages, outdates and costs are determined by a complex
interaction among these environmental and managerial factors. To capture
the full effects of the benefits from following the optimal inventory policy,
the other variables must not be allowed to deteriorate, i.e., p should not drop,
R and A should not increase, and the actual inventory level S' should be held
close to the target inventory level S* given by equation (2). Some of these
variables are under the control of the blood bank administrator and others are
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possibly under the control of external administrators such as community
blood center directors. Significant reductions in shortages and outdates,
however, can be made by a combination of “good” overall internal and
external management.

5.3.5 Optimal blood issuing for crossmatching (FIFO vs. LIFO)

FIFO (first in first out) and LIFO (last in first out) issuing policies were
considered in conjunction with varying values of the cross-match release
period, R, from 0 to seven days. R = 0 corresponds to an inventory system
where all crossmatched units are transfused or immediately released after the
procedure and R = 7 corresponds to a system where non-transfused
crossmatched units remain in the assigned inventory for a period of one
week. In all, 16 issuing-crossmatch policy combinations were considered
(eight for FIFO and eight for LIFO). Simulation was again used to
determine the optimal issuing policy.

Table 5.3 gives results averaged over a number of runs and Figure 5.12 is a
graph of cumulated outdates for increasing values of R for both FIFO and
LIFO issuing policies. The following observations can be made.

1.

2.

3.

4.

5.

6.

When R = 0, as predicted by the theory of Pierskalla and Roach [21],
FIFO is optimal in terms of minimizing the outdates and shortages and
costs (since costs increase as the number of shortages and/or outdates
increase).

As ? increases under FIFO issuing, outdates increase and when R = 7
shortages appear.

As ? increases under LIFO issuing, outdates are very large but
decreasing and shortages increase.

For reasonable R in the range 0-2 days (common in most hospital blood
banks), FIFO dominates LIFO.

Although not shown, it is possible to generate examples where outdates
under FIFO exceed those under LIFO for R sufficiently large (greater
than seven days).

There is great sensitivity to changes in R under both issuing policies.
The smaller the value of R, the higher is the system performance.

Choosing between the two policies, FIFO vs. LIFO, for any reasonable
values of the crossmatch release period, FIFO is optimal and should be used
by the hospital blood bank manager. Furthermore the hospital blood bank
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manager must endeavor to keep R as small as possible in order to minimize
its effect of increasing outdates and shortages. This effect was also seen in
the outdate and shortage functions, equations (3) and (4) above.

5.3.6 Target inventory levels for a community blood center system or a
centralized regional blood banking system

In a community blood center or regional blood center, the management of
inventories of whole blood and components also involves a complex and
interrelated set of decisions concerning collection, processing, record
keeping, storage, issuing and transportation of units. In this section, some
management decision problems are analyzed to determine easily implement-
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Figure 5.12 Outdates for varying crossmatch release periods for
FIFO and LIFO issuing policies

ted rules that yield the “best,” or at least “very good” operating results at the
CBC and its satellite HBBs [10].

It has been recognized that benefits can be obtained by pooling resources
using a community blood center. The most apparent benefit to the hospital is
that the blood bank staff is relieved of the responsibility of donor
recruitment, blood procurement and blood processing. This permits the
hospital blood bank to channel its energies and efforts toward the resolution
of patient-related transfusion problems. Another advantage to the hospital is
the opportunity to pool widely fluctuating, largely unpredictable demands
with those of other hospitals in the system. Within the system the variations
often cancel each other and produce a smoother, more predictable aggregate
demand. This will enable member blood banks to maintain lower inventories
without degrading their outdate and shortage performance.

Since the demand to which the community blood center must respond is
generated outside its control, its decision making processes must focus
primarily on inventory management. While management decisions regarding
donor recruitment, phlebotomy and processing are essential, they can be
handled effectively only after efficient optimal inventory control policies
have been implemented. This control at the community blood center
requires setting inventory levels to maintain the optimal tradeoff between
system-wide excess inventory, with consequent outdating, and system-wide
excess amounts of shortages.

Inventory levels can be developed for the CBC by using an
outdating/shortage cost-minimizing procedure similar to that described in the
previous section for the single hospital blood bank. The optimal inventory
level at the CBC for each blood type is a function of the number of HBBs
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served by the CBC, their mean daily transfusions, their transfusion to
crossmatch ratios and their crossmatch release periods. It is assumed that all
issuing is done using FIFO. Associated with the optimal inventory function
for the CBC is an optimal inventory level for each member HBB that is a
function of its demand and transfusion to crossmatch ratio for that location.
For those hospital blood banks that belong to a centralized system it is to be
expected that their optimal inventory levels will differ from the values
indicated by the decision rule of the previous section which is appropriate
for independent hospitals in a decentralized system.

In order to study some of the benefits and shortcomings from a centralized
blood banking system, a simulation model was constructed. The simulation
model is described in detail in Yen [14]. Among the issues to be discussed in
this section are the optimal inventory levels at each HBB (denoted for
each hospital i), the impact on total system cost of high cross-match to
transfusion ratios, the allocation of units from the CBC to the HBBs, the
trans-shipment policy among HBBs and the effect of a limited and some-
what random supply to the community blood center. In addition, the
sensitivity of system cost to changes in the number and size of HBBs in the
system was considered.

As one might expect, the results indicate that the total amount of optimal
inventory levels in the hospital blood banks increase at a decreasing rate
with incorporation of more HBBs into the centralized system. Also, after a
certain system scale is reached the marginal benefits received from lower
shortages and lower outdates can be expected to approach zero as more
HBBs are added to the system. Finally, as more HBBs are included in a
centralized blood banking system, the total average distances between the
CBC and the HBBs, as well as their information needs, increase and thus the
corresponding transportation and information costs increase. So, as HBBs
are added, a saturation number of hospital blood banks in the system is
reached, further inclusion of local banks is not likely to reduce the system
cost per unit and indeed as has been shown previously may lead to
diseconomies of scale above 200,000 units annually.

5.3.7 Optimal daily inventories at the CBC

The daily amount of whole blood and components to be maintained centrally
at the CBC depends upon the amounts maintained at each HBB in the sys-
tem. If the total inventories at the HBBs are larger than would be optimal,
then the amount at the CBC should be small and vice versa. However, large
inventories at the HBBs could result in more outdates and/or
outdate-anticipating trans-shipments. Similarly, small inventories might
incur more emergency shipments and/or shortage-anticipating trans-



132 OPERATIONS RESEARCH AND HEALTH CARE

shipments. Because-of these possibilities, there must be a balance between
the inventory at the CBC and the inventories at the HBBs in the supply
chain.

Equations for determining optimal inventories of whole blood and packed
cells at the HBBs were given in the previous section. Using a similar
simulation-optimization-regression approach and making the same
reasonable assumptions concerning the system costs of shortages and
outdates, the optimal inventory level at the CBC was established.

The outdate cost consists primarily of the average costs per unit of
recruiting, processing, storing and transporting one unit. When a unit
outdates, these costs are basically lost. Actually a more appropriate cost to
charge for outdates would be the marginal per unit costs of these blood bank
activities rather than average per unit costs. However, it is not easy to obtain
actual marginal costs since the cost figures available are not sufficiently
precise to define the appropriate marginal relationship. Furthermore, since
the average cost includes many variable items such as bag costs, record
keeping and hours of work, it is reasonably representative of the marginal
cost.

The shortage cost at the CBC was based on the cost for processing and
handling a unit on an emergency basis and for recruiting and/or trans-
portation from another source on an emergency basis. Again, marginal costs
per unit would be better but they were not available. The shortage cost at the
HBBs was based on the average per unit cost of maintaining a buffer stock
of frozen blood units either at the HBB or the CBC or shipping a unit by
emergency shipment from another regional center. Finally, it should be
recalled that what is important about these costs is not their absolute levels,
but rather their relative magnitudes. Hence, if inflation should cause them to
rise in the same relative proportions, the results still hold. Furthermore, the
results hold even when the relative magnitudes are varied over reasonable
ranges.

Many variables were considered in this inventory supply chain analysis to
find the optimal target inventory levels at the CBC and its independent
satellite HBBs. A complete list of these variables is shown below.
However, and somewhat surprisingly, only three of these many variables are
needed to make optimal decisions in this centrally controlled supply chain.
The optimal target inventory level at the CBC needs only to know and N
and the optimal target inventory levels at the satellite need only
This contrasts for the optimal target inventory level at the independent HBB
that needs three variables as shown in equation (2).
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Variables initially considered were the following:

= mean demand for type specific whole blood and packed red cells
at the community blood center.

= mean demand for whole blood (WB) and packed red cells (PRCs)
at the hospital blood bank.

It is assumed that demand at the bank is a Neyman type A distributed
random variable characterized by the mean number of patients per day and
the mean units requested per patient. Yen [14] demonstrated that the
Neyman A fits the data well. Other variables initially considered were:

R = the crossmatch release period, the time lapse before a unit is
returned to the unassigned inventory if not transfused (in days)

= inventory level at the CBC (in units of WB and PRCs)

= inventory level at location j (in units of WB and PRCs)

N = number of HBBs in the system

= probability of a cross-matched unit of WB or PRC being
transfused at location j

= shortage at the CBC (in units of WB and PRC)

= shortage at location j (in units of WB and PRC)

= outdate at location j (in units of WB and PRC)

n number of times a unit of WB or PRC is cross-matched in its
lifetime

a = age of a unit of WB or PRC when it is cross-matched for the first
time.

The variables and are computed for each group and Rh
factor; rather than have two subscripts, one for location and the other for
ABO and Rh, the second subscript has been suppressed for ease of writing
the results. However, for low volume rare blood groups when the target
levels and the demands are small, say, one or two units, it is better to
maintain more stock at the CBC rather than incur excessive trans-shipping of
units.

=
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The optimal level target inventory level at the CBC is:

We find and F = 3529. All coefficients are significant at level
0.001.

The corresponding optimal target inventory level for the HBBs which belong
to and are fully coordinated by the CBC is:

We find and F = 8675. The term is significant at level 0.001.

As noted above, all of the other variables that were used in the original
Cobb-Douglas function were not significant and did not contribute to the
analysis of variance so they were removed from the regressions and only the
variables shown in equations (5) and (6) were used in the final analysis.

The relationship between the level of demand and the optimal inventory
level in terms of days of blood usage for both an independent bank and a
member of a central system is illustrated in Figure 5.13. This figure was
computed from the equations above and from equation (1) for target
inventory at an independent bank for the case where the transfusion fraction
at each bank is p = 0.5 and the cross-match release time is R = 2 days. The
optimal inventory level at a hospital blood bank can be reduced by 20 to 50
percent for an HBB that has its inventory level managed by a community
blood center.

5.3.8 Centralized blood bank issuing and allocation policies to HBBs

After the CBC receives all the requests from the HBBs, the orders are filled
by drawing from the inventory in the CBC using an oldest to youngest age of
units issuing policy. For purposes of simplification as well as good medical
practice, each group and Rh factor is considered independent of the other
groups and Rh factors. When the sum of all type-specific HBB demands
exceeds the total inventory in the CBC, the CBC may backlog the excess
demand or may fill all demands by calling in donors, by contacting other
CBCs, by using frozen packed red cells or by requesting an emergency
shipment from still higher echelon (regional) blood banks. In this analysis
the CBC uses different approaches to handle the excess demand depending
upon whether the orders are routine or emergency. Routine orders are placed
by the HBBs at the beginning of each day to build up their inventory to a
specific level. Emergency orders are placed during the day when the inven-
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Figure 5.13 Optimal days of inventory to keep on hand to meet
transfusions for a given blood type

tory of the HBBs cannot meet their respective users’ demands. For routine
orders, the CBC will fill the orders as long as its inventory lasts and disre-
gard the excess demands, if any. Consequently, the HBBs may not receive
the full amount they ordered. For emergency orders, the CBC still fills the
orders as long as its inventory lasts. However, if there are excess emergency
demands, the CBC will attempt to fill them from the inventory of the HBBs
within the system. Furthermore, if there is insufficient stock in the whole
system to fill the excess emergency demands, then the CBC will fill them by
contacting exogenous sources. The rationale of the different treatments for
the three types of excess demands, i.e., the three types of “shortages”
between routine and emergency orders, is that the routine orders are used to
build up the buffer inventory in the HBBs. These routine orders may not
represent actual transfusion demands that day. Therefore if the excess of the
routine orders over the available inventory at the CBC is not filled, a true
shortage will not necessarily occur. On the other hand, the emergency
orders, if not filled, will most likely create a shortage, since the buffer
inventory in the HBB has to be essentially depleted before the HBB will
place an emergency order.

Since each HBB may not receive all that it has ordered, a systematic process
is needed to allocate the available stock in the CBC to HBBs. This allocation
process is called the allocation policy. Essentially there are three distinct
practical alternatives:
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1. The CBC picks an HBB and fills its order by the First Come First Served
(FCFS) issuing policy, and then goes on to fill the next HBB order until all
the stock runs out or all orders from HBBs are filled. This type of allocation
process resembles the practice that exists in some blood banking systems.

2. The CBC ships an amount to each HBB such that the ratio of the amount
received to the amount ordered is the same for each HBB. Furthermore, all
shipments have the same ratio of the amount of different ages received to the
amount ordered. This type of allocation process resembles proportional
rationing of scarce resources and is intended to be fair to all users with
regard to their stated target needs by treating each user equitably. (See
Cohen, Pierskalla and Yen [22] for a theoretical treatment of this problem.)

3. The CBC ships each unit to the hospital where the shortage probability is
the highest in the system. In other words, the delivery of each unit is
intended to adjust the system stock configuration such that total system
shortage probabilities may be improved. If the target level needs in policy 2
above are based on shortage probabilities, then this alternative policy
coincides with policy 2. However, if the target level needs are based on
some tradeoff between shortages and outdates, then policies 2 and 3 may
differ slightly.

After all HBBs receive their orders it may be desirable to trans-ship units
among them. Basically there are three reasons for, or types of, such trans-
shipments: an emergency need at an HBB that cannot be met by the CBC;
the shortage anticipating trans-shipment; and the outdate anticipating trans-
shipment [14, 23, 24]. If one location anticipates a shortage while another
location does not, then a trans-shipment from the latter to the former may be
beneficial to the system in reducing the system shortage cost. Similarly, if
one location has an excessive amount of old units while another location
does not, an outdate anticipating trans-shipment can be initiated for the
benefit of the system. Before a trans-shipment is made, the exact stock
configurations of the locations, as well as the demand distributions of the
locations, must be known in order to evaluate the benefit of the trans-
shipment. When such information is available, the CBC is in the best
position to direct the trans-shipments in the system. Obviously, for these
types of actions a sophisticated information processing system is needed.

In the case where such information is not available, the benefits of trans-
shipping are uncertain and no trans-shipment should be made directly from
one HBB to another. However, since each HBB knows its own stock/age
configuration, it can choose to return excessively old, but still usable, units
to the CBC. In this way old units are recycled to other hospitals in the
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system. This particular type of outdate anticipating trans-shipment will be
called the recycle policy.

Of the three conditions for a trans-shipment, the most important condition is
when an HBB has an emergency demand and the CBC does not have
sufficient stock on hand to meet it. In this case a check of the other HBBs
should be conducted and a trans-shipment made provided the HBB which
furnished the units will not be placed in a precarious shortage situation, that
is, provided the probability of shortage at the sending HBB does not become
too large after depletion of its stock.

Less important trans-shipments occur due to shortage or outdate anticipating
trans-shipments. For shortage anticipating trans-shipments, a unit is trans-
shipped from location A to B if the shortage probability in A is greater than
that in B and if the difference of the two probabilities is greater than a cer-
tain number. The number should be large enough so that the trans-shipment
will be beneficial to the system. It is calculated according to the following
formula:

If the transportation cost is estimated to be about 5 percent of the shortage
cost, then the number used in the determination of whether or not to trans-
ship a unit is 0.05 (i.e., initiate a trans-shipment if the differential shortage
probability is reduced by 0.05). Note that the shortage cost is assumed to be
the same for all HBBs and the transportation cost is independent of the
facilities where the trans-shipment occurred. This simplification is justified
because the majority of the transportation costs are often not the direct costs,
e.g., gas and time consumed in the shipment, rather the indirect costs related
to the handling, labeling, accounting and information exchanged between the
two facilities. All these indirect costs, however, depend upon the size of the
system. Therefore, the number 0.05 can at best be described as an educated
guess.

For outdate anticipating trans-shipments, a unit is trans-shipped from A to B
if the outdate probability in A is greater than that in B and if the difference
of the two probabilities is greater than the transportation cost divided by the
outdate cost:
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Again, 0.05 was used for this ratio (the number 0.05 is based on similar
calculations and assumptions as those used above). It should be noted that in
both cases the number 0.05 is somewhat arbitrary since actual costs are not
known precisely. However, in the range between 0.03 and 0.20 there appears
to be no significant difference in the number of units trans-shipped. Indeed,
for this range, virtually no shortage or outdate anticipating trans-shipments
will occur [14].

One reason why there are few shortage-anticipating trans-shipments stems
from the allocation policy in the CBC. Recall that units are available for
trans-shipment only after each HBB has received its delivery. But under
allocation policies 2 or 3, the units in the CBC are issued one by one to the
location with the highest shortage probability or proportionally to their target
needs. So at the end of the allocation process each HBB will have an
essentially identical shortage probability except when there is insufficient
inventory in the CBC to make them equal or when there is a tie in shortage
probabilities before the issuance of the last few units. In both of these cases,
some discrepancies among shortage probabilities will occur, but they are
rather negligible under relatively wide ranges of target inventory levels at all
locations. Consequently, the conditions to initiate shortage trans-shipment
would rarely occur, hence hardly any units are shortage trans-shipped. For
this reason the shortage trans-shipment policy has virtually no significant
effect on the shortages in the system.

The insensitivity of the outdated units to the outdate trans-shipment policy
can be explained as well. By observing that a unit will be outdated only after
several passages through the cross-matching process, the quantity of
expected daily outdates is fairly small simply because the probability of
outdate given by is usually a very small number where n is the
number of times the unit is cross-matched prior to outdating. Hence, there
are very few units which outdate, when optimal inventory, issuing, and R
policies are followed, regardless of whether an outdate trans-shipment policy
is in effect or not. Consequently, the outdate trans-shipment policy can be
expected to have virtually no significant effect on the outdates in the system.

It should be mentioned here that the simulation model also indicated that
while there are some units trans-shipped, the actual quantities were
insignificant even when the inventory levels at different locations were
varied over wide ranges. However, if the actual inventory levels used are far
larger than the optimal target inventory levels at the HBBs, then as one
would expect, outdate trans-shipments would become significant if the
allocation policy is changed to the FCFS allocation policy. Both of these
decisions are extreme and should not be followed. That is, the CBC should
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use optimal target inventory levels and should not use allocation policy 1
(FCFS).

We now summarize the best trans-shipment and allocation policies:

1.

2.

Use allocation policy 2. Allocation policy 3 is also good but requires
more computation and time for implementation.

Trans-ship units from one HBB to another.

a)

b)

c)

If there is an emergency need at an HBB and if the CBC is out of
stock and if the sending HBB does not incur an excessive
probability of shortage (say over 10 percent).

If the probability of shortage at minus the probability of
shortage at is greater than or equal to the ratio of unit
transportation cost to shortage cost.

If the probability of outdate at minus the probability of
outdate at is greater than or equal to the ratio of unit
transportation cost to outdate cost.

5.3.9 Optimal cross-matched release and issuing policies from the CBC

Cohen and Pierskalla [17] show that if a unit is cross-matched at an HBB
and not reported transfused within a short time (R = 1, 2 or 3 days), further
information should be obtained on the status of the demand for which the
unit was issued. If the demand had disappeared, the unit should be made
available for possible reassignment either at the same bank or another hos-
pital blood bank. In this manner, the cross-match release time, R, should be
kept as low as possible. As long as R can be maintained below 4 days, the
FIFO issuing policy should be followed at the CBC for those HBBs which
receive daily or at least tri-weekly deliveries from the CBC. If R exceeds 7
days, last-in first-out (LIFO) will be somewhat better than FIFO but both
policies will then have excessive outdates and shortages.

In another study of issuing policies in an HBB [25], it was shown that for a
department which has low usage and low values of a LIFO issuing policy
for that department should be followed. The underlying reason why LIFO
should be followed rather than FIFO is to increase the probability of
transfusion of the cross-matched unit. This same reasoning applies to some
HBBs in a CBC system, namely, those HBBs which require infrequent
deliveries (weekly) and have low transfusion probabilities. This case often
occurs at small distant rural HBBs. For these HBBs, the CBC should issue
by LIFO and then at the next delivery pick up any non-transfused units,
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replacing them with younger units. The slightly older units which are then
picked up may be made available to HBBs with higher volume needs which
have higher transfusion probabilities.

Optimal policies include:

1.

2.

3.

The cross-match release period, R, should be 1 or 2 days (the smaller
that R is, the lower are the shortages, outdates, and costs).

For HBBs which receive daily, triweekly or biweekly deliveries, the
units which are shipped to them should be issued on a FIFO basis
(unless fresh units are needed for special purposes such as cardiac
surgery).

For HBBs with infrequent deliveries (once a week), the units which are
shipped to them should be issued on a LIFO basis and unused units
from the prior shipment should be picked up and replaced with younger
units.

5.4 CONCLUSIONS AND FURTHER RESEARCH

This chapter has considered a number of contributions to the development of
operational procedures for blood bank management. In regionalization, it
was shown that economies of scale exist in most of the blood bank
management functions. Consequently a centralized community blood center
is more efficient than a decentralized system. In addition, algorithms were
developed to provide optimal allocation of HBBs and donor sites to CBCs in
the case in which a region has multiple CBCs. Optimal target inventory
levels, allocation, trans-shipment and issuing policies were shown for CBCs
with central and with coordinated controls. Time series methods were
applied to daily type-specific cross-match and monthly total cross-match
data. These methods led to models for forecasting mean daily demands that
are required for inventory control. A simulation model and statistical
analysis was used to develop a target inventory decision function for
inventory levels at an independent hospital blood bank, at HBBs that are a
part of a centralized system and at the CBC. The mean daily demand, the
transfusion to cross-match ratio and the cross-match release period were
shown to be significant variables. Many of the key decisions in blood system
management were analyzed and developed. However, there are still many
open research questions that should be addressed for a more complete
understanding of this supply chain.

In 1984, Prastacos [1] noted some unresolved research issues in his survey
paper. They are still unresolved today. He noted the need for research on:
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Optimal component processing policies Because the demand for
components has risen greatly due to new medical technologies and therapies,
upwards of 95% of whole blood units drawn are processed into various
components. Furthermore many components are being collected by
pheresis. There are differing quality and cost aspects to these two methods
that need analysis and modeling. In addition to the practical needs of the
blood banks in this area of component processing, there is a major need for
more research in inventory theory for developing and analyzing
mathematical models in which a common input source is subdivided into
value added components. Deuermeyer [26, 27] developed optimal inventory
policies for a product model that also produced a valuable by-product. But
very little theory has been developed since his work.

Distribution scheduling of multiple products from the Center to the hospitals
With the increase in use of components and their differing shelf lives, the
immediacy of delivery for some of them in order to maximize their useful
lives combined with the less demanding delivery of relatively long shelf-life
red cells poses new logistics problems for the CBC.

Organizational structures for regional systems Although much work has
been done (as noted above), there are major problems of centralization/
decentralization involving contractual relations between the CBC and the
HBBs. These problems involve, but are not restricted to, who owns the
blood products and at what points in time, what are the agency relationships
and how can they be priced to maximize the overall societal benefits vis-à-
vis the individual parties’ benefits and what are the game relationships
among the parties and is there equilibria. Here again there is need for theory
to illuminate the issues and practice to achieve the most desirable results for
donors and patients.

Pricing of blood products and inter-regional cooperation To some extent
there is a war out there. Many of the suppliers are in heavy, mostly negative
competition among themselves and with many of the HBBs.

Donor scheduling algorithms Frequently it is the case in a region that
mobile and in-house drawings and pheresis drawings are seasonally bunched
or else have seasonal gaps. In either case, the supply is not smoothed to
meet demand and there is either excess outdating or shortages. Because of
the very stochastic nature of both the supply and the demand processes,
adaptive stochastic modeling is needed to improve the system.

There are many more research areas that could be mentioned but the above
areas give a flavor of the still large knowledge needs for optimal blood
products supply chain management. Since some studies [28, 29] have
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estimated that blood products can be very costly due to their significant
utilization in many procedures, and this use accounts for about 1% of total
hospital costs in the United States, small improvements can yield significant
national savings.
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SUMMARY

Elective surgery typically generates 40 percent or more of a hospital’s total
revenue, and individual surgeons almost always have a net positive
contribution margin. Perioperative services include surgical operations, pre-
operative care of patients, and post-operative care. This chapter presents a
method to identify best practices among hospitals’ perioperative services
using Data Envelopment Analysis (DEA). This analysis included 44,033
procedures performed by 3,502 surgeons at 53 non-metropolitan
Pennsylvania hospitals. Eight procedures, each performed by one surgical
specialty, were selected. For each hospital, DEA 1) identifies untapped
markets for surgery; 2) identifies relatively high and low procedure volumes
among specialties; and 3) suggests a strategy for increasing surgical volume
for inefficient hospitals. Findings may be used by managers of perioperative
services to aid in resource allocation decisions, such as hiring and
recruitment among different surgical specialties.

KEY WORDS

Data envelopment analysis, Perioperative services
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6.1 INTRODUCTION

Elective surgery typically generates 40 percent or more of a hospital’s
revenue, and individual surgeons almost always have a positive contribution
margin [1, 2]. Hospitals depend on their surgeons for a steady flow of
patients and revenue. Yet the management of the surgical functions within a
hospital is a very complex and demanding task. This chapter presents a
method to identify best practices among hospitals’ perioperative services
using Data Envelopment Analysis (DEA).

Elective surgery differs from non-elective surgery, such as trauma and
transplant surgery, in that elective procedures are scheduled in advance.
Perioperative care begins once the decision is made that a patient will
undergo surgery at a hospital. We define perioperative services (POS) as
the sub-system of a hospital that produces elective surgery, pre-operative
care, and post-operative care. As such, POS is a complex system that uses
multiple inputs, such as capital and personnel, to produce multiple products,
such as procedures by specialty (Figure 6.1). POS can be thought of as a
“hospital-within-a-hospital” that encompass all the functions associated with
elective surgery.

Much of POS is isolated from the rest of the hospital, not just practically but
physically. Personnel cannot enter operating rooms without wearing surgical
scrubs and masks. Operating room (OR) nursing has little overlap with other
types of nursing, and requires a year of additional training. Nurse
anesthetists and anesthesiologists have little non-perioperative work.
Surgical equipment and anesthesia machines are used under few other
circumstances.

The Director of POS is typically a nursing or medical director, and if a
medical director is usually an anesthesiologist [3]. In allocating scare
resources, such as OR time, equipment, and staff, the director must weigh
the demands of different surgical specialties. Operating room nurses in
hospitals usually focus on three or fewer surgical specialties, as do many
anesthesiologists. Deciding whether the anesthesiology department’s new
member has subspecialty training in cardiac surgery or regional anesthesia
(i.e., for orthopedics) balances one surgical specialty against one another.
Which specialties are favored can significantly impact surgeons’ flexibility
and access to POS.

The strategic factors that determine a hospital’s potential workload for
elective surgery have been well-established: Erickson and Finkler [4]
showed that hospital market share is driven by its visibility in the community
and the number of physicians with privileges at the hospital. They also
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Figure 6.1 Model of production for perioperative services

showed that hospital visibility is driven in turn by the number of beds,
number of services provided, and teaching status. Adams et al. [5] found that
patients were willing to travel further for teaching hospitals with more acute
care beds and more sophisticated services. All other things being equal,
patients have strong preferences for local hospitals [6]. Hence the number of
potential patients within a hospital’s county and region are important
predictors of the hospital’s workload [5, 7].

The director of POS has little control over the strategic factors that
determine a hospital’s potential workload, but he or she does have
significant control over operational factors that determine the proportion of
the potential workload that is actually done at the hospital. This is
particularly true in competitive markets where surgeons may have multiple
hospital affiliations. The perioperative system typically has three
bottlenecks: access to convenient operating room time, availability of
specialized surgical equipment, and (for some procedures) open and staffed
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intensive care unit (ICU) beds. For operating room scheduling, the “jobs”
are not patients but surgeons, since patients are more flexible in their
availability. Surgical suites vary dramatically in their flexibility for booking
cases. If the waiting time is too long, then the patient will likely receive care
elsewhere, either with the same surgeon or a competing surgeon. On a long-
term basis, surgeons who cannot get convenient OR time at one hospital tend
to gravitate to other hospitals that can better meet their needs. Other
operational factors that influence where surgeons choose to practice include
availability of specialty-trained nurses and equipment, staff turnover times
between consecutive cases, and availability of ICU beds.

6.1.1 Evaluating the performance of perioperative services

A number of practical difficulties arise in evaluating the performance of
POS across institutions. Hospitals differ significantly in factors that
influence the demand for elective surgery, such as the number of staffed
beds, technological services offered, and size of the market. Therefore, a
good evaluation method should compare a hospital’s POS with peer entities
that operate in a similar environment and use a similar combination of
resources to produce a similar product mix. The method should
accommodate system complexity in the form of multiple outputs and
multiple inputs. The method should capture the tradeoffs faced by managers
in allocating resources to different specialties, as well as the potential for
substitution among the inputs [8]. Finally the measure should be clinically
meaningful and relevant to physicians and OR managers.

Previous analyses of the performance of POS have mostly used ratio
methods. Among the ratios that have been used are the following: delay in
on-time start per case [9]; contribution margin per case [1]; labor cost per
case [10]; patient waiting time per case [11]; anesthesia drug costs per case
[12]; and anesthesia relative work units per case [13]. These ratios provide
one-dimensional measures of how well POS is doing at one task or specialty.
There is no clear way to collapse these multiple ratios into a single
performance measure. Moreover, the ratios themselves are based on the
workload performed at one hospital, rather than comparisons among
hospitals. They do not measure or predict the facility’s expected
perioperative workload compared with the best practices at peer institutions.

DEA offers several advantages over previous ratio methods [8, 14]. First,
DEA combines multiple ratios into a single ratio of productive efficiency.
Second, DEA allows for resource substitution among the inputs as well as
managerial tradeoffs among the outputs. Third, DEA compares each hospital
to its peers and identifies benchmark facilities for inefficient hospitals.
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This chapter extends the use of DEA in health care to perioperative services.
The results of this model can be used by directors of POS to aid in resource
allocation decisions, such as hiring and recruitment among different surgical
specialties and capital equipment purchasing. For inefficient hospitals, the
results can suggest how to increase surgical volumes. The remainder of this
chapter is organized as follows: In the next section, we review DEA and the
specific formulations that were chosen for this study. This is followed by a
description of our data and methods (Section 6.3), results of our analysis
(Section 6.4), model validation (Section 6.5), and conclusions (Section 6.6).

6.2 DATA ENVELOPMENT ANALYSIS

Data envelopment analysis (DEA) is a linear-programming-based technique
to measure the technical efficiency of Decision-Making Units (DMUs). DEA
works by estimating a piece-wise linear envelopment surface, known as the
best-practice frontier. DEA is a deterministic, non-parametric technique, and
thus makes no assumptions about the underlying form of the production
function or the distribution of error terms. This technique accommodates
multiple inputs and multiple outputs without prior knowledge of their
relative prices.

DEA has been applied extensively in health care and has been shown to
offer several advantages over other techniques, such as multivariate
regression [15], ratio analysis [8], and other econometric approaches [16].
For a review of DEA health care studies, see Ozcan [17] and Hollingsworth
et al. [16]. Areas of application include hospitals [15, 18-20], physicians [8,
14], nursing homes [21], and health maintenance organizations [22]. This
chapter extends the use of DEA in health care to perioperative services.

To estimate the efficiency of surgical hospitals, the CCR (Charnes, Cooper,
and Rhodes) input-oriented model was used [23, 24]. The CCR model can be
formulated as follows: Suppose that there are n DMUs, each of which uses m
inputs to produce s outputs. Let be the amount of input i used
by DMU j; let be the amount of output r produced by DMU j
(j = 1, ..., n). The technical efficiency of DMU 0 is then given by
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Equation (1) represents the ratio of DMU 0’s virtual output to its virtual
input. Each DMU is free to choose the weights, and that maximize its
efficiency score, with only one set of constraints (equation 2). Efficient
DMUs are those for which it is possible to find a set of weights for which the
efficiency ratio is equal to one. Otherwise, the DMU’s efficiency score will
be less than one and it will be regarded as inefficient. The constant returns-
to-scale CCR formulation was used because previous studies of physician
efficiency have not found variable returns-to-scale [8, 25]. There is some
evidence of increasing returns-to-scale for hospitals owing to horizontal
integration [26].

In order to derive additional information about the hospitals we studied, we
incorporated extensions to basic DEA including super-efficiency, known as
the AP (Anderson and Peterson) model [27] and multifactor efficiency
(MFE) [28]. The AP model is identical to the CCR model, except that the
self-referential constraint in equation (2) is relaxed, allowing the efficiency
score to exceed one [27]. The AP model has been used to identify potential
data errors and to rank efficient DMUs [27, 29]. One drawback to the latter
approach is that super-efficiency scores tend to be higher for maverick
DMUs, i.e. those DMUs that place all their emphasis on one output and one
input in equation (1) [28]. Multifactor efficiency overcomes this weakness
by using the slack values from the AP model to rate each DMU with respect
to all output-input combinations.

A robustness index, was calculated to measure the sensitivity of the AP
scores with respect to changes in the input and output weights:

When is close to 1, the AP score is relatively insensitive to changes in the
input and output weights. A small value of indicates a specialist
orientation.

6.3 DATA AND METHODS

Patient data on inpatient admissions during 1998 from all non-Federal
Pennsylvania hospitals were obtained from the Pennsylvania Health Care
Cost Containment Council. Hospital variables were derived from the 1998
Annual Survey of the American Hospital Association. The study sample
consisted of the 53 Pennsylvania hospitals that have at least 200 staffed beds
and are located in non-metropolitan areas.. A non-metropolitan area was
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defined as a county with a population of less than one million people, based
on the 1990 census.

6.3.1 Defining inputs and outputs

Eight surgical procedures were selected to measure surgical output (Table
6.1). These eight procedures were chosen to represent a wide spectrum of
elective, scheduled, inpatient surgical procedures performed at a hospital.
Each procedure serves as a proxy for the total surgical caseload within its
respective specialty. Specifically, each procedure is performed by only one
specialty. For example, we did not include carotid endarterectomy which is
performed both by vascular surgeons and neurological surgeons, there is
significant correlation with total inpatient workload for each specialty. Each
of the eight procedures is correlated with the total inpatient workload for its
respective specialty. Also, the procedures studied were those that are
performed once per hospitalization. Thus, the number of hospitalizations is
proportional to resource use. For example, hip replacement was included but
not knee replacement, since some patients undergo one knee replacement
during hospitalization (one such procedure) whereas others undergo bilateral
knee replacement (two such procedures). Hospital discharges were selected
based on the six ICD-9-CM procedure codes listed in the hospital discharge
abstract.

We used the Diagnosis-Related Groups (DRG) Case-Mix index as a measure
of the relative resource use of each procedure. The weights were determined
by the modal DRG weight for hospital discharges including each of the
procedures (Table 6.1). Coronary Artery Bypass Graft (CABG) had the
highest DRG case-mix weight (5.65); hysterectomy had the lowest (0.77).

The eight procedures studied accounted for 7.5 percent of all inpatient
discharges in the State of Pennsylvania. Hospitals also produce other outputs
that were not included in this analysis, including outpatient care, medical
and pediatric inpatient care, non-elective surgical care such as trauma and
transplant surgery, post-graduate medical training, and research. However,
this study focuses on the outputs of elective, scheduled perioperative care.

Hospital size and capacity were measured by the number of staffed beds
(“BEDS”) and the use of technological services (“TECH”). Hospital
technology was measured as the number of high-technology services
offered, including the following: cardiac catheterization, cardiac surgery,
shock-wave urological lithotripsy, megavoltage radiation therapy, magnetic
resonance imaging, organ transplantation, neonatal intensive care, cardiac
intensive care, and certified trauma care. A constant (c = 1) was added to the
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technology variable in order to prevent unbounded solutions in the AP
model due to zeroes in the input data [28].

The input “SURGEONS” was defined as the number of surgeons who
generated at least one hospital discharge for any of the above procedures.
Most previous studies of hospital efficiency have excluded the number of
physicians because they are independent contractors who may admit patients
to multiple hospitals [15]. For our purposes, it is important to include
surgeons as an input, since they largely determine both the volume and the
type of procedures that the hospital can perform.

The demand for surgery depends on the number of surgeons, population
size, and population demographics, such as age and gender. County demand
(“COUNTY”) was measured as the total number of the aforementioned
procedures performed on residents of each hospital’s county, weighted by
DRG case-mix index. Demand from contiguous counties (“CONTIGUOUS
COUNTY”) was defined as the number of procedures performed on
residents of all those counties sharing a common border with the hospital’s
county.

6.3.2 Explanatory variables

Surgeons typically have privileges at multiple hospitals. As the number of
hospital affiliations per surgeon increases, the surgeon is available less often
at each hospital [4]. Scheduling access to OR time becomes more
challenging, resulting in idle capacity in the form of unused OR time and
empty beds. Therefore, we would expect the efficiency of POS to decrease at
facilities where the surgeons operate at many other hospitals. To test this
hypothesis, two measures of hospital-surgeon relations were used: mean
number of hospital affiliations per surgeon (“AFFIL”), and a hospitals’
market share among its surgeons (“HOSP-SURG”). The hospital’s market
share among its surgeons was defined as the sum of the eight procedures
performed at the hospital divided by the sum of the eight procedures
performed by all surgeons with privileges at that hospital. For example,
suppose 10 surgeons performed 100 procedures at Hospital A and 100
procedures at all other hospitals. Then Hospital A’s market share among its
surgeons would be 50 percent.

Another explanatory variable denoted whether the hospital was located in a
rural county (“RURAL”), as defined by the Office of Management and
Budget (www.nal.usda.gov). DEA assumes that hospitals are peer decision-
making units. If our strategy was successful, our results should not be
significantly different for rural hospitals.
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In order to investigate the factors associated with technical efficiency, a
series of parametric (t-Tests) and non-parametric (Mann-Whitney) tests were
performed. The log transform of “SURGEONS” and “BEDS” was used for
the t-Tests. The chi-squared test of independence was used for the
dichotomous variable “RURAL.” These tests were done as part of
validation, in order to determine whether the efficiency scores were
correlated with our input or control variables.

6.4 RESULTS

The characteristics of the input and output variables are presented in Table
6.2. Three of the eight procedures – colorectal resection, hip replacement,
and hysterectomy – were performed by every hospital. The average number
of surgeons per hospital was 66. The average number of hospital affiliations
per surgeon was 1.64.

DEA identified 24 hospitals as efficient and 29 as inefficient (Table 6.3).
The average efficiency score was 0.91, based on the CCR model. The AP
model identified Hospital 38 as the most influential observation, with a
superefficiency score of 7.67. The second highest AP score was 2.59.
Hospital 38 is examined in more detail below.

The MFE and measures indicate the robustness of the AP score with
respect to all output-input combinations [28]. The mean MFE score was
0.63, compared with a mean AP score of 1.22. Only six surgical hospitals
had Hospital 48 had the lowest robustness index,
identifying the hospital as a maverick.

For inefficient hospitals, DEA provided information on the sources of
inefficiency, as shown by the slack values in Table 6.4. Hospital 3 produced
130 fewer CABGs and 184 fewer hysterectomies, compared with the best-
practice frontier. Overall, the surgical volumes for Hospital 3 could be
increased by 1/0.99 = one percent, while holding all inputs constant.

Hospital 10 had a positive slack for the number of surgeons (13) as well as
county market (1,037). This finding indicates relatively low productivity at
the hospital among its surgeons. The surgeons may face barriers in getting
surgery done at the hospital. Hospital 10 also had excess surgical demand in
its county, indicating that this facility was losing market share to other
hospitals. By contrast, the “county market” slack value is zero for surgical
Hospital 50, indicating it has a large share of the local market but not the
regional market, since its slack for CONTIGUOUS COUNTY is positive.
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In order to test the validity of our model, we now focus on three hospitals in
more detail and compare our results with other available evidence.

Hospital 38 is a tertiary facility in an integrated health system and health
maintenance organization with more than two million enrollees. It is a
regional referral center for central and northeast Pennsylvania. The hospital
is located in a small, rural county with a population of 18,000. Hospital
volumes were high for complex, resource-intensive procedures, such as
craniotomy and CABG. The slack for county demand for this hospital was
zero, indicating that it was drawing many of its surgery patients from outside

6.5 MODEL VALIDATION AND INTERPRETATION
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its own county. The craniotomy volumes were in the percentile and the
CABG volumes were in the percentile. The hospital’s market share
among its surgeons was 97 percent, the highest in the sample. This was
found to be the most influential observation, based on its superefficiency
score.

Hospital 48 was found to be an efficient, “maverick” hospital (Table 6.3).
This facility had some of the fewest surgeons (9), beds (204), and
technological services (0) of all 53 hospitals. It is located in a small market,
as measured by county (740) and regional (7,906) demand. Despite its
difficult operating environment, this facility competed successfully by
focusing on three procedures: colorectal resection, hip replacement, and
hysterectomy. These procedures have a relatively low case-mix weight and
require comparatively low investment in technology. The hospital was
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efficient to a large extent because its market share among surgeons was 94
percent, which was in the percentile. This means that 94 percent of the
cases performed by these nine surgeons were performed at Hospital 48.

Hospital 10 is located in a competitive market with four other hospitals
within its county. Table 6.4b shows that this facility has positive slack for
both surgeons and county demand. This facility’s surgeons have 2.8 hospital
affiliations on average, the second highest in the sample. Its market share
among its surgeons was 51 percent, which was in the percentile. These
findings corroborate the DEA results. If all the surgeons with privileges
could be persuaded to admit all their patients to this hospital, then surgical
volume would almost double.

The results of the post-hoc analysis for efficient and inefficient hospitals is
shown in Table 6.5. As expected, efficient hospitals had fewer affiliations
per surgeon than inefficient hospitals (1.45 vs. 1.80; P < 0.01). The
distribution of affiliations per surgeon for efficient and inefficient hospitals
is shown in Figure 6.2. Only two of the 24 efficient hospitals had an average
of more than two affiliations per surgeon. By contrast, eight of the 29
inefficient hospitals averaged more than two affiliations per surgeon.
Efficient hospitals had a higher market share among their surgeons (80
percent ±0.18 vs. 65 percent ± 0.22). This difference was statistically
significant for the Mann-Whitney test (P = 0.009). Thus, a hospital’s market
share among its surgeons was positively associated with its overall POS
efficiency.

There were no statistically significant differences between efficient and
inefficient hospitals with respect to the other variables tested, including beds,
surgeons, county, contiguous county, and rural location. Thus, there was
little evidence of increasing returns-to-scale, as hospital POS efficiency was
not associated with the size of the hospital or market.

6.6 DISCUSSION AND CONCLUSIONS

DEA has been applied extensively to other areas of health care, but this is
the first study to apply DEA to hospitals’ perioperative services. This study
has demonstrated the usefulness of DEA in capturing the complexity and
managerial tradeoffs that characterize perioperative services. In addition to
measures of hospital capacity, our analysis included market factors that are
significant predictors of surgical demand.

This study found that the strength of a hospital’s relations with its surgeons
is an important predictor of POS efficiency (P< 0.01). Hospitals having
stronger relationships with their surgeons were more likely to be efficient.
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Figure 6.2 Histogram of average affiliations per surgeon
for efficient and inefficient hospitals

This finding is not surprising, since surgeons largely determine surgical
volumes. In rural areas, larger hospitals may have a captive market for
surgeons, since surgeons’ choices may be limited by geography and other
factors. In more competitive markets, hospitals may have to work harder to
satisfy their surgeons and ensure a steady stream of patients.

Hospital managers and executives can use these results in several ways. For
inefficient hospitals, DEA suggests ways to increase hospital volume. A
positive slack for the number of surgeons indicates that the hospital has more
surgeons than would be expected given its current surgical volume. This is
an indication that the hospital needs to improve its market share among its
surgeons. This could be accomplished by reducing scheduling delays in the
OR, offering more amenities, or reducing turnover times between cases.
Positive slack in some but not all procedures provides insight into which
surgical specialties to focus on in capital equipment purchasing, recruiting
sub-specialty trained anesthesiologists, and in training OR nurses. These are
all operational factors that are under the control of the director of POS.

Future research should compare the DEA results with parametric,
regression-based approaches in order to identify the comparative advantages
of each method. Future research should also adapt this model to metropolitan
areas where competition among hospitals for surgeons and patients is more
intense.
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SUMMARY

This chapter uses windows and cone ratio analysis – a longitudinal and
weight- restriction application of Data Envelopment Analysis (DEA) – to
develop a methodology for analyzing organizational performance of
community mental health centers (CMHCs); the chapter also develops
measures of efficiency as a basis for improving productivity in behavioral
health care. Specifically, non-hospital services provided by CMHCs were
studied. Data limitations are noted in relation to use of the method and to
the results. The model is shown to capture the impact of managed care on
CMHC efficiency. The cone ratio version of the model, using weight
restrictions, identified six super-efficient CMHCs, which had been
consistently efficient since the implementation of managed behavioral care.
The potential usefulness of this method for public and private mental health
systems and for managed care companies is discussed.

KEY WORDS

Windows analysis, Efficiency, DEA, Weight restricted model, Mental health
services
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7.1 INTRODUCTION

The 1990s brought many challenges to behavioral health care organizations
to improve the efficiency of their health care delivery. In response,
behavioral health care organizations implemented different forms of
managed care. Of particular importance has been the dramatic increase in
managed care programs under Medicaid. Managed care contracts use
pricing mechanisms to influence the use of services by controlling the
amounts paid to health care providers and professionals. Effective cost
control should of course be accompanied by a thorough understanding of the
varying services provided by different mental health care providers, as well
as by the use of good practice protocols for treating mental health
conditions.

This chapter reports on a pilot investigation that uses data envelopment
analysis (DEA) to develop methods for studying the technical efficiency of
providers of community mental health care, in order to improve productivity.
It focuses solely on the care of the seriously mentally ill (SMI) patients who
receive services reimbursed by Medicaid. We examined 12 community
mental health centers (CMHCs), all receiving traditional fee-for-service
Medicaid reimbursement in years 1-2 (1994 and 1995). In years 3-5 (1996-
1998), a mandatory, capitated Medicaid managed care program was
implemented in the geographic areas served by eight of those CMHCs.

The measures of community mental health efficiency that we developed are
tested by comparing the longitudinal patterns of provider efficiency over a
five-year time frame, before and after implementation of the mandatory
Medicaid managed care plan. We compare efficiency scores between the
managed care site – the Tidewater area – and the control site – Richmond,
Virginia. We also develop a structured method for identifying the effects of
data limitations and the effects of ongoing modifications in managed care
plans on the interpretation of findings.

The methods we developed offer a replicable, objective methodology that
can be used to compare the operational efficiency of different types of
providers who care for similar populations of clients. The methodology
identifies consistent measures for comparison – numbers of patients treated –
and provides a means of aggregating information on different numbers of
patients to serve as a measure of organizational performance.

This methodology could be useful to public mental health systems as well as
to private and public managed care companies, because it can identify the
combinations of services that result in the most efficient care. That
information can be used to change the mix of services that a managed care
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company will reimburse, and/or those that a provider chooses to use.

7.2 BACKGROUND

7.2.1 Relevance

The cost of health care in the United States was $943 billion in 1996, with
over 10% of that money ($99 billion) spent on behavioral health care.
Mental health disorders consumed 7% of the health care costs, with
Alzheimer’s disease/dementias and addiction disorders consuming 2% and
1% of total costs, respectively [1]. Eighteen percent of the expenditures on
mental health went to multi-service mental health clinics, which include
community mental health centers [1]. From 1986 to 1996, mental health
costs rose 1% less than overall health costs did. One explanation for the
lower rise is more use of cost-containment strategies by managed care
companies, which resulted in increased efficiency and lower expenditures on
mental health care [1]. Other possible reasons are Medicaid program design,
reductions in inappropriate hospitalizations, use of non-mental health
services, and the shift of mentally ill persons from inpatient care to the
community [1].

Twelve percent of the United States population is covered under Medicaid
for their health care. Medicaid’s cost for behavioral health amount to 19%
of its expenditures; per capita annual Medicaid mental health expenditure is
approximately $481 [1]. These costs justify examination of efficiency in the
provision of the mental health services by community mental health
organizations.

It has been suggested that, to be effective, health insurance plans should
provide the following services: 24 hour care/hospitalization, intensive
community services, outpatient services, medication management,
psychosocial rehabilitation, and outreach services (Frank et al. in [1]). It is
less clear, however, which combinations of services are optimal for the
treatment of specific population sub-groups.

Effective service delivery must result in desirable outcomes for patients. At
the same time, budget constraints dictate that these outcomes must be
achieved in a financially responsible manner: CMHCs must provide
effective services with efficiency. The efficiency of mental health care
providers is understudied and will be the focus of this chapter. We
demonstrate the use of DEA as a methodology to answer the following
questions: 1) How can different mental health services be used together for
optimal efficiency? 2) How important are specific services in the overall
efficiency and use of mental health services? 3) How do community mental
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health organizations compare in overall efficiency? These questions are
explored within the context of the implementation of a Medicaid managed
care program.

Efficiency has been evaluated in other states that have implemented
Medicaid managed care programs. Results have been inconsistent. In
Massachusetts the implementation of Medicaid managed care led to a 25%
reduction in costly inpatient care, but an increase in rehospitalizations. In
Utah there was no effect on use of inpatient care, but some differences in
outpatient care. Utah enrollees with the worst mental health had the least
improvement when Medicaid managed care was implemented. An
evaluation of the Colorado program noted that utilization management did
not focus as much on outpatient care as on inpatient care and that “utilization
management strategies to provide outpatient services more efficiently are
insufficient” [1-4].

7.2.2 Data envelopment analysis

DEA evaluates organizational performance by considering multiple inputs
and outputs to identify the most efficient providers. DEA has been
successfully applied in many industries [5], including the study of health
care organizations and professionals. Sherman [6] and Nunamaker [7] were
among the first to apply DEA measures to hospitals, examining hospitals in
Massachusetts and Wisconsin, respectively. Huang and McLaughlin [8]
applied DEA to programs for rural primary health care; Sexton and
colleagues [9] applied DEA to the Veterans Administration Medical Centers.
Applications of DEA in health proliferated in the 1990s, including studies of
physicians [10-12], mental health programs [13, 14] nursing homes [15],
aging agencies [16], and hospitals [17-19]. Collectively, these studies
demonstrate that DEA is an effective research tool for evaluating the
efficiency of health care providers, given varying input mixes and types and
numbers of outputs.

DEA uses linear programming to search for optimal combinations of inputs
and outputs, based on the actual performances of decision making units, in
this case, CMHCs. In this chapter, we use DEA to evaluate the technical
efficiency of each CMHC relative to “optimal” patterns of production.
Patterns are computed using the performance of CMHCs whose inputs and
outputs are not optimized by those of any other comparison or peer CMHC.
DEA computes the relative efficiencies with which CMHCs combine major
categories of inputs to generate general categories of outputs typically
produced by providers. Controllable and uncontrollable inputs/outputs are
taken into consideration, as is the size of each CMHC.



174 OPERATIONS RESEARCH AND HEALTH CARE

DEA also calculates inefficiency values for each CMHC. The inefficiencies
are the degrees of deviance from the frontier. Input inefficiencies show the
degree to which inputs must be reduced for the inefficient CMHC to lie on
the efficient practice frontier. Output inefficiencies are the needed increase
in outputs for the CMHC to become efficient. If a particular CMHC either
reduces its inputs by the inefficiency values or increases its outputs by the
amount of inefficiency, it could become efficient; that is, it could obtain an
efficiency score of one.

Various types of DEA models can be used, depending upon the problem at
hand. The DEA model we use can be distinguished by the scale and
orientation of the model. If one cannot assume that economies of scale do
not change as the size of the service facility increases, then a variable-
returns-to-scale (VRS) type of DEA model, the one selected here, is an
appropriate choice (as opposed to a constant-returns-to-scale, (CRS) model).
Furthermore, if in order to achieve better efficiency, managers’ priorities are
to adjust their inputs (before outputs), then an input-oriented DEA model
rather than an output-oriented model is appropriate.

The way in which the DEA program computes efficiency scores can be
explained briefly using mathematical notation (adapted from [20]).

The VRS envelopment formulation is expressed as follows:

For decision making unit 1, denotes the input value, and
denotes the output value. and denote, respectively, the vectors of
input and output values. Units that lie on (determine) the surface are deemed
efficient in DEA terminology. Units that do not lie on the surface are termed
inefficient. Optimal values of variables for decision making unit 1 are
denoted by the s-vector the m-vector and the n-vector

Although DEA is a powerful optimization technique that can assess the
performance of each CMHC, it has certain limitations. When one has to
deal with large numbers of inputs and outputs in service production, and a
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small number of organizations are under evaluation, the discriminatory
power of the DEA is limited. However, analysts can overcome this
limitation by including only those factors (input and output) that provide the
essential components of service production, thus avoiding distortion of the
DEA results. This is usually done by eliminating one of a pair of factors that
are strongly positively correlated with each other.

In the majority of studies using DEA, the data are analyzed cross-
sectionally, with each decision making unit (DMU) – in this case the CMHC
– being observed only once. Nevertheless, data on DMUs are often
available over multiple time periods. In such cases, it is possible to perform
DEA over time, where each DMU in each time period is treated as if it were
a distinct DMU. This DEA technique is called window analysis [21]. Using
window analysis, one can examine changes in efficiency over time. A
DMU’s performance in an initial time period is compared to its performance
in later time periods, and compared as well to the performance of the other
DMUs. We employed window analysis to assess the changes in CMHC
efficiency over time [22].

7.3 METHODS

7.3.1 Data and data sources

The primary source of data was the Department of Medical Assistance
Services (DMAS) of Virginia. DMAS has extensive claims files that are
made available for research purposes. This database records dates of
services for each claim, and its diagnosis, procedure, and patient profile.
Medicaid data come in three files: claims, recipients, and providers. The
claims data set includes dates of services for each claim, its diagnosis,
procedure, and patient profile. The recipient data set contains eligibility
information on recipients of Medicaid. The provider data set contains the
provider’s location, practice type, and specialties. Data for five consecutive
years of fee-for-service care (calendar years of 1994 through 1998),
including two years of managed care encounters (1997 and 1998) were used.

Data were provided by the Virginia Medicaid agency with the cautions that
managed care data have not been evaluated for reliability and validity and
that there are known data quality concerns. All variables from the encounter
data set are considered to have quality limitations, which we will point out
and which should be considered in interpreting preliminary findings.

7.3.2 Sample selection and analysis plan

Only patients with Serious Mental Illness (SMI) were included in the study.
Patients were identified as SMI patients using ICD-CM-9 diagnosis codes in
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the range of 295.00 – 298.99 (schizophrenia, major affective psychosis,
paranoid states, and other non-organic psychoses). The claims of SMI
recipients were merged and aggregated to the unit level of the community
mental health center (CMHC), also known as a Community Services Board
(CSB) in Virginia. To ensure experience and consistency in services for SMI
patients, we examined 12 CMHCs (the providers) that had treated 100 or
more claims of SMI patients in case management services in 1994. Those
12 CMHCs also were examined in the next four consecutive years (1995,
1996, 1997, and 1998). A total of 60 (12 × 5 years) CMHCs were thus
included in the analysis and constituted the unit of analysis.

7.3.3 Variables

We included outcome and resource measures for community mental health
centers derived from the DMAS database. These measures comprise two
output and six input variables. Output variables are: the number of Medicaid
SMI patients in the Medicaid eligibility category of supplemental security
income (SSI), and the number of patients in all Medicaid eligibility
categories except SSI. This categorization of outputs is a proxy for outputs
“more severe” and “less severe”, and hence serves as the case-mix difference
for outputs. Inputs that we included (measured by number of claims in which
these services appear) are as follows:

use of non-emergency crisis support in CMHC;

use of outpatient assessment;

use of outpatient therapy;

use of outpatient medication management;

use of clubhouse;

use of case management.

The above services are those most frequently provided by the CMHCs.
Three of the services remained fee-for-service throughout the five-year time
frame we considered, in both Richmond and Tidewater. Certain services –
the use of crisis support, clubhouse, and case management – were part of a
special program, the State Plan Option program, which was available in both
settings with fee-for-service reimbursement. State Plan Option services
support successful community care and residence. Non-emergency crisis
support offered by CMHCs includes their crisis intervention services in the
community, with the goal of stabilizing the client and allowing him or her to
remain in the community. The clubhouse service is a psychosocial
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rehabilitation program that provides a supportive environment and promotes
independent living in the community. The case management services
include coordination and integration of care and services for the client.

In the Tidewater area, three services were covered by the capitated managed
care plan in the last three years of our study – outpatient assessment,
outpatient therapy, and medication management.

The remaining services, which changed from fee-for-service to managed
care in the Tidewater area, include outpatient assessment, therapy, and
medication management. These services are limited to those provided by
CMHCs as the billing providers. By definition, these are outpatient
providers. Assessment is defined as a psychiatric diagnostic interview
(procedure code 90801). Therapy includes individual therapy (excluding un-
timed billings), family therapy, and group therapy. Medication management
includes prescriptions and evaluation of medication needs. It does not
include administration of medications.

Only services provided by the CMHCs and paid for by Medicaid are
included in the analysis. CMHCs may also provide services to clients that
are not covered by Medicaid; these are not included.

7.4 RESULTS

7.4.1 Trends for SMI patients

Table 7.1 shows the number of SMI claims in the study localities, by years.
The percentage of the sample comprising SMI Medicaid recipients rose
steadily from 9% in 1994 to 13% in 1998. Medicaid managed care for
behavioral care was implemented in 1996 at the Tidewater site. Thus, it is
prudent to examine the descriptive statistics for pre- and post-managed care
in the experimental (Tidewater) and control (Richmond) groups of CMHCs.

Table 7.2 provides descriptive statistics for all output and input variables
before and after managed care at both sites. For each variable, the table
shows both its mean (first row for each variable) and standard deviation
(second row). There is a notable difference in the volume of outputs from
pre-managed care to post-managed care in Richmond and in the Tidewater
areas. Furthermore, average output in the Tidewater area generally is higher
than that in Richmond. On the input side, there are varying practice patterns
between the two areas. However, these are not statistically significant, with
the exception of outpatient assessment.



178 OPERATIONS RESEARCH AND HEALTH CARE

7.4.2 Windows analysis – Efficiency results

Evaluations were performed using the data from 1994 through 1998. The
windows analysis method of DEA developed by Charnes and colleagues
[21] was employed.

Efficiency results are presented in Table 7.3. Windows of five years for the
12 CMHCs show that 31 occurrences out of 60 are classified as efficient.
Since Richmond had four CMHCs, and Tidewater had eight CMHCs in this
study, during the five-year window only seven efficiency results (out of 20)
were observed from Richmond CMHCs. The average efficiency score for
Richmond CMHCs was 0.753.

On the other hand, Tidewater CMHCs displayed much higher efficiencies,
with an average score of 0.895, with 24 occurrences (out of 40) observed
during the same five-year window.

The five-year trend of efficiency scores (shown later in Table 7.6) displays a
generally increasing trend for the Tidewater CMHCs, but stagnation, even
retrenchment in the Richmond CMHCs. Table 7.4 compares efficiency
scores before and after managed care implementation in both localities, and
shows that efficiency at the Tidewater CMHCs is significantly higher after
managed care than before.
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7.4.3 Inefficiency score differences between Richmond and Tidewater areas

The sources of inefficiency are investigated and depicted in Table 7.5 for
pre- and post-managed care in both localities. Tidewater CMHCs generally
reduced inefficiencies after the implementation of managed care, as reflected
by their efficiency scores. To do so, CMHCs must increase their outputs
while reducing their inputs, or reduce their inputs while keeping the outputs
steady. The majority of Tidewater CMHCs achieved this goal, but not
completely. There is a room for further input reduction for the inefficient
Tidewater and Richmond CMHCs. For example, after the implementation
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of managed care, inefficient Tidewater CMHCs (rightmost column of Table
7.5) are using 19 more units of crisis support for non-emergency care, 4
more outpatient assessments, 60 more instances of outpatient therapy, 273
more instances of outpatient medication management, 877 more clubhouse
arrangements, and 112 more instances of case management, than their
efficient counterparts do. In other words, other CMHCs with similar profiles
use much fewer resources to provide similar outputs than the inefficient
CMHCs do. The magnitude of the inefficiencies and the improvement
needed for Richmond CMHCs are more even more dramatic than is the case
for the inefficient Tidewater CMHCs.

7.4.4 Cone ratio model – Weight restrictions and practice patterns

DEA can also be used to direct provider behavior toward those practice
styles found to be not only effective but also cost efficient. This can be
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accomplished either by utilizing a weight-restricted DEA model [11, 23], or
by calculating preferred ratio constraints and restricting each CMHC’s ratio
to a particular level. Weight-restricted DEA calculations limit the use of
certain virtual inputs and outputs, thereby creating efficiency scores relative
to the frontier defined in the preferred efficient practice style.

Figure 7.1 is a conceptualization of a model with two inputs – use of case
management and use of non-emergency crisis support – and one output –
Medicaid SMI patients with SSI eligibility. - In the example illustrated in
Figure 7.1, there are 12 CMHCs and three practice styles. Practice Style 3
can be defined as a case-management oriented model. Here case
management is designated as the preferred type of treatment management,
i.e. preferred over more expensive treatments. The ratio constraints can be
defined as case management over non-emergency crisis support; outpatient
medication management over outpatient therapy. When restricted by these
preferred ratio constraints, the efficiency frontier includes only that section
creating the preferred practice style.

To create the preferred ratio constraints that are used to define the practice
styles, DEA weights (also referred to as prices or multipliers) are utilized.
The desired ratio(s) are calculated using the input weights from each CMHC.
Then, for each ratio created, the minimum, first quartile, median, third
quartile, and maximum values are calculated. These values illustrate the
distribution of the ratio and give the researcher choices about the level at
which to restrict the distribution. How much restriction is placed on a
particular ratio depends on the distribution level selected (usually median or
third quartile values are selected initially); in the current analysis, we used
third quartile values. These newly restricted ratios can be plugged back into
the DEA model and will restrict the use of those selected inputs needed to
reach the efficiency frontier.

A graphic conceptualization of a weight restricted model using the two-
inputs-one-output model is shown in Figure 7.2, where the area identified as
“Care Management Cone” exemplifies a balanced approach for efficient
management of mental health patients.

We analyzed two CMHC practice styles, as shown in Table 7.6. The first
model (Base Model) contains no ratio constraints, and illustrates practice as
usual. The second model is a cone ratio model, which uses weight
restrictions. This model includes the preferred ratios: case management over
non-emergency crisis support, and outpatient medication management over
outpatient therapy.
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Figure 7.1 DEA conceptualization of CMHC Practice Styles

Figure 7.2 Conceptualization of super efficient CMHC model
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An input-oriented variable-returns-to-scale (VRS) DEA technique was
employed in both models to identify the best set of practice patterns. An
input-oriented model is preferred because CMHCs can change the number
and type of inputs they use (relaxing the assumption of mandated services by
the state government), but not the number of clients who visit them for
treatment. Those CMHCs that did not exhibit efficient practice patterns
were further analyzed and compared to their peers to inquire under what
circumstances their practice patterns would mimic the best practice behavior.

Table 7.6 compares the results from the base and the cone ratio models. In
the cone ratio model, the efficiency of CMHCs in Richmond is significantly
less than in the base model. The Tidewater CMHCs’ efficiency scores were
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reduced during the pre-managed care era; they were significantly higher
after managed care. A perfect efficiency score is a score of 1.0. Richmond
had only three perfectly efficient CMHCs in the cone ratio model, as
compared to seven in the base model, yielding a 57.1% reduction in perfect
efficiency. On the other hand, the number of instances of perfectly efficient
CMHCs in Tidewater dropped to 20 in the cone ratio model from 24 in the
base model, yielding only a 16.7% reduction. This shows the power of the
cone ratio model, which produces more stringent efficiency outcomes.

7.5 DISCUSSION

Over the past decades, researchers have demonstrated differences in the
amount of resources used for health care in this country due to varying
patterns of care. The most probable cause for this variation is varying
provider practice styles. There is a growing concern about the efficiency
with which health care services are delivered, and about which of the
varying practice styles are more efficient, and thus more appropriate. This
chapter has described how we developed and applied a DEA methodology as
a mechanism to identify the most efficient practice patterns for behavioral
health care, and to evaluate the variations in resource use associated with
different variations in practice. The data used in this chapter are useful for
methodological development. However, the managed care data are from the
early years of a new data system and there are known concerns regarding the
data quality. Therefore the results should be used to understand the method,
but should not be used to judge the actual efficiency of the organizations we
analyzed.

Given that caution, several observations can be made. The efficiency score
of providers in Tidewater increased after the implementation of managed
care, but the efficiency score of providers in Richmond did not change. The
differences in the efficiency score of the two regions are statistically
significant after managed care was implemented. However, the differences
in inefficiency scores between the two regions are not significant and are
unchanged after the implementation of managed care. Despite the
limitations of the data, our analysis demonstrated that providers practiced
more efficiently – that is, they used fewer resources to produce similar
outputs – under the managed care payment system. The two main areas that
account for the efficiency differences between the two regions are the case
management and non-emergency crisis support services.

In this study we were limited in the selection of input/output variables
because of sparse data on certain service variables. Furthermore, there were
some concerns about the quality of data for input variables with respect to
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outpatient assessment, outpatient therapy, and outpatient medication
management.

We also recognize that the issue of the quality of care raises the question of
the effectiveness of care by the CMHCs. We assumed that the quality of
care is the same from all the providers. Further analysis is needed to identify
how efficiency affects the quality of care.
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SUMMARY

Simulation, as it is typically taught, is a rather mechanical process. Students
are taught to follow a recipe: analyze a system, design a model, convert the
model to computer code, collect data, verify, validate, and analyze the
output. In practice, many analysts find that simulation is an odd combination
of art, science, and marketing. Using this technique appropriately, in any
industry, involves more than simply following the text book. In our
experience, health care provides some rather unique challenges for the
modeler. This chapter describes four different practical examples of using
simulation to analyze a problem in an acute care hospital. The specific
examples are not described in detail, since the applications have appeared in
other publications. The emphasis here is to present some of the obstacles that
were encountered and the lessons learned.

KEY WORDS

Simulation, Nursing human resources, Surgical schedules, Emergency
department modeling, Drug order entry
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8.1 INTRODUCTION
Simulation has a vast range of application in health care. Anyone who has
ever visited a hospital emergency room, undergone surgery, or even visited
their family doctor will recognize that the provision of health care is a
complex, stochastic process with an overall structure analogous to a network
of queues. The heterogeneity of customers in this system, the vast range of
potential paths through the network, and the time-sensitivity of service make
health care a “textbook” application for simulation.

The application of simulation in a health care setting is not always as simple
and straight forward as one might think from reading the standard texts. In
this chapter we present four simulation studies and describe lessons learned
during the projects. The objective of this chapter is not to describe how to
conduct a simulation study, or to provide all details for the four projects,
since this material appears elsewhere in the literature. Our goal is to give
analysts an idea of the issues that arise when an operations research
technique is applied to a health care setting.

The projects described in this chapter include: a study to evaluate the link
between inpatient census and the surgical schedule; a study to evaluate the
causes of, and solutions to, emergency room wait time in a pediatrics
hospital; a pharmacy ordering model; and a generalized simulation model for
an acute care emergency department. In each instance, the problem is
described, and an overview of the solution methodology is presented along
with a summary of results. Each section concludes with a summary of the
lessons learned during the project.

8.2 EVALUATING THE IMPACT OF THE ELECTIVE SURGERY
SCHEDULE ON RESOURCE ALLOCATION
8.2.1 Description of the application

Nursing, like many regulated health care professions, tends to go through
human resource availability cycles. The length of time required to fully train
a doctor or a nurse (four years or longer in many jurisdictions) means that
decisions made today regarding training spaces in universities and colleges
only have a noticeable impact five to ten years later. Of course, in the period
of time between when the plans are made and come to fruition, the demand
for health care professionals may have changed. This is a common problem
in almost all medical human resource planning.

Nursing, as a profession, has a number of unique characteristics that make
human resource planning more difficult still. The profession is
disproportionately female, and thus child rearing and family responsibilities
have an impact on participation in the market place. As with other
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professions, general economic conditions, quality of work-life issues, and
random fluctuations in the labor market also affect participation.

In 1989, Toronto experienced a shortage of qualified nurses. A good
economy, combined with a rapidly rising housing market in the metropolitan
Toronto area, caused a net outflow of nursing personnel from downtown to
suburban institutions. To deal with this problem, nursing leaders from five
urban Toronto hospitals collaborated to discuss possible ways to attract and
retain nurses in their institutions. The number one nursing complaint, the
amount of money paid to nursing staff, was not open to change. The second
most important issue was the work week; in short, nurses wanted less
weekend work.

One of the members of the committee facetiously suggested, “If we did
surgeries on Monday for people with length of stay of four nights, and did
only day surgery on Friday, we could empty the wards on the weekend, and
give nurses more weekends off.” The suggestion was clearly not practical,
but the idea that we could change the surgical schedule to reduce the
weekend ward census was thought to be interesting. A project was
subsequently funded by a grant from the Ontario Ministry of Health and five
Toronto teaching hospitals: Toronto Hospital for Sick Children, Toronto
General Hospital, Sunnybrook Health Science Centre, Mount Sinai Hospital
and Toronto Western Hospital. (Our co-investigator was Professor Linda
O’Brien-Pallas, Faculty of Nursing, University of Toronto.)

The study lasted for two years in 1991-93 and involved developing a
simulation model to use as a decision support tool [1, 2]. The model
included the operating rooms, the recovery room, intensive care units and
regular inpatient wards. We were primarily interested in surgical patients
since 90% of all surgical patients were scheduled in advance and, therefore,
were somewhat controllable. Conversely, it was felt that nothing could be
done to control medical patients, since 90% of all medical patients were
emergency admissions. In all of the hospitals in the study, operating room
time was assigned on a “block booking” basis. Surgeons received blocks of
operating room (OR) time (e.g., every Monday morning for three hours) and
were free to schedule patients in any order within their assigned blocks.
Typically, elective surgery took place Monday to Friday on the day shift
with one or two rooms available nights and weekends for emergencies.

Given this arrangement, we concluded that by changing the weekly OR
schedule, we could influence workload and census in the rest of the hospital.
By extension, we argued, it should be possible to determine a schedule that
would be optimal from a staffing perspective. Furthermore, because we did
not anticipate making any changes to the number or length of assigned
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blocks, we assumed that our schedule would have no impact on patients or
their clinical care. The only impact, as far as we could tell ahead of time,
would be minor inconvenience to surgeons who might have their block time
rearranged within the master surgical schedule.

With these assumptions in mind, we built a simulation model, a database and
user interface for the simulation. The model included all scheduled surgical
patients and allowed for emergency patients who could preempt elective
surgery as well as medical patients competing for intensive care unit (ICU)
beds. The database included an underlying nursing workload model that
estimated the total hours in each ward given the patient mix and volume
flowing through it. If there were no beds available or not enough nursing
hours when a patient was to be admitted, elective surgery would be canceled.
The model generally used a first-come-first-served logic for allocating
scarce resources. A small percentage of patients were also canceled for other
reasons.

We used a two-pronged approach to collecting data for the model. We spent
several months in each hospital analyzing the process to understand how
patients flowed through the facility, creating process flow charts and
collecting unique site-specific data. We also took advantage of an existing
database of discharge records, The Canadian Institute of Health Information
(CIHI). CIHI is a third-party organization that stores a discharge summary of
every patient admitted to a hospital in Canada. Institutions in Canada are
required to contribute data to this source, which is used by hospitals for their
own internal review as well as by federal and provincial authorities.

Through the interface, the user was able to set the surgical schedule, make
adjustments to the surgeons’ case mix, specify the number of beds and
nurses on each ward and change a variety of control parameters. The
simulation itself was driven on a data trace. Because of the often
confounding factors relating to age, gender, disease, co-morbidity, treatment,
and outcome, we reasoned that it would be more practical to dispense with
the idea of developing and fitting distributions for key simulation variables
such as length of stay, processing time, etc, since we could not assume
independent and identically distributed observations. Instead, we decided to
sample directly from a large list of patients available from hospital discharge
records. Thus when we needed to “create” a patient in our model, we
randomly selected a person from this existing list and simply associated all
of that patient’s demographic, treatment, and outcome data with the
simulated patient. This mechanism, we felt, would make the simulation easy
to port between sites and easy to validate.



196 OPERATIONS RESEARCH AND HEALTH CARE

After running random patients through the model for a two-week warm up
period, we ran ten replications of two weeks. Upon the completion of the
run, we produced summary statistics on estimated annual patient volumes,
cancellations, emergencies, and patient census and nursing hours in each
ward by day of week.

8.2.2 Challenges encountered

Timing/project cycle time Simulations typically look simple to build; or at
least they look simple at the start of a project. Our project was originally
designed for a two-year cycle. The pilot model took approximately 12
months to complete. Ports to other institutions, which were scheduled to take
two months, took about four months apiece to complete. Thus, by the end of
the project, more than four years had elapsed since its inception in 1989. The
reality of 1993 was much different than the reality of 1989, particularly in
the health care sector in Canada. While 1989 was the high point in an
economic cycle, 1993 was a low point. Thus, by the time our program was
ready, the government was cutting health care budgets, and hospitals were
laying off nurses! Simply put, weekend workload and quality of work-life
issues had dropped off the radar screen; people were much more interested
in holding onto their jobs than getting the weekend off.

Fortunately, this unexpected turn of events did not detract from the value of
the project. The model turned out to be very useful as a mechanism to
balance the use of increasingly tight hospital resources. The simulation
allowed users to experiment with various allocations of OR time and
forecast the impact of ward census, nursing workload, ICU beds and
recovery rooms. Several of the sites used our model to improve their
operations.

For example, at the Toronto Hospital for Sick Children, in one ward, the
census was double on Wednesday night compared to every other day of the
week. By making a few minor adjustments, we were able to suggest an OR
schedule that would balance the nursing workload over weekdays. As
another example, we used the model to look at Christmas closing in 1994
after the Ontario government asked hospitals to close all elective surgery for
two weeks as a cost reduction measure. Mount Sinai Hospital asked us to
complete an analysis of residual demand for OR time and ward space due to
emergency patients. We used the model to predict the staffing levels that
would be needed to cover this demand for the two weeks. At Sunnybrook
Health Sciences Centre the model was used in a number of planning
scenarios, not to balance nursing workload, but to calculate production limits
for their cardiovascular surgery program.
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At one institution we ran into a problem validating our model. The
simulation model suggested that the OR time currently allocated to the Ear,
Nose and Throat (ENT) service could accommodate almost twice as many
patients as they were actually serving. We searched for the cause of the
discrepancy for several days in the simulation. Ultimately, we discovered
that ENT had a habit of not always using all of their allocated time.
Meanwhile, General Surgery was starving for OR time. Whenever ENT did
not need the allocation, someone in General Surgery was happy to use it.
The OR managers had not noticed the problem since all of the booked rooms
were being fully utilized.

Data collection In any simulation, data collection, verification, and
validation are major issues. In our experience in health care, no one ever had
the right data in the form that we needed it. Health care information systems
are typically designed to meet clinical requirements, not administrative
needs. The CIHI data was a mixed blessing for our project. The CIHI data
was universally available for all institutions, in a standard format, and from a
single source, and was thus easy to access and import into the simulation.
We did, however, find a number of weaknesses in the database which
limited its applicability for a simulation study.

Since the discharge summary is only a summary of what happened to a
patient, it was not always possible to entirely reconstruct a patient’s process
through the hospital from their discharge report. For example, a patient
admitted as a medical patient for treatment of diabetes falls and breaks a hip
during her hospitalization. If, at discharge the broken hip is considered to
have contributed more to the patient’s length of stay than the diabetes, the
patient may then have been labeled as a surgical patient. Without complete
access to a patient’s record, reconstructing a patient’s length of stay often
involved some assumptions and some estimation.

Furthermore, we found that source data sent to CIHI was not always viewed
by the institutions as reliable. (This is rather surprising given that the
institutions themselves are responsible for abstracting and summarizing the
data that is forwarded to CIHI.) Finally, the lag between when data was
collected, abstracted, and made available to CIHI meant that we typically
had to use patient abstracts that were at least a year old (and in one instance
two years old) in the model. This led to a common complaint among
potential users that the data was “too old” and “not representative of what
we’re doing now”.

Every hospital was different Our model was designed to be flexible and to
provide the ability to answer a wide variety of questions. We wanted to be
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able to test potential length-of-stay variations by age, disease, sex, etc.
Furthermore, we wanted the model “portability process” to be as simple as
possible. Our intention was to develop one generic model and simply move
this model from place to place, plugging in new patient records and a small
amount of site-specific data (i.e., the number of wards and the beds on each).
In practice we found it very difficult to create a single, generic, general-
purpose patient simulation. Each institution had a unique combination of
services, programs, and unique “quirks” that made it difficult to directly
move a model from one location to another. These quirks ranged from
unique processing rules to arcane details of the physical plant.

For example, at The Toronto Hospital for Sick Children, the managers
suspected that an old bank of elevators that frequently broke down
significantly impacted transportation time! In this case, we included the
elevator in our model.

When we initially developed the pilot simulation at The Toronto Hospital for
Sick Children, we decided to restrict the model to patients who had only one
surgical procedure. The number of cases of multiple surgeries there was
quite small. However, Sunnybrook is a regional trauma center, and multiple
procedures are relatively common. So, we needed to modify the Sunnybrook
model to allow for multiple surgical procedures.

Stakeholders Getting the buy-in of all stakeholders is always a key
component to any simulation project. However, when working in a health
care setting, acceptance by all stakeholder groups is especially important. In
this particular project, our assumption that the schedule rearrangement
would be a minor issue turned out to be incorrect. Physicians, as a rule,
control the creation of the master surgical schedule and guard it jealously.
Schedule changes are almost never thought to be a matter of minor
inconvenience.

In fairness to physicians, the schedule dictates both their income and their
work schedule. That is why, in practice, the issue is so controversial that in
most of the hospitals that we have worked in, the administration simply
allocates total O.R. time to each service (cardiology, general surgery,
orthopedics, etc.). The doctors in each service then decide among themselves
how to allocate specific blocks of time. This solves some of their political
issues but, as a consequence, the administration relinquishes any control
over daily work flow balance.
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8.3 CHILDREN’S HOSPITAL OF EASTERN ONTARIO (CHEO)

8.3.1 Description of the application

CHEO is a pediatrics teaching hospital affiliated with the University of
Ottawa. In 1993, the hospital’s Emergency Department expressed concern
that up to 20% of patients were forced to wait at least two hours before being
seen by a physician. The issue was one of quality of service rather than
quality of care, since all patients are triaged promptly and urgent cases are
seen right away. Long waits are generally associated with patients having
“runny noses” and other minor complaints. However, with provincial budget
cuts looming, managers at CHEO felt it important to maintain good public
relations.

The Vice President of Ambulatory Care (VPAC) called us in May 1993. She
had received eleven process improvement suggestions from staff members.
Suggestions ranged from overhauling patient flow to making changes to the
physical layout of treatment rooms. One suggestion called for installing
video games in the waiting room so patients would not realize how long the
wait was. While the VPAC thought that many of the suggestions were
interesting, she needed a mechanism to provide quantitative analysis of the
options.

To determine the impact of the various strategies on patient wait time a full-
scale patient simulation model was developed [3]. The model included all of
the major patient processes in the emergency department (ED): patient
arrival, registration, triage, assessment, testing, treatment, and admission or
discharge processes. Our main evaluation criteria were the average wait time
and the distribution of these times for each of the four triage categories
defined by the hospital: emergency, urgent, deferrable, and medical walk in.

In terms of modeling effort, the simulation itself was relatively simple.
However, data collection, model validation, and output analysis required
significant effort. One of the first things we discovered when we started
collecting data at the hospital was the highly fractured nature of work in the
ED. CHEO is a teaching hospital. The ED was staffed by one to three
physicians, called Casualty Officers (COs), five to seven nurses, and a
number of residents. Normally, each patient was seen by a nurse, a resident,
and the CO who reviewed the resident’s assessment. On any given shift
there were ten patient treatment rooms available for use. Patients in these
rooms were under the care of one CO who might also have had
responsibility for providing medical education to one or two medical
residents.
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We noted immediately that it was extremely rare for any worker (physician,
nurse, or resident) to complete a work cycle on one patient from start to end
with no interruptions. More commonly, we observed that nursing and
physician services were delivered in small discrete batches spaced over a
fairly long time period. For example, a physician might assess a patient and
order a test. A nurse might then collect a sample or transport the patient to
another area. During the time the test was being performed, the physician
would move on to treat other patients. When the results of the test became
available, the physician would read the results, interpret them, and order a
treatment or send the patient home.

Since a physician had five to ten patients “on the go” at any time, work
cycles became quite fractured. Indeed, physician work cycles were nothing
short of chaotic given the additional requirement of also providing medical
education for students and residents. The physician was, for example,
required to confirm the resident’s diagnosis, provide him or her with
background about a disease state or treatment option, and then confirm test
results, treatment opinions, or patient instructions. Since the casualty officer
was legally responsible for the patient’s care, no part of the treatment
process could occur without the permission of the CO. In fact, we later
found that COs spent about as much time interacting with residents as with
patients.

Once we had the model working and validated, we started a designed
experiment. The factors that we varied included the number of COs on shift,
the number of residents on shift, and the queuing discipline used to select
patients from the waiting list. We did not find much of a factor effect for
queue discipline, but we did note a strong negative effect for the number of
COs on shift and a strong positive effect for the number of residents on shift.

As described earlier, resident education was a major component of work in
the ED. Our experiment indicated that the work created by resident
education was so great that eliminating all residents from the ED would
substantially reduce patient waiting time! In fact, our model indicated that
adding one additional CO, or eliminating all residents, would result in
approximately the same improvement in waiting time.

Obviously, eliminating residents from a teaching hospital is not a practical
alternative, but the results indicated that waiting time could be impacted by a
number of different scenarios, including different numbers of physicians,
different shift schedules, and/or the addition of a hospital “walk-in clinic” to
treat patients with minor injuries.
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These scenarios led us to one of our more interesting results. As part of our
plan to rearrange physician schedules, we prepared a simple plot of patient
arrival times for each day of the week. We compared this to the COs’ shift
schedule. We found that demand peak (patients) often occurred several
hours before the staffing peak. For example, on Sundays, the peak patient
arrival period was between 10 a.m. and 1 p.m., but the peak staffing levels
were scheduled for 5 p.m. to 7 p.m. Needless to say, the wait times for
patients arriving in the afternoon were extremely long because a queue had
been building all day. We were able to make significant improvements
simply by staggering the doctors’ start times.

Other major recommendations that came from this project included adding
an additional four hours of CO time daily to the main ED and implementing
a fast-track clinic for low-acuity patients. We estimated that these
improvements would reduce patient wait time by as much as 20%. Although
the approval process took over a year, the hospital did eventually hire a new
casualty officer due, in large part, to our analysis.

8.3.2 Challenges encountered

Data collection The fractured nature of work in the ED presented a data
collection problem for us. While good theoretical and practical models of
nursing workload are available, no corresponding workload standards exist
for physicians. As a result, it was very difficult to determine, for example,
the demand for physician time resulting from a patient presenting symptoms
of asthma.

Furthermore, the highly fractured nature of work cycles made manual data
collection a difficult task. For example, much of the work a physician
performed on a patient’s file was done when the physician was distant from
the patient (e.g. reading x-rays, interpreting test results, discussing with
nurses or residents). Thus, measuring physician contact time was not an
entirely accurate method of determining workload.

“Job shadowing” also presented some difficulties. For example, the nature of
patient confidentiality precluded an observer from direct access to many
types of patient-physician encounters. All in all, identifying accurate
physician workload was a difficult task. We were, however, able to satisfy
our data requirements through a combination of statistical work sampling
and job shadowing. One of the project team members undertook the work
sampling procedure, which could be performed without the observer
necessarily having to be in the vicinity of the patient and the physician. In
addition, the hospital provided us with two nurse instructors, who performed
a physician job shadow. As clinicians, both physicians and patients accepted
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the nurses. In the end, we were able to build a reasonable data sample using
the two techniques.

In this application as well as most of the others, we discovered that the
length of time required for any particular task is extremely variable. When
things get busy in the ED, everyone tends to work a little faster. In
particular, the casualty officers spend much less time teaching as the demand
increases. This is not surprising, but it creates some serious modeling
challenges. One way to avoid this issue, as we did, was to use process times
based on data collected during the busy times. Our real objective in this
study revolved around queue length during busy times. As a result, our
simulated patients were treated faster than the real patients during relatively
quiet times.

Time frame A key challenge we faced with this project was finding the time
to collect data, build the model, and run a reasonable set of scenarios. While
the project originally was envisioned to be a short term two-week project, in
the end we spent almost a year working on the model and its various
components. Building the actual simulation model, as it turned out, was not
particularly difficult or time-consuming. In fact, it took us about two weeks
to build. The time consuming aspect of the project was data collection. To
complete data collection, it was necessary to: identify the data necessary to
run the simulation, make appropriate simplifying assumptions, define the
method by which this data should be collected, assign personnel to data
collection, and then collect the data.

Once the model was up and running, we found it was not possible to simply
complete a set of runs, write up the results, and put the project behind us.
Management at the hospital viewed the model as a useful planning tool. As
the planning process developed at the hospital, we were asked to run the
model under different assumptions and scenarios. Coincidentally, as we
developed and ran these scenarios, our understanding of the ED process
increased and we were able to point out to management results we felt were
interesting. This resulted in a collaborative arrangement between
management and modelers which, while fruitful, extended the project
completion date.

8.4 MODELING THE DRUG ORDER ENTRY PROCESS FOR
INPATIENTS

8.4.1 Description of the application

Currently, in the vast majority of hospitals in North America, doctors still
prescribe medications for hospital inpatients by scribbling notes on paper. In
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one study published in 1998, Ash, Gorman and Hersh [4] found that fewer
than 2% of U.S. hospitals had Computerized Physician Order Entry (CPOE)
completely or partially available and required its use by physicians. The
initial cost of implementing CPOE is one major obstacle for hospitals. At
Brigham and Women’s Hospital, the cost of developing and implementing
CPOE was approximately $1.9 million, with $500,000 in maintenance costs
per year. Installation of even “off the shelf” CPOE packages requires a
significant amount of customization for each hospital and can be very
expensive [5]. Finally, there may be cultural obstacles to CPOE
implementation. For example, many physicians resist the idea of ordering
prescriptions via computer instead of by hand. Although summary results
were not available, the Leapfrog Group hospital survey [6] indicated that
most U.S. hospitals are in the process of implementing CPOE.

On the surface, the manual Medication Administration Process appears quite
simple. The physician writes a prescription on paper at the bedside and puts
the order in the patient’s chart. The nurse retrieves the order, transcribes it
onto the “Medication Administration Record” (MAR) and leaves a copy of
the order in a tray in the ward to be picked up by pharmacy technicians at
routine times throughout the day. A pharmacist reviews the order and
transcribes it into a computer with access to electronic patient records and
decision support capability. The order is prepared in the pharmacy and
delivered to the ward. The nurse checks drugs against the MAR and
administers to the patient. The nurse records the administration on the MAR.

What is wrong with this picture? The doctor relies on memory/knowledge to
determine the dose of the medication, to think of patient allergies and to
remember possible drug interactions. The nurse may not know that an order
has been written or that the drug has arrived. The multiple transcriptions
increase the possibility of error and are not value-added work. The physical
transport of the order wastes time. If the nurse cannot read the order, s/he
must check with the doctor. If the pharmacist has any questions about
medication or dosage, s/he must page the nurse and/or the doctor and hold
the prescription until the order is confirmed. We believe that the process
could be greatly improved if the doctor entered the order directly into a
computer, using a handheld device, at the bedside.

Dr. Glen Geiger is a physician in Internal Medicine at Sunnybrook &
Women’s College Health Science Centre in Toronto. In 1999, Glen initiated
a study where he asked doctors and nurses in his service to record process
times on the drug orders. He discovered that over 25% of the orders were not
administered within the targeted time frame. Most failures were not even
close. These were process errors; they do not include cases where patients
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received the wrong drugs. The results of this study were a surprise to
hospital leaders and continue to surprise health care professionals from other
areas. Many issues that we discovered at Sunnybrook are common to most
manual drug order entry processes.

It is fairly obvious that physician order entry will dramatically reduce cycle
time for the process and reduce the workload of all parties – with the
possible exception of the physician. Thus, we needed to convince the doctors
that the system would dramatically improve the process without significantly
increasing their workload. We decided to use simulation to quantify the
potential for process improvement. We believed that it would be an
important tool for demonstrating the advantages to physicians.

In the summer of 2001, four students, including three industrial engineers
and one medical student, were hired to perform a detailed analysis of the
prescription process. The students spent two months documenting the
current process through interviews and direct observation. They then
conducted a two week data collection during which all drug orders for a
thirty-six bed Internal Medicine ward were tracked to facilitate the creation
of a simulation model. The results of the detailed tracking confirmed Dr.
Geiger’s earlier results. In particular, many medication orders were not
administered to patients in a reasonable amount of time [7].

One of the surprising discoveries was that this seemingly simple process was
actually quite complex. For example, a different process was used when a
doctor phoned an order in to the nurse as opposed to when the order was
written. The day and night processes are different because the pharmacy is
closed at night. At night, instead of placing an order with the pharmacy,
nursing staff can access a night cupboard for commonly required
medications.

There are also communication issues. For instance, pharmacists regularly
visit the ward and review patient charts. Pharmacists sometimes write a “P”
on the order. Some of the nurses knew that the “P” meant the pharmacist had
reviewed the order. Others thought it meant they had “Pulled” the order.
Also we found some confusion surrounding a physical flag attached to the
chart. When the doctor writes an order s/he puts the flag up. Unfortunately,
there is only one flag on each patient chart, and it is used for all orders.
When multiple orders (e.g. drugs, lab tests, imaging, etc.) are in the file, the
possibility exists that the nurse will find only the first one and put down the
flag. Nurses check the complete chart every two hours, but errors sometimes
occur. One order was in the chart for two days before the students pointed it
out to the physician.
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Timeliness of medication orders can be measured in several ways. For
example, suppose a doctor prescribes medication for a patient at 11 a.m. to
be administered three times a day at 6 a.m., 2 p.m. and 10 p.m. We could
consider the delivery to be late if it was not back in time for the 2 p.m. dose
administration. Pharmacokinetic practice says that a dose of medicine can be
administered up to four hours late (for example, at 6 p.m.), half of the dosage
interval, and still be on time. From a process perspective, we estimated that a
prescription should not take longer than two hours to fill. All three measures
were used in the study for determining whether an order was filled on time.

8.4.2 Challenges encountered

Lack of control From a quality perspective, we were quite surprised with the
apparent lack of control of the prescription process. Since no written
documentation was available, to determine how the process worked we
simply asked everyone what he or she did. There was no formal training for
nurses or doctors. New staff members learned by word of mouth. Virtually
everyone we spoke with had a different view of the process. Moreover, there
is no standardization across the hospital; each ward had apparently
developed its own set of procedures. We attributed this to the perception that
the process was “simple” and therefore did not require formal documentation
and training.

Need for greater modeling detail In the validation of our simulation model,
we could not get the turnaround times for medication orders in the model to
match the times that we observed in practice. Initially, the average time in
the model was 225 minutes, while the true average from the data was 262 or
16% higher. This seemed odd since the distributions in the model were
based on statistically fitting the same data.

A major cause of this discrepancy originated in the pharmacy portion of the
model. Initially, we had assumed that the pharmacy part of the process
would be fairly reliable once the orders arrived there, so we chose to model
the pharmacy as a black box. Since the pharmacy was computerized, we
expected the process would provide consistent results and that when an order
was picked up, it would be processed expeditiously and delivered back to the
ward. We were surprised to discover dramatic variations in turnaround
times.

Several months after the initial study, and long after the summer students
had returned to school, we concluded that we needed to expand the scope of
the analysis and perform a detailed process analysis of the pharmacy area.
We discovered several anomalies. There was an 8 a.m. rush in the pharmacy
to fill all of the orders that had accumulated overnight. The pharmacy
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processed each ward as a group of orders, and the sequence of the wards
varied daily. Many long delays occurred when a particular ward was left
toward the end of the sequence. We also learned that the pharmacy’s
workforce was highly variable. The pharmacy could not tell us how many
pharmacists were working at any one time; the assignments varied hour-by-
hour and day-by-day. Furthermore, it was found that a major complication
was created by orders requiring clarification. We discovered that over 13%
of orders required the pharmacist to call the doctor. These orders would be
set aside temporarily while the pharmacist paged the doctor. We were unable
to collect meaningful statistics on how long it took to get an answer to a
page; however, it appears that about 5% of orders took more than three
hours, and many of these were not resolved in the same day. Moreover,
many of the pharmacists processed the simpler orders first, and saved
clarifications until later in the day when they had some spare time.

Technology implementation As described above, the motivation for the
simulation was to be able to demonstrate the potential process improvements
that accrue from using automated physician order entry. Sunnybrook has
already purchased the software to implement the automated prescription
entry process. However, the system is still in development and the user
interface must be customized. We cannot complete the simulation without
first performing experiments with the interface to determine the distribution
for access time. We do not expect it to take long, but this is likely to be the
central measure of success for the physicians. We expect to have a pilot
version ready by Spring 2004.

8.5 THE CROWDED STUDY: CAUSES AND RELATIONSHIPS OF
OVERCROWDING AND WAITING IN DIFFERENT EMERGENCY
DEPARTMENTS

8.5.1 Description of the application

Waiting times and overcrowding in the Emergency Department (ED) have
become increasingly serious problems over the past several years. In the
United States, surveys of hospital directors have reported ED overcrowding
in almost every state [8, 9]; ED overcrowding has also been reported in
Europe [10]. In most hospitals Emergency Department overcrowding is a
symptom, rather than a cause, of the problem. For example, overcrowding in
the province of Ontario in Canada is often attributed to patients who have
been admitted to hospital, but who are waiting in the ED until a ward bed
becomes available. Beds are often blocked in the wards because of discharge
delays (e.g. waiting for test results, waiting for nursing home space,
rehabilitation beds or home care). Thus, to really understand how the ED
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functions and why it backs up, it is necessary to develop a detailed process
analysis specifically focusing on the impact of bed blockers.

A number of people have done ED simulations in the past, but have
generally assumed that the processes outside the ED have little direct impact
on its overall operation. Jun et al [11] present an extensive survey of
simulation applications in health care. In fact, several simulation studies
have been conducted to specifically analyze the issue of overcrowding in the
ED. A priority queuing model was developed in one study to evaluate the
potential impact of adding a fast-track facility to an emergency department
[12]. Simulation modeling has also been employed to examine the
relationship between hospital bed capacity and emergency admissions rates
[13], with the finding that bed shortages can be expected when average bed
occupancy rates exceed 85%. Simulations have been successfully applied to
investigate the impact in the ED of nurse scheduling on utilization and
patient length of stay (LOS) [14-16]. Based on these studies,
recommendations were made for changing policies on staff scheduling,
triage procedures and nursing responsibilities. Using the simulation model,
the potential savings from the proposed changes were quantified.

The study described earlier in this chapter [3] also modeled the flow of
patients through an ED. For all of the ED simulations mentioned, the patient
LOS in the ED is assumed to be an exogenous variable, sampled once for
each patient from a statistical distribution based on historical data. This
assumption is reasonable given the complexity associated with most
emergency departments. One can usually construct and validate these
models quite adequately. However, this method does not allow decision
makers to investigate the impact of changing non-ED components on the
overall process flow. For example, if the time required to complete an
external consult was reduced, or the process for MRIs was improved, what
impact would that have on wait times in the ED or throughout the entire
hospital?

In fact, our analysis suggested that the ED is a very complex entity, referred
to by some of the doctors on our study team as “organized chaos”. In 2002, a
team including operations researchers, ED physicians, a statistician and an
epidemiologist received funding for a two-year study to analyze the detailed
processes in ten Ontario hospital emergency departments. The Causes and
Relationships of Overcrowding and Waiting in Different Emergency
Departments (CROWDED) study was designed to include detailed data to
promote better allocation decisions for scarce resources such as doctors,
nurses, and examination rooms. The hospitals were selected to represent a
cross-section of geography and clientele. Three large teaching hospitals, four



208 OPERATIONS RESEARCH AND HEALTH CARE

community hospitals, and three rural emergency departments were selected
for inclusion in the study. Two full time research assistants were hired for
one year to collect data by directly observing patients, doctors and nurses.
We conducted three trips to each site. There was a pre-visit of 2-3 days to
study the layout, understand the policies, meet people, and put up posters to
educate and inform people about the study. Data collection was conducted in
two separate one week periods at different times of year to get a sense of
pattern changes over time. The project was designed to construct a generic
model of an ED that can provide detailed decision support for a wide range
of process flow issues.

8.5.2 Challenges encountered

Doctors are difficult to track As mentioned earlier in the CHEO study, it is
often difficult to tie physician workload to a specific patient. Doctors consult
on the phone, read x-rays, view images on-line, chat with nurses and
residents, as well as performing many other activities; all of these activities
are done in the course of a patient’s treatment, but rarely happen when the
physician is proximate to the patient. However, since doctors are probably
the scarcest ED resource, it is important to determine accurate workload
information for them. In the CHEO study, we chose to implement a work
sampling method supplemented with a job shadow provided by a small
group of nurses. In the CROWDED project, we had significantly more
resources at our disposal, and we were determined to get very accurate
workload information.

Many physician and patient processes could not be observed directly. The
observers needed to use indirect means of observation, such as consulting
the patient chart or the “white board” that keeps track of patient progress in
the ED. In some study sites, we had access to the hospital’s electronic order
entry/patient tracking systems. This also helped the observers to track the
patients’ pathways. However, in both paper and electronic documentation, it
was found that recorded times did not usually reflect the actual time or
duration of a process. For example, nurses or ward clerks might log an order
for blood work into the computer at a certain time, but might not collect the
blood until much later. The time recorded on the chart frequently
corresponds to the time the order was entered; there is no information about
the actual start and end time of the process.

Missing data A related issue we discovered during the course of the project
was that it was quite difficult to collect complete, accurate flow data on all
ED patients. The observers estimated that some data was missing for
approximately 10-15% of patients in the study.
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For example, critically ill patients may stay in the ED for a long time. The
CROWDED study did not employ 24 hour observation, so process flow data
tended to be incomplete. The observers tried, wherever possible, to fill in
blanks using the patient’s chart, but it was difficult to get good time
estimates. When patients remain in the ED outside of the period of direct
observation, the patient pathway through the ED will always have some
missing data. However, even if some patient data was missing they were
usually able to record a minimum data set including admission or discharge
time along with any other charted information. Patients remaining in the ED
for longer than a single observation shift tended to be admitted patients, or
patients that required lengthy observation.

Trauma cases were also difficult to track. Because treatment for trauma
cases needs to be started immediately, charting is usually performed after the
fact. Moreover, trauma cases are generally handled behind closed doors. On
the assumption that it is inappropriate for data collectors to be inside a
trauma room or that observation may impede patient care, it was decided to
forego direct observation of trauma cases. Instead the points of time of
“trauma begins” and “trauma ends” were used as a way to track the many
processes that could not be directly observed.

Similarly, acute patients may also receive treatment or undergo tests
according to medical directives behind closed doors/curtains. In these cases,
many different processes may be happening. The observers used the charts
after the fact to determine which processes had occurred. This usually
provided reasonable results in terms of what happened, but not always when
it was done. It was sometimes possible to estimate start and/or end times if,
for example, the observers saw nursing staff gathering up supplies or
equipment prior to a process, but there was a lot of guesswork.

In addition to “closed door” treatments carried out by staff on trauma and
acute patients, another challenge was that processes for many patients
happen simultaneously. The research assistants were only able to observe the
processes of one patient at any given time. Sometimes in the case of an acute
patient such as, for example, a heart attack victim, a team of nurses and
doctors might perform a series of treatments until the patient is stabilized. To
capture all these processes required observation of that particular patient for
an extended period of time. During that time, other things could be
happening to other patients which were not observed or recorded.

Layout issues The layout of the ED sometimes created problems for data
collection. Some EDs were physically spread out which made it difficult to
see what was happening to a patient or to observe the doctor/nurse treating
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the patient. In one ED in our study, the physical layout was divided into a
“major” and a “minor” side. During peak times, doctors would be assigned
exclusively to one side or the other. However, in off-peak times, one doctor
would float between both. It became impossible to follow the doctor, the
nurses and the patients simultaneously in this environment. At another site
the ED had a number of separate areas. The segregation of the ED made
tracking difficult for the observers.

Fast-track clinic Some study sites had an off-site “fast-track” clinic (FTC)
or an “urgent care” center, separate from the ED. Again, this physical
separation made it difficult to track patients.

At one site, the hospital had a fast-track clinic operating from 2pm - 10pm
on weekdays. The FTC was in a separate area from the ED, but had four
beds and was staffed by a Nurse Practitioner1. During its hours of operation,
less acute patients came to the ED, saw the triage nurse, were registered by
ED staff, but then headed to the FTC for treatment. The fact that the FTC is
external makes it harder to observe the patient flow process. It was tempting
to simply ignore patients who were sent to a FTC; however, we believe it is
important to model it as an internal process, using ED resources. In
particular, one of our model decision variables may be to consider adding
two FTC physicians, or having some shared resources work in the FTC and
the regular ED.

Wait time before triage When we consider the question of ED wait time,
part of that measure involves patients waiting before triage or registration.
Predictably, none of the study hospitals tracked or had data on “time before
triage”. While we believe serious patients are seen immediately and all
patients are triaged expeditiously, we asked our observers to sit in the
waiting room and conduct a separate study of “time-to-triage” to determine
the magnitude of this issue. Observing time-to-triage; however, meant that
observers could not track patients inside the ED due to layout and sight-line
issues. The results of our preliminary studies indicated patients frequently
line up to be triaged, but critically-ill patients were not overly delayed.

Unplanned critical events In any study, blind luck (good or bad) sometimes
comes into play. In the CROWDED study the data collection process was
facilitated by a custom designed PDA application. After the first few site
visits were completed, the PDA programmer made some minor adjustments
to the application. Subsequently, after three days of collection following the

1 A Nurse Practitioner is a Registered Nurse who has taken a graduate level program
and who can perform many of the functions that are commonly associated with
doctors.
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adjustment, the observers discovered that a bug in the revised program
blocked the transfer of all patient demographic information (name, age,
gender, ID number, etc.) to the production database. This was a serious issue
in terms of validation and completion of missing data elements.

Additionally, a number of unforeseeable public health issues arose during
the collection process. The ED at one site was closed for several weeks
because of an outbreak of the Norwalk virus, which interrupted our data
collection. To make matters worse, after three days of data collection at a
different site the next week, one of the observers became ill with Norwalk
like symptoms. She went into voluntary quarantine, and the other observer
attempted to collect what she could for the remainder of the visit.

However, the worst setback occurred in March 2003 when Toronto was hit
with the SARS virus (Severe Acute Respiratory Syndrome). We had to pull
the observers out of all study hospitals for almost two months. Even
hospitals distant from Toronto were closed to non-essential personnel.
Moreover, patient volumes in EDs throughout the province decreased in
response to patient fear of SARS. Things started to return to normal after a
short period, but we needed to extend the data collection for two months,
hire an extra observer, and adopt an aggressive visit schedule to make up for
lost time.

Preemption When the ED gets busy, some processes can be preempted by
more critical needs. When a doctor or nurse comes back to the interrupted
process, they may have to start the entire process again. For example, while
a nurse would not interrupt an IV start, he/she might interrupt an assessment.
When the nurse later returns to complete the assessment, it is usually
necessary to repeat some elements. One of our team members, an ED
physician, believes the process can almost grind to a halt when things get
busy. Physician assessments and nursing assessments are frequently
interrupted. In our study the observers attempted to track starts and ends for
all processes, even those that were incomplete, but this was an imperfect
solution.

Administrative issues Despite our best efforts, staff members at the
hospitals were often suspicious about the intentions of our study. It was
perceived as a study created by the provincial government to streamline the
costs of health care and reduce employment. Many staff members at
hospitals believed the study would never be used to benefit health care or
that the study was misguided. Our research assistants were conscientious in
assuring the participating hospital staff that we were performing an
independent study funded by CIHR, and not by their hospital administration
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or the provincial government, and that we were doing our best to accurately
represent the processes in their departments so that patient flow could be
improved without compromising patient care.

We also found that turnover in key management positions in the ED was a
factor in our project. During our one year study we had the primary contact
change at over half of the hospitals. Despite the fact that all of the study
hospitals had agreed to be part of the project, we often discovered when we
went to visit a site the current managers had no knowledge of our project,
and we needed to begin the sales pitch again. In one case, we needed to
reshuffle our data collection schedule because new managers did not know
we were coming.

Security Data security was a very critical component of our study. During
data collection, our team needed personal information to allow matches
between paper and electronic hospital records. PDAs used for data collection
were downloaded daily into the laptop computers and backed-up daily on a
password protected CD-ROM, which was kept in a safe, secure location.
Upon return to the lab, the data was copied from the laptop onto a master
CD-ROM, which was kept in a locked drawer. The data on the laptop was
then stripped of all personal identifiers (name, address, ID numbers, etc.) to
ensure patient anonymity.

8.6 DISCUSSION/CONCLUSION

Health care is an enormous business offering a wealth of potential
applications for simulation and other operations research techniques [17].
However, health care is a business unlike any other business. In our
experience the context in which a decision making situation arises has a
significant impact on the way in which it is solved. Nowhere is this truer
than in health care. We believe that, because analysts and clinicians speak
different languages, operations research has made fewer inroads into this
field than in more traditional industries. However, our experience also
suggests that OR techniques can be successfully applied in the health care
setting. The secret is to understand the unique nature of the health care
business and its impact on models, decision makers, and the development of
implementable policies.

In this chapter we have used four simulation projects to highlight the
practical lessons of applying operations research in health care. Analysts
should remember that decision making in hospitals is characterized by
multiple players; seeking the council and incorporating the objectives of all
decision makers is vital in this environment. In this industry data collection
systems may not be designed to provide administrative data; collecting data
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on patient flow and operational performance metrics may require some
patience and may extend the project life cycle. Finally, while many
processes and procedures are fundamentally similar regardless of the
institution, there are usually enough local quirks to render multi-site
“cookie-cutter” models infeasible.

Health care is a fascinating industry to work in. The authors have, over the
past decade, devoted themselves to applying operations research to health
care and have enjoyed the experience immensely. It is our desire that the
lessons we learned will prove useful for others following in this field.
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ABSTRACT

Risks to public health arise from infectious disease, exposure to toxic
substances such as asbestos, environmental insults, and from lifestyle risks
such as smoking. The risk assessment that must precede healthcare
interventions or legislation requires probabilistic, statistical and
computational methodologies. The introduction to this chapter discusses
how our perception of the risks to public health is changing, and identifies
some trends in the methodologies used for risk analysis. Risk assessment is
largely characterised by likelihood-based statistical inference, using point-
process models of disease intensity as a function of position in space and
time. Conditional likelihoods such as Cox’s partial likelihood and matched-
pairs logistic regression are widely used to eliminate confounding variables.
Two examples of the use of such conditional likelihoods are given. In the
first, new tests for the space-time clustering of cases characteristic of
infectious disease are derived and exemplified. In a second application of
conditional likelihood, some research on risks of Shigella infection to
schoolchildren arising at school or from playmates is presented. The original
content of this chapter is two new tests of space-time clustering, and a case-
study using an unusual conditional likelihood.

KEY WORDS

Epidemiology, Risk, Likelihood, Knox test, Shigella
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9.1 INTRODUCTION

9.1.1 The major risks to public health today

Nowadays we are seeking to identify ever smaller risks to public health. To
this end, huge volumes of data are being made routinely available to the
epidemiologist, and both statistical methodologies and computing power are
being pushed to the limit.

Public health analysts have traditionally been concerned with risks from
infectious disease and from food poisoning. The familiar story of how in
1854 John Snow removed the handle of the Broad Street pump in St.
James’s parish, London, to prevent the spread of cholera exemplifies this.
More recently, lifestyle risk factors such as smoking were identified for late-
life diseases such as cancer and heart attacks, where the link between cause
and effect was harder to establish. In the last 20 years, environmental public
health has emerged as a major concern. Risks of exposure to toxic materials
such as lead, asbestos and air pollutants have been much studied, and the
resulting legislation has greatly ameliorated these hazards [1].
Environmental concerns also include the possible existence of disease
clusters, either of infectious origin or around some ‘environmental insult’
such as a power station or toxic waste landfill site.

In the developed world, there is now great anxiety about the risks posed by
human activity in general, and from technology in particular. This includes
genetically modified foods (in Europe), radioactivity from power stations,
electromagnetic effects from power lines, pollution from toxic waste, global
warming, and environmental pollution in all its forms. On the other hand,
many people resolutely continue to smoke despite its clearly proven ill
effects, concern about cancer from mobile phones has not reduced their use,
and obesity even among the young is increasing. A large subculture abuses
hard drugs, with resulting high mortality. Risks posed by the actions of
others are evidently perceived as more threatening than risks posed by one’s
own lifestyle [2].

Currently, the risk from ELF (extremely low frequency) magnetic fields,
which has been studied with variable results for over 20 years [3, 4], has
been firmly established. Only from 2000 onwards have large definitive
studies and meta-analyses swung the weight of evidence firmly towards the
existence of a real risk. ELF fields, which result from familiar technology
widespread throughout the infrastructure of our cities and homes, are now
known to greatly increase the risk of miscarriages [5, 6], and to increase the
risk of childhood leukaemia [7]. They may also cause asthma and many
other chronic illnesses [8]. ELF magnetic fields do not inspire the ‘fear and
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dread’ that radioactivity or genetically modified foods do, and are currently
the concern mainly of local pressure groups opposing new power lines or
cellular telephone masts. The situation here may change, and extensive
litigation could result.

The traditional concern of epidemiology, infectious disease, is also re-
emerging as a major risk factor. Globalisation, travel and population
movements can result in outbreaks of locally unfamiliar diseases. New
diseases such as AIDS and variant Creutzfeldt-Jakob Disease have appeared.
In the near future infectious disease may be set to again take centre stage as
a risk factor in the developed world, with the growth of multidrug-resistant
strains of once familiar diseases such as multidrug-resistant tuberculosis [9],
and with tropical diseases such as malaria increasing their range through
global warming.

Healthcare provision requires the estimation of risks to health from all these
hazards. This chapter is concerned with the probabilistic and statistical
techniques used. Risk estimation is not, however, the end of the story: it
must be followed by remedial action. This may require simply giving
reassurance to the public, issuing guidelines on lifestyle, taking action to
remove particular environmental ‘insults’, or pressing for changes in the law
or in public policy. Snow in fact had to argue his case with the Board of
Guardians of St. James’s parish, and the pump handle was removed by them
the following day, despite some doubts about the correctness of his case. The
water board were then directed to improve the quality of the water. A
modern analogue is the study led by Anto and Sunyer [10], in which asthma
among residents of Barcelona was linked to soybean dust released when
soybeans were unloaded to silos from ships in the harbour. This work led to
the prompt installation of filters to prevent airborne dissemination of
soybean dust in 1987 [10].

The first step in ameliorating health hazards is to demonstrate that they exist.
The next section addresses this issue.

9.1.2 Statistical inference and its problems

Broadly, the aim of inference is to demonstrate an increased risk of disease
or death arising from a particular risk factor, and then to quantify this risk.
Several types of statistical analysis are relevant.

The fast-growing methodology of disease mapping is used to reveal
geographical variations in risk [11]. Much work has also been devoted to the
study of disease clusters, either in space, perhaps around a power station, or
as the space-time clusters characteristic of infectious disease. Cluster alarms
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are frequently reported to public health authorities, and must be investigated,
although very often the cluster is the result of random variation, and no
action need be taken [12, 13]. Such alarms demonstrate the strength of
public anxiety about health risks posed by human activity.

Ecological analysis measures explanatory variables and relates them to
disease. Disease monitoring or surveillance seeks to detect outbreaks of
disease very early in their progress [14] rather than studying outbreaks
retrospectively.

There are many problems with risk assessment. Some are endemic to the
science or art of statistics itself. For example, we may wish to show a causal
relationship but can only demonstrate an association. Epidemiologists have
long wrestled with this problem and have developed stringent criteria for
showing causality [15]. In practice, epidemiologists may not be able to
satisfy these criteria. However, the strength of an epidemiological case for
an association, based on several different studies, eventually becomes so
strong that rival explanations become increasingly implausible to all but
cranks or those with vested interests [1].

Other problems stem from the limited nature of the available data, such as
confounding and bias in general.

Confounding is best introduced by an example. If we wish to examine the
association between drinking and cancer, smoking is a confounding variable.
People who drink heavily also tend to smoke, so a naïve analysis would
show a strong association between drinking and cancer. Correcting for
smoking, by examining the drinking-cancer association separately for
smokers and nonsmokers, shows the effect of drinking to be small.

In general, confounding variables (sometimes called nuisance variables in
the statistical literature) are either sources of risk in their own right, or they
may augment or potentiate the effect of other variables in which we are
interested. Such variables need to be included in any model of risk, but may
be unobserved or completely unknown. Much of the technical content of this
chapter deals with attempts to overcome this problem.

Epidemiologists have long been aware of many different types of bias that
‘can lead to conclusions that are systematically different from the truth’. Last
[16] cites 27 different types of bias, of which confounding bias is one. They
arise at all stages of a study from design and initial sample selection through
interviews (recall bias), modelling and data analysis, to (finally) publication
bias, where the picture is distorted by the nonpublication of negative or
uninteresting results.
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The ecological fallacy [16] is a major source of bias. This arises when
variables are measured over a region and the aggregated variables are used
to draw conclusions at the individual level. For example, Durkheim [17]
found that the suicide rate was greater in regions where a greater percentage
of the population was Protestant. There is an obvious explanation, but the
data could also be explained if Catholics were more likely to commit suicide
in regions where they felt beleaguered. Related to this, fitting nonlinear
models also requires the use of special statistical methods when using
aggregate level data [18].

In general, our lack of knowledge about the biological basis of some risks,
such as ELF magnetic fields, leads to erroneous estimates of the exposure
suffered by individuals to the hazard, and hence reduces our estimate of the
risk posed, perhaps to the point where it does not attain statistical
significance. , for example, wiring type has been used as a risk marker but
turns out not to be closely related to risk [4]. Our not knowing which subset
of the population is at risk also reduces estimated risk, through the dilution
of the susceptible population with nonsusceptibles.

In addition to the many biases identified by epidemiologists, statisticians are
becoming aware of a widespread tendency to understate the size of errors
and confidence intervals. This bias appears empirically in meta-analyses of
major trials. One cause is conditioning on the model finally selected. This
means that one (rightly) chooses the model to best fit one’s data after what
may be a long process of model fitting and iterative refinement, but then
(wrongly) acts for purposes of statistical inference as if the model had been
decided on without any reference to the data. Modern computing power
augments this problem by making it feasible to fit many models. Naturally,
the model finally selected fits the data ‘too well’. There is as yet no fully
satisfactory solution to this difficulty. The problem is only partially
alleviated by choosing models using such model-choice criteria as the
corrected Akaike Information Criterion (AICc) [19]. Bayesian model-
averaging is another, albeit computationally expensive, alternative [20].

Experimentally, the possibilities available to epidemiologists are limited.
There have been a few supervised healthcare interventions where a
randomised group was encouraged to change lifestyle, but such interventions
cost millions of dollars [21]. Prospective or cohort studies are relatively bias
free, and are the ‘gold standard’, given that people cannot generally be
randomised to adopt different lifestyles as in a clinical trial, and certainly not
while the effect of doing so is in doubt. Prospective studies may however
take many years to complete and accumulate only a few cases. They cannot
include currently unknown risk factors. Retrospective or case-control studies
can be carried out quickly, are more cost-effective and are widely used [21].
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9.1.3 Definitions

Some of the technical terms used in this chapter are now defined.

Risk refers to the probability that an event such as illness or death will occur.
Relative risk or risk ratio is the ratio of risk in exposed individuals to risk in
unexposed individuals. Attributable risk is the risk that could be removed if
the exposure to the risk factor were eliminated. Last [16] gives full
definitions of these concepts.

The hazard of an event (such as death) has a precise meaning in statistics.
For a hazard h(t), h(t)dt is the probability that the event will occur in the time
interval (t, t+dt), given that (conditioned on the fact that) it has not yet
occurred by time t. When more than one event can occur, the intensity p(t) is
defined such that p(t)dt is again the probability that the event will occur in
the time interval (t, t+dt), but now conditioned on the previous history of
such events. Intensity generalises the concept of hazard to repeatable events.

The likelihood function is the probability or probability density function
(pdf) of observing the data given the model. Statistical inference is often
likelihood-based. In particular, there is a class of powerful likelihood-based
tests called score tests [22] where the test statistic is the derivative of the
logarithm of the likelihood function with respect to a model parameter of
interest, evaluated in the limit of ‘no effect’ when the parameter value is
zero.

9.1.4 Current situation and trends in risk analysis

The methods of risk assessment currently used are mainly parametric models
of the hazard or of the probability of disease or morbidity, fitted to data
using likelihood-based methods. The widespread use of likelihood functions
based on point-process models unifies this field methodologically.

While some likelihood functions are comparatively simple, such as those
used in logistic regression, others are more complicated. These latter
likelihood functions are derived from the theory of counting processes [23],
and enable models of the intensity of disease as a function of spatial and
temporal location of susceptible individuals and of ‘environmental insults’ to
be fitted to data [24]. Thus the stochastic theory of counting processes is the
probabilistic underpinning of modern risk assessment, and likelihood-based
methods of inference are its statistical methodology. The ‘executive arm’ is
the great availability of data and of computing power, with aids such as
geographical information systems (GISs) replacing the older use of maps.
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Satellites such as Landsat provide detailed information that can be organized
by a GIS to facilitate epidemiological studies.

In statistics generally, there has been for some years a debate between
Bayesians and frequentists. Frequentists regard the probability of an event as
a statement about frequencies in many hypothetical trials, while Bayesians
take a subjective view of probability. This enables Bayesians to write down
‘prior probabilities’ of events that reflect one’s beliefs before the data are
examined, and to use Bayes Theorem (which statisticians of all stripes
accept) to construct a statement of the ‘posterior’ probability of the event
given the evidence.

The Bayesian/frequentist debate has rumbled on for years. The
computationally more expensive Bayesian methods have gained ground in
the last decade, and some Bayesians have claimed that their approach
constitutes a new scientific paradigm in the Kuhnian sense. Recently, there
is some evidence that many statisticians are using an eclectic mixture of
Bayesian and frequentist methods, in pragmatic attempts to find the best
solutions to particular problems. Bayesian concepts such as prior probability
and frequentist concepts such as confidence intervals may be mixed in the
same article, and this is not now considered such a solecism as it was a few
years ago. It is becoming ‘horses for courses’ as practitioners seek answers
to practical problems, and leave the philosophy to take care of itself.

This trend can also be seen in epidemiology. Bayesian methods such as
Markov-chain Monte Carlo models are now commonly used in disease
mapping, where all available information must be synthesised, while
frequentist methods predominate where it is necessary to present evidence of
a hypothesis for public debate, independent of prior belief.

9.1.5 Conditional likelihood

Likelihood-based methods of inference are the most powerful, so tweaking
the ‘plain vanilla’ or unconditional likelihood function in some way is an
attractive option.

Many ingenious likelihood-based statistical methods have been developed to
eliminate confounding variables, such as the use of Cox’s partial likelihood
[25] and the use of matched pairs in logistic regression [26, 27]. Both of
these methods rely on conditioning the likelihood function in order to
remove confounding variables. We need hopefully sacrifice only a little of
the information in a dataset to get rid of confounding bias.
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Thus in the matched-pairs case, we model the probability that one particular
individual was a case, and N others were controls, given that (conditioning
on the event that) one of the N individuals was a case. This approach enables
risks due to known risk factors such as exposure to asbestos to be computed,
while confounding variables are absent because of the matching of cases to
similar controls [26, 27].

In Cox’s partial likelihood approach [25], the hazard that an event such as
death occurs to an individual is conditioned on death occurring to one of the
individuals in the ‘risk set’. Applying this conditional likelihood approach to
the proportional hazards model, in which hazards from different sources
multiply rather than adding, the ‘baseline hazard’ due to common
confounding variables cancels out, leaving the dependence on risk factors
alone in the likelihood function. Often in prolonged cohort studies, the
baseline hazard of an outcome is expected to vary with time in an unknown
way, and so the technique of Cox regression or partial likelihood is
appropriate.

This chapter illustrates the state of the art of conditional likelihood methods,
with two such likelihood-based approaches, but using less familiar
conditional likelihoods.

The first study (Section 9.2) derived from an attempt to derive the well-
known Knox test of space-time clustering [28, 29] as a score test. Here the
hazard of infection is modelled as being elevated if close in space and time
to a ‘case’ of the disease. Point-process models lead to a score test of
infectious aetiology, and to estimates of the relative risk, when the
population density S(x, t) is known. When S is not known, but must be
imputed from the locations and times of the cases, we are asking a lot of the
data. By making reasonable assumptions about the dependence of S on space
and time (that it factorises) it is possible to derive score tests based solely on
the locations and times of infections. The Knox test can indeed be derived as
a score test, and so can a ‘corrected’ version of the Knox test, which it is
hoped may be more powerful than the Knox test itself.

In the second study (Section 9.3), which was motivated by an outbreak of
dysentery in the North West of the UK, the risk of contracting dysentery
(Shigella sonnei) from school toilets is investigated using a conditional
likelihood related to the ‘weird bootstrap’ [23]. Data on infected individuals
only are used. Intuitively, each individual acts as his or her own control; they
will be infected at moments when the risk is high, and their younger selves
who were uninfected at moments of lower risk play the part of controls.
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This study is unusual in that rather than asking if there is an infectious
aetiology, we ask if a particular mode of exposure to an infectious disease
constitutes a risk factor. This study also models hazards of infection from
independent sources as adding (as they should) rather than multiplying as
they do in Cox’s proportional hazard model. By fitting the model to data, we
can estimate the relative risks of infection corresponding to the various risk
factors, and also the attributable fractions of infection.

In this analysis, the device of blocking (matching) was also used. The
transmission coefficient was assumed to be identical for children using the
same toilet block, and to vary between toilet blocks. Children using the same
block are demographically similar. Blocking makes it unnecessary to model
the way in which the hazard of infection with S. sonnei depends on
demographic variables.

9.1.6 Weird likelihoods

In general, infection is both a result of earlier infections (an effect) and also
a cause of later infections. Some of the conditional likelihoods used in
inference are derived by loosening this relationship, and imagining that
cause and effect can be decoupled. We consider some other pattern of
infection than the observed one, e.g. that those who were infected might
have been infected at different epochs (Shigella study), or that infections
might have occurred at any permutation of the observed space-time
coordinates (space-time clustering study). We then condition the observed
likelihood on the more general pattern of infection. However, in constructing
this more general pattern of infection, the infections are only regarded as
effects, and not as the originators of new infections. Since Anderson et al.
[23] have referred to the Monte Carlo generation of random events from the
general pattern of infection as the ‘weird bootstrap’, in this chapter the
corresponding likelihoods, for want of a better term, are referred to as ‘weird
likelihoods’.

9.2 EXAMPLES OF METHODOLOGIES: IDENTIFYING SPACE-
TIME CLUSTERS

Using conditional likelihoods derived from point-process models, methods
are developed for testing whether cases have an infectious aetiology, and for
estimating the relative risk arising from proximity to an infecter in space and
time.

A problem here is the definition of ‘proximity’. If we do not even yet know
whether or not a disease has an infectious aetiology, we are unlikely to know
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the ‘critical distances’ defining spatial and temporal proximity. Use of the
likelihood framework shows the way to a solution.

The likelihood function for n events arising from a point process occurring
in space and time may be written as

where p is the intensity of the point process, S the population density, and
are the space and time coordinates of the infection, and the integral runs

over a region of space (usually a surface) and time.

This likelihood function for a point process can be derived by writing the
likelihood as a product of conditional probabilities for each small time step,
where if an infection occurs, the conditional probability is p(u)du, and if no
infection occurs, the probability is 1-p(u)du. Equation (1) follows by taking
the exponential term as the product-limit. This expression is well known [25,
26, 30].

A simple model of a point process with infection is to model p as

where is an unknown rate constant, and infection is increased by a factor
near an infected individual, i.e., the relative risk from proximity to an

infecter is

The definitions of f and g are:

where and are space and time critical distances. We also have
because a case cannot cause itself. Other definitions of f and g can be

made, and much of the methodology will still carry through.
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The rate constant is unknown and is a nuisance parameter. It may be
removed in three ways, as a marginal likelihood obtained by integrating
over its prior distribution with pdf by estimating and plugging the
estimate back in to obtain a profile likelihood, or by conditioning the
likelihood on the ‘weird’ likelihood

that n individuals are infected. In any case, to a constant factor, we have the
conditional likelihood

where and

Assuming that the population density S(x,t) is known, equation (4) can be
used to estimate the relative risk (e.g., as a maximum-likelihood
estimate) and to derive confidence limits on The starting point is the log-
likelihood from equation (4),

Maximizing this with respect to    gives an estimate of the relative risk
A large-sample 95% confidence interval can be derived as the range of for

which exceeds Equation (5) can also be used to derive

a score test of that The score statistic is

which is the number of close pairs of cases relative to the number expected if
infections occur randomly. The variance of the score is estimated as
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Hence a standardised score can be
calculated, which is (for very large samples) normally distributed. Its
reference distribution is better found by Monte Carlo simulation, i.e. by
simulating random coordinates and times of infections a large number N
(e.g., 10,000) times from the trivariate pdf and recalculating
values Z of the standardised score. The p-value of the test is read off as the
proportion of simulated Z values that exceed z.

The space and time critical parameters and are usually unknown. The
test proposed here and the Knox test therefore have the unusual property of
having nuisance parameters present only under The asymptotic theory of
such tests is given in [31, 32]. Here however exact p-values are found using
the Monte Carlo approach. The following argument derives the form of the
test statistic for use with unknown critical parameters that gives the most
powerful test.

By the Neyman-Pearson Lemma (e.g., [33]), particularising to the situation
described here, asymptotically most powerful tests must be based on the
difference of log-likelihoods

where is the maximum-likelihood estimate (MLE) of and

denote the MLE of the nuisance parameters The log-likelihood

under when does not depend on

From, e.g., [33], the asymptotic approximation of expression (7) is:

Maximizing this expression for and yields

As we do not wish to reject if sup z < 0 (this is a 1 -tailed test), is

replaced by sup z . Tests based on the statistic sup z are therefore, for large
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samples, the most powerful possible. In practice, sup z is computed both for
the sample, and for N simulations, and the p-value found as the proportion of
simulations for which We now have a test for space-time

clustering when the population density is known as a function of space and
time, but the critical distances are unknown.

The population density S(x,t) may however not be known. The Knox test
[28, 29] has been widely used in this situation. Here the test statistic is
simply the number of close pairs. Its reference distribution is best found by
permuting the labels of either space or time, thus making the Knox test into a
permutation test. Such permutation is justified if the population density S(x,t)
= A(x)B(t). Here the population grows or decays uniformly throughout the
region. The Knox test is known to give spurious results if this assumption is
not met, for example if a population migration takes place. Kulldorff [34]
suggests that the Knox test be tried, and only if it gives a significant result is
there the need to acquire population data and to carry out any more
sophisticated test.

The Knox test can be derived as a score test using a ‘weird’ likelihood,
under the assumption that the population density factorises. Restricting the
‘weird’ likelihood in equation (3) to cases whose space or time coordinates
are permutations of the observed cases, and conditioning the likelihood in
equation (1) on it, the likelihood becomes

where the terms in S have cancelled out.

It is easy to see that the Knox test follows as the score test based on the

statistic from this likelihood function, where This

formulation of the test enables the relative risk to be estimated as the
MLE of and for a confidence interval on to be estimated. For
computational purposes, the denominator would be replaced by a large
number of randomly chosen permutations.

Besides the large-sample confidence interval based on the Normal limit of
the likelihood function, an exact confidence interval for can be computed
by exploiting the relationship between a statistical test and a confidence
interval, that the confidence interval is the set of values of for which the
hypothesis can not be rejected. The score test can be done for any
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value and its p-value found as where s is the

observed score.

Another benefit of the formulation of the Knox test as a score test is that it
makes clear how covariates such as age and gender should be treated.
Suppose that there are m classes of individuals. The risk now becomes a
‘who was infected by whom’ matrix, where is the risk that a class l
individual infected a class k individual. The population density S now also
sprouts a class suffix. The likelihood becomes

where c(i) denotes the class of the ith individual.

It is interesting to see what happens if we do not condition on a ‘weird’
likelihood. On conditioning the likelihood in equation (4) on the event that
the cases are drawn from some permutation of space-time labels of the actual
cases, we obtain the conditional likelihood

The corresponding score is now not quite the Knox statistic, as the

exponential term does not cancel. The expression would only be

invariant under permutation if either A or B were a constant. The exponential
term gives the probability that no other cases were infected besides the n
cases observed, and under that this varies between permutations.
Essentially we have the score statistic from equation (6), to be evaluated by
permuting space or time labels. The second term is the expectation of the
first, and varies much less strongly with permutation.

Estimating S=AB as proportional to a product of sums of delta-functions

at the space and time coordinates of the observed cases gives a score statistic
which after a slight adjustment becomes the modified Knox statistic
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The first term is the Knox statistic, twice the number of pairs of cases that
are close both in space and time. The second term is the expectation of the

first under This follows because is the number of cases close in

space to the jth case. A fraction of cases are close in time to

the jth case, so if space and time distributions of cases are independent, we

should expect the number of close cases to the jth to be

and twice the total number of close cases to be

The proposed test is thought likely to be more powerful than the unmodified
Knox test, following an argument from Lehmann [35]. A test statistic such
as the number of close pairs can only take integer values, whereas the
statistic in equation (11) breaks this degeneracy and so can take many more
values. Consider a set of simulated values of the test statistic. In moving
from the Knox test to the proposed test, the fraction of simulated values
greater than or equal to the sample value will decrease, making the p-value
of the test smaller and the test more powerful, as all the previously lumped
values now span a range.

Baker [36] gave a version of the Knox test for use when time and space
critical distances are unknown. The same procedure follows for the score
statistic in equation (11). The test statistic sup z is evaluated by evaluating z
at a large number of grid points that cover all ‘reasonable’ values of the
space and time critical distances. Its reference distribution under is found
by treating a large number of permuted datasets identically, i.e. we find sup
Z for each permuted dataset. The variance of T is needed for this, and can be
found from the simulations, but it is more convenient to compute it using a
formula.

The derivation of this follows the method for calculation of permutational
variances of Knox-like statistics set forth very clearly by [37]. The
calculations are straightforward but somewhat tedious, and so only the result
is quoted here. Its correctness has been verified by simulation studies.
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As an example of the use of this modified test, McHardy et al. [38] gave grid
coordinates of homes and year of onset of 22 cases of Kaposi’s sarcoma, in
the West Nile district of Uganda. The authors state that computer analysis
using the Knox [28] and Barton and David [39] techniques showed no
significant space-time clustering. Time criteria varied from less than 1 to less
than 5 years, and space criteria up to 24 kilometers (km). There are two pairs
of cases for which onset was in the same year, and who lived within 2 km of
each other.

A reanalysis using a Knox test with months gave
p = 0.042, with 50,000 simulations. The modified test described here gave

p = 0.0176. The distribution of the test statistic T from equation (11) is

shown in Figure 9.1.

Using a grid of five time values from 0 to 4 months, and 16 space values
from 0 to 15 km described in Baker [36] gave a significance level of

p = 0.109, with years, and The corresponding test

proposed here gave p = 0.0609 over the same grid. The ratio of observed
to expected counts was 12.8.

These tests look promising, and it is hoped that they will be applied by
practitioners. A FORTRAN95 program for the modified Knox test and
details of the algorithms used are available from the author.

9.3 EXAMPLES OF METHODOLOGIES: THE ‘WEIRD
BOOTSTRAP’ AND SHIGELLA SONNEI

The reported incidence of sonnei dysentery increased throughout the UK in
the early 1990’s, especially in the North-West, and was particularly high in
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Figure 9.1 The distribution of the test statistic T from equation (11)

Salford. A retrospective study was carried out of dysentery transmission
between children attending four Salford schools, to address the question of
where infection was occurring.

A model was formulated in which the hazard of infection was a function of
risk factors indicative of high contact rates, such as infecter and contact
living close to each other, attending the same school, etc. Relative risks and
attributable fractions were estimated by the method of maximum likelihood.
This was carried out numerically, using a FORTRAN95 program written by
the author, and which in turn used the NAG [40] function minimiser
E04UCF.

The analysis showed that transmission of dysentery from contact with
infected school toilets was not a major cause of infection in schools
implementing PHLS guidelines [41], and neither was contact in the
classroom. The analysis supported the view that closing schools down
during dysentery outbreaks was not a useful control measure.
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9.3.1 The shigella problem

Shigella sonnei has been responsible for over 90% of isolates of bacillary
dysentery in the UK in recent years. Young children aged 5-8 years are at
greatest risk. A typical case presents with diarrhoea lasting 2-3 days after an
incubation period of 1-3 days. Abdominal cramps, vomiting and fever may
occur. Susceptibility is general and immunity following infection is short-
lived. Infection is transmitted by the faecal/oral route from human cases or
asymptomatic excreters.

In 1991, there were approximately 9,200 laboratory reports and/or
notifications of S. sonnei in the UK, representing the highest rates recorded
for twenty years. There were nearly 17,000 in 1992, and thereafter the
annual total has fallen steadily from below 7,000 to under 2,000 today. This
study is of the 1991-1992 epidemic.

The isolation rate of S. sonnei in the North West Regional Health Authority
rose sharply from 6.2/100,000 in 1990 to 51.3/100,000 in 1991. The
outbreak commenced in September 1990. The total number of isolates
reported to North Western Public Health Laboratory (NWPHL) in the period
1990-92 was 940. The peak annual isolation rate (March 1991 to March
1992) was 230 per 100,000. Of the 940 cases, 15.1% of isolates were from
0–2 year olds; 61.4% of isolates were from 3-11 year olds; and 22.7% of
isolates were from people aged 12 and over.

Children aged 3-11 years attending 54 out of 101 primary and nursery
schools in Salford were involved. The highest number of affected children
attending a particular school was 49 (isolation rate 19%). More than five
children were affected in nine schools, and the isolation rate exceeded 5% in
six schools.

Ascertainment and control of cases was undertaken by Salford
Environmental Health Department (EHD) in close liaison with schools.
Because of the protracted and serious nature of the outbreak, head-teachers
of schools in affected areas were asked to report cases of diarrhoea and/or
unexpectedly large numbers of absent pupils to the EHD. If two or more
cases of sonnei dysentery were confirmed within one week, control
measures were applied.

School infection control policy consisted of: emphasising the importance of
handwashing to teachers; inspecting toilets to verify reasonable hygienic
standards and the presence of adequate warm water, soap and disposable
towels; exclusion of pupils for 14 days following the onset of symptoms;
and, thrice daily, thorough cleansing of toilets with disinfectant.
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Figure 9.2 shows the four-weekly incidence of confirmed cases of sonnei
dysentery in 3-11 year old Salford residents from January 1990 to December
1992.

Figure 9.2 Confirmed cases of sonnei dysentery in the Salford
epidemic

9.3.2 Data collection

The study period was defined retrospectively from January 1, 1992 to July
31, 1992. Figure 9.2 shows that this period forms a discrete episode within
the epidemic curve of the general Salford outbreak.

The study population was defined using Salford EHD outbreak investigation
records which gave the school attended by all cases and contacts. It
consisted of children from the four Salford primary schools with the highest
numbers of isolates during the study period.

EHD records contained name, address, age and date of onset of symptoms of
affected individuals. Sex was imputed from first name, and grid references
from home addresses. It was thus possible to calculate the distance between
the homes of any two children. Schools provided details of class
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membership and class size during the study period for the entire study
population. These data were collected in September 1992.

Two of the schools studied were only a few kilometers apart. To examine the
effect of infections arising from children not attending the same school, data
were extracted from the EHD records on all children up to age 11 living in
that area who were infected during the study period.

All four schools had several toilet blocks. In many instances, a particular
block was said by school staff to be used exclusively by members of a
particular group of classes. Class membership was therefore associated with
a unique toilet block. Staff were closely questioned about the possibility of
children using toilet blocks other than the one associated with their class
(especially during playtime when they were more mobile within the school
premises). Where indiscriminate usage was thought to occur, individuals
were not assigned to a toilet block; these individuals comprised only 4% of
the total.

Notification to the EHD of cases of diarrhoea in schools continued
throughout outbreaks. It is likely therefore that the majority of affected
children came to the attention of the EHD. The policy of Salford EHD
during the study period was to visit and obtain faeces samples from all
contacts of known cases of S. sonnei dysentery.

The index case in a household or series of community contacts was taken to
be the first case notified to the EHD. On microbiological investigation
however, some of the contacts were found to be infected prior to the index
case or to be co-primary cases. The EHD outbreak investigation records do
not state whether cases were incident or revealed through contact tracing.
The accuracy of onset dates of cases revealed through contract tracing
mainly relies on the memory of parents (‘recall bias’). Most onset dates are
likely to be accurate to within two days, however.

9.3.3 Risk factors for dysentery transmission

The following risk factors were modelled:

1.

2.

Toilet block: This is a plausible source of infection.

Pupils’ age: This may affect transmission of S. sonnei in several ways.
First, children of 5-6 years are at greatest risk of infection. Also, children
might tend to be at greater risk of infection from members of their peer
group, who would naturally tend to be of similar age.
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In the analysis, the device of blocking copes with the first effect, and the
second effect is modelled explicitly.

3. Pupils’ sex: Thomas and Tillet [42] show that there are slightly more
isolates of S. sonnei from male primary school children, a result also
seen here (male-female ratio 0.55). Most toilet blocks were single sex.
Males are therefore more likely to use the same toilet block and more
likely to have an early onset date, if a significant fraction are infected. It
is also possible that the sexes segregate during play, so that for example
males are more likely to acquire infection from males than from females.

The device of blocking prevented the wrong imputation of this sex-based
effect to infection acquired from school toilets.

4.

5.

6.

7.

8.

Pupils’ class-membership: Person-to-person transmission or
environmental contamination within the classroom could lead to
increased transmission rates.

Infection from siblings: This is known to be common.

The infection of pupils from school friends who are not classmates:
Person-to-person transmission between friends who use the same toilet
block could occur during break-time or after school hours. Here an
enhanced transmission between peers could be wrongly ascribed to use
of the same toilet block. This effect means that estimates of infection
arising from use of a common toilet block may overstate the amount of
infection acquired from contamination of the toilet.

Pupils’ attendance at a particular school.

Proximity: The infection of pupils from contact with an infecter living
nearby, e.g. by playing together outside school hours.

It can be seen why it is important to model the effect of all these factors
simultaneously. For example, many UK children are born within two years
of a sibling, and if siblings tend to use the same toilet block, and the sibling
effect were not modelled, we would erroneously ascribe sibling infection to
infection from contaminated toilets. Modelling the main effects described
above reduces error from confounding bias.

9.3.4 Model assumptions

The model assumptions are:
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1.

2.

3.

4.

5.

From DuPont [43], upon infection with S. sonnei there is a mean latent
period of 1.4 days before the recipient becomes infectious, followed by
an infectious period of 2.6 days. Onset dates were known only to the
nearest day, and so it was considered that infection could have occurred
at any time up to 4 days prior to onset. It is in theory possible to
determine these parameters from the data; however with the values
quoted, the results were not sensitive to changes in the parameter values.

After onset of the disease, children are removed from school until
recovered. Hence it was assumed that after the onset date, they are not a
source of infection to children attending school.

On return to the school, children are immune for the duration of the
epidemic. Hence, after the onset date they cannot be reinfected. This
assumption is reasonable, as Keusch and Bennish [44] conclude that for
several months after infection there is immunity to Shigella reinfections
with the original serotype.

Transmission is homogeneous throughout the whole population, with the
exception of transmission attributable to risk factors modelled.
Interaction terms between these effects were also studied.

The relative risk of infection is the same for each block, and similarly
for each class, etc.

Tables 9.1 and 9.2 and Figure 9.2 give a general picture of the four schools
in the study.

Table 9.1 gives some demographic details of cases in the four schools, and
shows that the mean age and standard deviation of ages of pupils from
whom S. sonnei was isolated are comparable between schools. Table 9.2
shows the age ranges and number of classes using toilet blocks. There was
an average of 30 pupils per class.

9.3.5 Statistical modeling

In this section we derive maximum-likelihood estimates and standard errors
of the relative risks of infection attributable to various risk factors and of the
corresponding attributable fractions of infections.
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Risk markers and relative risks

Let the onset of morbidity for the N infected individuals occur at successive
epochs These onset times start at the beginning of the infectious

period. We are interested in the likelihood of observing some subset n of
these (those who attend one of the four schools studied), and in the others
purely because of their role as causative events of infection. Each individual
can have any of q types of spatial proximity to infected individuals. Define
risk markers

For example, proximity to the house of an infected child is a risk marker,
because children play together, and we can take f = 1 if the Euclidean
distance between their houses is less than some distance d. Define also

More precisely, for g = 1 we require that Here was taken as 4

days. When two infections occur simultaneously, it is not known who
infected whom, and so we set The problem of tied

onset dates is discussed in detail later.

The hazard of infection of the kth individual at some epoch u is written

where is the (unknown) transmission coefficient for dysentery, and the
reduced hazard is modelled using the linear model:

where the terms are relative risks, unity if the corresponding
risk marker (closeness to an infecter) has no effect.

This model assumes that infected individuals cause infection independently.
The values of f and g will depend on one or more of several critical values
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such as the distance d, used to define proximity, and the duration of infection

9.3.6 The likelihood function

Following the method of derivation of likelihood functions outlined earlier,
the likelihood function of observing infections at epochs            is thus

where P is the probability that no other individuals in the population are
infected. Once the kth person becomes infected, data are retrospectively
available over the period to The data are for the point when symptoms
occur. This will be true for cohort and retrospective cohort or ‘trohoc’
studies, and for case-control studies. Here will be some epoch prior to the
start of the epidemic.

Similarly, the ‘weird’ probability that the observed number n of infections
happen to the particular individuals who were observed to be infected, but at
any epoch within the period of observation, is

The conditional likelihood is

The nuisance variables and P have disappeared. One can also obtain
equation (16) as a profile likelihood by estimating from

equation (14) and substituting it back into equation (14). The estimate of is

and n! is replaced by its large-sample approximation Yet

again, equation (16) can be derived by giving an (improper) prior
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distribution with pdf On integrating over from zero to infinity, we
regain equation (16), but with (n –1)! replacing n!. The constant is of course
irrelevant for the subsequent inference.

Here is the pdf that infections were experienced at the observed epochs
rather than at some other possible epoch. In the denominator of equation
(16) although infections as outcomes can occur at any epoch in the range, the
infections as causative events are fixed at their observed epochs. Cause and
effect have been decoupled, and we imagine infections occurring at new
epochs, and their associated infecters still fixed as they were.

The logic leading to the partial likelihood (Cox regression) method [25] is
very similar. There, one can condition the likelihood so as to remove the
unknown function (in our notation) The conditional likelihood used
here is simpler, and loses less of the information from the likelihood in
equation (15). It is appropriate for the short period of observation considered
here.

We now develop equation (16). Evaluating the integrals, taking logs, and
discarding the n! factor, we obtain as

where

and

Since g is a 0–1 function, the duration of infection of the jth

infecter, unless the lth infection occurs before the infection period has
finished, or the interval commences after it has begun to operate. It is zero if
the jth infection occurred too late to have caused the lth infection. Thus
which can be calculated from the data, is the probability that a random cause
is ‘close’ in attribute-space to a random infection that it preceded, weighting
causes by their periods of operation.
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Maximising l with respect to can be carried out numerically, and yields
MLEs of relative risks. Analytically,

where

and

Setting gives

The are estimated fractions of the kth infection due to the rth risk

marker, or estimated attributable fractions. Equation (20) is defining the
estimated attributable fraction due to the rth risk marker as a sample mean,
and the MLE of relative risk is the solution of the set of equations (19).

The covariance matrix for may be estimated as the inverse of

which is trivially calculable. Since the score

and the covariance matrix of the score [25] is

the MLE of the covariance matrix of the attributable fraction      is
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which turns out to be just the usual formula for the sample variance.

To obtain accurate confidence intervals on relative risks, for large samples
one can plot the profile likelihood (all other parameters except the of
interest are varied to maximise the likelihood). The 95% confidence limit is
at the point where twice the log-likelihood has decreased by
Confidence limits on the attributable fraction of infections from toilet blocks
are shown in Figure 9.3.

Figure 9.3  Confidence limits on the attributable fraction of infections
from toilet blocks

For small samples, the simplest (and most computer-intensive) method is to
carry out bootstrap resampling to obtain a series of MLEs, They are
sorted, and the confidence interval taken between percentiles of the resulting
sample distribution. These methods simultaneously give confidence intervals
on the attributable fractions, i.e. by calculating these latter and sorting them,
and proceeding as before.

When individuals differ in susceptibility because of age or other
demographic variables, so that varies, similar individuals may be grouped



246 OPERATIONS RESEARCH AND HEALTH CARE

into blocks, and conditional likelihood found for each block. The

total conditional likelihood is In this study, toilet blocks were

taken as the unit of blocking, as one block is only used by children of similar
age, and usually of the same sex.

Having estimated by maximising the total conditional likelihood, the
estimation of attributable fractions is also straightforward. The score is the
sum over block scores, etc. Equation (20) stands, but equation (19) becomes

where all block-specific quantities have been given an upper suffix in
parentheses. Thus the are now calculated using only infections in block i.

9.3.7 Results

The first question considered was the extent to which infection is acquired
from schoolmates rather than simply from other children living in the same
area. The model was fitted to onset dates for children attending Schools 1
and 4, which are just over 1 km apart. Infections could be from children
attending the same school, the other school, or from 70 additional cases
among children living in the area. Transmission of infection could be
enhanced if the infecter lived within 3 km of the contact, attended the same
school, or was a sibling of the contact.

Table 9.3 shows the results. The model parameter is ‘relative risk minus
unity’; thus, it is zero if that risk factor has no effect. To illustrate the
meaning of the table: the column labelled ‘z’ shows the relevant model
parameter divided by its standard deviation; parameters with z > 1.65 will
correspond to risk factors that significantly enhance disease transmission
(one-sided test, 5% significance level). The second to the last column shows
the estimated percentage of cases attributed to the corresponding risk factor.

Thus, children living in the same area were 185.8 times more likely to infect
a contact than infecters who did not, and this effect is significant (z = 3.91 >
1.65). 45.7% of infections were attributed to this risk factor. Nearly 36% of
infections arise because the infecter attended the same school as the contact.
Hence more than half the infections do not occur at school.
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The next step is to examine infections acquired purely from schoolmates in
all four schools. Table 9.4 shows the results of fitting the model to onset
dates classified by school, toilet block, class, and neighborhood.

Extra infections attributed to sharing a toilet block with an infected
individual are only 13% of the total infections acquired from schoolmates,
and presumably, as mentioned earlier, some of this effect may not be due to
direct contact with infected toilets. Figure 9.3 shows the upper 95%
confidence limit on the attributable fraction obtained from the profile
likelihood using the factors in Table 9.4. The lower 95% limit would lie
below zero. This effect is not in fact statistically significant, and so may
even be entirely absent. Hence the level of hygiene currently prevailing
during outbreaks is certainly adequate, and little would be gained by extra
spending on disinfection.
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The effect due to sharing a classroom is also small at 4% and not quite
statistically significant.

The sibling effect is significant at more than four standard deviations, and
siblings are very many times more likely to infect each other than non-
siblings. However, less than 14% of infections arise in this way, as each
contact has on average few siblings, but many schoolmates.

Again, the parameter measuring increased transmission between children
within a year of the same age also hovers near statistical significance. Such
an effect if present would account for 15.5% of infections.

Enhanced transmission between children who live close to each other
certainly occurs (z > 1.65). This suggests that infection does not occur only
on school premises.

Finally, Table 9.5 shows the results of including those factors identified as
important, returning to data from only the two schools in the same area first
considered. Again, infections acquired from school toilets and from
classmates comprise only 4% of the total. There may be increased contact
with other children of the same age and attending the same school, and one
fifth of all infections arise from schoolmates living nearby (within 0.75 km).
This increased risk did not occur with children from other schools living
nearby.

It therefore seems possible that relatively few infections actually happen on
school premises, but that attending a common school facilitates contact
between children outside school hours, e.g. near their homes. From Table 9.5
one could attribute an upper bound of 3.8 + 2.3 = 6.1% of infections to
contacts occurring on school premises, excluding contacts with children of
the same age, or 3.8 + 2.3 + 21.1 = 27.2% including the latter. Not all of
these necessarily occur on school premises, but at most about a quarter of
infections can occur there. Hollins [45] reached a similar conclusion, that
much infection is spread outside the school environment between
neighboring families.

9.3.8 Conclusion on the role of the schools in dysentery transmission

The role of schools in spreading infection is of great interest to the public.
Out of the total of 36% of infections that could be attributed to schools,
perhaps only 6-27% of infections may arise on school premises. Since the
four schools with the greatest incidence of S. sonnei were studied, the true
attributable fraction of infections may well be even less than this figure.
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The majority of infections are spread between children living in the same
area, between siblings, or between schoolmates living close to each other.
This last finding suggests that school attendance mediates children’s social
contacts; children do not often acquire infection from children attending
other schools, even if they live nearby.

Closing schools during outbreaks of dysentery causes considerable economic
loss. It would at best reduce the rate of infection by a quarter, and might
even increase it, if children spend the freed time playing with neighboring
children.

School toilets are often thought by the public to be the root of all evil where
dysentery infection is concerned. In this study, no statistically significant
amount of infection could be attributed to this source. This finding thus does
not support the conclusion of Hutchinson [46] that toilets represent a major
risk factor.

There would seem little point in attempting to reduce infections occurring
within the classroom. It seems that sharing a classroom with an infected
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child is not a risk factor. This is perhaps not surprising, as there will be little
body contact in the classroom; it suggests that environmental contamination
via fomites, etc. is negligible. However, one fifth of infections arise because
of contact with those living nearby (within 0.75 km). It might be worthwhile
encouraging parents to keep their children away from possible infecters
during outbreaks, or to discourage their infected children from playing with
others.

9.4  AVENUES FOR FURTHER RESEARCH

The practical aim of epidemiological research is to identify risks to public
health, and to present reasoned evidence such that preventative action will be
taken.

We are moving into a time when great amounts of data and great computing
power will be available to the researcher. There is a need for the science of
statistics itself to develop in the area of model choice when very many
models are considered by the ‘data miner’. It is also beginning to be
necessary to evaluate the many different models and tests available in order
to produce ‘good practice’ guidelines.

The research presented in this chapter is based firmly on statistical
principles. The rallying cry of ‘back to orthodoxy’ will never be popular, but
we must not lose sight of basic principles in the welter of new possibilities
opened up by increased computing power.

Imaginative methods of modelling and of carrying out statistical inference,
such as Cox’s partial likelihood, are required, in order to continue to make
valid inferences about risk in the presence of confounding variables.
Sophisticated numerical methods and algorithms are also needed to enable
the rapid computation needed for epidemiological studies in the century.
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SUMMARY

Measuring health outcomes is critical for individual and societal decision
making. This chapter briefly reviews the field of health outcomes modeling
in general and provides detailed theoretical background for one specific class
of such models, the Quality-Adjusted Life Years model, which is primarily
grounded in operations research and utility theory. The chapter describes
methodological issues and concludes with a discussion of promising areas
for further research.
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10.1 INTRODUCTION

The measurement of health outcomes is a critical matter in medical decision
making. When clinicians and patients make clinical decisions such as
choosing among alternative medical treatments, they base at least part of
their judgment on their perceptions of relative gains or losses in future
health. The existence of a good metric, or quantitative system, for measuring
future health resulting from alternative treatments would greatly facilitate
the process of making such decisions. The ultimate goal of medical
treatment is not to improve a particular clinical parameter, to eliminate
particular symptoms, or to cut costs, but to improve health of patients. There
is little dispute that improving health, in medicine, involves two main
components: increasing life expectancy or “length of life” and increasing
“quality of life” of patients [1]. Clinical outcomes defined in terms of
mortality or physiological measures such as blood pressure or intermediary
diagnostic test results, are often necessary, but insufficient, for making a
final treatment decision. Patients’ preferences for health outcomes need to be
captured and explicitly included when contrasting and evaluating alternative
treatments for making medical decisions. Any health outcome measure
would need to account, in some way, for both length and quality of life.

Similarly, at the population level, capturing and aggregating those
preferences is also often deemed necessary for evaluating new treatments,
health services or medical technology. Failure to include such information
may result in suboptimal decisions that do not conform to individual or
societal preferences. For example, in cost-effectiveness analysis, a standard
tool used in health economics, the costs and benefits of one health
intervention are compared with costs and benefits of another by calculating
the incremental cost-effectiveness ratio, which expresses the cost per
additional unit of health benefit conferred for one intervention compared to
another [2]. In such a model, the complete elicitation and estimation of
relevant costs and the most representative and accurate measure of health
benefits, or effectiveness, are needed. If a goal is to permit comparisons
across diseases or conditions, health benefits can be expressed in generic
terms such as “health-adjusted life years” (HALYs), as opposed to disease-
or condition- specific terms (such as number of specific cases averted).

HALYs can be viewed as a large field encompassing a number of
measurement systems, which differ in at least three overall dimensions: (a)
disease-specific versus generic measures; (b) non-preference versus
preference-based measures; and (c) use for individual versus societal
decision making. As mentioned before, a generic measure permits
comparison of health benefits across diseases or conditions and is not
naturally tied to a certain disease or condition (as would be the case with
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physical measures such as blood pressure or total cholesterol level or a
condition-specific rating scale such as a scale measuring back pain). As
noted by Fryback [1], another fundamental difference between measurement
systems is whether the numbers generated reflect individual preferences for
different health states and thus are derived from human judgment about the
relative desirability of being in one health state versus another, or are
derived in a manner not directly related to preferences. For example, the
eight scales of the short-form health survey SF-36™ [3] produce numbers
that do not reflect preferences. Utility-based models such as the Health
Utility Index [4], on the other hand, are specifically designed to reflect
preferences. Finally, it is important to note that measures designed to support
individual decision making may or may not lend themselves to aggregation
across individuals in a population to assist in societal decisions. Thus, in
terms of the applicability and validity of measurement systems, it is
important to consider the viewpoint being adopted. Nord et al. [5], for
example, have identified a number of limitations in aggregating individual
measurements of health-related quality of life for assessing the societal value
of health care investments and have proposed adjustments for dealing with
such problems.

A number of measurement systems have been developed by researchers
from many different disciplines. In this chapter, we primarily review
selected contributions of operations researchers, economists and
psychologists who developed one of the most widely used, and criticized,
class of HALYs – the quality-adjusted life years (QALYs). The QALY
model is a generic, preference-based measurement system designed to assist
in individual decision making. It is widely used for societal decision making,
provided that its limitations are properly dealt with [5, 6]. In this chapter, we
review some of the literature, present major methodological issues, and
identify promising areas of research.

10.2 QALY MODEL – THEORETICAL CONSIDERATIONS

10.2.1 Background

The concept and techniques of utility theory have been applied for health
outcome measurement in order to incorporate patients’ preferences and risk
attitudes. Such utility measurement techniques have been developed and
applied, to a large degree, within the context of “chronic health states”. A
chronic health state is generally defined as a health state that stays constant
over a relatively long period of time (typically more than one year). Most
real-life situations, however, challenge the assumption of a constant health
state. Chronic diseases, even when treated, are generally not stable but lead
to health status deterioration over time. Health states generally do not remain



MODELING HEALTH OUTCOMES 259

at the same level over lengthy periods of time even in healthy individuals,
for whom decrements are expected with the normal aging process.

The most widely applied model for health outcome measurement in medical
decision analysis is the quality-adjusted life year (QALY) approach. The
QALY model has emerged as the gold standard for health outcome
measurement [7]. Both life expectancy and quality of life are taken into
account in a QALYs measure. The number of QALYs is typically obtained
by multiplying life expectancy by a numerical weight associated with a
constant health state experienced during the remaining life expectancy. The
weight is a number between 0 and 1 where 0 is defined as “death” and 1 as
“perfect health”. On this scale, the weight associated with a health state
represents the health-related quality of life (HRQOL) of such health state.
The product of the HRQOL weight and the life expectancy is a measure of
the desirability of the health state experienced during the life expectancy.
For example, as shown in Figure 10.1, the health of an individual who has a
life expectancy of 20 years with a disease that has a HRQOL weight of 0.7 is
valued at 20 × 0.7 = 14 QALYs.

Figure 10.1 Illustration of QALYs in the case of constant health state

Extending the approach to sequences of chronic health states such as the
sequence shown in Figure 10.2, one typically calculates the desirability of
such a sequence by taking the sum of all products of duration and health
weight corresponding to the health states in that sequence. For example, an
individual with a health profile shown in Figure 10.2 would value that
sequence at [(1×8) + (0.7×5) + (0.4×7)] = 14.3 QALYs.

10.2.2 Theoretical foundation – Risk neutral QALY model

The quality-adjusted life year (QALY) model is a measurement technique
for health outcomes that takes into account both quality and quantity of life.
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Figure 10.2 Illustration of QALYs in the case of non-constant health
profile

It is the product of life expectancy and a utility-based measure of quality of
life of the remaining years of life. The QALY method was developed in the
1970’s [8]. The original theoretical properties of the QALY measure are
summarized in a paper by Pliskin et al. [9]. They show that QALY is a valid
utility function, which represents individual preferences, if three conditions
hold. These conditions are as follows.

1. Mutual utility independence (MUI) of life years (T) and health state (Q)
This assumption means that preferences for gambles over either one of the
two attributes, with the other attribute held at a fixed level, do not depend on
the particular level of that other attribute. For example, an arthritis patient
does not judge his own health state differently because he has five or 20
years remaining in his life. If MUI holds, one can construct a multiattribute
utility model for the health profile (Q,T) as follows:

where U(Q,T) is the utility of health profile (Q,T); U(Q) is the utility of
health state Q; U(T) is utility of life years T; a and b are scaling constants.

2. Constant-proportional tradeoff property This requires that the proportion
of the remaining life that one would trade-off for a specified quality
improvement is independent of the actual amount of the remaining life. For
instance, consider the situation where one asks an individual to trade off an
amount of time of his/her remaining years of life in order to have perfect
health versus the poorer health state. If he/she gives up 10 years out of 20
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remaining life years, he/she would equally give up 5 out of 10, 2.5 out of 5,
and so on. Thus, the proportional trade-off is constant, in this case always
exactly half of his/her remaining life years.

3. Risk neutrality over life years This assumption means that the utility
function for life years is linear. If risk-neutrality over life years holds in all
health states, MUI and constant proportional trade-off will also hold [10].

10.2.3 Theoretical foundation – Risk adjusted QALY model

The above three assumptions are the requirements for the standard QALY
model which assumes risk neutrality with respect to life duration and hence
assures linearity of the component utility function over life years. However,
the assumption of linearity is not empirically realistic. For example, McNeil,
Weichselbaum, and Pauker [11] found that patients with bronchogenic
carcinoma had moderate risk aversion over life years. Stiggelbout et al. [12]
found mild risk aversion in male patients with testicular cancer.
Additionally, Verhoef et al. [13] conducted a study with healthy women and
found risk aversion over life years, but risk-seeking preferences over
gambles involving short durations. On the contrary, in a different health
context, Mehrez and Gafni [14] found risk aversion when the length of the
durations increased. Thus, the violation of risk neutrality in the standard
QALY model would lead to invalidity of QALY as a representation of an
individual’s preferences.

However, QALYs can be defined in either a risk-neutral (standard QALY
model) or a more general risk-adjusted form (generalized QALY model),
depending on whether the decision maker is risk neutral or not with respect
to uncertainty regarding life years. If the decision maker is risk neutral with
respect to life years, then QALYs will be decomposed in the following form:

In both formulations, H(Q) is the quality weight, measured on a scale
between 0 (death) and 1 (full health), and r is the risk parameter that defines
the shape of the utility function for quantity of life. If the subject is risk
neutral, r=1 . If mutual utility independence and constant proportional trade-
off hold, then risk-adjusted QALYs, as defined by Pliskin et al. [9], are a
valid utility function representing preferences over constant health states
[10].

The more general risk-adjusted QALYs are defined as follows:
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10.2.4 Theoretical foundation – The zero-condition

Instead of the three assumptions established by Pliskin et al. [9], which
require knowledge of concepts from utility theory, Bleichrodt et al. [15]
suggested a more elementary and fundamental characterization of QALYs
that can relax Pliskin et al.’s [9] assumptions. They found that risk neutrality
together with the “zero-condition” are sufficient to imply the existence and
validity of the QALY model. The “zero-condition” indicates that all health
state levels are equivalent, from a quality-of-life perspective, to a zero
duration of life years. The zero-condition seems unavoidable in the medical
context. Thus, the only assumption that is needed to imply the existence and
validity of the QALY model is the risk neutrality for all health states.

However, there is ample empirical evidence showing a violation of risk
neutrality as previously described. A generalized QALY model that can
relax the assumption of risk neutrality has been established to solve the risk
neutrality issue. A generalized QALY model has the following form:

where U(Q,T) is the utility of the health profile (Q,T), V(Q) is the value or
utility function over health states Q, and W(T) is the function that values life
duration and can be nonlinear, with W(0) = 0. Instead of the risk neutrality
condition, Miyamoto et al. [16] suggested another condition, “standard
gamble invariance” (SG invariance). SG invariance basically says that, if Q
and Q’ are unequal to death and p is the probability equivalent of (Q,T) with
respect to (Q,Y) and (Q,Z), then p is also the probability equivalent of (Q’,T)
with respect to (Q’,Y) and (Q’,Z) [16]. Without risk neutrality, a generalized
QALY model holds if and only if both zero-condition and SG invariance
hold.

10.3 METHODOLOGICAL ISSUES

The QALY model is subject to a number of methodological issues. Those
include both theoretical and practical issues. Practical issues, especially in
terms of development and use of alternative utility assessment methods
suitable for eliciting and constructing the utility function over health states
Q, have been discussed elsewhere (see, for example, [17]). Current popular
methods include the visual analog scale (VAS), time-tradeoff (TTO), and
standard gamble (SG) techniques. In the following sections, we primarily
focus on theoretical issues.
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10.3.1 Validity of MUI and constant proportional tradeoff

Besides challenging the risk neutrality assumption, several studies on the
validity of the other assumptions have been preformed. For example,
Miyamoto and Eraker [18] tested the mutual utility independence
assumption and found empirical support for this assumption. Bleichrodt and
Johannesson [19] performed empirical tests on both the utility independence
and constant proportional tradeoff assumptions. They found that without
adjustment for imprecision of preference (imprecision adjustment was
suggested because of the unfamiliarity of the subjects regarding both the
health states and the elicitation methods), 22.8% of the subjects satisfied the
constant proportional tradeoff assumption, 13.4% satisfied utility
independence, and 5.8% satisfied both assumptions. However, with the
imprecision adjustment, 90.1%, 75.8% and 88.8% of the subjects satisfied
constant proportional tradeoff only, utility independence only, and both
assumptions, respectively. The authors concluded that the constant
proportional tradeoff holds roughly and utility independence holds, but in a
much weaker way. Pliskin et al. [9] reported 25 pairs of time-tradeoff
responses from 10 subjects in hypothetical questions concerning the relief of
different levels of anginal pain. They found that only four out of 25 pairs
were consistent with the constant proportional tradeoff assumption.

10.3.2 Validity of utility theory

Expected utility theory or the von Neumann-Morgenstern expected utility
theory is the foundation for most health outcome assessment and
measurement techniques. A utility function exists when certain axioms hold.
Three axioms of expected utility theory [20], known as normatively
compelling rules for rational decisions under uncertainty, are as follows.
Here, X is a set of outcomes; is the set of probability distributions over
X; denotes an individual’s preference relation over probability

distributions; and ~ denotes the indifference relation over probability
distributions.

1. Weak order
is asymmetric and both and ~ are transitive

then for all p, q,

2. Independence

For all p, q, and any then if and only if

(if and
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3. Continuity Axiom

For all p, q, such that then there exist and

such that

Thus, in addition to the three required assumptions of QALYs described
previously, how adequately QALYs represent preferences over health states
also depends on whether QALYs are consistent with von Neumann and
Morgenstern’s expected utility theory. If the axioms of von Neumann and
Morgenstern’s expected utility theory hold true, decision makers should be
able to make decisions that are consistent with their underlying preferences.
However, in medical decision making, as in many other application
domains, violations of all three axioms have been shown and are well known
[21]. These include Allais’ paradox and Ellsberg’s phenomenon and are not
reviewed here. Instead, we focus our attention to a more important problem,
developing a proper decomposition for multistate health profiles as shown in
Figure 10.2.

10.3.3 QALYs for multistate health profiles

In the case of multistate health profiles, QALYs are generally calculated as
the sum of all products of duration and health preference weight for all
health states representing the health profile. Bleichrodt [22] has shown that
for such decomposition to hold, the assumption of additive independence
must hold. In essence, additive independence requires that the preference for
one health state be independent of preference for other health states in the
multistate health profile.

For example, consider the two multistate health profiles depicted in Figure
10.3. Both Health Profile 1 and Health Profile 2 have been designed to
produce the same amount of QALYs (the area under each curve). The two
profiles are clearly different, yet the QALY model would rate them as
equally preferred. Some individuals, however, may have a preference for
one pattern over another. Many potential factors that define the pattern of
health profiles might affect an individual’s preferences. The QALY
framework currently fails to account for these factors.

10.3.4 Violation of additive independence

Several empirical studies have explored the validity of the additive
independence assumption. Richardson et al. [23] examined the validity of
the additive QALY model in a 16-year post-mastectomy health profile
represented by a gradual deterioration and three health states: moderate side
effects during the first five years, mild side effects for the next 10 years, but
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then breast cancer would recur and the patient would experience severe side
effects during the last one year. Sixty-three female respondents participated
in the study. Rating scale, time-tradeoff and standard gamble techniques
were used to assess utility for each health state and the holistic utilities for
the health profiles. Preference scores from constituent states were combined
to estimate scores for the health profile using a discount rate of 3% and 9%.
They found that holistic preferences for the multistate health profile
(whether assessed with a rating scale, time-tradeoff, or standard gamble)
were significantly different from composite preferences derived from the
constituent health states, irrespective of the discount rate applied.

Figure 10.3 Two multistate health profiles with equal amount of
QALYs

Kupperman et al. [24] also investigated whether preferences for multiphase
health states can be approximated by preferences from constituent health
states. One hundred and twenty-one female subjects were asked to assess
their preferences for eight health profiles, each composed of three to four
health states, in the context of prenatal diagnosis choices (chorionic villus
sampling and amniocentesis), by using visual analog scaling and standard
gamble techniques. The authors explored whether a different statistical
formulation could be derived to predict preference scores for health profiles
from their constituent health states preference scores. They found that a
duration-weighted additive model, as used in the conventional QALY
model, was not predictive. A multiple regression model that derived from
statistically inferred weights predicted the preferences for the profiles better
than the duration-weighted model.

MacKeigan et al. [25] used the time-tradeoff technique to compare
preference scores for the same lifetime paths between holistic and composite
assessment. One hundred and one participants with type 2 diabetes assessed
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their preferences regarding four hyperglycemic treatment profiles lasting 30
years, composed of eight discrete treatment states. The authors failed to find
any significant differences between holistic and composite scores, which
conflicted with the results from the studies by Richardson et al. [23] and
Kupperman et al. [24]. However, the health profiles used in MacKeigan et
al. [25] were different in that they consisted of progressive minor
deteriorations in states while the health profiles in the other studies consisted
of critically different health states. The authors noted that another reason
why they found no difference between composite and holistic scores was
because the profiles in the study were too similar. They recommended that
future research be repeated with profiles that are more distinct and with
sequencing effects that are more pronounced.

In Spencer’s study [26], three health states defined with the EuroQol
classification system [27] were used in each multistate health profile. Each
health profile in the study had a 10-year duration and contained three
different health states with durations of three, three, and four years
respectively. Two tests were conducted: a test of additive independence and
a test of the overall additive model. Twenty-nine subjects participated in the
study. The violation of additive independence was found in the first test.
However, in the additive model test, only one of the two versions resulted in
a rejection of the additive model. Thus, Spencer could not conclusively
reject the additive model. The author suggested that a larger sample size
might allow the test to be able to detect significant differences in the results.
Also, comparisons of utilities based on holistic elicitation procedures and
constituent states elicitation were performed. The results showed that two
out of the seven profiles exhibited a significant difference between holistic
and constituent states elicitation, which implied that the additive
independence assumption was violated.

10.4 FUTURE RESEARCH DIRECTIONS AND CONCLUSION

The studies previously described clearly show the violation of the additive
independence assumption. Thus, the additive decomposition for the
multistate health profile does not work and does not come close to an
acceptable estimation. Therefore, it is critical to investigate and formulate an
alternative decomposition.

A number of studies (some within the health domain, others in different
domains) have explored or identified characteristics that affect people’s
preferences for multistate profiles. These influential factors could lead to,
and partially explain, the violation of the additive independence assumption.
A review of the studies exploring such influential factors is given below.
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10.4.1 Empirical studies

Rate of Change Hsee and Abelson [28] performed experiments to find a
relationship between satisfaction (utility) and rate of change of the outcomes
or what they called velocity in the contexts of gambling (probability of
winning the game), class rank (the percentile standing in a hypothetical
class), and stock (a hypothetical stock price). They found satisfaction to be
positively related to actual outcome position and rate of change (or velocity)
of the outcomes over time.

Chapman [29] rated ten sequences that had five different slopes for two
overall trends (increasing or decreasing) in health and money domains using
a 0 to 100 visual analog scale. Slope (rate of change) was found to be one of
the significant factors impacting their rating scores. Subjects preferred
gradually increasing or decreasing sequences to those with steep slopes.

These results were in conflict with the findings by Hsee and Abelson [28],
which suggested that subjects preferred steep slopes for increasing
sequences but small slopes for decreasing sequences. However, Hsee and
Abelson did not control for the total number of units of outcome over a
specific period of time while Chapman did. Thus, preference for higher rate
of change in positive outcome in the findings by Hsee and Abelson might be
the result of a higher amount of outcomes received within the specific period
of time. Ariely [30] also found a significant effect of rate of change in a
study of retrospective pain evaluation in the experience of heat stimuli on the
forearms. The results showed evidence of a rate-of-change effect, as the
subjects reported experiencing higher pain when the intensity steeply
increased than when it gradually increased.

Trend Several empirical studies found a significant impact of trend of the
overall profile (improvement versus decrement) on preferences [29-36]. For
example, Chapman [34] explored preferences for improving or declining
sequences in the domains of headache pain, athletic ability, facial acne and
facial wrinkles. Those sequences were designed so that, if the additive
assumption held, they should be equally preferred. She found that subjects
strongly preferred the improving sequences to the declining ones. Moreover,
Chapman [29] explored preferences for both sequences of health and
monetary outcomes and found that subjects preferred improving sequences
for both health and money for short sequences (1 year) whereas for the long
sequences (lifetime), subjects preferred decreasing sequences for health but
increasing sequences for money. She explained that the subjects preferred
the decreasing sequences for lifetime health since they used their expectation
as a reference point and exerted judgment by considering how close the
profile in question was to their reference point. When considering a long
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time horizon such as a lifetime, subjects expect perfect health early and
gradually declining health as they get older.

Loewenstein and Sicherman [31] also showed that a majority of subjects
preferred an increasing sequence of wage profiles over a five-year period to
a declining sequence. In a very different domain, Loewenstein and Prelec
[32] found that a majority of subjects who reported having a preference for a
French restaurant over a Greek restaurant also reported a preference for a
dinner at a Greek restaurant first and at a French restaurant later, thus
showing a preference for an improvement trend.

Spreading of Outcomes Loewenstein and Prelec [37] found that decision
makers prefer outcomes that are spread across the time interval considered.
For example, the majority of the subjects who were offered two free dinners
preferred to distribute the two dinners across the time interval. This
preference for spreading was confirmed by Chapman [38] who performed a
study involving scenarios including both gains and losses in the contexts of
monetary outcomes (win a prize or pay a fine), dinner (pleasant or
unpleasant dinner), and health-related events (a painful trip to the dentist or a
pain-relieving trip

Peak, Final Outcome, and Duration of the Profiles In medical decision
making, retrospective pain evaluation is an important matter since it reflects
patients’ memories of how painful the treatment was and could impact their
decisions regarding future treatments. A number of empirical studies have
demonstrated that retrospective pain evaluation is influenced by the peak and
the final moment of the experience and not significantly impacted by the
overall duration of the painful experience itself [39-45]. For example, Varey
and Kahneman [39] asked 46 subjects to evaluate different discomfort
profiles ranging from 15 to 35 minutes. They found that subjects’
evaluations were significantly impacted by peak and final intensity but not
by duration.

The same phenomenon was also found in the retrospective evaluation of
watching pleasant and unpleasant video clips [41] and in patients’
retrospective evaluations of experiences in undergoing colonoscopy and
lithotripsy [42]. Kahneman et al. [40] performed an experiment whereby
thirty-two subjects immersed one hand in 14°C water for 60 seconds and
immersed the other hand at 14°C for 60 seconds. Then the temperature was
gradually increased to 15°C in another 30 seconds (total duration was 90
seconds). The majority indicated that the long trial had less overall
discomfort, showing final intensity effect and duration neglect.
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Timing of Health Outcomes (Health Discounting Behavior) When
evaluating health outcomes in the future, values of the outcomes are usually
discounted. In cost-effectiveness analysis, discount rates are typically
applied in order to deal with this time preference issue. Numerous studies
have explored individuals’ discounting behavior. For example, the finding
that discount rates decrease as delays increase has been found in the context
of back pain [46], colostomy, blindness, and depression [47], health and
money [48-49]. In addition, the magnitude of the outcomes was found to
impact health discounting behavior as well. Smaller outcomes were
discounted at a higher rate than larger outcomes [48-49]. Another finding
was an effect of the sign of the outcomes. Delayed gains were discounted
more than delayed losses [50]. Ganiats et al. [51] studied health discounting
for five different disease conditions (chicken pox, Parkinson’s disease,
tropical disease, migraine headache, and sterilization) and found that
discount rates were sometimes very high (up to 116%) and varied markedly
across disease conditions.

10.4.2 Conclusion

The results of the studies described above can help researchers and decision
makers understand the nature of the violation of the additive independence
assumption and should assist in uncovering a more suitable decomposition.
While those studies provide an excellent starting point, more empirical work
needs to be performed. More importantly, we need to interpret the results in
such a way that they can lead to, and be incorporated into, a new aggregation
structure. At the same time, we need to develop a new theoretical foundation
for the decomposition of multistate health profiles. It is necessary to extent
the applicability of the QALY model to handle multistate health profiles
appropriately, especially if one wants to apply such models to chronic
conditions.
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SUMMARY

Operations research (OR) provides an excellent set of tools for decision
makers who regulate the use of new treatments or medications. The decision
about whether to use a new treatment must typically be made well before
long-term trials or database studies can be conducted. However, large
amounts of information about new treatments are available from the clinical
trials required for drug registration. OR models can synthesize this
information and use it to predict expected costs and benefits of long-term
treatment use within a given population. Such analysis provides valuable
additional information for the decision maker when a novel treatment is
initially being considered. These analyses are like duct tape for the decision
maker: they are designed to make use of the best currently available
information to help current decisions, thereby bridging the gap until better
information becomes available.

KEY WORDS

Health economics, Pharmacoeconomics, Cost-benefit models, Cost-
effectiveness models
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11.1 INTRODUCTION

In a general sense, health economics and health outcomes research (which
are both encompassed in pharmacoeconomics) are the study of the impact of
new medications on society. They attempt to capture both the health
benefits of a new medication such as improved survival (either through a
cure or by slowing disease progression), lessened pain, improved
functioning, and improved quality of life, as well as the economic impacts of
a new medication. The preferred perspective is the societal point of view.
However, other perspectives may be adopted, including that of a
governmental or private health insurer or a patient. By capturing both
benefits and costs, such methods illuminate the trade-offs involved in
decisions about whether to use a medication in specific populations.

New medications are brought to market after undergoing a series of rigorous
clinical trials, which are designed to test the safety and efficacy of the new
medication. These clinical trials are typically of comparatively short
duration (such as six months) due to the costs incurred in running them and
the difficulty in tracking patients over time. However, many diseases are
chronic conditions that progress over time. For such diseases, it may be
possible to demonstrate the efficacy of new treatments within the time frame
of the clinical trial by examining disease markers (such as blood pressure for
hypertension, viral load for HIV, or FEV [forced expiratory volume, a lung
function test] for asthma) or by showing a lessening of symptoms or acute
attacks (such as number of myocardial infarctions in heart disease, or pain
with arthritis). However, the potential long-term impacts of new
medications cannot be determined from short-term clinical trials.

The economic consequences of new treatments are also not directly available
from clinical trials. Beyond drug acquisition costs, many factors influence
the overall economic impact of a new treatment. Acquisition costs can be
offset by lessening the number of serious disease-related events that require
hospitalization (such as a heart attack or stroke) or urgent care in an
emergency room (such as severe asthma attacks or severe bowel disorders).
A new treatment may reduce the number of medications that patients must
consume. However, some costs may increase the economic burden of a new
treatment. Side effects of a medication may require treatment in order for
the patient to be able to continue to take the medication. Serious adverse
events may even require hospitalization and medical procedures. The
overall economic impact of a medication can be estimated by combining the
observed results from the clinical trial with treatment patterns and costs of
care seen in clinical practice.
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The best methods for determining the long-term impact of new medications
would be to either conduct naturalistic clinical trials after approval of a new
medication or to conduct database studies of longitudinal data collected as
the medication is used in practice. Such studies would provide the best and
most reliable answers to questions about the future costs and benefits of a
new medication. Unfortunately, this approach is of no use to decision
makers who are faced with the questions now, at the time the medication is
released.

A decision maker may be asking the following questions:

How many future undesirable health consequences will the
medication prevent?

How many hospitalizations will be avoided?
How many years of pain or diminished quality of life will be
averted?
Will these adverse events be avoided or merely delayed?
Will the treatment have better/worse results in certain
populations?

How many patients under my care will receive the medication?
What other treatment options exist, and how effective is each?
What adverse events are associated with the medication?

How often will such events occur?
What types of treatment do such events necessitate?

What is the budgetary impact of the medication?
Is the acquisition cost offset by other cost factors such as reductions
in

Emergency room visits or hospitalization?
Use of other medications?
Administration costs?

What tradeoffs are made in choosing whether to accept this
medication?

Decision makers must find some way to convert the available short-term
clinical trial information into information about the long-term impacts of a
new medication. Operations research (OR) models are ideally suited for this
task. They can model disease progression and the impacts of new
medications. Depending on the available data, the models can range from
simple decision trees to complex simulations. Three case studies of analyses
that have been conducted using OR techniques are described in detail below.
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11.2 DECISION TREE MODEL OF ANTIHYPERTENSIVE
MEDICATIONS

11.2.1 Application

Hypertension is a chronic condition that can lead to very serious cardiac
complications. Because of these complications, there is general agreement
on the need to treat hypertension and on the economic benefits of
antihypertensive therapy [1]. While exercise and diet are the preferred first-
line treatment, many patients have only marginal success in following such
recommendations. Second-line treatments include antihypertensive
medications. Physicians have numerous pharmacologic options for
hypertension therapy: over 100 antihypertensives spanning eight classes of
therapy are on the market worldwide. If one therapy does not work, a
patient can simply be switched to another [2].

A new antihypertensive medication, an angiotensin-II inhibitor, was released
in 1999. The new drug had similar or slightly improved efficacy to existing
medications, cost more than most existing medications (many of which are
generic), and had a different and mild adverse event profile. Clinical trials
of this new drug were typically at most six months in duration. Decision
makers wanted to know how this new drug would affect the managed care
system. To answer this question, a decision analytic model was developed.
The model was designed to explore the costs and consequences of treating
mild-to-moderate uncomplicated hypertension starting with an angiotensin–
II (A-II) inhibitor, relative to four other drugs – a diuretic, a beta-blocker, an
angiotensin converting enzyme (ACE) inhibitor, and a calcium channel
blocker (CCB).

11.2.2 Methodology

Current hypertension treatment patterns were ascertained from a literature
review and a physician survey [3]. Key model data obtained from these
efforts included the following:

A patient with uncontrolled mild-to-moderate hypertension is seen
monthly.
Determining whether or not a specific drug is effective at lowering
blood pressure can take up to three months.
During these three months, patients may increase the dosage of their
medication or switch to another therapy.
Therapies may be switched either because

The patient has experienced intolerable adverse events, or
The drug has failed to control hypertension.
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Once hypertension has been controlled, the patient is seen every
three months.

The physician survey also provided information that was used to estimate
the probability that a particular drug is chosen as first-line therapy and the
probability of the choice of second-line therapy (given that the first-line
therapy fails). These probabilities are shown in Table 11.1. The model
assumes that the remaining drugs have an equal likelihood of being chosen
for third-, fourth-, and fifth-line therapies.

This information was used to construct a series of decision trees. The main
decision tree (Figure 11.1) determines the outcomes associated with a
specific sequence of drugs. All drug sequences are enumerated and the tree
can be rolled back to any level using the probabilities shown in Table 11.1.
Each branch is evaluated in terms of expected time to control and cost of
choosing that particular sequence of drug therapies.

For each medication considered along the branches of the main decision tree,
it was necessary to determine the medication’s probability of achieving
hypertension control, its adverse event rate and its cost. Since patients are
typically started at low doses of medication and then have their doses titrated
upwards as necessary for hypertension control, each medication can be given
at varying doses. Each dose of medication has an associated probability of
achieving hypertension control, adverse event rate and cost. The probability
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Figure 11.1 Main decision tree: Drug sequences

of each drug being titrated was available from the comparative clinical trials
of the new A-II inhibitor, as were drug dose efficacy and adverse event rates.
Therefore, a series of additional decision trees using the titration likelihood
and the effects of a given drug at each dosage level were used to calculate
the drug’s overall probability of achieving hypertension control, its overall
adverse event rate and its overall cost.

Adverse event treatment algorithms were designed for each adverse event
based on hypertension severity level. However, it was believed that patients
suffering from continual moderate and severe adverse events would not
remain on drug therapy, whereas those with mild adverse events would.
Therefore, adverse events (and hence adverse event costs) were divided into
two types—first-quarter adverse event costs, which include all of the adverse
events experienced during the clinical trials and are incurred only during the
first three-month period when a patient is placed on a new medicine, and
maintenance adverse event costs, which include only costs resulting from
mild adverse events and are incurred quarterly while a patient remains on
medication. The model incorporates costs of drugs, physician visits, and
adverse event treatments. Table 11.2 summarizes the efficacy and cost inputs
that the model requires.

Copyright 2001 Medicom International. Reprinted with permission.
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11.2.3 Results

Combining the cost and efficacy information presented in Tables 11.1 and
11.2 in the decision tree model structure shown in Figure 11.1, it is possible
to roll the decision tree back to the choice of initial therapy. Therefore, the
baseline results, shown in Table 11.3, are the weighted average of all
pathways possible for each initial drug prescribed. For example, results
reported for the diuretic are the weighted average of the results of all drug
sequences in which the diuretic is initially prescribed (24 possible
sequences, as shown in Figure 11.1).

The model time horizon is initially set at 15-months, the longest time it
would take to cycle through all possible first line medications. The measure
of efficacy (expected time to hypertension control) is not dependent on the
model time horizon, however, the cost results are dependent on the time
horizon as they are continually accruing. Therefore, in Table 11.3, the initial
expected total 15-month cost is presented as well as the expected total costs
that would be accrued every three months thereafter. In this manner, a
decision maker can choose a time horizon of interest and calculate the total
costs over the entire time horizon from these results.
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For any given initial therapy except the CCB, the inclusion of the A-II
inhibitor in the subsequent therapeutic options reduced the expected costs (at
15 months). The reduction in cost was mainly due to the lower initial
adverse event costs of the A-II inhibitor and the ability to avoid using the
CCB, which is by far the costliest drug in terms of drug acquisition and
adverse event costs.

Initiating therapy with the A-II inhibitor (which is not currently common
practice) is the second least expensive option. However, the savings over
the other therapies that the model predicts during its 15-month time horizon
will be reduced over time given the A-II inhibitor’s drug acquisition costs
and expected quarterly maintenance costs.

Extensive sensitivity analyses were conducted to test the stability of the
model and its results. These analyses and the full model are reported in the
literature [4-7].



284 OPERATIONS RESEARCH AND HEALTH CARE

The information gained from this analysis provided cost and efficacy
estimates to decision makers before the new drug was used in clinical
practice. In addition, it provided important input for two different policy
questions: Should the drug be available as a second or later therapy once the
standard initial therapy has failed? Should the drug be made available as a
potential first-line therapy? The goal of the analysis was to provide decision
makers with information that can be used to improve the therapeutic options
of hypertension care.

11.3 MONTE CARLO SIMULATION OF HIV/AIDS VIRAL LOAD
TESTING

11.3.1 Application

This case study examines a question that arose when viral load testing was
still novel. However, it demonstrates a technique that remains pertinent with
the introduction of any new monitoring/testing method. The question of
interest is the following: Given a new method for testing how well a patient
is responding to medications, how frequently should the test be conducted?

This question is of great importance with the human immunodeficiency virus
(HIV) infection since the virus mutates rapidly over time and can become
resistant to medications. When a patient’s virus becomes resistant to the
medication, viral load levels in that person increase rapidly. High levels of
viral load damage a patient’s immune system and lessen the person’s ability
to fight off common infections. Therefore, it is important to catch the point
of viral resistance to medication as soon as possible so that the patient may
be placed on a new medication.

In HIV, the matter is further complicated by the question of adherence to
medications. The medications used to treat HIV cause numerous unpleasant
side effects and are difficult to take. The medications must be taken
continuously every 8, 12, or 24 hours. When a patient ingests subtherapeutic
levels of medication due to repeated “drug holidays” or other nonadherence
to the medication regimen, such as skipping doses or only taking certain
drugs in a combination therapy, the virus develops resistant mutants more
rapidly. This shortens the period of beneficial effects from the medication
and allows for the development of multi-drug-resistant HIV strains. Current
treatment guidelines strongly emphasize the importance of good adherence
to medication, and delineate the possible negative consequences of
nonadherence [8-10].
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For HIV, the testing question is thus the following: Considering both the
inherent progression of the disease and the possibility of non-adherence to
medications, what is the optimal viral load testing frequency?

The frequency of viral load testing determines how quickly viral rebound is
detected and how soon a patient is switched to the next therapeutic option.
Thus, the frequency of viral load testing may affect the cost of treatment, the
pattern of antiretroviral drug use, and (possibly) the quality of life and life
expectancy for HIV-infected individuals. Annual costs of care and the
lifetime cost per person may be affected by differences in the duration of
highly active antiviral therapy (HAART) drug regimens, how soon patients
are placed on more expensive (four-drug) therapies, and the cost of treatment
for opportunistic infections and other medical care for individuals at
different levels of immune suppression. Patterns of therapy are affected
because different monitoring frequencies may cause regimens to be
administered for different lengths of time. Patient outcomes may also be
affected by different progression rates induced by the varying durations of
suboptimal therapy.

A Monte Carlo simulation was designed to examine the question of optimal
testing frequency. The simulation captured HIV disease progression in the
presence of medications and their varying efficacy and levels of medication
adherence. Using data on costs and consequences of HIV disease, the model
estimates health outcomes and costs for patients undergoing three different
frequencies of viral load testing (every month, every three months, and every
six months). Four hypothetical populations, described by disease stage and
rate of disease progression, are examined. These groups are patients with:

1.
2.
3.
4.

Moderate disease stage, average disease progression;
Moderate disease stage, fast disease progression;
Moderate disease stage, slow disease progression; and
Severe disease stage, average disease progression.

These population groups are analyzed under varying assumptions about
adherence to medication. This disaggregate analysis is performed to capture
the possible influence of each of these factors (disease stage and rate of
disease progression) on the impact of viral load testing frequency.

11.3.2 Methodology

A Monte Carlo simulation is performed for each population group, tracking
the disease progression of individuals for five years. The population groups
are distinguished by their initial average CD4 cell counts (a measure of
immune system function – higher numbers of these cells are better) and their
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initial average baseline viral loads. These two parameters provide estimates
of how advanced the disease is and how fast individuals are expected to
progress, and thus define the four groups described above.

Figure 11.2 provides a schematic of the Monte Carlo simulation. During
each simulation, individual patients are simulated and their baseline viral
loads and CD4 cell counts are determined randomly, according to the
population’s probability distributions. The results reported here represent
outcomes for a simulated population of 5,000 individuals. The model tracks
on a monthly basis each simulated patient’s CD4 cell count, viral load, AIDS
status, possible death, testing costs, drug therapy costs, and medical care
costs.

Figure 11.2 Schematic for Monte Carlo simulation

Patients are treatment naïve at the start of the model (that is, their viral
strains are not resistant to any of the available medications). Patients are
followed for five years, during which time they are treated with a sequence
of combination drug regimens. The regimens are chosen from the consensus
statement of the International AIDS Society – USA Panel [10]. When a
therapy is first effective, viral load is undetectable and CD4 cell counts
increase. As a therapy continues to be effective, the viral load remains
undetectable and no CD4 cells are lost. Once the patient’s viral load
becomes detectable, his/her CD4 cell count declines at a rate determined by
the initial viral load. If the patient’s viral load is detectable when he/she is
tested, the patient is switched to the next drug regimen.
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Patients have a 40 percent likelihood of being nonadherent to antiretroviral
medications during the first combination therapy. When a patient is
nonadherent, the viral load level rebounds sooner (as determined by a
probability distribution) and the patient must switch to a new drug regimen.

Within the model, the following parameters are simulated for each
individual from a probability distribution (in parentheses):

Initial viral load and initial CD4 cell count (truncated normal and
uniform distribution, respectively);
Rate of CD4 cell count decline given a viral load level [11] (uniform
distribution);
Monthly probability of progressing to AIDS, depending on CD4 cell
count (discrete distribution);
Monthly probability of death, depending on CD4 cell count (discrete
distribution);
Probability that a therapy will be effective (varies with therapy type
and order) (discrete distribution);
Duration of effectiveness of a given therapy (varies with therapy
type and order) (truncated normal distribution);
Increase in CD4 cell count given an effective therapy (uniform
distribution);
Probability of patient nonadherence during the first therapy (discrete
distribution); and
Monthly probability that resistance develops due to nonadherence
(discrete distribution).

The following parameters have set values for all individuals:

Cost of drug therapy [12];
Testing cost;
Other medical care costs (dependent on CD4 count and AIDS
status); and
Salvage therapy costs once the antiretroviral medications have been
exhausted.

11.3.3 Results

Results for each of the four populations are presented in Table 11.4. The
outcomes assume that each population is composed of 5,000 individuals.
(This number was chosen so that the simulations would have time to
converge.) Smaller populations, as would be seen in clinical practice, will
have results distributed around the mean of the larger population, depending
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on the variance about the mean and the actual size of the smaller population
considered. This distribution implies that actual practice experience may be
different from the population’s true mean.

Table 11.4 shows the incremental results of implementing viral load testing
every month, every three months, and every six months. Results are
expressed in terms of incremental quality-adjusted life years (QALYs)
gained and incremental costs. In Populations 1, 2, and 3 (slow, average, and
fast progressors, respectively, in a moderate disease state), the decrease in
antiretroviral drug costs and decreases in other medical care costs offset the
increase in testing costs when testing frequency is increased from every six
months to every three months. Increasing testing frequency from every three
months to every month increases costs (due to the additional testing costs),
but yields no appreciable gain in QALYs. Thus, this option is not cost-
effective. In Population 4 (advanced disease state in an average progressor),
lowering the testing frequency from every six months to every three months
also results in a net cost savings. Lowering testing frequency further to
every month increases costs due to the increased testing costs. However,
since Population 4 is in an advanced disease state, there is a small gain in
QALYs. The incremental cost-effectiveness ratio is $23,400 /QALY. This
value is low compared with many currently accepted interventions, and it
can easily be argued that this option is cost-effective.

This analysis permitted an investigation that was not possible at the time of
the original question. Given the best available data at the time, the analysis
provided insight into a series of decisions that the managed care companies
were facing when they first included HIV viral load testing in their benefit
packages. As new tests – both for HIV and other diseases – become
available, a similar type of model can be constructed to provide insight into
the most appropriate testing frequency.

11.4 MARKOV MODEL OF CANCER TREATMENT MEDICATIONS

11.4.1 Application

This case study demonstrates an application of OR techniques for
comparative analysis of new medications still in development. This is the
most hypothetical case study since few clinical trials exist from which to
gather efficacy and safety data. However, even in the earliest stages of new
drug development, it is possible, and frequently advantageous, to examine
the drugs in terms of their potential benefits and costs to the end users (and
end decision makers).
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Treatment of solid cancer tumors remains a serious unmet medical need.
Broad acting agents could provide significant treatment advances. Current
chemotherapies can provide palliation and increased survival time.
However, they are highly toxic and are only effective in specific patient
populations and/or for specific tumor types. The accumulation of new
genetic and biological information about cancer is creating the possibility of
developing new drugs with broad activity and less toxicity than current
chemotherapies.
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In this case study, the objective was to produce a basic, flexible computer
model that incorporates the treatment paths, costs, and outcomes associated
with the management and treatment of solid cancer tumors. This model
incorporated data on available treatments, their efficacy, and associated
adverse events. This permits a comparison between existing treatments and
potential new medications, and allows the model to be used by a variety of
decision makers such as managed care companies or pharmaceutical
companies themselves who want to know what levels of safety, efficacy, and
cost would need to be seen in potential new treatments to make them a
valuable treatment option in comparison to existing options.

More specifically, the model examines the potential effects of new
anticancer compounds on the health benefits (mortality, disease-free
survival, etc.) and total treatment costs of solid cancer tumors. The basic
structure allows the model to be quickly adapted to different solid tumor
cancers such as breast or colorectal cancer. The treatment costs included in
the model are the costs of surgery, chemotherapy, radiotherapy, hormone
therapies and procedures, and diagnostic therapies and procedures. Into this
mix of treatments, the new medication can be added as a replacement
therapy or as an adjuvant therapy. The model also calculates the impact of
the new compounds on patients’ quality of life.

11.4.2 Methodology

The base model was constructed using a Markov framework. Figure 11.3 is
a diagram of treatment pathways. Patients enter into the model in one of
these disease states and then follow the pathways, marked in arrows, based
on a set of transition probabilities. The transition probabilities account for
disease progression over time, which incorporates both the natural disease
progression as well as any impact of the selected treatments on slowing
disease progression. As a patient passes through each state, costs and quality
of life values are accrued.

Health states for the solid tumor cancers used current information from
several sources, including: the American College of Surgeons (ACS) [13],
the American Cancer Society [14], the National Cancer Institute (NCI) [15],
and the National Comprehensive Cancer Network (NCCN) [16].

Transitions between these health states are determined by the rate of
progression of the cancer and the therapy provided at each health state. To
capture the natural cancer disease progression rates, a cycle time of three
months was chosen. The natural, untreated, cancer progression between
health states is summarized in a probability matrix that quantifies the
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Figure 11.3 Schematic for Markov Model of solid tumor cancers

likelihood that a patient will progress to another health state during a given
three-month period. The transition probabilities required by this model were
not directly available from the published literature. Therefore, it was
necessary to calculate the transition probabilities from available data on
mortality, morbidity, progression to metastatic disease, and disease-free
survival. The transition probabilities were heuristically developed by
iteratively solving the transition matrix to provide the mortality, progression
to metastatic disease, and disease-free survival from varying starting stages
of cancer. All information used to calculate the health state transition
probabilities came from DeVita’s Cancer Anthology [17].

The impact of treatments were incorporated in one of two ways, depending
on the available data. When possible, typically when there was data from a
comparative clinical trial, the untreated cancer progression rates were
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modified by the observed changes in relative risk of disease progression.
When this information was not available, the same heuristic approach used
to create the base case transition matrix was used to recalculate the entire
transition matrix from the mortality, morbidity, and disease progression
observed in longitudinal studies of the specific treatment.

Health state utilities came from the published literature for each cancer, a
good starting source being Teng and Wallace [18]. Since cancer treatments
themselves affect a patient’s quality of life, the utilities were dependent both
on the health state itself as well as the treatment selected.

The main challenge with this model is finding sufficient baseline data. Each
of the states shown in Figure 11.3, with the exception of “disease free”,
“supportive care” and “watch and wait”, may have four classes of treatment
options (surgery, chemotherapy, hormone, and radiation therapies) available.
Since these classes of therapy may be given in combination with each other
(e.g. [surgery and chemotherapy] or [chemotherapy and radiation therapy]),
there are 14 combinations of treatment classes that may be provided. In this
discussion, a combination of treatment classes is called a “treatment
category”. Within each of these treatment classes there may be several
different medications and/or procedures that could be used. Each potential
treatment option within treatment category is associated with a unique
probability of transitioning to the other states, costs, health state utilities, and
likelihood of adverse events associated with therapy. As a rough estimate,
there are seven states, with fourteen treatment categories per state, so even if
there were only 5 treatment options per treatment category, there would be
about 490 different treatments for which to find data. The most feasible
approach given the immense amount of data required by the model and the
scarcity of suitable data sources is to limit the number of options that the
decision maker can compare.

To determine the “best” (most commonly used and most relevant
comparators for the novel medication) treatment options to present to the
decision maker, a clinical oncologist reviewed practice patterns at his large
oncology program. This clinical oncologist chose and verified the top three
treatments, procedures, and/or diagnostics used in the management of the
specific cancers for each health state. The clinical consultant also provided
estimates of the percentage of use for each treatment in each health state.
Default values for the percentage utilization rates for each treatment
category were obtained using data from the American College of Surgeons
National Cancer Database (NCDB) [13], which details current treatment
methods for each type of cancer.
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To calculate the expected cost by treatment category, the per patient costs
associated with each treatment option and the per patient likelihood of the
option being used were estimated, and then used to calculate the expected
three-month cost of each treatment category, per patient, by health state. The
costs of adverse events are also included in the total costs for each treatment.
For example, the baseline cost of a specific chemotherapy includes the three-
month cost of the chemotherapy in addition to the cost of treating the
adverse events associated with that chemotherapy over the three months.
Three month costs are calculated since this is the cycle time of the Markov
model.

The types of costs that can be accrued in each health state are separated into
seven categories. These are costs for: diagnostic tests and procedures;
surgery; chemotherapy; radiotherapy; hormone therapies and procedures;
other treatments; and new treatments. The category “other treatments”
includes any cancer treatment that does not fall into the above categories;
examples include biotechnology products (e.g., Herceptin (a monoclonal
antibody)) and pain medications. The new treatment category is where the
decision maker includes the new cancer treatment in development about
which the comparisons are to be made. The new treatment can function
either as a stand-alone treatment category or as new part of an existing
treatment category.

The model can then be run comparing different treatment options at different
stages of cancer, most specifically, those containing the new treatment as
compared to those that do not.

11.4.3 Results

The model outputs include the expected time patients spend in each health
state, the costs and benefits accrued in each health state, and the total costs
and total benefits in terms of survival and quality-adjusted life years. In
addition, if the decision maker sets a monetary value for a life year or a
quality-adjusted life year, the model calculates the net benefit of the
treatment (total monetary value of the benefits minus the total costs). All
results are based a time horizon of 25 years, so that lifetime data is collected
for most, if not all, patients, depending on cancer progression rates. If two
therapies are considered, the model provides the following comparative
analyses:

Incremental total expected costs by health state;
Incremental total expected quality-adjusted life years by health
state;
Incremental expected time spent in a given health state;
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Incremental total expected survival time; and
Incremental (monetary) net benefit.

In addition, the model user may use the model to measure other factors, such
as time to progression and survival times.

This was an interesting project because it demonstrated the information that
could be obtained very early in a new medications development that could
be useful in deciding on the “must have” features in terms of safety and
efficacy, as well as cost, in order for a new medication to be a valuable
addition to the current treatment options for cancer. Despite rough data, a
base model could be constructed that passed top-line medical scrutiny. The
model provided information to the internal development team responsible
for the development of the new cancer medications and could be used to
gather decision makers’ impressions about various new medications in early
development. As the results of clinical trials for new drugs become
available, the model can be updated to reflect the new information. The new
costs and benefits can then be shown to decision makers to gauge their level
of interest in the new drugs. This model is very versatile and can provide
useful information to a variety of potential end-users.

11.5 CONCLUSIONS AND AVENUES FOR FURTHER RESEARCH

The combination of OR and health economics/health outcomes research has
a great deal of potential for providing useful, practical information for
decision makers. The challenge will be to bring the scientific rigor and
standards of OR to these fields to ensure that the best possible models and
analyses are provided when using common modeling methodologies, such as
decision trees, Markov models, Monte Carlo simulations, and other
mathematical simulations.

It is important to remember that while models provide good estimates about
the potential long-term impacts of medications, they are only estimates. As
the results from long-term studies of new drugs become available, they
should be used to update the models and form a basis for reevaluating
medications and their role in fighting any given disease. The models are
duct-tape for the decision maker: they are designed to make use of the best
currently available information to help current decisions, thereby bridging
the gap until better information becomes available.
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SUMMARY

Illicit drugs create serious health problems whose management is
complicated by illegality, poor data, and market dynamics. Quantitative
analysis can and does play a key role in clarifying implications of strategic
choices concerning collective response to these problems. This chapter
summarizes key arguments and findings concerning the effectiveness of
various prevention and treatment strategies, including supply control
measures. Among them are that conventional prevention programs are not
very effective in an absolute sense, but they are so cheap that they are cost-
effective. Likewise, treatment programs can be cost-effective despite very
high relapse rates, in part because periods of heavy use impose such
enormous costs on society. Enforcement can play a key role in diffusing the
positive feedback loop created by contagious spread of initiation during the
early phase of new drug epidemics because of its unique ability among
diverse drug control interventions to focus its impact on the present.
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Drug control, Optimal control, Resource allocation, Epidemic control
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12.1 INTRODUCTION

Illicit drug use is an important health problem. Some 600,000 emergency
department episodes in the US every year are related to illicit drugs [1].
National mortality estimates are not available, but probably on the order of
20,000 drug-induced deaths occur each year [2], with many more indirectly
related to drug use. Some 5 million Americans are in need of drug
treatment, but fewer than 40% receive it [3, 4]. Injection drug use is a
leading cause of the spread of infectious diseases such as HIV/AIDS and
Hepatitis C [5]. The social costs of illicit drug use approach those of alcohol
and tobacco [6-8]. No one has estimated how many quality-adjusted life
years are lost due to illicit drug use, but the number is no doubt substantial,
particularly since those who die from illicit drug use are younger than those
who die from most other causes.

Not surprisingly, there is an energetic debate concerning how best to control
drug use and related consequences. Operations research and management
science have made important contributions to this debate. However, drug
policy is unlike other health policy domains in important ways. This chapter
begins with a review of some important differences. The following sections
then highlight key insights that quantitative models have generated
concerning the relative effectiveness of different interventions, including
how that effectiveness varies over the course of a drug epidemic.

12.1.1 How is drug policy different?

Drug policy differs from other health policy domains in a number of
respects. First, we care as much about outcomes for other people as we do
about outcomes for the person with the “condition”. Cancer generates health
consequences for people other than the patient, such as stress and depression
among family members. Nevertheless, the focus of cancer treatment and
policy is clearly and appropriately on the people who have cancer.

The consequences of drug use are more diffuse. Fear that addicts or addicts’
suppliers will hurt non-users is an important source of public concern about
drug use. One can argue that such fears are exaggerated. However, drug use
has other health consequences for non-users that are under-appreciated. For
example, addiction of all kinds, including to illicit drugs, is an important
contributor to child abuse and neglect.

In this respect, drug policy is more like a public health problem than a
medical problem, and the behavioral component invites comparisons to
second-hand smoke and drunk driving accidents rather than malaria or
cholera. However, drug use is very much a “contagious” phenomenon that
can usefully be studied by epidemic models, as will be discussed below. So,
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analyzing drug policy merges important strands from behavioral health and
the contagious disease aspects of public health.

Another fundamental difference between drug policy and other health policy
problems is that the underlying activity is illegal. This has myriad
ramifications, ranging from making data collection difficult to the fact that
law enforcement plays an important role in controlling the prevalence and
consequences of this “health problem.”

An important consequence of drugs’ illegality is the existence of black
markets, which are the proximate source of many drug-related harms [9].
Such markets would not exist were it not for the drug use, and reducing drug
use (e.g., through treatment) shrinks the markets. Thus, a systems analysis
should consider market outcomes. The need to do so distinguishes drug
policy from other health policy domains. There is no market for heart
disease, and with some exceptions, such as so-called “nuisance bars” [10],
the markets for tobacco and alcohol are not themselves a major problem.

A subtle consequence of the illegality of drug use is that it encourages the
lumping together of all types of use because they are all the same in the eyes
of the law. Not only does this blur distinctions between substances with
very different health risks (the Drug Enforcement Administration places
both marijuana and heroin in its most restricted – “Schedule I” – category of
drugs), but it also blurs distinctions between dependent and non-dependent
use.

Drug dependence is a well-defined medical condition that can be diagnosed
and treated. Recreational use by non-dependent persons is not a well-
defined condition, and more often than not it does not lead to dependent use.
Thus the vast majority of people who use an illicit drug never have a drug-
related medical condition (even though they help support a drug market that
generates adverse health outcomes for others).

To complicate matters further, many of those with this medical condition
deny they have it and/or are ambivalent about getting rid of it. This attitude
contributes to very low compliance with treatment. It has become common
to point out that compliance rates (e.g., rates of testing negative for drugs)
are not so different from rates of compliance with medical regimens for
conditions such as hypertension or diabetes (e.g., admonitions to alter one’s
diet). However, few diabetics want to have diabetes, whereas quite a few
drug users are not sure they want to stop using drugs. Furthermore, many
dependent users do not have a health insurance company or personal
physician vested in addressing their dependence.
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More such differences could be noted, but these suffice to make the basic
point that drug policy is a part of health care policy that necessarily must
draw its “system boundary” quite broadly. One could examine just “drug
treatment policy,” focusing on issues such as queue management and
matching treatment modalities to patients (e.g., [11]), but that is a different
topic.

12.1.2 Scope and methods of analysis

This chapter focuses on insights from quantitative analysis of “strategic”
drug policy choices. At the highest level, this paradigm views drug policy as
a resource allocation problem. Some governmental entity decides how many
resources to allocate to drug control and how to divide those resources
across broad programmatic areas in order to achieve the greatest impact.
Such analysis is helpful because a variety of drug control strategies exist,
and the drug “system” is complex, so it is not intuitively obvious what the
best combination of strategies is.

Analyses of this sort began to appear in the 1970s in response to the heroin
epidemic, (e.g., [12-14]), and became more common after the spread of
cocaine. Early contributors to this second wave included groups at the
RAND Corporation’s Drug Policy Research Center [15-24], UCLA (e.g.,
[25-27]), Carnegie Mellon University’s Heinz School [28-33], and later the
Technical University of Vienna (e.g., [34-39]) as well as individuals
elsewhere (e.g., [40, 41]), with growing communities of analysts elsewhere
in Europe (e.g., [42-44]) and notably in Australia [45-48]. There is also an
extensive and fascinating literature on modeling HIV/AIDS (e.g., [49, 50])
that intersects with injection drug use, but for reasons of space these issues
are dealt with very briefly here.

The method employed in this chapter is simply to skim from this literature
insights that can be communicated effectively without detailed technical
exposition of the underlying models and analysis, with some bias toward
results that the author has observed to be compelling to policy makers and
non-academics.

The methods employed in the underlying literature are diverse, but mainly
involve construction of some nonlinear descriptive model of the behavior of
drug users and sometimes sellers, with inputs corresponding to various
policy alternatives. Depending on the sophistication of the model and
associated analysis, the models are then used to reproduce past and present
behavior and/or to make recommendations for the future, either in “what if”
policy simulation mode or through some formal optimization.
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Collectively, the greatest weakness of the literature is the inability to truly
validate these models given the paucity of reliable data and the inherently
small sample size when the unit of analysis is at the national level. A
consequence is that specific numerical results are not very precise; the
models are more reliable for general structural insights of the sort offered
below. The models’ greatest contribution stems from precision of a different
sort, the precision and rigor that comes from translating less quantitative
scholars’ mental models into equations, from which powerful insights often
emerge from relatively simple analysis.

12.2 RESULTS

A number of insights emerge directly from models of use, without explicit
consideration of specific control measures. We begin with a few such
insights before considering results from models of prevention, treatment,
enforcement, and drug epidemics.

12.2.1 Models of use

Everingham and Rydell [23] made a pioneering contribution to
understanding of drug policy by developing a simple two-state Markov
model of cocaine demand that distinguishes between so-called “light” and
“heavy” users. Figure 12.1 illustrates a modified version of the model with
flow rates recently updated by Knoll and Zuba [51].

Figure 12.1 Everingham and Rydell’s light and heavy user model
[23] with flow rates updated by Knoll and Zuba [51]

Several insights emerge from this simple model. For example, most
(roughly of those who try cocaine do not escalate to heavy use, but
those who do persist in the heavy use state for many years (1/g = 18 years).
Per capita consumption rates for heavy users are much higher than for light
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users.1 As a result, expected lifetime consumption per initiation is on the
order of 225 – 475 grams [52] – but that figure is dominated by a very large
expected consumption given escalation to heavy use multiplied by a small
probability of escalating. Given the high social cost per gram consumed,2

this implies that the expected social cost per cocaine use career is very large
(on the order of $50,000 - $100,000 per initiate). The median cost is at least
an order of magnitude lower, if not two. Indeed, given that many users
appear never to proceed beyond the “very light” stage [53], the median cost
per cocaine use career could be close to 0.3

Highly skewed consumption and social cost distributions are not unique to
cocaine. The average marijuana use career involves 375 – 875 grams of
consumption, or 1,000 – 2,000 joints, whereas median lifetime days of
marijuana use are less than 100 [54]. For heroin in the US, per capita
consumption rates are an order of magnitude lower than for cocaine but the
social costs per gram are an order of magnitude higher [54] and exit rates
from dependent use no higher [55]. Thus, the expected social cost for
someone who escalates to dependent heroin use is at least as high as is the
corresponding figure for cocaine. Indeed, inasmuch as light use of heroin is
more likely to involve smoking and heavy use to involve injecting, the skew
in social cost could be greater than the skew in social cost for cocaine.4

The sharply different exit rates for light and heavy users (factor of 5
difference in Figure 12.1) and the lag between initiation and escalation to
heavy use means that the character of drug use can vary sharply over the
course of a drug epidemic, as illustrated in Figure 12.2 [51]. Demand for
cocaine5 rose sharply with cocaine initiation in the mid- to late 1970s, but
did not fall when initiation fell in the 1980s. Rather, sharp declines in the
number of light users were offset by numerically smaller increases in the

1 Everingham and Rydell suggested a ratio of 7.25 to 1. More recently, Abt analysts
estimated that “chronic” users spend about 6 times as much per capita as do
“occasional” users [94].
2 Rydell and Everingham [24] originally estimated average social costs of about
$100 per gram, but Caulkins et al. [54] use newer evidence to develop a figure of
$215 per gram.
3 Kaya et al.’s [48] analysis of Australian heroin use data shows that the number of
people quitting heroin use over time is highly correlated with the number initiating,
presumably because the modal career of use is very short.

A tendency for light users to smoke and heavy users to inject heroin would reduce
the skew in terms of grams of heroin consumed because injection is the more
“efficient” route of administration, although dependent users are also more likely to
have developed tolerance and to take larger effective doses.
5 Demand is proxied by the sum of light and heavy users weighted by their relative
propensities to consume.

4
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number of heavy users, whose per capita consumption rates are much higher,
leaving overall demand substantially stable for close to two decades. The
proportion of that demand attributable to light vs. heavy users changed
dramatically, however. In 1980 much of the demand came from light users
who are not badly affected by their drug use. By 1990 most of the demand
came from heavy users, many of whose lives are dominated by the drug.
This picture follows fairly directly from the simple Markov model of use,
yet it is so compelling that the Office of National Drug Control Policy
incorporated [23] an earlier version of it in several of its National Drug
Strategy Reports (e.g., [56]).

Figure 12.2 Evolution of cocaine demand in the US, expressed in
millions of light users or their equivalent, assuming heavy users

consume seven times as much per capita as light users

These figures also provide a convenient way of thinking about various drug
control interventions. Primary prevention programs seek to reduce
initiation. Treatment seeks to increase quitting from heavy use.
Enforcement programs seek to do both and also reduce per capita
consumption by current users by deterring users and constraining supply.
Epidemic models analyze how the relative effectiveness of these
interventions varies over the course of drug epidemics such as the one
depicted in Figure 12.2. We turn next to a discussion of key insights relating
to these programs.



DRUG POLICY 305

12.2.2 Reducing demand through prevention

There has been great confidence that drug prevention is effective and cost
effective. For example, the 1999 national drug strategy [57] stated
unequivocally that, “The simplest and most cost-effective way to lower the
human and societal costs of drug abuse is to prevent it in the first place.”

However, there is enormous heterogeneity in programs, ranging from
adventure camps to mass media campaigns. Some are more effective than
others [58]. Experimental trials have shown some school-based programs to
decrease illicit drug use [59-61], yet the most popular school-based program,
the Drug Abuse Resistance Education or DARE program, has not been
shown to have any material effect on marijuana use [62].

Furthermore, the experimental evidence pertains only to self-reported use of
indicator substances (e.g., marijuana), through final followup data collection
(typically or grade) by people in the program. However, from a
policy perspective one is interested in the impact on actual (not self-
reported) use of the more damaging illicit drugs (e.g., cocaine) over the
lifetime of all people affected, including those not in the program.

Caulkins et al. [52, 54] developed mathematical models for projecting total
impact of school-based prevention programs based on available evidence
concerning “best-practice” programs. There is considerable uncertainty
concerning the projections, but the bottom-line finding is that these
programs are cost effective, though not very effective.

Drug prevention is not very effective if one compares it to conventional
childhood vaccination. If one gives the very best prevention program to a
group of youths who would have used drugs, most will go ahead and use
drugs anyhow. Even cutting edge school-based programs only reduce
marijuana use by 5-15%, and for almost all programs those effects decay by
the end of high school. Even recognizing that delayed initiation is
associated with lower lifetime use, this translates into reductions in the
present value of lifetime consumption in the single digits, and most likely
just a few percent, because reductions in lifetime use are only one-fifth to
one-third as great as the reductions observed immediately following program
completion [54].

Thus prevention cannot be “the” solution to the drug problem. Indeed, the
notion that enforcement merely needs to “hold the line” until prevention can
“cut the legs out from under the epidemic” does not seem realistic given that
the problem is now more endemic than epidemic. It is similarly unrealistic
to hope, as some drug legalization advocates suggest, that funding drug
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prevention with the money saved by not having to enforce the prohibition
would offset any legalization-induced increase in use.

On the other hand, prevention is cheap, even if one recognizes that the
dominant societal cost of running school-based prevention programs is the
opportunity cost of not using class time to teach other academic subjects.
The outright budgetary costs for programs delivered by regular teachers who
are already on the payroll is tiny. Since preventing drug use is so valuable
and prevention so inexpensive, prevention is cost effective even though it is
not very effective.

One “paradox” of prevention that an OR/MS analysis reveals is that only
about one-quarter of a prevention program’s impact on cocaine use comes
from preventing program participants from initiating use [52]. Some impact
comes from reduced use by program participants who do initiate and use at
some level. Still only about one-third of the reduction in consumption is in
the form of reduced consumption by program participants. Two-fifths
comes from positive spillover to friends and associates of those in the
program, and one-fifth comes about because reduced use by all these people
shrinks the market, making enforcement against those who remain in the
market more effective. Thus, conventional evaluations of prevention that
focus on abstinence for program participants miss some two-thirds to three-
quarters of the effects that would be assessed by a systems analysis.

Another interesting insight is that “school-based prevention should be done
15 years before one knows we need to do prevention” [52]. The average age
of initiation of “hard” drugs is about eight years after the age targeted by
school-based prevention programs. National recognition of a drug epidemic
may occur five or more years after the peak in initiation. (US cocaine
initiation peaked in 1979; it was recognized as a national crisis around
1984.). Since it takes time to appropriate funds, adapt and scale up
prevention programs, and so forth, this implies that school-based prevention
must be started about 15 years before it is widely appreciated that prevention
is needed! Given the contagious nature of drug epidemics, prevention
programs implemented before the beginning of an epidemic are likely to be
many times more effective than programs implemented after the epidemic
has matured.6 Since ability to forecast drug trends is exceedingly limited,
the practical implication is that prevention programs should be funded on an

6 Precise statements are difficult because effectiveness ratios are sensitive to the
number of heavy users at the beginning of the epidemic, a parameter for which data
are particularly weak. See Winkler et al. [110] for more on how the relative
effectiveness of different types of drug prevention varies over the course of an
epidemic.
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ongoing basis, not in response to current crises. Decisions about prevention
should not be made only with an eye toward ameliorating the current
epidemic. Instead, prevention should be seen as “lending a hand” in reducing
the current drug epidemic and possibly other undesirable social trends, while
also serving as a form of inexpensive insurance against possible future
epidemics.

Likewise, drug prevention should be – and usually is – generic, not drug-
specific. Indeed, less than half of the social benefits of school-based drug
prevention stem from reduced use of illicit drugs. The majority stems from
reductions in smoking and heavy drinking [54].

12.2.3 Reducing demand through treatment

Treatment is the most thoroughly evaluated drug control intervention.
Indeed, the literature is so large there is even a bibliography just of other
literature reviews of drug abuse treatment effectiveness [63]. Most
observers conclude that drug abuse treatment is cost effective (e.g., [24, 64]).
The Institute of Medicine [65] summarized the literature by saying,
“Research has shown that drug abuse treatment is both effective and cost
effective in reducing not only drug consumption but also the associated
health and social consequences.” On the other hand, a National Research
Council Report [66] subsequently attacked the existing data on treatment as
vulnerable to various methodological biases, concluding that, “There is little
firm basis for estimating the benefit-cost ratio or relative cost effectiveness
of treatment.” The principal complaint was that few true randomized
controlled trials had been conducted.

What is clear to a systems analyst, though not necessarily a social scientist,
is that decision-relevant insight can be gleaned even if it is not possible to
produce a bottom line benefit-cost ratio. For example, one can work
backwards to ask how effective treatment must be to be cost-justified. If the
resulting breakeven effectiveness seems implausibly high, one would be
skeptical that treatment is a good investment. If it seems attainable, one
might be more optimistic.

Rydell and Everingham [24] in fact performed such exercises. One of their
striking findings was that even if every treatment client relapsed
immediately after completing treatment, treatment could still be cost
effective! The full model is too involved to explain here. It tracks cocaine
as it is produced and passed through multiple distribution layers, and
explicitly models user flows, prices, and market dynamics over a 15-year
planning horizon.
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Back-of-the-envelope calculations are sufficient to convey the same basic
insight, as we now demonstrate. In terms of the drug use model above,
treatment can be thought of as doing three things: it can suppress use while
the person is in treatment, it can reduce use between exit from treatment and
relapse, and occasionally it may encourage some users to quit permanently.
Rydell and Everingham’s startling insight is that the first mechanism alone
can be enough to make treatment a good investment.

Rydell and Everingham [24] estimated that the average admission to
treatment costs about $2,000, the average time in treatment is 3 months, and
use is suppressed by about 80% during treatment. If heavy users consume at
a rate of 120 grams per year, the average admission averts about 120 *
(3/12) * 0.8 = 24 grams of consumption through this “incapacitation” effect
alone. Harwood et al.’s [8] cost of illness study estimated that the total
social cost of illicit drugs in the US in 1992 (excluding impaired
productivity) was $83.5 billion. Apportioning this by substance, dividing by
Rydell and Everingham’s [24] estimate of 291 metric tons of cocaine
consumption in 1992, and adjusting for inflation, Caulkins et al. [54] roughly
estimate an average social cost of $215 per gram of cocaine consumed in the
US. So Rydell and Everingham’s implied social benefit per treatment
admission (24 grams * $215/gram = ~$5,000) exceeds the roughly $2,000
cost.7 Indeed, the benefit-cost ratio would be greater than one even if every
user relapsed immediately after leaving treatment and treatment only
suppressed use by one-third during treatment (120 * (3/12) * (1/3) * $215 >
$2,000).

One can do a similar breakeven calculation with respect to treatment’s
impact on exit rates. Suppose the present value of the residual career length
of the average treatment entrant is 8 years. (In Figure 12.1 ’s Markov model
the undiscounted residual career length would be 1/g = 1/0.055 = 18 years,
but one should discount back to the present and truncate to recognize that
people – especially chronic drug users – do not live forever.) If the social
cost per year of use is approximately 120 grams/year times $215/grams =
$25,000 per year, then the discounted social value of averting a present value
of 8 years of such use by getting a heavy user to quit is about $200,000.
Hence, if even 1% of treatment admissions led to permanent cessation, the
present value of treatment’s benefits would equal its costs.

7 Of course the social cost per gram of consumption averted by treatment could in
theory be below average cost, but more likely it is higher. The biggest danger from
light use of cocaine is the possibility of escalation to dependent use, and since many
of those in treatment are “referred” by the criminal justice system, consequences of
their use may be costly even relative to those of other heavy users.
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Similarly, if one in 12 people entering treatment ceases use for a year (and
no one quits permanently and no one else reduces use during treatment) the
benefits would exceed the costs. Any linear combination of these three
effects would also lead to a breakeven benefit-cost ratio. For example if one
client in 20 did not relapse for a year and one in 250 quit, treatment’s
benefits would exceed its costs even if the treatment had no impact
whatsoever on 95% of clients.

Pollack [67] has taken this insight a step further, noting that methadone
maintenance (a treatment for heroin users, who often use by injection) can
have benefits that exceed its costs even if it gets no credit at all for reducing
drug use – simply because it can reduce the rate at which users spread HIV
by sharing syringes.

More generally, interventions can reduce drug-related harm and have
positive social benefit-cost ratios even if they do not reduce drug use.
Indeed, treatment is sometimes described as a “hook” for getting needy
people in contact with health and social service agencies. Such a “harm
reduction” approach to drug control is common outside the US [68],
although it has not been the subject of much formal systems analysis.

As Manski et al. [69] argue, in the absence of rigorous randomized
controlled trials it is not possible to conclude with certainty that treatment is
cost effective, but what is clear from Rydell and Everingham and other’s
work is that the breakeven effectiveness values are not very high and that
relapse rates are not an adequate metric for evaluating the value of treatment.
Hence, Manski et al.’s complaint that, “When complete and permanent
abstinence is used as a criterion of success, between 60 and 90 percent of
clients relapse to drug use within 12 months of treatment,” [69] does not
seem altogether damning.

The work of Rydell and Everingham also provides a cautionary note. If
most people relapse, then unless those individuals can be re-enrolled rapidly,
there is a limit to how quickly treatment can ameliorate the drug problem. In
Rydell and Everingham’s model (which assumed that 13.2% of treatment
entrants left heavy use because of that treatment, with two-thirds merely de-
escalating to light use), even if every heavy cocaine user received treatment
once a year, cocaine use would still only be cut in half over 15 years.
Furthermore, Rydell and Everingham did not consider the possibility that
such an expansion in treatment might have an adverse feedback effect on
initiation, as do Behrens et al. [70, 71]; such an effect would make programs
less effective. Highly imperfect treatment programs, no matter how cost
effective, cannot quickly eliminate an endemic drug problem. Everingham
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and Rydell [24] and Caulkins et al. [52] make similar points concerning
prevention.

12.2.4 Reducing supply

Interventions can affect supply in two ways. Unanticipated interventions
can disrupt the market equilibrium. Ideally the disruption takes the form of
physical shortage, and the market does not regenerate, but that is not the
norm. Usually suppliers adapt, although prices may spike and use decline in
the interim [72]. At one time or another over the last 30 years, four different
regions have been the principal supplier of heroin to the US (Mexico, South
America, Southwest Asia, and Southeast Asia). Similarly, Colombia quickly
replaced Mexico as the principal supplier of marijuana to the US in response
to paraquat spraying and fears of adverse health-effects of using sprayed
marijuana [73].

Enforcement can also affect supply even if the intervention is fully
anticipated. For example, if smugglers knew that one-quarter of all
shipments would be seized, they would ship more than if they thought none
would be seized. Indeed one of the early lessons that drug policy analysis
gave policy makers was that quantity seized is not a direct measure of
enforcement’s impact on consumption [72]. However, presumably
smugglers would charge more per kilogram landed to make up for their
losses. The higher prices represent a shift in supply that affects retail prices
and, hence, consumption.

At one time demand was thought to be insensitive to price, but the price
elasticity of demand for illicit drugs turns out to be rather high, much higher
than for cigarettes. (For a review of the literature, see Chaloupka and Pacula
[74]). Nor does this price-responsiveness seem to be confined to light use
reported in surveys. Crane et al. [75] estimate that the elasticity of cocaine
emergency department mentions with respect to price is –0.63, and Caulkins
[76] notes that a simple constant elasticity model predicts emergency
department mentions for both cocaine (elasticity –1.3) and heroin (elasticity
–0.8).

These disequilibrium and equilibrium aspects of enforcement’s effect on
supply are quite distinct, and great confusion can arise if one tries to
compare analyses or conclusions concerning one with those concerning
another. Supply-side interventions are most likely to have disequilibrium
effects if they quickly affect a large proportion of supply. For most drugs,
the industry within US borders is populated by many vertically
disaggregated “firms,” so it is difficult for enforcement to remove a large
proportion of the national domestic distribution network’s capacity at any
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one time [77]. Furthermore, the network is robust because of its many
lateral linkages, independent paths, and ability to expand quickly the
capacity of individual arcs [78].

Interventions in source countries can have greater potential for market
disruption because there is greater market concentration there. Perhaps the
greatest success occurred when the Turkish Opium ban, the breaking of the
“French Connection” case, and Mexican opium eradication substantially
drove up purity-adjusted heroin prices during the mid- to late 1970’s, before
Asian heroin filled the gap [79]. The greatest success in disrupting the
cocaine supply was the result of a combination of US efforts and the “war”
between the Colombian government and the Medellin-based traffickers in
1989 which led to a sharp (50-100% at its peak) but short-lived (about 18
months) increase in cocaine prices [80]. In 1995, Peruvian interdiction of the
“air bridge” to Colombia led to a smaller but identifiable increase in cocaine
prices [75].

There is reason to believe that transient price increases can have meaningful
effects. The heroin scarcity in the 1970s coincided with the ebbing of the
heroin epidemic [81]. Emergency room and medical examiner mentions
declined in parallel with higher cocaine prices in 1989-1990 [82], and there
was a one-period (three month) decline in emergency mentions in late 1995
[83]. Some, however, argue that market disruptions can increase harms
through unsafe use (e.g., more needle sharing) and greater market violence
[84, 85].

There have been only a few analyses of the consequences of short-term
disruptions (e.g., [75, 86]) and no serious estimates of the cost of generating
disruptions. Hence, few real cost-effectiveness insights exist. This is clearly
an area worthy of further research.

There have been far more studies of how enforcement might affect the long-
run market equilibrium. Such analyses use so-called “risks and prices”
calculations of the sort pioneered by Reuter and Kleiman [87]. The “risks
and prices” paradigm recognizes that increasing enforcement risks for
dealers raises their cost of doing business. Dealers could simply absorb
those costs, but presumably prefer to pass them along to users in the form of
higher retail prices, which in turn reduce consumption [88].

The literature on risks and prices calculations generates a number of insights.
For example, when efficiency is defined as kilograms seized per million
taxpayer dollars spent, enforcement is more efficient at seizing drugs in
source countries and while drugs are being smuggled into the US than within
the US. However, suppliers are also more “efficient” at replacing drugs that
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are seized before they enter the US because the drugs are so much less
expensive in the source and transshipment countries. Unfortunately, when
moving upstream in the supply chain, the “efficiency” gain for the suppliers
trumps the efficiency gain for the interdictors. Hence, the effective cost to
suppliers of replacing the drugs seized per million taxpayer dollars spent is
lower, not higher, outside the US. Replacing seized drugs is just one of
many components of the “tax” that enforcement imposes on equilibrium
operations. For example, Rydell and Everingham’s [24] model also
considers seizure of assets, arrest, imprisonment, incarceration of sellers who
are also users, and indirect effects on production costs. However, even when
considering all components of the tax, the same basic pattern persists. The
cost imposed on suppliers per million taxpayer dollars spent on enforcement
is lower outside the US than it is within the US.

Hence, the only way international operations can be a more cost-effective
“tax” on suppliers is if the tax is “multiplied” as the drugs move down the
distribution chain. Boyum [89] and Caulkins [90] suggest reasons why there
might be such multiplicative price transmission. Caulkins [80] finds some
evidence for this proposition, but DeSimone [91] suggests variation by drug.
It may be easier to create transitory disruptions through international
operations, but unless a multiplicative price transmission model holds, it is
harder for such enforcement to drive up equilibrium prices [79].

Within US borders, the risks and prices model has something of the feel of
an arm’s race. If enforcement can impose enough cost on the suppliers per
taxpayer dollar spent, it could be cost effective. Most analyses find that it is
costly to fight this arms race in a mature market, as an excerpt from a simple
static portion of Caulkins et al.’s [92] model suggests.

Assume that the demand curve can be locally linearized with a known
elasticity that the market is in equilibrium in the sense that suppliers’
revenues just cover costs, including normal profits, and that the industry
supply curve stems from the following cost structure. “Normal” business
costs per unit increase linearly in volume (i.e., they follow a textbook
upwardly sloping linear supply curve), but there are two additional costs: (1)
costs imposed by enforcement, including compensation for the risks of arrest
and imprisonment, and (2) costs that are linear in the dollar value of the
drugs distributed, not their weight. The last term is important because drug
distribution is almost pure brokerage activity, requiring minimal processing,
and the drugs weigh next to nothing per unit value. (Cocaine and heroin sell
at retail for about ten and one hundred times their weight in gold,
respectively.) Thus the suppliers’ costs of delivering drugs can be written as
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where P and Q are the market clearing price and quantity, E is the
enforcement “tax”, and and are positive constants. With a little
algebra [53] it is easy to show that shifts in demand and the enforcement tax
have the following effects on the market equilibrium:

where and are the fractions of
dealers’ costs in the current equilibrium that are attributable to the linear part
of the cost term above, the quadratic part of the cost term, and enforcement,
respectively. Since is the remaining fraction, so one
of these parameters can be eliminated in the expressions above.
Caulkins et al. [93] estimate that for the US cocaine industry in 1992,

and Suppose these parameters still
applied in 2000, when the Office of National Drug Control Policy [94]
estimated that there were 3.035 million occasional and 2.707 chronic cocaine
users who collectively spent $35.3 billion while consuming 259 metric tons
of cocaine.

Reducing equilibrium consumption by 1% would require imposing costs of
on suppliers. The

cost to taxpayers to “purchase” this cost-imposition depends on how
efficient enforcement is. Consider a policy of giving longer sentences to
people who already would have been convicted and incarcerated at least
briefly. (Thus we can ignore details of arrest, adjudication, seizures, and so
forth.) Suppose drug suppliers have to increase workers’ wages by $50,000
to compensate them for the risk of each additional expected year of



314 OPERATIONS RESEARCH AND HEALTH CARE

incarceration. It costs taxpayers about $25,000 to incarcerate someone for a
year [95], so the efficiency ratio is 2:1 and taxpayers could buy that 1%
reduction in cocaine consumption for $97 million per year.

Alternately, one could cut consumption by 1% by reducing demand by
Assuming heavy users consume seven times as

much per capita as do light users, that would require eliminating 0.73% *
(2.707 + 3.035/7) = 23,000 heavy users. At first this might seem to be the
more expensive route: $97 million would only pay for about two treatment
admissions per person for 23,000 heavy users. However, the supply
reduction strategy requires spending $97 million per year indefinitely. If the
23,000 heavy users were somehow removed by treating each twice,
consumption would be reduced by 1% indefinitely (ignoring indirect effects
on initiation, which may be a second-order effect in a mature market). At a
4% discount rate, the present value of $97 million per year forever is $2.4
billion, or about $100,000 for each of those 23,000 users, enough for some
two-dozen rounds of treatment per person.

There is a sharp distinction between the timing of the costs and benefits of
treatment, conventional enforcement, and extending time served for
convicted traffickers with mandatory minimum sentences [93]. Raising
prices by threatening sanctions brings immediate benefits, since suppliers
have to adjust their cost structure in the short run. Secondary, long-lasting
benefits also accrue: raising prices today suppresses initiation and increases
quitting thereby reducing future demand. So supply-side enforcement’s
benefits are predominantly upfront. The costs of enforcement with
conventional sentences also occur mainly in the first year or two, but the
longer the sentence, the longer the period over which costs to taxpayers are
spread. Furthermore, if the policy change is one that extends the sentence of
someone who would have been incarcerated anyhow, the incremental costs
do not begin to be felt until after the end of the baseline sentence. The time
profile of treatment costs and benefits is very different. Treatment costs
essentially all come in the first year, as do the “incapacitation” benefits of
reduced use during treatment. However, the benefits of convincing someone
to quit continue to accrue throughout the entire period during which they
would otherwise have continued to consume. Informally, conventional
enforcement is like paying cash, mandatory minimum sentences are like
buying with a credit card, and treatment is like an investment.

Rydell and Everingham [24] and Caulkins et al. [93] examine in detail this
issue of the timing of the benefits and costs of various interventions.
Roughly speaking, the result is as follows. Suppose a treatment intervention
and an enforcement intervention each have the same impact on consumption
over the next 15 years, discounting future outcomes at 4% per year. (More
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specifically, imagine the enforcement operation is one whose effect stems
from raising suppliers’ cost of operations over the next year.) The treatment
intervention would have about double the impact on consumption in the first
year as it would in each succeeding year, whereas the ratio for enforcement
is about nine to one. The enforcement intervention would have about 2.7
times as great an impact on consumption in the first year as does treatment,
whereas in every succeeding year the treatment program would have 1.65
times as much impact as the enforcement program. Hence, although
treatment may be the more effective way to reduce use in the long run,
enforcement has greater capacity to focus its benefits in the present, a
capability that may be invaluable when trying to interrupt the contagious
spread of initiation early in a drug epidemic.

One concern with price-raising enforcement is that it might increase crime
even if it reduces use. Most drug-related crime is “economic-compulsive”
(committed to obtain money to buy drugs) or “systemic” (arising from drug
selling, e.g., punishment for non-payment) and so is driven by drug dollars,
not by intoxication or use per se (also called “psychopharmacological” drug-
related crime). Depending on the elasticity of demand, driving up prices
could actually increase, not decrease, drug-related crime. A very simple
model of this conveys the basic intuition. Suppose that drug-related crime is
proportional to a weighted sum of drug use and spending on drugs, with the
latter accounting for 100x% of the total. So drug-related crime C equals

for some positive constants and such that
i.e., Taking the derivative of crime with respect to price
gives

Hence, driving up prices reduces drug-related crime if the absolute value of
the elasticity of demand is greater than x, the proportion of drug-related
crime that is driven by drug spending rather than drug use.
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Figure 12.3 Relative effectiveness of demand reduction and price-
raising enforcement depends on the elasticity of demand

Figure 12.3 uses the market equilibrium model above to illustrate in more
detail how the effects of price-raising enforcement and demand reduction on
drug use, spending, and crime depend on the elasticity of demand.8

12.2.5Dynamic/epidemic modeling results

Drug use varies dramatically over time, driven in no small part by
endogenous nonlinear dynamics, not just in response to changes in policy or
exogenous factors such as the poverty rate. Hence, one would expect the
effectiveness of interventions to likewise vary with the state of the epidemic,
and a growing literature investigates this possibility. According to this
school of thought, it is rarely sensible to make statements such as “treatment
is better than enforcement” or vice versa without qualifying the statement
(e.g., “treatment is better than enforcement for controlling cocaine use in the
US now that the epidemic has plateaued”).

8 Parameters from Caulkins et al. [92] and assuming of drug-related crime is
driven by spending. The enforcement intervention is imposing $1 million in costs on
suppliers. The demand reduction intervention is eliminating 100 heavy users.
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Perhaps the most important endogenous dynamic is the “contagious”
character of drug initiation. Unlike infectious diseases, drug use has no
pathogen, but drug use is contagious in the sense that drug use spreads when
non-users are introduced to the drug by current users. (Contrary to once
popular myth, most initiation does not stem from dealers “pushing” the
drugs on potential users; rather, new users are initiated by current users.) In
formal terms, there is a positive feedback from current use to initiation.
Systems with such a feedback can grow explosively.

There are several models of how that explosive growth ends, depending in
part on what country and drug is being modeled. In a line of modeling
pioneered by Tragler [95-98], a steady state emerges when quitting at a
constant per capita rate balances initiation, which is an increasing but
concave function of use.

In a line of models pioneered by Behrens [70, 71, 99] the key negative
feedback pertains to the drug’s reputation. As some early initiates progress
from light to heavy use, the drug’s dangers become apparent and initiation
declines. That decline, coupled with the high quit rates for light users,
increases the ratio of heavy to light users, further enhancing the drug’s
negative reputation and cutting initiation. These models can, for some
parameter values, generate recurrent cycles of drug epidemics. Almeder
[100] examined a related family of age-distributed models in which the
nature and intensity of this feedback depends on the relative and absolute
ages of the users and potential users.

In a line of models associated with Rossi and colleagues (e.g., [42, 43]), the
limiting factor is the number of susceptibles. To over-simplify, essentially
everyone who might try the drug ends up trying it. Most use only briefly,
but some get hooked, so after the explosive growth stage there is a decline to
an endemic problem characterized by a high proportion of heavy users.

The overall policy prescription from these models is to rely on enforcement
early in a drug epidemic and rely on treatment later in the epidemic.
Prevention can be extraordinarily cost effective if done before and at the
beginning of an epidemic; later it is much less effective, but is still worth
doing. In particular, keeping prices high initially is a useful way to slow the
explosive spread of drug use, but later on high prices are costly to maintain
and may exacerbate drug-related crime. More generally, one should initially
fight very aggressively to contain a drug epidemic. Ideally the epidemic
would be eradicated or stabilized at low levels, but if the intervention is too
late or the epidemic growth too great, then one should accommodate the
growth in drug use by gradually shifting to strategies that remove heavy
users and/or ameliorate the social cost per heavy user.
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Tragler et al. [96] offer an example of such a finding. Their model seeks the
optimal dynamic levels of price-raising enforcement and drug treatment that
together minimize the present value of the sum of control spending plus the
quantity of drugs consumed, weighted by the social cost per unit of
consumption, subject to drug use evolving according to the following
nonlinear model of drug use (modeled by a set of differential equations):
Initiation is concave in use. “Natural” quitting is at a constant rate per
capita, which can be augmented by treatment, although with diminishing
efficiency as the proportion of users in treatment increases. Prices affect all
flow rates and are in turn a function of the intensity of price-raising
enforcement as above.

Figure 12.4 updates a figure from Tragler et al. [96], using a slightly larger
exponent on endogenous initiation in light of Grosslicht’s [101] findings.
The horizontal axis depicts the number of users and the vertical axis gives
the optimal annual control spending (in thousands of dollars). A so-called
Dechert-Nishimura-Skiba threshold (labeled occurs when the number
of users is about 1.3 million. If the initial number of users is less than this
threshold value (i.e., control begins before the epidemic has passed this
point), the optimal strategy is to use massive levels of enforcement and
treatment to reduce use to some minimal level. Otherwise, it is optimal to let
use grow toward a positive equilibrium. In that case, enforcement and
treatment spending should increase with use, but with the proportion of
control spending allocated to treatment increasing over time. This finding of
a sharp choice between eradication and accommodation at the aggregate
level is consistent with others’ analyses of the impact of enforcement on
local drug markets (e.g., [36, 40, 41, 102]).

A key driver of this dynamic is “enforcement swamping” [103]. The
deterrent or price-raising potential depends on enforcement’s intensity – i.e.,
the amount of enforcement per kilogram or per person in the market – not
the absolute level of enforcement. Early in an epidemic, when the market is
small, it is not so hard to achieve high enforcement intensity. When the
market doubles in size, the intensity generated by a given enforcement level
is halved because that enforcement is spread over a larger target. Since drug
use can much more than double over an epidemic, overcoming this dilution
for an established mass-market drug is very expensive.

One of the more interesting insights to emerge from these optimal control
models comes from Behrens et al.’s [70, 99, 104] complementary analysis of
prevention and treatment. It extends Everingham and Rydell’s [23] model of
cocaine use in Figure 12.1 to make initiation increasing in the number of
light users and decreasing in the number of heavy users. Insights derived
from this model include the following: (1) Prevention is most valuable when
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Figure 12.4 Optimal control spending as a function of the number of
users, illustrating Tragler et al.’s finding that if control catches the

epidemic early it should seek to “eradicate” the epidemic; otherwise
accommodation is the optimal strategy

there are relatively few heavy users, such as in the beginning of an epidemic.
Treatment is more effective later. (2) The transition period when it is optimal
to use both prevention and treatment is very brief. (3) Total social costs
increase dramatically if control is delayed.

The second insight is particularly interesting because many people describe
the strategic drug policy choice as concerning supply-side vs. demand-side
interventions. Behrens et al. show that it is misleading to lump together
treatment and prevention even though they both affect demand. At any
given point in an epidemic, prevention might be very valuable but not
treatment or vice versa. Indeed, when Behrens et al.’s model is
parameterized for the US cocaine epidemic and school-based prevention
(which has a roughly 8-year lag between program spending and effect on
initiation), it is literally never optimal to spend money on both prevention
and treatment! This is illustrated in Figure 12.5, which is adapted from
Behrens et al. [70]. A complete absence of overlap is not robust with respect
to parameter variation, and as discussed above, prevention is probably
justified on an ongoing basis because of its impact on the use of other drugs.
Nevertheless, the general message is robust: It is simplistic to argue for or
against “demand-side” (or “supply-side”) strategies without knowing more
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about the specific mix of strategies and the current state of the epidemic in
question.

Figure 12.5 Optimal cocaine control spending levels over time for
school-based prevention and treatment for the past US cocaine

epidemic

12.3 OPPORTUNITIES FOR FURTHER RESEARCH

Drug policy is an important domain. It has enough nonlinearities from
epidemic feedback and market dynamics to challenge unguided intuition, so
formal mathematical models such as those reviewed here can be a very
important aid to strategic planning. There remains, however, far more that is
not known than is known, so possibilities for further research are great.
Many of the present generation of models are highly stylized. It is important
to discover what current findings are robust and what new findings emerge
as the models are expanded to consider more factors and interactions.

For example, most of the current models consider a single drug or an
undefined amalgam of all drugs. However, drugs interact with one another
in many ways. At the individual level, drugs interact in users’ bodies so that
drugs taken in combination can lead to overdose even when larger doses of
each drug singly would not. At the level of a drug use career, use of one
drug can affect use of others, both in the narrow economic sense of being
consumption substitutes or complements, and in the broader social sense,
e.g., when use of one substance brings an individual into contact with users
and sellers of other drugs. Interactions also occur at the market level: for
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example, the presence of established distribution networks for one drug (e.g.,
Colombian cocaine) can facilitate the spread of another drug (e.g.,
Colombian heroin), and control resources devoted to one drug may not be
available for another.

Dependent users often have multiple medical conditions. Many are “dually
diagnosed” with mental health and substance abuse disorders. Many are
infected with HIV or Hepatitis C. Complicated interactions can occur in
treatment regimens (how successful will dependent users be in complying
with complicated HIV control regimens?; see Turner et al. [105]) and
treatment financing (cost containment pressures may encourage restrictions
on drug treatment, but resumption of drug use can increase other health care
costs in the long run; see Sturm et al. [106] and Sturm and Pacula [107]). In
some ways it makes more sense to think about the cost effectiveness of drug
treatment relative to the cost effectiveness of other medical interventions
than it does to compare drug treatment to criminal justice or prevention
interventions.

Drug policy intersects not only with health and crime, but also social policy
more generally [108]. For example, the issues of the dually diagnosed are
particularly problematic for those who are also homeless [109]. Models that
disaggregate types of users (e.g., homeless vs. other) and evaluate
interventions tailored to one subpopulation or another would refine current
understanding of broad strategic themes.

Perhaps the greatest need, though, is for more fundamental understanding of
how drug epidemics evolve. This is perhaps best gained by modeling more
epidemics, both at lower levels of geographic aggregation (e.g., in individual
cities within the US) and in other countries. Comparative studies across
drugs, cultures, political structures, and market conditions would help clarify
what aspects of epidemic dynamics are fundamental and which are
idiosyncratic to a particular context. A defining characteristic of nonlinear
systems is that the magnitude of the response to a given intervention is
nonlinear. Sometimes the response is less than proportionate; sometimes it
is much more. Historically, drug control interventions have often produced
less than hoped for effects. It may be that all these interventions are
inherently ineffective or have been poorly conceived or executed. An
alternative explanation, however, is that they simply have not been “timed”
or “tuned” appropriately because the nonlinear character of the underlying
epidemics has not been fully appreciated. In this alternate, more optimistic
view, advances in understanding of drug epidemics will not only help us to
choose the best among a range of interventions which may all have mediocre
performance, but also to enhance the effectiveness of all interventions.
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SUMMARY

In this chapter we discuss recent operations research advances in modeling
drug treatment programs for injection drug users, in particular maintenance
treatment programs for opioid addicts. We focus on four main questions for
which operations research techniques have proven beneficial: How effective
are opioid maintenance programs? Do the benefits of methadone
maintenance treatment justify its costs? Are alternative forms of maintenance
treatment cost effective? If opioid maintenance treatment programs are
expanded, how many new treatment slots are needed? We discuss a number
of methodological issues and highlight directions for future research.
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13.1 INTRODUCTION

Injection drug use is a significant public health problem in the United States.
Between 750,000 [1] and 1.2 million [2] individuals in the U.S. are injection
drug users (IDUs). Injection drug use is a major risk factor for human
immunodeficiency virus (HIV). The prevalence of HIV among IDUs
exceeds 40% in some cities [3]. Approximately 20-25% of all new HIV
cases and 35% of all acquired immune deficiency syndrome (AIDS) cases in
the United States have injection drug use as a risk factor [4]. IDUs may
serve as a “core group” [5] in the HIV epidemic and spread HIV to non-IDUs
through sexual contact. In addition to HIV, IDUs are subject to a number of
other comorbidities including hepatitis, tuberculosis [6], overdose and
accidental death [7], and have mortality rates that are up to 60 times greater
than those of other members of their age group [8]. IDUs may make greater
use of emergency health services and less use of regular health services, and
have annual health care expenditures that are three to four times greater than
those of other members of their age group [9, 10]. Injection drug use is also
associated with increased criminal activity and increased costs to the criminal
justice and welfare systems [11, 12].

Methadone was developed in Germany during World War II as a substitute
for morphine and has been used in the treatment of heroin addiction for more
than 30 years [13]. Methadone has a slow onset and a long delay, with
effects lasting up to 24 hours, and can be taken once a day to curb heroin
withdrawal symptoms. Methadone maintenance treatment (MMT) is
associated with reduced illicit drug use, reduced HIV risk behavior, and
reduced drug and property-related criminal activity [14, 15]. Non-HIV
health care expenditures are lower for IDUs in MMT than for IDUs not in
MMT [16]. A meta-analysis of studies comparing IDUs in MMT versus
IDUs not in MMT found a relative risk of death of 0.24 – 0.43 associated
with MMT [17].

Methadone is a highly regulated substance in the U.S. [18] and is classified
as a Schedule II narcotic (meaning that it has a high potential for abuse) by
the U.S. Drug Enforcement Administration [19]. There are only
approximately 115,000 methadone treatment slots in the U.S., or roughly
enough for 10-20% of all IDUs nationwide [18]. Some states do not have
any methadone programs [20]. Methadone is typically administered daily
under supervised settings to prevent potential abuse of the drug. This and
other regulations contribute to the high cost of MMT. Estimates of the
annual cost of one methadone treatment slot range from $4,300 [21] to
$5,250 [22] (in 1996 dollars). However, methadone is a generic drug that
costs less than $1 per day [23]. One study found that drug costs accounted
for only 5-6% of the total cost of a methadone treatment slot [21].
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MMT is controversial in the United States. The former U.S. “Drug Czar”
(Director of the Office of National Drug Control Policy) publicly supported
increased funding and use of methadone as part of a drug abuse reduction
strategy [24]. A report from the National Institutes on Drug Abuse has
advocated expanded methadone capacity [25], and drug abuse prevention has
recently been included among the principles for HIV prevention among IDUs
[26]. However, support for MMT is not universal. In 1999, a bill was
introduced in the U.S. Congress that called for limiting methadone funding
and access [27]. In 1996, the mayor of New York City declared that
methadone was immoral and represented the substitution of one drug
(methadone) for another (heroin) [28]. He subsequently reversed his position
and devoted $5 million to increased city funding of methadone programs
[29].

This chapter reviews modeling work that evaluates programs to treat opioid
dependence. We focus on four major questions where operations research
techniques have provided insight into the value of such programs:

1.

2.

3.

4.

How effective are opioid maintenance programs?

Do the benefits of MMT justify its costs?

Are alternative forms of maintenance treatment cost effective?

If opioid maintenance treatment programs are expanded, how many
new slots are needed?

Following the discussion of the questions we highlight some methodological
issues and describe a number of promising areas for future research.

13.2 MODELS OF OPIOID MAINTENANCE PROGRAMS

13.2.1 How effective are opioid maintenance programs?

MMT programs may not lead to a complete cessation of drug use but, rather,
a reduction in usage; similarly, they may not lead to complete cessation of
needle sharing. Additionally, many IDUs lead unstructured lives, leading to
substantial difficulties in fulfilling the follow-up and monitoring
requirements of many studies. Statistical techniques that only record
“success” or “failure”, as well as those that do not handle large amounts of
missing or censored data, may not be suited to the assessment of opioid
maintenance programs. Thus the motivation to develop new techniques.

Lee [30] and Weng [31] developed models to assess the effectiveness of
methadone and buprenorphine maintenance programs in the presence of
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missing observations. Buprenorphine is an alternative to methadone that has
only recently been approved for maintenance treatment in the U.S. Both
models were fit using data from a 17-week randomized clinical trial to
evaluate the effectiveness of buprenorphine [32]. Patients in the trial were
randomized into three groups: Group 1 received 8 mg of buprenorphine
daily; Group 2 received 20 mg of methadone daily; and Group 3 received 60
mg of methadone daily. Patients in each group were asked to provide urine
samples three times per week to assess their drug consumption while in
treatment. Between 60% and 80% of the members of each group were lost to
followup, and approximately 18% of urine samples among those not lost to
followup were missed in each group.

Weng [31] developed a stochastic compartmental model with three
compartments representing negative urinalysis positive urinalysis

and missed test [31] The model was formulated as a
continuous-time stochastic process, as depicted in Figure 13.1. Clinical trials
data was used to estimate flow rates between states for the three study
groups. Transitions between any two states were allowed, and the population
was assumed to be closed. The 17-week period was partitioned into four or
five segments for each group. The steady state probability of being in the
negative state was found to be between .403 and .566 for Group 1
(buprenorphine); between .183 and .353 for Group 2 (20 mg methadone); and
between .271 and .465 for Group 3 (60 mg methadone).

Lee [30] used a two-state discrete-time Markov chain to examine the
effectiveness of methadone and buprenorphine programs. The discrete time
steps corresponded to urine sample collection points. The two states,
denoted by 0 and 1, represented negative and positive urinalysis results,
respectively. Estimation procedures were developed to estimate the
transition probabilities between the two states given a sequence of urinalysis
results that may contain missing observations. Maximum likelihood
estimates for P1, the probability of opiate use during the 17-week period,
were calculated. In one set of calculations, it was found that P1 = 0.4734 for
Group 1 (buprenorphine), P1 = 0.6288 for Group 2 (20 mg methadone), and
P1 = 0.4970 for Group 3 (60 mg methadone). In a second set of calculations
it was found that P1 was 0.3664, 0.6260, and 0.4854 for the three groups,
respectively.
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Figure 13.1 Compartmental model to investigate the effectiveness
of methadone and buprenorphine treatment

The methods developed by Lee and Weng [30, 31] address some of the
difficulties in assessing the effectiveness of opioid maintenance programs.
However, there are still opportunities for new methods. There may be many
definitions of “success” related not only to drug use but also to the frequency
of engaging in risky behavior and frequency of use of drugs other than
heroin. Also, IDUs may simultaneously use several drug treatment services
(i.e. MMT, counseling, support groups). Future methods may seek to
address multiple definitions of success as well as the incremental impact of
each service.

13.2.2 Do the benefits of MMT justify its costs?

Drug treatment programs, including MMT, are often seen as primarily
benefiting one group (IDUs) while being paid for by another group
(taxpayers). This discordance has generated much interest in understanding
whether the benefits of MMT justify its costs. Much of the analysis of this
question has utilized cost-benefit analysis (CBA) or cost-effectiveness
analysis (CEA). Recent debate has questioned whether CBA and CEA can
be considered equivalent [33-37]. Applications of these techniques in the
evaluation of opiate treatment programs clearly are not equivalent:
researchers performing CBA tend to focus on the social impact of drug
treatment (such as crime, judicial costs, social welfare, etc), whereas
researchers performing CEA tend to focus on the health impacts of drug
treatment (including mortality, comorbidities, and HIV infection).
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Both techniques often make use of the quality-adjusted life year of survival
(QALY) as a way of characterizing the health benefits of a program [38].
QALYs represent utilities for health states and are scaled between 0,
representing death, and 1, representing perfect health.

Cost benefit analysis of methadone programs In cost-benefit analysis, all
costs and benefits of a proposed program are converted into monetary units.
For a health care program, this requires conversion of health outcomes into
monetary units. The requirement that health outcomes be explicitly valued is
often cited as a criticism of CBA in the evaluation of health care programs.
Results of a CBA are typically expressed in several different formats,
including the net benefits approach (net benefits = total benefits – total costs)
and the benefit-to-cost ratio. It has been argued that CBA may be preferable
to CEA for drug abuse interventions since many of the benefits (e.g.,
improved employment, reduced criminal activity) are not health related [39].

An early cost benefit analysis of methadone programs was provided by
Hannan [40]. The analysis focused on four direct impacts of methadone
treatment: decreased criminal justice expenditures, decreased health care
costs for heroin-related conditions, decreased expenditures on heroin, and
increased legal earnings among those treated. The monetary value of
property theft crimes was not included in the analysis since it is a transfer of
wealth with no net impact. The analysis was based on data from a New York
MMT program in 1965. For a six-year time horizon, benefit-to-cost ratios of
1.47 to 4.40 were found, depending on which benefits were included in the
analysis. For a projected 33-year time horizon, benefit-to-cost ratios of 1.86
to 5.09 were found. In all cases considered, the benefits were substantially
greater than the costs. A limitation of this study was that health care costs
were included, but the health benefits of MMT were not.

French and colleagues described a methodology for conducting benefit-cost
analysis of methadone programs [39, 41]. The methodology involves
converting scores from a disease severity index into QALYs, and then
multiplying QALY estimates by the societal willingness to pay (WTP) for a
QALY to yield the monetary value of health outcomes. Health benefits are
converted into monetary outcomes using the following formula:

where N = 19 (corresponding to 19 comorbidities that are common among
IDUs), is the quality-of-life adjustment for condition i, and QALD is the
societal WTP for one quality-adjusted life day [41]. The value of QALD was



340 OPERATIONS RESEARCH AND HEALTH CARE

$173.08, derived from an estimate of the value of life [42]. The net cost is
computed by adding the other monetary costs to the health costs. This CBA
methodology is illustrated with sample calculations [39] and with a full CBA
based on data from the Philadelphia Target Cities Project [41].

A similar methodology was used to conduct a benefit-cost analysis of two
levels of intensity of addiction service, denoted by “partial continuum” (PC)
and “full continuum” (FC), in Washington State [43]. Costs included those
related to health care, psychiatric status, employment status, drug and alcohol
use, and legal status. Health benefits were derived in part by converting
changes in the Addiction Severity Index [44] for treated patients into
monetary units. FC only, PC only, and FC and PC together had average net
benefits of $17,833, $11,173, and $15,305, respectively (expressed in 1997
dollars) and respective benefit-cost ratios of 9.70, 23.33, and 14.87.

The conversion of health benefits to monetary units is a necessary part
of any CBA, but formula (1) has some shortcomings. The formula does not
address the possibility that some comorbidities are more common among
IDUs than others. Dividing by N (N=19 in the example given) implicitly
assumes a prevalence of 1/N (5.3% when N = 19) for all comorbidities, and
that there is no correlation between different comorbidities. The method also
does not quantify the impact that drug treatment has on reducing the
probability of developing one of the comorbid conditions. Also, QALYs
represent utilities, and it is unclear if scores from a disease severity index can
be converted to utilities.

The cost effectiveness of methadone Cost-effectiveness analysis involves
calculation of the incremental cost-effectiveness ratio, which is defined as the
incremental costs of an intervention divided by the incremental health
benefits of the intervention [45]. The incremental costs of an intervention
include the cost of the intervention itself plus the costs associated with all
future changes in health caused by the intervention. The incremental cost
term may include non-health care costs if a societal perspective is taken.
Costs and benefits are typically discounted to reflect the principle that costs
in the future are preferred to costs today, and benefits today are preferred to
benefits in the future.

If the health benefits of the intervention are expressed in terms of QALYs,
then a CEA may be referred to as a cost-utility analysis (CUA). Conversion
of the health benefits of interventions into QALYs allows interventions that
yield very different benefits to be compared. By expressing results as a ratio,
CEA avoids having to explicitly assign a monetary value to health outcomes.



MAINTENANCE TREATMENT FOR OPIATE ADDICTION 341

Barnett constructed a life table to examine the costs, benefits, and cost
effectiveness of MMT [46]. Age-specific mortality rates for non-IDUs (i.e.,
individuals who do not inject drugs) were obtained from U.S. life tables.
Numerous studies have compared mortality rates for IDUs in and out of
MMT versus those of the general population. For instance, a study in
Sweden found that IDUs in MMT had 12 times the annual mortality rate of
individuals in their age group, and IDUs not enrolled in MMT had 63 times
the mortality rate of individuals in their age group [8]. Age-specific
mortality rates for IDUs in and out of MMT were obtained by multiplying
the age-specific rates for the general population by these relative risk rates
applicable to IDUs.

Survival until age 65 for an initial cohort of 1,000 25-year old IDUs was
calculated using the estimated age-specific mortality rates. This was
compared to survival of a similar cohort that was assumed to have access to
MMT. It was assumed that 57.5% of patients in the MMT group received
methadone and hence receive the survival advantage associated with
methadone. Total discounted life years of survival attained and the total
costs associated with MMT for each group were determined. The cohort that
received methadone experienced 8,704 additional discounted life years of
survival at an incremental cost of $51,486,000, resulting in a cost-
effectiveness ratio of $5,915 per life year gained. Extensive one-way
sensitivity analyses revealed cost-effectiveness ratios between $3,300 and
$9,100 per life year gained.

Kahn and colleagues analyzed a number of HIV prevention programs
including methadone maintenance [47]. In their analysis of MMT they
constructed two scenarios representing cities with different drug and HIV
epidemics. They assessed the impact over five years of a one-year expansion
in MMT capacity. They found that the extra MMT capacity had a cost-
effectiveness ratio of $48,000 to $60,000 per undiscounted life year gained.
The analysis considered only the impact of MMT on the spread of HIV and
did not consider other health care costs.

A compartmental model of methadone maintenance Zaric et al.
developed a compartmental epidemic model to evaluate the cost
effectiveness of expanded methadone treatment capacity on a population of
IDUs and non-IDUs [48, 49]. The work was motivated by the difficulty that
other evaluation techniques have had in quantifying the impact of expanded
methadone on the spread of HIV. Characterizing the impact of new
treatment programs on the spread of HIV is important because HIV has a
significant impact on total health care costs and mortality.
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A model was developed in which the population was divided into nine
compartments based on behavior (IDU, IDU in methadone, or non-IDU) and
disease status (not infected with HIV, HIV-infected, and AIDS). The model
is illustrated in Figure 13.2. The arrows in Figure 13.2 represent transitions
between behavior and risk classes; these transitions were modeled using a
system of differential equations. All individuals enter the model as
uninfected 18-year-old non-IDUs. They remain in that state until they die or
age out of the model, or they become HIV infected, or they become IDUs.
IDUs can become infected through sexual or needle-sharing contacts with
infected individuals, and non-IDUs can only become infected through sexual
contact. Non-IDUs were assumed to become IDUs at a fixed rate. IDUs
could remain as IDUs, they can re-enter the non-IDU population, or they can
enter MMT slots as space became available. IDUs in MMT can leave MMT
at any time and enter either the IDU or non-IDU population.

Figure 13.2 Compartmental model to examine the impact of MMT
on HIV

The model was used to dynamically calculate new infections and rates of
entry into treatment. Let be the number of individuals in compartment i
at time t, i = 1,...,9, and let N be the total number of MMT slots available.
One constraint ensured that the MMT slots were always filled and a second
constraint ensured that new entrants to MMT were drawn from each disease
state according to prevalence in the population.

A challenging aspect of the model formulation was defining a mixing model
for a population with two types of risk behavior (sexual mixing and needle
sharing), two levels of sexual risk (with and without condoms), differing
rates of participation in the two risk activities, and like-with-like sexual
preferences [50, 51]. The mixing model was defined by first specifying a
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term for the number of new infections. The number of new infections among
members of compartment i is given by:

where and are the sufficient contact rates between
compartments i and j for injection, high-risk sexual contact (sexual contact in
which a condom is not used), and less-risky sexual contact (sexual contact in
which a condom is used), respectively.

For risky injections, the probability of a contact between members of
compartments i and j was assumed to be proportional to the total number of
injections by members of those two compartments. That is, the probability
that an individual has a contact with a member of compartment j is the total
number of injections by all members of compartment j divided by the total
number of injections by all members of all compartments. This probability
changes over time since the number of people in each compartment changes
over time. Thus, the sufficient contact rate for injections, was given by
the number of injections per person in compartment i multiplied by the
probability of a contact between compartments i and j multiplied by the
probability of disease transmission for a contact between compartments i and
j.

The formulas for the sufficient contact rates for sexual mixing and
were similar to those for shared injections but modified somewhat to account
for the presence of two types of risky contacts, different rates of condom use
between IDUs and non-IDUs, and preferential mixing. Let G be the
proportion of sexual contacts that IDUs have with other IDUs. Let be the
average annual number of new sexual partners, and let be the average
number of new sexual partners of risk R, R = L, H, among members of
compartment i. Then and where is the
probability that an individual in compartment i uses a condom. Let ce be the
risk reduction achieved by using a condom [52], and let and be the
probabilities of HIV transmission through sexual contacts of type L and H,
respectively, where
for sexual contacts of type R, R = L, H. Then

be the mixing matrix
is given as follows:

Let
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Each expression in (3) has two terms. The first is the probability that an
individual from compartment i has a contact with an individual from the
group of compartments indexed by j. The second is the conditional
probability that a contact is with someone from compartment j given that
there is a contact with someone from the specified group of compartments.
We explain these values for the first and third expressions in below.

For i = 1,…,6, j = 1,…,6, the expression for is the probability that an
IDU has a contact with another IDU multiplied by the probability that the
contact is with someone from compartment j given that it is with someone
from compartments 1,...,6. For i = 7,...,9, j = 1,...,6, the expression for

contains two terms. The first is the probability that a non-IDU has a

contact with an IDU. Since IDUs have total contacts

with non-IDUs, non-IDUs must have the same total number of contacts with
IDUs in order for the total number of sexual contacts to balance. Thus, the
first term is the proportion of total contacts by non-IDUs that are with IDUs,
and is interpreted as the probability that a non-IDU has a contact with an
IDU. The second term is the probability that the contact is with a member of
compartment j given that the contact is with an IDU. Following from the
above discussion, the sufficient contact rates for sexual mixing at time t are
thus given by

The number of new infections among members of compartment i, given by
(2), is found by multiplying the number of individuals in compartment i by
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their rate of sufficient contacts with member of compartment j for each type
of contact.

Scenarios representing regions with HIV prevalence among IDUs of 5%,
10%, 20%, and 40% were simulated. Total costs, QALYs, and new
infections, as well as the incremental cost effectiveness ratio (ICER), were
calculated for a 10 year time horizon. An expansion of MMT by 10% of
current capacity (i.e., increasing the proportion of IDUs enrolled in MMT
from 15% to 16.5%) was analyzed in each scenario. In the 5% scenario, the
expansion of methadone capacity would result in cost-effectiveness ratio of
$10,900 per QALY gained. In the 40% scenario, the expansion of
methadone capacity would result in a cost-effectiveness ratio of $8,200 per
QALY gained. These cost-effectiveness ratios compare favorably to a
number of HIV prevention and treatment programs [48, 53]. In the 5%
scenario, approximately 36% of HIV infections averted and 71% of QALYs
gained accrued to non-IDUs. In the 40% scenario, approximately 28% of
infections averted and 58% of QALYs gained accrued to non-IDUs. Thus,
substantial health benefits of MMT programs accrue to non-IDUs.

A number of sensitivity analyses were performed to consider the cost
effectiveness of increased methadone capacity if the newly created slots were
less effective and/or more costly than the existing slots. New MMT slots
may be less effective than existing slots if new recruits are less motivated to
change their behavior than those already in MMT. New MMT slots may be
more expensive than existing slots if there are additional costs associated
with outreach to fill the new slots. If all new slots are half as effective and
twice as costly as existing slots, expanded MMT capacity had a cost-
effectiveness ratio of $36,100 in the 5% scenario and $38,300 in the 40%
scenario.

This study found MMT to be cost effective based on commonly accepted
standards, under a wide range of assumptions. An important conclusion was
that MMT could be cost effective even if it did not lead to a complete
cessation of risky injections. Some factors, such as crime and changes in
employment among IDUs, were omitted from the analysis. Inclusion of
these factors would likely lead to more favorable conclusions regarding the
cost effectiveness of methadone.

13.2.3 Are alternative forms of maintenance treatment cost effective?

Buprenorphine is a potential alternative to methadone and may be useful for
expanding treatment capacity. Buprenorphine is subject to a different
regulatory environment than methadone. Methadone is listed as a Schedule
II drug by the U.S. Drug Enforcement Administration, while buprenorphine



346 OPERATIONS RESEARCH AND HEALTH CARE

is a Schedule V drug (having low potential for abuse and accepted medical
uses) [19]. Compared to methadone, buprenorphine is safer in overdose, has
lower abuse potential, and fewer withdrawal symptoms when discontinued
[54]. To curtail abuse through injection , buprenorphine can be taken orally
and mixed with naltrexone or naloxone, both of which have unpleasant
effects if injected but are relatively harmless when taken orally [54, 55]. The
ability to mix buprenorphine with naloxone makes buprenorphine potentially
attractive in the development of take-home or prescription maintenance
formulations.

Barnett et al. [56] modified the model of Zaric et al [48, 49] to evaluate the
cost effectiveness of buprenorphine maintenance treatment. The model of
MMT cost effectiveness was modified to account for observed differences in
the effectiveness of methadone versus buprenorphine as well as likely cost
differences between the two products.

A meta-analysis of trials comparing buprenorphine to methadone found that
patients maintained on buprenorphine had 8.3% more positive urinalyses and
a 26% higher dropout rate than patients in methadone [57]. One analysis of
the economic impact of a potential take-home formulation of buprenorphine
with naloxone concluded that the buprenorphine formula would cost between
81% and 113% as much as methadone when patient travel time was not
included, and 44% to 76% as much as methadone when patient travel time
was included [58]. Barnett et al. estimated that a take-home formulation of
buprenorphine and naloxone would cost between $5 and $30 per day,
corresponding to annual costs of $5733 to $14,858 [56].

Buprenorphine may be preferred to methadone by some IDUs. Thus, some
newly created buprenorphine treatment slots may be filled by patients
formerly in MMT. Let and be the efficacy of methadone and
buprenorphine slots in reducing risky behavior and let be the average
efficacy of all treatment slots. Let be the initial number of methadone
slots, and let be the number of newly created buprenorphine slots. Let p
be the proportion of new slots filled by individuals who switch from MMT.
Adding buprenorphine slots results in a net expansion of capacity of

slots. The average efficacy of all slots is defined as:

The reduction in sharing, change in mortality rates, and dropout rates for the
treatment compartments, consisting of both MMT and buprenorphine
patients, reflected weighted averages given by (5).
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For the case where there is no switching (p = 0), additional buprenorphine
slots equal to 10% of current MMT capacity would have an incremental cost-
effectiveness ratio of $14,000 per QALY gained if buprenorphine cost $5 per
dose, ranging up to $44,200 per QALY gained if buprenorphine cost $30 per
dose. If half of all new slots are occupied by individuals switching from
MMT (p = 1/2) , then buprenorphine costs $17,700 per QALY gained at $5
per dose, and $84,700 per QALY gained at $30 per dose. Extensive
sensitivity analysis was done on quality of life and the benefits of treatment
on quality of life.

In all cases buprenorphine was found to be less cost effective than
methadone. However, buprenorphine is still cost effective compared to a
number of other medical interventions. Additionally, buprenorphine has
fewer regulatory impediments and may represent an option for expansion of
drug treatment programs where methadone is not an option.

A number of issues have been raised regarding the study by Barnett et al.
[59-61]. Reductions in crime are often cited as the major benefit of drug
treatment programs, but crime was not considered in the model. The analysis
was done from the perspective of a health payer who may not be concerned
with reductions in crime. However, government policy makers may be
concerned about such costs [60]. The use of QALYs as an outcome measure
has also been questioned for an intervention that is not seen exclusively as a
health care program and that has substantial non-health benefits [59, 61].

Wall and Pollack [62] adapted the model of Zaric et al. [48, 49] to evaluate
several drug treatment expansion strategies involving buprenorphine. They
assumed that the effectiveness of existing and new treatment slots was a
function of the size of the daily dose of methadone or buprenorphine,
consistent with evidence that dose size and treatment efficacy may be related
[63]. They considered a number of strategies involving increasing the
methadone dosage of existing slots, converting existing slots to
buprenorphine, and expansion with methadone and buprenorphine at varying
dosage levels.

Increasing methadone dosage for existing slots was found to be cost saving,
while switching all existing slots to buprenorphine was a dominated strategy
(i.e., more expensive and less effective than another strategy). Expanding
capacity with methadone was found to be very cost effective. The
methadone-only strategies all had cost-effectiveness ratios of less than
$4,000 per QALY gained. Expanding with a mix of methadone and
buprenorphine was found to have a cost-effectiveness ratio of less than
$30,000 per QALY gained, and expanding capacity with buprenorphine only
was a dominated strategy.
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Additional studies of buprenorphine are warranted given its recent approval
for use in the U.S [64]. A number of alternatives to methadone and
buprenorphine treatment exist and have not been subject to the kind of
modeling described in this chapter. For instance, L-alpha-acetylmethadol
(LAAM) may be used to control opiate addiction. Detoxification programs
combined with intensive social services may also be valuable. Rapid
detoxification (so-called “rapid detox”) may represent an alternative to
treatment MMT [65-67]. Different treatment modalities have emerged,
including prescription or take-home formulations of methadone and
buprenorphine. Prescription buprenorphine is available in France [68] and
prescription methadone is available in the United Kingdom [69].
Prescription heroin has also been proposed by some [70]. All of these
options merit consideration in future investigations.

13.2.4 If opioid maintenance treatment programs are expanded, how many
new slots are needed?

Lengthy waiting lists for drug treatment have been documented in many
places [71]. Some jurisdictions require new entrants to MMT to be HIV
infected or to have tried another drug treatment program (e.g., detoxification)
unsuccessfully. An important question is how many treatment slots would be
needed to eliminate or reduce treatment queues. Another important issue is
the impact of extra capacity on waiting list performance measures.

Ideas from queuing theory have been used to predict capacity requirements
for treatment programs such that individuals can receive “treatment on
demand” [72]. “Treatment on demand” was defined as having no wait for
treatment once treatment was requested. In the model, N customers arrive
seeking treatment, a proportion R1 remain on the list and enter treatment, and
1-R1 enter the waiting list but do not wait for treatment.

Kaplan and Johri investigated the impact on drug treatment waiting lists of
providing additional drug treatment capacity [73]. The model was not
intended to represent any particular drug treatment program but rather to
represent a general drug treatment model. (Experience with treatment on
demand in San Francisco has been described elsewhere [74].) Kaplan and
Johri examined operational outcomes including queue lengths, waiting times
to enter treatment, and service levels. The service level was defined as the
proportion of those requesting treatment who remained on the waiting list
long enough to be admitted into treatment. Numerous factors contribute to
the inability of drug users to remain on waiting lists until a treatment slot
becomes available, such as a loss of interest in treatment, arrest, or inability
of the treatment facility to place the person at the front of the queue.



MAINTENANCE TREATMENT FOR OPIATE ADDICTION 349

Kaplan and Johri [73] developed a model in which drug users can be in one
of four states at any time: abstinent (not in treatment and not using drugs);
not in treatment and using drugs but not waiting for treatment; waiting for
treatment and using drugs; and in treatment and not using drugs. Let a(t) be
the number of drug users who are abstinent at time t, and let q(t) be the
number who are waiting for treatment at time t. They modeled a closed
population (i.e., no new entrants and no departures) of size n, with a constant
number of treatment slots, s. The model is depicted in Figure 13.3.

Figure 13.3 Treatment-on-demand model

Let be the tolerance to wait for treatment; this is the rate at which
individuals waiting for treatment leave the waiting list. Let be the rate at
which treatment is completed. Let be rate at which abstinent users resume
drug use. Let be the rate at which those not in treatment request treatment.
Let p be the probability of success per treatment episode. The population
was modeled using the following system of differential equations:

The first equation says that the rate of change of the size of the abstinent
population is equal to the number of successful completions of drug
treatment minus the number of abstinent users who resume active drug use.
The second equation says that the rate of change of the queue length is equal
to the number of users who request treatment minus the number who drop
out of the queue minus the number on the queue who enter treatment.
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Closed-form solutions for a(t) and q(t) can be obtained and used to estimate
the service level. The number of new slots needed to eliminate queues in the
long run is given by:

The value of s is the number of users currently in the queue, in general.
Thus, the naïve approach of adding as many treatment slots as there are
patients currently in the queue would not be the correct way to eliminate the
treatment queue, in general.

The model was illustrated with data from San Francisco. There were n =
45,000 drug users in San Francisco, s = 6,300 treatment slots, q(t) = 1,400
currently waiting to enter treatment, and a(t) = 17,600 abstinent drug users.
Four values for the tolerance to wait for treatment among drug users were
considered.

The San Francisco data showed that small increases in waiting times could
lead to large reductions in service levels. Although s* is independent of in
(8), numerical analysis using the San Francisco data showed that the number
of slots needed to eliminate queues for treatment in the long run was highly
dependent on the tolerance to wait for treatment. This is due to the
relationship between and in equilibrium and the methods used to estimate

If the tolerance to wait is one year, then 6,710 treatment slots (less than
6,300 + 1,400) would be sufficient to eliminate treatment queues. If the
tolerance to wait is only one day, then 11,500 slots would be required to
eliminate treatment queues. However, it could take 22 years or more to
eliminate the queues using these long-run estimates. For very short tolerance
to wait, the number of slots needed to immediately eliminate queues could be
as high as 18,000.

13.3 METHODOLOGICAL ISSUES AND FUTURE WORK

Quality-of-life estimates are available for injection drug use and for HIV, but
currently there is no specific estimate for “IDUs with HIV”. Thus, the
separate quality-of-life estimates must be combined in some way. It is not
clear if the aggregate quality-of-life estimate for a compartment representing
many quality-of-life decrements should be derived through a multiplicative
model (as in [48, 49, 56]), an additive model (as in [39, 59]), or neither.
Issues related to combining QALY estimates have been discussed elsewhere
[75].
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Several researchers have noted that IDUs do not mix randomly, but rather
their injection contact patterns form structured social networks. Studies have
revealed the structure of IDU social networks in Colorado Springs [76, 77]
and New York City [78]. The compartmental epidemic models described in
the previous section assume random mixing, in which each person selects a
new partner randomly from the entire population. While random mixing in
compartmental models leads to “worst case” epidemics – that is, epidemics
with the greatest possible spread of disease among all possible mixing
patterns [79-81] – it is unclear whether the random mixing assumption
overestimates or underestimates the incremental impact of drug maintenance
programs.

Network epidemic models have been used as an alternative to compartmental
epidemic models and may be useful if connectivity or network structure is
important. However, network models are often significantly more complex
than compartmental models. The threshold conditions for an endemic
epidemic may be very different for a network model than a compartmental
model [82]. Watts looked at epidemic spread in static connected networks
and found that network structure had little impact on eventual epidemic
outcomes [83]. Zaric directly compared random versus non-random mixing
in network epidemic models and found that random mixing led to small
increases in the number of new infections [84]. However, the observed
difference may be smaller than the range in uncertainty in the parameters of
the statistical distributions. To our knowledge, no research has yet directly
addressed the question of whether an intervention would appear more or less
cost effective when evaluated using a network model with nonrandom
mixing versus a model with random mixing.

A compartmental model forces all individuals into a finite number of discrete
compartments, with members of each compartment assumed to be
homogeneous. In some cases there may be large variations in characteristics
of members of various groups. Estimates of injection frequency vary from 1-
3 injections per month [85] to more than 100 per month [86]; estimates of the
number of new sexual partners also vary over a wide range [87]. Ignoring
population heterogeneity by using average or representative values may lead
to systematically biased estimates of outcomes when Markov models are
used to generate cost-effectiveness ratios [88, 89]. Similar biases may exist
in compartmental models.

Pollack noted that the choice of time horizon may be important when
compartmental epidemic models are used to evaluate the costs and benefits
of medical interventions [90]. For modest interventions (defined as those for
which the reduction in the sufficient contact rate is very small) short-term
incidence analysis would underestimate long-term effectiveness when the



352 OPERATIONS RESEARCH AND HEALTH CARE

equilibrium prevalence is below 50%, and overstate the long-term benefits
when the equilibrium prevalence is above 50%. These findings may have
implications for the choice of time horizon for evaluating programs directed
to IDUs, where prevalence of HIV and hepatitis C may be very high.

Numerous studies have shown that IDUs who inject cocaine or speedballs
(cocaine and heroin mixed together) inject far more often than those who
primarily inject heroin. MMT provides relief from opioid dependence but
may not have the same impact on cocaine injectors. Some have argued that
methadone use may actually lead to an increase in cocaine use [91], or that
cocaine users should not be allowed to enter MMT [92]. Future empirical
research could look at the impact that MMT has on cocaine injection
frequency. Future modeling efforts may involve construction of a model
with separate compartments for IDUs who primarily inject heroin and IDU
who inject cocaine.

13.4 CONCLUSIONS

Much of the debate around drug treatment is concerned with political and
philosophical issues such as whether MMT is a “moral” way to treat opioid
dependence. These considerations cannot be ignored in policy formulation
[61]. Operations research models cannot address such issues. However, OR
models can be used to identify good policies and to distinguish good policies
from poor ones. They can also provide methods to facilitate cost-
effectiveness analysis and to examine the health and economic tradeoffs
associated with drug abuse treatment programs. Analysis of drug abuse
treatment programs represents a valuable research area for operations
researchers in the future, one where OR models can provide value input to
important public policy questions.
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SUMMARY

Operations research has contributed to the control of blood-borne epidemics
among injection drug users. The analysis of random-mixing models has led
to a deeper understanding of both syringe exchange programs and substance
abuse treatment in the control of HIV/AIDS and hepatitis. This chapter
presents some of these results, and analyzes illustrative models to show how
simplified, but empirically pertinent mathematical models can assist
policymakers evaluate public health interventions.
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14.1 INTRODUCTION

Public policymakers have tried many approaches to address the social,
economic, and medical problems associated with substance abuse. For many
participants in the drug policy debate, “harm reduction” provides the
touchstone in evaluating the success of these efforts, and a useful alternative
to simple “use reduction” as a guide for public policy [1]. Harm reduction
admits diverse meanings among policymakers, clinicians, and academic
researchers in the drug policy debate. Yet it commands broad support among
those who seek to balance the competing harms caused by both drug use and
by public policies to hinder, deter, or punish drug use [2].

Harm reduction has proved especially important in evaluating clinical and
policy responses to injection drug use. Injection drug users (IDUs) have long
experienced high rates of avoidable mortality and morbidity from infectious
disease [3]. The most deadly threat now arises from HIV/AIDS. Yet less
visible infectious diseases, especially hepatitis B and C, endocarditis, and
tuberculosis also threaten the health and survival of IDUs. Heroin overdose
provides an additional source of premature mortality and morbidity among
IDUs [4].

Some problems associated with drug use are intimately connected with the
intensity and the duration of drug consumption among IDUs. For example,
interventions to reduce property crime by IDUs may fail if they do not
reduce individual expenditures on illicit drugs. Yet such use reduction is
sometimes impossible or unnecessary to achieve the desired policy goal [3].
Many OECD (Organisation for Economic Cooperation and Development)
countries have successfully reduced HIV incidence and prevalence among
IDUs – even within populations that continue to regularly inject heroin or
other illegal drugs [5].

Harm reduction provides the guiding question, though not a clear algorithm,
to address these concerns. From this perspective, policy analysts, clinicians,
and policymakers seek to clarify the goals of public policy, and to scrutinize
the ability of specific policies to advance the well-being of the general
community and of drug users themselves.

14.2 CLINICAL AND POLICY RESPONSES

This chapter focuses on two kinds of interventions often described under the
rubric of harm reduction: substance abuse treatment (specifically, methadone
maintenance treatment) and syringe exchange programs. However, to place
these interventions in context one must consider their place in broader public
policy.
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Three kinds of public policy interventions seek to address such threats to life
and limb among IDUs: supply-side or demand-side law enforcement, harm
reduction interventions such as syringe exchange for active drug users, and
substance abuse treatment. Operations researchers have performed important
policy analysis of all three kinds of intervention. The impact and cost-
effectiveness of law enforcement efforts are outside the scope of this
chapter. Because operations researchers have contributed to policy analysis
of all three kinds of interventions, and because the term “harm reduction” is
sometimes applied to analyze law enforcement policies, we briefly discuss
this research.

Supply- and demand-side law enforcement The most traditional drug
policy interventions are supply-side law enforcement efforts to deter or
punish individuals who sell or distribute heroin or other injectable drugs.
Source-country enforcement activities and border interdiction efforts seek to
disrupt the organizations and firms involved in drug trafficking. Supply-side
enforcement also encompasses the arrest of street-level drug users, a subject
of great complexity given the vagaries of low-wage labor markets for
potential drug sellers and the high prevalence of substance use and
dependence among street-level dealers [6, 7].

Such efforts seek to contract drug supply, thereby raising market prices of
illicit substances. In economic terms, these law enforcement policies reduce
the quantity of drugs supplied at any specific market price – a shift in the
supply curve – raising market prices and reducing drug consumption in the
resulting market equilibrium [8].

The short-term and long-term effectiveness of interdiction and source
country policies is influenced by the elasticity of supply for illicit
substances. If drug suppliers are price-elastic, supply-side law enforcement
is likely to have a small effect on both prices and consumption. Effective
interdiction and source-country policies will simply induce new entrants to
the market.

The effectiveness of supply-side enforcement is also influenced by the
responsiveness of IDUs to changes in market prices. If the price-elasticity of
demand for heroin is less than –1.0, enforcement-linked price increases will
induce accompanying reductions in both drug consumption and in overall
expenditures by IDUs. If the quantity consumed is insensitive to market
prices, price increases will induce only a small decline in heroin
consumption and will induce an overall increase in overall expenditures for
heroin among IDUs [9].
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Demand-side enforcement measures include penalties for drug possession
and purchase. Such policies raise the (non-price) costs of illicit substance
use, and may thereby reduce demand for these substances [10]. Such policies
are attractive if they deter substance use, and attractive as a mechanism to
reduce the profits associated with illicit drug sales. Moreover, many IDUs
commit larceny and other property crimes. Arresting IDUs for simple drug
possession may therefore be a low-cost means of incapacitating (non-drug)
criminal offenders [11].

An important drawback of enforcement policies is that they impose large
costs on both individual IDUs and on the wider society. IDUs bear the short-
term and often lifelong consequences of incarceration or other judicial
interventions. Taxpayers must finance law enforcement and correctional
interventions. Moreover, specific law enforcement strategies such as
aggressive enforcement of illicit drug paraphernalia laws may encourage
needle-sharing, unsterile discard of used syringes, and other high-risk
behaviors [12].

The price-elasticity of demand for illicit drugs is especially important from
the perspective of crime control, since many drug users finance their
consumption through property crime or other illegal activities [14].
Operations researchers play an important role in this debate through the
detailed analysis of illicit drug markets and the relationship between
interdiction efforts and resulting drug prices [15]. Operations researchers,
including Caulkins and colleagues, have explored these issues in some
depth. Using data from the Drug Enforcement Administration’s System to
Retrieve Information from Drug Evidence (STRIDE) database, these
researchers have explored regional variations and changing market
conditions for marijuana, cocaine, heroin, and other illicit drugs [15, 16].

Three findings from this literature are noteworthy.

One striking finding speaks to the difficulties of supply-side enforcement.
Purity-adjusted illicit drug prices have declined despite substantial supply-
side interdiction and enforcement efforts [2, 10]. Declining prices and
increasing purity of street heroin have posed complex challenges for

If substance abuse treatment or prevention interventions can halt, reduce, or
prevent injection drug use, less punitive alternatives may be preferable to
criminal justice interventions. Studies by Caulkins and colleagues examine
the cost-effectiveness (cost per unit of reduced drug consumption) of a wide
range of prevention, treatment, and criminal justice system interventions [11,
13]. Such studies provide strong support for the cost-effectiveness of
prevention and treatment interventions.
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substance abuse treatment, and have fostered non-injecting forms of heroin
use such as snorting [17].

A second finding is that drug users respond to the price of illicit drugs,
particularly in the long run [9]. This result – predicted by “rational
addiction” dynamic optimization models of drug consumption – suggests
that the long-term effect of price decreases is to significantly increase the
number of illicit drug users. Optimal control theory and other operations
research methods have been applied, profitably, by health economists and
others seeking to understand illicit drug markets [18].

A third and related insight speaks to the dynamic character of drug markets
[19]. Patterns of illicit drug consumption changed rather rapidly over the
1975-2000 period, with current prevalence responsive to past consumption,
positive and negative “role modeling” by current and past drug users, and
other feedback effects. Forecasting models have been developed to explore
these effects.

Of particular importance are the transitions in drug-using behavior among
IDUs. The propensity of light or casual users to become heavy users, and
quit rates among different categories of users powerfully influence the
number of future IDUs, and influence the likely social harms associated with
different forms of substance use [20].

The remainder of this chapter focuses on the two remaining kinds of harm
reduction interventions, substance abuse treatment and syringe exchange
programs. For more information on substance abuse policy, see Kleiman [7],
MacCoun and Reuter [2], and the collection of essays edited by Heymann
and Brownsberger [21].

Substance abuse treatment includes a broad array of inpatient and
outpatient medical, psychiatric, and social service interventions designed to
halt or reduce illicit drug use [4, 22]. This chapter focuses on methadone
maintenance treatment (MMT), because this is the principal modality used to
treat injection drug use. Massing [23] describes the history and development
of MMT. Although many challenges exist to the effectiveness of MMT,
ranging from inadequate dosing to the difficulties of treating poly-drug use,
the impact and cost-effectiveness of MMT is well established [24, 25].

The value of such substance abuse treatment has been underscored by
randomized trials of MMT. In one study of Swedish IDUs, 2 of 17 members
of the non-MMT control group died from apparent overdose. One other
member of the control group suffered a leg amputation, while two others
suffered severe infection. Among the remaining controls, two were
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incarcerated, and 9 of the remaining 10 continued illicit drug use. Over the
same period, none of the MMT group suffered major health problems, and
13 of the original 17 were no longer using illicit drugs [26]. Three more
members of the control group died over the following three years, in a study
completed before the era of HIV/AIDS [4].

Syringe exchange programs (SEPs) are a more pure form of “harm
reduction.” Although the design and operation of SEPs differ, the common
aim is to prevent infectious disease transmission among active IDUs through
the provision of sterile injection equipment and through the safe collection
of discarded syringes. To focus on the harm reduction dimension of SEPs,
we assume in this chapter that such interventions have no other impact on
the frequency of drug use among IDUs, and that SEP has no impact on the
removal of program clients from the population of active IDUs. Because this
chapter does not consider the role of SEP as a conduit into MMT or other
treatment and social services, this is an important oversimplification [27]. A
fuller treatment would likely indicate greater impact and cost-effectiveness
of SEPs.

14.3 THE CONTRIBUTION OF OPERATIONS RESEARCH TO
POLICY

Many clinicians and policy makers are skeptical about the merits of analytic
modeling to scrutinize drug control policies, especially the special problems
of IDUs.1 Much of this skepticism arises because of real limitations of the
data and models available to study this population. IDUs are a hidden
population whose risk behavior, and even whose absolute numbers, are
imperfectly known [29]. Basic parameters must be indirectly inferred from
fragmentary data. Nationally representative surveys provide poor coverage
of high-risk populations, including IDUs. Data from clinical services such as
hospital emergency departments or drug treatment programs are based upon
a self-selected group of patients and may not apply to out-of-treatment IDUs
[30].

The probability of infection with HIV or hepatitis when a susceptible IDU
uses an infected needle is imperfectly known. Several analyses seek to
estimate this parameter based upon needle-stick accident data among
hospital personnel. Other analyses indirectly estimate these probabilities
based upon observed patterns of disease spread [31]. Neither method is fully
satisfactory in characterizing risk exposures among IDUs.

1This section modifies the discussion in Pollack [28].
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Observational studies suggest that methadone maintenance treatment
(MMT) reduces the rate of new HIV infections (HIV incidence) among
IDUs. MMT clients are less likely than out-of-treatment IDUs to share
needles, inject drugs less frequently, and are less likely to practice other
behavioral risks [32]. Several studies document large differences in HIV
incidence between steady methadone clients and out-of-treatment IDUs [33-
35].

The impact of MMT on hepatitis C (HCV) transmission is less encouraging.
Like HIV, HCV is spread through sharing of infected injection equipment,
including syringes, “cookers,” and filters [36, 37]. However, studies of both
IDUs and health care workers exposed to needle-stick injuries indicate that
HCV is more efficiently transmitted [38, 39].

This high infectivity poses a basic challenge to any prevention intervention
that seeks to reduce the frequency and duration of injection drug use. From
an analytic perspective, differences between HIV and HCV underscore the
difficulties one encounters in evaluating interventions. Individual behavior
changes and other impact measures may be readily observed. Yet these
measures are difficult to link with underlying patterns of infectious disease
spread. Analytic models become essential to make this connection, to clarify
the value of alternative data sources and measures, and to scrutinize causal
assumptions that undergird prevention interventions.

Most sobering are the many IDU populations with low HIV prevalence but
endemic prevalence of HCV. Pollack and Heimer [40] reviewed published
literature on HCV prevalence among European IDUs. Although results vary
across populations, most studies found prevalences between 65-85%. Only
four of 40 examined studies found HCV prevalence below 50% [40]. Similar
results are found in studies of MMT clients [41-43], including studies in the
U.S., Australia, and many places in Western Europe, typically reporting HIV
prevalence below 10 percent, but HCV prevalence exceeding 70 percent [44-
46]. Results for young IDUs are somewhat more hopeful [45-48]. However,
other studies have yielded more disappointing results [49, 50].

HCV prevalence comparisons between MMT clients and out-of-treatment
IDUs have yielded mixed results. Out-of-treatment IDUs are often found to
have lower HCV prevalences. However, this result may be confounded by
the older age of the in-treatment population.

Epidemiological studies and analytic models of syringe exchange programs
(SEPs) indicate the same contrasts between HIV and HCV prevalence. Many
studies indicate that SEPs can reduce HIV incidence. Such findings
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undergird the long-standing support by most public health researchers for
syringe exchange and similar programs [30, 51].

The demonstrated impact of SEPs in preventing HCV transmission is less
favorable. Using SEP data from Seattle, Hagan and collaborators found no
protective effects [52]. Theoretical analysis due to Pollack found little
impact and poor cost-effectiveness of typical SEPs in HCV prevention [53,
54]. As discussed below, models based upon the short-term impact of
syringe exchange may greatly overstate long-term SEP effectiveness in
reducing incidence of highly infectious agents such as HCV.

Sexual and needle-sharing mixing patterns among IDUs are also poorly
understood. Models in which IDUs share needles with random partners are
widely used because random mixing provides a tractable worst-case analysis
[55-57]. However, social network models are likely to provide a more
sociologically plausible pattern of infectious disease spread [58, 59].

Equally important, rigorous evaluations of specific interventions may not be
generalizable across populations and settings. Substance abuse treatment and
SEPs differ greatly in both effectiveness and cost. Such diversity calls into
question any analysis that draws sweeping comparisons across diverse
categories of competing interventions [30].

Although one must acknowledge reasons for skepticism in applying analytic
models to policy, such efforts provide important contributions to policy
debates. Modeling exposes for scrutiny the implicit assumptions that
policymakers are already using in addressing injection drug use. Public
policies are often based upon unexamined assumptions that appear
questionable or implausible when brought to light.

For example, some clinicians advocate the proliferation of difficult-to-reuse
syringes to slow HIV spread. Simple but compelling epidemiological models
indicate that, if the frequency of injection among IDUs is insensitive to the
supply of new needles, such devices are likely to accelerate infectious
disease spread [60].

As another example, Kaplan and Pollack reviewed procedures used to
allocate HIV prevention resources [30, 61]. Many U.S. policy makers try to
allocate resources based upon the number of individuals in each risk group.
Such an approach is inappropriate when either program effectiveness or HIV
incidence varies across the pertinent risk groups.

Worse, the political and organizational realities of group decision processes
easily foster arbitrary policies and arbitrary allocation of resources. Altman
and colleagues note (p. 81) that health planners respond to technical and
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political uncertainty by seeking “convenient proxies for need to be applied in
allocation decisions” [62]. Wary of debating the merits of specific facilities,
many health system planners are drawn to elaborate need-assessment
formulas to evaluate proposed services.

Such methods provide poor guidance regarding the impact or cost-
effectiveness of proposed expenditures, but find wide appeal as planners
seek credible focal points to resolve internal disputes and to justify
controversial policies. Such approaches are widespread in many areas of
resource allocation [63]. Brandeau and colleagues and Kaplan discuss more
rigorous and explicit approaches to allocating scarce resources [61, 64].
Explicit modeling helps to discipline group decision processes, and allows
policymakers to explore the unintended assumptions and consequences of
appealing but limited algorithms that are widely used to allocate resources.

Models also help policy makers understand the linkage between the
available data and the latent causal processes one seeks to influence through
public intervention. Paltiel and Stinnett describe many ways that analytic
models can interrogate the premises and likely consequences of policy
interventions [65].

Analytic models clarify the links between readily-measured or readily-
influenced intermediate outcomes and the ultimate outcomes of direct policy
concern. Many of the best evaluations of HIV prevention interventions do
not directly scrutinize HIV incidence among program participants. Rather,
such evaluations explore the impact of such interventions on important
behavioral risks [66-68]. Analytic models help establish the linkage between
these behavioral risks and actual health outcomes. For interventions such as
syringe exchange that have not been (or cannot be) evaluated through
prospective randomized trials, analytic models can scrutinize the findings of
bservational studies of those interventions.

Analytic models can also identify the kinds of data required for resource
allocation and for other public health functions. Public health reporting and
data systems are largely designed to accomplish classic functions of
epidemiological surveillance such as case enumeration and contact tracing.
The quality and performance of such systems is traditionally scrutinized
through such measures as the completeness of case finding and avoidance of
duplication when the same case is reported multiple times or in multiple
jurisdictions.

Although such performance measures are pertinent to the provision of
medical and other services to all infected individuals, they are sometimes
misleading when surveillance data are used for other purposes. When
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allocating a fixed pool of resources across populations and jurisdictions, the
most important characteristic of HIV or other surveillance systems is their
ability to provide comparable and unbiased estimates of prevalence and
incidence across populations. Researchers are beginning to apply more
explicit scrutiny to the process of funding allocation, and are examining how
different approaches to centralized resource allocation influence resource
allocation across competing jurisdictions [69].

Techniques such as sensitivity analysis can also support the reliability and
robustness of even highly simplified or empirically uncertain models in
providing policy guidance. For example, research on nonrandom mixing and
random graph theory highlights the value of random mixing models in
characterizing infectious disease transmission within high-risk populations
[70].

Operations researchers also help direct the attention of policymakers and
analysts to critical concerns that might be overlooked in the absence of
formal analytical models. As an example, infectious disease prevention
measures are typically based upon disease prevalence across the population.
Prevalence is easily measured using existing clinical data systems when
infected individuals reliably seek medical attention. Moreover, prevalence-
based allocation is often the best strategy to allocate treatment resources
across competing populations and interventions. However, in a changing
epidemic, current prevalence may provide poor guidance about the specific
risk groups that are currently experiencing the highest rate of new infection.
HCV incidence analysis indicates that young and inexperienced IDUs are
experiencing high rates of new infection [71]. For HIV, incidence-based
resource allocation is likely to channel greater resources to nonwhites and to
residents of southeastern states [30, 72].

Analytic techniques can also demonstrate how interventions that are
effective for one problem are likely to be much less effective in addressing
related problems in a different setting. As discussed below, simple analytic
models help researchers and policymakers to establish the success of SEPs
in slowing HIV spread. Short-term reduction in HIV transmission is
sufficient to reduce long-run incidence and prevalence because the HIV
virus, though deadly, is inefficiently transmitted in each individual act of
needle sharing between infected and uninfected persons. However,
infectious disease transmission models indicate that similar-quality SEP
interventions are less effective in the prevention of HCV than in the
prevention of HIV [53, 54, 73, 74]. This has been observed in many IDU
populations, which display endemic HCV prevalence despite well-
implemented prevention interventions that successfully maintain low HIV
prevalence [42, 43].
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14.4 AN ANALYTIC MODEL OF BLOOD-BORNE DISEASE
AMONG IDUs

Basic insights can be illustrated using a simple but useful epidemiological
model of infectious disease transmission among IDUs. This section presents
an analytic framework that examines the long-term and short-term impact of
both MMT and SEPs in reducing infectious disease spread. This model
focuses on the cost-effectiveness of such interventions, conceptualized as the
costs per averted HIV or HCV infection associated with the prevention
intervention. It does not include a more complete cost-utility model. Zaric
and colleagues have published several analyses from a cost-utility
perspective [57, 75].

The model below, like others in the policy analysis literature, is based on a
simplified depiction of injection drug use and treatment interventions. It
does not consider heterogeneity among IDUs in the manner, frequency, and
social context of their injection drug use, though these characteristics are
known to vary among IDUs [36]. It does not consider differences in
transmission risk associated with viral load and other complex
characteristics of infected and uninfected persons. It uses a standard,
random-mixing model of infectious disease transmission rather than a more
sociologically nuanced network model of needle-sharing networks [76]. It
does not consider sexual risk among IDUs.

Each of the above simplifications is costly, because each excludes something
important for infectious disease spread. Despite these simplifications, the
resulting model illuminates the basic trade-offs that confront policymakers,
and it helps to identify critical parameters that determine likely policy
success. By allowing explicit cost-effectiveness calculations, this model
provides a simplified, but useful yardstick to compare MMT to other
prevention efforts.

We use the model presented by Pollack and Heimer [40] to present the basic
story. In particular, we consider a self-contained population of some N(t)
active IDUs. This number might vary over time as a result of prevention
interventions to discourage drug use. New (uninfected) IDUs enter the
population at a constant rate of per day. IDUs leave the population at
random at some constant rate of per person per day. This implies that the
average duration of an active drug use “career” is In a particularly
unrealistic but useful assumption, the exit rate is assumed to be
independent of both disease status and one’s previous experience as a drug
user. Averaging estimates from Kaplan’s “needles that kill” analysis and
those reported from among Baltimore’s ALIVE cohort, we set

[53, 77, 78].
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We collapse all injecting equipment into a single entity – syringes – and we
posit that IDUs freely share syringes at shooting galleries and similar venues
that promote random mixing.2 These circumstances promote rapid disease
spread as susceptible IDUs encounter contaminated, potentially infectious
injection paraphernalia. Although random mixing is a worst-case
assumption, mathematical models indicate that it provides a good
approximation to non-random models when there are high contact rates and
some overlap across disparate sharing networks [56, 70, 85].

Drug users are assumed to frequent these locations with a constant arrival
rate of per unit time. The true value of is difficult to directly observe.
Some research has assumed that IDUs share syringes once per week [31].
More recent data suggest less frequent sharing, though IDUs may under-
report the extent of sharing [86]. Infectious disease transmission can occur
when an uninfected person shares a syringe first used by an infected person.
When such sharing occurs, we assume a constant probability of that the
virus is actually transmitted. Rather than pick a specific point estimate, we
examine a range of values across the empirically pertinent range from a low
of to a high value of The low value corresponds to
published analyses HIV transmission, while the latter value is extrapolated
from data from needle-stick accidents involving health care workers [57].

At any given time t, there are some I(t) infected individuals. The proportion
of infected individuals is the ratio

Table 14.1 summarizes the relevant parameters and simulation values.

14.4.1 Baseline epidemiological model

The basic model is most readily presented in the absence of policy
intervention. On any given day, uninfected IDUs
remain susceptible to infection. Each IDU shares at a rate of per day.
Given random mixing, the probability that an uninfected IDU shares a
needle with an infected IDU is identical to the proportion of infected
persons within the active population of IDUs. When a susceptible shares
with an infected person, she has probability of becoming infected.

2IDUs also share ‘cookers’ and filters, and water sources contaminated by syringe
mixing. IDUs also use previously-used syringes in ways that allow for further
infection [79-84]. Cookers, filters, and water may be more important for HCV
transmission than for HIV given the differences in infectivity between the two
agents.
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Combining these terms, infectious disease incidence – the number of new
infections per day – is

Here the subscript 0 is used to denote variables in the absence of
intervention. The epidemic spreads most rapidly when half of the population
is infected. At this prevalence, the number of sharing pairs that involve one
infected and one uninfected person is maximized.

Since some individuals exit the population of active IDUs,

In steady state, is no longer a function of time; that is, We
therefore use the subscript 0 and omit references to t to indicate a steady-
state value.

Thus, This implies that the number of infected IDUs equals the
rate of new infections per unit time multiplied by the mean duration of
infected IDUs within the population.

The same analysis indicates that the proportional steady-state prevalence,
is

The quantity is the reciprocal of the reproduction number Absent
intervention, is the expected number of individuals who would be
infected by a single infected drug user introduced into an entirely susceptible
population. Clinical or policy interventions that drive below 1.0 will drive
steady-state prevalence to zero. Such interventions might reduce the
frequency of needle sharing through health education interventions,
increase the rate of exit from the IDU population, or reduce infectivity

through the provision of bleach to clean potentially infected syringes.
More complex models yield different values of This parameter is
fundamental to many epidemiological policy models of infectious disease
spread [87].
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One must consider the size of the overall population of IDUs. Every day,
some number of uninfected IDUs enter the population. If there are N(t)
IDUs at time t, some will exit the IDU population every day. In
steady state, there will be active drug users, where the number of new
IDUs entering the population balances the number of IDUs who leave the
population. These flows balance when population size is equal to the arrival
rate of new individuals per unit time, multiplied by the mean length of
time that an individual remains an active IDU:

Finally, one must consider steady-state disease incidence, Since steady-
state prevalence equals incidence multiplied by duration of IDUs within the
active population, we have This implies that

In cost-effectiveness analysis, the important quantity is the number of
averted infections associated with treatment intervention. However, the
timing of infections also matters. An averted infection five years from now is
less valuable than an averted infection today. Given the time value of
money, future averted infections must be discounted by precisely the same
factor as the funds expended to finance the intervention. Given a discount
rate r, the present discounted value of new infections is expressed
mathematically as

Here r is a discount rate appropriate for public policy intervention.

14.4.2 The impact of syringe exchange and methadone maintenance
treatment

One can augment the basic model to consider the impact of both methadone
treatment and syringe exchange. This model abstracts from a complex reality
to highlight the qualitative impact of both kinds of interventions. MMT is
presumed to induce a constant exit rate from the drug-using population of
per person per unit time, over and above the “natural” exit rate from the
drug-using population. MMT also reduces the rate of hazardous syringe
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sharing among clients who would otherwise use illicit drugs. Instead of
going to shooting galleries at a rate of times per week, MMT clients
frequent these places at the rate of Complete adherence corresponds
to a value of

To focus on the harm reduction dimension distinctive to SEP, the
intervention is presumed to have zero impact on the frequency of drug use,
and no impact on the exit rate of IDUs from the population of active
injectors. Instead of going to shooting galleries at a rate of times per week,
SEP clients frequent these places at the rate of

For both SEP and MMT, we assume that disease prevalence among
treatment participants mirrors prevalence among all IDUs. On any given
day, uninfected drug users remain susceptible to
infection. However, uninfected MMT clients who adhere to treatment do not
share needles. Assuming that disease prevalence among methadone clients
mirrors prevalence in the broader drug-using population, and that treatment
reduces syringe sharing by the proportion we must subtract
from the population of those at risk, leaving susceptible
drug users who are actively at risk.

Both of these factors alter infectious disease incidence to

In like fashion,

Each MMT “slot” costs $C per person per day in pharmaceutical costs,
labor, and other expenses. Treatment slots are always filled. This assumption
matches conditions of excess demand in many U.S. and European cities that
experience long waiting lists. Following previous research, we posit that $C
is approximately $14/person/day. Each SEP treatment slot costs some $d per
person per day. Because SEP is a less intensive intervention, we posit that d
is approximately $5/person/day.

As in the baseline model, some uninfected IDUs enter the population every
day. Only now, if M IDUs receive MMT, some number will
exit the population every day. In steady state, there will be N active drug
users, where
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Thus, one benefit of MMT is to reduce the overall population of active drug
users.

Given M treatment slots, the present discounted value of new infections is

In similar fashion, the present discounted cost of maintaining M treatment
slots in perpetuity is $Mc/r. If, considering treatment costs, the reduced
lifespan and the reduced well-being of infected persons, one values an
averted infection at some monetised level $S, the optimum policy is to
choose the number of slots M that minimises the present
monetised value of disease incidence minus the overall treatment cost.

14.5 AVERAGE COST PER AVERTED INFECTION

In comparing MMT to other prevention efforts or other competing uses of
public funds, it is especially illuminating to calculate the average cost of
MMT per averted infection. If there are no available treatment slots, the
present discounted value of new infections is some (larger) quantity So
the average cost per averted infection would be

Unfortunately, is difficult to solve analytically, though it is easily
computed numerically in specific cases. Pollack [88] provides further
specific results.

Table 14.2 is drawn from Pollack [88]. It shows the results of one sensitivity
analysis generated using these models. Compared with later analyses,
including those by Zaric and colleagues [57, 75], Pollack [88] likely
understates the cost-effectiveness of MMT for HIV prevention. As discussed
below, costs per averted HIV infection strongly increase with underlying
HIV prevalence in the absence of intervention. MMT and other harm
reduction interventions are highly cost-effective when applied in conditions
of relatively low prevalence. Such interventions are markedly less cost-
effective in conditions of very high prevalence because feasible
interventions have only a small impact on steady-state prevalence.
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Pollack [88] assumes very high HIV prevalence (exceeding 65%) absent
intervention. Such a model matches the observed prevalence among street
IDUs in New Haven, Connecticut prior to implementation of syringe
exchange. However, this analysis likely overstates HIV prevalence in later
IDU cohorts, in which rates of needle-sharing have declined and from which
the core group of IDUs at greatest risk may have exited the population
through HIV infection.

The results in Table 14.2 also demonstrate the value of treatment adherence,
as a function of relapse rates from MMT. At high relapse rates, treatment
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adherence must also be high for cost-effective intervention. When relapse
rates are low, MMT appears quite cost-effective even given low adherence
to the intervention.

These results are also remarkable as an argument for the cost-effectiveness
of even highly imperfect MMT interventions. In the baseline case, we posit
that patients are 75% adherent to the treatment, and that fully 80% of MMT
clients eventually relapse into injection drug use. None of the traditional
(and large) social benefits associated with MMT – improved health status
and productivity, and reduced criminal offending among MMT clients – are
considered in this analysis. Yet the costs of MMT per averted infection are
only $113,000.

This estimate is far below reasonable valuations of the social and individual
costs of HIV infection. For example, Holtgrave and Pinkerton estimate
present discounted lifetime treatment costs associated with HIV infection to
be $195,000 [89]. More important is the impact of HIV prevention on
individual well-being. Holtgrave and Pinkerton estimate that HIV infection
is associated with a loss of 7.10 quality-adjusted life-years (QALYs). Across
a wide range of public health interventions, interventions costing between
$50,000 and $ 150,000 per QALY are widely regarded to be cost-effective by
policymakers and the public [90]. By this cost-utility standard, MMT
appears highly cost-effective in virtually all of our specifications when
compared with other public health interventions.

As shown in Table 14.3, results are more discouraging for the prevention of
HCV infection and other highly infectious agents. Within the same analytic
framework, with all parameters identical except for a higher infectivity
MMT has only a small impact on HCV incidence and prevalence due to the
higher probability of HCV transmission when needle sharing occurs. In most
cases, costs per averted HCV infection are correspondingly much higher
than those for HIV. Given modest estimates of lifetime expected treatment
costs for acute and chronic HCV infection, it is difficult to justify MMT
based on its role in HCV prevention [53, 91, 92].

Although these results are discouraging, they also indicate the great potential
contribution of program quality to program effectiveness. Highly effective
MMT programs – those with low relapse rates and high treatment adherence
– can have a strong effect on HCV spread and can be cost-effective.

14.6 SHORT-TERM INCIDENCE ANALYSIS OF SEP

The full analytic framework for both SEP and MMT must be solved
numerically, and is difficult to interpret from a qualitative perspective.
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Fortunately, the short-run and steady-state implications of these models are
tractable, and have been explored by several authors.

The most important set of models are due to Kaplan and collaborators, and
include the noted “circulation model” of needle exchange [93]. The
circulation model has been well-described elsewhere; its details will not be
repeated here. Two features of that model, however, are noteworthy for this
discussion.
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First, the circulation model related specific data – observed HIV prevalence
among needles returned to the New Haven SEP – to an underlying model of
infectious disease transmission among IDUs. It therefore provided a more
epidemiologically credible account of program effects than could be
obtained through more traditional and less direct methodologies, such as
studies that scrutinize self-reported risk behaviors among IDUs.

Second, the circulation model explores the impact of SEP on short-term HIV
incidence among program clients. The model assumes that SEP has little
impact on HIV prevalence, the number of IDUs affected by the intervention,
or the exit rate of IDUs from the active drug-using population. Within this
framework, SEP reduces immediate HIV incidence by removing infected
needles from the population. This effectively reduces the rate of new
infections by reducing the product among active IDUs.

For simplicity, assume that there are no MMT slots: infectious disease
spread can only be reduced by SEP. If SEP reduces incidence by some factor

the short-term incidence decline can be shown to be [53]

Using this type of model, Kaplan and Heimer estimated that the New Haven
SEP reduced short-term HIV incidence by approximately one-third. If
steady-state prevalence is approximately 65% and is approximately
1/(4,000 days), an SEP that serves a population of 300 IDUs will experience
a short-term incidence decline of (1/3)(300)(1/4000)(0.65)=0.01625
infections per day, or approximately 5.9 averted HIV infections per year.

Although this appears to be a small program effect, SEP is an inexpensive
intervention, costing approximately $5 per client per day. This simple short-
term model therefore yields an estimate of $5*300/0.01625=$92,300 per
averted infection. This is a highly cost-effective intervention.

Because a highly infectious agent such as HCV has a higher rate of new
infections than HIV, this short-term incidence model yields slightly smaller
estimated costs per averted infection for HCV than for HIV. Unfortunately,
as shown below (Section 14.8), such findings can be misleading because
they fail to account for long-term effects.

14.7 SHORT-TERM INCIDENCE ANALYSIS OF MMT

A similar short-term incidence model is readily derived for MMT. The short-
term impact of MMT on infectious disease incidence can be considered to be
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the short-term reduction in the rate of new infections, assuming that
infectious disease prevalence and the overall number of IDUs are stable.
Expressed more formally, the short-term effect of a small addition to the
number of MMT slots may be written as

At the margin, one additional treatment slot will cost $C, so the marginal
cost per averted infection is

If one posits that M is close to 0, and applies the baseline model of SEP –
steady-state HIV prevalence of 65% and – an MMT intervention that
costs $14 per day yields an estimated cost per averted infection of $114,872.

14.8 STEADY-STATE CALCULATIONS

Explicit and tractable frameworks such as the circulation model brought new
rigor to HIV prevention policy. However, the specific features, findings, and
simplifying assumptions of such models, while appropriate for the HIV
epidemic among IDUs, may prove misleading in other settings. HIV disease
unfolds over a long period of time and is life-threatening. HIV is relatively
difficult to transmit in any one exposure, such as a hospital needle-stick
accident or the sharing of needles between infected and uninfected IDUs.
When one alters these features, short-term incidence analysis may have
important shortcomings.

One might assume that short-term incidence analysis understates the long-
term value of prevention. If an intervention directly prevents 100 IDUs from
being infected this year, the intervention also benefits the sexual and needle-
sharing partners of these IDUs. Such “downstream” infections are not
considered in short-term incidence models. This intuition is correct for
prevention interventions such as polio vaccination that provide long-term
protection. However, this intuition is false when prevention interventions
provide imperfect or temporary protection to treated individuals. If steady-
state prevalence is quite high, many of the original 100 IDUs will become
infected in later periods. Because a prevention intervention merely delays
infection for some treated individuals, short-term analysis of disease
incidence can provide over-optimistic estimates of program effectiveness. In
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fact, ignoring “downstream” infections can either overstate or understate
long-term program effects [54].

Steady-state analysis allows one to explore these claims, and to scrutinize
the specific conditions under which short-term incidence analysis will
overstate or understate long-term program effects [54]. The steady-state
approach is especially suited to the analysis of rapid infectious disease
transmission within a stable environment. As shown by Pollack [54], spread
of a highly infectious agent such as HCV quickly approaches equilibrium
incidence and prevalence. Such an analysis is less applicable to a less
efficiently transmitted agent such as HIV, which displays much slower
convergence to steady-state prevalence.

Figure 14.1, drawn from Pollack [54], provides more specific information. It
is computed using the needle-sharing rates and mean drug-using careers
shown in Table 14.1. The infectivity is allowed to vary across the
empirically plausible range for both HIV and HCV. The figure displays the
time required to move from 5% initial prevalence to 90% of steady-state
prevalence across the empirically pertinent range of parameters. This
framework overstates the time required to converge to steady state in actual
policy settings, because HCV often reaches endemic levels before policy
makers are able to intervene.

At low infectivities, the time required to reach steady state is substantial. For
example, HIV policy analysts have used the value in published
work. At this infectivity, numerical analysis indicates a convergence time of
more than 30 years. Under these assumptions, steady-state analysis is less
pertinent than short-term incidence analysis for public policy. Moreover,
short-term analyses such as the circulation model yield results similar to
those obtained through more elaborate dynamic models. Somewhat
fortuitously, short-term incidence analysis for HIV provides an acceptable
approximation of long-term effects.

Convergence times rapidly decline as infectivity increases. For example, if
convergence is reached in 7.25 years. When convergence

is reached within 4.2 years. For HCV and other highly infectious diseases,
infectivity is even higher, making steady-state analysis most pertinent to
evaluate medium-term and long-term effects. Such rapid convergence to
steady state is also observed empirically, for example in the high rates of
HCV incidence among young Baltimore IDUs [71].



HARM REDUCTION AMONG DRUG USERS 387

Figure 14.1 Time to convergence in random-mixing models

For SEPs, one can explicitly calculate the steady-state impact. Steady-state
incidence is

Manipulating equation (15) and assuming positive prevalence, the steady-
state change in HCV incidence is given by

Comparing the long-term and short-term changes in incidence, short-term
analysis will overstate steady-state program effectiveness whenever

This happens exactly when

When the break-even point occurs when or, equivalently,
Equivalently, short-term incidence analysis will overstate steady-

state program effectiveness whenever steady-state prevalence exceeds 60%
in the absence of SEP. By the same logic, short-term incidence analysis will
understate program effectiveness when steady-state prevalence is below
60% absent SEP.



388 OPERATIONS RESEARCH AND HEALTH CARE

If one provides SEP to all active IDUs, the average cost per averted infection
is

Setting d=$5/day, and this implies that
When SEP would prevent infections at an

approximate cost of $100,000 per averted infection.

Pollack compares short-term and steady-state models [53, 54]. Figure 14.2
shows these results. The y-axis indicates, in percentage terms, the amount
that short-term analysis overstates (or understates) the steady-state impact of
prevention interventions. At low steady-state prevalences, short-term
incidence analysis understates long-term program effects. In such cases,
averted secondary infections magnify the benefits of prevention
interventions. At high steady-state prevalences, the opposite effects occur.
Although incidence declines in the short-term, individuals who received
short-term protection are likely to become infected later. Thus, the long-term
impact of intervention is much smaller than one would predict based on
short-term program effects.

One can conduct a similar steady-state analysis of MMT. In steady state,
there will be N* active drug users, with steady-state prevalence Every
day, some uninfected individuals initiate drug use, while IDUs
leave the population. So

When steady-state prevalence is positive, one can show after algebra that

As before, the quantity is the reciprocal of the reproductive rate of
infection, or

The quantity reflects the reduction in disease prevalence
attributable to treatment. The quantity captures the effect of MMT on
increasing exit from the drug-using population and also includes the
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Figure 14.2 Bias in short-term incidence estimation for modest
interventions (negative values indicate understatement of program

effect)

effect of treatment on reducing needle sharing while individuals are in
treatment

One can show that steady-state disease incidence is given by

Since treatment costs $c per client per day, the total cost of drug treatment is
$Mc per day. At positive steady-state prevalence, average cost per averted
infection is therefore*

Costs decline as exit rates of IDUs attributable to treatment intervention,
increase. Costs decline with the number of treatment slots (M), and

* If steady-state prevalence goes to zero, the average cost per averted infection is

given by
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depend on the ratio of exits due to treatment over the arrival rate
of uninfected people into the IDU population.

As with SEP, the cost per averted infection is proportional to Thus,
measures that reduce steady-state prevalence can be significant, even if
steady-state prevalence remains high. Suppose, for example, that steady-
state prevalence is 90% prior to any intervention, and that the average
cost associated with MMT per averted infection is $100,000. If, independent
of MMT, one could reduce needle sharing rates or other risks to reduce to
85%, this small change in prevalence would reduce from a value of 10 to
a value of 6.67. This apparently small prevalence decline corresponds to a
one-third improvement in the cost-effectiveness of MMT.

When the number of treatment slots is extremely small compared to the
population of IDUs, the average costs per averted infection is

If one applies the figures for HIV prevalence discussed above the
average cost per HIV infection in steady-state is approximately $15,000 – a
figure far below that obtained by short-term analysis. Because MMT reduces
the overall size of the IDU population and reduces the steady-state
prevalence of infection, short-term incidence analysis understates the value
of MMT.

Note also that MMT has economies of scale. Steady-state prevalence,
incidence, and the average cost per averted infection all decline as a larger
fraction of active IDUs is served. Broad provision of MMT assists individual
clients. It also generates a kind of herd immunity – creating beneficial
spillovers to reduce prevalence among all IDUs [88].

Sometimes – but not always – broad provision of MMT can drive steady-
state prevalence to zero. Given imperfect adherence, an epidemic can
survive at positive steady-state prevalence even when all IDUs are enrolled
in MMT. Setting M=N*, it is possible to drive prevalence to zero exactly
when

14.9 CONCLUSIONS AND FUTURE RESEARCH

Many insights for public policy can be drawn from the epidemics of
substance abuse and HIV/AIDS. Operations researchers have provided many
of these insights, and have the tools to critically scrutinize these insights
when they are applied to new problems in new ways.
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Operations researchers have provided data and methodologies that allow fair
comparison of competing strategies to reduce illicit substance use. For HIV
prevention, policy models allow policymakers to evaluate public
investments in MMT and SEP by many of the same impact and cost-
effectiveness standards as other public health measures. When such
comparisons are made, HIV prevention interventions for IDUs compare
favorably to prenatal care, car safety seats, and other widely accepted
interventions [94].

Some lessons learned from HIV may not apply to other problems.
Opponents of harm reduction argue that measures to make substance use
safer are a foolish and ineffective response to the individual and social harms
associated with injection drug use. According to this view, “use reduction” is
essential to achieve lasting social benefit. The effectiveness and cost-
effectiveness of SEP for HIV prevention provides a strong rebuttal of such
use-reduction arguments. The need for use reduction appears more
compelling when one considers more infectious agents such as HCV [28].

Public health challenges facing IDUs raise new challenges for both
operations researchers and for policy.

The impact of high street purity on drug use behavior and drug treatment
outcomes remains unknown. Many heroin users now consume the drug in
non-injectable form. If such drug use is stable over time, non-injectable
forms of heroin use may help to slow blood-borne epidemics among IDUs.
Yet if non-injecting heroin users frequently transition to injection, the rise of
heroin snorting and other behaviors may be a significant problem for both
substance abuse policy and public health. In one study of Baltimore IDUs,
only one-fourth of respondents had initiated heroin by injecting. Yet two-
thirds of respondents reported some injection drug use. The most durable
changes in route of heroin administration were towards high-risk behaviors
[95].

The impact of improved HIV treatments raises more complex concerns for
the design and operation of harm reduction and treatment interventions.
Improved treatment lengthens life, may lengthen the period of high-risk
behavior among IDUs, and may also reduce the probability of HIV
transmission when there is needle sharing between infected and uninfected
IDUs. The impact of such therapies has spawned a large literature in
epidemiological policy modeling [87]. The spread of multi-drug-resistant
strains has also attracted attention [96]. All of these developments heighten
the importance of long-term prevention interventions for HIV-infected
IDUs.
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The histories of the substance abuse epidemic and the HIV epidemic are
tragic in many ways. In the U.S., HIV occasioned late and inadequate policy
responses to an epidemic afflicting IDUs and other stigmatized groups. This
led to much avoidable mortality and morbidity among IDUs, their sexual
partners, their children, and others [97, 98]. In the case of illicit drug use,
policymakers continue to favor law-enforcement policies that are more
punitive and less cost-effective than best-practice prevention or treatment
interventions.

The most important reasons for these policy failures lay outside the
immediate realm of policy analysis: they have arisen due to the quality of
public management, moral and ideological choices, and interest-group
politics that do not favor the groups at greatest risk. The best policy analysis
is often powerless to overcome these factors. Sigmund Freud once
commented that the voice of intellect is soft, but will not rest until it gains a
hearing [99]. In this quiet but insistent way, operations researchers remind
skeptical citizens and policymakers of the value of sound interventions that
reduce premature death and avoidable suffering among IDUs.
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SUMMARY

Development of a vaccine remains the best hope for curtailing the
worldwide pandemic caused by human immunodeficiency virus (HIV)
infection. Due to the complex biology of HIV infection, there is increasing
concern that an HIV vaccine may provide incomplete protection from
infection. In addition to reducing susceptibility to disease, an HIV vaccine
may also prolong life in people who acquire HIV despite vaccination, and
may reduce HIV transmission. We evaluated how varying degrees of
vaccine efficacy for susceptibility, progression of disease, and infectivity
influence the costs and benefits of a vaccine program in a population of men
who have sex with men, We found that the health benefits, and thus cost
effectiveness, of HIV vaccines were strikingly dependent on each of the
types of vaccine efficacy. We also found that vaccines with even modest
efficacy provided substantial health benefits and were cost effective or cost
saving. Although development of an HIV vaccine has been extremely
difficult, even a partially effective HIV vaccine could dramatically change
the course of the HIV epidemic.
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15.1 INTRODUCTION

At the end of 2002, 42 million people were living with human
immunodeficiency virus (HIV) infection. New infections were occurring at
about 14,000 per day [1]. By 2010, an additional 45 million people will
become infected with HIV if current trends continue [1]. Highly active
antiretroviral therapy is very effective, but it is unavailable in most low-
income countries where 95% of the HIV infections occur. Development of
an HIV vaccine remains the best hope for curtailing the worldwide
pandemic.

Despite intensive effort, development of an HIV vaccine has remained
elusive. Many candidate vaccines have undergone clinical trials, but only
one vaccine, AIDSVAX, has undergone large-scale, Phase III efficacy trials
that are required for vaccine licensing. Preliminary results of the first
AIDSVAX trial, reported in early 2003, indicated that the vaccine failed to
reduce HIV infection rates in the overall group of vaccine recipients. In
subgroup analyses, the manufacturer reported that the vaccine reduced HIV
infection rates by 67% in non-Hispanic minorities, and by 78% among black
recipients. The subgroup analyses were highly controversial because of
small sample sizes. Even if these results become accepted, however, they
would further confirm the belief among many experts that if a vaccine
becomes available, it would likely provide only partial protection from HIV.
This view led the Centers for Disease Control and Prevention and the World
Health Organization to hold consultations to examine how partially effective
HIV vaccines should be used [2].

The increasing concern that an HIV vaccine would be only partially
effective has led to considerable interest in how to model vaccine efficacy
(VE) for HIV vaccines. Vaccines for HIV may act to reduce the burden of
disease in three ways. First, the vaccine may reduce susceptibility to
disease, as do most familiar vaccines. In a framework developed by Longini
and colleagues [3-5], this component of vaccine efficacy is termed the
vaccine efficacy for susceptibility, Because the is likely to be less
than 100% (because of incomplete protection), a person who has been
vaccinated may subsequently become infected with HIV. Unlike some
traditional vaccines, an HIV vaccine may also ameliorate disease in those
who become infected. The vaccine would likely work by improving the
ability of the immune system to suppress HIV viral replication. This
suppression would lead to the two additional means by which the vaccine
could reduce the disease burden from HIV infection: the vaccine could slow
progression of HIV disease and decrease the likelihood of transmission of
HIV. Transmission would likely decrease because the probability of
transmission is related to the level of virus in the blood: transmission occurs
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less readily if the level of virus in blood (and other body fluids) is low [6, 7].
Thus, an HIV vaccine may have efficacy to reduce progression of disease,

and efficacy to reduce infectivity [3-5], in addition to efficacy to
prevent infection

Should a partially effective vaccine be used? How good must a vaccine be
before public health officials recommend its use? These questions are
complex, in part because a vaccine with low might still have substantial
health benefit if either or were high. In addition, because a vaccine
program would require substantial resources, the question of whether to use
the vaccine also depends on the costs of the program. To address these
questions, we developed a dynamic transmission model to represent the
effects of a vaccine in a population, and an economic model to assess the
costs associated with the vaccine program [8-10]. We modeled two types of
vaccines: a preventive vaccine that would be
given to uninfected people, and a therapeutic vaccine

that would be given to people known to have HIV. By evaluating both
types of vaccines, we can understand how and influence both
the health benefits and costs of a vaccine program. We evaluated the costs
and benefits of these vaccine programs in a population of men who have sex
with men (MSM) designed to reflect the population in San Francisco,
California.

This chapter builds on previous work we have done in evaluating potential
HIV vaccines [8-10]. We have recast our previous work into a framework
for analysis of vaccines that has recently developed. This framework
conceptualizes vaccine efficacy in terms of efficacy for susceptibility, for
progression, and for infectivity. In addition, the work in this chapter
assumes no behavior change (positive or negative) in the base case.
Arguments have been made about why risk behavior might increase or
decrease with a vaccine program, but recent evidence has not supported the
more pessimistic assumption that we used in earlier work that risk behavior
would increase. Additionally, we updated costs to reflect 2003 dollars.

15.2 METHODS

15.2.1 Model and data

Details about the model structure, input data, and validation are available
elsewhere [8-10], so we provide an abbreviated overview here. A schematic
depiction of the model is shown in Figure 15.1. The diagram in Figure 15.1
is substantially simplified but indicates the important relationships captured
in the model. The figure shows the vaccinated cohort for both preventive
and therapeutic vaccines. For a preventive vaccine, infection is attenuated.
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For a therapeutic vaccine, progression of disease is attenuated. Infectivity
may also be reduced by a therapeutic vaccine.

Figure 15.1 Schematic of model structure

The model simulates both vaccinated and unvaccinated cohorts that evolve
over time. The transitions between the compartments in the model (boxes in
Figure 15.1) were determined by deterministic differential equations [8-10].
The simulation determined the number of people in each compartment after
a specified time interval. Health outcomes were measured in terms of
number of HIV infections in the population, the prevalence of HIV, and the
total quality-adjusted life years (QALYs) lived in the population. A QALY
is a measure of length of life adjusted for changes in quality of life [11];
QALYs are a standard outcome for cost-effectiveness analyses. We
calculated QALYs by multiplying the time in a health state by a quality
adjustment that ranges from 0 to 1. For example, if the quality of life with
asymptomatic HIV infection is 0.83, then a year spent with asymptomatic
HIV infection is equal to 1 × 0.83 = 0.83 QALYs. The model estimated the
health outcomes and costs for the vaccinated and unvaccinated cohorts. We
assessed the efficacy of the vaccine program in terms of infections averted,
changes in prevalence, or changes in the QALYs for the vaccinated cohort
relative to the unvaccinated cohort. As recommended by guidelines for the
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conduct of cost-effectiveness analyses [12], we discounted both health and
economic outcomes. We discounted outcomes at 5%; expenditures are
expressed in 2003 dollars.

We modeled the effects of vaccines and progression of disease as changes in
the transition rate from one model compartment to another (Figure 15.1).
For a preventive vaccine program, the rate of infection in individuals in the
vaccinated cohort is attenuated by which we defined as the proportion
of vaccine recipients who are protected from infection. For a therapeutic
vaccine, we assumed for simplicity that the efficacy of the vaccine in
reducing progression of disease (that is, in prolonging life), occurred
via prolongation of life during the asymptomatic phase of infection. We
varied the degree of this increase from one year to ten years. We also
modeled changes in infectivity of vaccine recipients as reductions in
transmission to contacts. We modeled disease progression (for both types of
vaccine programs) from asymptomatic disease, to symptomatic disease, and
then to AIDS (not shown in Figure 15.1). In addition, we modeled
interactions of the vaccinated cohort with the uninfected people in the
population. In the analyses we report here, we assumed that vaccine
recipients would not change risky behavior. We have evaluated the
importance of behavior change previously [8-10].

We calculated the incremental cost effectiveness of the vaccine program as
the difference in costs between the vaccinated and unvaccinated cohorts,
divided by the difference in health benefit. For example, to estimate the cost
effectiveness in dollars per QALY gained, we calculated the cost-
effectiveness ratio as:

If the vaccine increased both costs and health benefit, we calculated the cost-
effectiveness ratio. If the vaccine provided benefits while reducing costs, we
said that vaccination dominated the strategy of no vaccination.

15.2.2 Model inputs

We estimated inputs for the model from published and unpublished data
about the population of MSM in San Francisco [8-10]. Key input data for
the model are shown in Table 15.1.
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Sources and detailed input data are provided elsewhere [9-11]. We
estimated transmission probabilities from epidemiologic studies and model-
based estimates. We evaluated vaccine programs in two types of epidemics,
an early-stage epidemic and a late-stage epidemic. In an early-stage
epidemic, the prevalence of HIV infection is relatively low (10%) but
increasing. Such an epidemic may reflect younger MSM who have higher
levels of risky behavior and higher number of annual partnerships. In a
late-stage epidemic, the prevalence is relatively high (approximately 50%)
and is decreasing. Such an epidemic may reflect older MSM who have
lower levels of risky behavior and fewer partnerships. We report here
results for the late-stage epidemic; we evaluated early-stage epidemics
elsewhere [8-10]. Because we estimated the parameters for the model in the
era prior to the advent of highly active antiretroviral therapy, the model
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underestimates length of life for patients who receive treatment under
current regimens. We discuss the implications of newer therapies on our
results in Section 15.4.

The characteristics of HIV vaccines are, of course, unknown. Therefore, we
evaluated vaccines with many plausible combinations of efficacy and
duration of action. We arbitrarily assumed that a vaccine would cost $1,000,
and varied this value widely.

15.3 RESULTS

15.3.1 Preventive vaccine

We evaluated vaccine efficacy for susceptibility that ranged from 10%
protection to 90%, with vaccine durations of 5, 10, and 50 years (Figures
15.2 and 15.3). Figure 15.2 shows the health and economic outcomes for
vaccines with varying efficacy and duration. The figure indicates the net
increase in QALYs and expenditures (or savings) in millions of dollars ($M)
for a preventive vaccine after 150 years, assuming no change in risk
behaviors, in a late-stage epidemic, with 75% of the population vaccinated.
Each point on the polygon represents a preventive vaccine with different
efficacy and duration. Squares on the top line of the polygon represent
preventive vaccines with efficacy of 10% to 90% and a duration of 5 years.
Squares on the bottom line represent a vaccine with a duration of 50 years.

The dotted lines indicate cost-effectiveness thresholds of $50,000 and
$10,000 per QALY gained. A vaccine represented by a point on the polygon
that falls between the two dotted lines has a cost-effectiveness ratio between
$50,000 and $10,000 per QALY gained. A vaccine represented by a point to
the right of the $10,000 per QALY line cost less than $10,000 per QALY
gained. Points on the polygon below the horizontal axis represent vaccines
that reduce net expenditures, and therefore dominate the no-vaccination
strategy. A vaccine with any combination of efficacy and duration within
the ranges noted will fall within the polygon in Figure 15.2. Points to the
right of these lines cost less than the threshold rate per QALY gained.

Our analyses indicate that vaccines need not be highly effective to have
substantial health benefit with reasonable expenditures (Figure 15.2). For
example, a vaccine with only 10% efficacy and duration of 5 years (the top
left point on the polygon), resulted in expenditures of about $83 million
dollars and a net increase of about 3,600 QALYs at a cost of less than
$50,000 per QALY gained (Figure 15.2). A vaccine with an efficacy of 90%
and duration of 50 years (that is, lifelong protection, represented by the
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Figure 15.2 Long-term outcomes of a preventive vaccine

Figure 15.3 Effect of vaccine efficacy for susceptibility on the
cost effectiveness of a preventive vaccine
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rightmost point on the graph) reduced expenditures by approximately $75
million and increased QALYs in the vaccinated cohort by approximately
34,000. Thus, a vaccine with low efficacy was cost effective by the
standards of high-income countries, and highly effective vaccines dominated
the no-vaccination strategy by reducing expenditures while providing very
large health benefit. More effective vaccines reduced total expenditures
because the cost of the vaccine program was outweighed by the savings
associated with prevention of HIV infection.

In Figure 15.3, we indicate more directly how changes in influenced the
cost-effectiveness ratio. The figure shows the incremental cost effectiveness
of a vaccine program relative to the no-vaccination strategy in dollars per
QALY gained. Vaccines with duration of 5, 10, and 50 years are shown by
different lines. The values represent long-term outcomes, with no behavior
change, and 75% of the population vaccinated. With a vaccine efficacy of
10%, cost effectiveness varied from about $7,000 per QALY gained
(duration of 50 years) to approximately $24,000 per QALY gained (duration
of 5 years). As vaccine efficacy increased, the vaccine program became
increasingly cost effective. When the lines in Figure 15.3 reach the x-axis, it
indicates that at higher efficacy, the vaccine strategy dominated the no-
vaccination strategy. Vaccination dominated the no-vaccination strategy
when efficacy reached approximately 35%, 55%, and 90% for a vaccine
with duration of 50 years, 10 years, and 5 years respectively.

15.3.2 Therapeutic vaccine

For therapeutic vaccines we evaluated vaccines
that prolonged life by 1, 2, 5, and 10 years, and that decreased infectivity by
0%, 25%, 75% and 90% (Figure 15.4). The figure indicates the net increase
in QALYs and expenditures (or savings) in millions of dollars ($M) for a
therapeutic vaccine after 150 years, assuming no change in risk behaviors, in
a late-stage epidemic, with 75% of the population vaccinated. Each point on
the polygon represents a therapeutic vaccine with different efficacy for
prolongation of life (1, 2, 5, and 10 years) and infectivity. The square
labeled 100% infectivity represents a vaccine that does not reduce
infectivity; the square labeled 10% infectivity represents a vaccine that
reduces infectivity by 90%. As in Figure 15.2, the dotted lines indicate cost-
effectiveness thresholds of $50,000 and $10,000 per QALY gained. A
vaccine represented by a point on the polygon that falls between the two
dotted lines has a cost-effectiveness ratio between $50,000 and $10,000 per
QALY gained. A vaccine represented by a point to the right of the $10,000
per QALY line cost less than $10,000 per QALY gained. Points on the
polygon below the horizontal axis represent vaccines that reduce net
expenditures, and therefore dominate the no-vaccination strategy.
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A therapeutic vaccine that extended life by two years cost less than $10,000
per QALY gained, even if it provided no reduction in infectivity (Figure
15.4). In contrast, a vaccine that reduced infectivity by 90% and increased
length of life by 10 years (the rightmost point in Figure 15.4) resulted in
large cost savings and a gain of about 28,000 QALYs in the vaccinated
cohort. Thus, both the degree to which the vaccine prolonged life, and
the degree to which it reduced infectivity, had a large influence on
costs, benefits, and the cost effectiveness of the vaccine program.

Figure 15.4 Long-term outcomes for a therapeutic vaccine

The influence of on cost effectiveness is shown in Figure 15.5 for a
therapeutic vaccine that reduced infectivity by 5% or 10%. The figure
shows the incremental cost effectiveness of a vaccine program relative to the
no-vaccination strategy in dollars per QALY gained. Vaccines that reduce
infectivity by 5% and 10% are shown. The values represent long-term
outcomes, with no behavior change, and 75% of the population vaccinated.
A vaccine program resulted in expenditures of $8,000 per QALY gained if
the vaccine only increased length of life by one year and reduced infectivity
by 5% (Figure 15.5). Relatively small changes in infectivity had substantial
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influence on the cost effectiveness of a vaccine program (Figure 15.5).
Vaccines that reduced infectivity by more than about 15% dominated the no-
vaccination strategy, and are therefore not shown in Figure 15.5.

Figure 15.5 Cost effectiveness of a therapeutic vaccine

15.4 DISCUSSION

An HIV vaccine may reduce susceptibility to disease, may prolong life in
people who acquire HIV despite vaccination, and may reduce HIV
transmission. A vaccine could have only one of these mechanisms of
protection (for example, reducing susceptibility), or it could have all three.

We evaluated preventive vaccines that provided protection from infection
but did not prolong life or reduce transmission, and therapeutic vaccines that
could both prolong life and reduce transmission, but provided no protection
from infection. We evaluated these types of vaccines because of ongoing



PARTIALLY EFFECTIVE HIV VACCINES 415

research to develop such vaccines. Although a vaccine could have all three
mechanisms of protection, we can learn much about how the mechanism of
protection influences costs and health benefits by assessing preventive and
therapeutic vaccine programs independently.

The first major finding of our analysis is that each of the types of efficacy,
and is extremely important for HIV vaccines. The health

benefits, and thus cost effectiveness, of HIV vaccines were strikingly
dependent on each of the types of vaccine efficacy. Our analyses indicated
that a preventive vaccine that provided only protection from infection was
cost effective or cost saving under many plausible scenarios. Likewise, a
therapeutic vaccine that provided no protection from infection was also cost
effective or cost saving under most scenarios.

An important implication of this finding is that an understanding of the
effect of a vaccine in a population depends on assessing all three types of
vaccine efficacy [3-5]. Longini and colleagues have discussed design of
vaccine trials and how to augment trials so that all parameters of vaccine
efficacy are assessed [3-5]. For a therapeutic vaccine, a trial that assessed
only would leave substantial uncertainty about the health benefit of a
vaccine. As noted in Figure 15.4, for a given prolongation of life the
health benefit from the vaccine varies by a factor of three or more based on
variation in These considerations have led to the addition of sexual
partner studies to vaccine trials to help assess changes in infectivity.
Because infectivity correlates with the level of virus in blood, another
strategy is to assess HIV viral load as a surrogate measure for infectivity.
Direct assessment of transmission is preferable, however, if feasible.

A second major finding of our analysis is that even vaccines with modest
efficacy provided substantial health benefits and were cost effective or cost
saving. By traditional standards, a vaccine that prevented infection in only
25% to 50% of recipients would be considered a failure. In contrast, an HIV
vaccine with these characteristics provided large health and economic bene-
fit. In part, HIV vaccines need not meet high standards of efficacy because
the mortality from HIV is so high. In addition, our analyses assumed that
vaccine recipients did not increase their risky behavior; we previously have
shown that increased risk behavior reduces the benefit of a vaccine program.
As improvements in therapy reduce HIV mortality, or if studies show that
vaccine recipients increase risky behavior, the efficacy of vaccines may need
to increase to provide similar cost effectiveness. Nonetheless, our analysis
indicates that vaccines of modest efficacy would provide great benefit.

Our work has two important limitations. First, we developed our model
prior to the development of highly active antiretroviral therapy. Highly
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active antiretroviral therapy has sharply reduced the mortality of HIV
infection. The costs of HIV care are also now substantially different than
when our model was developed. Highly active antiretroviral therapy has
reduced hospitalizations and associated costs. However, the cost of highly
active antiretroviral therapy may reach $15,000 per year, so drug costs have
increased substantially. We are extending the analyses discussed here to
account for both the reduced mortality and changing patterns of expenditures
on HIV care. Although the quantitative results will certainly be somewhat
different, we expect that the main qualitative findings of the current analyses
will remain largely unchanged: all types of vaccine efficacy will be
important, and vaccines with modest protection will likely provide
substantial benefit. Second, as noted, recent developments in HIV vaccine
research suggest that a vaccine may have all three mechanisms of protection.
In future work, we will evaluate vaccines that provide all three components
of vaccine efficacy.

HIV now ranks as one of the most devastating pandemics in history. The
development of a preventive or therapeutic vaccine, or a vaccine with hybrid
characteristics, is an extraordinary public-health priority. Our evaluation
indicates that a full understanding of the health benefit of HIV vaccines will
require assessment of all three types of potential protection. Empiric
assessment of the degree to which a vaccine protects from infection, and
reduces progression of disease or transmission, will require long, complex,
and expensive clinical trials. Fortunately, our analyses indicate that a
vaccine need not be perfect or nearly so to have great health benefit. Even a
partially effective HIV vaccine could dramatically change the course of the
HIV epidemic.
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SUMMARY

Several challenges have arisen in childhood immunization programs as
vaccine manufacturers have become more successful in developing new
vaccines for childhood diseases. Their success has created a combinatorial
explosion of choices for health-care providers and other purchasers of
pediatric vaccines, which in turn has created a new set of economic
problems and issues related to determining which vaccines should be
combined into single injections and how to design lowest overall cost
formularies for pediatric immunization. This chapter provides a review of
how operations research modeling and analysis tools can be used to address
a variety of economic issues surrounding pediatric vaccine formulary design
and pricing. A summary is presented of the pediatric immunization
problems that have been studied using integer programming models, as well
as the assumptions used to model such problems. A description of the
methodologies used is provided. A summary of the results obtained with
these models for a particular pentavalent combination vaccine that recently
gained Food and Drug Administration (FDA) approval for pediatric
immunization is presented. Concluding comments and directions for future
research are also discussed.

KEY WORDS

Pediatric immunization, Combination vaccines, Economics, Integer
programming models
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16.1 INTRODUCTION

The United States recommended childhood immunization schedule has
become increasingly complex. For example, the 2002 schedule required no
less than five clinic visits and 19 injections over the first 18 months of life
[1], with each clinic visit scheduled around the specifications and
requirements associated with the vaccines. Other constraints that may lead
to additional clinic visits include a child’s tolerance to multiple injections
during a single clinic visit [2], and parents’ (or guardians’) ability to take the
time from their jobs to make immunization visits [3]. These obstacles often
lead to noncompliance with the recommended childhood immunization
schedule, increasing the risk to children of contracting the diseases that the
vaccines were designed to prevent, resulting in a tremendous cost burden on
the nation’s already stressed health-care system.

These problems are further exacerbated by biotechnological advances that
have led to new pediatric vaccines that must be incorporated into the already
overcrowded recommended childhood immunization schedule. For
example, the four recommended doses of oral polio vaccine (OPV) in the
1996 recommended childhood immunization schedule were replaced with
four injections of inactivated polio vaccine (IPV) in the January 2002
schedule [1]. In 2000, four doses of a new 7-valent conjugate vaccine for
pneumococcal disease were recommended to be included in the

recommend childhood immunization schedule [4]. Meeting the guidelines
set forth in the recommended childhood immunization schedule may now
require up to five injections at each of three recommended immunization
visits (2, 4, and 6 months) in the first year of life.

New pediatric vaccines that gain Food and Drug Administration (FDA)
approval and are added to the recommended childhood immunization
schedule by the Advisory Committee on Immunization Practice (ACIP) will
exert pressure to increase both the volume and the frequency of
immunization visits, and hence further escalate the costs associated with
well-baby care (i.e., routine medical care check-ups during the first few
years of life). One approach to circumvent this approaching problem is to
create a single-dose oral vaccine that immunizes children at birth from all
childhood diseases [5]. A more realistic solution is to combine two or more
vaccines to reduce the required number of injections and clinic visits [6, 7].
Assuming equivalent efficacy of combination vaccines compared to their
monovalent counterparts, significantly less time for clinic visits would be
required of parents. This may in turn result in higher immunization
compliance rates and an ensuing decrease in the number of children afflicted
with childhood diseases.
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Combination vaccines have their own unique set of problems [8]. From the
vaccine manufacturers’ point of view, determining which vaccines to
combine (based on biological compatibility of the antigens) and how to
administer the vaccines (both in sequence and in timing) to ensure that
immunity is achieved without compromising safety are important questions
that need to be resolved. Moreover, the issue of extra vaccination (i.e.,
administering vaccine components that are not required by the childhood
immunization schedule during specific vaccination periods) and the degree
to which it should be tolerated (so as to minimize any associated negative
side effects and the cost of administering unneeded vaccine components)
must be addressed. Lastly, the overall objective of designing an economical
package of vaccine types and brands to stock for a particular immunization
environment must be addressed. Identifying solutions to these problems can
be daunting for even the most experienced pediatric health-care researchers
and professionals. Nonetheless, combining antigens that provide protection
against multiple pediatric diseases into a single injection has been
recognized by pediatric health-care providers to be an advance of significant
benefit. In fact, licensed combination vaccines are officially preferred over
their individual component vaccines because they reduce the pain and
suffering associated with multiple injections [9].

This chapter reviews the application of integer programming models to
address the design of economical pediatric vaccine formularies. These
models were initially introduced to provide quantitative tools for use by the
Centers for Disease Control and Prevention (CDC), health-care providers,
insurance companies, and parents. Such tools can help them make well-
informed vaccine formulary decisions [10, 11]. The models are designed
using the principle that decisions based on purchase price alone, ignoring the
economic value of distinguishing features among competing vaccine
products, can be more costly in the long run. The resulting integer
programming models assemble from among all available vaccine products at
their market prices the vaccine formulary that provides the best value within
the constraints of the immunization schedule, achieving the lowest overall
cost to society or to any other desired perspective. The models select from
among a set of monovalent (i.e., single antigen) and combination vaccines
those products that should be used at which scheduled visits within the
recommended childhood immunization schedule [1].

The chapter is organized as follows: Section 16.2 summarizes the pediatric
immunization problems that have been studied using integer programming
models. Section 16.3 provides a description of the methodologies used, as
well as the assumptions used to model the problems. Section 16.4
summarizes the results obtained with these models for a particular
pentavalent combination vaccine that is well positioned to become available
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for pediatric immunization in the near future. Section 16.5 provides
concluding comments and directions for future research.

16.2 PROBLEM DESCRIPTION

Weniger et al. [10] report the results of a pilot study that shows how integer
programming models can be used to design optimal pediatric vaccine
formularies for a subsection of the recommended childhood immunization
schedule. The concept “optimal” here refers to a vaccine formulary that
provides the best economic value, considering more than just vaccine prices
alone. The authors present an integer programming model to assist vaccine
purchasers in making decisions about which vaccine products to include in
their formulary (i.e., to stock in their inventory). The model takes into
account not only the price of the vaccines, but also the cost of a clinic visit,
the time to prepare a vaccine for injection, and the cost of administering
injections. Jacobson et al. [11] report the technical details of these models.
They also list several different vaccine formularies obtained by solving the
model under a variety of economic criteria. The model does not make
decisions about a specific vaccine product in isolation but, rather, assembles
from among all competing monovalent and combination vaccines the
formulary that satisfies the recommended childhood immunization schedule
at the lowest overall cost to society (or, if desired, to any more limited
perspective, such as the payer of direct health costs). The model’s design is
based on the principle that purchase price alone is just one of many factors
with economic consequences that should be taken into account. The key
contribution of this study is the result that it may be myopic to use vaccine
prices as the sole factor to determine which vaccines should be purchased
and that other costs within the system can be captured and used to identify
vaccine formularies that provide a good overall value.

To encourage and evaluate new investment and research by the
pharmaceutical industry for innovative and new vaccine products, Sewell et
al. [12] use the integer programming models to reverse engineer the price of
various combination vaccines using an iterative bisection search algorithm
[13]. This algorithm is detailed in Figure 16.1. The algorithm determines
the maximum inclusion price of each combination vaccine, with and without
the perinatal dose of hepatitis B (i.e., a dose administered at birth), across
five injection cost variations. This involves dividing arbitrary, extreme
upper and lower values for the maximal price into equal-sized upper and
lower ranges, and then solving the integer programming model to determine
which of these ranges contains the maximal price. The identified range is
then divided in half, and the process is iteratively repeated until the
algorithm converges when the final upper and lower range is less than $0.01,
revealing the maximal price to the nearest one cent. Note that for a bisection



424 OPERATIONS RESEARCH AND HEALTH CARE

Figure 16.1 Reverse engineering algorithm

search to be effective, a well-behaved cost function is required, such as one
that is convex over the feasible region of possible formularies, which was
the case for this study.

Reverse engineered prices for combination vaccines provide vaccine
manufacturers with guidelines on how well future vaccine combinations may
compete in the market, and hence provide information that can be used to
determine how long it may take to recoup research and development
investments in such products. In recent years, several pentavalent and
hexavalent vaccines built around diphtheria, tetanus, and acellular pertussis

backbones have been under development and their developers are
positioning them to gain FDA approval [14]. Sewell and Jacobson [15]
provide technical details of the reverse engineering algorithm that
determines the maximum price at which different combination vaccines
provide an overall economic advantage, and hence belong in a lowest overall
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cost formulary. Jacobson and Sewell [16] incorporate the reverse
engineering algorithm into a Monte Carlo simulation model to determine
probability distributions for the price of four combination vaccines. Health-
care providers and parents each place a different value (hence cost) on each
injection administered (or avoided). Therefore, for a given set of injection
costs there exists a maximal price at which a combination vaccine joins the
lowest overall cost formulary (i.e., provides a good economic value). This
maximal price can be determined by iteratively solving the model in
Jacobson and Sewell [16]. Monte Carlo simulation is used to sample the
injection costs from a set of probability distributions, where each probability
distribution corresponds to the values that a population of parents may place
on administering or avoiding an injection. The resulting set of maximal
prices for each combination vaccine is used to create an empirical
distribution that estimates the probability distribution of maximal prices for
that combination vaccine. This probability distribution can be used, for
example, to estimate the proportion of a population of parents who are
willing to purchase the combination vaccine at a given price. Therefore, the
maximal price probability distribution provides marketing information for
vaccine manufacturers. Jacobson and Sewell [16] also use different
injection cost probability distributions to assess the sensitivity of the
maximal price distribution to the form of this probability distribution.

16.3 METHODOLOGY AND ASSUMPTIONS

A generic integer programming model is presented that captures the first 12
years of the 2002 recommended childhood immunization schedule for
immunization against any subset of childhood diseases covered by the
recommended childhood immunization schedule (which currently includes
hepatitis B, diphtheria, tetanus, pertussis, Haemophilus influenzae type B,
polio, measles, mumps, rubella, varicella, and pneumococcus). This model
is an extension of the integer programming model introduced in the pilot
study reported in [11]. The generic integer programming model is as
follows:

Parameters

set of vaccines that may be administered

{AVP, GSK, MRK, WYE} = set of manufacturers (brands)

brand of vaccine

{HBV, Td, HIB, IPV, MMR, VAR, PCV} = set of standard
sets of antigens

V

B

T*

=

=

=

=
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M*

X

=

=

=

=

=

=

=

=

set of standard sets of antigens contained in vaccine

{0-1, 2, 4, 6, 12-18, 60, 144} = set of months in which vaccines
may be administered

set of months in which vaccine may be administered

cost of administering an injection

cost of visiting a clinic

cost of vaccine including the preparation cost = price of
vaccine plus preparation cost

{(v,m): = set of pairs (v,m) such that it is
permissible to administer vaccine in month

for all

Variables

= number of shots (injections) given in month m, for all

Objective Function

Constraints
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The objective function of the integer programming model is given by (1).
The constraints of the model are as follows. Constraint (3) requires that
HBV must be given in month 2 or 4, and constraint (4) requires that HBV
must be given in month 6 or month 12-18. Constraint (5) says that the first
two doses of HBV must be given in months 0-1, 2, or 4. Constraint (6) says
that is required in months 2, 4, 6, 12-18, and 60. Constraint (7) says
that Td is required in month 144. Constraint (8) says that HIB is required in
months 2, 4, and 12-18, while constraint (9) says that HIB is required in
month 6 unless MRK HIB is used in months 2 and 4. Constraint (10) says
that IPV is required in months 2, 4, and 60, while constraint (11) says that
IPV is required in months 6 or 12-18. Constraint (12) says that PCV is
required in months 2, 4, 6, and 12-18. Constraint (13) says that MMR is
required in months 12-18 and 60. Constraint (14) says that VAR is required
in month 15. Constraint (15) enforces brand matching. Constraint
(16) calculates the number of shots given in each month. Constraint (17)
ensures that the clinic is visited in each month in which a vaccine is
administered. Constraint (18) says that HIB can be skipped in month 6 only
if MRK HIB is used in months 2 and 4; if this is so, then constraint (19) sets
the variable HibSkip6 to 1. Constraint (20) says that extravaccination
is not permitted. Finally, constraint (21) says that two doses of the same
standard set of antigens are not allowed in the same month.

To illustrate the use of this model, the pentavalent combination vaccine –
comprising vaccines for diphtheria, tetanus, acellular pertussis, hepatitis B,
and inactivated polio (labeled – is analyzed to determine
the number of doses of the vaccine that earn a place in the lowest overall
cost formulary at varying price levels. This particular combination vaccine
was chosen since it is well-positioned to become available for pediatric
immunization in the near future.

Several assumptions are made that provide boundaries for the scope of the
results presented. Unless otherwise noted, the assumptions in Sewell et al.
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[12] are used. The federally negotiated vaccine price list (effective August
9, 2002) is used by four pharmaceutical companies (labeled AVP = Aventis
Pasteur, MRK = Merck, GSK = GlaxoSmithKline, WYE = Wyeth-Lederle)
that manufacture all the vaccines that are currently licensed and under
federal contract with the CDC for childhood immunization. These four
vaccine manufacturers produce 14 vaccine products that protect against the
11 diseases (labeled HBV for the hepatitis B vaccine, for the
diphtheria, tetanus, acellular pertussis vaccine, HIB for the Haemophilus
influenzae type B vaccine, IPV for the inactivated polio vaccine, MMR for
the measles, mumps and rubella vaccine, for the pneumococcal

vaccine, and VAR for the varicella vaccine).

The cost function for the integer programming model includes

the purchase price of all licensed vaccines under federal contract,
the cost of each clinic visit,
the cost of vaccine preparation by medical staff,
the cost of administering an injection.

Values used for these costs are shown in Table 16.1. The vaccine purchase
prices are the federally negotiated prices as of August 9, 2002 (see Table
16.1). The cost of a clinic visit is set at $40, the same value used in the CDC
pilot study and the more recent studies [10-12, 15, 16]. This cost includes
the direct and indirect costs associated with a clinic being able to administer
vaccines [10].

Vaccine preparation is assumed to require 3.0 minutes per dose for
powdered vaccines [p]. This preparation requires vaccine reconstitution:
diluent is drawn into a syringe, transferred into the vaccine vial, which is
shaken, and then the liquefied vaccine is withdrawn. Liquid vaccines in
vials [v] requiring entry with a needle to draw up into a syringe were
assigned 1.5 minutes, and ready-to-administer prefilled syringes [s] were
assigned 0.5 minutes. These assumptions were distributed around the
average times observed in previous studies [17, 18]. Note that these times
are also consistent with unpublished developing-country estimates of around
1.0 minute for filling and administering injections from disposable syringes
and 80 seconds for resterilizable syringes [19]. Labor costs are set at $0.50
per minute, as in previous studies [12, 13]; this is equivalent to an annual
total compensation of $60,000 for a 2,000 hour work year. Therefore, the
resulting preparation costs for powders [p], vials [v], and syringes [s] are
$1.50, $0.75, and $0.25 per dose, respectively (see Table 16.1). Three of the
vaccine products, one brand of one brand of HBV, and one brand of
IPV, are available in both pre-filled syringes and liquid vial formulations.
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Since the pre-filled syringes require one less minute of preparation time,
only the packaging that results in the lowest overall cost (the price of the
vaccine plus the cost of vaccine preparation by medical staff) is included in
the model. Therefore, for these three vaccine products, only the pre-filled
syringes are considered in the analysis. Note that the total cost per dose
listed in Table 16.1 does not include the cost of administering each injection.

Weniger et al. [10] observe that the cost associated with administering an
injection can be broken down into several components. The first component
is the actual direct cost of administering the vaccine. Lieu et al. [9] suggest
this cost to be approximately $5 per injection. The second component is the
direct cost for repeat clinic visits if injections are refused by the parents (e.g.,
when four or more injections are required at a particular clinic visit). This
cost is estimated to be approximately $3 per injection. The third component
is the indirect cost of lost time from work by parents for repeat clinic visits if
they refuse injections. This cost is estimated to be approximately $12 per
injection (which is averaged over all injections administered during a single
clinic visit as well as all the parents of the children being immunized). The
fourth component is the indirect cost of “pain and emotional distress”
associated with each injection, as measured by a parent’s “willingness-to-
pay” to avoid such pain. This cost has been estimated to be as high as $25
per injection [9] or more conservatively, as $8 per injection [20]. The results
reported in [21] independently support these values.

The following assumptions are used in analyzing the
combination vaccine. These assumptions were all used in the CDC pilot
study reported in [10, 11] as well as the more recent studies reported in [12,
15, 16].

(i) The recommended childhood immunization schedule was followed
for immunization against 11 diseases: hepatitis B, diphtheria, tetanus,
pertussis, Haemophilus influenzae type B, polio, measles, mumps,
rubella, varicella, and pneumococcus.

(ii) Injections can be administered in months 0-1, 2, 4, 6, 12-18, 60, and
144, providing seven months (or periods) to administer vaccines.
Only one clinic visit can occur in each of these months (or periods).
All injections in a given month (or period) are administered in a
single clinic visit.

(iii) Only the 14 currently available and under federal contract vaccines
are included in the model, with the exception of the combination
vaccine being studied.
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(iv)

(v)

(vi)

(vii)

Haemophilus influenzae type B vaccines can only be administered in
month 2 or later.

The first hepatitis B vaccine injection must be administered in either
month 0-1 (referred to as the perinatal dose of hepatitis B) or month
2.

If Haemophilus influenzae type B vaccine products by Merck are
administered in both months 2 and 4, then no Haemophilus
influenzae type B vaccine is required in month 6.

Manufacturer brand matching is required for diphtheria, tetanus, and
pertussis vaccines, but not for Haemophilus influenzae type B and
hepatitis B vaccines.

These assumptions are based on the guidelines set forth in the 2002
recommended childhood immunization schedule [1]. Vaccination plans that
deviate from this schedule are not considered.

Users of the integer programming models have the flexibility to set any
value for each cost included, such as the cost of an injection. Although the
model was designed principally for use by major vaccine purchasers, such as
public health agencies, health-care organizations, and large private clinics,
the reverse engineering approach [15] also provides vaccine manufacturers
with a tool for determining the price at which a proposed new vaccine
product would win a place in the lowest overall cost formulary. Such a tool
may be used to guide investment decisions and develop priorities towards
products with the most beneficial economic impact within the pediatric
immunization market.

The integer programming model determines the lowest overall cost
formulary that satisfies the recommended childhood immunization schedule
and the assumptions listed in this section. The lowest overall cost formulary
is the set of vaccines that satisfies the immunization schedule at minimum
cost, where cost includes the factors described above. The model has been
designed to consider all monovalent and combination vaccines (to prevent
the diseases covered by the schedule) that are licensed in the United States
and under federal contract for purchase by the CDC. Therefore, all the
analysis in this chapter focuses on vaccines under federal contract (and their
associated federal contract prices).

For monopoly suppliers of particular vaccines, where there is no choice
between competing products, the integer programming model solution
trivially contains the single product available. Therefore, the polio vaccine,
the measles-mumps-rubella vaccine, the varicella vaccine, and the 7-valent
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conjugate vaccine for pneumococcal disease are all chosen to be part of the
lowest overall cost formulary. Moreover, for simplicity, hepatitis A is
excluded from the analysis since it is not widely recommended as a pediatric
vaccine, except for a number of western states [22]. The hepatitis A vaccine
also does not yet appear in any pediatric combination vaccine. Therefore,
assuming no great disparity from the range of injection cost estimates used
here, and no major changes in purchase pricing, the integer programming
model solution would include the two-dose regimen (versus three-dose) for
the hepatitis A vaccine with the lowest overall purchase price and
preparation cost.

Computer experiments were conducted using the integer programming
model to assess the economic value of the combination
vaccine, Pediarix ©, manufactured by GSK. These experiments use the
reverse engineering algorithm to determine the number of doses of the
vaccine that earn a spot in the lowest overall cost formulary as a function of
the cost of administering an injection, given the prices for the vaccines
currently under federal contract (at their federal contract prices). The
preparation cost for this combination vaccine was set at $0.25 per dose
(assuming that it is available in prefilled syringes [s]).

The two scenarios of administering and not administering the perinatal dose
of hepatitis B were considered and analyzed. The price regions obtained for
the combination vaccine are a function of the number of
doses of the combination vaccine that earn a place in the lowest overall cost
formulary. In general, the lower the vaccine is priced, the more doses it
earns in the lowest overall cost formulary.

The four objective function components described in Section 16.2 were used
to determine the overall cost for immunization that satisfies the 2002
recommended childhood immunization schedule [1]. As noted in Section
16.2, the cost of administering an injection is highly subjective and may
include only direct medical costs, or both direct and indirect costs, based on
the perspective of the payer [11]. Therefore, this cost was varied to
determine a range of maximal prices for the combination
vaccine.

16.4 RESULTS

Reverse engineering experiments were conducted to determine the number
of doses of the combination vaccine that earn a place in the
lowest overall cost formulary, as a function of the price of the combination
vaccine and the cost of an injection (between $0 and $40), for the two
scenarios of whether or not the perinatal dose of hepatitis B is administered.
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Each experiment without the perinatal dose of hepatitis B resulted in zero,
one, three, four, and five dose regions for the combination vaccine, while the
experiments with the perinatal dose of hepatitis B resulted in zero, one, two,
four, and five dose regions for the vaccine. All the experiments were
conducted using the web-adapted version of the integer programming model,
which is available at www.vaccineselection.com.

The maximal price regions are displayed in Figures 16.2 and 16.3. In
general, as the cost of an injection increased, the maximal prices increased.
This follows from the observation that the combination vaccine saves as
many as two injections in each vaccine period compared to the use of
currently available vaccines to administer the same antigens. Once again,
the higher the cost of an injection (direct medical, indirect societal, or both),
the greater the value of higher valency vaccines.

As the number of doses of the combination vaccine to be administered in the
lowest overall cost formulary rose, the maximal prices decreased. In
general, across varying cost assumptions and product formulations, the
higher the maximal price, the greater the economic value that is being
captured by the combination vaccine in comparison to its
monovalent counterparts. At fewer doses, the higher maximal prices result
from the combination vaccine being highly competitive with its monovalent
counterparts when it entirely replaces all the separate vaccines indicated at a
specific visit. However, at a higher number of doses, the reduced maximal
price reflects the case in which a monovalent vaccine can be administered
for only the indicated antigens and thus avoid the economic inefficiency of
extra vaccination. For example, the $12.00 price needed to achieve five
doses of the combination vaccine (see Figures 16.2 and 16.3) reflects the
large amount of extra vaccination that is required to administer five doses of
the vaccine [23, 24]. Since the integer programming model is designed to
place value only on those vaccine components that are required to satisfy the
recommended childhood immunization schedule, and sets a value of zero for
those components that correspond to extravaccinated doses, requiring five
doses of the combination vaccine with the perinatal dose of hepatitis B
administered is not economical. In essence, the maximal price of a
combination vaccine absorbs any premium arising from savings associated
with the cost of an injection or vaccine preparation costs. Therefore, the
reverse engineering process shifts such costs (e.g., savings to the health-care
system) into the price of the combination vaccine.

Figure 16.4 shows the difference between the maximal price for the
combination vaccine for the one-, three-, and four-dose cases

(without the perinatal dose of hepatitis B administered) and the sum of the
prices of the individual vaccines GSK HBV, AVP IPV), as a



DESIGNING PEDIATRIC IMMUNIZATION 435

Figure 16.2 Number of doses of combination vaccine
(without the perinatal dose of hepatitis B administered)

Figure 16.3 Number of doses of combination vaccine
(with the perinatal dose of hepatitis B administered)
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Figure 16.4 Difference between the maximal price for the
combination vaccine (without the perinatal dose of hepatitis

B administered) and the sum of the prices of the individual vaccines

function of the cost of an injection. The five-dose case is not considered
since the five-dose maximal price for the combination
vaccine is $12.00, which is significantly below $30.05, the sum of the prices
of the individual vaccines (due to extravaccination). Therefore, it would not
be feasible for a vaccine manufacturer to sell this combination vaccine at
such a price. The four-dose maximal price for the
combination vaccine is also below $30.05 for all injection cost values below
$9.00. The three- and one-dose maximal prices for the
combination vaccine are greater than $30.05 for all the injection cost values.
Therefore, it is reasonable to expect that the best marketing strategy (from
the manufacturers’ point of view) for the combination
vaccine is to expect no more than three doses of the vaccine per child. All
these differences are the same as when the perinatal dose of hepatitis B is not
administered, except the three-dose case becomes a two-dose case.

As in the original study [10-11], the integer programming model excludes
several potential factors of economic consequence to the overall cost of
immunization. This is due to the dearth of reliable data. For example, the
model ignored potential differences between competing products in vaccine
efficacy, adverse events frequency, shelf life, thermal storage requirements,
and wastage associated with single-dose versus multi-dose packaging.
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Moreover, the model did not account for any potential savings in
administrative overhead and inventory handling resulting from a reduction in
the number of separate products included in a formulary. Lastly, the model
ignored factors for which the economic impact, if any, is difficult to
quantify, such as purchasing many vaccines from the same manufacturer to
benefit from volume discounts, packaging similarities, color coding
schemes, and brand loyalty.

One limitation of the approach taken here is the sensitivity of the maximal
prices for the combination vaccine to small changes in the
monovalent vaccine prices, assumed costs of various kinds, and indications
for the monovalent vaccines. Such changes would likely affect the lowest
overall cost formulary and thus the resulting maximal prices for the
combination vaccine. Therefore, any changes in the list of vaccines under
federal contract, or changes in any cost factors used in the analysis, will
require the analysis to be redone with this new data, resulting in new
maximal prices for the combination vaccine. However, a change in the
assumed fixed cost of a clinic visit ($40 here) does not affect this maximal
price; it will only affect the total cost of immunizing a typical child.

16.5 CONCLUSIONS

The integer programming approaches discussed in this chapter were initially
developed to support the needs of conventional vaccine purchasers – private
pediatric and family practice clinics, HMOs, and local and state
immunization programs buying vaccines under the federal contract system.
These buyers face increasingly difficult procurement choices among a
“combination chaos” of competing products with overlapping, non-
complementary antigens [10]. Such individuals and groups could use the
model (via the web-adapted version available at www.vaccineselection.com)
to design their lowest overall cost formulary, using the actual prices (private
sector or federal) available to them for existing and new vaccines, and
adjusting other cost assumptions and parameters based on their particular
health-care environment.

Reverse engineering the integer programming model provides a
methodology that can most benefit vaccine manufacturers interested in
developing combination vaccines and who need to understand the premium
inherent in such products over their monovalent counterparts. Moreover, the
federal government (the single largest purchaser of pediatric vaccines in the
United States) and large HMOs can use the reverse engineered prices to
assess the value of combination vaccines to their constituents, and hence
decide at what price a given combination vaccine provides them with good
value. Note that the reverse engineered price of a particular combination
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vaccine may be too low for a vaccine manufacturer to recoup its cost of
developing such a product. Information from the integer programming
model would be of significant value to guide investment decisions by such
vaccine manufacturers, and hence avoid large research and development
expenditures that may not be recouped.

The economic analysis of the combination vaccine
presented here provides a new approach to evaluating the value inherent in
combination vaccines, and hence in determining whether they offer
sufficient value at the price at which they are offered. The results presented
here can benefit any manufacturer of a combination vaccine
by establishing the value of its vaccine based on how a particular segment of
the market values the cost of an injection. Other combination vaccines that
are in either phase 2 or phase 3 studies for pediatric immunization, such as

and MMR-VAR [14], can also be
analyzed using the models and tools discussed. Moreover, the results of
such analyses can be used by very large pediatric vaccine purchasers in
negotiating discounted prices for combination vaccines.
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SUMMARY

How can decision makers best choose among competing epidemic control
programs and populations? The problem of resource allocation for epidemic
control is complex, and differs in a number of significant ways from
traditional resource allocation problems. A variety of OR-based methods
have been applied to the problem, including standard cost-effectiveness
analysis, linear and integer programming, simulation, numerical procedures,
optimal control methodologies, nonlinear optimization, and heuristic
approaches. This chapter reviews a number of these models. This chapter
does not aim to be an exhaustive review of the literature; rather, we discuss
an illustrative subset of existing models. We conclude with discussion of
promising areas for further research.
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17.1 INTRODUCTION

According to the World Health Organization, the world is facing “an
infectious disease crisis of global proportions” [1]. Infectious diseases are
the world’s largest killer of children and young adults, accounting for more
than 13 million deaths per year and many more cases of illness [1]. The
greatest number of infectious disease deaths are due to HIV/AIDS, a disease
that is almost invariably fatal. In 1999, 2.8 million people worldwide died
from AIDS. At least 34 million people are currently infected with HIV and
the epidemic continues to grow rapidly, with no cure or vaccine in sight [2].
Diarrheal diseases, tuberculosis, malaria, measles, and influenza and
pneumonia also cause significant numbers of infectious disease deaths.
Some of these diseases are becoming increasingly prevalent because of HIV:
the weakened immune systems of HIV-infected individuals make them
prone to opportunistic infections such as tuberculosis and diarrheal diseases.
In addition to existing infectious diseases, new infectious diseases, such as
SARS (Severe Acute Respiratory Syndrome) continue to emerge and to
spread rapidly via global travel [3].

Infectious diseases can cause death directly. They can also cause death
indirectly by increasing the chance that an individual will contract other
diseases such as cancer. For example, infection with human papilloma virus
can lead to cervical cancer; schistosomiasis can lead to bladder cancer; and
infection with Hepatitis B or C can lead to liver cancer.

Although infectious diseases pose a serious threat to public health, resources
for controlling infectious diseases are limited. Decision makers must
determine how to allocate limited epidemic control budgets among
competing programs and populations so as to achieve the greatest health
benefit given the available prevention resources.

Competing epidemic control programs may include vaccination, prevention
programs, and treatment programs. Prevention programs include behavioral
and nonbehavioral programs. Behavioral programs are generally aimed at
inducing uninfected and/or infected individuals to change risky behavior.
Nonbehavioral programs include programs for ensuring the safety of the
healthcare system (e.g., universal precautions for health care workers; or
screening of donated blood, organs and tissues), immigration restrictions and
quarantine programs (e.g., quarantine of infected individuals), and
environmental abatement programs (e.g., treatment of outdoor areas with
insecticides or microbicides). Treatment programs may reduce the spread of
an infectious disease by reducing the infectiousness of infected individuals.
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Decision makers must also choose which populations to target with epidemic
control programs. Different subgroups of a population may have different
risk of infection depending on their level of exposure to the infection and
their susceptibility to infection. They may also have differing propensity to
change their risky behavior. Some prevention programs may be targeted to
infected individuals, whereas other programs may be targeted to uninfected
individuals.

How can decision makers best choose among competing epidemic control
programs and populations? As we discuss in the following section, the
problem is complex, and differs in a number of significant ways from
traditional resource allocation problems.

A variety of OR-based methods have been applied to the problem of
resource allocation for epidemic control, including standard cost-
effectiveness analysis, linear and integer programming, simulation,
numerical procedures, optimal control methodologies, nonlinear
optimization, and heuristic approaches. This chapter reviews a number of
these models. This chapter does not aim to be an exhaustive review of the
literature; rather, we discuss an illustrative subset of existing models. We
conclude with discussion of promising areas for further research.

17.2 EPIDEMIC CONTROL

The problem of allocating resources for epidemic control is complex. A key
reason is that epidemics of infectious disease are inherently nonlinear and
dynamic: the rate of new infections is proportional to the product of the
number of infected people and the number of uninfected people, and these
quantities change over time. As illustrated in Figure 17.1, a typical epidemic
follows an S-shaped curve. At first, few people are infected. As new people
become infected, the rate of new infection increases. Eventually, as more
people become infected, the growth of the epidemic slows.

Figure 17.1 Growth of a typical epidemic
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Epidemics are typically modeled using a system of nonlinear difference or
differential equations. To provide some insight into epidemic dynamics and
the problem of epidemic control, we present a very simple epidemic model.
A comprehensive discussion of epidemic models can be found elsewhere [4,
5].

Consider the following simple compartmental model that describes the
spread of an infectious disease in a single closed population. This model is
illustrated schematically in Figure 17.2. Let x(t) denote the number of
uninfected individuals in the population at time t and let y(t) denote the
number of infected individuals in the population at time t (these individuals
are assumed to be infectious). Every individual is either uninfected (and
thus counted as part of x(t)) or infected (and thus counted as part of y(t)).
Let N denote the (constant) size of the population. Let denote the rate of
infection-transmitting contacts at time t; this rate is referred to as the
sufficient contact rate. Let denote the rate of entry into and exit from the
population. The epidemic model can be written as

Figure 17.2  A simple compartmental epidemic model

The population size is constant: individuals enter the population at rate
and leave at rate where x(t)+y(t) = N. Infection occurs at rate

at time t; these individuals leave the uninfected group and enter
the infected group. All infected individuals are equally likely to mix with all
uninfected individuals; this is known as homogeneous mixing.
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Suppose now that two programs for slowing the epidemic have been
implemented, a vaccination program for uninfected individuals and an
educational program that aims to eliminate risky behavior among infected
individuals. Suppose that uninfected individuals are immunized at rate
at time t and that infected individuals are removed from the infectious
population at rate at time t. Let z(t) denote the number of individuals
who can neither acquire nor transmit infection at time t (these are vaccinated
susceptibles, and infected individuals who have been removed from the
infectious population). The above model can be rewritten as

This model is illustrated schematically in Figure 17.3. As before, the
population size is constant: individuals enter the population at rate and
leave at rate where x(t)+y(t)+ z(t) = N. Uninfected
individuals can become infected (the terms in (2a) and (2b)) or
immunized (the terms in (2a)). Infected individuals can be removed
from the infectious population (the terms in (2b) and (2c)).

Figure 17.3  A simple compartmental epidemic model with controls

The above models are quite simple. More realistic models may include
features such as subdivision of the population by risk group and disease
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stage, nonhomogeneous mixing, different types of infectious contacts,
nonconstant population size, different rates of exit/death from different
groups, and stochastic parameters. Whatever the form, however, all
epidemic models share the basic element of nonlinear dynamic infection
transmission.

Because epidemics grow nonlinearly and different population subgroups
often have different risk of infection, saving a high-risk person from
infection today may save scores of people from being infected later.
However, allocating all prevention resources to high-risk individuals may
allow a significant epidemic to occur among low-risk individuals. Thus, the
optimal resource allocation may not involve allocating all resources to high-
risk individuals.

A second complexity of the resource allocation problem is the relationship
between resources expended and program outcomes; we shall refer to this
relationship as a “production function”. In some cases, the production
function for a prevention program may be linear. For example, each
additional dose of a fully effective protective vaccine removes one additional
person from the susceptible population. However, in many cases, a
program’s production function may not be linear. A program may have
diminishing returns, for example, if people reached when more money is
invested in a program are less likely to change their risky behavior than
people reached when less is invested in the program. A prevention program
may have increasing returns to scale if a minimum level of investment is
necessary before the program has any significant impact on the spread of the
epidemic.

Additionally, epidemic control programs may not be independent:
investment in one program may change the effectiveness of other epidemic
control programs. For example, a general education campaign may increase
awareness of a disease and thus increase the effectiveness of other
prevention programs.

Finally, the time horizon considered by the decision maker can have a
significant impact on the best decision: the allocation of resources that
eradicates an epidemic in the long term may not be the same as the
allocation of resources that yields the maximum health benefit in the next
year.

We now describe different approaches that have been used to model the
problem of allocating epidemic control resources.
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17.3 RESOURCE ALLOCATION MODELS

17.3.1 General resource allocation models

Resource allocation has long been studied by operations researchers [6]. For
example, the classical knapsack problem can be framed as one of selecting
from a set of potential investments to maximize benefit subject to a budget
constraint. The problem can be formulated as an integer program or a linear
program. Such formulations generally assume that the effects of investment
are independent; that is, investment in one program does not affect the
benefits of other programs. Linear programming formulations assume that
programs are perfectly divisible (i.e., it is possible to invest in any fraction of
a program) with linear returns to scale (i.e., investing in 50% of a program
yields 50% of the benefit that would be obtained from full investment in the
program).

These assumptions are usually not realistic for epidemic control programs.
The relationship between resources invested and health benefits (such as
infections averted or years of life gained) is likely to be nonlinear, as
discussed above. Moreover, interventions often cannot be considered
independently because the health benefits that accrue from one intervention
may depend on the amount of money invested in other interventions.

17.3.2 Implicit resource allocation via cost-effectiveness analysis

Cost-effectiveness analysis, a standard tool in health economics, is a way of
evaluating the costs and benefits of one health intervention compared with
another [7]. For an evaluation of two interventions, A and B, the incremental
cost effectiveness of B relative to A is given by:

The above ratio expresses the cost per additional unit of health benefit
conferred by intervention B compared to intervention A. Costs represent
total expenditure on an intervention, plus resulting changes in health care
costs. Effectiveness can be expressed in natural units of outcome such as
new infections averted or years of life saved. To facilitate comparison of
alternative health care investments, health outcomes can be expressed in
terms of quality-adjusted life years (QALYs) lived [7].

The goal in allocating resources among health interventions is to maximize
health benefits subject to available funds. Standard cost-effectiveness
analyses call for spending money on those programs that yield the greatest
“bang for the buck” (measured as health benefits per dollar invested) until
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the budget is spent. This is based on the solution to the following simple
optimization problem. Let denote the effectiveness that accrues from
investment in intervention i, i = 1, …, n, and let B be the total available
budget. Let i = 1, …, n denote the level of investment in intervention i:
when is 1, the maximum amount is invested in intervention i. The
problem can be written as

The above problem is a linear programming (LP) knapsack problem. The
optimal solution is to allocate resources to interventions in order of
increasing cost-effectiveness ratios until the budget is spent.

The solution to the above LP knapsack problem is the optimal resource
allocation only if the following three conditions hold: (1) The interventions
are perfectly divisible (i.e., it is possible to invest in any fraction of a
program). (2) The interventions have constant returns to scale: thus, for
example, doubling the investment in a particular intervention doubles the
health benefits that accrue. (3) The interventions are independent: invest-
ment in one intervention does not change the incremental cost effectiveness
of any other interventions. Because these conditions are not likely to be met
for an epidemic control problem, standard cost-effectiveness analysis has
limited applicability for such problems.

17.3.3 Linear programming approaches

Several authors have proposed linear and mixed integer linear programming
formulations for the resource allocation problem that do not require the first
and second conditions (divisibility and constant returns to scale). If
interventions are not divisible, the above LP can be replaced with an integer
program (IP) where the decision variables are constrained to be either 0
or 1 [8, 9]. If an intervention is partially divisible – for example, if
investment in a program is constrained to one of several discrete levels, or if
investment in a program is constrained to be either nothing or at least p% of
full investment – then the constraint can be replaced with integer
constraints or mixed integer linear constraints [10]. If interventions do not
have constant returns to scale – for example, if a minimum level of
investment is required before any health benefits can be realized, or if
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programs have increasing or decreasing returns to scale – the optimization
problem can be modified by introducing integer indicator variables (to
include fixed cost) and/or by using piecewise linear approximations of the
cost-effectiveness functions (to include nonconstant returns to scale) [10].
However, such formulations do not capture the nonlinearities in cost
effectiveness caused by epidemic dynamics, nor do they capture possible
interactions between investment in one intervention and the effectiveness of
other interventions.

17.3.4 Optimal control approaches

An alternative approach that does capture epidemic nonlinearity applies
optimal control to an epidemic model. Such an analysis determines the
optimal application of epidemic control over time. The goal is to obtain
analytical results that characterize the form of the optimal solution. Thus,
most analyses consider a single epidemic control program applied in a single
population. Closed-form expressions for the compartment size functions
(e.g., the functions x(t) and y(t) in equations (1)) are only known for certain
very simple epidemic models [4, 5]. Thus, optimal control analyses use
relatively simple epidemic models such as that in equations (2), but usually
assuming only one type of control. Examples of controls typically
considered include vaccination (which increases the rate in (2)),
treatment or removal of infectious persons (which increases the rate in
(2)), and programs aimed at reducing the sufficient contact rate (the rate
in (2)).

A typical objective in the application of such control might be to minimize
the cost of control (e.g., variable vaccination cost plus the fixed cost of
establishing the vaccination program) plus a cost associated with the number
of individuals who become infected (e.g., treatment cost). Except for the
fixed cost of establishing the control program, costs are usually assumed to
be linear: the cost of control is a constant multiplied by the change in the
value of the affected parameter, and the cost of disease is a constant
multiplied by the number of people who become infected. Use of simple
epidemic models and a linear cost function allows for characterization of the
form of the optimal solution(s): for example, vaccination of susceptible
individuals until the disease prevalence is reduced below a certain level.

Such an approach has been applied to quarantine and removal programs
(e.g., [11, 12]), vaccination programs (e.g., [13, 14]), and other epidemic
control programs (e.g., [15-18]). The optimal control approach provides an
elegant solution, but has limited applicability since it is generally limited to a
single epidemic control program in a single population.
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17.3.5 Equilibrium analysis

If the goal of the control program is complete disease eradication or to
optimize some function of the long-term state of the epidemic (and a
sufficiently long time horizon is considered), then one need not consider
short-term epidemic dynamics but only the long-term epidemic equilibrium.
(Disease eradication corresponds to an equilibrium state with no infected
individuals.) This allows for the use of more complex epidemic models than
those used in the optimal control approach. For example, some authors have
based equilibrium analyses on epidemic models with different age groups or
different risk of becoming infected.

A typical equilibrium analysis determines the minimum level of control (for
example, the minimum number of individuals in each population group who
must be vaccinated) such that the disease is eradicated (e.g., [19, 20]). One
analysis determined the amount of a fixed Influenza A vaccine to distribute
among different age groups to optimize a function of the final (equilibrium)
state of the epidemic [21]. Two different objective functions were
considered: that of minimizing expected epidemic costs (health costs, costs
of lost wages, and costs of early mortality) and that of minimizing expected
years of life lost due to early mortality. The optimal vaccine distribution
was found via a numerical search procedure.

The equilibrium approach is limited by the assumption of a time horizon
sufficiently long for equilibrium to be reached and by the assumption that
the goal of the epidemic control program is to minimize some function of the
equilibrium state of the epidemic.

17.3.6 Simulation analysis and numerical procedures

Much of the above described work is theoretical in nature: one can generate
insights into the structure of the optimal control for a single epidemic control
program, but the assumptions underlying the analyses are quite limiting. An
alternative approach that generally requires fewer limiting assumptions is to
consider a finite set of resource allocation alternatives and simulate their
effects using a more realistic epidemic model. Although the results may not
be transferable to other populations or other epidemics, they are likely to be
useful for the specific epidemic and population considered. Simulation has
been applied, for example, to determine the most effective programs for HIV
control in different regions of Africa [22, 23]. Those analyses compare the
effects (in terms of reduced HIV prevalence) of different combinations of
interventions, but do not explicitly consider the cost of the interventions.
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Some simulation analyses use compartmental epidemic models (e.g., such as
those in equations (1) and (2)) in which the population is divided into
mutually exclusive, collectively exhaustive compartments. Other analyses
simulate an epidemic by simulating the health state of each individual in the
population. This latter approach requires significantly more computation
than the compartmental model approach.

A related approach for solving the resource allocation problem is the use of
numerical procedures in conjunction with an epidemic model. One analysis
evaluated the effectiveness of six different methods for preventing the spread
of gonorrhea [24]. Effectiveness was measured as reduction in equilibrium
gonorrhea prevalence among women. The authors numerically analyzed a
compartmental epidemic model to determine the equilibrium prevalence
associated with each control program. The authors did not consider cost of
the programs in the analysis, but mentioned that program costs and benefits
would have to be compared before the best control program could be chosen.
Another analysis used a simple epidemic model to evaluate the impact of
targeting an entire HIV prevention budget to different (noninteracting)
populations [25]. The prevention programs were assumed to have linear
production functions. The author showed that targeting prevention funds to
high-risk populations could avert significantly more HIV infections than
targeting funds to low-risk populations.

17.3.7

Use of simulation for solving the resource allocation problem limits the
analysis to consideration of a finite set of alternatives. Use of equilibrium
analysis limits the solution to a sufficiently long time horizon. A variety of
optimization approaches that overcome these limitations have been
developed. The optimization approaches usually employ either a very
simple epidemic model or an approximation of a more complex epidemic
model.

One analysis considered the optimal application of three types of programs
to control tuberculosis (vaccination, prophylaxis, and therapy) [26]. The
epidemic was modeled by a compartmental model with nine compartments.
The epidemic equations were approximated by linear equations for each year
in the time horizon. A schedule was set for the reduction in active cases
each year. The goal was to determine the allocation of resources that
achieves the schedule at lowest cost. The problem was formulated and
solved as an LP.

Some authors have developed optimization models for the resource
allocation problem that allow for the possibility of nonlinear production
functions; thus, parameters describing the epidemic (e.g., the sufficient

Optimization approaches
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contact rate) can change nonlinearly as a function of investment in an
epidemic control program. These models have the following general form.
Assume that n different prevention programs are available, with total funds
B that can be invested. Let denote the investment that is made in
prevention program i, i=1, …,n, and let Denote the upper
limit on investment in program i by   i = 1, ..., n. Let IA(v) denote the
number of infections that are averted over the time horizon of the problem
given investment v, and let QALY(v) denote the number of quality-adjusted
life years (QALYs) gained over the time horizon of the problem given
investment v. These functions are determined from the epidemic model and
from the production functions that describe how parameters of the epidemic
model change in response to investment in the prevention programs. In
some cases it may not be possible to write these functions in closed form,
since many epidemic models do not have a closed-form solution.

The resource allocation problem can be written as

The objective is to allocate a fixed budget among prevention programs to
maximize either infections averted or QALYs gained, subject to upper limits
on investment in each program. (The general formulation also allows for
nonzero lower limits on investment in each program, if desired.) The models
described below differ in their assumptions about the epidemic model, the
production functions, and the timing of investment in the prevention
programs. However, all have the same general form: maximization of a
nonlinear health-benefits function subject to linear constraints on
investment.

One analysis considers the allocation of epidemic control resources to
multiple non-interacting populations [27]. The epidemic in each population
is described by a simple epidemic model with two compartments
(susceptibles and infectives). Resources spent combating the epidemic
reduce the sufficient contact rate of the disease. A separate prevention
program is available for each population. Each prevention program reduces
the sufficient contact rate according to a general production function. The
authors developed analytical results characterizing the optimal solution for
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both objective functions (maximizing IA(v) or QALY(v)) for the case of a
sufficiently long time horizon.

A slightly more complex epidemic model was used in determining the
optimal allocation of HIV prevention resources between two independent
populations (injection drug users and non-users) [28]. Using data from a
local hospital, the authors estimated production functions for three different
prevention programs (HIV testing with routine counseling, HIV testing with
intensive counseling, and methadone maintenance for injection drug users).
The goal was to maximize the number of HIV cases averted over a fixed
time horizon. The optimal resource allocation was determined via a
numerical search procedure.

In other work, a more comprehensive optimization framework was
developed that allows for a general compartmental epidemic model with
interacting populations and interacting prevention programs [29]. The
authors showed that, for both objective functions (maximizing IA(v) or
QALY(v)), for the special case of linear production functions and first-order
approximations of the compartment size functions, the problem reduces to a
knapsack LP that has a greedy solution. The authors presented several
heuristics for solving the general resource allocation problem, and showed
that they yield near-optimal solutions.

The general framework [29] was applied to determine the allocation of a
limited budget among three types of HIV prevention programs (needle
exchange programs, methadone maintenance treatment, and condom
availability programs) in a population of injection drug users and non-users
[30]. The analysis allowed for interacting populations (injection drug users
could acquire HIV from non-users and vice versa) and interacting prevention
programs (the effectiveness of a prevention program could depend on how
much had been invested in the other programs). The optimal resource
allocation for each objective (maximizing IA(v) and QALY(v)) was
determined using the heuristic methods previously developed [29]. The
authors showed that simpler allocation methods (for example, allocation of
resources to population groups based on HIV incidence) might lead to
allocations that do not yield the maximum health benefit.

The above analyses [27-30] assume that resources are allocated at the
beginning of the time horizon and that the allocation cannot be changed
during the time horizon. This assumption was relaxed in later work [31],
which allowed for a limited epidemic control budget to be allocated over
multiple time periods, with funds allocated at the beginning of each time
period. For certain special cases with two time periods, multiple
independent populations, and linear production functions, the authors
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showed that the optimal solution involves investing in each period as much
as possible in some of the populations and nothing in all the other
populations. They presented heuristic algorithms for solving the general
problem, and showed that good allocations can be made based on some
fairly simple heuristics. The authors also showed that allowing for some
reallocation of resources over the time horizon of the problem, rather than
allocating resources just once at the beginning of the time horizon, can lead
to significant increases in health benefits. They concluded that allowing for
reallocation of funds might generate more health benefits than use of a
sophisticated model for one-time allocation of resources.

17.3.8

Many of the above models, particularly the optimization models described in
Section 17.3.7, involve the development and use of nonlinear dynamic
models and the application of sophisticated optimization techniques. Such
models may not be readily accepted by practitioners, and often require data
that are unavailable or difficult to obtain. An alternate stream of research
aims to develop resource allocation models that are simple for practitioners
to understand and implement. Much of this work has been done in the
context of HIV prevention.

A recent report from the Institute of Medicine [32] suggested the following
simple model for determining the allocation of HIV prevention resources
that maximizes the number of infections averted. Assume that a number of
different HIV prevention programs are available that can target risk groups,
indexed by j, in different geographic areas, indexed by i. Let denote the
amount of money invested in the program targeted to risk group j in
geographic area i. Let denote the number of people in risk group j and
geographic area i, and let denote the baseline number of new HIV
infections that will occur in that group over the time horizon of the problem
in the absence of additional investment in prevention. Let denote the cost
per person of an intervention that targets risk group j, the maximum
fraction of risk group j that can be reached with such an intervention, and
the percentage reduction in the rate of new HIV infections for those in
programs targeted to risk group j. The model can be written as

Heuristic approaches and tools for decision makers
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The objective is to maximize the number of infections averted, which in
group (i,j) is the product of the number of people reached by the prevention
program targeted to that group multiplied by the number of infections
averted per program participant Investment is constrained by the
number of people who could possibly be reached in each group as well
as the overall budget constraint. The model is a knapsack LP that has a
greedy solution.

The above formulation assumes that the number of new infections that will
occur over the time horizon of the problem in the absence of investment

is known exogenously, that populations and programs are
independent, and that the production functions for the prevention programs
are linear. An alternative formulation allows for general production
functions [33]. We drop the subscript j, and assume that target populations
and prevention programs are indexed by i only. Let denote the fraction
of infections in population i that will be averted by investment in the
prevention program targeted to population i. The model can be written as

If desired, nonzero lower limits on investment in each program can be
included. This model is a knapsack problem that can be solved using
nonlinear optimization techniques or dynamic programming.

Another formulation requires linear production functions but allows for a
general epidemic model, interacting populations and prevention programs,
and either objective function (maximizing infections averted or QALYs
gained) [29]. The model is created by approximating the general resource
allocation problem [29] using first-order approximations for the
compartment size functions in the epidemic model. The resulting problem is
a knapsack LP of the form
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where, as before, is the level of investment in program i. The coefficient
is an approximate measure of the number of infections that will be averted

(or the number of QALYs that will be gained) in population i per dollar
invested in the prevention program that reaches population i. Although the
coefficients are calculated from a first-order approximation of the
epidemic model, they reflect more than just a linear incidence rate [29].
This model has a greedy solution that can be determined from a simple
ordering of the objective function coefficients.

17.4 CONCLUSIONS AND FUTURE RESEARCH

Many of the resource allocation models described in this chapter are
grounded in theory from welfare economics and cost-effectiveness analysis:
they aim to maximize health benefit subject to a budget constraint. In
practice, the problem of allocating resources to control epidemics is more
complex. Policy makers may face political and social objectives. These
may include achieving equity among population groups or programs,
targeting resources to underserved populations, restricted access to certain
programs, and “earmarking” of funds from different sources (e.g., see [34]).
Further work could identify important considerations in real-world resource
allocation problems and extend existing models to reflect such situations.

Policy makers need accessible models for making resource allocation
decisions. Section 17.3.8 described several simple models that have been
developed for solving the problem [29, 32, 33]. An important next step is to
translate simple models of that type into tools that can help decision makers
make informed resource allocation decisions. Such a tool might take the
form of a spreadsheet model that users could tailor to their own particular
needs by specifying parameter values – for example, parameters that
describe the target populations, the epidemic that is to be controlled, and risk
behaviors within those populations, and parameters that describe the
production functions of the prevention programs. Ideally such a model
would determine the allocation of resources that maximizes health benefits,
with and without constraints on expenditure, so that decision makers could
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understand the cost (in terms of foregone health benefits) of different social
constraints.

Determining how best to allocate resources for epidemic control can be
difficult. The dynamics of epidemic growth in the population at large and in
various population subgroups may be complex. Policy makers must
typically choose between competing epidemic control programs (e.g.,
vaccination, prevention, and treatment programs) that can be targeted to
different population subgroups. The relationship between resources
expended and program outcomes may not be linear. The epidemic control
programs may not be independent. In addition to the goal of maximizing
health benefits, social considerations such as equity may be important.

Recently the U.S. government approved a five-year, $15 billion global AIDS
package aimed at combating AIDS, particularly in Africa. The government
must determine how this money should be allocated between treatment of
HIV-infected individuals, hospice care for those dying of AIDS, and
prevention. A recent news report indicated that, in trying to agree on how to
spend the money, members of Congress could not “get past basic questions
such as whether it’s more important to advise people to abstain from risky
sex or to give them condoms” [35]. Moreover, some of the money would be
allocated to the United Nations and World Health Organization’s Global
Fund to Combat AIDS, Tuberculosis, and Malaria, which some conservative
groups object to because they say it supports groups that condone abortion
[35].

Despite the difficulty of making decisions about allocating epidemic control
resources, decisions must be made. Infectious diseases are a critical public
health problem worldwide. OR-based models can help determine the
allocation of resources that maximizes health benefits, thus providing
important input to such decisions.
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SUMMARY

Infectious microbes can be transmitted through the drinking water supply.
Recent research indicates that infection transmission dynamics influence the
public health benefit of water treatment interventions, although some risk
assessments currently in use do not fully account for those dynamics. This
chapter models the public health benefit of two interventions: improvements
to centralized water treatment facilities, and localized point-of-use
treatments in the homes of particularly susceptible individuals. A sensitivity
analysis indicates that the best option is not as obvious as that suggested by
an analysis that ignores infection dynamics suggests. Deterministic and
stochastic dynamic systems models prove to be useful tools for assessing the
dynamics of risk exposure.

KEY WORDS

Microbial risk, Epidemic model, Water treatment, Stochastic infection
model, Ornstein-Uhlenbeck process
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18.1 INTRODUCTION

A cryptosporidiosis outbreak linked to Cryptosporidium oocysts in
Milwaukee’s drinking water caused over 400,000 cases of diarrhea and
1,000 hospitalizations in 1993. The outbreak played a role in the death of
more than 50 individuals, primarily individuals with AIDS [1, 2]. The
World Health Organization indicates that disease caused by these and other
waterborne microbes is involved in the death of millions of people every
year [3], and the illness of many more. One culprit is the lack of a safe water
supply and basic sanitation [4]. Endemic infection is a significant concern,
not just outbreaks.

This chapter reviews recent progress in merging infection transmission
models with microbial risk assessments. The goal of that work is to better
represent the dynamics of infection in such risk assessments. This chapter
also presents sensitivity analyses that provide policy regions that indicate
when it is better to use centralized water treatment alternatives versus local
water treatment measures, as a function of infection transmission
parameters. We also discuss how different model structures, including
ordinary differential equations (ODEs), stochastic Markov chains of
individual infection and recovery events, and Ornstein-Uhlenbeck (OU)
diffusion approximations may be useful for policy region assessment and
inference for parameters whose values are poorly understood.

Although the focus of this chapter is risk assessment for water treatment
interventions and their public health consequences, the idea of modeling risk
exposure as a dynamic function of a system’s state is rather general. Other
microbial applications include the protection of the food supply chain, and
biological warfare preparedness. Specific issues that have attracted public
interest recently include so-called “mad cow disease” (bovine spongiform
encephalopathy) and the threat of anthrax and smallpox attacks. E. coli and
Norwalk-like viruses can be found in both the water system and the food
chain [5]. The importance of dynamics for risk exposure assessments is not
exclusive to infectious diseases. For example, weather dynamics can
influence risk exposure to radiation in the aftermath of nuclear accidents [6].
The need for dynamic systems models of risk exposure, then, has a much
wider application than the scope presented here, and the tools available to
approximate those exposures continue to be developed.

Drinking water can be protected from microbes with a series of barriers
starting with source water protection, centralized municipal water treatment,
filters or other local point-of-use treatments, and wastewater treatment.
Centralized drinking water treatments improve water quality for the entire
community. Options include filtration, chlorination, and ozone pretreatment.
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Ozone pretreatment may reduce Cryptosporidium oocysts in water by 40-
60%, but may be quite costly. A facility for a particular California reservoir
is estimated to cost $154-190 million initially, and $3.8-5.2 million per year
thereafter [7]. Local treatment can also be used for population subgroups that
require particularly effective pathogen removal. Options include copper-
silver ionization and chlorine dioxide generation in hospitals and nursing
homes [8], and reverse osmosis filters in the homes of immunocompromised
individuals. Such filters may costs hundreds of dollars per home, and
require regular maintenance. These costs justify a formal assessment of the
public health benefit of each treatment option.

A standard approach to risk assessment for chemicals and microbes is to
identify hazards, quantify occurrence and exposure, assess the dose-response
relationship, and identify human health consequences. Exposure is generally
taken to be from drinking water in this context. The probability of infection
is assessed with a dose-response curve, where dose is a function of microbes
in consumed water. The health effects of any resulting disease are then
quantified. But microbes present additional risk exposures that chemicals do
not usually exhibit. Microbes can circulate through two secondary
transmission routes: interpersonal human contact, and a water loop where
infected individuals recontaminate water through recreational use or waste
[9, 10].

Some analyses (e.g., [7]) account for secondary transmission in the water
loop by using the prevalence of infection in the population to assess the
amount of microbes shed into recreational water, then estimating increased
contamination in drinking water. That approach is consistent with risk
calculations used by the Environmental Protection Agency (EPA) [11]. Such
an approach does not fully model the fact that effective water treatment
changes the prevalence of infection, which is an input to the assumed risk
exposure model. Although this indirect effect of treatment on risk exposure
due to secondary transmission is not modeled by that approach, there is a
recognized need to do so to inform water treatment policy [12].

Other analyses [13, 14] use dynamic systems models to represent the
dynamics of risk exposure. The models are based on deterministic ordinary
differential equations (ODEs). Such models find that the public health
benefit of water treatment interventions depends strongly on how infection is
circulated. For example, Milwaukee residents with AIDS suffered
particularly extreme consequences from cryptosporidiosis during the 1993
epidemic [15]. Some have proposed that highly effective filters that
eliminate Cryptosporidium oocysts would effectively protect individuals
with AIDS from similar risks in the future. This would be the case if there
were no additional exposure from secondary transmission to that subgroup
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from human contact. However, it is likely that some secondary transmission
occurred [1, 13]. Depending on the average number of secondary
transmissions, and the relative probability of infection given exposure for
those with AIDS, improving a standard municipal facility by adding ozone
pretreatment may be more effective than filters [14]. If secondary
transmission is sufficiently high, ozone can reduce secondary exposure in
the AIDS subgroup by reducing cryptosporidiosis prevalence in the general
population – and that reduction can outweigh the benefits of completely
effective filters on the water taps of individuals with AIDS.

Section 18.2 extends previous work [14] by presenting a sensitivity analysis
for those policy regions (ozone pretreatment versus local filters) with respect
to several infection parameters, and by using a more refined model of the
natural history of infection of cryptosporidiosis. The policy region is quite
sensitive to the efficacy of ozone for inactivating oocysts, but is not very
sensitive to the size of the sensitive population subgroup, as long as it is not
too large, nor to the rate of exogenous introduction of oocysts into the water
supply. Ozone becomes less effective, relative to filters in the susceptible
subpopulation, as the water loop becomes relatively more important for
secondary transmission than human contact.

Deterministic infection models ignore variability that arises in real infection
transmission systems. Further, standard ODE parameter fitting tools make
normal distribution assumptions that may not be satisfied in practice [16].
Stochastic infection models explicitly account for this variability, and may
provide a mechanism to further incorporate infection dynamics into the
parameter inference process. Parameter inference is important because the
secondary transmission parameters for a number of microbes of interest to
the EPA are poorly understood at present. Several researchers have
examined mechanisms to infer parameters of various infection models given
outbreak or intervention trial data [13, 17-19], or using endemic data [16].
Those works attempt to incorporate the dynamics of infection into the
likelihood model using a variety of approximations (e.g., binomial
distributions for discrete-time models, normal approximations for larger
populations using moment methods).

Section 18.3 extends that work by suggesting that diffusion process
approximations be used to model the stochastic infection dynamics. The idea
is to apply stochastic process results [20-23] to approximate the underlying
discrete-state Markov chain model of infection and microbe contamination
with a continuous-state Ornstein-Uhlenbeck (OU) process. We present
diffusion approximation formulas for the stationary mean and covariance of
the underlying infection model. Section 18.4 describes potential areas for
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further research for water treatment policy, risk analysis, and epidemic
modeling research.

18.2 ODE MODELS TO EVALUATE POLICY REGIONS

Our goal is to develop a mathematical model that captures the dynamics of
three modes of infection transmission: infection from microbes in the
drinking water that come from exogenous sources, secondary infection from
microbes in drinking water that result from contamination of source water
from modeled individuals, and secondary transmission from human-to-
human contact. The model must account for multiple subgroups with
different infection susceptibility and outcome parameters, and further allow
for the assessment of public health benefits of both local and municipal level
interventions. We first describe an ODE infection model. Many parameters
are not well understood for most microbes on the EPA’s Candidate
Contaminant List. We therefore present a sensitivity analysis that could be
applied for those agents. The analysis here is consistent with current
knowledge about cryptosporidiosis.

18.2.1 Deterministic infection transmission system model

Figure 18.1 illustrates that humans are assumed to change health status from
susceptible (S), infected (I), diseased (D), and recovered (R) as a result of
microbial infection. Microbes can be shed by infected and diseased
individuals into the water supply, which in turn can reinfect susceptible
individuals. We further assume that there are n different subgroups that
interact according to a proportional mixing pattern [24]. Individuals in
different subgroups may have different mixing and infection parameters.
Here we are particularly interested in the case of two subgroups:
immunocompetent and immunosuppressed individuals. A more detailed
study might also model special characteristics of the young and the aged.

The individuals in subgroup i are counted as to whether they are infected
(infectious, but asymptomatic), diseased (infectious and

symptomatic), recovered (temporarily immune to reinfection), or
susceptible These values vary through time as the system evolves. For
simplicity, the argument t is dropped below except when we wish to
emphasize dependence of these values on time.

Microbe concentration in the water supply, W(t), shown in the upper portion
of the figure, is influenced by the rate of exogenous introduction of
microbes, the rate that microbes leave the system from water flow or
inactivation, and the rate that infected individuals contaminate the water
supply. This leads to the microbe concentration dynamic in equation (1).
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Figure 18.1 An SIDRS/W infection model with water loop and
proportional mixing

Each susceptible individual in subgroup i has the potential of becoming
infected after being exposed. The rate of exposure for each susceptible
individual depends on two main sources. Exposure from water consumption
is determined by the number of microbes per unit volume in the source
water, W, the fraction of microbes that remain after treatment the volume
of drinking water consumed per day and the probability of infection per
ingested microbe, Exposure from secondary transmission depends on the
number of individuals in each subgroup, the number of contacts per day,

and the probability that a potentially infectious contact will infect an
individual in subgroup i. This results in an overall exposure rate for
subgroup i, when the microbe concentration is W.

The first term models exposure from drinking water. The second term sums
the exposures from each subgroup to susceptibles in i: there are
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potentially infectious contacts, of which a fraction             are with
members of group i. The probability that a member of subgroup i is
susceptible is and the probability of infection given the contact is

After becoming infected, only a fraction become diseased; the rest recover
and become immune for some duration of time, The mean duration of

infection is and the mean duration of disease is Since the dynamics
of microbial infection are on a much faster time scale than the lifetimes of
humans, we assume a closed population.

In summary, the infection transmission model is specified by equation (1)
and equation (3). We refer to this as an SIDRS/W model. The parameters in
the above equations, as well as values that are consistent with
Cryptosporidium, are presented in Table 18.1. Parameters without base
values are functions of other parameters, or are unknown or varied in the
sensitivity analysis to follow. The term in brackets is the unit of measure for
the parameter values in the table.

18.2.2 Policy regions for water treatment decisions

This section presents a sensitivity analysis for water treatment policy regions
for centralized versus local treatment interventions. We consider n=2
population subgroups, (1) immunocompetent and (2) immunocompromised
individuals, and their exposure to Cryptosporidium. The centralized water
treatment considered here is ozone pretreatment, which can remove 40-60%
of Cryptosporidium oocysts from water. This has the effect of reducing
by an appropriate percentage for the entire population. The local treatment
considered here is a filter that essentially removes exposure from drinking
water (as an extreme case) for the immunocompromised subgroup. This sets

for the immunocompromised subgroup, but leaves unchanged for
the immunocompetent subgroup.

We define the ‘better’ treatment in this chapter as that which leads to the
lowest endemic prevalence of cryptosporidiosis in the immunocompromised
subgroup. This objective is motivated by the extreme effects of cryptospor-
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idiosis in that subgroup during the 1993 Milwaukee outbreak. A similar
analysis can be run for other outcome measures of merit, including quality-
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adjusted and disability-adjusted life years, and cost effectiveness ratios, but
we do not do so here.

A risk assessment that ignores the dynamics of secondary transmission
would conclude that the filter is more successful that ozone pretreatment for
the immunocompromised subgroup. If secondary transmission is significant,
however, secondary transmission from the immunocompetent subgroup can
result in significant infection in the immunocompromised subgroup. In fact,
if human-to-human secondary transmission is high enough, then removing
all microbes from the water will still not prevent endemic transmission. In
that case, water treatment makes almost no impact on the prevalence of
infection.

Before presenting policy regions, we introduce notation to describe
secondary transmission. Let be the mean number of secondary
transmissions from human contact by an infected individual of subgroup j to
individuals in subgroup i, assuming that all individuals in subgroup i are
susceptible contacts per unit time, a fraction             of them with
subgroup i, of which are infective, for a mean duration of

Let be the analogous number of secondary transmissions through the
water loop from an infective in subgroup j to individuals in subgroup i,
assuming that all individuals in subgroup i are susceptible (see Appendix).

The Appendix proposes two different arguments to show that the basic
reproduction number, is key to determining the infection dynamics. It
can be related to the expected number of secondary infections needed to
sustain endemic infection.

If then infection remains endemic even if no exogenous introduction
of microbes occurs
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Somewhat surprisingly, it is still possible for a municipal improvement like
ozone pretreatment to outperform filters on the taps of immunocompromised
individuals, even if endemic infection is not sustainable through secondary
transmission. The reason is that cryptosporidiosis prevalence in the
immunocompetent subgroup can be significantly reduced with ozone
pretreatment. This in turn reduces secondary exposure of cryptosporidiosis
to the immunocompromised subgroup. Figure 18.2 illustrates that ozone
pretreatment is more successful at reducing endemic cryptosporidiosis
infection in the immunocompromised subgroup if the secondary
transmission rate from human contact is high enough. This graph assumes
that all secondary transmission occurs from human contact

because and that other parameters take on the base
values for Cryptosporidium given in Table 18.1. If immunocompromised
individuals are much more susceptible to cryptosporidiosis than
immunocompetent individuals (larger then ozone pretreatment is
attractive at even lower levels of secondary transmission. The values for
are chosen to give rise to the corresponding value of   on the y-axis.

Figure 18.2 Ozone pre-treatment is better for larger values of
secondary transmission or the relative susceptibility of

immunocompromised individuals

These observations are qualitatively similar to results in our previous work
[14]. The policy region boundary is somewhat lower here than in [14] for
several reasons: the natural history of infection is more realistic here
(including two infectious periods, the infected/asymptomatic and
diseased/symptomatic states), a more effective ozone pretreatment process is
assumed (60% of oocysts are removed rather than 50%), and a few other
parameters are changed. The qualitative shape of the policy region,
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however, is the same. We now extend the results by assessing the sensitivity
of the policy region to several parameters that may affect transmission
dynamics.

Figure 18.3 shows that the policy region is relatively insensitive to the
fraction of individuals in immunocompromised subgroup, at
least when base case parameter values are used, and the fraction of
immunocompromised individuals is relatively small (under 5% or so). If
that fraction increases, the policy region boundary would rise, as direct
exposure would become relatively more important than secondary
transmission from the smaller immunocompetent subgroup. The policy
region is similarly insensitive [25] to the rate of exogenous introduction of
microbes, except if rates would lead to oocyst concentrations found during
outbreaks with plant failures.

Figure 18.3 The policy region is relatively stable over a range of
values for the fraction of population that is immunocompromised

The 1993 Milwaukee outbreak data has been used to estimate [13] the
secondary transmission rate as The secondary transmission rate
during endemic situations is unknown, but individuals may be more
conscientious about secondary transmission during an outbreak than when
infection is transmitted silently in the background. It seems reasonable to
assume that immunocompromised individuals may be somewhat more
susceptible to cryptosporidiosis infection due to human transmission

but there is inconclusive data one way or the other [26].
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Figure 18.4 illustrates the sensitivity of the policy region to ozone
pretreatment efficiency. Ozone pretreatment outperforms filters in this
analysis even at relatively low values of secondary transmission, assuming
that 80% of oocysts can be inactivated during the pretreatment. Although
the values of secondary transmission parameters are not completely
understood, this would put the treatment policy boundary near educated
approximations for the parameter estimates. On the other hand, a risk
assessment that assumes that there is no secondary transmission from
interpersonal contact would indicate that filters are much more effective at
reducing the endemic prevalence of cryptosporidiosis in the
immunocompromised subgroup.

Figure 18.4 The policy region is highly dependent upon the
effectiveness of ozone pre-treatment for removing oocysts

The graphs above assume that human contact is the sole exposure for
secondary transmission, with no active water loop. This may be appropriate
where there is no potential for recreational activities to contaminate source
water. In some regions, however, recreational use can pose a distinct risk for
water loop transmission [7]. Figure 18.5 shows that as the water loop
increases in importance for transmission (increasing
the policy region boundary rises. Conceptually, this matches the notion that
if all secondary transmission occurs through the water loop, with no human
contact, then filters for the immunocompromised subgroup are more
effective than ozone pretreatment in reducing cryptosporidiosis prevalence
in that subgroup (filters are assumed here to be 100% effective, but ozone is
only partially effective at removing oocysts). This means that filters are
always more effective, relative to this objective, when there is no human-to-
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human transmission. Filters may still be an effective intervention if
secondary transmission occurs primarily through the water loop.

Figure 18.5 Filters are much more effective if the water loop
increases in importance relative to human-to-human secondary

transmission

18.3 VARIATION IN INFECTION OUTCOMES

Infection and recovery times are stochastic, not deterministic; this is one
source of variation in prevalence and microbial contamination data. How
much variation in infection outcomes should one expect, even if all infection
transmission parameters are known precisely? Another important related
question is how to estimate unknown infection parameters, given field data.
While the policy regions like those in Section 18.2 are useful for qualitative
insights into the effects of treatment given transmission parameter
assumptions, the precise values of parameters are still poorly understood for
several microbes transmitted through the water system. A model of the
random variation in infection prevalence and microbe concentration can be
used as a likelihood function to help infer the unknown parameters. Ideally,
such a model would be easy to simulate quickly.

18.3.1 Stochastic model background

Several authors have incorporated stochastic system dynamics to infer the
parameters of infection models. Deterministic ODE infection models may
have stochastic analogs that are derivable as large population limits [20-23,
27]. A continuous time stochastic analog of the deterministic SIS/W model
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with n closed subgroups, the model in Section 18.2 without the extra disease
states, has a state where is the total oocyst count in

the drinking water supply1. The state space is a lattice,

The state does not include since by assumption
here. State transition rates are determined by the associated rate in the ODE.
For example, the transition rate from to

is based on the recovery rate of each individual. Infection
transitions to occur with rate

The analogy of these rates with equations (2) and (3) should be clear. Rate
terms in the ODE dynamics correspond to infinitesimal state transition rates
in the Markov chain model, and transition rates for microbe immigration and
inactivation occur similarly. Figure 18.6 shows a sample path for the
number infected in a 3-subgroup model as it varies about the trajectory of
the analogous ODE model. An alternate approach is to use a closely related
discrete-time Reed-Frost epidemic model [18], or to also incorporate social
network information into the state with a stochastic graph [19].

Several researchers (e.g., see [19] and references therein) have developed
likelihood models for Bayesian inference that incorporate infection
dynamics into the likelihood function for parameters as a function of data
that might be obtained from tracing an outbreak, or closely monitoring an
intervention trial. Interesting properties of quasistationary distributions [28],
the long run distribution assuming that infection remains endemic, of
infection models have been studied as well.

A recent proposal to infer infection parameters with endemic data provides a
statistical tool that provides an alternative to waiting for, identifying, and
measuring an outbreak [16]. The work uses stationary distributions of a
combined stochastic-deterministic SIS/W infection model in a homogenous
population to model endemic data. Infection and recovery events were
assumed to be stochastic, but water contamination was assumed to be
deterministic, given the number infected. Because a closed form for the
stationary distribution is not known and there are situations when normal
approximations used by standard ODE least square estimators are not fully
justified, the authors develop two likelihood approximations.

1 The total number of microbes, not microbes per volume, in a volume of water that
scales with N is needed to obtain diffusion approximation results. See [20-23], Appendix A.4.
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Figure 18.6 A sample path for the number infected in three
subgroups for a stochastic model varies about the trajectory of the

analogous ODE

The first uses the stationary distribution of a closely related lattice Markov
chain whose state is the number infected. That likelihood approximation has
good bias and root mean square error (RMSE) properties, but may be
computationally intensive when extended to populations with multiple
subgroups, or if the natural history of infection is more complex. The
second likelihood approximation uses a normal distribution approximation
that takes advantage of relationships between low order moments that are
determined by the Kolmogorov forward equations, but is somewhat more
biased or may give confidence regions that are too small, particularly near

or when populations are small, where the normal approximation may be
suspect. Further, the continuous dynamics for the water, combined with the
moment relationships, may or may not give a full specification of the system
with more complicated natural histories of infection, or with multiple
subpopulations (e.g., higher dimensions).

Here we take an alternate approach to approximating the stationary
distribution of the number of infections: a diffusion approximation [20-23].
While statistical bias issues may remain to be resolved if the populations are
small or if is near 1, the approach appears to be more generalizable to
higher dimensions. While the mixed stochastic/deterministic model in [16]
cannot directly use diffusion approximation results, a slight change to use
the stochastic model on the lattice introduced at the beginning of Section
18.3.1 makes those results applicable. In particular [20-23] illustrate that
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density-dependent processes, which include many epidemic models like the
lattice-state model above, can be approximated (in law) by an Ornstein-
Uhlenbeck (OU) process near an endemic equilibrium point, as N grows.
The stationary mean is approximated by the ODE’s asymptotically stable
endemic infection level (which is positive if there is exogenous
contamination, and other parameters are not 0), and the stationary
covariance matrix can be approximated by appropriately rescaling the
solution to a Lyapunov equation, as overviewed in Appendix A.4.

18.3.2 Preliminary results for diffusion approximation

This chapter presents only preliminary results for the OU approximation.
We simulated the continuous time SIS/W stochastic process with
proportional mixing and compared sample statistics for the stationary mean
and variance with the endemic ODE mean and OU approximation to the
variance.

Simulated population sizes were 60, 600 and 6000 individuals in n=3
subgroups, with 1/6 of the individuals in subgroup 1, 1/3 in subgroup 2, and
1/2 in subgroup 3. Parameters were chosen so that a fair amount of
secondary transmission would be observed. Parameters were chosen to be
the same for each subpopulation, with days, etc, so that

Table 18.2 provides some summary sample

statistics for the stationary mean and standard deviation of the number

infected in subgroup j. The statistics were based on 150 years of simulated
infection and water contamination. The means are time averages, and the
standard deviations are based upon sampling the number infected once per
month. The OU approximation for the mean equals the ODE endemic
equilibrium, and the standard deviations are computed as described in the
previous section and Appendix A.4. As observed elsewhere [29, 30], the
mean number infected estimated by the simulations is lower than predicted
by the deterministic model for smaller populations. Correlation is strong
between subgroups and water contamination levels in simulations with
significant secondary transmission, matching simulations with a single
subgroup in [16].

The OU approximation for the mean and variance of the number infected
provides yet another likelihood approximation for inferring infection
parameters from endemic data, to complement the two approximations in
[16] (the two ideas there were to compute the stationary distribution, and to
use the Kolmogorov forward equations to establish relationships between
moments). How strongly the bias in the estimates of the means and variances
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Table 18.2 Comparison of some estimates from long simulation runs
versus the Ornstein-Uhlenbeck (OU) approximation for the stationary

mean and covariance

might influence the bias and RMSE of parameter estimators based upon an
OU likelihood approximation is an area for further study.

18.4 CONCLUSIONS AND FUTURE RESEARCH

18.4.1 Water treatment policy

Infection transmission dynamics can strongly influence the public health
benefit of water treatment interventions. Ignoring secondary transmission in
a risk assessment, or examining only first-order effects, can suggest
misleading conclusions. System dynamics models can help quantify the
complex infection dynamics that some microbes transmitted through the
drinking water system may have. Policy decisions regarding the recreational
use of public waterways that are source water directly influence the potential
for secondary transmission, too.

While infection transmission parameters may be important determinants of
the health benefit of interventions, their values are not well understood for a
number of microbes. The use of stationary distributions as likelihood
functions for unknown parameters allows endemic data to be used in the
inference process. This complements tools by others to infer parameters in
an intervention trial or with outbreak data [17-19].

Here we considered only one microbial agent. In reality, there are many
strains of many microbes. A comprehensive risk management program must
consider multiple microbes and multiple intervention options. Further, some
coordination may be required between different governmental agencies. The
Centers for Disease Control and Prevention are historically responsible for
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outbreak and infection data, whereas the EPA is historically responsible for
water quality data.

18.4.2 Infection modeling

One advantage of the OU approximation, at least for large populations with
nontrivial endemic levels, is that the mean and covariance matrix are readily
computed. Furthermore, transient probability distributions can be estimated
with this OU approximation under certain conditions [23]. In principle, this
would allow for data from outbreaks, intervention trials and/or endemic data
to be used to infer transmission parameters.

The OU approximation has a statistical bias when the population size is
small, or there are small numbers of individuals per subgroup, such as occurs
when family units or small work sites form the subgroups [30]. The
stationary and quasistationary mean prevalence of the lattice-based Markov
chain infection model may be lower than the scaled endemic equilibrium
infection level. The difference goes to zero in the large population limit, but
may be nontrivial for small populations. A rigorous exploration of this bias
is an area for further research.

Such bias holds implications not only for parameter inference, but also for
speeding up simulations of infection processes. The OU process might
ignore every infection and recovery event in a large process, but may require
small time steps to insure that bias is avoided. An interesting simulation
question is to evaluate effective ways to simulate the approximating OU
process in a way that faithfully represents important low order statistical
properties of the original Markov process. Approximations that work well
when almost everybody or almost nobody in a subgroup is infected are an
open area of research, and have implications for simulating small
populations and subgroups, such as family units or daycare centers that are
participating in water treatment intervention or vaccine trials.

18.4.3 Other modeling applications

The food supply chain is complex and presents another potential route for
the transmission of microbes. Some infection models have examined the
dynamics of growth of microbes as food passes from the farm to the fork
[31] in one context. Others have examined the dynamics of infection in
herds [32, 22] and the ensuing impact on the livestock industry. One area
for further development is the integration of infection dynamics models in
animals, microbes in the food supply chain, and primary and secondary
exposure in human populations.



484 OPERATIONS RESEARCH AND HEALTH CARE

Acknowledgments

We appreciate discussions with Brenda Boutin, PhD, and the financial
support of the US EPA National Center for Environmental Assessment (CR-
827427-01-0).



MICROBIAL RISK ASSESSMENT 485

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Hoxie, N.J., J.P Davis, J.M Vergeront, R.Nashold, and K. Blair
(1997). Cryptosporidiosis-associated mortality following a massive
waterborne outbreak in Milwaukee, Wisconsin. American Journal of
Public Health, 87, 2032-2035.

MacKenzie, W.R., et al. (1994), A massive outbreak in Milwaukee of
Cryptosporidium infection transmitted through the public water
supply. New England Journal of Medicine, 331, 161-167.

Iley, K. (2002). Aid groups urge action on water-borne diseases.
Reuters News Service at www.planetark.org, March 25.

Cowdy, H. (2002). Millions at risk from contaminated water. Reuters
News Service at www.planetark.org, March 25.

Centers for Disease Control and Prevention (2001). Norwalk-like
viruses: Public health consequences and outbreak management.
Morbidity and Mortality Weekly Report, 50(RR-9), 1-17.

Cooke, R. and B. Kraan (2000). Processing expert judgements in
accident consequence modelling. Radiation Protection Dosimetry,
90, 311-315.

Stewart, M.H., M.V. Yates, M.A. Anderson, C.P. Gerba, J.B. Rose,
R.DeLeon, and R.L. Wolfe (2002). Predicted public health
consequences of body-contact recreation on a potable water reservoir.
Journal of the American Water Works Association, 94, 84-97.

Stout, J.E., Y-S E. Lin, A.M. Goetz, and R.R. Muder (1998).
Controlling legionella in hospital water systems: Experience with the
superheat-and-flush method and copper-silver ionization. Infection
Control and Hospital Epidemiology, 19, 663-674.

Current, W. (1994). Cryptosporidium parvum: Household
transmission. Annals of Internal Medicine, 120, 518-519.

Medema, G. and J. Schijven (2001). Modeling the sewage discharge
and dispersion of Cryptosporidium and giardia in surface water.
Water Research, 35, 4370-4316.

Regli, S., J.B. Rose, C.N. Haas, and C.P. Gerba (1991). Modeling the
risk from giardia and viruses in drinking water. Journal of the
American Water Works Association, 83, 76-84.



486 OPERATIONS RESEARCH AND HEALTH CARE

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

International Life Sciences Institute (2000). Revised Framework for
Microbial Risk Assessment. ILSI Risk Science Institute workshop
report, International Life Sciences Institute, Washington, DC.

Eisenberg, J.E., E.Y.W. Seto, J.M. Colford Jr, A. Olivieri, and R.C.
Spear (1998). An analysis of the Milwaukee Cryptosporidiosis
outbreak based on a dynamic model of the infection process.
Epidemiology, 9, 255-263.

Chick, S.E., J.S. Koopman, S. Soorapanth, and M. E. Brown (2001).
Infection transmission system models for microbial risk assessment.
Science of the Total Environment, 274, 197-207.

Frisby, H.R., D.G. Addiss, W.J. Reiser, et al. (1997). Clinical and
epidemiologic features of a massive waterborne outbreak of WJ
Cryptosporidiosis in persons with HIV infection. Journal of Acquired
Immune Deficiency Syndromes and Human Retrovirology, 16, 367-
373.

Chick, S.E., J.S. Koopman, S. Soorapanth, and B.K. Boutin (2003).
Inferring infection transmission parameters that influence water
treatment decisions. Management Science, 49, 920-935.

Brookhart, M.A., A.E. Hubbard, ME. van der Laan, J.M. Colford,
and J.N.S. Eisenberg (2002). Statistical estimation of parameters in a
disease transmission model. Statistics in Medicine, 21, 3627-3638.

O’Neill, P.D. (2003). Perfect simulation for Reed-Frost epidemic
models. Statistics and Computing, 13, 37-44.

Britton, T. and P.D. O’Neill (2002). Statistical inference for stochastic
epidemics in populations with random social structure. Scandinavian
Journal of Statistics, 29, 375-390.

Kurtz, T.G. (1970). Solutions of ordinary differential equations as
limits of pure jump Markov processes. Journal of Applied
Probability, 7, 49-58.

Kurtz, T.G. (1971). Limit theorems for sequences of jump Markov
processes approximating ordinary differential processes. Journal of
Applied Probability, 8, 344-356.

Clancy, D. and N.P. French (2001). A stochastic model for disease
transmission in a managed herd, motivated by Neospora caninum
amongst dairy cattle. Mathematical Biosciences, 170, 113-132.



MICROBIAL RISK ASSESSMENT 487

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Pollett, P.K. (1990). On a model for interference between searching
insect parasites. Journal of the Australian Mathematical Society,
Series B, 31, 133-150.

Nold, A. (1980). Heterogeneity in disease-transmission modeling.
Mathematical Biosciences, 52, 227-240.

Soorapanth, S. (2002). Microbial Risk Models Designed to Inform
Water Treatment Policy Decisions. PhD Thesis, University of
Michigan, Ann Arbor, MI.

Osewe, P., D.G. Addiss, K.A. Blair, A. Hightower, M.L. Kamb, and
J.P. Davis (1996). Cryptosporidiosis in Wisconsin: A case-control
study of post-outbreak transmission. Epidemiology and Infection,
117, 297-304.

Altmann, M. (1998). The deterministic limit of infectious disease
models with dynamic partners. Mathematical Biosciences, 150, 153-
175.

Nåsell, I. (1996). The quasi-stationary distribution of the closed
endemic SIS Model. Advances in Applied Probability, 28, 895-932.

Chick, S.E. (2002). Approximations of stochastic epidemic models
for parameter inference. Working Paper, INSEAD, Fontainbleau,
France.

Koopman, J.S., S.E. Chick, C.S. Riolo, C.P. Simon, and J.A. Jacquez
(2002). Stochastic effects on endemic infection levels of
disseminating versus local contacts. Mathematical Biosciences, 180,
49-71.

McNab, B.W. (1998). A general framework illustrating an approach
to quantitative microbial food safety risk assessment. Journal of Food
Protection, 61, 1216-1228.

Ferguson, N.M., C.A. Donnelly, and R.M. Anderson (2001). The
foot-and-mouth epidemic in Great Britain: Pattern of spread and
impact of interventions. Science, 292, 1155-1160.

Simon, C.P. and J.A. Jacquez (1992). Reproduction numbers and the
stability of equilibria of SI models for heterogeneous populations.
SIAM Journal of Applied Mathematics, 52, 541-576.



488 OPERATIONS RESEARCH AND HEALTH CARE

Appendix

A.1 Algebraic stability conditions for the SIRS/W model

Consider first the SIRS/W infection transmission model in a homogenously
mixing population (a special case of the general model, with n=1 subgroup,

so D=0 and we drop subscripts in this section). The expected number
of secondary transmissions, due to human contact, caused by one

infective in an otherwise susceptible population, is the contact rate c, times
the infection probability per contact times the duration of infection

The analogous number of secondary transmissions through the water loop is
qualitatively derived by noting that an infected individual raises the
concentration of microbes by microbes per day for days, the microbes
remain viable for days, and each of N susceptibles consumes a fraction

of available microbes, each of which causes infection with probability r.

Then is the total number of secondary transmissions, on
average.

Theorem 1: If there is no exogenous source of microbes and there is
homogeneous mixing (n=1), then

The disease free equilibrium (S* = N, I* = R* = W* = 0) is locally
asymptotically stable if and unstable if
The endemic equilibrium

is locally asymptotically stable if and is not
realizable if

Proof: The equilibrium values are determined by setting derivatives to 0.
The stability result is proven by linearization in [25].

A.2 Algebraic stability conditions for the ODE in Section 18.2, (n=2)

By analogy with equation (A.1), let and be as in equations (4) and
(5).
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Theorem 2: Suppose there is no exogenous source of microbes and
there are n=2 subgroups with proportional mixing, as in Section 18.1.
Consider the following two conditions.

Then:
Conditions (i) and (ii) are sufficient for the disease free equilibrium
to be asymptotically stable
If the inequality in condition (i) is reversed, then the zero
equilibrium is not stable, resulting in positive endemic infection.

Proof: The stability result is proven by linearization in [25]. The two
conditions are equivalent when If then the
linearization leads to a quintic equation after some factorization, which is not
solvable in closed form. The two conditions together are sufficient to insure
that the dominant eigenvalue falls in the left hand complex plane.

We have not yet developed characterizations for n>2 subgroups when the
water loop is active. [33] use Lyapunov functions to characterize stability
for subgroups with proportional and other mixing patterns for human-to-
human transmission, but do not account for the water loop.

A.3 Alternate stability conditions for the ODE in Section 18.2

Sections A. 1 and A.2 above provide population thresholds to characterize
stability based on an algebraic analysis. An alternate heuristic to assess
whether endemic infection is sustainable even if no exogenous introduction
of microbes occurs is to assess an individual level endemic threshold
using probabilistic arguments. This section overviews such an argument for
the n = 2 subgroup model. Let and be as in Section A.2, and
denote the total mean number of secondary transmissions to a completely
susceptible subgroup i from an index case in subgroup j by

The individual level threshold is established by assessing whether the mean
number of new infections in subgroup i caused by an initial index case in i is
at least 1, when the whole chain of infection is considered. For example, an
individual in subgroup 1 can infect someone in subgroup 2, who then infects
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another person, who then eventually infects someone in subgroup 1. The
expected number of infections (directly or indirectly caused) in the chain
(see Figure 18.7) should be at least 1 for at least one subgroup.

Figure 18.7 The chain of infection from an index case in subgroup 1
can result in infections in subgroup 1 directly, or indirectly through

subgroup 2

If or then a given subgroup can sustain infection within
itself, and therefore infection remains endemic. Consider the case where

and are both at least 0 but neither exceeds 1. If a single individual
in subgroup 1 is infected, and the population is otherwise susceptible, then
the expected number R of additional cases through the whole chain of
transmission that eventually reach subgroup 1 is

The last equation holds because An individual level threshold
says that endemics cannot be sustained without exogenous sources of
infection if R<1, or Substituting the
definition of in equation (A.3) gives an individual level threshold that is
equivalent to the population threshold in condition (i) of Theorem 2 above.

A.4 Ornstein-Uhlenbeck approximation to SIS/W process

The OU approximation to the stochastic SIS/W model with proportional
mixing can be derived by examining the ODE analog of that model along
with the transmission rates of the stochastic model summarized
in Section 18.3.1. The idea (e.g., [22, 23]) is to first find a representation so
that the state scales up with N, the total population size, then to look at a
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rescaled version of that process. The already scale directly with N. To
get the microbe contamination to scale with N, we model the total oocyst
count Y in the drinking supply, rather than microbe concentration, and
suppose that the drinking supply scales with the population size (e.g.,
contains a total of liters, and water drunk by individuals is replaced with
fresh water so that the total volume remains constant). This means that

is the oocyst contamination rate per unit time per liters of water,
and the rescaled process of interest is

Let be a vector valued function that describes the dynamics of
the scaled ODE model, and let be an asymptotically stable equilibrium in

the interior of the scaled state space, with be

the matrix containing the gradient of the dynamics f(x) of the scaled process
evaluated at and let Let the matrix G be the

local covariance of a scaled version of the state over a short time given
that the state is currently For the SIS/W model with proportional mixing,
G is a diagonal matrix, and is determined by evaluating the following at

The matrix G will have nonzero off-diagonal elements for the SIDRS/W
model, since an increase in means a decrease in

The stationary distribution for the OU process can be approximated with a
normal distribution with mean and covariance matrix where
solves equation (A.6) (e.g., see [22, 23] for similar models without water
transmission).
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SUMMARY

A discrete event simulation describes the screening and natural history of eye
disease in patients with diabetes, using the POST simulation software.
Discrete event simulation, unlike other modeling techniques, can show the
interaction between screening and the two main diabetic eye disease
processes. Results show that there is a tradeoff between screening frequency,
screening sensitivity and patient compliance. The extent to which screening
is cost effective is not clear cut. We have little data on the cost of blindness
and different views on the appropriate quality-of-life values to assume. The
model can be extended to evaluate prevention and treatment for all the
complications of diabetes.

KEY WORDS

Diabetes, Simulation, Blindness, Cost-effectiveness
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19.1 INTRODUCTION

This chapter provides an example of the way in which disease modeling can
be used to plan and influence health policy. Diabetes mellitus (DM) is a
condition in which the body produces insufficient insulin to break down and
absorb the glucose consumed in food. Type 1 DM, which usually appears in
childhood, is generally treated with insulin injections. Type 2 DM, which is
more common in middle aged and older people, is treated by diet, drugs, and
in some cases insulin. Despite treatment, diabetes causes damage to tissues,
producing complications. These include: retinopathy, nephropathy and
neuropathy which may lead to blindness, end-stage kidney failure and limb
amputations, respectively. These conditions are all serious, unpleasant and
may be expensive to treat. The growing prevalence of Type 2 diabetes [1]
will result in an increasing demand for treatment for these conditions.

There is little prospect, at present, of preventing diabetes altogether. New
drugs and techniques to improve the control of existing drugs may help to
prevent complications in the long term. Most interest at present is centered
on screening programs, either to detect diabetes in apparently healthy
individuals, or to detect early signs of complications that may be treated in
order to prevent more serious future problems developing. The cost must be
balanced against the resulting benefits. In this chapter we will review several
screening models and then will describe our own model of screening to
detect early indications of eye disease caused by diabetes. We will show
how discrete event simulation can be applied to this problem and will
provide some sample results.

19.2 DESCRIPTION OF APPLICATION

19.2.1 Background

Two main types of eye conditions may affect patients with diabetes:
proliferative diabetic retinopathy and macular edema. The former is more
prevalent in Type 1 and the latter in Type 2 DM patients.

The early stages of retinopathy, termed background retinopathy, are
asymptomatic but changes can be detected by screening. Background
retinopathy may lead to proliferative diabetic retinopathy which may, in turn,
progress to vision loss through the formation of new blood vessels, bleeding
and scar tissue formation. Treatment is given to patients with proliferative
retinopathy, and sometimes pre-proliferative retinopathy, by scatter laser
treatment. Although this treatment worsens the vision of some patients, for
most patients it will slow, or completely stop, the progression to blindness.
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In macular edema, blood leaks from the vessels of the eye to the central part
of the retina. This diabetes complication is more common in the elderly and
may lead to central vision loss. The Early Treatment Diabetic Retinopathy
Study [2] identified a clinically significant stage of the condition in which
treatment may be beneficial. Treatment, by focal laser treatment, is targeted
at the affected part of the eye. For both macular edema and proliferative
retinopathy, the eyes may progress to blindness at different rates, and several
treatments may be needed for each eye.

Although the cumulative risk of retinopathy is substantial in Type 1 DM [3],
reaching up to 60% for sight threatening disease over 20 years, the overall
burden of preventable blindness due to Type 2 DM is greater [4] because its
prevalence is higher. The eye diseases caused by diabetes fulfill the World
Health Organization (WHO) criteria for screening [5]: in particular, they
evolve through key recognizable stages in their progression to blindness, they
represent an important health problem, there are valid and acceptable
screening tests, and blindness can be prevented or visual decline slowed with
laser photocoagulation.

Currently, significant variation exists in screening provision [6]; primary
screening is undertaken using different staff and settings (optometrists,
general practitioners, mobile cameras, hospital based diabetic physicians or
ophthalmologists) and using various methods (e.g. mydriatic or non-
mydriatic ophthalmoscopy or photography), and there is uncertainty about
the appropriate screening intervals [7]. Our aim has been to provide a
flexible model with which it would be possible to test a wide range of
screening scenarios.

19.2.2 Other models

Models have been used to evaluate whether screening should be performed,
how and of whom. The Wisconsin Epidemiologic Study of Diabetic
Retinopathy (WESDR)1 [3, 4, 8, 9] is the main study from which parameters
for retinopathy transitions are derived. It is a widely published and highly
respected cohort study that has been followed up since the early 1980s.
Other studies providing data include: the Diabetic Retinopathy Study (DRS)1

[10], the Early Treatment Diabetic Retinopathy Study (ETDRS)1 [2], and the
United Kingdom Prospective Diabetes Study (UKPDS)1 [11]. Models differ
in their use and interpretation of these data and in the assumptions they
make. Some assumptions are enforced by the modeling approach adopted,
while other assumptions are clinical or epidemiological. Examples of the

1 These studies all produced a large number of other papers which we do not have
room to reference here.
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former include whether patients are considered as a group or as individuals,
whether patients are assumed to belong to identical cohorts or whether a
realistic population is modeled, whether multiple health states are possible,
and the form of the mathematical expressions used to calculate transitions
between states. Examples of clinical or epidemiological assumptions are the
selection and definition of the health states, and the selection of the factors
that influence transitions between these states. Models also differ in their
outputs and endpoints. Cost-effectiveness models vary considerably in their
assumptions about which costs should be included, how to measure benefits,
and whether discounting should be used (and at what rates).

In the literature, the most widely used modeling approach for diabetic
retinopathy, and other complications of diabetes, is the compartmental model
(typically implemented in a spreadsheet). Compartmental models are based
on homogeneous groups or cohorts of patients and are updated in equal time
steps. Progression from state to state is based on the Markovian assumption
that the probability of progression to a new state at time T depends only on
the state occupied at time T – 1. If there are N patients in state A at time T –
1, and the probability of transition from state A to state B in one time step is
p, then the number of patients who move from A to B at time T is simply
pN. Such computations are easily carried out for successive periods in a
spreadsheet. The resulting values are simply the mean numbers in each state.
The variability in the numbers can be found using a stochastic simulation in
which the numbers of individuals moving from state to state are sampled
from random numbers in each time period.

Dasbach et al. [12] used a spreadsheet simulation based on four-year
WESDR data for three population groups: Type 1 patients of five or more
years duration, Type 2 patients taking insulin and Type 2 patients not taking
insulin. The annual transition probabilities between four health states (low
risk, high risk, blind and dead) depended solely on the start state and were
derived mathematically from the WESDR four-year data. The model does
not distinguish between macular edema and proliferative retinopathy. It
simply calculates the number of people in each state at the end of each year;
the states are homogeneous, there is no sampling and newly diagnosed cases
are not added to the cohort.

Bachmann and Nelson [13] used an Excel spreadsheet model combined with
Monte Carlo simulation, using the standard random number generator in
Excel, to calculate the numbers of cases of treatable retinopathy detected and
the cases of blindness prevented by a screening program. The model did not
calculate the total years of sight saved, and assumed a constant population of
diabetic patients, with deaths equal to new cases. This model used WESDR
and relevant United Kingdom (UK) data. The authors assumed that no
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previous screening had been carried out, so that the initial yield would be
considerably higher than in subsequent screening rounds. They found that
“substantial disability” could be prevented by screening and early treatment
of diabetic retinopathy.

Tomar et al. [14] developed a spreadsheet cohort Markov model for all major
complications of Type 1 DM. They used six health states: healthy (no DM),
DM without complications, DM with retinopathy, DM with neuropathy (with
or without retinopathy), DM with nephropathy and any combination of
retinopathy and neuropathy, and Dead. They used WESDR data to estimate
the annual transition probabilities between the states. Cost data (or more
precisely charge data) from a local health insurance company (University
Health Care Inc, Wisconsin), were used to attach costs to the four
intermediate states. Costs were discounted over the lifetime of the cohort.

In a more recent Markov cohort model for Type 2 DM by Vijan et al. [15],
the progression rate up to pre-proliferative diabetic retinopathy depended on
glycemic control, using data from UKPDS; after that, progression was
assumed to be independent of glycemic control, based on data from the DRS
and ETDRS. As in Bachmann’s model [13], they assumed that no patients
were screened prior to entry in the model. Although this was a deterministic
spreadsheet model, Vijan et al. used Monte Carlo simulation to perform
sensitivity analysis on the cost-effectiveness estimates. The main model
output was cost per quality-adjusted life year (QALY) gained. They found
that annual screening of all Type 2 patients was not cost effective and that
screening every two years was adequate, except for patients with very poor
glycemic control.

A recent model of this type by James et al. [16] compared a systematic
screening program with existing practice. The systematic program involved a
mobile screening unit combined with a dedicated hospital clinic; the
“opportunistic” screening service was provided by optometrists, general
practitioners and diabetologists, combined with referral to general hospital
eye clinics. The output was given in terms of cost per case of eye disease
detected.

The spreadsheet transition model approach is appealing because it is
transparent – all the assumptions are made explicit in the spreadsheet – and
such models are relatively quick to develop and run. However, transitions
are assumed to take place only at distinct points in time (in the above
examples, at the end of each year) and it is not possible to take into account
multiple health states, interactions and co-morbidities. Additionally, all
individuals must belong to a homogeneous group. In order to account for
different age and risk groups, a compartmental model must include separate
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sets of states and transitions. The number of states can become very large
and the model unwieldy. The Markovian assumption may also be limiting.

In order to overcome the problem of allocating people to states, some models
incorporate individual variability. Javitt, with various colleagues, has been
working in the area for many years [17-20], using a system called
“PROPHET” (PROspective Population Health Event Tabulation). This is a
cohort model, coded in Borland Pascal, which the authors say “combines
features of decision trees, Markov processes and Monte Carlo simulation
techniques”. The model describes individuals whose progress is updated in
two-monthly time steps; disease progression and mortality rates depend on
age and disease severity. It incorporates both macular edema and
proliferative retinopathy and uses data from WESDR, DRS, ETDRS and the
Rochester study [21]. In the 1994 paper, the authors found that two-yearly
screening until detection of background diabetic retinopathy (BDR) in both
Types 1 and 2 DM appeared to be adequate, although they recommended
yearly or even six-monthly screening thereafter [19].

The model of Type 2 diabetes that Javitt developed with Eastman et al. [22]
is an Excel spreadsheet cohort model using the simulation add-in @Risk. It
incorporates multiple complications: retinopathy, neuropathy, nephropathy,
and coronary vascular disease. The model is updated annually. Every year,
for each patient, the probability of death in the next year is derived, given
that person’s age and disease state. A random number is then sampled to
determine whether the person survives. If they do, the probability of
transition to the next state for each separate complication in the next year is
calculated using the epidemiological data contained in the model. Another
random number is then sampled to determine whether this transition actually
occurs. Although in reality many patients will have multiple complications,
the authors explain that the model does not collect data on compound health
states “because of computer memory constraints”. The model uses
retinopathy data from WESDR and from the Rochester Diabetic Neuropathy
Study [21]. The authors claim that the model is conservative. They discuss
problems of validation, for example for particular ethnic groups. Although
spreadsheets have the advantage of transparency, they are not a good
medium for modeling individuals. A large number of parameters must be
entered to describe the attributes of each individual, and it is time consuming
to sample probabilities for each patient in each time period. Short time
periods waste computation time but if the time periods are long, important
transitions may be missed. Custom simulations with the same type of
structure in high-level languages will have similar problems. Discrete event
simulations overcome these problems because they are designed to describe
individuals and progress from one individual patient event to the next, in
time order.
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All the models except those of Bachman and Nelson [13] and Tomar et al.
[14] were based on incident cohorts of the populations who progressed
through the model. All models except that of Tomar et al. [14] omitted
current prevalent populations (who inevitably make a considerable demand
on future resources) and did not include newly incident populations.

The models make no claim that the screening saves lives. The benefits must
therefore be measured in terms of cases of eye disease detected, the number
of people prevented from going blind, sight years saved or QALYs gained.
The advantage of using QALYs is that results can be compared across
different health systems. The disadvantage is that researchers use different
quality adjustment values for the same health condition. Cost-effectiveness
ratios are sensitive to the quality values that are chosen. Costs may also be
difficult to determine; in particular, many of the studies cite difficulties in
determining the cost of blindness.

The results from most of the studies indicate that annual screening for
diabetic retinopathy is beneficial. The results from Vijan et al. [15],
indicating that two-yearly screening after the detection of background
retinopathy would be adequate for low risk patients, are controversial [23].
The authors claim that this conclusion is robust to the choice of the value of
the quality adjustment for blindness. It is doubtful, however, whether it is
realistic to split patients into risk groups based on glycemic control, as the
risk group of any patient may vary over time.

We identified a need for a robust modeling approach that is capable of taking
into account multiple diseases and that can evaluate a variety of screening
policies that might be appropriate in the UK. The model should be able to
compare the provision of different screening methods, different treatment
modes and different levels of patient compliance.

19.3 METHODOLOGY USED

19.3.1 The simulation software

The model we created uses discrete event simulation which describes the
progress of individuals from one event to the next. In our model, the
individuals (entities) are patients who progress through different disease
states, being screened, treated and so on. An event would be the start or
finish of a disease state, treatment or investigation. All events take place in
time order. Discrete event simulation is based on the concept of queuing
networks, where entities progress through a series of queues and activities.
Queues arise when events are constrained, such as admission to hospital.
The major advantage of using discrete event simulation is that entities can be
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given characteristics that influence their flow through the system. In a
disease simulation, these characteristics might include age, co-morbidity and
patient disease history. The internal structure of a discrete event simulation
package manages time advance, sampling and data collection.

We used a variant of discrete event simulation called patient oriented
simulation technique (POST) [24, 25], available in Borland Delphi, using
Pascal procedures and functions. In POST, an entity “owns” event notices
and queue links that engage in events and wait in queues on the entity’s
behalf. This means that an entity can take part different events and wait in
several queues at the same time. A strongly linked program structure enables
event notices to be rapidly removed from events, or queue links to be
removed from queues, as needed. An extreme example is death; if an event
notice belonging to a patient entity is deemed to have reached an event
representing death, then all the other event notices and queue links are
withdrawn. Such a structure also enables screening to be modeled
independently of the natural history of disease [28].

19.3.2 Natural history states

The simulation described in this chapter was designed to evaluate the cost-
effectiveness of laser treatment in preventing severe sight loss in patients
with Type 1 and Type 2 DM. More information can be obtained from our
published papers and website [26-30]. The model describes progression
through the two main types of eye conditions. Klein et al. [3, 8] have defined
in detail the stages through which eyes progress in the natural history of the
disease: these comprise 10 stages of progression from normal through
proliferative retinopathy to unclassifiable and nine stages of progression for
diabetic macular edema. In order to determine the cost-effectiveness of
screening, we do not need so much detail. The important states to identify
are those that set off (or may set off) some other activity. These are: no
retinopathy, background retinopathy, proliferative diabetic retinopathy,
macular edema, clinically significant macular edema and severe vision loss
where sight is less than 20/200 on the Snellan scale [4].

19.3.3 Screening

In the model, the screening process starts as soon as a patient is diagnosed
with diabetes. In practice, screening may take place in the community at a
general practice surgery, at an optometrist or in a van using a mobile camera,
or it might take place in hospital, either by a diabetologist or by an
ophthalmologist. When problems are detected, we assume that patients are
assessed by an ophthalmologist with the best equipment available, providing
a “gold standard” service with 100% sensitivity and 100% specificity. We
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have previously assessed the relative merits of different modes of screening
[29]. In this chapter, we will look at different levels of screening sensitivities
without relating them to particular locations or techniques.

We divided the screening process into two parts:

1.

2.

primary screening until any retinopathy has been detected, which will
normally be background retinopathy unless the eye disease has already
progressed past that point, and

subsequent screening for those with background retinopathy until
treatable retinopathy is detected, the patient has severe vision loss or
dies.

Once any retinopathy is detected after primary screening, patients continue to
the second part of screening if background retinopathy is confirmed in an
ophthalmology clinic. If the detection is a false positive then the patient
returns to primary screening. Once treatable retinopathy is detected, a patient
is again assessed in an ophthalmology clinic and, if the diagnosis is
confirmed, is treated; a patient with a false positive detection returns for
more screening. Treated patients continue to be screened until they have
been treated for both maculopathy and retinopathy, they suffer severe vision
loss or they die.

In this chapter we will compare four modes of screening:

1.

2.

3.

4.

Primary screening takes place once a year and subsequent screening
takes place six monthly at an ophthalmology clinic (gold standard);

Primary screening takes place once a year and subsequent screening
takes place six monthly using the same screening mode as for the
primary screening;

Primary screening and subsequent screening take place once a year using
the same screening mode;

Primary screening takes place once every two years and subsequent
screening takes place once a year using the same screening mode as for
the primary screening.

Within these modes we varied sensitivity and patients’ compliance with
screening. We found that sensitivity may be as low as 52% for general
practice screening [31] compared to over 80% for hospital screening [32].
James et al. [16] found compliance with screening to be 80%. It makes a
difference, however, as to whether non-attendance is random or systematic.
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We assumed that, among those who occasionally missed a screen, non-
attendance was random, with compliance of 85% for Type 2 DM and 95%
for Type 1 DM patients. We assumed that a further 5% of patients overall
never attended any screening. The resulting 80% compliance for Type 2 DM
and 90% compliance for Type 1 DM patients yielded an average of 82%
compliance overall.

19.3.4

Two very similar models were developed, one for Type 1 and one Type 2
DM. The main difference, apart from the parameters, was that the Type 2
model allowed for a proportion of patients to have some retinopathy at
diagnosis, whereas Type 1 patients were assumed to have no retinopathy.
The models describe the progression of diabetes from diagnosis to death (or
the end of the simulation).

Age and the state of the eye disease influence progression through the
simulation. Figure 19.1 shows that the two types of sight threatening
retinopathy (clinically significant macular edema (CSME) and proliferative
diabetic retinopathy (PDR)) may occur together or separately. Progression to
sight threatening retinopathy may be interrupted by treatment.

In describing transitions between disease states (with the exception of death),
the following exceptions were made to the Markovian assumption:

The initial results from simulation of the original IDDM model [26]
showed that the prevalences of BDR and PDR were too high in the first
few years after diagnosis. It is extremely rare for patients to get diabetic
eye disease before puberty (taken to be at age 12) or within the first two
years after diagnosis, and evidence from the Wisconsin study [9]
indicates that very few people get PDR or diabetic macular edema
(DME) within the first five years after diagnosis. The sampled times
from diabetes diagnosis to BDR therefore included an initial period with
a low probability of changing state and a later period with a higher
probability.

Time to death depends on a patient’s current age and retinopathy status
and so as people progress through the stages of retinopathy, their time to
death is re-sampled.

Once a patient enters the simulation, screening is started. The simulation
models the screening process described in the previous section and shown in
outline in Figure 19.1. One attribute of a patient entity is the state of the
patient’s sight, as determined by the patient’s natural history, described

Model structure
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above. POST enables screening to take place independently of the natural
history, but responds to changes in it.

The effect of treatment is described by re-sampling the time to vision loss
using a larger average value in the natural history part of the model. Death
causes all of an entity’s activities to be terminated.

The models can incorporate an initial screening round in which it is assumed
that no one has previously been screened, in which case a large number of
prevalent cases will be detected by the first screen. Alternatively, the models
can use a warm-up period in order to evaluate screening programs that have
been running for a number of years.

Figure 19.1 Flow of patients through the simulation. Patients may
get proliferative retinopathy or macular edema and may
subsequently acquire both. Background retinopathy, PDR and
CSME are only detected when present or when there is a false
positive. Treatment takes place if PDR or CMSE is detected but not
if a false positive.
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DATA SOURCES19.4

Prevalence, incidence and transitions between states19.4.1

The data read into the simulation includes:

both the population breakdown and the prevalence of diabetes, by age
and sex and ethnic origin, and the prevalence of eye disease by age and
sex;

the incidence of diabetes by age and sex and ethnic origin and the
incidence of eye disease and vision loss;

mortality by age, sex and by eye disease;

the characteristics of the screening program and the efficacy of
treatment.

Estimates of parameter values were obtained from extensive literature
reviews. Many of the details of the data used in the models have been
published elsewhere [26-29]. The data, and a description of the models, can
also be found on our web site [30]. WESDR was the main source of
epidemiological data on retinopathy.

19.4.2 Costs

The costs of screening and treatment were derived from the National Health
Service National Screening Committee website [33]. These indicate that
screening using a mobile camera costs approximately £20 per patient, with
set-up costs averaging about £11 per patient, the cost of a visit to an
optometrist, £20, an ophthalmology outpatient visit, £60; and treatment, £180
on each occasion. The quality assurance costs were estimated to be less than
£1 per patient. If the set-up costs for the mobile van are spread over five
years, then the cost per patient should be around £22. This is similar to
James et al. [16] who showed that the cost of a screening visit varies from an
average of £19 per visit to £25 per visit, depending on the mode of screening.
The outpatient costs for an ophthalmic visit at £60 compare well to Netten
and Dennett [34] who calculated the cost of a general outpatient visit to be
£55. Screening costs for a diabetologist or a general practitioner are likely
to be higher than this but, as screening would only be one part of the clinic
activities, it would be difficult to attribute an exact cost to this. Three
treatment sessions per eye were allowed for treatment of proliferative
retinopathy and 1.5 sessions per eye for macular edema, which reflects
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typical practice in the UK [35]. In addition to the visits for each treatment
session, we assumed one follow-up visit per course of treatment.

19.4.3

A QALY is a measure that combines both morbidity and mortality. The
measure is based on a utility that is normally between 0 and 1 (where 0 is
death and 1 is perfect health). If someone with a condition with a utility of q
(where q is between 0 and 1) is given a treatment that provides one year of
perfect health, then (1-q) QALYs are gained. If someone with this condition
is given a treatment that delays death by one year but does not change quality
of life, then q QALYs are gained.

In our previous studies we used sight years saved. QALYs gained have the
advantage that they allow results to be compared to studies of other health
care programs. QALYs do, however, entail some major assumptions. First,
they treat mortality, morbidity and quality of life as commensurate, so that
one can be traded off against the other. Second, disagreement exists as to
whether the utilities should be derived from surveys of doctors, patients or
the public. Third, the methods used in surveys to elicit utilities vary. For
example, the Visual Analog Scale (VAS), Standard Gamble (SG), Time
Trade Off (TTO), and Person Trade Off (PTO) can all give different values
[36].

Many modeling studies are not specific about how the quality adjustments
are derived. For example, several studies [15, 22, 37] use 0.69 for the utility
of blindness but this choice is not supported by reference to any literature
that justifies this number. Javitt and Aiello [20] use 0.45, citing a 1987
consultancy report by Drummond to the National Eye Institute [38].
Torrence and Feeny [39] report a utility of 0.39 for blindness. Brown et al.
[40] and Brown [41] suggest that this value may be appropriate for complete
blindness with no bilateral light perception. Their research indicates that the
utility should vary for the degree of sight loss. For patients with diabetic
retinopathy, they used the TTO methodology and found a utility of 0.66 for
20/200 to 20/400 vision and 0.54 for the ability to count fingers or perceive
light. Patients who have DME or PDR are, however, unlikely to have perfect
vision even with laser treatment. If we use Brown’s value of 0.84 for 20/20
to 20/25 vision, then the difference between the lower utility of blindness and
of 20/20 or 20/25 vision will be 0.84-0.54 which is 0.30. This is a similar
utility difference to that used by many other of the other modelers.

Quality-of-life estimates
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19.4.4 Discounting costs and benefits

In a screening program, the costs (staffing, equipment, stationery and so on)
are incurred immediately, whereas the benefits (years of blindness averted)
may not be accrued for many years into the future. Discounting of future
costs and benefits can help to evaluate this imbalance. Unfortunately there is
little consensus as to what discount rate should be used. Gold et al. [42]
recommend using 3% for costs and benefits, whereas, in the UK the National
Institute for Clinical Excellence [43] recommends using 6% for costs and
1.5% for benefits. These values can produce very different results.

19.5 RESULTS

19.5.1 The model population

The model can be run with an incident cohort population, with a prevalent
population or with a prevalent population plus a new incident population
each year. It was usually run in the latter mode as this was the most realistic.
The prevalent population was assumed to be unscreened. The simulation
was run for five years until most of the outstanding patients were screened
and the model was in steady state. In order to evaluate the benefits of
screening, results were collected from the steady state model.

For the cost-effectiveness analyses, we could not use a steady state analysis
because current benefits might relate to past treatment. For these runs, at the
start of the data collection, we simulated a cross-section of prevalent patients
excluding all those with treatable disease and those who had suffered vision
loss and followed the cohort until they had all died. The discounting of costs
and benefits was thus able to respond to the delay in realization of benefits.

All the simulation runs were performed for Type 1 and Type 2 diabetes.

19.5.2 Choice of base scenarios

Gold et al. [42] recommend that the modeled scenario should be compared to
the current scenario rather than a scenario with no interventions. The current
situation differs so much from place to place, however, that in common with
most modelers in this field, we have related the modeled scenario to a no-
screening scenario.

The results were averaged over 500 replications of the simulation in order to
reduce the standard deviation of the average years of sight saved to within
1.0% of the estimated mean.
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19.5.3 Results from runs

We generated results for Type 1 and Type 2 DM separately. Previously we
showed [29] that if the same policies are adopted for both groups,
approximately two thirds of the sight years saved are among Type 2 patients
and one third are among Type 1 patients. However, screening was more cost
effective for Type 1 than Type 2 patients. Below we present the results for
Type 1 and Type 2 patients together for the four screening models listed in
Section 19.3.3.

In Figure 19.2 we excluded combinations of screening sensitivities and
screening intervals which produced results below 85% of the maximum. It
shows the effect of different levels of screening sensitivity on years of sight
saved. These variations might represent different screening methods and
personnel. The more accurate methods might be expected to be more
expensive. For screening methods with lower levels of sensitivity it becomes
more important to screen more frequently and the advantage conferred by
having secondary screening in the ophthalmology clinic increases. Figure
19.3 shows the effect of reduced compliance and reduced sensitivity on years
of sight saved. When screening is frequent (i.e. for modes 1 and 2) patient
compliance and test sensitivity have a small effect on years of sight saved.
The effect is more pronounced when screening is less frequent (i.e., for
modes 3 and 4).

Figure 19.2 The effect on years of sight saved of different screening
policies and screening test sensitivity for a population of 500,000
individuals. Compliance is assumed fixed at 82%. The intervals are
those before and after background retinopathy is detected,
respectively.



SCREENING FOR DIABETIC RETINOPATHY 509

In this model, screening and treatment for sight problems was assumed to
have no effect on health apart from its effect on sight, In practice, screening
by a diabetologist or a general practitioner might be expected to be
associated with medical services, such as consultations leading to better
compliance with insulin, and screening for other complications. The QALYs
gained are thus conservative and in direct proportion to years of sight saved.
Sight years saved can therefore can be converted into QALYs gained. For
example, for a utility of blindness of 0.7 (see Section 19.4.3), the QALY gain
is 0.3 per sight year saved. The costs in Figure 19.4 are based on
institutional costs only, excluding the costs of blindness. The cost of
screening is the cost of using the mobile camera which is, in practice, rather
low for the better screening sensitivities, such as 80%, where more expensive
equipment might be needed.

Figure 19.4 shows that the first screening policy, in which follow-up
screening was in the outpatient clinic, was much more expensive than the
other three, in which all the screening took place in the community. Higher
discount rates for both costs and benefits gave rise to higher cost-
effectiveness ratios. The effect of a high discount rate for costs (6%) and a
low rate for benefits (1.5%) was to reduce the cost-effectiveness ratio below
the result in which there is no discounting.

19.5.4 Discussion of results

The results show the relative importance of screening sensitivity, patient
compliance and screening intervals on the cost-effectiveness of screening for
and treating eye disease caused by diabetes. Low values in one of these
parameters can be offset, to some extent, by the others. This arises because
the lower the sensitivity of screening and the lower the compliance, the more
likely it is that disease is missed. Less frequent screening results in a longer
time, on average, before a problem is picked up and treatment takes place.
When these effects occur together, the problem is compounded.

The results indicate that it is cost effective to screen in the community.
Where sensitivity and compliance are high, longer screening intervals appear
beneficial but there is little difference in years of sight saved over the range
of intervals we have chosen If the sensitivity were lower and the costs
remained the same, this difference would be decreased or reversed and
shorter time intervals for screening would appear to be relatively more cost
effective.

It would be desirable to include the cost of blindness but this is difficult to
estimate. An Australian study [44] suggests that the cost of a case of
blindness to the welfare state is about $14,656 Australian, i.e. about £6,000.
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Figure 19.3 The effect on years of sight saved of changing both
sensitivity and compliance for the different policies. The intervals

are those before and after background retinopathy is detected,
respectively.

Figure 19.4. Cost-effectiveness of treatment using a utility of 0.7
for blindness
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If this cost were included in the analysis then screening would appear cost
saving. However, most of this cost is the cost of a disability pension much of
which would be available to the elderly anyway.

We have found that it is difficult to follow the reference case costing method
recommended by Gold et al. [42]. It has not been possible to find the costs
of blindness incurred by the state or individual. Furthermore, we compared
screening scenarios with no-screening scenarios rather than opportunistic
screening and treatment, because policies varied so much from place to
place. From this point of view we have overestimated the benefits of
screening. We have, however, developed a robust population model of the
progression of diabetic retinopathy, that can evaluate the impact of screening
and treatment, including opportunistic treatment, where the data are
available.

19.6 AVENUES FOR FURTHER RESEARCH AND CONCLUSIONS

19.6.1 Other complications of diabetes

Eastman et al. [22, 37] and Tomar et al. [14] have published models that
describe the different complications of diabetes. Eastman et al. do not
consider compound health states; they assume that different complications
are independent of each other. This assumption is likely to be unrealistic.
Interdependencies are described in Tomar et al.’s model but a very limited
number of combinations are allowed. Interdependencies are relatively easy
to describe in a discrete event simulation where individuals have attributes
that influence their progress through the system. The major problem is to
provide the data to drive such a model when the interdependencies are not
fully understood. This interdependency will extend to the risk of death,
which in our current model is related to the eye condition. A full model of
diabetes progression would make it possible to assess methods of controlling
blood sugar levels and treatments to prevent the complications of diabetes. It
would be possible to assess the benefits of screening for diabetes as well as
for any individual complication. Discrete event simulation would be an
appropriate technique for doing this.

19.6.2 Costs and QALYs

Further work is needed to assess costs, particularly the costs associated with
blindness in older people. There also needs to be some further research and
rational discussion about the appropriate values of quality-of-life utilities to
be used in these models. The problems in determining QALYs, finding the
current opportunistic use of resources and interpreting the results from
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discounting the costs and benefits are present in many, if not all, modeling
studies leading to cost-effectiveness analyses [45].

19.6.3 Other applications

Discrete event simulations of health policy issues follow individuals over
long periods of time, possibly a lifetime. The individuals have characteristics
that influence their progress through the system and their response to
treatments. Simulations of thousands of individuals may take just a few
minutes, but multiple iterations are needed in order to get statistically
significant results.

Some of the areas in which discrete event simulation has been used are as
follows:

The evaluation of services for patients with end stage renal failure [46];

Determination of service requirements for patients with AIDS [47];

Screening for helicobacter pylori to prevent peptic ulcers and gastric
cancers [48];

Interventions for the prevention of coronary heart disease [49];

Treatment and secondary prevention in coronary heart disease [50].

All of our recent models [46, 48, 50] and the coronary heart disease
prevention model from the London School of Hygiene and Tropical
Medicine [49] have been developed with the POST simulation software.
This software enables an entity to be engaged in more than one activity, or to
be present in more that one queue at once. This is a significant advantage
because we can describe a patient’s natural history of the disease and,
independently (or not as we wish) provide screening or interventions.

We have discussed many of the benefits of discrete event simulation.
Despite these benefits, this method is not widely used for cost-effectiveness
analyses, perhaps because it is perceived to be time consuming, difficult to
do and lacking in transparency.

Simulation runs are indeed time consuming, but run times have reduced
significantly with the introduction of more powerful computers, and the
number of runs can be reduced by the careful use of variance reduction
techniques.
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There are now many interactive graphical packages that make discrete event
simulation transparent and easy to use. One drawback of these packages is
that, for any application, an interface is needed to deal with the extensive
data requirements. This may need to be programmed or linked to a
spreadsheet. We have discussed the advantages of using POST. Each of our
applications is “user-friendly” but further research is needed to enable this
package to provide a generic data and graphical interface for health policy
models.

19.6.4 Conclusion

Discrete event simulation, using POST, enables us to explore the interaction
between screening and the natural history of disease. It is possible to model
different and interacting disease processes, such as macular edema and
proliferative retinopathy. Discrete event simulation is a powerful tool for
decision support for policy decisions and, in particular, for cost-effectiveness
analyses in a wide variety of health service applications.
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SUMMARY

Decision making for bioterror preparedness involves estimating the
consequences of different attack scenarios paired with alternative
preparedness and response policies, and selecting an appropriate strategy to
minimize deaths, disease, and costs to society. Smallpox vaccination policy
provides an excellent case study of these concepts in action. We review both
the smallpox vaccination policy debate in the United States circa 2002, and
the successful use of operations research methods to influence policy in this
arena.
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20.1 INTRODUCTION

While the possible terrorist use of biological agents against civilian targets
was a subject of concern before September 11, 2001 [1, 2], the deliberate
mailings of anthrax-laden letters and resultant infections, deaths and panic
that ensued in October of that same year provided a bioterror “proof of
concept.” Policy makers in the United States and abroad suddenly found
themselves faced with numerous decisions regarding bioterror preparedness,
and what to do about smallpox quickly topped the list of concerns.
Smallpox vaccination policy provides a very interesting case study for those
interested in the use of OR/MS methods in confronting bioterror and health
issues more generally, especially since OR modeling influentially informed
the policymaking process in this instance.

This chapter reports some of the simple yet powerful arguments employed in
the smallpox vaccination policy debate. First described are the issues and
positions held during this debate, emphasizing the clash between the “bio”
and the “terror” in “bioterror.” Following this, three simple choice models
that were used repeatedly in the arguments are considered. A key common
idea across these examples is the importance of focusing on the
consequences of decisions made rather than the details of what is believed to
be the most likely smallpox scenario, as will become clear shortly.
Concluding comments follow.

20.2 VACCINATION POLICY IN THE LARGE AND IN THE
SMALL(POX)

The eradication of smallpox surely stands as one of the greatest public health
achievements of the last century [3]. However, fear that smallpox could be
employed as a weapon of bioterror prompted public health and security
officials in the United States and elsewhere to revisit the issue [1, 2, 4]. As
of November 2001, the Centers for Disease Control and Prevention (CDC),
acting upon the advice of the Advisory Committee on Immunization
Practices (ACIP), had developed a smallpox emergency response policy [5].
Absent any analysis other than analogy to the procedures employed by the
World Health Organization (WHO) in the global smallpox eradication
campaign, the CDC plan called for a ring vaccination response: confirmed
smallpox cases would be isolated, their close contacts would be traced and
vaccinated, contacts found febrile would be quarantined, while
asymptomatic contacts would monitor and report their temperatures to local
public health officials. Only if this policy failed to contain a smallpox
outbreak would an (unspecified) “broader” vaccination response be initiated.
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It did not take long for this policy to come under intense public scrutiny. In
an influential article published in the New England Journal of Medicine, Dr.
William Bicknell, the former Commissioner of Health for the State of
Massachusetts, argued the case for voluntary pre-attack vaccination against
smallpox [6]. Noting that widespread vaccination would greatly reduce the
value (to terrorists) of a smallpox attack, Bicknell further noted the lack of
population immunity against smallpox in the United States today (in contrast
with the much higher levels of immunity due to prior vaccination campaigns
and survival from disease in those countries where the WHO finally
eradicated smallpox). Were ring vaccination employed, Bicknell worried
that “An epidemic is highly likely to outrun the vaccinators.”

In this same issue of the New England Journal, Dr. Anthony Fauci, the
highly respected Director of the National Institute of Allergy and Infectious
Diseases (NIAID), voiced similar concerns [7]. He wrote that “...there is
considerable skepticism about the feasibility of this strategy because of the
possibility of simultaneous attacks in multiple cities.” Fauci also noted the
difference in the degree of population immunity against smallpox between
the countries of the WHO campaign and the United States today, the
logistical difficulties posed by ring vaccination, and the strategic advantage
pre-attack vaccination would offer by removing the incentive for a smallpox
attack.

However, both Drs. Bicknell and Fauci recognized an important rationale for
limiting vaccination, namely, the potential for severe complications,
including death, that could result from widespread use of the vaccinia anti-
orthopox vaccine [8]. While Dr. Bicknell argued that one could proceed
with a careful pre-attack vaccination plan that would screen out those at
greatest risk of complications [6], Dr. Fauci called for “…an open and public
dialogue on the advantages and disadvantages of universal voluntary
vaccination, as well as on the smallpox response plan of the CDC” [7].

Such a public dialogue indeed unfurled, with much of the attention focused
on a series of ACIP meetings that took place in June 2002. Meanwhile, at
the invitation of Dr. Ellis McKenzie from the Fogarty International Center of
the National Institutes of Health, the authors (jointly with David Craft) had
developed a mathematical model that embedded the logistics of alternative
emergency response policies into a smallpox disease transmission model [9].
The model and its attendant results had yet to be published in June, though
they had been presented at a small number of public and private scientific
meetings.

On June 15, ACIP held a public forum on smallpox vaccination policy at the
Institute of Medicine in Washington, DC [10]. Following introductory
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remarks by Dr. Fauci and others, a review of the clinical features of
smallpox, and the historical rationale for the CDC’s proposed response
policy, the basic results from our model were presented. As detailed in [9],
the bottom line was clear: unless faced with a very small attack with an
agent of only mild infectiousness, ring vaccination would result in many
more deaths – perhaps by a factor of 200 – than would immediate mass
vaccination in the area of the attack. Any degree of pre-attack vaccination
would make any post-attack policy work better, but absent such pre-attack
vaccination, the ring policy would almost surely fail [9, 10 pp. 18-20]. On
the basis of this presentation at the Institute of Medicine forum, the first
author was invited to brief government officials at the White House
Conference Center on July 9.

Also presented at the public forum was Dr. Alan Zelicoff’s detailed account
of a smallpox outbreak in Aralsk, Kazakhstan in 1971 [10 pp. 20-21, 11].
This outbreak is important to understand, for it occurred among passengers
on a research vessel that passed by the former Soviet bioweapons testing site
at Vozrozhdeniye Island in the Aral Sea. As Dr. Zelicoff explained, “It is
probably the case that smallpox was aerosolized, which answers the age-old
question of whether or not smallpox is in fact aerosolizable and infectious in
that state.”

In spite of these findings, on June 20 ACIP recommended vaccinating only
15,000 first-responders nationwide [12]. However, this recommendation
was quickly dismissed. On July 7, the New York Times ran a front-page
story reporting that the federal Department of Health and Human Services
was leaning towards recommending vaccinations for about 500,000 health
care and emergency workers [13]. The story also summarized our main
findings, Dr. Zelicoff’s report, and provided the sense that a shift in thinking
regarding the threat of smallpox along with control options was beginning to
take hold.

On the afternoon of July 7, the first author received a phone call with an
invitation to appear the next morning on the Today Show. In a lengthy
interview with Katie Couric, the lessons from our analysis regarding the
prospects for control of a smallpox attack were discussed. The next day, our
results were presented in a three-hour closed-door meeting with
representatives from the Office of the Vice President, National Security
Council, Office of Homeland Security, Council of Economic Advisors,
Health and Human Services, and other government agencies.

This meeting revealed clearly two competing schools of thought – the “bio”
and the “terror” in bioterror – that have surfaced repeatedly in the smallpox
debate. Adherents to the bio view consider smallpox preparation and
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response as just another public health problem, and not surprisingly, the bulk
of the “bios” can be found in the medical and public health community, as
well as agencies such as the Department of Health and Human Services and
the Centers for Disease Control. Bios place great weight on historical
smallpox outbreaks and control methods, and worry deeply about possible
vaccine complications. This latter concern is consistent with the principle of
primum non nocere (first do no harm), which typifies the beliefs of many
health and medical practitioners.

However, those steeped in military strategy and homeland security,
economics, public administration and policy making more generally,
including some with medical training, expressed the more utilitarian view of
getting the greatest good for the greatest number. For example, widespread
vaccination against smallpox now could be viewed purely as a matter of
strategy by depriving terrorists of an effective weapon. Or, minimizing the
time required to bring an outbreak under control could be viewed as an
important objective. In considering what to do about a smallpox bioterror
attack, the historical record is less important than the terrorist imagination.

That these points of view conflict is obvious: to get the greatest good for the
greatest number, it might be required to first do some harm. To vaccinate
widely either before or after an attack, one must face the risk of vaccine
complications including death.

Our analysis of emergency response to a smallpox attack appeared in the
online Proceedings of the National Academy of Sciences on July 12 [9]. On
July 14, the first author traveled to Israel, and over the course of two weeks
met with leading Israeli officials to discuss smallpox response policy in a
series of public and private meetings and presentations [14]. Israel is an
interesting contrast to the United States, for essentially the same debate
transpired there, but over a much shorter time period.

Our results were presented to CDC staff in Atlanta on August 9. This was a
helpful visit, for many had misinterpreted [9] as a call for immediate pre-
attack vaccination of the entire United States. While CDC officials
continued to disagree with some assumptions and findings of that paper,
these disagreements were now much more informed. Indeed, by the end of
September, CDC for the first time released a smallpox mass vaccination
clinic guide [15], with detailed instructions for clinic operations as well as
the estimated number of persons necessary for operating such clinics, with
an eye towards rapidly making such clinics operational in the event of a
smallpox attack.
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Following months of deliberation, on Friday December 13, 2002, President
Bush announced his smallpox vaccination policy [16]. During phase 1,
500,000 members of the military were ordered to receive the vaccine; as
Commander in Chief, the President was also vaccinated. In addition,
500,000 first responders – those most likely to come into contact with
smallpox cases in the event of an attack and those responsible for
vaccinating the general public in the event of an emergency – were slated for
vaccination. The general public would only receive the vaccine in the event
of an actual attack during this phase; indeed, the President stated specifically
that neither his family nor his staff would be vaccinated. The second phase
of this plan called for the vaccination of roughly 10 million doctors, nurses,
police, fire, and other emergency personnel during 2003. Finally, starting in
2004, phase 3 of the policy allowed for the voluntary vaccination of the
general public. As with the first phase of this plan, the entire public would
be eligible for vaccine in the event of an attack.

Thus, from June through December of 2002, smallpox vaccination policy in
the United States evolved from ACIP’s recommendation to vaccinate only
15,000 first responders to a much broader plan, and from commitment to a
limited ring vaccination response in the event of an attack to preparation for
rapid mass vaccination of the affected population in an emergency.
Mathematical models played a key role in the arguments for this change in
policy. Below, we review some of the simple yet effective modeling
arguments that were employed to good effect in the debate over smallpox
vaccination policy.

20.3 NATURAL OUTBREAK OR BIOTERROR ATTACK? RING
VERSUS MASS VACCINATION

As mentioned previously, ring vaccination was deployed in the World
Health Organization’s global smallpox eradication program. This policy
worked well in areas of moderate to high immunity, for controlling natural
outbreaks, and in populations that had low mobility (though even under these
circumstances, the value added by ring vaccination has been questioned
[17]). It is important to consider each of these points. First, before ring
vaccination was deployed to “mop up” the last vestiges of smallpox
worldwide, large-scale vaccination campaigns had already increased the
degree of immunity in many countries to the point where between 25% and
75% of the population were already immune from smallpox [3]. Moreover,
while smallpox killed roughly 30% of its victims, the surviving 70% were
effectively immune to reinfection. Such immunity effectively reduces the
infectiousness of the virus, since there are fewer persons who can be
infected, making it much more difficult for the infection to spread – and
much easier for ring vaccination to contain the infection.
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Second, the outbreaks in question were all natural. One can think of a
natural outbreak as infections as yet undetected by prior control efforts.
Typically such “leftover” infections numbered in the single digits. By
contrast, a bioterror attack would involve the deliberate infection of as many
persons as possible. The potential for an aerosol attack makes an initial
outbreak of hundreds or even thousands of infections feasible (e.g. by
deployment in a congested area such as a train station, airport, sporting
event, concert etc.), if not highly likely. Thus in preparing for response to a
smallpox bioterror attack, it is important to decide the outer level of risk
against which one wishes to defend. It makes little sense to focus only on
policies that work for limited outbreaks of the form ring vaccination was
designed to contain.

Third, smallpox was largely endemic in the rural areas of countries where
sanitation and other health conditions were generally poor. Person-to-person
contact in such immobile populations is thus somewhat limited. For
example, in villages that are spaced 30 miles apart, the imposition of a 20-
mile travel quarantine seems sensible – it could prevent disease from leaving
one village and entering another. Incidentally, the November 2001 CDC
emergency response plan stated that asymptomatic contacts of smallpox
cases would also be restricted to traveling no further than 20 miles from their
place of residence [5, Guide C, p. C-7]; one can only marvel at the presumed
effectiveness of such a plan when applied to New York or any large
American (or other) city!

In [9], the view taken was deliberately rather different than that promulgated
by ACIP and CDC. Rather than consider only small outbreaks, a large
attack that infects 1,000 persons in a city of 10 million persons was
considered as a base case, though several parameters were varied over wide
ranges in sensitivity analyses. For example, the number of secondary
infections transmitted by each infected person early in the outbreak (the so-
called reproductive number denoted by was assigned a value of 3 in this
base case (at the lower end of the range estimated recently in [18] and thus
favorable to ring vaccination), though this too was varied from 1 through 20
in sensitivity analyses.

Others have criticized such assumptions as overly pessimistic, preferring
instead to focus on more likely scenarios. For example, Halloran et al state
that, “...we explored what we consider to be the most likely method of
attack, namely, a few infected individuals moving through the community”
[19]. In evaluating the choice between ring versus mass vaccination, then, a
question of modeling strategy emerges – should one focus on the “most
likely” scenario, a “worst case” scenario, or some combination of these or
other possibilities? This choice is important, for without conducting any
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analysis, it seems clear that ring vaccination is optimal for small outbreaks
with low levels of infectiousness while mass vaccination is optimal for large
outbreaks with an infectious agent.

Consider the following simple argument: It is not sensible to focus on the
“most likely method of attack” and decide upon a response policy based
solely on such a scenario, even if one believes that, should an attack occur at
all, the odds are overwhelming that only a small attack would transpire.
Rather, one should consider the consequences of different response policies
when the attack scenario itself is uncertain. The idea is not to guess what
will happen and then pretend that is what will transpire. The idea is to
choose a robust response policy that will deliver good results no matter
what.

To fix ideas, consider two possible attack scenarios, which we refer to as Big
(e.g., aerosol attack with highly infectious virus) and Small (e.g., a single
infected terrorist trying to spread smallpox by mingling in the population).
Also, consider two possible responses – ring (or traced) vaccination (TV)
and mass vaccination (MV). Using the models reported in [9], one can
estimate the expected number of deaths that would occur for each of the four
response strategy/attack scenario combinations. For a given
strategy/scenario pair, let denote the expected number of
deaths that would result (where Strategy {TV,MV} and Scenario {Big,
Small}).

The decision problem is to choose a response strategy – TV or MV – once
an attack has been detected. However, at the time one would face this
decision, it would not be known whether the attack was Big or Small.
Letting denote the conditional probability that that attack is Big (given that
an attack has occurred), the choice problem is represented by the decision
tree shown in Figure 20.1.

Presuming that the objective is to minimize the expected number of deaths,
the optimal decision is to choose MV providing

which is equivalent to selecting MV if
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Figure 20.1 Decision tree: choosing a response strategy

As a numerical example, let a Big attack be specified by 1,000 initial
infections with and a small attack correspond to a single initial
infection with Then using the model in [9] (with all other
parameters set at the base case values reported there), one obtains the
following “payoff matrix” for the number of deaths that would result from
considering all Strategy/Scenario pairs:

From these figures, it is apparent that the death-minimizing choice is to
respond with MV if the probability of a Big Attack exceeds
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This means that even if one is 99.99% certain that the attack is Small, it is
still optimal (to a death minimizer) to respond with mass vaccination.
Worded differently, even though one would almost surely employ TV with
perfect information regarding the size of the attack, absent such information
one should respond with MV.

Though simple, this example makes a very powerful point. It is a mistake to
first envision the most likely mode of attack (as argued in [19]), and then
design a response strategy that is optimal for such an attack scenario. As
argued in [9], the consequences of choosing the wrong response policy are
highly asymmetric (as is clear from the payoff matrix shown above). In the
face of a small attack, choosing MV over TV leads to only a few expected
incremental deaths (8.1 in the example above). In the event of a large attack,
however, responding with TV would result in such a disaster that it is
sensible to avoid this possibility altogether by responding with MV in the
event of an attack.

20.4 BUILD THE BUTTON NOW: VACCINATING THE
VACCINATORS

The previous section suggested that mass vaccination is the expected death
minimizing response in the event of a smallpox attack. However, in order to
implement mass vaccination after an attack, those charged with vaccinating
the public (as well as those responsible for receiving and treating initial
smallpox cases) must themselves be immunized. Should one wait until an
attack occurs before “vaccinating the vaccinators,” or instead should one
“build the button now?” That is, should one vaccinate a sufficient number
of vaccinators now so that, in the event of an attack, localized mass
vaccination of the population in the area of the attack could begin
immediately?

In [9], it is argued that response delay is equivalent to increasing the size of
an attack, since infections would continue to spread before actions to control
the epidemic could be launched, increasing the total number of persons
infected at the time response operations begin. However, as discussed
earlier, vaccination against smallpox is not risk free. Thus, unlike the
decision regarding which response strategy to employ upon detecting an
attack, choosing how many vaccinators (and other first responders) to
vaccinate now must depend upon the probability of an attack.

A simple version of this decision problem is illustrated in Figure 20.2. If
one opts to “build the button now” and vaccinate n first responders, a
fraction f of whom are expected to die from the vaccine itself, then one
should expect nf deaths among first responders in the absence of an attack.
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Figure 20.2 Decision tree: build button now or wait for attack

However, if an attack does occur (which it will with probability then in
addition one would expect d(MV, no delay) deaths to occur in the
population. If instead one opts to wait for an attack before “vaccinating the
vaccinators,” then there will be no deaths in the absence of an attack, but nf
+ d(MV, delay) if an attack does occur (which will occur with probability

assuming that an attack would be less likely given evidence of
serious preparation).

Again choosing death minimization as the objective, it is sensible to
vaccinate n vaccinators now if

Since a sufficient condition to build the button now is given by
equating to in the expression above, which means preparing now if
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As an illustration, in [9] there were 5,000 full time vaccinators, which would
translate to 15,000 vaccinators each working eight-hour shifts. Presuming a
Big Attack, that mass vaccination would be employed in such an event, and
that failing to prepare in advance would contribute an incremental one-day
of response delay to the base case studied in [9], d(MV, no delay) = 560
deaths while d(MV, delay) = 653 deaths. Given that vaccination itself
carries a 1 in 1 million risk of death, with these figures it makes sense to
build the button now if the probability of an attack when such preparations
are undertaken exceeds

To ascertain whether this is a large or small threshold for the unknown
probability of attack, it is important to note that the correct time scale to
consider is the duration of time over which vaccination against smallpox
remains effective. This is on the order of five to 10 years, so if you believe
the likelihood of an attack over a 5 to 10 year period from now exceeds 1.6
in 10,000, it is prudent to prepare now.

Israel’s decision-making can be contrasted with US policy in light of the
results presented above. While US officials continue debating what to do
about smallpox, Israel quickly (i.e. over a period of several weeks) decided
to “build their button now.” Approximately 15,000 Israeli first-responders
have already been vaccinated, while a plan for locating clinics and rapidly
vaccinating the Israeli public has already been determined [20]. Israel’s
policy of “vaccinating the vaccinators” stands in contrast to preparations in
the United States [21].

In the United States, the CDC has released a vaccination clinic guide [15].
Extrapolating from this guide suggests that to staff a sufficient number of
vaccination clinics to vaccinate the entire US population within 10 days of
an outbreak requires the vaccination now of approximately 1.25 million
doctors, ambulance drivers, police officers etc. To reach the population
within 5 days would double this requirement to roughly 2.5 million. Given
these simple back-of-the-envelope calculations, it remains difficult to
understand why the government is currently calling only for the vaccination
of 510,000 hospital workers.

20.5 WHY WAIT? PRE-VERSUS POST-ATTACK VACCINATION

In view of the benefits that accrue from preparing in advance for a smallpox
attack, many have argued that perhaps we should “go all the way” and
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vaccinate the entire population now. Whether it is sensible to do so again
depends upon the vaccine fatality rate, the risk of attack, and the
consequences of an attack should one occur. As discussed earlier, the
consequences of an attack further depend upon the particular response policy
employed, thus whether to vaccinate the entire population prior to an attack
depends in a crucial way on the policy one would employ to control an
epidemic post-attack.

This decision problem is shown in Figure 20.3. If the entire population of N
persons were vaccinated, one would expect Nf deaths as a result. If instead
one opts to only vaccinate post-attack, assuming that a mass vaccination
response is employed, one would expect d(MV) deaths. An attack will occur
with probability if no vaccination occurs pre-attack. We ignore vaccine
fatalities among first-responders as these would be negligible relative to
vaccine fatalities in the general population, let alone deaths in the event of a
smallpox attack. We also assume a perfect vaccine and 100% vaccination
coverage; departures from both of these assumptions could easily be
incorporated without changing the basic result.

Figure 20.3   Decision tree: pre- versus post-attack vaccination

To a death minimizer, it makes sense to vaccinate the entire population pre-
attack if

which again yields a threshold on the attack probability – it is sensible to
act now if
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Consider again the base case of a Big Attack from [9], where N= 10 million,
f = 1 per million, and d(MV) = 560. With these parameters, it would only
make sense to vaccinate the entire population now if the probability of attack
exceeds 10/560 or about 1.8%.

While some would consider this to be a small probability upon recalling that
it represents the likelihood of an attack over a 5 to 10 year time horizon, note
that it is two orders of magnitude higher than the attack threshold justifying
the immediate vaccination of first-responders. Also, note that if traced
vaccination were to be employed in response to an outbreak, then the
threshold would drop to 1/11,000 due to the expected 110,000 deaths that
would result were TV invoked post-attack.

This simple model suggests an explanation for much of the controversy in
the smallpox debate. Whatever post-attack strategy is employed, if one is
highly confident that the resulting outbreak can be quickly controlled, then
there is little pressure to vaccinate the population now. Alternatively, if one
harbors doubts regarding the ability to contain a smallpox attack, pre-attack
vaccination becomes a more attractive option. Clearly, citizens differ in
their assessments of government’s ability to provide protection from
smallpox post-attack. Citizens also differ in their views regarding the
likelihood that such an attack could occur. Given such heterogeneity in
views regarding risks and consequences, it is hardly surprising that many
seek access to smallpox vaccine now, while others prefer to wait.

While the arguments above suggest that it is not sensible to vaccinate the
entire country if the risk of an attack remains below about 1.8%, this model
assumes a common valuation of risks and benefits. However, in a
democracy such as the United States, people assume different risks and
benefits all the time. While there is roughly a 1 per million chance of death
from a smallpox vaccination, those of us who drive face a 145 per million
risk of death each year from road accidents. Some people smoke, some
drink and use illicit drugs, and some jump out of airplanes for sport. As Dr.
Bicknell would argue, why shouldn’t individuals be afforded a choice in this
instance as well [6], especially since as previously noted, any amount of pre-
attack vaccination makes any post-attack policy work better? This position
presupposes that individuals are truly knowledgeable about the risks of being
vaccinated or not (or can be made aware of these risks via communication of
the facts), are capable of rational decision making, and thus the only
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differences among individuals are their preferences/beliefs regarding risks
and benefits.

20.6 CONCLUSIONS

Smallpox was eliminated from the planet more than 20 years ago, but it
could return as a weapon of bioterror. Barring an accident at one of the two
known smallpox repositories (in Atlanta and Novosibrisk, Siberia), the
appearance of smallpox anywhere in the world must be considered the result
of a deliberate release. While the WHO’s eradication campaign provided a
wealth of data pertaining to the spread and control of natural outbreaks, there
are simply no data at all that describe how smallpox would spread as the
result of a bioterror attack. Some have assumed that deliberate outbreaks
would mimic their natural counterparts, insinuating that methods believed
successful in the past would surely work again in the future. By contrast, the
arguments of this chapter do not suggest that the way to prepare for a
disaster is to assume that it cannot occur (nor for that matter do they suggest
that the way to evaluate a policy is to assume that it works, as ACIP did in
recommending ring vaccination in response to a smallpox attack). Rather,
simply allowing for the possibility that a large bioterror attack could occur
greatly changes the optimal preparedness and response strategy, even if the
probability assigned to such an attack remains very small. The
consequences of decisions matter more than the details of the “most likely
scenario” in considering what to do about smallpox and other bioterror
agents. Simple models have served well to make this argument in the
ongoing smallpox debate.

In spite of such arguments and the President’s policy decision of December
2002, one December later, the United States is still unprepared for a
smallpox bioterror attack. Nationwide, fewer than 40,000 first responders
have volunteered to receive the smallpox vaccine as of December 2003, far
short of the 10.5 million that were to have been immunized by the end of
Phase II. As detailed elsewhere [22], there are numerous administrative,
political, and public health reasons for this state of affairs. Whether or not
the pre-event smallpox vaccination program will recover remains to be seen.
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SUMMARY

The continued shortage of organs implies that the organ allocation policy
determines who lives and who dies. This creates one of medicine’s most
vexing dilemmas, and the crux of this dilemma is the tradeoff between
clinical efficiency and equity. This chapter describes OR models that have
been used to study the problem and the related tradeoffs. A taxonomy of the
literature is developed, and a description of the key analytical and
computational models is provided. Directions for future research are also
presented.

KEY WORDS

Kidney allocation, Equity, Efficiency, Queueing models, Fluid models,
Simulation, Evidence-based medicine



MODELS FOR KIDNEY ALLOCATION 539

21.1 INTRODUCTION

Kidney transplantation is the preferred treatment for patients suffering from
chronic renal insufficiency (CRI), also known as chronic kidney failure.
However, the supply of cadaveric kidneys for transplantation has failed to
meet the ever-increasing demand. In 2000, 22,271 new candidates joined the
kidney transplant waiting list but only 9,278 transplantations were
performed. At the end of the same year, 47,873 patients were on the waiting
list, and its size has been growing steadily [1]. The continued shortage of
organs creates several challenges related to their allocation and distribution
that can be addressed using carefully crafted OR models. This chapter
provides the relevant institutional background about the kidney allocation
problem and then presents a review of the OR literature on kidney allocation
models. It concludes with a discussion of fruitful avenues for future
research.

21.2 THE KIDNEY ALLOCATION SYSTEM

The origins of the kidney allocation system employed in the US are traced to
the National Organ Transplant Act (NOTA) enacted by the US congress in
1984. The Act established a national organ sharing system, the United
Network of Organ Sharing (UNOS), whose purpose is to maintain a national
transplant waiting list and to coordinate the activities of the local agencies
that procure the organs for transplantation. In broad terms, the system is
organized as follows: There are 69 regional Organ Procurement
Organizations (OPO) that procure donated organs in their region and
coordinate their transplantation to patients living in the same region; such
patients are called local patients. These OPOs are organized into 11 broader
geographic regions. Organs are procured by the OPO who then uses an
allocation algorithm approved by UNOS to prioritize local transplant
candidates. If an appropriate candidate is not found within the OPO, then the
search is broadened to include the whole region in which the OPO belongs,
and if it fails in that stage, the search becomes national.

The basic allocation algorithm has evolved over the years to reflect the
expanding nature of medical knowledge but its key ingredients have
remained constant. First, organs must be transplanted to patients who are
blood-compatible but not necessarily rhesus-type compatible. Second,
organs should not be transplanted to presensitized patients; these are patients
who may exhibit an immune response to the proteins in the donor’s organ.
An immunological test referred to as the presensitization test must be
performed in order to determine the risk of such a reaction. Only patients
who test negative (also known as negative-crossmatch or non-presensitized
patients) can receive a transplant [2-4]. Third, patients must be in reasonably
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good physical condition (good relative to the CRI standards) and must be
psychologically ready for the operation and likely to comply with the post-
operation instructions of the surgeon. Fourth, it is desirable for the so-called
tissue type of the donor and tissue type of the patient to match. The tissue
type, also known as HLA type, is a combination of six proteins: Two of type
A, two of type B, and two of type DR. Empirical and clinical evidence show
that when the donor and recipient share all six proteins in common (zero
mismatches), the risk of graft rejection is minimized (graft is the medical
term for the transplanted kidney). The risk increases with the number of
mismatches, and so allocating an organ to the recipient with the smallest
number of tissue type mismatches reduces the chance of graft failure; the
number of mismatches is the number of donor HLA proteins that are absent
in the recipient.

The exact algorithm used is based on the UNOS point system but individual
OPOs may request an exemption and implement their own variation. In the
point system, each transplant candidate receives a number of priority points
based on the total number of tissue matches. To compensate candidates with
rare tissue types, the policy also awards points based on the candidate’s
waiting time and rank on the waiting list; consequently, candidates do not
stay on the waiting list indefinitely. Finally, the system allocates priority
points to candidates with high panel reactive antibodies (pra); the pra of a
candidate is an estimate for the probability that the candidate will
crossmatch positive with a randomly selected donor. The pra points ensure
that a golden (but rare) opportunity of a negative crossmatch will not be
missed by those candidates. The details are described in Table 21.1. Once
candidates are prioritized, organs are allocated according to the following
sequence: First, the organ is offered to an identical blood-type zero antigen
mismatched local patient, then regionally and then nationally. Then it is
offered to a blood-type compatible zero-antigen mismatched patient using
the same geographic hierarchy. Finally, the organ is offered to all other
blood-type compatible candidates ranked according to their total number of
points. The algorithm also provides for exchanges between OPOs that are
forced to share zero antigen mismatched kidneys and it also specifies in
unambiguous terms the criteria used to register patients on the transplant
waiting list in order to avoid abuses in waiting time points.

A recent modification in this system has been the introduction of a waiting
list for so-called “expanded-criteria donors.” These are older donors who
typically provide organs of marginal quality. Even though these organs may
not be appropriate for all transplant candidates, some candidates, together
with their physicians, may find them appealing. Hence, patients can now
declare their willingness to accept these marginal kidneys. They then join the
corresponding waiting list where the allocation is done according to First-
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Come First-Transplanted. These patients remain eligible for the so-called
“standard” kidneys and their enrollment in the waiting list for “marginal”
kidneys does not affect their standard priority in any way.

While the development of the current system has evolved over several years,
important aspects of it remain controversial. In particular, despite repeated
efforts to achieve equity in access to transplantation, several demographic
groups and patients in a few geographic regions wait much longer than the
national average. The problem is particularly acute for African Americans
who are 46% less likely to receive a transplant than Caucasians. Data on
transplantations performed between 1988 and 1992 show that 30.3% of all
African American transplant candidates receive a transplant within 5 years
from the onset of CRI while the corresponding percentage for Caucasians is
56.7% [5]. While several hypotheses have been proposed for this
observation, the most appealing one is that “good” tissue matches are less
likely to occur for African Americans because they have a more diverse
genetic makeup and because there is an imbalance in the supply of organs
from African American donors. Specifically, while African Americans make
up only 10% of all donors, they constitute 30% of the CRI population.
Because the tissue type of a donor is unlikely to match the type of a recipient
of a different race, African Americans are much less likely than Caucasians
to receive a large number of tissue match points.

In this environment of acute organ shortage, a systematic modeling-based
analysis of the allocation system can better clarify the main tradeoffs and can
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enable more informed decision-making. OR models have already
contributed to the debate. The remainder of this chapter will describe the
key contributions and will outline future research opportunities.

21.3 TAXONOMY OF THE LITERATURE

OR models can be used to illuminate the decision-making behavior of the
different parties. In the context of the allocation problem, the relevant parties
are the central planner (UNOS) who determines the allocation policy, and
the individual patients who may wish to determine whether to accept an
organ. To study the choices of these parties one may employ analytical
models that can be used to develop “optimal” allocation policies, or
analytical models that derive closed-form expressions for performance
evaluation, or simulation-based models that provide performance evaluation.
In each case, the critical issue that needs to be resolved is the determination
of the relevant performance measures that will be used either for
optimization or for performance-evaluation. Because of the underlying
complexity of the problem, a credible analytical model must be validated
using a computer simulation model. Table 21.2 categorizes the existing
literature; this includes literature that is directly motivated by the kidney
allocation problem as well as more general literature that is deemed relevant.

The table is not meant to be exhaustive. Rather, it highlights the majority of
the relevant papers in each area. References in these papers provide a more
comprehensive overview of the literature. Gaps in the table indicate lack of
relevant papers.

In the remainder of this chapter, we will describe the main models in each
category, starting with models for patient decision making.

21.4 MODELS FOR PATIENT DECISION MAKING

In the current environment of acute organ shortage, one would expect that
very few patients would have any reason to refuse a kidney offered by
UNOS. However, approximately 45% of all organs are refused by the first-
offered candidate [1]. These refusals are typically made by the transplant
surgeons and they reflect their own experience and beliefs about the type of
organs best suited to their patients [1].

David and Yechiali [6] present a stylized model that captures such decision
making. In their model, the patient (or the surgeon) receives offers in
discrete epochs. In epoch an organ offer is
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received. The sequence of organ offers consists of independent identically
distributed random variables with probability distribution function

The decision at time is whether to accept or reject the

offer. If the offer is accepted, a reward is gained. The function

is a non-increasing discount function. Further, the process may

terminate by itself because of patient death.

The authors solve the optimal stopping time problem under a variety of
assumptions and they obtain insightful expressions. To illustrate, consider

the case where the discount function is the death rate is r (that
is, patient lifetime is exponential with rate r), and offers arrive according to
a time-homogeneous Poisson process with intensity Then, the optimal
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stopping time is to accept offers with reward that exceeds a threshold
obtained by the unique solution to

This expression implies that the decision threshold   increases as the offer
arrival rate increases, but it decreases as the discount rate or as the death rate
increases. Hence, patients are more selective when they expect frequent
offers, but they becomes less selective when they are “impatient” or when
their mortality rate increases.

Ahn and Hornberger [7] extend this basic model to improve its clinical
relevance. Their analysis assumes that the patient can be in one of five states
in each period: alive on dialysis awaiting a transplant; not eligible for
transplant; received a functioning living transplant; transplant failed; and
death. They assume that monthly transitions between states follow a Markov
Chain and patients in the “alive on dialysis awaiting a transplant” state
specify a threshold for the minimum acceptable kidney offer. Using
historical data, the authors develop and validate a clinically relevant model
and then examine how the decision threshold can vary with the patient’s
preferences. An important novelty of their model is that it considers
explicitly the utility of the patient in each state, commonly referred to as the
patient’s quality-of-life score; see Gold et al. [8]. Their results show that a
patient’s decision threshold changes with the patient’s perception about
quality of life in different health states. The authors propose an allocation
system with increased patient involvement based on the rationale that such a
system will reduce inefficiencies and improve the utilization of marginal
organs.

21.5 MODELS FOR ORGAN ALLOCATION

One of the most fundamental models for organ allocation is the sequential
stochastic assignment model developed in Derman, Lieberman, and Ross
[9]. This is a discrete-time model in which n transplant candidates receive n
organs that arrive sequentially, one in each period; the original paper used
the language “jobs” and “workers” and did not provide the organ allocation
motivation since the transplant problem had not been identified in 1972.
Associated with each candidate is a value Also, each

arriving organ has a value, X, which is a non-negative random variable with
known distribution. When the organ arrives, its value is observed and then a
decision is made whether to reject it or to assign it to some candidate. If an
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organ of value x is assigned to a candidate with value then the reward

is The objective is to determine the allocation rule that maximizes total

expected reward. The authors provide a complete characterization of the
exact optimal policy.

In a followup paper, Albright and Derman [10] provide a closed-form
solution for the policy that is asymptotically optimal as Their main
result identifies a set of thresholds such that an organ is

offered to the candidate with value if the organ’s value exceeds

otherwise it is offered to the candidate with value if the organ’s value is

between and and so on. Thus organs of higher quality are assigned to
candidates most likely to enjoy the benefits from such elevated quality. The
critical thresholds are obtained from the solution to the following critical
fractile equations

This model provides a very stylized description of the basic organ allocation
model as the model was not developed with the organ allocation problem in
mind.

Righter [11] makes an important step towards a more relevant
generalization. In her model, each candidate has a “random deadline” that
reflects death, and the candidate values may change according to an
underlying Markov chain that captures the dynamics of CRI. It is shown that
under this expanded set of dynamics, a threshold policy remains optimal but
the thresholds depend on the state of the underlying Markov chain.
Structural properties for the thresholds are obtained and conditions are
provided in which the thresholds are monotone in the states of the Markov
chain. These results suggest that threshold policies are robust and are an
attractive candidate for a practical implementation. However, the utilitarian
framework utilized in the analysis makes such threshold policies potentially
unappealing because they would violate the requirement that organs are
allocated both efficiently and equitably.

Another important step was made by David and Yechiali [12] whose main
innovation was to consider a reward structure that reflects the tissue
matching reality of organ transplants. In their model, the reward is R when
the candidate and organ match, and r(R > r) if they do not match. Each

candidate has a known attribute and each organ also has an attribute that
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becomes known when the organ becomes available. A match exists when the
attribute of the organ and the attribute of the candidate are identical;
otherwise it is a mismatch. Their analysis focuses on the so-called “intuitive”
policy in which a match is always assigned, whereas a mismatch is assigned
only if the number of candidates exceeds the number of offers and it is then
assigned to the candidate with the rarest attributes. The authors pursue an
extensive investigation of different special cases, identify cases in which the
“intuitive” policy is optimal, and in all other cases they refine the policy to
achieve optimality.

The sequential stochastic assignment model and all its extensions provide an
elegant and stylized description of the basic problem that is analytically
tractable. However, such models provide a very limited and “artificial”
representation of the transplant reality and only focus on a utilitarian
perspective of maximizing clinical efficiency. To overcome these
limitations, Zenios, Chertow, and Wein [13] develop a fluid-based model
that attempts to provide a more clinically relevant description of the
problem.

Their model is a continuous time, continuous space deterministic model in
which the CRI population is divided into K distinct categories, or classes,
based on demographic (age, gender, race), immunological (blood type, tissue
type, pra) and physiological characteristics (height, weight). The donor
population is also divided into J classes, based again on demographic,
immunological, and physiological characteristics. Without loss of generality,
patients of class are registered on the waiting list and patients

of class  have a functioning graft.

The state of the system at time t is described by the K -dimensional column
vector (where primes denote transposes), which
gives the number of patients in each class. Transplant candidates of class

join the waiting list at rate per unit time. These patients

depart from the waiting list via death, which occurs at rate per unit time

for class k patients, or organ transplantation. Organs of class j = 1,..., J

arrive at rate per unit time; the demand-to-supply ratio

greater than one. A fraction of class j

organs is allocated to transplant candidates of class k; thus, is a

control variable and is the instantaneous transplantation

rate of class j kidneys into class k candidates.
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When a class j = 1,...,J kidney is transplanted into a class

candidate, the class k candidate leaves the waiting list and becomes a patient
of class Patients of class c(k, j) depart this class

at rate per unit time; a fraction of these patients

experience graft failure and rejoin the waiting list as patients of class k, and
the remaining fraction exit the system due to death.

The dynamics of the system are described by the ordinary linear differential
equations

and

The objective function for this system contains two criteria. The first
criterion is clinical efficiency measured using quality-adjusted life years
(QALY); the reader is referred to Gold et al. [8] for a detailed introduction to
QALY and their applications to societal decision making. In this measure,
patients in class k have a quality of life (QOL) score and the total

QALY over a finite time horizon T is the total number of life years
multiplied by the QOL scores,

discounting can also be incorporated into the objective if desired.

The second criterion is equity which is measured using the variance in
waiting time across different patient classes. The rationale is that in an
equitable allocation policy there will be little differences in average waiting
time across different patient demographic groups. Then it can be argued that
the following measure, referred to as waiting time inequity, is a tractable
proxy for the desired variance measure:
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where denotes the instantaneous

arrival rate into class k under allocation policy and is given by

Because the waiting time may be confounded by each patient’s underlying
mortality, it is also suggested that constraints are imposed on differences in
likelihood to transplantation.

The authors use optimal control theory to obtain a dynamic heuristic policy
that maximizes a weighted combination of (5) and (6) subject to (3)-(4). The
policy is a dynamic index: At time t an index is computed for each

possible combination of patient class k and organ class j. Organs of class

j are assigned to the candidate with the highest index. The index has three
components: an efficiency component, an equity component, and a subsidy.
The efficiency component gives the expected increase in candidate k’s
QALY if she receives an organ j. The equity component is based on actual
waiting times and attempts to bring the waiting times for all classes close to
their waiting times under the equity standard of First-Come First-
Transplanted (FCFT). The subsidy attempts to elevate the likelihood of
transplantation of those patient classes whose high mortality rate prevents
them from accumulating a sufficiently strong equity component. The policy
is appealing because it can be formulated as a point system similar to the one
utilized by UNOS. On the other hand, it considers a much broader spectrum
of variables and criteria than the policy utilized by UNOS, and hence its
practical implementation is challenging.

In the same paper, the authors develop a simulation model for the organ
allocation system and compare the performance of their policy to competing
policies such as the UNOS policy (referred to below as simply “UNOS”) and
First-Come First-Transplanted. The analysis suggests that the
mathematically derived policies dominate UNOS in all dimensions
considered, including clinical efficiency and various alternative measures of
equity. Further, the QALY difference between the optimal efficiency-based
policy and UNOS is comparable to the QALY gains attributed to
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immunosuppressive drugs; these drugs, which were introduced in the 1980’s,
revolutionized the field of transplantation by substantially increasing the
transplant success rate. More surprisingly, FCFT has almost the same QALY
outcomes as UNOS but is much more equitable. Thus, UNOS is dominated
both in the efficiency and in the equity dimension. A more in-depth
simulation-based comparison of the different policies is provided in Zenios,
Wein, and Chertow [14].

Votruba [15] adopts a similar approach to study the problem of organ
allocation. Using a simple static model, the author arrives at the efficiency-
based policy developed in Zenios, Chertow, and Wein [13]. The author tests
the policy using a simulation model and compares its performance to those
of competing policies such as UNOS, FCFT, and SIRO (serve in random
order). Using more recent data than Zenios, Chertow, and Wein [13] the
author reaches the same conclusion that UNOS is dominated in the equity
dimension by both FCFT and SIRO without a commensurate difference in
QALY, and is dominated in the efficiency dimension by the efficiency-based
policy.

UNOS has compared different allocation policies using computer simulation
models. The UNOS Kidney Allocation Model was developed by the Pritsker
corporation for UNOS with input from the scientific community; see Pritsker
[16]. The model was developed and validated over a period of two years and
it is now used routinely to compare and test different policies before then-
implementation. In the view of the author, this model represents one of the
most impressive efforts to utilize OR models in health care delivery. The
early work by Opelz and Wujciak [17] is also worth mentioning as it has
provided a proof-of-concept for the relevance of simulation models in organ
allocation. More recently, Howard [18] used a simulation model to compare
different policies for liver allocation.

21.6 ANALYTICAL PERFORMANCE EVALUATION MODELS

While most of the existing models in organ allocation focus on the
development and simulation-based evaluation of alternative organ allocation
policies, there is also a need for analytical performance evaluation models.
Such models provide closed-form expressions for the key performance
measures. There are two important categories of performance measures:
clinical efficiency measures such as QALYs, probability of graft survival
one and five years after transplantation, and average graft survival; and
access measures such as waiting time, waiting time until transplantation, and
likelihood of transplantation. Much has been said in the literature about the
effect of the organ allocation systems on these measures. It is well
recognized that not all patients have equal access to transplantation: in
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particular, African Americans have longer waiting times. Simple analytical
models can shed light to these empirical observations.

Zenios [19] develops a simple queueing model for the transplant waiting list.
The model assumes there are K classes of transplant candidates who arrive

according to independent Poisson processes with rate and

J classes of organs that arrive according to independent Poisson processes

with rate The organs are allocated to transplant candidates

and force their departure from the waiting list. In addition, patients of each
class k = 1,...,K renege from the system due to death after an

exponentially distributed amount of time with rate The allocation policy

takes the form of a static randomized policy. In particular, is the

fraction of class j organs that are allocated to patients of class k.

Candidates of the same class are allocated organs on a first-come first-
transplanted (FCFT) basis.

The paper develops asymptotic (as the patient and organ arrival rates
become arbitrarily large) closed-form approximations for the steady-state
waiting time for each patient class k, for the steady-state waiting time

given transplantation and for the steady-state likelihood of

transplantation These expressions are as follows (where

These expressions reveal that the waiting time for each patient class is

determined by that class’s supply-to-demand ratio and by its mortality

rate : A long waiting time may indicate reduced access to transplantation
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or may suggest a lower-than-average mortality rate. In the context of
historical data on transplantation, this suggests that the long waiting times
experienced by African American transplant candidates are caused both
because of reduced access to transplantation as measured by the supply-to-
demand ratio and because of historically lower-than-average mortality on the
waiting list [20].

21.7 DIRECTIONS FOR FUTURE RESEARCH

Kidney transplantation is one of modern medicine’s major success stories,
but has also created one of its major dilemmas: how to allocate donated
organs efficiently and equitably. The tremendous success of dialysis as a
maintenance option for CRI and of transplantation as the preferred
treatment option have created an environment of continued organ shortage.
In this environment, the statement “there is no free lunch” takes a new
meaning: every change in the allocation policy is likely to create winners
and losers. Rigorous models such as the ones developed by operations
researchers can prove invaluable in clarifying the tradeoffs. Carefully crafted
analytical models can be used to identify policies that balance the key trade-
offs between maximizing clinical efficiency and promoting equity, while
simulation models can be utilized to test the performance of these policies
and to compare them to existing strategies.

While much work has been done in model development, several aspects of
the kidney allocation problem remain understudied. First, a mathematical
definition of equity or fairness remains elusive. A systematic study of the
issues and the development of an axiomatic decision theoretic framework for
equity is a task worth undertaking. Second, despite the continued shortage of
organs, more than 10% of all donated organs are eventually discarded. Ways
must be found to utilize these organs more efficiently. The recent proposal
for a “marginal donors” waiting list appears to be the first step in the right
direction. OR models can be used to identify the main causes for this
wastage and to identify remedies. Su and Zenios [21,22] and Howard [23]
represent two recent attempts to study this problem.

This chapter summarizes OR models applied to the kidney allocation
problem. These models can also be extended to other organ allocation
settings with minor modifications. Specifically, beyond tissue matching that
is an idiosyncratic feature of kidney transplantation, all other aspects of the
kidney allocation problem captured in these models are universally relevant.
In particular, the efficiency-equity tradeoff prevails in all transplant waiting
systems for all organs in most countries.
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The key problem in organ transplantation is the continued shortage of
donated organs. Two proposals that are likely to solve the problem have
attracted attention recently. The first proposal is to create a market for
organs in which UNOS (or some other authority) is the single buyer of
organs and the sellers will be the estate of the deceased [24]. The second
proposal is to create a mutual insurance pool. Participants in the pool
commit to donate their organs upon death and in exchange they obtain
access to the organs donated by other participants in the pool. While both
proposals are controversial, they are appealing because they are likely to
alleviate the shortage, and they are now debated actively [25]. However,
implementation of these proposals will be associated with significant
operational and logistic hurdles that can be addressed using OR models.
Therefore, one hopes that the future will see more OR research done in this
area.
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SUMMARY

There was a broad measure of convergence among health care professionals
in a central London Health Authority that changes in patterns of care
delivery and specialist staffing required a reduction in the number of
inpatient units, a substitution of ambulatory care units, and an extension of
community care provision. Strategic Choice was used in a series of
workshops with intervening analysis to convert this ‘in principle’ agreement
into a specific proposal that achieved consensus among stakeholders. This
process is analysed in terms of the opportunities provided by sequential
workshops and the difficulties presented by inter-organizational working and
absent stakeholders.
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22.1 INTRODUCTION

This chapter describes an engagement in which the Strategic Choice
Approach was used with multiple stakeholders to redesign children’s health
care provision for an inner city area covering two boroughs with a total
population of some 375,000 people. Section 22.2 describes the genesis of the
work, and the relevant context. In Section 22.3 the intervention itself is
described. Section 22.4 covers the process of reporting outputs to the work’s
sponsors, and a summary of feedback received from key actors one year
later. A concluding section considers some lessons that can be learned from
the experience.

22.2 BACKGROUND

Planning children’s health services for an area with a substantial population
has some features in common with other medical specialties, and others that
are distinct. Common features, in the United Kingdom (UK), include:

the necessary participation of a number of service providers, as well as
an agency charged with representing the health needs of the population –
at the time of the study on which this chapter is based, the relevant
Health Authority;

a degree of interaction of the services under consideration with other
specialties, with primary care provision and also with teaching
arrangements;

uncertainties as to current utilisation patterns, future tendencies,
decisions in related areas and political priorities;

the involvement of the public in the ratification of any proposals.

The principal distinctive feature of planning for children’s health care
provision is that the specialty is based not on the health condition of its
patients, but on their age. There are evident reasons for this, including the
need for segregated treatment environments for such vulnerable and
impressionable patients. However, it does mean that children’s health care
has to deal with patients who, if they were adults, would fall within a wide
range of different specialties. Among the resulting complications are the
provision of Children’s Accident and Emergency facilities, and the need to
ensure continuity of care from children’s through to adult services for those
with life-long conditions (perhaps taking in along the way treatment in an
adolescent unit).
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22.2.1 The nature of the problem

This chapter reports and comments on a study to effect a significant re-
orientation of children’s health services in the inner London district of
Camden and Islington. However, the conditions that provoked the review are
by no means limited to those geographic boundaries.

Patterns of childhood illness and clinical practice have both been changing,
resulting in a striking and sustained move away from hospitalisation. For
example, over the last 20-30 years there has been a marked reduction in
acute illnesses such as serious infections that used to be a common reason
for admission to hospital. Improvements in practice and new treatments and
technologies mean that many conditions can now be treated on a day-case
basis [1]. Avoiding the trauma of inpatient stays is an undoubted benefit for
the children concerned and their families — and now fewer children are being
admitted, and for shorter stays. Furthermore, more children with chronic
illnesses are surviving, and they and their families need to be supported at
home, necessitating more services in the community.

The downside of all these advances is that historically located services need
re-orientation to meet the new situation. There has been an increase in the
need for day-case, outpatient, community-based and home care services.
And there has been a reduction in use of hospital beds. In Camden and
Islington it was policy that ill children should whenever safely possible be
treated at home, in familiar surroundings and close to family and friends [1].

There were other related pressures on the Health Authority to reduce the
concentration of resources in hospital-based pediatric services. Guidance
from professional bodies, and the corresponding quality standards, are based
on there being a ‘critical mass’ at any children‘s unit, in terms of both
quantity and mix of clinical cases. The three secondary inpatient units in
Camden and Islington were each well below an appropriate level. These
caseloads were regarded by local pediatricians as inadequate to provide a
satisfactory clinical experience to all trainees. The available child inpatient
cases were being spread over too many units. Furthermore, the number of
local pediatric training posts was due to be reduced in line with national
medical manpower plans. Each of the three units was expected to lose one
specialist registrar per year for three years. This put in question the ability of
the existing units to cover adequately the full spectrum of children’s
conditions. To compound these difficulties, the reduction in hours worked by
junior doctors had cut the amount of service provided by doctors in training.

It was against this background that the Camden and Islington Health
Authority (C&IHA) encouraged the Director of Public Health to use her
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1999 Annual Report [1] to initiate a process, involving the main providers of
children’s health services, to secure as much agreement as possible on how
these difficulties should be addressed. By September 2000 this process,
building on discussions over a period of years, had produced a strong
consensus among those most involved that a reduction in the number of
secondary inpatient units was both desirable and necessary.

A discussion document was drafted by a broad-based Children’s Strategy
Working Group, and published under the imprint of 12 local health care
agencies [2]; a summary leaflet was then circulated widely as part of a three-
month discussion process. A wide range of stakeholder groups were
involved in different ways. Presentations were made to Trust and Primary
Care Group Boards and to local government sub-committees. A conference
was called for relevant voluntary organizations and a series of workshops
was held with health care professionals (in children’s emergency services,
pediatric surgery, tertiary pediatrics, neonatal intensive care and maternity,
primary care and community pediatrics, and workforce education and
training) Each of these looked at the strengths and weaknesses of current
arrangements, and considered how the service might provide a better fit for
the future.

The discussion document stated that “we believe that there should be only
one secondary pediatric and surgical inpatient unit” [2]. However, this was
an input to the discussion process rather than a committed position. What
was certainly not agreed was where closures would fall, the specification of
the non-inpatient services which would complement the remaining unit(s),
and where these services would be located. Indeed the entire September to
November discussion process was conducted ‘in the abstract’, not linking
any element of the possible new service to any particular real location. It is
probable that without this self-denying ordinance, constructive discussion of
principles would have proved impossible.

It was in the resolution of these issues, and their ramifications for other parts
of the local health service, that the authors were invited to be involved. It
was realised by all those involved that agreement in principle to closures was
one thing, and agreement in practice was quite another. Building on the
outputs of the discussion period there would need to be “a process of
synthesis, consolidation, analysis and negotiation ... to draw together the
various strands towards producing a set of concrete options for change and
criteria for discriminating between them” [3]. A consensual outcome where
major institutional interests were involved was likely to be hard to reach, yet
without agreement among the institutions a suspicious public would be still
more likely to react vigorously to any talk of closures and to exercise an
effective veto.
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This touches on a key aspect of the decision process. Health services issues
around the world tend to be politically sensitive (see, for example, [4]). This
is perhaps particularly true of Britain, where the National Health Service as
an institution is highly regarded by the public. The legacy of bed and
hospital closures by the Thatcher and successor administrations in the 1980s
and 1990s had led to considerable popular mobilisation. There was a
widespread presumption that proposals for closures were cost-driven, and
possibly a preparation for privatisation.

22.2.2 Organizing the problem structuring workshop process

It was evident to the Director of Public Health and her team that the situation
with which they were grappling was characterised by high levels of
complexity and uncertainty, compounded by the need for the involvement,
participation and commitment of multiple stakeholders. Her enquiries as to
methods which could be effective in helping in such situations led her to
consult with the authors about the possible use of problem structuring
methods.

Initial meetings and documentation led us to propose the Strategic Choice
Approach (SCA) [5] as, in principle, the most appropriate method to employ,
though we wished to retain the freedom to adopt other methods depending
on the evolution of the engagement. In particular, if the question of
sequential implementation of service configurations were to be reached
(which would be well down the road) then robustness analysis [6] was
thought likely to be a valuable complement. (In fact, this option did not
materialise.) A very rough scoping of the exercise led to a proposal for three
whole-day workshops at monthly intervals. In the event this time-scale
proved appropriate.

SCA is a participative method for working with groups facing a joint
problem situation characterised by complexity and uncertainty which
requires strategic thinking. Either complexity or uncertainty can undermine
the clarity of thought and understanding necessary for confidence in
decision-making. Together they can be a lethal combination. SCA offers a
format and a procedural framework for eliciting information from the group
and its members, and then iteratively growing a picture of the interacting
issues by further elicitation and structuring. This shared representation, and
the tools used to develop it and to explore its implications, enables the group
to establish what commitments can and should be made, and in what areas
additional information is needed to better inform decisions. (For an
accessible introduction to SCA, see [7].)
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The SCA process rests on four modes of decision making, as shown in
Figure 22.1. Though an engagement using SCA will generally start with
shaping and conclude with choosing, there is no necessarily linear path
through the modes. Understanding gained, or obstacles encountered, may
indicate the advantage of returning to an earlier stage of analysis for
reformulation. In each mode there are tools to assist in the elicitation and
structuring of information. These tools are low-tech and capable of being
understood intuitively by lay participants.

Figure 22.1 The Strategic Choice Approach

The key concept in SCA is the ‘decision area’. In shaping mode, the group
identifies the set of interconnecting decision areas that constitutes their
problem, and prioritizes a manageable number of them as a ‘problem focus’.
In designing mode, the options for choice in each decision area in the
problem focus are identified, and incompatible combinations are weeded out
to establish a list of feasible ‘decision schemes’, each of which consists of
one option from each decision area. In comparing mode, decision schemes
are rated against each other on a range of criteria generated by the group.
This may eliminate some schemes, or even identify one which is clearly
preferred. More commonly it highlights what uncertainties obstruct
commitment to any scheme in its entirety. In choosing mode, this
information is consolidated into a ‘progress package’ consisting of agreed
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commitments, explorations to reduce key uncertainties, and contingency
plans.

Various aspects of the problem of re-designing Camden and Islington’s
children’s health services seemed to make Strategic Choice a good choice.
There were evidently a considerable number of inter-linked decision areas,
each with alternative options – for example, numbers of units of different
kinds, and locations of those units. And there were numerous and varied
uncertainties.

Maternity provides a double example of the inherent uncertainties. There
was a link between maternity and pediatric provision, through the practice of
providing shared staff rotas between neonatal intensive care units and
pediatrics in smaller units. But it was unclear whether this was a firm
constraint. Furthermore, there was an ongoing review of neonatal services
provision across London. As the maternity review was being conducted by a
different sponsor, C&IHA could not require that it be postponed and was
unwilling to delay the pediatric review for an unspecified period to allow the
maternity review to be completed. In any case our problem was more than
complicated enough, and to merge it with another one of comparable
intricacy would render it still more intractable.

Another factor speaking in favor of SCA was the political sensitivity of the
issues under consideration. Unusually among analytic methods, SCA can
incorporate political factors, or the unpredictable reception of proposals in
the wider world, by representing them as uncertainties. It has already been
mentioned that health service changes or shortcomings, and closure
proposals in particular, are capable of generating quite intense political
disturbances. Both the population affected and their political representatives
take these matters very seriously. The high-profile organizational
participants and central London location of this study guaranteed that it
would not be the exception to this particular rule. Indeed there were
aggravating factors. A long-serving Camden Member of Parliament had only
recently ended a well-regarded tenure as Secretary of State for Health; and
the Hampstead and Highgate Express, covering much of Camden, was
regularly garlanded as among the highest quality local papers in the country.
It was an effective campaigner, and had a strong readership among the
concentration of national movers, shakers and opinion formers living locally.
Therefore the capacity of SCA to accommodate the political dimension of
the issues under discussion was a valuable bonus.

It was agreed that SCA should be the method for use at the workshops.
Membership of the ‘core group’ to take part in these workshops was given a
great deal of detailed consideration. The participants needed, between them,
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to represent both the main stakeholder institutions, and the principal relevant
professional and disciplinary groupings. As consultants, we explained the
importance of keeping the group size small to facilitate constructive
conversation, and argued for ten members as the upper limit. However, our
C&IHA collaborators came to the conclusion that a feasible design could not
be achieved within that constraint, and we accommodated ourselves to a
group size of 12. Ten were members of the Children’s Strategy Working
Group and so were broadly familiar with the issues that would need to be
addressed, and in addition there were representatives of the two local
Community Health Councils who had been closely monitoring the process
on behalf of users.

To make this account of the workshop process understandable, it is
necessary to sketch in the roles of the key institutional players in relation to
children’s health services in Camden and Islington. We should start with
C&IHA itself, as the Health Authority has a particular role in the UK health
service which is not precisely replicated elsewhere.

At the time of this work, any Health Authority was responsible for ensuring
that the health needs of the population in its area were met, and it received
from central government the bulk of the funds made available for this
purpose. (Changes in these arrangements have occurred since the project
was carried out.) However, the actual delivery of health services was and is
provided by a number of autonomous health care trusts, comprising a variety
of types of hospitals and hospital groupings, as well as trusts dedicated to the
provision of community-based or specialised services. The bulk of patients
are treated by trusts in or geographically close to the Health Authority area
in which they live.

C&IHA’s area consisted of the two inner London local government
boroughs of Camden and Islington with a total population of about 375,000
people, of which some 65,000 are under 16 (a lower proportion than the
inner London or UK average). The maximum East-West distance is about 10
km, and the North-South span is around 6 km (see Figure 22.2).

Both boroughs, but in particular Islington, are characterised by areas of
intense deprivation and large public housing estates. The population is both
ethnically and linguistically highly diverse. Both boroughs, but in particular
Camden, have very affluent districts. This mixture of rich and poor is
characteristic of many London boroughs.

The institutions represented at the workshops, in addition to C&IHA itself,
were:
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Figure 22.2 Map of Camden and Islington showing locations of main
hospitals

Camden and Islington Community Health Services NHS Trust The trust
covers the same area as the Health Authority and was responsible for all
community-based services including health visitors, children’s health clinics,
district nurses, midwives and domiciliary care. It has major responsibilities
for preventative medicine as well as for medical care.

Great Ormond Street Hospital Great Ormond Street is regarded as the pre-
eminent children’s hospital in the UK, with an international reputation for
both care and research. Located near the southern tip of Camden, it currently
took only tertiary patients. However, it was expressing interest in developing
a secondary inpatient pediatric service, which would require the acquisition
of additional premises. Great Ormond Street is relatively close to University
College Hospital, with whom it has been developing cooperative
arrangements.

University College London Hospitals (UCLH) UCLH was formed from
the merger of two major teaching hospitals, University College and
Middlesex. Their services (and those of a number of other units) were
shortly to be brought together in a major new hospital building currently
under construction through a public finance initiative (PFI) arrangement.
UCLH is certainly one of the most prestigious and powerful teaching and
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research hospitals in the country with an international reputation. It is well
located for a range of public transport services.

Royal Free Hospital The Royal Free is another distinguished London
teaching hospital, located rather to the north of the borough of Camden. It is
linked to UCLH through a joint medical school. Far more than UCLH it
draws patients not only from Camden and Islington, but also from Barnet,
Enfield and Haringey, the Health Authority (just being merged out of two
predecessor authorities) immediately to the north of Camden and Islington.

Whittington Hospital The Whittington is a large hospital located at the
northern edge of Islington. It functions broadly as a district general hospital,
and services an area spanning across the boundary into Barnet, Enfield and
Haringey with a high population and population density.

Moorfields Eye Hospital The country’s leading specialist eye hospital,
Moorfields provides a mix of secondary and tertiary care. It was directly, if
somewhat tangentially, involved in the redesign of pediatric services through
its inpatient provision for children.

Community Health Councils Community Health Councils (CHCs) were
bodies charged with representing the interests of the public in their areas.
(They have since been abolished by the national government.) Both Camden
and Islington CHCs were represented at the workshops by their Chief
Officers and/or Chairs.

Primary Care Groups were represented by a long established and well-
respected local general practitioner (GP) who also voiced the viewpoint of
GPs.

At the Workshops, senior representatives of these groups were confronted
with a problem which could be summarised as:

Which of Great Ormond Street, Royal Free, UCLH and Whittington
should have secondary inpatient units?

How many non-inpatient ‘ambulatory care centers’ should complement
these, and where should they be located?

How and to what extent should community services be strengthened?

22.3 THE WORKSHOP PROCESS

Our preparation for the workshop not only consisted of discussion with the
Director of Public Health and her team. One of us attended a meeting of the
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Children’s Strategy Working Group which occurred between the
commissioning and the start of our project; and we both read the distributed
discussion document, reports from consultation meetings and relevant
background materials. From these we distilled what seemed to us to be some
principal areas of choice in the situation, and pre-prepared a set of a dozen or
so ovals (large oval ‘Post-it’ notes with particularly convenient adhesive
properties) each conveying concisely one of these candidate decision areas.

22.3.1 Workshop 1, January

These ovals formed the starting point of the first all-day Workshop, held in
January 2001 at a well-appointed location away from any of the participants’
places of work. They were displayed on an end wall papered with A1 flip
charts. An initial discussion confirmed that these were broadly the issues that
mattered, though the group made some alterations to the way they were
formulated. This discussion also demonstrated the interconnection of the
issues; only a very few of them could be set aside as separable or secondary.
When one decision area was raised, other factors were at once identified as
needing to be taken into consideration with it, and these led on to others in a
similar fashion. It seemed both that no decision could be taken in isolation,
but that the ensemble of decisions was too complex to be comprehended
simultaneously.

This experience, demonstrating in effect the need for some analytic
assistance, provided a persuasive motivation for the use of Strategic Choice.
The first pass through the approach addressed the remaining decision areas,
and the group was asked to agree preferably no more than three of them as
an initial, priority, problem focus. The remaining ovals were ‘parked’ to one
side, and discussion was centered on:

the location of the first inpatient unit;

location of the second such unit (if any);

whether neonatal intensive care units must always be co-located with
inpatient pediatrics.

This last question was a technical one, based on the argued need to share
staff rotas for the two activities to provide sufficient coverage 24 hours per
day, seven days per week. It had provoked lively debate in the initial
discussion, but of course had not then been resolved as the argument
cascaded on. The provisional reduction in complexity provided by the
problem focus allowed the matter to be resolved decisively. An option graph
was developed of the problem focus, looking at the options available within
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each of the three decision areas, and identifying which combinations were
infeasible (see Figure 22.3). It was then realised that to say ‘yes’ to the
proposition would in fact rule out one of the strong organizational
contenders to house an inpatient unit. When it was clear that no one in the
group was willing to do this, it became evident that the answer was ‘no’: co-
location was certainly desirable, but not an absolute requirement. This
problem focus was taken no further – it had served its purpose by resolving a
troublesome issue, thereby simplifying the remaining problems. In fact the
achievement was startling – the perceived link between pediatric and
maternity beds had always been seen as a complication that made the
problem almost insoluble.

Figure 22.3  Option Graph showing the infeasibilities between the
requirement for collocation with neonatal intensive care, and the

locations of the proposed pediatric inpatient unit, and the second unit
(if any)

The process by which this advance was made was typical of the Strategic
Choice approach. At any time one of the facilitators was actively engaged
with the group, sometimes asking for clarification to avoid
miscommunication, sometimes steering the discussion in what seemed likely
to be productive directions, and sometimes operating the technical aspects of
SCA with ovals and marker pens. The second facilitator would at times be
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capturing the evolving structure on the STRAD software [8] but more often
observing the discussion from a slightly less engaged perspective. (Full
details of the STRAD software can be found at the website
http://www.btinternet.com/~stradspan/.) This is a valuable backup, as the
lead facilitator, in the thick of things, can easily fail to notice aspects of
group dynamics or problem content. And of course the roles of the two
facilitators were exchanged periodically. (See [9] on the role of the
facilitator.)

During any stage of the discussion, aspects of the problem situation surfaced
that were clearly relevant but not to the topic immediately under discussion.
These were captured (on ovals) for possible later reference. Of particular
interest were uncertainties, areas of missing information or disagreement
whose resolution might remove obstacles to progress. Other aspects were
collected together under the heading of comparison areas, in effect criteria
which could prove relevant to the choice between alternatives.

In this first workshop, attempts were made to achieve further reduction of
the disabling complexity of the problem. For example, it became clear that
members of the group were using the phrase ‘Ambulatory Care Center’
without a shared understanding of what it would consist of. Would it
conduct minor surgery and use anaesthetics? Allow self-referral? Deal with
minor injuries? Admit children to general Accident and Emergency? Operate
24 hours per day? These design issues were resolved.

Two initial attempts were made to employ the comparing mode of Strategic
Choice. In the first, on the assumption that there would only be a single
inpatient unit, the relative advantages and disadvantages of two possible
locations for it were explored. In the second, the relative merits of having
one versus two inpatient units (locations undefined) were examined in a
similar way. No clear conclusion was reached; and indeed the exercises
pointed up the difficulty of agreeing on just one element of the eventual
package while leaving others un-specified. What these exercises did do was
to flush out ideas on relevant criteria for future use, and to serve as a
rehearsal for later uses of the comparing mode.

At the end of this first workshop the accumulated uncertainties were
reviewed and, for each of those thought to be of significance, a group
member agreed to come back with some additional information. Their
initials were written on the corresponding ovals, as evidence of their
commitment. It was agreed that the second workshop would focus on the
relationship between the number (not locations) of inpatient units and
Ambulatory Care Centers and the level of community provision; and on how
these link to tertiary, adolescent and maternity services.
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22.3.2 Workshop 2, February

Before proceeding to new work, the members of the group were asked to
review the conclusions reached at the previous workshop and whether they
were happy to proceed on the basis of the progress made there. It was
important that the group did not feel ‘railroaded’ but accepted the logic of
where the argument had got to. (A similar procedure was followed at the
start of Workshop 3 also.)

Two issues that had slowed down progress at the workshop were the
relationship of decisions that might be made about the location of secondary
inpatient pediatric units to the care arrangements for tertiary pediatric
inpatients, and for inpatient secondary and tertiary inpatient adolescents.
Some graphical representations of alternative allocations of the resulting
four patient categories between Great Ormond Street (the existing tertiary
center) and an unspecified secondary pediatric inpatient unit had been pre-
prepared by the consultants (see Figure 22.4). These appeared to generate a
more focussed discussion, and the group rather swiftly agreed to a
modification of one of the schemes illustrated, in which a significant role for
adolescent tertiary services would go wherever the adult expertise was
located. (Members of the group amended the drawings themselves, always
an indication that a representation has proved useful.) The result was that

Figure 22.4  Options for adolescent and tertiary care patterns of
provision if pediatric and adolescent services or secondary and

tertiary care were to be co-located
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these issues lost their ability to entangle the subsequent discussion in
unresolved questions.

Other inter-related work that had been commissioned by Workshop 1 was to
investigate the ‘critical mass’ of annual inpatient admissions needed for an
inpatient unit, in particular to provide an adequate range of cases for the
training of junior doctors; and to clarify existing and predicted activity
levels. Discussion of the reported results was not conclusive, but tended to
support a single inpatient unit solution.

As agreed previously, the group took as their initial problem focus

the number of inpatient units

the number of Ambulatory Care Centers

the level of increase in community services.

Ovals were used to locate other inter-linked decisions around the boundary
of this problem focus, as a guarantor that the impact of any decisions within
the focus on these other issues would subsequently be subject to scrutiny
(see Figure 22.5). A tabled paper, commissioned by the previous workshop,
had specified the days and hours of opening, and consequently the types of
patient which could be handled, corresponding to each level of community
service investment.

An option graph showing the options in each of these three decision areas,
and the relationships between them was developed through group discussion,
and is shown in Figure 22.6.

Either one or two inpatient units were considered, as well as up to three
ambulatory centers, and an increase in community and primary care services
that might range from zero to large. The lines drawn in Figure 22.6 are
option bars, indicating incompatible options. Each of these bars resulted
from discussion in the group – e.g., about the level of particular scarce
resources needed to maintain that combination of options. This discussion
also led to the exclusion of particular options on policy or practicality
grounds. Then, by the process called the Analysis of Inter-connected
Decision Areas (AIDA), the feasible combinations of options, one from each
decision area, were worked out (see Figure 22.7).

There were rather few feasible combinations of options remaining.
Discussion of these led the group to a further ‘policy’ conclusion, that no
scheme with only a single 24-hour access point could be contemplated. This
meant that any combination involving only a single inpatient unit required a
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Figure 22.5  Decision focus for Workshop 2*

* Text of “Post-Its”: Location of pediatric in-patient beds; Location of
adolescent in-patient beds; Location of adolescent in-patient beds; Number of in-
patient units; Maternity services?; Level of increase in community services; Number
of additional ambulatory units; What children’s services to be at Site C; Co-location
of adult and child trauma

‘large’ increase in community and primary care services (since a ‘medium’
investment corresponded to seven-day, 8 a.m. to 8 p.m. working, and
ambulatory centers had been defined as having approximately 12 hour daily
opening times). The remaining schemes, marked B, D, E and F in Figure
22.7, had either one inpatient unit and a large increase in community
provision, or two inpatient units and a medium increase in community
provision. In the former case there could be either one ambulatory care
center or two, while in the latter there could be at most one ambulatory care
center.
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Figure 22.6 Workshop 2 option graph showing options for number of
inpatient units, ambulatory units and increase in provision of

community and primary care, and their infeasibilities.

The group was now ready to compare two distinctively different schemes:

1 inpatient unit, 2 ambulatory care centers, large community increase, vs.

2 inpatient units, 1 ambulatory care center, medium community increase.

These were placed on a standard comparative advantage chart, on which the
criteria identified at the last workshop were added in agreed order of
priority. This chart is shown in Figure 22.8. After discussion of each
criterion, group members each marked their estimates of the balance of
advantage between the schemes with adhesive stickers. This array was then,
in further discussion, consolidated into a range of possibilities and a central
point. This assembled information was assessed in a final group discussion,
in which the prevailing view was that there was a clear comparative
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Figure 22.7 Workshop 2 option tree showing feasible decision
schemes defined by numbers of inpatient units and ambulatory units

and increase in provision of community and primary care

advantage in favor of the single inpatient unit scheme and a large increase in
community services.

22.3.3 Workshop 3, March

Once again research carried out by the Health Authority in response to
uncertainties surfaced at the last workshop was presented. But first the group
was asked to confirm whether the decision at the last workshop was for the
(1, 2, L) scheme. This generated a lengthy discussion, not all of it directly
germane to the decision at hand. Matters debated included the possible
sequencing of changes, the needs of different types of patient, connections to
other parts of the health service, and the likely public reaction. During this
discussion it was agreed to rename Ambulatory Care Centers as ‘Specialist
Children’s Centers’ (SpeCCs) to provide a more appropriate and acceptable
image. Halfway through the morning, the group was ready to confirm a
decision in favor of a single inpatient unit.

After the break, discussion was joined on the question of how many SpeCCs
should accompany the unit – i.e., should it be scheme B or scheme D in
Figure 22.7? A simplified version of the comparative advantage chart was
used (Figure 22.9) in which the criteria that favored scheme B, those that
favored scheme D, and those that were neutral between them were
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Figure 22.8 Comparative advantage chart*

* Comparison of scheme D (1 inpatient unit, 2 ambulatory units, and large increase
in community provision) and scheme F (2 inpatient units, 2 ambulatory unit, and
moderate increase in community provision). Is advantage negligible, marginal,
significant, considerable or extreme? Text of “Post-Its” for comparison areas: Local
political acceptability/user focus; Ease of achieving a high quality service; Equity of
access; Effective utilization of staff; Affordability – revenue; Ease of achievability;
Effect on education; Affordability – capital; Overall [advantage]

identified. The criteria used for this comparison were generated by the
group, and were not those used in the previous workshop, as the issue under
consideration was different. The weight of factors in favor of a single SpeCC
was fairly rapidly persuasive for the whole group.



RESHAPING CHILDREN’S HEALTH SERVICES 575

Figure 22.9  Comparing number of SpeCCs*

* Text of Text of “Post-Its”: [Scheme considered] 1 inpatient unit; 1 SpeCC
(Specialist Children’s Center); 24/7 community provision.
For: Public understanding; Enables 12 hour opening; Viability; Effective use of
staff; Administrative ease; Quality of service; Effective use of resources;
Comprehensive provision; Radically different change culture; Staff training p/g
[post-graduate].
Neutral: Staff training u/g [under-graduate]; Professions allied [to medicine]
diluting experience.
Against: Access; Political acceptability; Staff conservatism; Effect on tertiary at
other site

Having come down in favor of one inpatient unit and one SpeCC, the
remaining question, and the most politically charged, was their location.
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Once again an option graph was used to identify the option bars and hence
the locational schemes that remained feasible (Figure 22.10). The option
bars broadly indicated the impossibility or undesirability of co-location of
the units, or of geographical concentration within the Health Authority area.
Extensive further discussion followed on availability of space on particular
sites, public transport accessibility, political acceptability, ease of
implementation and effect on existing services. All these issues and others
were captured on ovals. In the process, the schemes under consideration
were whittled down from eight to four.

Figure 22.10  Location options for scheme composed of 1 inpatient
unit, 1 SpeCC (Specialist Children’s Center), and 24/7 community

provision

At about this point an unexpected uncertainty surfaced. It became clear in
the discussion of some of these criteria that not all group members had
secure mental images of the geography of the boroughs and the locations of
all of the facilities under discussion. A London street map was hurriedly
obtained and roughly transcribed to flip-chart size. It was clear from the
reactions that several minds were made up, or at least provisional decisions
confirmed, by the provision of this simple graphical aid!

It was agreed that the final assessment should be made by confidential
ballot. Each group member was given five adhesive stickers, which they
could allocate freely between the alternatives. There was no comparative
advantage chart, but the criteria of the previous discussion were displayed
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for consultation. The result was clear-cut. The same location for the SpeCC
received all but two of the 60 ‘votes’. One location for the inpatient unit
received two and a half times as many choices as its nearest competitor.
These two locations in combination received 50% more than all other
combinations combined. These results were regarded as decisive by all the
participants, who accepted it as legitimate, and as the concrete crystallisation
of the logic that they had been elaborating and clarifying over the entire
workshop process.

It had been a long journey from the state of disabling complexity and
uncertainty which the group had experienced at the first of these workshops.
The process and its outputs had the assent of the whole group, including
representatives of those institutions that would lose services. The workshop
concluded with a discussion of procedures for resolving the various issues
‘parked’ along the way; and on how to take the recommendations forward
through the various stages and decision-making required before they could
be implemented.

22.4 IMPACT OF THE STUDY

22.4.1 Reporting the outcomes

For legitimacy and implementation to be achieved, the results of the
workshops had to be fed back to the Children’s Strategy Working Group and
also communicated to key individuals and stakeholders. These two strands
were progressed through a mixture of formal and informal processes.

The final workshop had been held on a Friday. It was recognized in the final
discussion that group members would be under immense pressure to reveal
the workshop outcomes as soon as they returned to work. Attempting to
keep the recommendations confidential for the time being was simply not an
option. This meant that a careful dissemination strategy was crucial if the
workshop gains were not be lost through hostile media coverage and instant
political opposition. Already between the second and third workshops, and
before the most sensitive decisions on unit locations had been reached, some
information had leaked and articles had appeared in the local papers
headlined “Royal Free fights to save children’s casualty services”, “Who
will care for our children?” and “Hospital plan must not make children
suffer”.

The Health Authority representatives were instructed to ensure that their
Chief Executive and those of the hospital trusts were informed of the
workshop outcomes before the end of the weekend. The Health Authority
Chief Executive in fact succeeded in briefing all the local Members of
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Parliament (MPs), the Minister responsible and the Regional Health
Authority by the following Monday.

Presenting the outcomes as a set of recommendations on service
organization and not just on the location of inpatient services was identified
as important if the proposals were not just to be seen as service closures.
Over an extended period there had been a series of hotly contested plans to
close hospitals (and accident and emergency units) in London. Some of these
could be justified as a re-alignment to take account of population shifts out
of Central London; or alternatively to allow concentration into large units
that could support increasingly specialised and technologised services.
However, popular perception was that such closures were driven by a
Government agenda to cut health service costs rather than improve
provision. There was thus a raw nerve to be touched.

The way in which the proposals would be seen by the multiple stakeholders
not represented in the workshops was therefore a major area of concern.
While this would have been true anywhere, the location of Camden and
Islington in the center of London and the proximity to the offices of the
national media made it even more pressing, as did the presence of the homes
of many national journalists in the two boroughs. As one of the local MPs
had just ceased being the Secretary of State for Health, another was a current
Cabinet Minister and a third was an influential junior minister, the sense of
political pressure was even more acute. The workshops were being held
during the run-up to the 2001 General Election, expected to be held on May
3. Any publicly aired proposals to close units were likely to become
incorporated in election campaigning and would thus potentially receive
much publicity but little dispassionate consideration.

The second main strand of the process of feeding the workshop results into
the policy process was a report to the Children’s Strategy Working Group.
This was the group from which the workshop participants were drawn, and
whose endorsement of the results of the workshops was required. (Formally
the workshops’ recommendations were advice to the Strategy Group.) There
had already been an interim report produced between the second and third
workshops. At this meeting, few members of the workshop group, apart
from the Health Authority members, were present. Having put time aside for
the workshops, most members had not prioritized attending this meeting as
well. The consequence was that the feelings of exclusion felt by people who
would have liked to be part of the workshops, but were not, expressed
themselves as mistrust of the report of the facilitators and of the process they
described. This mistrust was difficult to counter in the absence of
participants who could describe their experience of that process.
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Consequently, the Health Authority staff and the facilitators prepared more
carefully for the final report-back meeting, six weeks after the third
workshop. In order to convince the Strategy Group of the robustness both of
the recommendations and of the process by which they were reached, effort
was put into ensuring that several members of the workshop group attended.
Special attention was paid to ensuring that members who were not
representatives of the principal hospitals were present as it was felt that, as
more disinterested parties, their voices would carry more weight. While
there were some reservations, particularly from the representatives of the
neighboring health authorities who were concerned that the needs of their
residents may not have been considered sufficiently, the workshop outcomes
were well received overall and endorsed.

22.4.2 What happened next

At the beginning of April 2001, the government decided to postpone the
general election by one month because a major foot-and-mouth disease
outbreak made campaigning in many rural areas impractical. One result of
this delay was a potential gap in policy announcements by Government
ministers; the planned succession of announcements of initiatives, necessary
to maintain campaigning momentum was disrupted. The announcement on
April 23 by Alan Milburn, the Secretary of State for Health, of a
restructuring of the management of the Health Service [10] can in this light
be seen as a political initiative to fill a news gap. His proposal to abolish
health authorities was totally unexpected and came abruptly in the middle of
an already existing process of setting up Primary Care Trusts and
transferring budgetary, but not planning responsibilities, from the Health
Authorities to the Trusts. The eventuality of such a change had not figured in
the uncertainties considered during the workshops, nor could it have done, as
even well informed observers had no inkling of this proposal.

The consequences for the reorganization of children’s health services were
terminal. No Chief Executive would take the risk of becoming embroiled in
a potentially controversial service change at this juncture. All the Health
Authority officers who would have been responsible for carrying through the
changes had to concern themselves with their immediate futures – all of their
posts were to be abolished and they had to apply for posts in the new
structure or elsewhere. Responsibility for planning health services in
Camden and Islington passed to the new North Central London Strategic
Health Authority (SHA), one of the 28 new SHAs covering the whole of
England to be set up by April 2002.

The North Central London SHA consisted of Camden and Islington together
with Enfield and Haringey, and Barnet, the neighboring health authorities
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that had been more sceptical of the workshop proposals. (These authorities
had just been merged in April 2001.) The senior management of the new
SHA proved to be drawn from these authorities and few Camden and
Islington managers were appointed to senior positions in it. It could have
been argued that children’s services should be considered across the whole
SHA area. However, in fact, the new SHAs were under much closer central
scrutiny and direction than the former health authorities. Major changes in
service provision were thus more politically exposed. The proposals
informed a much wider discussion of children’s, young people’s neonatal
and maternity services across the wider area.

However, there has been action as a direct result of the workshops.
Community-based care has been radically reformed on the lines
recommended in the workshops: opening hours have been extended and
seven-day cover provided. Opening hours are likely to be extended further
towards 24 hour, seven-day provision. This was achieved as a direct result of
the consensus reached at the workshops, and could be implemented without
either a consultation process or sanction from the Department of Health. The
provision of ambulatory care has also been strengthened. At the workshops,
these changes had been developed and proposed as an integral part of a
comprehensive service model which included the desirable and necessary
alterations in inpatient provision, rather than as stand-alone initiatives. These
other changes at present remain in abeyance – though the pressures which
provoked the workshops do not.

The experience of the workshops has also underpinned subsequent moves
towards a Children’s Services Network in Camden and Islington, and the full
advice remains as an available resource when the issues of inpatient care are
eventually addressed. They have a continuing status because of the process
by which they were reached. As one key participant put it [3],

“I think one of the features of the group and this piece of work was
that it was a well embedded, you know, it’s been well embedded in
the folklore of Camden and Islington. The tradition of Camden and
Islington, for many years, and individuals have been around and
around this set of problems and been involved in work over a
number of years. And so the people who were involved were all
well able, for a fairly sort of strategic exercise, were well able to be
articulate and to contribute and to think rationally.”
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22.5 DISCUSSION

Many lessons can potentially be learned from a rich encounter of this kind.
Here we will focus on two broad areas which we think worthy of further
attention.

22.5.1 Working between workshops

There is now a considerable literature on the pragmatics of engagements
using problem structuring methods (PSMs). (See in particular [11].) Broadly,
the literature deals with aspects of the client-consultant interaction in the
context of model-based group decision support. There are also discussions
dealing with method-specific issues.

The main focus of these accounts is on what happens in the workshop itself.
There are of course exceptions to this rule. In her survey of the views of
clients of the SODA (Strategic Options Development and Analysis)
approach on the role of facilitators, Ackermann [12] explicitly includes a
‘pre-workshop’ phase in which the consultant establishes the framework of
the intervention with the principal contact. The structure of the Strategic
Choice approach [7] includes future ‘explorations’ within the concluding
‘progress package’ of explicit outputs. This automatically incorporates a
perspective on future commitments to be made subsequent to the workshop,
once those explorations bear fruit in the reduction of key uncertainties. Also,
Mingers and Gill [13] include the possibility of the use of different
methodologies not only between different phases of an engagement, but also
across different engagements. Wong [14] makes a useful categorisation of
the modes of work engaged in by PSM practitioners, namely:

A workshop – in which the consultant(s) engage simultaneously with the
complexity of subject matter, and with the complexity of interaction of
the stakeholders about the subject matter.

An interview – in which the consultant(s) engage with a single member
of the group, most commonly to elicit information to structure or
populate the model

The backroom – in which information already elicited from participants
either individually or collectively is processed by the consultant(s) alone
in preparation for a subsequent interaction with stakeholders.

However, the rule nevertheless persists. These counter-examples broadly
take the single one-time workshop as the norm. There is little attention paid
to aspects of practice especially relevant to multi-workshop interventions,
and to what happens in the gaps between those workshops. The particular
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opportunities and difficulties of single engagements that incorporate a
sequence of workshops are not well addressed.

It may be surprising to those who have not taken part in one, but the amount
of analytically-based work that can be achieved in a single one-day
workshop is quite limited. Four one and a half hour sessions must find room
for mutual introductions and acclimatisation; an introduction to the method
to be used; the setting of expectations; a ‘scoping’ period in which
participants are reassured that their particular concerns will be on the table;
periodical summarising of the degree of progress made; confirmation from
time to time that the progress that appears to have been made does indeed
have the positive assent of all participants; and a final period in which the
day’s events are assessed, and subsequent actions agreed upon or confirmed.

Furthermore, a successful workshop is not ‘run’ by the facilitator(s). For
large periods s/he is silent (though attentive) and the discourse is generated
between the participants. The benefit of this in terms of ‘ownership’ of the
process and outcomes is evident. However, there is an equally evident cost
in terms of the time-economy of the event – the most effective path between
two points will not be a straight line.

The implication of this is that unless there has been a great deal of
preparatory work (and quite possibly if there has) it will be rather unusual
for a complex set of inter-related issues to have been pursued through to
effective closure in a single day’s work. It is of course quite possible that
sufficient clarity will have been achieved that the subsequent working out of
implementation consequences can be left to more conventional, and less
labour-intensive, processes. In effect, after the initial stages of problem
structuring, what to do will appear ‘obvious’ (see [15]).

In other cases, however, it may be that the first workshop will, in effect,
identify a subset of the issues which the group agrees to prioritize – but
without the time to tackle that agreed problem focus adequately. There will
be other situations, and the case discussed here is one of them, when the
implementation questions are highly political; that is, the interests of
stakeholders are likely to be differentially affected by alternative solutions to
the identified question. In such cases, the continued involvement of the
group of stakeholders in working out the implications of a consensual
problem structure is crucial to the legitimacy of any set of proposed
commitments.

There are thus a number of situations in which a single engagement will
incorporate a number of workshops in sequence. Some of the features that
come to the fore when this is the case have to do with the conduct of the
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workshops, while others concern the potentialities of the spaces between the
workshops.

One feature of the first kind is the importance of achieving continuity of
membership of the group. Fluidity of attendance can be consistent with
continuity of representation of the stakeholders. But it is not compatible with
a methodology in which later stages take as given certain assumptions and
conclusions agreed at a previous meeting. The result of rotation of
membership, or even of designated alternates, is a dilution of ownership of
the developing problem structure. Retracing of the earlier stages with the
possibility of coming to different conclusions is scarcely a practicable
option, given that the majority of the group have traversed this terrain and
established their own workable road-map.

Where a sequence of workshops is anticipated, therefore, the selection of
committed participants is crucial. They need to be strongly advised of the
expectation that they will not allow other engagements to displace their
agreement to attend all the component workshops. It follows that the
complete set of workshop dates needs to be established in advance. This was
the procedure carried out, successfully, in the Camden and Islington study.
Attendance was complete and unvarying, except in the case of one
Community Health Council, and of one missed meeting by the
representative of a non-central stakeholder.

The other principal requirement at all workshops except the first is to pay
particular attention to the re-confirmation of the position reached at the end
of the preceding workshop. There is more than one reason for doing this.
The first is to re-introduce members to the conceptual world which they had
been constructing and inhabiting. It will generally have been quite some time
since the last meeting – to allow time for inter-workshop activities to be
carried out – and memories will need re-activating. The second is that in the
intervening time members of the group will have been subject to a range of
influences – views of colleagues, unanticipated events – which might have
caused them to revise their opinions. Finally, the strength of the conclusions
from such an engagement is that of its weakest (i.e., least convinced) link. It
follows that no opportunity should be lost to test out the commitment of
members to the evolving problem structure. Indeed the public re-affirmation
of support for that structure makes it more difficult psychologically for
members later to renege from the action consequences of that structure.

It is the gaps between the workshops, however, that present the major
additional opportunity for progressing the business of the engagement. The
size of this opportunity will, of course, depend on the size of the gap. In one
recent case, force of circumstances limited the period between two
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workshops to little more than the intervening weekend [16]. In general, a
longer gap provides more opportunities for inter-workshop activities, but
against this must be set any urgency associated with the implementation of
conclusions, and also the decay of a sense of involvement and of group
identity.

One advantage simply lies in the availability of more time for the consultants
to reflect on how to make the activities that they are supervising more
productive for the participants. Ackermann and Eden [17], in a description
of a case study using the Oval Mapping Technique, repeatedly describe
activities that needed to be carried out hurriedly in the interstices of the
process. Catching up on material missed or not completely captured on the
software, tidying up clusters of concepts, carrying out quick analyses, setting
up the elicited material in a form appropriate for presentation to the group,
and (especially) reviewing progress with the principle client – all these were
conducted in 15-minute coffee breaks, over the lunch period, or in time
snatched after the workshop before the consultants had to leave for the
airport to travel home. Having to think on one’s feet under pressure is
undoubtedly a very concentrating experience [18]. Having additional time
between workshops does not remove this invention spawned by necessity,
but adds the potential for more considered views and more extensive
analysis.

In the case described in this chapter, this scope was exploited in a number of
ways. Certainly interaction with the ‘client’ (the Director of Public Health
and her team) was used extensively. Other members of the group became
aware of this, and there was even some sensitivity about how this selective
access might be biasing the process. As one of the participants said in a
followup interview,

“....the process seemed to be reasonably clear and did seem to be
based on fair principles. The one worry that occasionally went
through me was whether [one of the Health Authority officers] had
had pre-meetings with you, and whether in fact we were being led
down a pre-laid path. And I don’t know. But that was the only
worries I ever had in that meeting, was just sometimes she, as an
observer seemed to be further down the road than I was. And I
wondered whether that was because she’d practised.”

On reflection, an explicit advance statement about this aspect might have
defused possible anxieties.

Typically there were two meetings with this client group between each
workshop. At the first we would discuss the progress at the preceding



RESHAPING CHILDREN’S HEALTH SERVICES 585

workshop, and run through the explicit activities agreed to at the workshop
to ensure that they actually happened. For the facilitators, these were tasks
largely concerned with workshop process. For the Health Authority, these
often related to work agreed to reduce identified uncertainties. The
opportunity to reduce uncertainties during the course of the workshop
sequence, rather than as part of a commitment package to be pursued as a
post-workshop task, strengthened the approach.

At the second meeting we would review the new information generated, and
discuss detailed plans proposed by the consultants for the structure of the
coming workshop. These meetings also gave the clients an opportunity to
ensure that we were adequately aware of tensions beneath the surface whose
manifestations might not have been easy for us to interpret. These briefings
informed both the structure that we proposed, and our handling of issues and
individuals on the day.

The available time also enabled the consultants to think intensively and
extensively about the way to sequence the procedures that would constitute
the next workshop, and also about particular content questions that were
proving intractable. An example of the latter was the development of a
graphical representation of possible configurations of adolescent and tertiary
provision in relation to secondary facilities for children, This proved
successful at the second workshop in disentangling what had proved till then
to be a disabling thicket too dense to be sorted out in mid-workshop. An
example of the former was the decision to develop a mutation of the
comparative advantage chart for use at the third workshop in comparing
schemes with different numbers of ‘SpeCCs’. It was felt by the consultants
that a simplified form might be adequate, and would avoid the over-
repetitive use of a single tool.

Although we did make use of the month-long intermissions to develop quite
elaborate ‘running orders’ (including contingency plans) for the impending
workshop – as we did in initial preparation before the first workshop – these
were of variable utility in practice. It was always necessary to deviate from
the programme at various points and to improvise as situations developed in
unpredicted ways. Sometimes the workshop’s path rejoined the anticipated
one, and in other cases we proceeded on a different course. Devising the
running order was, however, always a valuable use of inter-workshop time.
Its existence re-assured the client that the effort and political commitment
that they were putting into the workshops was matched by due consideration
on our part. And it also ensured that the consultants had journeyed mentally
down into the grain of the problem situation. This meant that we were well
prepared to respond rapidly and confidently to the unexpected analytic,
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interpersonal, and inter-organizational challenges that the dynamic of the
workshop would throw up.

22.5.2 Problematic implementation

As described above in Section 22.4.2, the workshops, although perceived by
participants to be effective events in themselves, substantially failed to bring
about the desired changes. Failures of OR interventions, either hard or soft,
are seldom reported. (An exception is the review of failures and successes by
Tilanus [19].) However, all practitioners know that interventions fail for
reasons other than methodological incompetence, and successes are
frequently achieved through ungeneralisable and undocumented fixes and
hacks [20]. So it useful to reflect on what happened in this case, that made
the outcomes so much less than the promise.

We can look at three contributory factors:

Some key stakeholders were not present

Some participants could not carry their constituencies

Unforeseen circumstances

Absent stakeholders In Section 22.2.2 we described the process of deciding
upon workshop membership. To realise the advantages of open interaction
and engagement between members, workshop numbers need to be limited.
In this case, not even all health specialties and roles in the Health Authority
area could be represented. (This excluded, crucially as it turned out,
representatives from a neighboring health authority.) Non-professional
health interests were only represented by the CHCs as permitted
intermediaries.

Inevitably, group size limitations meant that key political interests, both
local and national, could have no spokespersons in the workshops. However,
these interests were not totally unrepresented. Participants brought them into
the discourse as comparison areas or uncertainty areas (e.g. local political
acceptability and effect on children’s and adolescents’ mental health
services) and at this remove were captured as labels on post-its. Their
influence on the workshop processes was through these proxy
representations, which were the results of what is described in Actor
Network Theory as a series of translations and inscriptions [21, 22]. This
theory explores how human and non-human actants are enrolled in a
network which may or may not be stable and induce action. In this case the
workshops could not stably enrol all the absent key actors in coordinated
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action, as instanced in the unwanted critical prominence given to the
ongoing process by the local newspaper.

One strategy for avoiding this pitfall is to move towards the actual
incorporation of more stakeholders into the discursive process. There is now
a range of approaches designed for large group interventions, notably Open
Space Technology [23], Future Search [24-26] and Team Syntegrity [27].
The principle has been described as “getting the whole system in the room”.
What is traded off against this inclusivity (and the legitimacy that it imparts)
is the possibility of engaged conversation between all participants. The
various approaches use different methods, none of them model-based, to
synthesise outputs from multiple small group conversations into a large
group consensus. The complementary strengths of large group intervention
approaches and PSMs suggest a potential for mutual borrowing.

Failure of delegacy Although it did not affect the eventual outcome, it
became evident in the immediate aftermath of the workshops that the
consultant from one of the hospitals proposed to lose its inpatient department
was in some difficulties in maintaining this agreed position inside the
hospital. This is a not unfamiliar situation in inter-organizational uses of
PSMs. Indeed the phenomenon is widespread – witness the experience
through the years of both ambassadors whose negotiated accommodations
are repudiated by their governments, and trade union negotiators who fail to
get their wage deals endorsed by their members.

We can use a similar analysis based on Actor Network Theory to understand
the process of failed delegacy, the question of “who speaks in the name of
whom” (Callon [21], p. 214). Participants are involved in a sense-making
process [28] which is contingent upon the composition and discourse of the
workshop. That which makes sense within the workshop and appears to be a
reasonable resolution of conflicting demands may not be seen as sensible
when reported back to constituents outside the workshop. If the links in the
chain that connect the organization to the workshop through the
representative are not sufficiently strong then, in Callon’s phrase,
“translation becomes treason”.

This problematic potential for workshop-based approaches is intensified for
a linked series of workshops such as that employed in this case. Revealing
work in progress is disruptive to the internal workings of the workshops (and
maybe indeed be destabilising if first one option for service relocation is
floated and then another); but not doing so weakens the representivity of the
participants. They become less able to speak to and for their constituencies:
this is the cost of becoming more embedded in the network and worldview
of the workshop.
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Unforeseen circumstances We have described how seemingly remote
occurrences (here, the foot-and-mouth epidemic) disrupted the anticipated
sequence of events. This put so much pressure on the Health Authority
management, that even their representatives, who had commissioned the
workshop with the full backing of their managers and were the most
committed to the proposals, could not in the end carry their constituency. In
Actor Network Theory terms, allies had not been locked into place and had
become implicated in other networks – in this case ensuring they continued
to have jobs. The attempt to make the issue of “how do we ensure a critical
mass of pediatric patients” become an Obligatory Passage Point for all
discussion, and action had failed.

Through this rudimentary analysis (which will be elaborated elsewhere) we
can see how success within the workshop did not necessarily result in
success outside the workshop. Within the workshop, concepts generated in
the discourse became fixed as they were written onto post-its and persisted
through the workshops. They became ‘boundary objects’ [29], which inhabit
different social worlds [30] and are capable of being interpreted and applied
in the different professional forms of life and understandings of the
workshop members. However, they were not effective representations to
people outside the workshop. Furthermore, participants were not effective as
brokers or boundary spanners [31] to communicate effectively the workshop
results to other audiences. (The exceptions to this were the Strategy Group,
to which the workshop closely related, and initially the Chief Executives of
the hospital trusts.) Successful workshops, especially in an inter-
organizational field exposed to the public gaze need to be able to transverse
boundaries of perception not only between participants but also between
participants and wider communities.

As even this introductory account shows, Actor Network Theory provides a
framework which illuminates the strengths and potential weaknesses of
workshop-based approaches such as SCA. We have adumbrated both the
attempted process of translation of absent actors, such as neighboring health
authorities, into members of a network rooted in the workshop; and how the
process centered on the workshop failed to make its participants part of a
stable network which would effect change. A more detailed analysis of this
and other workshops would examine how effective the rhetorical devices of
SCA – shaping, designing, comparing and choosing – can be in enrolling
participants in networks in which their interests are represented and where
these new networks arrangements embody irreversible change. Such further
analysis would, in particular by paying attention to the workshop and the
wider world simultaneously, provide indications of how best to employ these
devices. Such an analysis has the potential, therefore, both to respond to the
criticisms that have been made of SCA that it has pragmatic effectiveness
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but no theoretical underpinning; and also to improve practice. Practice
improvements may be looked to through the direction of facilitators’
attention to the steps necessary to ensuring robust relationships between the
activities within the workshop, and actors and actions external to it, thus
increasing the likelihood of apparently successful workshops leading to
substantive desired change [32].

ACKNOWLEDGEMENTS

The authors would like to acknowledge the contributions made by all
members of the workshop, in particular: Dr. Maggie Barker, Sue Dutch and
their colleagues at Camden and Islington Health Authority: those who
participated in post-workshop interviews; John Friend; and Diane Plamping.



590 OPERATIONS RESEARCH AND HEALTH CARE

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Barker, M. (1999). The Health of Children and Young People in
Camden and Islington: Public Health Report 1999. Camden and
Islington Health Authority, London.

Camden and Islington Health Authority and NHS Partners in Camden
and Islington (2000). Improving Health Services for Children and
Young People in Camden & Islington. Camden and Islington Health
Authority, London.

Barker, M (2002). Interview, May 14.

Greenberger, M., M.A Crenson and B.L. Crissey (1976). Models in
the Policy Process. Russell Sage, New York.

Friend, J. and A. Hickling (1997). Planning under Pressure: The
Strategic Choice Approach (2nd edition). Butterworth-Heinemann,
Oxford, UK.

Rosenhead, J. (2001). Robustness analysis: Keeping your options
open. In Rosenhead, J. and J. Mingers, Eds., Rational Analysis for a
Problematic World Revisited: Problem Structuring Methods for
Complexity, Uncertainty and Conflict. Wiley, Chichester, UK, 181-
207.

Friend, J. (2001). The Strategic Choice Approach. In Rosenhead, J.
and J. Mingers, Eds., Rational Analysis for a Problematic World
Revisited: Problem Structuring Methods for Complexity, Uncertainty
and Conflict. Wiley, Chichester, UK, 181-207.

Holt, J. (1994). Disarming defences. OR Insight, 7, 19-26.

Phillips, L. and M. Phillips (1993). Facilitated work groups: Theory
and practice. Journal of the Operational Research Society, 44, 533-
549.

Department of Health (2001). Milburn Hands Power to Front-Line
Staff: £100m savings for patient services.
http://www.info.doh.gov.uk/doh/IntPress.nsf/page/2001-0200?Open
Document. Department of Health Press Release 2001/0200, Accessed
March 24, 2003.

Eden, C. and J. Radford, Eds. (1990). Tackling Strategic Problems:
The Role of Group Decision Support. Sage Publishers, London.



RESHAPING CHILDREN’S HEALTH SERVICES 591

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Ackermann, F. (1996). Participants’ perceptions on the role of
facilitators using Group Decision Support Systems. Group Decision
and Negotiation, 5, 93-112.

Mingers, J. and A. Gill (1997). Multimethodology: The Theory and
Practice of Combining Management Science Methodologies. Wiley,
Chichester, UK.

Wong, H.-Y. (1998). Making Flexible Planning Decisions:
Clarification and Elaboration of the Theory and Methodology of
Robustness Analysis. PhD thesis, London University, London.

Eden, C. (1987). Problem-solving or problem-finishing? In Jackson,
M.C. and P. Keys, Eds., New Directions in Management Science,
Gower, Aldershot, UK.

Horlick-Jones, T., J. Rosenhead, I. Georgiou, J. Ravetz, and R.
Lofsted (2001). Decision support for organisational risk management
by problem structuring. Health, Risk and Society, 3, 141-165.

Ackermann, F. and C. Eden (2001). SODA – Journey making and
mapping in practice. In Rosenhead, J. and J. Mingers, Eds., Rational
Analysis for a Problematic World Revisited: Problem Structuring
Methods for Complexity, Uncertainty and Conflict, Wiley,
Chichester, UK, 43-60.

Chapman, C., D.F. Cooper, C.A. Debelius, and A.G. Pecora (1985).
Problem solving methodology design on the run. Journal of the
Operational Research Society, 36, 769-778.

Tilanus, C.B. (1985). Failures and successes of quantitative methods
in management. European Journal of Operational Research, 19, 170-
175.

Ciborra, C. (2002). The Labyrinths of Information: Challenging the
Wisdom of Systems. Oxford University Press, Oxford, UK.

Gallon, M. (1986). Some elements of a sociology of translation:
Domestication of the scallops and the fishermen of St-Brieuc Bay. In
J. Law, Ed., Power, Action and Belief: A New Sociology of
Knowledge. Routledge and Kegan Paul, London, 196-233.

Latour, B. (1987). Science in Action: How to Follow Scientists and
Engineers Through Ssociety (translated by C. Porter). Harvard
University Press, Cambridge, MA.



592 OPERATIONS RESEARCH AND HEALTH CARE

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Owen, H. (1992). Open Space Technology: A User’s Guide. Abbott,
Potomac, MD.

Weisbord, M.R. (1987). Productive Workplaces: Organising and
Managing for Dignity, Meaning and Community. Jossey-Bass, San
Francisco, CA.

Weisbord, M.R. (1987). Discovering Common Ground. Berrett-
Koehler, San Francisco, CA.

Weisbord, M.R. and S. Janoff (1995). Future Search. Berrett-
Koehler, San Francisco, CA.

Beer, S. (1994). Beyond Dispute: The Invention of Team Syntegrity.
Wiley, Chichester, UK.

Weick, K.E. (1995). Sensemaking in Organizations, Sage
Publications, Thousand Oaks, CA.

Star, S.L. and R.J. Griesemer (1989). Institutional ecology,
‘translations’, and boundary objects: amateurs and professionals in
Berkeley‘s Museum of Vertebrae Zoology, 1907-39. Social Studies of
Science, 19, 384-420.

Bowker, G.C. and S.L. Star (1999). Sorting Things Out:
Classification and Its Consequences. MIT Press, Cambridge, MA.

Wenger, E. (2000). Communities of practice and social learning
systems. Organization, 7 , 225-246.

Jackson, M. (1991). Review of Rational Analysis for a Problematic
World Edited by J. Rosenhead. Systems Practice, 4 , 258-290.



23 MODELING MEDICAL
TREATMENT USING MARKOV

DECISION PROCESSES

Andrew J. Schaefer1,2,3, Matthew D. Bailey1,

Steven M. Shechter1 and Mark S. Roberts2,3

1 Department of Industrial Engineering

University of Pittsburgh

Pittsburgh, PA 15261

2 Department of Medicine

University of Pittsburgh

Pittsburgh, PA 15261

3 Center for Research on Health Care

University of Pittsburgh

Pittsburgh, PA 15261



594 OPERATIONS RESEARCH AND HEALTH CARE

SUMMARY

Medical treatment decisions are often sequential and uncertain. Markov
decision processes (MDPs) are an appropriate technique for modeling and
solving such stochastic and dynamic decisions. This chapter gives an
overview of MDP models and solution techniques. We describe MDP
modeling in the context of medical treatment and discuss when MDPs are an
appropriate technique. We review selected successful applications of MDPs
to treatment decisions in the literature. We conclude with a discussion of the
challenges and opportunities for applying MDPs to medical treatment
decisions.
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23.1 INTRODUCTION

Medical treatment decisions must be made sequentially and in an uncertain
environment. A physician determining a course of treatment must consider
the patient’s current health, as well as the best treatment decisions in the
future. One important source of uncertainty is that different patients will
respond to treatments differently. Other sources of uncertainty include the
availability of scarce resources, such as cadaveric organs for transplantation,
and human behavior, such as the response time for individuals to react to
stroke symptoms. In current medical practice, the vast majority of these
treatment decisions are made using ad hoc or heuristic strategies. However,
there is a growing feeling among medical practitioners that some treatment
decisions are too complicated to solve accurately using intuition alone [1,2].
The evidence for this includes psychological experiments that indicate that
short-term memory has a limited capacity to handle multiple memory
constructs, and a substantial body of evidence suggesting a large variation in
clinical practice [1, 3-5].

Physicians will always need to make subjective judgments about treatment
strategies. However, mathematical decision models that provide insight into
the nature of optimal decisions can aid treatment decisions. Markov decision
processes (MDPs) (also known as stochastic dynamic programs) are an
appropriate and under-utilized technique for certain types of treatment
decisions. MDPs find optimal solutions to sequential and stochastic decision
problems. The major advantage of MDPs is their flexibility. Although
virtually every medical decision can be modeled as an MDP, the technique is
most useful in classes of problems involving complex, stochastic and
dynamic decisions, for which MDPs can find optimal solutions.

An MDP is similar to a Markov process (or Markov model, as it is known in
the medical decision making literature), except that the decision maker must
make decisions at various time epochs. The goal of an MDP is to provide an
optimal policy, which is a decision strategy to optimize a particular criterion
such as maximizing a total discounted reward. In this way, MDPs differ from
other stochastic modeling techniques such as discrete-event simulation or
Markov processes. Such techniques may be used to evaluate the
consequences of a fully specified stochastic model, but they do not allow for
the stochastic optimization of that model; they evaluate just one particular
policy at a time. To evaluate exhaustively every feasible policy in this
manner may be computationally prohibitive. MDPs not only provide the
consequences of a policy, they guarantee that no better policy exists.

MDPs also have drawbacks. As the size of the problem increases, MDPs
become harder to solve exactly. However, many techniques for finding
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approximate solutions to MDPs exist. This has been a fertile research area
recently, but not in the context of medical treatment decisions [6, 7]. Perhaps
the biggest hindrance to the broader application of MDPs is data. Obtaining
quality medical data is very difficult and expensive. It is common for a large
medical study to cost several million dollars. MDPs are even more data-
intensive than other stochastic modeling techniques. This is because the
transition probabilities governing the stochastic process, as well as the
rewards, are permitted to vary according to the decision made at each
decision epoch. While this flexibility is a large advantage in treatment
decisions, it means that for every possible description of patient health and
every possible treatment, an MDP requires enough observations to estimate
accurately transition probabilities to the next epoch. In practice, this typically
means that quality data covering thousands of patients is necessary for a
successful and realistic MDP model. Although the use of such large patient
series is not common, the increasing use of electronic medical records
systems is enhancing researchers’ ability to utilize large amounts of clinical
data from thousands of patients [8].

In Section 23.2 we provide formal models of MDPs and discuss
implementation issues such as algorithms and efficiency issues. In Section
23.3 we consider modeling issues particular to applying MDPs to health care
problems. In Section 23.4 we provide a selective literature review of
previous successful applications of MDPs to medical treatment problems.
For each article, we describe the medical application, modeling issues and
the solution technique. Finally, in Section 23.5 we provide some conclusions
and discuss the future of applying MDPs to medical treatment problems.

23.2 FUNDAMENTALS OF MDP METHODOLOGY

Markov decision processes, or stochastic dynamic programs, are a general
framework for modeling dynamic systems under uncertainty. Under mild
separability assumptions, discrete-time MDPs can be applied to a variety of
systems where decisions are made sequentially to optimize a stated
performance criterion. An MDP binds previous, current, and future system
decisions through the proper definition of system states, defined as variables
that contain the relevant information for making future decisions. The
system model evolves in the following manner: The condition or state of the
system is observed (or partially observed), an action is taken, a reward is
received (or cost incurred), and the system transitions to a new state
according to a known probability distribution. The state variables must be
defined so that given the current state of the system the future transitions and
rewards are independent of the past. This is the standard assumption of a
Markov process. MDPs are typically used to model dynamic systems;
therefore the decisions are assumed to occur sequentially. However, static
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decisions can also be modeled using MDPs when the problem’s decisions or
reward structure are separable: then a one-time decision can be optimized by
decomposing it into a sequence of sub-decisions.

23.2.1 Finite-horizon MDPs

We now introduce the fundamentals of MDP methodology. For more
complete coverage we refer the reader to Puterman, Bertsekas, or Bellman
[9-11]. Following the notation of Puterman, the basic model of a finite-
horizon, discrete-time MDP is defined by where S
is the set of defined states and for every state A is the set of all
feasible actions or decisions and are those actions available at state s. The
system progresses to state from state s when action is chosen at
decision epoch t, (t = 1,..., N), with known probability transition

When action is chosen from state s at decision epoch t,
a reward is received. We define a policy as a
sequence of decision rules, where a decision rule is a mapping from states to
actions, so that The application of a policy induces a
probability distribution over the states at various stages, where the state of
the system after t transitions is and the action chosen, is a function of
this state. The objective is to compute the policy that maximizes a given
criterion in expectation.

Three commonly used criteria (when beginning in state s) are: the total
expected reward,

the total discounted expected reward,

for and the average reward per stage,

For a finite N, the optimal policy for both the average reward per stage and
the total reward criterion are equivalent. For the infinite-horizon case, which
will be discussed shortly, there is a distinction.
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We will present the fundamentals of the total discounted expected reward
criterion. Under the standard assumptions of a basic MDP model, where S
and A are finite and the rewards are bounded, i.e. for
every state-action pair (s, a) , and then exists and is bounded.
We seek a policy such that for every As a result of
the principal of optimality [11], the separability of the MDP decisions and
rewards can be exploited to decompose this N-period problem into a
sequence of N – 1 single-stage problems, by recursively solving backward
from stage N – 1 to 1:

for every and

Here is the total discounted-expected reward of the N –t stage
problem beginning in state s at stage t or as a single-stage problem with
terminal rewards which are known at the time is computed.
This is the true computational benefit of MDPs, the ability to reduce a
problem into manageable subproblems and still attain the optimal solution.
The optimal policy is defined to be the sequence of decision rules, mapping
states to the actions that maximize the above recursion, i.e.

In the above solution and model we assumed that the decision horizon was a
finite N. Often there is no defined horizon or the number of stages is so large
that it may be approximated by an infinite horizon. In these instances we
utilize the techniques discussed in the next section.

23.2.2 Infinite-horizon MDPs

Infinite-horizon models require an infinite amount of data. Therefore, it is
typically assumed that data are time-homogeneous or changing so slowly that
homogeneity is a reasonable assumption. As a result, the state of an infinite-
horizon MDP must be carefully defined to ensure that the system transitions
are stationary. If the data are naturally time-dependent, the time-
homogeneity assumption can be satisfied by properly augmenting the state
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definition with the time at which a system transition occurs. The presence of
stationary system transitions allows for the use of several elegant solution
techniques and easily characterized optimal policies. We replace the above
finite-horizon criteria with an infinite-horizon variant by taking the limit of
each measure as N goes to infinity. Unlike the total expected reward and
discounted expected reward criteria, the analysis and solution methodologies
for the average reward criterion depend on the structure of the underlying
Markov processes [12]. Again we focus on the problem of maximizing a
stream of discounted rewards, which is assured to converge as a result of the
bounded rewards assumption.

One of the key insights into infinite-horizon MDPs is that as a result of the
assumptions of an infinite horizon, time-homogeneity, and Markov property,
under a stationary policy i.e. for all and t = 1,2,...,
the expected reward vector is also stationary

and is the unique solution to the set of equations:

It is well known that a stationary policy is optimal for these MDPs. In
addition, the optimal vector v* is the solution of the following equations,
known as Bellman’s equations:

Given any initial bounded vector it can be shown that the following
sequence converges to a solution of Bellman’s equations:

However, this solution procedure, known as value iteration, may require an
infinite number of iterations [13]. As a result, another technique, policy
iteration, is typically used to search over the finite space of policies [11, 14].
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In policy iteration, we begin with a policy evaluate that policy by solving
the set of linear equations in (1) to find      use this value to choose the
actions that maximize the equations in (2) to perform a policy improvement
step, and determine the next policy This process is continued until
identical policies are found in subsequent iterations. Each iteration results in
a policy with an improved optimal reward vector and therefore, for an MDP
with finite state and action spaces, policy iteration will terminate with the
optimal policy in a finite number of steps. There are several variants of the
above techniques; however, the most successful solution methodologies will
typically exploit the natural structure of a particular problem instance.

23.2.3 Partially observed MDPs

The above finite- and infinite-horizon MDPs fall into a broader class of
MDPs that assume perfect state information – in other words, an exact
description of the system. However, often such precision is either too strong
an assumption or is not plausible within the model. For example, the state of
an MDP could be results from a series of medical tests. These results may
supply a better idea of the true state of the patient, but are subject to the error
of the tests. Extensions of MDPs, called partially observed Markov decision
processes (POMDPs), have been developed to deal with imperfect
information [15, 16]. In these models it is assumed that uncertainty exists in
the transitions of the system itself and in our knowledge of which state the
system truly occupies. Therefore, the objective is to find an optimal policy
based on the observations of the system and the previous decision rules
applied. It is possible to replace the partially observed state with a sufficient
statistic that can be interpreted as a likelihood estimation of the true state of
the system given the observations seen. In this manner, the model can be
transformed to one with perfect information using the sufficient statistic as
the state definition [17]. However, this conversion results in computationally
intractable models for systems with even moderately sized underlying true
state spaces. As a result, heuristics or approximation techniques must be
employed to effectively generate solutions to realistic problem instances.

23.2.4 Semi-Markov decision processes

The above discussion focused on models where the time between decision
epochs is fixed and has no effect on the rewards of the system. However, in
health care and other applications, decisions may occur over continuous time
intervals, such as when varying treatments can be administered. The time
between these transitions may depend on the action selected or may occur
randomly. In these instances, an extension of MDPs called semi-Markov
decision processes (SMDPs) can be employed. These models allow system
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transitions to occur in continuous time and allow for the inclusion of a
probability distribution over the amount of time spent in a state. Through
problem transformations and redefinitions, techniques and solution
algorithms analogous to those of discrete-time MDPs have been developed
for this class of problems [18, 19].

23.3 MODELING ISSUES

23.3.1  Benefit of MDP modeling over traditional decision modeling in
health care

For simple medical treatment decisions, a decision tree can be utilized to
discover the best course of action. A terminal node of a decision tree usually
represents the expected utility (such as life expectancy or quality-adjusted
life years) of a patient whose health progression follows that branch of the
tree. The path to that terminal node may be complex, and the calculation of
that value, requires knowing how the patient may transition between various
health states from the initial decision point until death. Modeling these
transitions in a standard tree requires a large number of nodes representing
multiple time periods in the model, resulting in a tree explosion [20]: the
situation is even more complex if the decision can be made at various times,
which requires the use of embedded decision nodes, making the analysis and
interpretation of standard trees almost impossible. As the complexity of the
problem increases, the standard decision tree becomes impractical.

Markov models are popular in medical decision making because they can
handle some of the difficulty described above. They allow for a simpler
representation of the future states and possible transitions that may occur
until the patient dies. Solutions to Markov models are obtained via matrix
algebra, cohort simulations, or Monte Carlo simulations. Markov models
have their limitations, however, because they are not well suited to handle
the situation in which decisions may be made at multiple time points. This
deficiency of traditional Markov models is precisely the advantage of using
Markov decision processes for treatment decisions.

Rather than evaluating a decision tree based on a one-time decision (as is
often the case in traditional decision trees and Markov models), MDPs allow
the “do-nothing” option in each time period and consider the “do-something”
option at any later decision epoch [21]. For example, organ transplantation
can be modeled as an MDP in which the action each time a donor organ
becomes available is to either accept the organ or reject it and wait for a
better one. The MDP methodology is especially beneficial because it offers
the flexibility of choosing possibly different actions across multiple time
periods according to the patient’s state. For example, a doctor treating an
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HIV-infected patient using highly active anti-retroviral therapy (HAART)
may consider different doses and different combinations of drugs at different
times during the course of treatment. The action chosen depends on the
patient’s state, which could include side effects, level of CD4 cells and viral
RNA, signs of drug resistance, and degree of adherence to the regimen. Just
about any situation where one wants to optimize a process over multiple time
periods can be modeled using an MDP. As discussed above, though, exact
solutions for large-scale problems may be computationally infeasible and one
may need to resort to approximate heuristics.

23.3.2 Issues in modeling disease treatment decisions

Many MDP applications in health care must address the same important
modeling issues. For example, MDPs that attempt to optimize a treatment
plan or surgery time for a disease require a model of how a patient’s health
evolves both before and after an intervention. In the case of the optimal time
to transplant a liver from a living donor, it is important to develop both a
good natural history model of how a patient’s health changes in the absence
of a transplant and a post-transplant survival model that determines when a
patient dies. The natural history model is used to determine transition
probabilities between health states from one period to the next if the patient
chooses to wait another day for the transplant. In MDP terminology, the
survival model determines a terminal reward – the expected remaining life of
the patient after receiving a new liver – when the transplant action is chosen.

Another modeling issue in health care MDPs is determining the rewards
associated with actions. Optimal disease treatments are usually concerned
with maximizing both total life years and quality of life. The quality-
adjusted life year (QALY) is a popular measure in the medical literature that
blends these two goals [22, 23]. This approach considers a patient’s utility for
various health states and multiplies the length of life under these health states
by the utility weight. One can assess these utilities in various ways including
the standard gamble, the time-tradeoff, and the visual rating scale [24]. When
quality adjustment is used, the decision to wait another day for treatment or
surgery can have very different payoffs for different patients. As Ahn and
Hornberger note, for example, some kidney patients may not mind dialysis as
much as others and hence would be willing to wait longer for a better donor
match [25].

An important area of research in medical treatment decisions concerns the
correct way to discount future health consequences. A ubiquitous model to
handle this is the discounted-utility (DU) model in which the same discount
rate (appropriately compounded) is applied to all future outcomes [26]. In
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this way, outcomes that occur earlier are preferred to equally valued
outcomes that occur later. Over the last couple of decades, however, there
has been much research questioning the normative aspects of the DU model
[27]. Some of this research demonstrates preference reversals as the time
until an event draws nearer, which is inconsistent with DU theory. For
example, one study showed that one month before birth, many women
wanted to avoid using anesthesia, but during labor they often changed their
mind and preferred the anesthesia [28]. Such reversals can be handled by an
alternative discounting model – hyperbolic discounting [29]. Other observed
phenomena that are inconsistent with traditional DU models include sign
effects (where gains are discounted more than losses), magnitude effects
(where small outcomes are discounted more than larger ones), and
preferences for improving sequences over worsening sequences [27].

A common and recommended practice in cost-effectiveness analyses is to
use the same discount rate for both monetary and health outcomes [30].
However, people usually do not discount these two types of outcomes in the
same way [31]. Rather, people often demonstrate higher discount rates for
health than for money, and, moreover, do not demonstrate a correlation
between discount rates in these areas [31]. This suggests that we must pay
careful attention to the valuation and discounting of outcomes in an MDP.

23.3.3 Appropriateness of MDPs

Under mild assumptions about the reward functions, any discrete-time
sequential decision under uncertainty can be modeled as an MDP. However,
data limitations and computational effort may impose limits on one’s ability
to solve large-scale MDP models in health care. MDP models differ from
other models used for treatment decisions. A discrete-event simulation
estimates the behavior of a system under uncertainty but is generally unable
to make optimal decisions within the simulation. An exception is
optimization via simulation, in which parameters governing the simulation
are optimized by estimating gradients [32]. In contrast, an MDP allows
decisions to be embedded within a Markov process. Rather than an estimate
of system behavior, an MDP implicitly considers all possible decision rules
or policies and produces the one that behaves the best under a given
optimality criteria.

23.3.4 State definition

Selecting the appropriate level of descriptive detail contained in the states of
an MDP model is extremely important. From a modeling perspective, the
more detailed the information contained in the states the better, since this
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detail provides a greater distinction among patients. However, increasing the
state space makes the model more difficult to solve. Furthermore, data
limitations may make a large state space undesirable. For instance, there
may be state-action pairs (s,a) for which few or no clinical observations
occurred. This is typically the case in health care models. States can either
be functions of physiological measures (e.g. laboratory values, heart rate,
CD4 counts) or can be defined based on subjective judgments such as
survival probability.

When insufficient data exist to derive a transition probability distribution or
estimated rewards for a set of state-action pairs, two main modeling
approaches can be used. One method is to aggregate states judiciously and/or
actions to accumulate enough observations for sufficient estimates. For this
approach it is important that the aggregated states and/or actions can be
justified clinically, since the model cannot distinguish among different
patients in the same state. The other approach is to use empirical models of
clinical phenomena to estimate the effect of one state-action pair by
considering similar state-action pairs for which sufficient data exist. For
instance, a statistical model such as a regression model might be able to
estimate the effects of a particular state-action pair by considering the results
of all states with the same action. This approach may be more successful in
estimating rewards than transition probabilities.

23.4 APPLICATIONS OF MDPs TO MEDICAL TREATMENT
DECISIONS

We summarize previous successful applications of MDPs to medical
treatment decisions. Despite the appropriateness of MDPs for medical
treatment decisions, the fact that relatively few such applications exist
illustrates the difficulties in developing successful applications.

Epidemic Control Lefèvre developed a continuous-time MDP formulation
to address the problem of controlling an epidemic in a closed population of N
people [33]. The state of the system was described by the number of people
infected, and the rest of the population was considered susceptible.
Transition probabilities depended on the rate of infection from some external
causes, the internal rate of disease transfer from those infected to the
uninfected, and the rate at which the infected recovered from the disease. At
any point in time, the decision-maker could choose two parameter levels: 1)
the amount of the population to quarantine, and 2) the amount of medical
treatment to apply to the infected population. Utilizing these definitions, the
model minimized the total expected discounted cost over an infinite horizon
where the costs incorporated the social cost of people being infected, the cost
of quarantining, and the cost of administering medical treatment to those
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infected. Rather than use real data to solve an instance of the problem,
Lefèvre developed the structure of the optimal policy according to the form
of the various input parameters. In order to do this, he used a technique that
allows one to convert a continuous-time MDP into an equivalent discrete-
time MDP [19, 34].

Drug Infusion Hu et al. considered the problem of choosing an appropriate
drug infusion plan for the administration of anesthesia [35]. The main
decision in this problem was the level at which to set the drug infusion rate to
reach a target concentration. Too much anesthesia can cause problems with
blood pressure, heart rate, or recovery from the anesthetic state, but too little
anesthesia can make the patient more aware of the painful operation. They
modeled the problem as a POMDP, which in its pure form was
computationally unsolvable. Fast heuristics were necessary for this problem
since the maintenance of drug concentrations at target levels is very time
sensitive.

One of the main difficulties in this problem arose from the inability to
directly observe patient parameters such as anesthesia concentration in the
blood and the clearance rate of the drug. This lead to two main issues in the
model: 1) the best way to estimate the prior and posterior distributions for
these parameters (i.e., whether to use a continuous or discrete distribution),
and 2) how much to emphasize active versus passive gathering of
information (i.e., how much cost should be incurred now to obtain useful
information that can be used more effectively later). The authors developed
their own discretization technique for estimating the parameter distribution.
This technique has most of the advantages of using continuous and discrete
distributions without incurring high computational costs. They applied six
approximation methods to determine suboptimal though useful treatment
strategies. Three of these treatment strategies emphasized active gathering of
information, and the other three strategies emphasized passive gathering.
Based on their results, they planned on implementing one of the passive
gathering policies into the STANPUMP program at Stanford Medical
School, which administers intravenous anesthetics.

Kidney Transplantation Ahn and Hornberger described a model of kidney
transplantation that allowed patients to accept or reject an offered kidney
based on the quality of the organ [25]. For a potential kidney, they estimated
the one-year graft survival of that kidney in a certain patient. For that
patient, they also determined the one-year graft survival acceptance threshold
that maximized his or her quality-adjusted life expectancy (QALE). The
QALE was based on patient-specific ratings for being in different health
states. Rather than solve the problem explicitly as an MDP, the authors
restricted their search to threshold policies, thereby reducing the problem to
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finding the optimal threshold level. If the expected one-year graft survival
for the kidney-patient pair exceeded the threshold, the patient accepted the
transplant; otherwise the patient rejected it. Their model was further
simplified by having just five states: 1) alive on dialysis waiting for a
transplant, 2) not eligible for transplantation, 3) received a functioning renal
transplant, 4) transplant failed, and 5) death. They assumed that patients
transitioned between the different states according to a Markov chain with
probabilities based on published graft and patient survival rates in the United
States.

Spherocytosis Treatment Magni et al. used an MDP approach to decide on
therapy for mild hereditary spherocytosis, a disease that causes the chronic
destruction of red blood cells [21]. For patients with a mild form of this
disease, the main medical treatments considered were prophylactic
splenectomy and/or cholecystectomy or no surgery at all. The state of the
patient was described through the severity of gallstones and the presence of
or years since removal of the spleen. The authors considered gallstone
natural history, risk of surgical mortality, and natural causes of death in
deriving transition probabilities. They estimated these probabilities and
quality-of-life utilities based on published mortality tables and previous
studies. They assumed that decisions were made every year with the overall
objective of maximizing the patient’s quality-adjusted life years. The optimal
solution to the MDP model resulted in the following strategy: If a six-year
old patient does not have gallstones, then as long as she does not develop
gallstones, wait until she is fifteen and then perform splenectomy surgery. If
gallstones do appear before the age of fifteen, then both cholecystectomy and
splenectomy are suggested.

Treatment of Ischemic Heart Disease Hauskrecht and Fraser applied a
POMDP formulation to the problem of treating patients with ischemic heart
disease (IHD) [36]. IHD results from the heart not receiving adequate oxygen
and is usually caused when the coronary arteries narrow. For patients with
this disease, physicians must choose among various diagnostic procedures
(such as an angiogram or one of many varieties of stress test), which may be
followed by a therapeutic intervention such as medication, surgery (such as
angioplasty or bypass surgery), or nothing at all. The state of the patient was
described by a variety of variables including the level of coronary heart
disease, ischemia level, history of coronary artery bypass grafting, history of
percutanerous transluminal coronary angioplasty, and stress test results. The
uncertainty of the patient health state arises from the inability to know
exactly the level of coronary artery occlusion or the homodynamic impact of
that occlusion on myocardial ischemia. Some variables, such as level of
chest pain, are directly observable.
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Hauskrecht and Fraser framed their POMDP as an infinite-horizon
discounted model that seeks a treatment strategy that minimizes total lifetime
costs (where the costs incorporate duration of life, quality of life, and
monetary costs). To solve their model they used heuristic procedures along
with methods that take advantage of special problem structure. They
validated their model by devising treatments for ten case patients and then
having a cardiologist evaluate their model’s treatment strategy. Almost all of
the model’s recommendations were deemed clinically reasonable, though the
experiment also revealed areas for model improvement. Overall, their
POMDP formulation was very effective and efficient in generating good
treatment strategies for IHD.

Breast Cancer Screening and Treatment Ivy used a POMDP to develop a
cost benefit analysis of mammogram frequency and treatment options for
breast cancer [37]. The goal was to minimize the total expected cost over a
patient’s lifetime, where costs were based on the patient’s condition, exams,
and treatment options. The model consisted of three states: no disease, non-
invasive breast cancer, and invasive breast cancer. It was assumed that all
patients started in the no-disease state, transitioned to the non-invasive state
after a random number of years (according to a geometric distribution based
on age) and then transitioned to the invasive stage after another random
number of years (the model was flexible enough to relax the assumptions that
all non-invasive cancers became invasive or that one must enter the non-
invasive state before reaching the invasive state). The part of the model that
was partially observable was the patient’s condition. Two types of exams –
clinical breast exams (CBE) and mammograms – could be performed to get
information about the patient’s state. At the beginning of each time period,
the decision-maker must choose whether to perform a CBE alone or a CBE
with a mammogram. If a mammogram was performed and the results were
abnormal then the decision-maker could choose either a lumpectomy or a
mastectomy. If the mammogram was normal the decision-maker could
choose to cease treatment. Using estimates from the literature on costs, test
specificity, test sensitivity, and disease progression rates, Ivy solved the
dynamic program and characterized optimal decision regions based on the
perceived probabilities of the different states of breast cancer.

Liver Transplantation Alagoz et al. presented an MDP model for deciding
the optimal time to perform a living-donor liver transplantation [38]. In these
types of transplants, the friend or relative of a patient agrees to donate a
portion of her liver, and the livers of both the donor and the patient
regenerate to a normal size. The goal of the model was to determine when to
perform the surgery in order to maximize the expected life years of the
patient. The model considered the daily decision of whether or not to
transplant. If a transplant was performed, the reward was the expected
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remaining life years post-transplant, and this was based on survival-analysis
estimates [39]. If no transplant was performed, then the patient died in the
next day with some probability or transitioned to another health state and
increased her life by one day. The transition to other health states was
governed by a natural history model of pre-transplant survival [39]. Alagoz
et al. used the policy iteration algorithm to solve the MDP and generated an
optimal stationary policy to transplant or wait at least another day as a
function of the liver quality and the patient health at the start of the day [38].

23.5 CONCLUSIONS

MDPs are a powerful and appropriate technique for medical treatment
decisions. MDPs provide optimal policies to stochastic and dynamic
decisions. Examples of such decisions naturally arise in finding optimal
disease treatment plans. Despite a wealth of potential applications, there have
been very few successful applications of MDPs in the medical arena. This is
due to several factors, particularly heavy data requirements and
computational limitations. However, several recent trends appear to help
ameliorate these limitations. First, the medical community is rapidly
developing a more quantitative understanding of disease progression and the
effects of treatment options. Additionally, the operations
research/management science community is improving the solution
methodology for MDPs, particularly approximate solutions of MDPs. Also,
computing capacity continues to become cheaper. Finally, more hospitals
are using electronic medical record systems to gather large amounts of
patient data. This confluence of factors will open the door for the increased
application of MDPs to medical treatment problems.
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SUMMARY

Influence diagrams are now a well established tool for modeling in decision
analysis. Recently, dynamic influence diagrams have been applied to help
structure stochastic processes. This chapter discusses dynamic influence
diagrams for structuring continuous-time Markov chains, with particular
focus on medical decision modeling. We describe our freely available Excel-
based software package StoTree, in which dynamic influence diagram
models may be readily formulated and solved. We present medical
applications as examples, including a previously published cost-effectiveness
analysis for total hip replacement.
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24.1 INTRODUCTION

Influence diagrams are well-known graphical tools for formulating and
solving decision problems under uncertainty [3, 17, 20, 26]. They are useful
both as problem formulation tools and as a compact means of presenting the
probabilistic structure of a completed model. An influence diagram can in
principle represent any decision problem involving probabilistic uncertainty.
However, the representation of a stochastic process model is at best
cumbersome. We propose here a graphical extension of the influence
diagram that we call the dynamic influence diagram, which facilitates the
representation of stochastic processes, while retaining the formulation and
presentation advantages of an influence diagram.

Whereas chance nodes in an influence diagram represent random variables,
nodes in a dynamic influence diagram may represent random variables that
change state over time. Just as in an influence diagram, arrows in a dynamic
influence diagram indicate influence in the sense of probabilistic
dependence. But now the meaning is that transition rates or transition
probabilities in the influenced node may depend on the state of the
influencing node or nodes. Alternately, a transition within an influencing
node may trigger a transition in an influenced node. In either case, cycles of
influence are possible, as for example, when the state of one node influences
a transition rate in another node, whose state in turn influences a transition
rate in the original node. Cycles of this kind are not permitted within a
conventional influence diagram.

Any stochastic process can in principle be represented by a dynamic
influence diagram. However, the notion of dynamic influence diagram is
motivated by applications in medical treatment decision analysis, where
conventional decision analytic approaches are popular, but uncertainty in
long-term outcome is most naturally modeled as a stochastic process. Such
models can be formulated as dynamic influence diagrams in which loosely
coupled processes (for example, background mortality, disease progression
and prosthesis loosening) are modeled separately and linked by triggers and
transition rate dependencies. By formulating the model as a dynamic
influence diagram, the analyst may decouple the model formulation process
into manageable components that can later be linked appropriately. When
complete, a dynamic influence diagram then provides a graphical overview
of model structure.

Stochastic tree models [11, 12] and Markov chain models are particularly
useful in medical models that must capture the long-term consequences of
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interventions. A stochastic tree is essentially a transition diagram for a
continuous-time Markov model augmented by chance and decision nodes
under the conventions for decision trees. Our modeling software StoTree,
which runs in the Microsoft Excel spreadsheet environment, allows a user to
graphically depict the internal structure of each node in a dynamic influence
diagram on a worksheet in an Excel workbook. Each worksheet/node
constitutes an independent stochastic tree model. The user may link these
models by specifying triggers and transition rate dependencies, thereby
implicitly specifying the influence arrows in a dynamic influence diagram.
Moreover, StoTree allows the user to calculate mean quality-adjusted life
years (QALYs) by rolling back the resulting stochastic tree in a manner
analogous to decision tree rollback [11, 13]. All stochastic tree diagrams in
this chapter are screen captures from StoTree. We will describe this software
in more detail below.

We discuss dynamic influence diagrams in the next section. Following that,
we give a graphical presentation of a dynamic influence diagram model for
the cost-effectiveness of joint replacement surgery [2]. After giving a short
description of our StoTree software, we conclude by summarizing the cost-
effectiveness results from our joint replacement model.

24.2 DYNAMIC INFLUENCE DIAGRAMS

Influence diagrams are widely accepted tools for formulating and solving
decision problems under uncertainty. Figure 24.1 presents an example
influence diagram taken from our joint replacement model. In an influence
diagram, oval (or circular) nodes are called chance nodes and represent
uncertain variables; rectangular nodes are called decision nodes and represent
decisions; and an arrow between two nodes indicates that the parent node
influences the child node in a probabilistic sense. If the influence is
deterministic, that is, if the child variable is a function of the state of the
parent variable, then the child node is given a doubly outlined border.
Doubly outlined nodes with no parents are therefore constants. (This is the
traditional graphical convention, but others are utilized as well – see [3].)

We introduce a new feature into influence diagrams by allowing designated
oval nodes to represent variables that may change state over time. Such
variables are stochastic processes, and we call the associated oval node a
stochastic node. We distinguish stochastic nodes from chance nodes by
adding a wavy arrow below the node description. Figure 24.2 portrays an
influence diagram containing a stochastic node Prosthesis Status. We call
this a dynamic influence diagram.



DYNAMIC INFLUENCE DIAGRAMS 617

The node Prosthesis Status in Figure 24.2 represents the stochastic process
that is depicted as a stochastic tree in Figure 24.3. In Figure 24.3, an initially
functioning prosthesis is subject to infection failure at an average rate of
rInfection per year. Surgery immediately follows infection failure. If the
surgery is successful (with probability PISucc), the prosthesis returns to its
functioning state. If the surgery fails (with probability PIFail), it is repeated.
There is a small chance pIMort of surgical mortality.

Figure 24.1  An influence diagram involving chance, decision and
deterministic nodes

Figure 24.2  A dynamic influence diagram containing a node
representing a stochastic process. Directed cycles are not permitted
in conventional influence diagrams, which do not contain stochastic
nodes. However, cycles involving stochastic nodes are allowable,

and represent dynamic interaction between the variables in the cycle.
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Figure 24.3  A stochastic tree diagram of the stochastic process
Prosthesis Status.

The node Infection Failure Count in the influence diagram of Figure 24.2
represents the stochastic process depicted in Figure 24.4. Infection Failure
Count serves to count the cumulative number of infections (up to three) in
the process Prosthesis Status. It has no transition arrows: a patient’s state
changes only when triggered by an infection failure in the latter process.
Therefore, we have included no wavy arrow in its node in Figure 24.2. The
process Infection Failure Count is required because the infection failure rate
rInfection of Figure 24.3 is higher when there have been more infection
failures. This dependence is indicated in the influence diagram of Figure
24.2, where the node Infection Failure Rate is a deterministic function of
Infection Failure Count. Infection Failure Rate in turn influences Prosthesis
Status, thereby inducing a directed cycle of influences. Although directed
cycles are forbidden in traditional influence diagrams, they are allowable in
dynamic influence diagrams because nodes in a cycle may change state over
time.

This example illustrates the use of a dynamic influence diagram for medical
decision analysis, but in fact such diagrams can serve as graphical models for
many stochastic processes. For instance, Figure 24.5 depicts a dynamic
influence diagram for an M/M/1/4 queue, and Figure 24.6 displays the
components. In general, a dynamic influence diagram can portray any
generalized semi-Markov process (GSMP) (see, for example, [8] or [29] for a
discussion of GSMPs).

24.3 AN OSTEOARTHRITIC JOINT REPLACEMENT MODEL

Total hip arthroplasty (THA) and total knee arthroplasty (TKA) have proven
to be clinically reliable and durable procedures for the surgical treatment of
severe osteoarthritis of the hip and knee [7, 19, 24, 25, 27]. An estimated
120,000 THAs are performed per year in North America [10], the majority of
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Figure 24.4  The stochastic process Infection Failure Count. This
process changes state only when triggered by an infection failure in

Prosthesis Status after THA. Therefore, no transition arrows are
present.

Figure 24.5  A dynamic influence diagram for a single-server queue

which are for patients with hip osteoarthritis. In the United States alone,
125,000 to 140,000 TKAs are performed annually [14, 23], with
osteoarthritis and rheumatoid arthritis accounting for over 90% of these
operations. Because these operations are performed predominantly on the
elderly, their frequency is expected to increase as the population ages [15].

Although THA and TKA seem justified in terms of clinical success, they are
particularly vulnerable to scrutiny in economic terms, for several reasons:
Their indications are generally elective; their target population is largely
geriatric; and they are high-technology procedures, much more expensive in
the short term than simple medical management. From a societal or policy
perspective, the cost-effectiveness of these procedures is therefore of
particular interest. Moreover, because these procedures do not extend life,
their cost-effectiveness must be measured in terms of dollars per quality-
adjusted life year (QALY).
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Figure 24.6 Components of the dynamic influence diagram of Figure
24.5

Although a few studies address the cost effectiveness of these procedures in
the short term, we found no cost-effectiveness analyses for THA or TKA that
considered long-term issues such as the need for revision surgeries, or
worsening osteoarthritis and its associated custodial care costs. We therefore
constructed decision-analytic models of the short- and long-term
consequences of THA and TKA [2, 9]. The results indicate that when
improvements in quality of life are included, THA and TKA can be among
the most cost-effective of medical procedures, comparable or superior to
well-accepted procedures such as cardiac bypass or renal dialysis. In fact,
for some patients, these procedures can be cost saving, improving quality of
life and reducing long-term costs compared to conservative medical
management. We present here our THA model as an illustration of a
modeling effort using dynamic influence diagrams.

24.3.1 An influence diagram model for joint replacement

Figure 24.7 presents our complete dynamic influence diagram model for the
choice between THA and conservative management for hip osteoarthritis.
The diagram contains three major stochastic nodes. For convenience, the
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Figure 24.7 A dynamic influence diagram for our model of the choice
between THA and Conservative Management. The two nodes

surrounded by a the dashed line were grouped into a single
component in our model.

nodes enclosed by the dashed line were combined into a single component in
our model.
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We discuss the detailed structure of each factor below. However, first we
use Figure 24.7 to give an intuitive overview of the model. The purpose of
the model is to calculate optimal mean quality-adjusted lifetime, and to that
end, the node Quality of Life is present in the upper portion of Figure 24.7.
Quality of Life is a deterministic function of ACR Functional Status. The
latter is a four-level functional status scale adopted by the American College
of Rheumatology (see below). ACR Functional Status depends on the
decision node THA versus Conservative Management. If the choice is THA,
then ACR Functional Status depends on Initial THA Outcome, which
indicates the outcome of the initial hip replacement surgery, and Prosthesis
Status after THA, a stochastic process describing prosthesis failure over time
and subsequent revision surgeries. Prosthesis failures can be due to infection
(infection failure) or mechanical failure (aseptic failure). If the choice is
conservative management, then ACR Functional Status depends on OA
Progression under Conservative Management, a stochastic process
describing the functional deterioration of the hip due to osteoarthritis.

Prosthesis Status after THA interacts with a number of stochastic and chance
nodes. First, if Initial THA Outcome is surgical failure, then an aseptic
revision surgery is triggered in Prosthesis Status after THA. The stochastic
nodes Infection Failure Count and Aseptic Failure Count record the
cumulative number of prosthesis failures due respectively to infection and to
mechanical failure.  The stochastic node Identity of Last Surgery has possible
values Initial THA, Aseptic Revision and Infection Revision, corresponding to
the possible types of the most recent surgery. The variables Infection Failure
Rate and Aseptic Failure Rate determine the average prosthesis failure rates
in Prosthesis Status after THA. These rates are deterministic functions of
Infection Failure Count, Aseptic Failure Count, and Identity of Last Surgery.

Finally, the stochastic node Background Mortality represents mortality due to
causes unrelated to THA or conservative management of osteoarthritis. Its
only effect is to reduce Quality of Life to zero when mortality occurs.

24.3.2 Modeling the initial THA decision

The structure for the decision node THA vs. Conservative Management is
depicted in Figure 24.8. The structure of the combined nodes within the
dashed rectangle in Figure 24.7 is shown in Figure 24.9. Here we depict the
outcome of the initial THA surgery, should THA be chosen, as well as the
subsequent functional status under either THA or conservative management.

We chose functional class as our primary measure of effectiveness for THA,
adopting the American College of Rheumatology (ACR) functional status
classification [28] for use in hip osteoarthritis, described in Table 24.1. We
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assumed the patient is initially in functional class III, a common status of
individuals deciding whether to undergo THA. From Figure 24.9 we see that
initial surgical outcome is ACR functional class I, II, or III. Functional class
IV cannot be reached initially, but entry into this state can be triggered by
progression of osteoarthritis or subsequent prosthesis failure. The quality-
of-life values qI, qII, qIII, qIV we assigned to these functional classes are
specified in Figure 24.9 as well.

Figure 24.8 The structure of the decision node THA vs. Conservative
Management

24.3.3 Modeling prosthesis status after THA

The structure of the node Prosthesis Status after THA from Figure 24.7 is
depicted in Figure 24.10. Following initial THA, the patient occupies the
state Daily Living, in which the prosthesis is subject to both aseptic and
infection failure. Revision surgery is undertaken after prosthesis failure. In
practice, available bone stock limits the number of revision surgeries that can
be undertaken. We assumed at most three revision surgeries were possible.

The node Revision Count (structure not shown, but identical to Figure 24.4)
counts the cumulative number of revision surgeries. Should an aseptic or
infection failure occur when Revision Count is equal to 3, then the No
Revision branch is taken.

As the influence diagram in Figure 24.7 and the tables in Figure 24.10
indicate, prosthesis failure rates and the outcome probabilities for aseptic
revision depend on the type of the most recent surgery, as well as the
cumulative number of aseptic revisions and the cumulative number of
infection revisions. These cumulative counts are kept by the stochastic
components Aseptic Failure Count and Infection Failure Count (identical to



624 OPERATIONS RESEARCH AND HEALTH CARE

Figure 24.9 The structure of the combined nodes depicting the
outcome of initial THA surgery and subsequent ACR functional status.

The patient initially occupies the state “ACR Class III”. If THA is
chosen in Figure 24.8, then transition is triggered from “ACR Class III”

to “Surgery”. The state “ACR Class IV” can be reached only when
triggered by events in other components of the model.

Figure 24.4), whose levels are incremented by one, respectively, when an
aseptic or infection failure occurs. The type of the last surgery is recorded in
the stochastic component Identity of Last Surgery shown in Figure 24.11.
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Figure 24.10 The structure of the node Prosthesis Status after THA
from Figure 24.7. Rates of aseptic failure and infection failure are

given in the accompanying tables, as are the surgical outcome
probabilities. Both rates and probabilities depend on the levels of the

auxiliary nodes Aseptic Failure Count, Infection Failure Count,
Revision Count, and Last Surgery.

24.3.4 Stochastic factor for conservative management

The stochastic node OA Progression under Conservative Management in
Figure 24.7 represents a two-state stochastic process in which the initial state
occupied is functional class III but later transition may occur to functional
class IV. Figure 24.12 depicts this process as a stochastic tree in which the
rate of transition from state III to state IV occurs at an average rate of
rNatural per year.
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Figure 24.11  The stochastic factor Identity of Last Surgery.
Transitions in this factor can occur only when triggered by revision

surgery in the factor Prosthesis Status after THA.

Figure 24.12  The node OA Progression under Conservative
Management in Figure 24.7 represents the stochastic process

depicted here, in which transition occurs from functional status III to IV
at an average rate of rNatural = 3.297% per year.

24.3.5 Mortality structure

The stochastic node Background Mortality in Figure 24.7 represents
mortality due to causes unrelated to hip osteoarthritis or hip replacement.
The underlying stochastic process is depicted by one of the Cox stochastic
tree models shown in Figure 24.13. The Cox model [5] is a useful way to
implement a phase approximation [18] for human survival times. For a
particular age and gender, a Cox model with the appropriate number of
stages and parameter values has survival probabilities that quite closely
approximate the true ones [22]. For example, Figure 24.14 compares the true
survival probabilities for a 60-year-old white female with the survival
probabilities for the Coxian model of Figure 24.13.

Factoring background mortality from the overall model in this way results in
a useful modularity property: Should one wish to run the model for a
different age or gender, one need not alter any other part of the model.
Instead, one can merely substitute the appropriate age- and gender-specific
Cox mortality component.
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Figure 24.13  Cox stochastic trees that closely approximate observed
mortality for the given ages and genders. Numbered nodes may be
thought of as life stages, between which transition occurs at rates

Stg 1, Stg 2, .... Empty nodes represent mortality, to which
transition occurs with stage-dependent rates Stg 1, Stg 2, ….

24.4 SOFTWARE FOR FACTORED STOCHASTIC TREE
MODELING

StoTree is a graphical interface tool for the formulation and solution of
factored stochastic tree models, implemented as a Microsoft Excel add-in. A
factored stochastic tree is a stochastic tree whose set of possible states is the
Cartesian product of the sets of possible states of its components, or factors.
Each component, or factor, represents a node in a dynamic influence diagram
model of the process. The StoTree add-in and supporting documentation are
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Figure 24.14 Survival probabilities for a white female age 60 (U.S.
Center for Health Statistics, 1991) are quite closely approximated by

the survival probabilities for the Cox model of Figure 24.13.

available for downloading at the web site www.iems.nwu.edu/~hazen/.
Operating in a spreadsheet environment, the StoTree user can access all the
usual features of that environment in addition to those of StoTree. The
modeling effort begins with graphical model composition and parameter
specification. The user concludes by using the rollback features in StoTree to
calculate average quantities of interest such as mean quality-adjusted life
years or average costs.

24.4.1 Graphical model composition and parameter specification

Figure 24.15 illustrates typical first steps of a user-initiated StoTree session.
Via point-and-click operations, the user can create nodes, name and position
them as desired, and connect nodes with either stochastic or chance arcs, to
which the user may attach any desired label. Arcs may be drawn in any of
the four compass directions. Each worksheet in the Excel workbook to
which nodes have been added is regarded by StoTree as a component in a
multi-factor stochastic tree, or equivalently, as a node in a dynamic influence
diagram. Capabilities not shown in Figure 24.15 include subtree copy and
paste, node and arc deletion, and tree redraw.

Once graphical structure has been specified, the user can associate numerical
parameters with nodes and arcs. Parameters for arcs consist of probabilities
for chance arcs, rates for stochastic arcs, and tolls for either type of arc.
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Figure 24.15 The initial graphical model construction stages in
StoTree
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Node parameters consist of a quality or cost rate, and a discount rate. These
are used in the rollback operation described below. Arc parameters can
depend on the state of other factors. The user may also add one or more
triggers on any arc, which force transitions in other specified components
when that arc is traversed. All of these features are accessed via dialog boxes
called up from the StoTree toolbar.

24.4.2 Rollback algorithm

StoTree implements a form of the Markovian utility function [13]. Let
denote a duration t visit to state y followed by any other sequence h of states
and durations. If x is the previously visited state, then the Markovian utility
assigned to is equal to

Here is a toll associated with the transition from x to y; v(y) is a
quality rate specific to state y, and a(y) is a discount rate. At a stochastic fork

in which subtrees are reached from state y at competing rates the
rollback equation for calculating expected utility can be shown to take the
simple form

At a chance fork with associated probabilities the usual probability-
weighted average is used:

StoTree repeatedly evaluates these equations for the user-specified multi-
factor stochastic tree. In this context, the states y are vectors
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where is the state of the factor. If the factor contains non-death
states, then in principle there are product states for
which expected utility must be calculated. For example, the full THA model
specified above has possible product states,
where is the number of stages in the Coxian model (equal above to 2 or 8).
In Excel’s slow computing environment, such a large number of product
states would give unacceptably lengthy rollback times. However, StoTree
bypasses this problem by calculating expected utility only for those product
states that are reachable from the initial combination of states in each factor.
For example, due to the many triggers present in the THA model, the number
of reachable product states is only StoTree identifies reachable
product states by performing a breadth-first traversal of the product tree
beginning at the combination of user-specified initial states. lifetimes for our
THA model, as displayed in two of the model’s worksheets. A useful feature
available in StoTree is the linking of rollback entries to cell values. For
example, at the chance fork in Figure 24.16b, the user can enter all
probability parameters as cell references. StoTree then incorporates these
cell references into the rollback formulas. The result is that the rollback
entries will change when values in referenced cells change. For example,
should the cell entry 0.6925 for pSuccess be changed, then the rollback
values will also change when the spreadsheet is recalculated. This can be
very useful for sensitivity analysis.

StoTree displays rollback values next to the corresponding nodes in each
worksheet. For example, Figure 24.16 displays mean quality-adjusted
lifetimes for our THA model, as displayed in two of the model’s worksheets.
A useful feature available in StoTree is the linking of rollback entries to cell
values. For example, at the chance fork in Figure CHN.16b, the user can
enter all probability parameters as cell references. StoTree then incorporates
these cell references into the rollback formulas. The result is that the
rollback entries will change when values in referenced cells change. For
example, should the cell entry 0.6925 for pSuccess be changed, then the
rollback values will also change when the spreadsheet is recalculated. This
can be very useful for sensitivity analysis.

24.5 COST-EFFECTIVENESS OF JOINT REPLACEMENT

Thus far we have only discussed the computation of mean quality-adjusted
lifetimes for the hip replacement decision. In order to conduct a cost-
effectiveness analysis, one must also calculate mean lifetime costs. This is
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Figure 24.16 Rollback results for the THA model for the case of a
white male aged 85, as displayed in the model components THA vs.

Conservative Management and ACR Functional Status. Rollback
quantities are displayed adjacent to the appropriate nodes, and

indicate the mean number of quality-adjusted life years remaining
beginning at that state, assuming all other components occupy their

initial states.

easily accomplished in a stochastic tree model: Simply replace quality rates
with ongoing cost rates, and include one-time costs as tolls on the appropriate
arcs. Figure 24.17 displays both ongoing and one-time costs for our THA
model, as well as the rollback results using these costs.
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Figure 24.17 Calculation of expected costs for a white male
aged 85 via rollback in StoTree. The cost data used is shown

next to the ACR Functional Status tree. Total lifetime discounted
cost for conservative management is $20582, and for THA is

$5770.30 + $25000 = $30770.30. Conservative management is
less costly at this age.

Overall cost-effectiveness results for our THA model are presented in Table
24.2. For a white male aged 85, the cost-effectiveness ratio is $5183 per
QALY gained, a value superior to well accepted procedures such as cardiac
bypass and renal dialysis [2]. For a white female aged 60, the procedure both
improves quality of life and reduces costs. Although THA does not extend
life expectancy, the intuitive rationale for its superiority is clear from the
table: Compared to conservative management, THA reduces average time
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Table 24.2 The results for THA versus conservative management
based on our stochastic tree model. For a white female aged 60, THA

saves costs and increases quality-adjusted life expectancy. For a
white male aged 85, the marginal cost-effectiveness ratio of $5183 is

superior to accepted procedures such as renal dialysis or cardiac
bypass.
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spent in functional classes III and IV, which are expensive, low-quality
health states.

24.6 CONCLUSION

We have introduced here a new graphical tool, the dynamic influence
diagram, for constructing and portraying complex stochastic models in
medical decision analysis. These models can be used to guide individual
decision making, or can be applied at the societal level to determine the cost-
effectiveness of these procedures. We have illustrated their application to
modeling joint replacement decisions. However, a dynamic influence
diagram can in principle be used to model many stochastic processes. We
have represented stochastic nodes in our diagram as stochastic trees, but
alternate stochastic process models such as discrete-time Markov chains
could be used as components in a dynamic influence diagram.

The probabilistic components of influence diagrams have been well-studied
as Bayes nets or knowledge maps in the artificial intelligence literature (e.g.,
[4, 21]). Dynamic Bayes nets have also received attention (e.g., [1, 6, 16]),
although continuous-time formulations such as those considered here have
not been treated using our graphical formalism. For static Bayes nets, a
graphical property known as d-separation guarantees conditional
independence in the probabilistic sense. Moreover, a Bayes net is a minimal
I-map for the probability distribution it represents: that is, every graphically
inferred independence statement is correct, and no net with fewer arcs has
this property [21]. Two open research questions are (1) what graphical
characterization of conditional independence is possible in a dynamic Bayes
net/ influence diagram, and in particular whether or in what way the d-
separation notion carries over; and (2) how the characterization of static
Bayes nets as minimal I-maps extends to dynamic Bayes nets.

The use of dynamic influence diagrams and corresponding factored
stochastic trees permits a modular approach to model construction, facilitates
the presentation of the models, and opens models to inspection by other
parties. The graphical modeling tool StoTree enables users to formulate and
solve factored stochastic tree models in a user-friendly spreadsheet
environment.
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SUMMARY

This chapter presents an analytical framework based on Bayesian analysis
that was used to evaluate human and management risk factors for patients
undergoing anesthesia, and the effects of a variety of proposed measures for
mitigating those risks. More specifically, the analysis considers the
frequency and the effects of various risk factors, the extent to which safety
measures based on management improvements can decrease the chances that
they occur, and the effects of these safety measures on patient risk. The
analysis demonstrates that the accident sequences that had received the most
attention because they had made the headlines were not the largest
contributors to the overall patient risk. The analysis finds that most of the
problems are not caused by rare events, but by more mundane factors such
as fatigue and poor supervision of residents. Closer supervision of residents,
periodic re-certification and simulator training appeared to be among the
most potentially effective measures for reducing patient risk. A similar
model can be applied to other medical problems involving risk, such as
assessing the performance of surgeons or early assessment of medical
devices (before comprehensive testing on large populations).

KEY WORDS

Risk analysis, Bayesian analysis, Anesthesia
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25.1 RISK ANALYSIS IN THE ABSENCE OF A COMPLETE
STATISTICAL DATABASE

The standards for risk analysis, in the medical field, rest on the use of
“evidence-based” studies and statistical data sets involving substantial time
series. Such data are gathered, for example, when explicitly required for the
approval of a new procedure or a new drug. For existing procedures,
however, the data may not exist, and it may not be in the legal interest of the
parties involved to gather them. In the case of anesthesia accidents, for
example, data exist for the cases where death or severe brain damage
occurred in the course of a benign operation. But during a normal operation
in which the patient’s death can be attributed to his or her condition, the
actual probability of an anesthesia accident is not known because the exact
causes may not be clear and it may not be in the best interest of the medical
institutions to gather such information.

A number of potential measures that may reduce the risk of an anesthesia
accident can be considered; but without statistical data, their benefits cannot
be easily evaluated, and such statistical data are unlikely to be gathered
because they may be damaging to the current system. Therefore, another
approach is needed to identify effective risk reduction measures and evaluate
their benefits, which as is shown below, could be substantial.

Although a small proportion of anesthesia accidents is caused by technical
malfunctions of anesthesia machines, such incidents are rare. Most
accidents are caused by human errors. Thus, effective risk reduction
measures are generally not technical but instead concern mainly the
management of the personnel. Trained anesthesiologists as well as nurse
anesthesiologists can experience a number of problems, ranging from
substance abuse to poor supervision, which may affect their performance
and increase the risk to the patients. The question is thus to know: (1) what
is the frequency and what are the effects of these problems, (2) to what
extent can a number of safety measures based on management improvements
decrease the chances that they occur, and (3) what are the effects of these
safety measures on patient risk.

In this chapter we present an analytical framework based on Bayesian
analysis, which is different from classical statistical models. This approach
involves three steps. First, we analyze the probability of an anesthesia
accident based on the different sequences of events that can constitute
accident scenarios and on their probabilities. Second, we examine the kinds
of problems that anesthesiologists can experience that can affect their
performance. For a random operation, we assess the probability that an
anesthesiologist experiences any one of these problems. We then link the
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presence of such problems to the value of parameters in a patient risk model
(e.g., the frequency of accident initiators) in order to estimate the effect of
these problems on the safety of the patient. Finally, in the third phase of the
analysis, we consider a number of potential management measures that a
hospital’s administration might implement to reduce the chances that an
anesthesiologist in any operation is affected by any of these problems.
These include, for example, improved supervision of residents and periodic
re-certification of all practitioners. We then estimate the risk reduction
associated with these measures by assessing their effects on the probabilities
of different problems in the overall population of anesthesiologists. In the
second phase we computed the probability that an anesthesiologist
experiencing a particular type of problem might cause an accident. We can
therefore compute the risk reduction benefits associated with reducing the
chances that an anesthesiologist experiences various problems.

In order to make the analysis manageable, we decided to restrict it to
“healthy” patients, that is, those for whom the initial cause of surgery cannot
explain death or brain damage during the operation. These could be, for
example, otherwise healthy patients undergoing knee surgery. We also
chose to consider only medical doctors trained as anesthesiologists, as
opposed to nurse anesthesiologists. Finally, we considered only large
Western-style hospitals as opposed to outpatient clinics, which may
experience different kinds of problems.

This study [1-3] was motivated by a number of accidents that had occurred
shortly before, and had appeared in newspaper headlines and outraged the
public. These accidents ranged from the case of an alcoholic who had been
allowed to continue practicing when his problem was widely known among
his colleagues, to that of a surgeon and an anesthesiologist who let a patient
die while they engaged in a physical fight over whether or not to terminate
the operation in the face of an emergency. Another key motivation for this
work was the realization by hospital administrators that substance abuse
could be more widespread than previously suspected, both among young
residents using some of the drugs available in the operating room for
recreational purposes, and among older practitioners abusing alcohol to
relieve the stress of the profession. As we shall see, however, substance
abuse, intolerable as it is in such a profession, is only a minor contributor to
patient risk. Most of the risk to patients is rooted in much more mundane
problems, such as insufficient supervision of residents or lack of periodic
training among practitioners who may have been out of school too long to
remember how to react in the face of rare events.

Our analysis is based on the techniques of engineering risk analysis,
combining systems analysis and Bayesian probability in what is often
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referred to as probabilistic risk assessment (PRA) (e.g., [4]). This technique
has been used to analyze poorly known systems before much experience has
been gathered, such as nuclear reactors [5] and space systems [6]. The
analysis described here relies on a similar forward-looking probabilistic
model of the different scenarios of anesthesia accidents. For probabilistic
assessments, these classes of scenarios must be structured into a mutually
exclusive, collectively exhaustive set. Therefore, we identify first the
different incidents that can start an accident sequence (for example, an
overdose of the anesthetic drug). We then consider the different events
(detection, diagnosis, correction) that can follow the initiating event, and we
perform a stochastic dynamic analysis of these accident sequences. For
simplicity, we use a discrete Markov model to represent the evolution of the
accident sequence [7]. Therefore, we must assess the probability of
transition between each pair of states in any given time period. These states
are characterized both by the state of the patient (e.g., deprived of oxygen
because of a tube disconnect) and by the state of the “anesthesia system”
(anesthesiologist, nurses, surgeon, etc.), representing individuals who may or
may not have detected or diagnosed the problem. At the end of the analysis,
the question is: what is the probability that the patient has recovered or has
died (or experienced severe brain damage) given the time elapsed between
the initiating event and the end of the accident sequence. In the case of
malignant hyperthermia, this evolution can be very quick. Although the
condition is rare, the patient can die quickly unless proper measures are
taken: if deprived of oxygen, the patient may be fine after a minute or so but
experience severe problems or die after two minutes or more.

We did not have much statistical data for the specific parameters of the
model, for instance the probability that in any operation of the considered
class, the anesthesiologist is severely fatigued. We did have two kinds of
statistical data: the rate of accidents in the cases that we considered, which
was estimated in the literature to be about one in ten thousand [e.g., 8],
and the rate of initiating events per operation. The latter came from a data
set gathered in Australia as part of the study called AIMS [9] in which
researchers at an Adelaide hospital had gathered anonymous records after
each operation of any incident that may have occurred. Therefore, we had a
relatively reliable estimate of the rate of occurrence of the initiating events.

We needed to assess the rate of problems that the anesthesiologists might
experience in a set of operations, and the effect of these problems on the
chances that the anesthesiologists cause an incident (initiating event of an
accident sequence) and the chances that the anesthesiologists detect,
diagnose and correct the problem they caused. For these, we used expert
opinions that were carefully gathered from a diverse group of experts from
two countries (the U.S. and Australia). These involved anesthesiologists
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who were remarkably candid about the kind of problems that are common in
the profession, and willing to assess their rates of occurrence. We also
interviewed surgeons who had had the opportunity to observe
anesthesiologists in their practice, operating room nurses, patient
organizations and lawyers. Among them, the most helpful, perhaps, were
operating room nurses, especially those with long experience in several large
hospitals.

This data structure allowed us to start our computation with reliable statistics
of accident initiators and to verify at the end, based on accident statistics,
that the results involving the use of expert opinions were consistent with the
observed rate of accidents. These statistics at both ends of the problem thus
provided us with a “reality check” that gave us some degree of confidence in
the computations.

We did not analyze the costs of the different measures considered. Some of
these costs are theoretically negligible, such as the cost of proper supervision
of residents, which should be enforced anyway. Some costs are relatively
low, such as the cost of an annual medical checkup for practitioners. Other
costs, such as for regular re-certification, are perhaps higher.

This analysis provides a blueprint for a different approach to the evaluation
and correction of problems early, before vast amounts of data have been
gathered. The analysis therefore has the potential to save a substantial
number of lives. It is based on data that are relatively easy to collect ex ante,
and in particular on experience that can be related in simple terms; but it
does not require wild guesses of the global result, which would be too
complex to imagine out of the blue. For example, rather than asking experts
to guess directly the benefits of particular safety measures such as the
reduction of time on duty, we asked for the relative frequencies of specific
types of errors among young residents versus experienced practitioners.

25.2 THE RISK ANALYSIS MODEL EXTENDED TO HUMAN AND
MANAGEMENT FACTORS FOR THE CASE OF ANESTHESIA
PATIENT RISKS

As described above, the analysis involves three phases: 1) patient risk
analysis based on identification of accident scenarios and on their
probabilities; 2) development of a model of the problems that may be
experienced by anesthesiologists, and of their effects on the parameters of
the risk analysis and thus on our estimate of the corresponding patient risk;
and 3) identification of potential safety measures and policies, and
assessment of their effect on the probability distribution of the different
types of problems that can be experienced by an anesthesiologist in any
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given operation. The third phase allows computation of the risk reduction
benefits of these different policies.

The model is based on a general approach developed by the Stanford
Engineering Risk Research Group called “System-Action-Management” or
SAM. The principle is to analyze first the failure risks of a physical (e.g., an
engineered) system, the effects of different decisions and actions of
operators and technicians on the parameters and variables of the risk model,
and the effects of management decisions and policies on the behavior of
these agents [10, 11]. Although causality flows from management to the
system’s failure risk, the analysis starts with the system and extends to
management factors. This allows us to target the computation to the relevant
risk factors. This type of analysis has been applied to other problems
including, for example, a study of the risks of an accident on offshore oil
platforms [12].

25.2.1 The patient risk model

The structure of the patient risk model is based on the identification of the
different initiating events and on the dynamic analysis of the event sequence
that follows each event. The probability that a patient experiences an
anesthesia accident (AA), whether death or brain damage, is a function of the
probability of the initiating events and of the probability of an accident
conditional on each initiating event. Letting p(.) be the probability of an
event per operation and be the probability of event X conditional on
event Y, the probability of an anesthesia accident per operation is thus:

The first term of equation (1) is the probability of an initiating event
Table 25.1 summarizes the initiating events that were identified, their
probabilities per operation as estimated through numerical databases as well
as expert opinions, and their relative fractions among incidents.

The second term of equation (1) is the probability of an anesthesia accident
conditional on each initiating event, We compute that term using
a Markov model that involved transitions among “super states”. Each super
state combines one state of the patient and one state of the “anesthesia
system”. For example, one such super state could be the following: the
patient is in a state of hypoxemia following a tube disconnect, and the
“anesthesia system” has not yet detected the disconnection. Each state of the
overall system is thus described both by a state of the patient and by a phase
of the anesthesia system. Figure 25.1 shows the parallel evolution over time
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of both the anesthesia system (above the time axis) and the patient state
(below that axis).

Figure 25.1 Evolution of the patient state and of the anesthesia
system following the occurrence of an accident initiator such as a

tube disconnect*

*Sources: [1-2]
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Table 25.2 summarizes the patient states and the phases of the anesthesia
system that we considered, for the example case of a disconnection of the
tube that brings oxygen to the patient’s lungs.

The results of the analysis, for all possible initiating events, are summarized
in Table 25.3, which shows the contribution of each of the possible accident
initiators to the overall probability of an anesthesia accident.

Note that breathing problems (breathing circuit disconnect, esophageal
intubation and nonventilation) and anesthesia drug-related problems (inhaled
anesthetic overdose and anaphylactic reaction) contribute about equally to
the overall risk, while rare events such as malignant hyperthermia contribute
little to the risk even though they have a relatively high probability of
causing a severe accident if they occur.

25.2.2 Analysis of the effect of the state of the anesthesiologist on the patient
risk

In this second phase, we first assess the probability that in a given operation,
the anesthesiologist experiences a particular type of problem, then the
probability of an anesthesia accident conditional on the state of the
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anesthesiologist. The latter is shown in equation (2), in which represents
the state of the anesthesiologist (presence or not of different problems
indexed in j) and where the probabilities of initiating events and anesthesia
accidents given these initiating events are also conditioned by this state.

The anesthesiologist states affect the probability of an anesthesia
accident in two ways. First, they increase the chances that a practitioner
error causes a problem that starts an accident sequence (for example, that
s/he administers an overdose of anesthetic drug to a patient). Second, they
can decrease the probability that in due time; the practitioner observes,
diagnoses and properly treats the problem that has occurred. For each type
of problem, we asked our experts (ten anesthetists and a number of surgeons
and operating room nurses) to assess the multipliers of the probabilities of
each initiating event, and of the average time that it takes for the practitioner
to detect, diagnose and properly treat the problem. Based on these data, we
ran the model described in the previous section for each type of practitioner
problem and computed the resulting probability of an anesthesia accident.

Table 25.4 displays the nature and the probabilities of the different
anesthesiologist problems considered here, and their effects on the risk of an
anesthesia accident per operation. Table 25.4 shows, for example, that
severe distraction and fatigue can seriously affect the performance of the
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anesthesiologist and increase by a factor of ten the probability of an accident
compared to that in the case of a problem-free practitioner. Note, of course,
that the mean probability of such an accident remains unchanged at about

since the previous results were based on the general population of
anesthetists, including by definition those who experienced such problems.

25.2.3 Risk-reduction benefits of some management measures

The state of the anesthesiologist may be affected by workplace policies. For
example, an anesthetist’s ability to perform his or her job may be affected
when s/he is assigned to work long hours, when there is little monitoring of
anesthetists’ general state of health, or when there is insufficient supervision
of residents and trainees. Insufficient supervision is not supposed to occur
when established standards are followed. In practice, however, the
supervisor who is expected to be available in the operating room within two
minutes should an incident occur may be 15 minutes away in his or her
office.
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We considered a number of policy changes that could be made to improve
anesthesiologist states. Table 25.5 shows a description of the policies that
we examined.
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We assessed the potential effect of each measure on the probability per
operation that the practitioner experiences a particular type of problem (and
the probability that the problem is eliminated). We thus reassessed, for each
measure, the probability distribution of the different types of anesthetist
problems These new probabilities, in turn, decrease patient risk by
increasing the chances that the anesthesiologist is problem-free. Letting
denote the different management measures that were considered, the
probability of an anesthesia accident per operation, given that management
measure has been implemented, can be computed as follows:
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Table 25.6 displays the risk reduction benefits that were computed for each
policy. In some cases we assumed that the policy transferred the
anesthesiologists who were originally afflicted by a specified problem into
the “problem-free” category. For example, we assumed that periodic re-
certification and simulator training would give experienced practitioners
who did not operate often enough, a chance to encounter rare problems on a
machine before doing so in the operating room.

The results shown in Table 25.6 were somewhat surprising. Our study had
been motivated in large part by the fear of substance abuse among both the
youngest and the oldest anesthesiologists, but policies whose goal is to
detect them are not among the most effective. This is true for two reasons:
the base rate of substance abuse is rather low, and the effectiveness of the
potential measures is questionable because anesthesiologists may be able,
with training, to escape detection.
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We found that the real problems were closer to home than expected. Most
of the problems were not caused by rare events, but by more mundane
factors such as fatigue and poor supervision of residents. Closer supervision
of residents and periodic re-certification and simulator training appeared to
be among the most potentially effective measures.

We did not include any cost considerations in our analyses. Some of the
costs (e.g., cost of re-certification) depend on how practitioners’ time is
valued. Practitioners will tend to value their time at the rate at which they
are paid in the operating room, whereas some economists would value their
time at the cost that they are willing to pay for their leisure time.

This analysis shows that the base rate of anesthetists’ problems, their effects
on patient safety, and the anticipated decrease of problem probabilities as a
result of safety measures, all contribute to the risk-reduction benefits. The
analysis allowed identification of the most severe problems and of the most
effective measures, regardless of the nature of the last accident and the
publicity that may have surrounded it.

25.3 CONCLUSIONS

When the costs and the benefits of possible safety measures are easy to
assess and priorities are clear, risk quantification may not be necessary. This
is not always true, however, as intuition and perceptions can be deceptive.
Perceptions of risk can be distorted by media reports, or by an emphasis on
the sensational rather than the obscure. When abundant statistics are
available, they may be sufficient for computing the corresponding risks.
Otherwise, probabilistic methods based on systems analysis, Bayesian
probability and dynamic stochastic models can be used to assess the risk
based on a mix of statistics, physical models and expert opinion. We have
illustrated that approach in this chapter.

This type of analysis provides a logical framework in which to gather the
available knowledge when decisions need to be made before large data sets
can be gathered and perfect information obtained. The anesthesia patient
example provided here showed that the accident sequences that had received
the most attention because they had made the headlines were not the largest
contributors to the overall patient risk. Although a full study should also
include the costs (which are likely to vary widely according to
circumstances), we have shown in this chapter how the probabilistic risk
analysis framework can be used to set priorities among different policies,
based here on their risk reduction benefits.



ANESTHESIA PATIENT RISK REDUCTION 655

What was done here for trained anesthesiologists could be transferred
directly to a study of the performance of nurse anesthesiologists. It would be
interesting to know, given the difference of costs, whether there is a
significant difference or not in the risk to the patients. The model could also
be applied to other medical cases. What was done for anesthesia could also
be done for surgery in general, or for particular types of operations. The
performance of surgeons, like that of anesthesiologists, is affected by factors
that include fatigue, time pressures, sometimes substance abuse, or simply
situations for which they do not have the necessary training. In a different
vein, the same Stanford group is currently working on a method for early
assessment of medical devices, in the design phase before large statistical
studies can be performed to satisfy FDA requirements [15]. The method is
based on risk analysis including a system’s analysis not only of the device
but also of the performance of the people who will use it in the future. It
allows computing the risks of failure before large amounts are spent or the
device fails in operation after FDA approval.
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SUMMARY

Despite many proven advances in patient care over the last 10 years, asthma
continues to impose a large and growing burden on society. Persistent
clinician non-adherence to recommended practice is well documented, but
little is known about the clinical impact and economic costs of alternative
approaches to asthma patient care. In this chapter, we introduce the Asthma
Policy Model, a state-transition simulation that we have developed to
forecast asthma-related symptoms, acute exacerbations, quality-adjusted life
expectancy, health care costs, and cost-effectiveness. We begin with a
detailed survey of the epidemiological, clinical, and policy context that
motivates our work. With a modeling audience in mind, we then describe the
considerations that produced the current analytic structure and input datasets.
We illustrate the policy relevance of the model by describing our recent work
on the cost-effectiveness of inhaled corticosteroid therapy in a population of
adult patients with mild-to-moderate disease. We close the chapter with a
discussion of plans for future refinements and applications.

KEY WORDS

Asthma, Inhaled corticosteroids, Cost-effectiveness analysis, Decision
analysis, Markov models, State transition models
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26.1 INTRODUCTION

Over the last 10 years, the scientific basis for effective therapeutic
intervention in asthma has been established. The challenge now is to translate
this evidence base into long-term clinical outcomes and economic terms so
that it can be understood by decision makers whose choices determine the
financing and delivery of patient care. The policy modeling approach to this
question is justified by the immediacy and uncertainty of the context in which
asthma-related decisions are made. In this section, we briefly describe that
context. We begin by describing the growing public health burden imposed
by asthma (26.1.1) and inventorying recent developments in patient care
(26.1.2). We then turn to a discussion of practice variation in asthma
management and the failure of high-profile guidelines to promote a consistent
standard of care (26.1.3). We note the lack of program evaluation research in
asthma (26.1.4) and argue that a policy modeling approach is both appropriate
and necessary.

26.1.1 The growing social burden of asthma

Asthma is one of the most prevalent diseases of children and adults in the
United States, affecting approximately 13.7 million Americans [1]. Temporal
trends in hospitalization rates indicate that asthma morbidity is increasing.
Among children, asthma is the most frequent cause of hospitalization and
school absences and is estimated to account for 28 million restricted activity
days annually [2]. Pediatric hospitalization rates have increased by
approximately 300 percent over the past 20 years [3]. Hospitalization rates
among adults have also increased, rising from 10 in 10,000 in 1980 to 13 in
10,000 in 1985 [4]. Although death from asthma is relatively uncommon, the
mortality rate in the U.S. has gradually increased over the past 15 years
among both children and adults [5].

Asthma also imposes a large economic burden. In 1992, Weiss and colleagues
[6] estimated $3.6 billion in total direct costs in the U.S., a figure that
included hospitalization and emergency department (ED) services ($1.9
billion), prescription medications ($1 billion), and physician services ($493
million). The indirect costs of lost income and productivity were found to
contribute an additional $2.6 billion to the societal bill. More recent figures
from the National Heart, Lung, and Blood Institute show direct costs for the
year 2000 of $8.1 billion, with lost productivity costing an additional $4.6
billion [7].

The impact of asthma is felt disproportionately in historically underserved
communities in the U.S. Asthma mortality among U.S. blacks is
approximately twice that of U.S. whites. The rate of hospitalization for
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asthma is also substantially greater among U.S. blacks and Hispanics overall
than among whites. These differences are seen in all age groups, but are
especially striking among children. National data for 1987 reveal that black
children less than 5 years old were almost three times as likely as white
children to be hospitalized for asthma [4, 8, 9]. Similar disparities are
observed for the very poor and those living in the inner city [8, 9]. The
etiologies for the higher disease prevalence and greater rates of health care
utilization, morbidity, and mortality among disadvantaged populations are not
fully established. Postulates include increased exposure to smoke and
allergens [10-12], reduced access to health care [6, 13], and inappropriate
disease management [14-18].

These figures depict asthma as a large and growing public health problem.
They also highlight a common misperception about the disease: Although
asthma is generally thought of as a low-grade, chronic ailment, the numbers
reveal a condition in which 43% of the costs are related to hospitalization and
ED services. This suggests that there is room for improvement in patient
management. It also speaks to the potential usefulness of formal evaluation
in promoting better resource allocation and more efficient, more equitable
patient care.

26.1.2 Rapid emergence of new treatment alternatives

Insights into the central roles of airway inflammation and
hyperresponsiveness in asthma have led to a marked change in recommended
preventive measures and therapies in the last 15 years [19]. Today, the goals
of asthma management include: prevention of chronic symptoms,
maintenance of near-normal pulmonary function and activity levels, and
prevention of recurrent exacerbations while minimizing adverse drug effects.
While pharmacologic therapy is the central component of asthma
management, several non-pharmacologic approaches also contribute to
improved outcomes.

Pharmacologic interventions “Quick relief medications (most notably,
short-acting beta-agonists) remain the most commonly prescribed asthma
therapy. As stand-alone monotherapy, however, they are generally believed
to be appropriate only for those with the mildest form of disease. Persons with
persistent disease require the addition of ”controller” medications, with
inhaled corticosteroids (ICS) forming the mainstay of anti-inflammatory
therapy [20]. Newer, longer-acting beta-agonists (duration of action in excess
of 12 hours) are in the early stages of distribution [21]. Other agents
(leukotriene modifiers, IgE, Anti IL-4, Anti IL-5) are under investigation
[22].
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Non-pharmacologic interventions Patient education and self-management
interventions aim to promote better understanding of the nature of disease,
environmental modification, compliance with prescribed medications, early
recognition and response to acute events, appropriate use of devices (such as
metered dose inhalers), enhancement of patient/family psychological
resources, and promotion of coping strategies. Asthma management programs
seek to promote greater provider and patient attention to the process of care
and thereby to improve patterns of inpatient service and rates of ICS
prescribing [23]. Other interventions aim at reducing exposure to
environmental risk factors and specific allergens [24-27]. Finally, treatment
of coexisting, upper respiratory symptoms (e.g., with intranasal steroids and
oral antihistamines) has been shown to produce short-term improvements in
lung function and symptoms [28-31].

The expansion of treatment choices in asthma carries with it a host of
uncertainties about what is effective, what is not effective, and at what cost.
In time, randomized controlled trials and clinical experience may resolve
some of these questions. However, the decision to wait for better information
is a decision that itself carries costs and consequences. For choices that
cannot wait, a model-based approach offers a formal framework for
organizing information.

26.1.3 Limited success of national practice guidelines

The National Asthma Education and Prevention Program (NAEPP)
Guidelines for the Diagnosis and Management of Asthma [1] were developed
to help bridge the gap between research and clinical practice. The guidelines
describe four components of asthma management: 1) use of objective
measures of lung function to assess severity and monitor the course of
disease; 2) pharmacologic therapy focused on long-term management of
airway inflammation; 3) non-pharmacologic measures to diminish or
eliminate factors that precipitate asthma symptoms; and 4) patient education.
The guidelines recommend a “step” approach to asthma therapy based on
disease severity, emphasizing the need to manage persistent disease more
aggressively with consideration to earlier use of anti-inflammatory therapy.

Clinical guidelines in other diseases have been shown to decrease the
variance between physician practice patterns and accepted standards [32-34].
However, judging by the persistent variation in asthma practice patterns in the
U.S., nonadherence to the NAEPP guidelines is widespread [35]. This raises
the concern that increased morbidity and cost related to inadequate asthma
care may soon cause payors to demand the delivery of guideline-concordant
care. It also speaks directly to the policy relevance of a model-based
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approach in evaluating the clinical and economic costs that society incurs by
failing to provide universal, comprehensive, state-of-the-art care.

26.1.4 Limited program evaluation literature in asthma

Relatively few studies have examined the costs or cost-effectiveness of
strategies to improve asthma care and most of these have focused on
educational interventions. Windsor et al. examined a range of alternative
adherence measures, including correct inhaler use, medication adherence and
inhaler adherence in a randomized controlled trial [36]. They found a 42%
improvement in adherence in the intervention group compared to the control
group at a total cost of $32.03/per patient/year. Other studies have assessed
asthma self management [37, 38], childhood asthma management [39, 40],
and medication use [41, 42]. Ross et al. considered the incremental costs of
treating asthma in patients for whom cromolyn sodium was included in the
routine treatment plan [43]. Rutten-van-Molken et al. [44] and Connett et al.
[45] studied the cost-effectiveness of inhaled corticosteroids but came to
conflicting conclusions. In a pediatric population, Connett et al. found that
budesonide produced a favorable clinical response, increasing symptom-free
days and reducing overall costs. In adults, Rutten-van-Molken et al. found
that the addition of an inhaled corticosteroid to beta-agonist therapy produced
an incremental cost-effectiveness ratio of $5 per symptom-free day gained.

No studies have specifically evaluated the NAEPP guidelines. No studies
have been conducted in conformity with the 1996 recommendations of the
U.S. Panel on Cost-Effectiveness in Health and Medicine [46].

Asthma may be the only major chronic condition for which independent
pharmacoeconomic evaluations have yet to appear in the literature with
regularity. This places patients with asthma at a distinct disadvantage in
competing for scarce health care resources. Use of a policy modeling
approach aims to meet that challenge by producing objective, quantifiable
evidence of: 1) the social costs of clinician nonadherence to recommended
practice; and 2) the comparative cost-effectiveness of increased investment in
state-of-the-art asthma patient care.

26.2 DESCRIPTION OF APPLICATION

We have developed the Asthma Policy Model [47-50], a state-transition
simulation of the natural history and clinical management of asthma. We have
used this model to support clinical judgment in asthma by producing
literature-based estimates of health outcomes, quality-of-life effects,
economic costs, and the cost-effectiveness of different patient care strategies.
In the sections that follow, we describe the structure of the model and
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illustrate its usefulness with an application to the cost-effectiveness of inhaled
corticosteroid (ICS) therapy in patients with mild-to-moderate disease [50].

To briefly summarize the application, we compare two intervention strategies:
1) quick relievers (e.g., short-acting on an as-needed basis, versus
2) quick relievers plus ICS therapy. We employ a secondary research design
to conduct clinical effectiveness and pharmacoeconomic analyses where the
outcomes of interest include: symptoms (both daytime and nocturnal), acute
event rates (including events requiring an urgent care visit, an ED visit, and/or
hospitalization), and mortality (both asthma-related and other). We also
record time spent at a given disease severity level. Patients are followed from
age 18 to death, thereby permitting us to consider events along the spectrum
of adult disease. In keeping with accepted methods for cost-effectiveness
analysis, the baseline analysis adopts a societal perspective, considering all
economic costs and consequences to be important regardless of their source
or beneficiary. We report value for money on an incremental basis, measured
in terms of both dollars per quality-adjusted life-year (QALY) gained [46]
and dollars per symptom-free day gained [51]. We discount all outcomes at
3% per annum. Monetary values are reported in 1998 U.S. dollars, adjusted
(when necessary) using the medical care component of the Consumer Price
Index [52].

26.3 METHODOLOGY USED

26.3.1 Model overview

The Asthma Policy Model is a Markov, state-transition simulation of the
natural history of asthma in a general patient population. It characterizes the
natural history of illness as a sequence of flows into and out of a defined set
of “health states.” Patients in a given health state are assumed to share a similar
clinical history and prognosis, a common perception of well-being, and a
comparable pattern of health care utilization [53, 54]. At any point in time, a
patient is assigned to one and only one health state. The model classifies the
health states into three general categories (chronic, acute, and death),
reflecting the observation that the clinical course of asthma is characterized
by long periods of chronic illness, punctuated by episodic, acute
exacerbations. Deaths can occur from either the acute or chronic health
states.

Patients are assigned to an initial health state in proportions that reflect
published distributions of patient age, asthma prevalence, and pulmonary
function. Each month, a patient’s risk profile may change, thus producing a
re-assignment to a new health state. For example, at the beginning of each
month, the model adds a month to the age of every member of the population;
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patients who turn 35 advance from the 18-35 age stratum to the >35 category.
State transitions may also result from progression to a more severe level of
pulmonary dysfunction or death. Acute exacerbations also produce transitions
to a new health state; the model identifies three categories of acute events —
urgent care visits, ED visits, and hospitalizations — reflecting the observation
that each of these involves a unique set of mortality risks, clinical
consequences, quality-of-life reductions, and economic costs. The acute
health states are modeled as single-cycle, transient states, meaning that
patients reside in them for exactly one month before either returning to a
chronic state of health or dying. This modeling convenience makes it possible
to capture the rapid succession of events, the increased risks of death, the
reduction in quality of life, and the increased costs that characterize the month
immediately following the onset of an acute event.

26.3.2 State space

The state space in the Asthma Policy Model is defined along the following
clinical dimensions:

Disease status (chronic/stable; acute/hospitalization; death): Patients
spend the majority of their time in a chronic, stable state of health. Acute
events typically involve short bursts of intense resource consumption and
transient reductions in patient perceptions of well-being. The model
captures this by distinguishing between time spent in a stable state of
illness and time spent in the hospital. (For computational purposes, it is
also useful to define a “death” state.)

Lung function (mild, moderate, severe): Airflow impairment is an
imperfect but valuable predictor of patient prognosis, risk of
exacerbation, quality of life, and resource use. Based on the NAEPP
recommendations [1], we define three strata of lung dysfunction, using
the forced expiratory volume in one second, expressed as a percent of
predicted normal value (FEV1% predicted), as our severity measure:
<60%, 60-80%, and >80%. Readers should note that this is a critical –
and controversial – modeling assumption, one which we discuss further in
Section 3.3.

Patient age (18-35; >35): The current version of the model is focused on
adults. The 35-year adult cut-point is chosen to reflect differences in
background mortality rates between younger and older adults and to
minimize the risk of misclassification of asthma and chronic obstructive
pulmonary disease (COPD) among younger adults.
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Prior hospitalizations (0, 1, >1): A history of asthma-related
hospitalizations leads to higher acute event and resource consumption
rates, reduced quality of life and survival, and different clinical care
patterns [55]. The decision to lump all prior hospitalizations in excess of
one into a single category reflects the lack of published data linking
specific numbers of hospitalizations to events rates and resource
consumption. It also reflects a concern that the state space not be
expanded beyond the ability of the data to support that expansion.

Cause of death (non-asthma-related; asthma-related): The model records
cause of death in order to reflect resource consumption patterns in the last
periods of life.

Together, these dimensions define a total of 32 logically feasible health states.
Ideally, of course, it would be desirable to add many more dimensions to the
health state definitions. However, data collection burdens and computational
complexities increase with dimensionality; a model that distinguishes among
many patient types might appear more precise, but its predictive validity and
credibility would be much more difficult to establish.

26.3.3 Note on modeling strategy: Measuring disease severity

In this section, we provide more detail on what was perhaps the most
challenging methodological task associated with the model development –
namely, the specification of an index of lung dysfunction. No formally
accepted definition of asthma severity exists. Most indices incorporate
multiple characteristics including asthma symptoms, objective measures of
lung function and airflow impairment, medication and resource utilization
[56]. The 1991 NAEPP Guidelines classified asthma severity into three
categories (mild, moderate and severe) based on the frequency and severity of
asthma symptoms, exacerbations and objective measures of lung function
[57]. The 1997 Guidelines modified the severity classification to include four
categories; mild intermittent, mild persistent, moderate persistent, and severe
persistent [1].

In the context of policy modeling, the goal of disease severity classification is
less to describe “what is” and more to inform “what ought to be.” The
challenge, therefore, is to define a severity measure that assembles a
sufficient amount of clinical information and is adequately predictive of the
downstream outcomes of interest but – at the same time – remains
independent of those outcomes and amenable to policy intervention. With
these requirements in mind, we explored FEV1% predicted as a potential
asthma severity index. At first blush, FEV1% predicted has the advantage of
objectivity and reproducibility [58, 59]. Moreover, it appeals to the intuition
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as an underlying, physiologic driver of clinical events. In addition, asthma
intervention trials frequently measure FEV1% predicted as an outcome and
express the efficacy of new therapies in terms of impact on FEV1% predicted.
Nevertheless, there is concern that FEV1% predicted might not be sufficiently
predictive of prognosis. We sought to explore this concern, conducting our
own analysis of the relationship of FEV1% predicted to symptoms, acute
exacerbations, costs, and quality of life. We summarize our findings from
that exploration in the sub-sections that follow [47-49, 60].

Relationship of FEV1% predicted and asthma symptoms The most
distinctive characteristic of asthma is a pattern of airway irritability that
increases when the disease is active and decreases in response to appropriate
therapy. An obvious clinical measure of the disease process is the presence of
symptoms (both daytime and nocturnal). One approach to symptom
measurement involves the concept of the “symptom-free day.” This global
measure of the number of days for which the patient has had no symptoms
(including cough, wheeze, shortness of breath, or nighttime awakening) is
endorsed for use in economic evaluations of asthma interventions by the
National Asthma Education and Prevention Program Working Group Report
on the Cost-effectiveness of Asthma Care [51].

We reviewed the literature and developed a novel approach to estimating the
impact of changes in FEV1% predicted on asthma-related symptoms [47].
The analysis used asthma-related clinical trials that reported estimates of
mean FEV1% predicted and symptoms (symptom score or percentage of
symptom days or nighttime awakenings). Using average baseline values from
each study in weighted linear regression analyses, a negative association was
found between lung function and symptom score (p<0.001) and the
percentage of nighttime awakenings (p=0.18), but no association was found
between lung function and symptom-days.

Consistent associations were identified between mean changes in lung
function and symptom-days at follow-up within the studies. Accordingly, we
plotted the change in FEV1% predicted versus the change in the logit of % of
days with symptoms for each treatment arm, where each treatment arm was
represented by a single line (see Figure 26.1). The weighted (by number of
patients) average of the slopes of the lines was –0.1550. We estimated an
intercept term by minimizing the vertical distances between the lines deter-
mined by each intervention and the fitted line. The resulting relationship is:
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This regression equation was applied in the model to translate a given
increase in FEV1% predicted into a measurable reduction in the percentage of
days with symptoms.

Figure 26.1  Relationship between FEV1% predicted and
percentage of days with symptoms. Each solid line represents
the intervention arm of a clinical trial. The dotted line represents

the fitted line from the within-population analysis:
logit(% days with symptoms) = 12.5 - 0.1550 * FEV1 % predicted

Reprinted from Kuntz K.M., B.T. Kitch, A.L. Fuhlbrigge, A.D. Paltiel, P.J.
Neumann, and S.T. Weiss (2001). A novel approach to defining the relationship
between lung function and symptom status in asthma. Journal of Clinical
Epidemiology 55, 11-18, with permission from Elsevier Science.

Relationship of FEV1% predicted and acute events We performed
separate analyses in two adult and one pediatric cohort to explore the
relationship between FEV1% predicted and reports of attacks of wheezing
and shortness of breath over the subsequent year [48]. In the pediatric cohort,
a progressive decrease in the proportion of individuals reporting an attack was
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associated with improved lung function. In multivariate models, FEV1%
predicted was an independent predictor of attacks: among a parental report
group, OR=2.1 (95%CI (1.3, 3.4)) and OR=1.4 (95%CI (1.2,1.6)) for FEV1%
predicted <60% and 60%-80% compared with >80%, respectively. Among a
self-report group, OR= 5.3 (95%CI (2.2,12.9) and OR=1.4 (95%CI (1.2,1.7)
for FEV1% predicted <60% and 60%-80% compared with >80%,
respectively. In the two adult cohorts, a similar relationship was observed
between FEV1% predicted and risk of an asthma exacerbation over the three
years following its measurement. Among subjects in one cohort with an
FEV1% predicted of <60%, 58% of the observations reported at least one
asthma exacerbation over the three years following measurement of lung
function. For those with an FEV1% predicted >80%, only 13% had an
exacerbation. In a second cohort, a similar relationship was observed: among
subjects with an FEV1% predicted <60%, 65% had at least one exacerbation,
compared to those with an FEV1% predicted of >80%, where 34%
experienced an exacerbation. Using logistic regression analysis to control for
potential confounding variables, the association of FEV1% predicted and
subsequent asthma attack persisted in both populations.

For purposes of modeling acute event incidence, we focused on the
relationship between FEV1% predicted and observed rates of emergency
department (ED) use. We used a retrospective study that reported ED rate
and mean FEV1% predicted for three severity groups: mild, moderate, and
severe [61]. We assumed a logistic relationship to estimate the following
logit risk function:

The overall rate estimated by this function was adjusted upward or downward
depending on the history of prior hospitalizations. To then determine the
number of acute exacerbations that resulted only in an urgent care visit, we
made use of a local patient database that has previously been employed for
other peer-reviewed utilization studies [62, 63]. Specifically, we estimated
the ratio of the number of urgent care visits that do not result in an ED visit
(or hospitalization) to the number of asthma-specific ED visits (assuming that
all ED visits are the result of an exacerbation). These ratios were stratified by
asthma severity and age group and ranged from 3.4 to 6.1. (Milder disease
and older age were associated with higher ratios.) We used the same database
to estimate the proportion of all asthma-related ED visits that result in an
admission to the hospital, stratified by asthma severity and age group.
Patients with more severe disease and older age were more likely to be
admitted to the hospital from the ED (proportions ranged from 0.17 to 0.32)
(see Table 26.1).
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Relationship of FEV1% predicted and patient preferences We sought to
examine how preference-based quality of life varied with FEV1% predicted
in adults with asthma using four preference elicitation techniques [49]. In the
case of the relationship between lung function and values (utilities), published
evidence is limited [64, 65]. No studies have considered a sufficiently rich
set of symptomatic health states to be suitable for our use. Moreover, we
know of no studies that have directly collected community-based preferences
in asthma. We therefore chose to collect our own preference weights in a
companion, cross-sectional study of 100 adult years) asthmatics in the
Lexington, Kentucky area [66]. All patients in the study met the following
inclusion criteria: 1) diagnosis of asthma as documented in the pharmacy
computer system; 2) drug therapy indicative of asthma; and 3) self-report of
asthma. Patients were administered several preference elicitation techniques,
including time tradeoff (TTO) and standard gamble (SG) questions, the
Health Utilities Index (HUI), and the Asthma Symptom Utility Index (ASUI).
For each patient, information was also collected on FEV1% predicted. The
relationship between FEV1% predicted and preference scores was obtained
for each of the preference assessment techniques using univariate and
multivariate regression techniques (see Table 26.2).
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We found that FEV1% predicted was positively associated with preference
scores for each of the instruments, though the relationship was statistically
significant only for the TTO. Based upon these results, we concluded that
lung function, as measured by FEV1% predicted, is an important predictor of
patient preference in adults with asthma. The current version of the Asthma
Policy Model therefore employs the following estimated function to adjust for
health-related quality-of-life (HRQOL) effects:

The U.S. Panel on Cost-effectiveness in Health and Medicine recommends
that community preferences for health states be used, whenever feasible, to
value morbidity consequences [46]. However, the Panel acknowledges the
difficulties of adhering to this recommendation; our approach reflects one of
the practical approximations they enumerate.

26.3.4 Note on modeling strategy: The impact of therapy

Having established FEV1% predicted as our marker of disease severity, we
turned to the question of modeling the impact of therapy on that marker. To
quantify this relationship, we performed a Medline search on the words:
randomized clinical trial; asthma; FEV1 (or any one of forced expiratory
volume, spirometry, pulmonary function, lung function, or respiratory
function); and beclomethasone (or any one of flunisolide, triamcinalone,
budesonide, or fluticasone.) Of 352 English-language articles retrieved, 76
were deemed appropriate for full review based on the following criteria: 1)
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randomized controlled trial (excluding studies in which either the intervention
arm or the “placebo” group used continuous oral steroids or other controller
therapies, such as leukotriene modifiers, cromolyn sodium, nedocromil, or
long-acting 2) intervention was an ICS (any of the five currently
available in the U.S. market); 3) subjects met the individual study’s criteria
for asthma diagnosis; and 4) FEV1% predicted (or the data necessary to
calculate it) reported as an outcome. Sixteen studies, yielding 26 active
treatment arms, met these criteria [67-82].

For each treatment arm, the effect of intervention was expressed in terms of
the percent change in FEV1% predicted. We subtracted the change in FEV1%
predicted for the placebo group from the change in the FEV1% predicted for
the intervention group, giving us the expected effect of a particular treatment
relative to placebo. Because our purpose was to produce a summary efficacy
estimate for the model, we calculated a mean change in FEV1% predicted
weighted by the number of study subjects (both for all studies combined and
stratified by baseline lung function).

We found that improvements in FEV1% predicted ranged from 1% to 22% of
the baseline value. Because the dose range in these studies was relatively
narrow (none of the trials compared low-dose therapy to high-dose therapy),
and the absolute improvement in FEV1% predicted associated with the
highest compared to the lowest dose was negligible or small (0 to 3%), we
assumed equivalency across dose ranges. We estimated that ICS therapy
produces baseline relative increases in FEV1% predicted of 7.6% for patients
with mild disease and 11.6% for patients with moderate asthma. Mindful of
the limitations of our approach, however, we explored efficacy values ranging
from 1% to 22% in sensitivity analysis.

We assumed that the impact of therapy on an acute event was mediated
entirely through lung function. No benefits independent of FEV1% predicted
effect were assumed. Moreover, we assumed equivalency across all ICS
preparations. While the model can be employed to simulate the effects of a
given agent, our approach is consistent with the most recent version of the
NAEPP guidelines (which acknowledge differences on a per inhalation or
microgram basis, but which do not currently define any implications of these
differences for purposes of clinical dosing recommendations) [1].

26.3.5 Other modeling considerations

Mortality Because no published estimates of asthma mortality could be
located that were stratified by lung function, age-specific death rates were
applied across severity strata. Estimated monthly probabilities of asthma-
related death were for patients aged 18-35 and for patients over
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35 years [83]. Non-asthma-related mortality rates were taken from the U.S.
life tables [84].

Costs Costs were estimated from published resource utilization studies [85-
91]. Baseline monthly chronic care costs (medications, routine office visits,
laboratory testing) were $35 and $57 for mild and moderate patients,
respectively. Acute event costs included $63 for non-ED urgent care visits,
$242 for ED visits, and $3,200 for hospitalizations. A $38/month ICS drug
cost was estimated from the manufacturer’s reported number of inhalations
per container, the average wholesale cost per container, and the estimated
number of inhalations required to achieve the desired daily dose over 30 days
[92]. Recognizing the demographic and clinical variation across studies, we
conducted analyses that explored the effects of varying costs by as much as
50% to 200% of their baseline values.

Disutility of ICS therapy Documented side-effects of ICS therapy in adults
include dysphonia and thrush, cataracts and intraocular pressure, adrenal
suppression, and the development of osteoporosis [93, 94]. There is concern
that these weigh heavily in patients’ and clinicians’ decision making. In the
absence of any data on the subject, we conducted a “what-if analysis, with
the impact of side-effects modeled as an across-the-board, percent reduction
in the HRQOL adjustment value for any patient receiving ICS therapy,
regardless of dose. The baseline value for this reduction was 0%; values up to
3% were considered in sensitivity analysis.

26.4 RESULTS

26.4.1 Natural history

The model estimates that, over a 10-year horizon, patients receiving quick
relievers alone will live an average of 81.2 quality-adjusted life-months
(QALMs). Undiscounted and unadjusted for HRQOL effects, this equates to
110 months of life, with virtually all deaths attributable to non-asthma–related
causes (see Table 26.3). The model predicts a population average of 36.7%
symptom-days, 4.5 acute episodes per person over the 10-year period, and
$5,200 in per person, discounted, total direct costs. As expected, the model
predicts more serious outcomes for patients with more severe disease. For
example, a patient with mild asthma will experience 3.4 acute exacerbations
and will incur costs of $4,200 over a 10-year period; patients with moderate
illness are predicted to experience, on average, 7.4 acute exacerbations and
incur $7,800 in costs over the same period.
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26.4.2 Cost-effectiveness of ICS

Addition of ICS increases discounted, quality-adjusted life over the 10-year
planning period to 84.0 QALMs and costs to $8,400. (Additional costs are
almost all attributable to drug outlays.) Symptom-days are reduced to 21.7%
and the average patient experiences only 3.0 acute events. Compared with
quick relievers alone, we estimate an incremental cost of $13,500 per QALY
gained and $7.50 per additional symptom-free day (see Table 26.3).

26.4.3 Sensitivity analysis

To explore uncertainties in our results, we conducted a number of one-way
sensitivity analyses (wherein a single input parameter was varied over the
range of plausible values). A selection of output from these efforts is
presented in Figure 26.2. In most instances, the policy conclusions were
robust over reasonable parameter uncertainty; there were some exceptions,
however. Most notable among these was the effect of ICS efficacy. As the
percent change in FEV1% predicted was varied from 21% to 1%, the cost-
effectiveness ratio ranged from $5,000 to $128,000 per QALY gained.
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Figure 26.2 Sensitivity analysis*

* This “tornado diagram” summarizes the results of a series of one-way sensitivity
analyses. Each horizontal bar represents a given model parameter. The vertical axis
sits at the base case incremental cost-effectiveness estimate ($13,500/QALY). The
span of a given horizontal bar denotes the range of cost-effectiveness outcomes
produced by varying that specific parameter over its plausible range.

26.4.4 Targeted intervention

We considered four possible approaches to targeted intervention: 1) quick
relievers alone (“No ICS”), 2) ICS targeted to mild asthmatics (“Mild Only”),
3) ICS targeted to moderate asthmatics (“Moderate Only”), and 4) the original
intervention where all patients receive ICS (“Mild and Moderate”). In
keeping with accepted methods [46], we arrayed results in order of increasing
cost and eliminated from consideration any “dominated” strategies (i.e.,
strategies that were more expensive and delivered fewer benefits than some
other approach or combination of approaches). As described in Table 26.4,
the “Mild Only” approach was dominated. We computed cost-effectiveness
ratios for the remaining strategies. Compared with use of quick relievers
alone, the “Moderate Only” strategy conferred additional QALYs at an
incremental cost of $10,300. Compared with the “Moderate Only” strategy,
scaling up to the “Mild and Moderate” approach had a cost-effectiveness ratio
of $15,000/QALY gained.
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26.4.5 Conclusions from the present study

We conclude from the present study that even ICS intervention in mild
asthmatics compares favorably with a host of lifesaving and health promotion
alternatives for chronic disease. (Examples include: Ticlopidine vs. aspirin in
65-year-olds with high risk of stroke, $48,000/QALY; chemotherapy vs. no
chemotherapy in 75-year-olds with breast cancer, $58,000/QALY; and bypass
surgery vs. medical management in patients with moderate angina and triple
vessel disease, $30,000/QALY [95].) These findings should be interpreted
with some caution, however, since they hinge upon a number of uncertainties,
most notably the efficacy of ICS therapy and its impact on patient perceptions
of HRQOL.

26.5 AVENUES FOR FURTHER RESEARCH AND CONCLUSIONS

The analysis we have described is only a first step. We intend to continue to
refine the model to explore questions which — given both the inevitability of
difficult choices and severe time, data, and financial constraints — only a
simulation-based approach can currently address. In this section, we describe
our current activities to expand the existing Asthma Policy Model in four
areas: enlarging the set of variables describing health states to capture
children and high-risk populations (26.5.1); refining the measure of efficacy
to consider new pharmacologic and non-pharmacologic interventions
(26.5.2); improving capability to simulate drug side-effects (26.5.3); and
incorporating a measure of patient adherence to therapy (26.5.4).
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26.5.1 Model improvement #1: Children and high-risk populations

We are currently working to enlarge the set of variables describing health
states along the following dimensions:

Patient age (6-10; 11-18; 18-35; >35): Children and adults experience
different rates of disease progression, risk of exacerbations, and response to
therapy. This produces differences in patterns of care, resource use, and
perceived quality of life, The impact of age on these outcomes is most
pronounced when comparing children to adults. We plan to distinguish
between four broad age categories: pre-adolescent (age 6-10), adolescent (11-
18), young adult (18-35), and older adult (35+).

Smoking (yes; no): Current smoking is associated with increased risks of
health care utilization [96, 97] and accelerated rates of decline in FEV1%
predicted among adult asthmatics [98, 99]. The effect of passive smoking on
the respiratory health of children is undisputed, with odds ratios of up to 1.6
for respiratory illness, symptoms and middle ear disease [100]. Smoking
status will be categorized into current smoker vs. nonsmoker among adult
subjects. We will also distinguish between passive and active tobacco
exposure.

Race/Ethnicity (Black/Hispanic; other): The impact of asthma is felt
disproportionately in historically underserved communities. Among U.S.
blacks and Hispanics, asthma incidence, hospitalization, mortality, and
resource consumption rates all exceed observed averages. Reflecting these
observations, we are working to refine the state dimensions to create an “at-
risk” population segment (Black/Hispanic). This certainly will not capture the
full meaning of “disadvantaged population.” Nevertheless, it will provide us
with a credible, widely reported, aggregate marker for socio-economic and
cultural characteristics believed to drive resource utilization and health
outcome patterns in asthma.

An expanded Asthma Policy Model will permit us to focus more directly on
some of the nation’s highest-risk and most vulnerable populations. These
modifications will cause the model to grow from the current 32 states to
roughly 250 states. While this represents an order-of-magnitude increase in
size, the revised model will nevertheless remain comparatively small.

26.5.2 Model improvement #2: New drug and non-drug interventions

We are working to enlarge the spectrum of interventions that the model can
simulate. This includes both drug therapies (including leukotriene modifiers
and long-acting beta-agonists) and non-drug interventions (including smoking
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cessation, allergen avoidance, disease management, patient/parent education,
and the use of case managers), to be used both as stand-alone programs and in
combination with each other.

Enlarging the Asthma Policy Model’s capacity to simulate the effects of such
interventions represents a significant improvement over our existing
framework. The current version of the model conservatively assumes that the
impact of intervention is mediated exclusively through lung function. Any
effects on symptoms, exacerbations, quality of life, or cost are the indirect
result of a change in lung function. The updated model will capture direct
effects on disease processes, thus refining the notion of “efficacy” and
permitting us to evaluate not only existing interventions, but also to perform
“what-if’ assessments, a capability that will be of particular use in priority
setting for new clinical trials and estimating the value of better clinical
information.

26.5.3 Model improvement #3: Therapeutic side-effects

Documented side-effects of ICS therapy include dysphonia and thrush,
cataracts and intraocular pressure, adrenal suppression, the development of
osteoporosis, and negative effect on growth rates in children [101-103].
There is concern that these side-effects weigh heavily in patients’ and
clinicians’ decision making. Our goal is to ask “threshold” questions such as:
What magnitude of various side-effects — physiologic, psychological, and
economic — would warrant a change in current practice guidelines? What
would have to be true about patient preferences regarding risks and benefits in
order to justify discontinuation of effective therapy due to side-effects? What
could clinicians do with better preference data on side-effects and how might
that information influence their patient care choices?

Refining the model’s handling of side-effects will permit us to explore not
only the short-run, clinical consequences of adverse therapeutic events but
also their downstream impact on outcomes, cost, and perceptions of well-
being. Given the weight that many patients and clinicians currently ascribe to
treatment side-effects, this represents a significant improvement in the realism
of the model.

26.5.4 Model improvement #4: Imperfect adherence

Imperfect adherence to therapy remains a major obstacle to the achievement
of better outcomes in asthma. A review of the medical literature reveals that
no single intervention strategy will assure compliance with prescribed
medication [104, 105]. Moreover, limited evidence suggests that nearly
complete benefit may be derived from ICS therapies even when patients are
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only moderately adherent [106]. The current version of the Asthma Policy
Model does not explicitly account for any of these concerns. The model has
some implicit accounting for adherence as the input data for the model are
drawn from clinical trials conducted with less-than-perfectly adherent
subjects. However, the adherence observed in a trial differs from that which
can be expected in everyday settings. By failing to adjust for this, the current
model may seriously overstate the efficacy of drug therapy.

Admittedly, any approach for modeling the effect of adherence is simple.
However, the existing science base cannot currently support a more nuanced,
multifactorial assessment. What can (and should) be undertaken at present is a
model-based, “what-if” exploration designed to establish credible
performance benchmarks for further investigation.
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SUMMARY

Mammography is a vital screening test for breast cancer because early
diagnosis is the most effective means of decreasing the death rate from this
disease. However, interpreting the mammographic images and rendering the
correct diagnosis is challenging. The diagnostic accuracy of mammography
varies with the expertise of the radiologist interpreting the images, resulting
in significant variability in screening performance. Radiologists interpreting
mammograms must manage uncertainties arising from a multitude of
findings. We believe that much of the variability in mammography
diagnostic performance arises from heuristic errors that radiologists make in
managing these uncertainties. We developed a Bayesian network that
models the probabilistic relationships between breast diseases,
mammographic findings and patient risk factors. We have performed some
preliminary evaluations in test cases from a mammography atlas and in a
prospective series of patients who had biopsy confirmation of the diagnosis.
The model appears useful for clarifying the decision about whether to biopsy
abnormalities seen on mammography, and also can help the radiologist
correlate histopathologic findings with the mammographic abnormalities
observed. Our preliminary experience suggests that this model may help
reduce variability and improve overall interpretive performance in
mammography.

KEY WORDS

Mammography, Diagnosis, Breast cancer, Bayesian networks
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27.1 INTRODUCTION

Breast cancer is the most frequently diagnosed malignancy among American
women. It is the second leading cause of cancer death (after lung cancer)
among women of all ages and the leading cause of cancer death among
women aged 40 to 59 years [1]. Mammography has been shown to be
effective in detecting breast cancer before it becomes clinically evident [2];
consequently, routine screening with mammography is now generally
accepted as a valuable tool for decreasing mortality from breast cancer.

The benefits of screening mammography are limited by the quality of the
image acquired and by the accuracy of image interpretation. Image
acquisition quality depends on the quality and operation of the imaging
equipment, while interpretation depends on the training and expertise of a
human reader (the radiologist). In recent years, standards relating to the
imaging equipment such as the Mammography Quality Standards Act
(MQSA) [3] have improved the quality of mammogram images at many
facilities [4]. However, overall accuracy of mammographic interpretation, in
terms of sensitivity and specificity, is a problem because of variability in the
training and experience of radiologists interpreting the images [5]. Several
studies have reported substantial mammogram interpretation inconsistencies
among different radiologists [6-8], which would lead to different followup
testing and treatment decisions.

False-negative and false-positive interpretations have been called “risks” of
screening mammography and have been cited as arguments against routine
screening of various populations of women [9-11]. False negative
interpretations are risks because patients having cancer are not detected
(reduced efficacy of screening), thus delaying cancer treatment and leading
to higher morbidity and mortality. On the other hand, false positive
interpretations are risks because patients without cancer undergo
unnecessary biopsy (causing anxiety and increased medical costs).
Variability in interpretive accuracy among radiologists lowers the average
positive predictive value for mammography, which makes it a less effective
tool for the early detection of breast cancer. Therefore, strategies to reduce
variability in mammographic interpretation are essential to improve patient
care.

Some of the variability in interpretative accuracy among radiologists is
likely related to training and experience. Some radiologists have
subspeciality training in mammography and read these studies exclusively.
These individuals are generally considered “experts” in the field. On the
other hand, community radiologists read the majority of mammograms in the



698 OPERATIONS RESEARCH AND HEALTH CARE

context of diverse general practice. Community radiologists have higher
biopsy rates and thus lower positive predictive value of malignant disease [5,
12].

One approach to reduce the variation in interpretations among radiologists is
to standardize the vocabulary used in mammography reports. The American
College of Radiology (ACR) developed BI-RADS, a lexicon of
mammogram findings (or “features”) and the distinctions that describe them.
[13]. The developers of BI-RADS tried to identify those features of
mammograms that are most useful for discriminating diseases of the breast.
To accomplish this, they performed statistical analysis of the terms
(“descriptors”) used to describe imaging findings to determine which
descriptors best discriminate between a benign or malignant diagnosis [14].

While BI-RADS is an important step in reducing the variation in
mammography reporting, it does not solve the problem of how radiologists
relate a set of findings they observe on the mammogram to a diagnosis.
Specifically, how does the radiologist determine the probability of
malignancy given a set of observed findings so as to choose followup tests
and treatments? The quality of this determination is the essential difference
between an expert and a non-expert, and likely accounts for much of the
interpretive variation among radiologists.

Because the BI-RADS findings observed on mammography were selected to
discriminate between benign and malignant diseases, they contain precisely
the information we want to obtain for diagnosis. Our hypothesis is that we
can build a probabilistic model relating diseases to the BI-RADS descriptor
findings seen on mammography, and that, given the BI-RADS findings, this
model can be used to compute posterior probabilities for the possible breast
diseases. Such probabilities can guide the radiologist’s decision making.

Our goal has been to build a model that represents these probabilistic
relationships among BI-RADS findings and includes other pertinent
information (patient risk factors) to standardize how combinations of BI-
RADS findings are interpreted. Such a model could also be used to
determine the likelihood of breast diseases and to evaluate the agreement
(concordance) between biopsy results and the mammographic findings. Our
hope is to bring clarity to decision making and reduce suboptimal variability
in patient management based on a normative approach.
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27.2 METHODOLOGY

27.2.1 Building a model for mammography diagnosis

To represent the probabilistic relationships among findings and diseases, we
built a Bayesian belief network. Bayesian networks are graphical
probabilistic models of the conditional dependencies among variables of
interest [15]. In our application, we are interested in breast diseases that are
diagnosed on mammography, the radiological findings that are observed on
mammography (in terms of BI-RADS descriptors), and patient risk factors
(age, history of hormone treatment, and history of prior breast cancer).
Because a mammogram may contain more than one abnormality (“lesion”),
we built a lesion-centric model; if a patient has more than one lesion, the
model can be applied to each lesion independently. For the time being,
however, we will assume that each patient has at most one lesion.

Diseases From a review of the literature and with the assistance of an
expert in mammography, we identified 23 diseases of the breast. These
diseases, in addition to a “normal” diagnosis and two combined diagnoses,
were selected as the distinctions for a DISEASE node (having 26 states) in
the model (Table 27.1).

In order for us to define mutually exclusive disease distinctions, we assume
that a given lesion on the mammogram represents a single specific disease
process. Because of the pathophysiology of breast cancer, it is possible to
see two diseases simultaneously within a single malignant lesion.
Simultaneous appearance of two diseases occurs when atypical cells
transform into malignant cells. For example, “ductal carcinoma in situ”
(DCIS) contains non-invasive neoplastic cells that may undergo
transformation into “ductal carcinoma, not otherwise specified” (DCNOS).
Thus, some breast lesions may contain both diseases if only some of the cells
have transformed. For this reason, the DISEASE node includes two
combined diagnoses, “LC+LCIS” and “DCNOS+DCIS” (Table 27.1).

In order for all 26 states in DISEASE to be collectively exhaustive, we
assume that we have modeled all possible diseases (or disease combinations)
that may be diagnosed on mammography, including a benign state of no
disease (Normal).

Findings and Patient Risk Factors We compiled a list of findings
(abnormalities) observed on mammography from the BI-RADS descriptors
[13]. BI-RADS consists of 43 descriptors, some of which are organized in a
hierarchical taxonomy (Figure 27.1). The hierarchical structure of the
descriptors helps the user navigate and select descriptors and their modifiers
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efficiently. For example, once a mass is identified, the user can describe the
margins, shape, and density. The mass shape can be characterized by
“detailed descriptors” such as round, oval, lobular, or irregular (Figure 27.1).
Other examples of detailed descriptors are the modifiers of mass density:
high, equal, low, and fat-containing (Figure 27.1).

We incorporated 38 of the BI-RADS descriptors into the model. We
excluded five descriptors (skin thickening, trabecular thickening, nipple
retraction, skin retraction, and asymmetric breast tissue) because they are
rare, late, or non-contributory findings on screening mammography, and
because they would have increased the complexity of the model without
significantly improving its diagnostic effectiveness. Each descriptor we
selected became a node in our Bayesian network. If that descriptor had
detailed descriptors, they became distinctions for that node; otherwise the
states for the node were “present” and “not-present.” For example, the
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Figure 27.1  The BI-RADS terminology

DENSITY node has states called “high,” “equal,” and “low”; the
ROUND CALCIFICATION node has states “clustered,” “linear,”
“segmental,” “regional,” and “diffuse/scattered”; the ARCHITECTUAL
DISTORTION node has states “present” and “not present” (Figure 27.1).

We incorporated the following patient risk factors into our model: age (40-
44, 45-50, 51-54, 55-60, 61-64, 65-70), history of breast cancer (strong,
minor, or no history), and history of hormone treatment (less than 5 years,
more than 5 years, or no history).

Bayesian Network To implement the model and perform inference given
particular observations, we used the GeNIe modeling environment
developed by the Decision Systems Laboratory of the University of
Pittsburgh (http://www2.sis.pitt.edu/~genie/). In defining the structure of the
model, we consulted with two experts in mammography to define the
conditional dependencies among findings and diseases (Figure 27.2). The
prior probability of disease is dependent on the patient risk factors, and these
factors were believed to be conditionally independent of disease; thus
disease has a separate parent for each risk factor.  All BI-RADS descriptors
except for those relating to a mass were believed to be conditionally
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Figure 27.2  Bayesian network model of mammography diagnosis

independent manifestations of disease, so each descriptor has disease as a
parent (Figure 27.2). The descriptors relating to a mass all depend on the
presence of a mass, and we assume they become conditionally independent
given the disease and whether the mass is present.

Normal structures of the breast can obscure masses on a mammographic
image. This obscuration is more common in younger women and women on
estrogen replacement therapy because they tend to have relatively dense
breast tissue. While obscuration of the finding does not change the
probability of disease given findings about the mass, it does decrease the
probability that the mass and its features will be recognized. To model
obscuration, we added an “obscured” state to joint distribution of the “mass”
descriptor. Thus, a mass on the mammogram may be present, absent, or
obscured, represented by the node “MASS P/A/O” which depends on the
disease (Figure 27.2). (In later versions of the model, MASS P/A/O also
depends on the patient’s age and hormone treatment.)

The Bayesian network includes a deterministic node labeled
“Benign/Malignant” which categorizes the diseases into these two distinct
categories (Figure 27.2 and Table 27.1). This is useful because knowing the
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type of disease is important in determining correct management. For
example, standard practice requires that all malignant diseases receive
definitive therapy including excision. Some diseases such as radial scar and
papilloma are controversial. These benign disease entities are sometimes
associated with malignancy and therefore management depends on many
factors. We have classified these diseases in the “benign” category pending
farther data (Table 27.1).

The initial values for the joint probability distributions were defined by
consulting the experts and by reviewing the literature. We obtained the prior
probabilities, age-specific and risk factor-specific distributions of diseases
from census data and large randomized trials [16-18]. We derived many of
the joint probabilities from studies of radiological/pathological correlation of
individual breast diseases [19, 20]. Some of these initial probabilities
evolved over time as we evaluated the model with test cases in which the
correct diagnosis was known.

The Bayesian network we built calculates the probability of disease given
these findings. The calculation depends on the pre-test probability of disease
d (prevalence), given patient risk factors, and the joint probability
distributions associated with the patient risk factors, disease, and the BI-
RADS descriptor nodes in the Bayesian network (Figure 27.2). For a
particular patient, values for risk factors and mammography findings are
entered as observed evidence in the Bayesian network. If a particular
finding or patient risk factor is not reported, then the corresponding node is
unobserved. The joint probability distributions can then be updated using
Bayes rule, giving a posterior probability distribution over the diseases,
P{d/f}. This posterior probability can be used in several ways. Below we
describe two ways we have used this information thus far: (1) to make a
diagnosis on mammography, and (2) in evaluating concordance of
mammography findings with biopsy results.

27.2.2 Using the model to make a diagnosis on mammography

Mammography is a screening test used to recognize breast cancer as early as
possible when therapies are most effective and least debilitating. In the
screening setting, observations are made to differentiate “benign” or
“malignant” disease, and this diagnosis affects patient management decision
making (Figure 27.3). If the screening mammogram has features suspicious
for malignant disease, then the patient is called back for a more detailed
diagnostic mammogram. If the probability of malignancy given all of the
information available is high enough, then the radiologist will perform a
biopsy for histological diagnosis. The influence diagram [21, 22] shown in
Figure 27.3 represents these decisions. The critical distinction, represented
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by the deterministic node, B vs. M, is whether the disease is benign or
malignant.

Figure 27.3  Influence diagram showing the radiologist’s
management decision whether to perform further tests which may

lead to treatments

At the time of the “Further Testing” choice (whether to recall the patient for
a diagnostic x-ray or to biopsy) the radiologist has observed features visible
on the available mammogram(s). We assume that the patient’s utility only
depends on the malignancy of the underlying disease and whether the patient
receives sufficient testing to confirm the diagnosis and initiate subsequent
treatment. It is therefore critical that the set of findings observed on
mammography be correctly translated into a probability of malignancy so
that the correct decision about patient management can be made. Integrating
the findings into a “benign vs. malignant” diagnosis is likely responsible for
much of the variation among radiologist practice effectiveness in
mammography.

Our Bayesian network model can be used to formulate a differential
diagnosis (a ranked list of diagnoses in decreasing order of by
entering the patient risk factors and findings seen on mammography and
calculating the posterior probability distribution over diseases. If the model
puts a very high probability on a particular disease, this indicates that the
model believes this is the mammographic diagnosis. If more than one
disease shares similar probability mass, then the model suggests more than
one diagnosis should be considered in the mammographic diagnosis. The
model can also give the probability of benign or malignant disease from the
probability distribution in the BENIGN/MALIGNANT node (Figure 27.2)
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which corresponds to the “B vs. M” node in the influence diagram (Figure
27.3).

To simplify the process of entering test cases into the network, we created a
web-based data entry form (Figure 27.4). The web form corresponds to all
observations that might be made for a particular lesion in a patient. The user
enters the observations that apply to a patient and then submits the web
form. We make a distinction between a feature that is observed to be
present, a feature that is observed to be absent, and the lack of an
observation about the feature. The evidence is submitted to our model and
the posterior probability distribution is reported back to the user as a ranked
differential diagnosis list, with the most probable diagnosis at the top of the
list (Figure 27.5).

We evaluated the quality of mammographic diagnoses made by the model
by entering several mammography cases in which the actual diagnosis was
known (established by biopsy). In addition, we entered 105 cases from a
teaching atlas of mammography [23] that contains sufficient clinical
information and mammographic descriptors to enter these cases into the
Bayesian network. To summarize the varying sensitivity and specificity at
different probability thresholds, we built a receiver operating characteristic
(ROC) curve using the ROCKIT 0.9B software (http://www-
radiology.uchicago.edu/krl/toppage11.htm).

27.2.3 Using the model to evaluate concordance of mammography with
biopsy results

Once a patient has a mammogram and the findings have been recognized by
the radiologist, we can compute a post-test probability of malignancy. If that
probability is high enough, then the radiologist will perform a biopsy so that
a pathologist can make a more definitive, histological diagnosis.

Unfortunately, the biopsy test is imperfect and sampling error might occur.
If the biopsy does not contain a sample of the lesion or the pathologist fails
to observe the lesion cells, then the pathologist might fail to recognize
malignant disease. Therefore, it is very important to correlate the histologic
results from breast biopsy with the mammography findings [24-26]. The
error rate can be as high as 3.3-6.2% in 14-gauge large-core needle biopsy,
and 70% of these errors can be recognized immediately through careful
correlation of the gross and/or histologic data with the mammography
imaging findings [27-29]. Another tissue sampling technique, 11-gauge
stereotactic vacuum-assisted biopsy, is associated with a lower but still
significant sampling error rate, 0.8-1.7%. These sampling errors are also
immediately detectable with careful imaging-histologic correlation [29-31].



706 OPERATIONS RESEARCH AND HEALTH CARE

Figure 27.4  A web form used to submit data on a patient to the
Bayesian network model of mammography diagnosis (only a portion
of the form is shown).  Any finding that is not completed is treated as

unobserved evidence.

Thus, breast imaging experts recommend that mammography images should
be correlated with the pathology results [24-26]. This can be onerous in high
volume settings, so an automated method to correlate biopsy results with
mammography findings would be highly desirable.

Our model can assess concordance of mammographic image findings with
histologic results from biopsy by recognizing that there can be a biopsy
sampling error, which we denote by miss. Our model then uses the
radiological findings, f, and the pathologist’s reported disease, Rd, as
evidence, and computes a posterior probability, This prob-
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Figure 27.5 A list of diseases and the posterior probabilities. The
diseases are ranked with the most likely disease first (an incomplete

list is shown). These results are generated from the observations
entered into the form in Figure 27.4.

Figure 27.6 Belief network showing a constant chance of biopsy
sampling error, “Miss Lesion?”, and the relationship between the true
disease and the observed radiological findings and the pathologist’s

disease report. The radiologic finding and the disease report are
observed, while the other nodes are not observed.
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ability is based on the same relationships between diseases and findings that
we discussed earlier. The radiologist should consider performing another
biopsy when Rd for a benign disease has a high enough but if
that probability is low enough or Rd is malignant then the radiologist can be
confident that malignant disease has not been overlooked due a sampling
error.

To obtain the formula for we need to make several
assumptions, some of which are shown in the belief network (Figure 27.6):
(1) the finding, f, and disease report, Rd, are observed while the true disease,
Td, and whether there was a sampling error, miss, are not; (2) the finding is
independent of the disease report and error if we knew the true disease; the
sampling error is equally likely to happen with any patient and any findings,
denoted P{miss}; and (4) if there is no sampling error, then Rd=Td and
otherwise the disease will be observed at the prevalence rate, P{Rd}=P{Td}.
In that case, given any finding, f, there are two possibilities: a sampling error
which produces report Rd with probability P{miss}P{d} or a concordant
diagnosis which yields report Rd=Td with probability

Thus, our model can produce a probability indicating how likely a biopsy
samples a lesion seen on mammography (i.e., whether the biopsy is
concordant with mammography findings). This can be very useful to the
radiologist to help identify those cases that are likely not to be concordant,
and thus require further evaluation.

We evaluated the ability of our model to assess the concordance of breast
biopsy results with mammography by entering cases into our model that had
breast biopsy. We included 92 consecutive cases having 14-gauge and 11-
gauge biopsies. A panel of expert radiologists reviewed each case and
determined the concordance between the pathology and the mammography
findings as concordant (“C”) or non-concordant (“N”). The experts used the
following guidelines that are generally used in assessing concordance: (1)
histologic documentation of microcalcifications when the mammographic
abnormality contained microcalcifications; (2) histologic explanation for the
imaging pattern (e.g., histologic explanation for a mass such as
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fibroadenoma or focal fibrosis in contrast to benign breast tissue); and (3)
histologic explanation for abnormalities with a high pre-test probability of
cancer (either a diagnosis of cancer or specific histology explaining the
suspicious mammography findings) [26]. In our series of 92 cases,
condition (1) was satisfied in all cases; thus, concordance hinged on
agreement between the pathology report and the mammographic findings.

We used the concordance determination from this expert panel as our gold
standard for testing our model, and compared these assessments with the
probability produced by the Bayesian network. Since different
values of can be used as a threshold for categorizing a case as
“C” or “N,” we constructed an ROC curve to quantify the performance of
the Bayesian network across different thresholds in the concordance
assessment task.

27.3 RESULTS

27.3.1 Using the model to make a diagnosis on mammography

We tested several cases (in which the diagnosis was known) to evaluate the
behavior of the model. Table 27.2 shows the probability distribution for the
following cases as well as the probability for the categorized diagnosis of
“benign” and “malignant” disease. No probability is truly zero but many are
rounded to zero when we only display four decimal places.

Case 1 A 40 year old female with no family history or hormone use has a
mammogram which demonstrates a spiculated mass with associated linear
and branching calcifications. According to literature and expert opinion, a
spiculated mass is typical for ductal carcinoma. The branching calcifications
suggest an intraductal component. In this case our model generates the
following probabilities: DCNOS+DCIS diagnosis is most likely with a 95%
post-test probability. DCNOS alone has a post-test probability of 4.5%, and
DCIS alone is unlikely. Variations of this scenario illustrate how the
probabilities change as features differ.

Case 2 A patient with similar demographic characteristics has a spiculated
mass without calcifications detected on her mammogram. This finding
elicits an increased post-test probability of DCNOS to 88%. DCNOS+DCIS
decreases to 2.9%, and again DCIS is unlikely.
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Case 3 The only finding, in a similar patient, is linear calcifications in a
clustered distribution. The post-test probability for DCIS increases to 70%.
DCNOS+DCIS has a post-test probability of 8.9% and DCNOS alone is
.001%. These probabilities are consistent with the pathophysiology of the
disease as described above.

Case 4 A 50 year old patient has a mammogram that demonstrates a round,
circumscribed mass. This is our example of a “probably benign” finding.
Our system reveals that with these findings there is a 1.3% chance of
malignancy in this setting. This is consistent with the radiology literature
[32].

We also conducted an evaluation of the Bayesian network in a larger number
of test cases selected from a teaching atlas (Section 27.3.2). The
performance of the model on these test cases is summarized by the ROC
curve shown in Figure 27.7. The area under the ROC curve is 0.95, which
compares favorably to that of an earlier Bayesian network model, 0.88 [33].
In fact, our system compares favorably with several other computer
diagnostic aids developed in the domain of screening mammography in
which a similar area under the ROC curve methodology was used to evaluate
these systems. Two different studies tested neural network models,
reporting area under the ROC curve (Az) values of 0.85 [34] and 0.76 [35].
Finally, a survey of US radiologists evaluating performance used a test set
containing 79 cases of which 45 were malignant (56% malignant). The
average Az value for these radiologists was .85 [36]. We realize that the Az
value can be influenced by the composition of the test set used to generate
the ROC curve, but this was the benchmark used for the other procedures
and allows a first-order comparison of the different methodologies. We
believe that our results compared with the prior studies are encouraging and
suggest that our model can assist in making a mammographic diagnosis.

27.3.2 Using the model to evaluate concordance of mammography with
biopsy results

Of the 92 total cases evaluated for concordance, 3 were non-concordant.
Thus, the non-concordance rate was 3.3%, which is comparable to that
reported previously [24-29]. In most of the cases that the expert panel
determined to be concordant, the model generated an extremely low

strongly predicting concordance (Figure 27.8). The model’s
assessment of concordance between mammography and pathology,

was extremely high less than 0.02) in 75 of the 92
cases (all concordant cases). was 2-7% in 5 cases, and 23-28%
in 3 cases; all of these cases were also concordant. In the remaining 9 cases,

was 41% and greater; 3 of these cases were the ones considered
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Figure 27.7  ROC analysis of 105 teaching cases. TPF: true positive
fraction; FPF: false positive fraction.

Figure 27.8  Histogram of 92 cases of mammography-biopsy
correlation.  In most of the cases that are concordant, the model

predicts the probability of sampling error is extremely
low.

non-concordant. Using a threshold on of 40% and assuming that
detecting a non-concordant case is a “positive” case, there were 3 true
positives, 83 true negatives, 6 false positives, and 0 false negatives (or 100%
sensitivity and 93% specificity). Actually, it is more likely that a radiologist
would prefer a lower threshold on such as 7%, for predicting
non-concordance, which would lower the specificity to 90% with 100%
sensitivity.
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Figure 27.9  ROC analysis of performance of the model in assessing
concordance of mammography findings with pathology. TPF: true

positive fraction; FPF: false positive fraction.

An alternative summary of the performance of the model for assessing
concordance is ROC analysis (Figure 27.9). The area under the curve on
this graph is 0.95.

These results suggest that our model can discern those patients whose biopsy
results are concordant with mammography findings. Consequently, many
mammography-histologic correlations can be accurately assessed using the
model, reserving only those cases where the model is uncertain (e.g.,

> 7%) for review by the radiologist. With the threshold of 7%,
80 of the 92 cases (87%) would not have required the radiologist to
manually correlate mammography findings with histopathology. This is an
important benefit because these correlations are labor-intensive and consume
a considerable amount of radiologist time. In some busy practices, such
correlation is not even routinely done. Even if the radiologist were very
conservative with the model’s predictions and reviewed any case for which
the probability of sampling error given by the model is 1% or greater, more
than half of the cases (55%) would not require manual review.
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The probability value, produced by our system can be useful
beyond establishing a threshold. First, it may encourage the pathologist to
be more specific in benign disease diagnosis, to allow more concordance
with the radiological findings. Second, a high probability suggests
discordance and possible sampling error, prompting further review by the
radiologist. We reviewed the cases that the model predicted to be discordant
with high probability, but were called concordant by the expert panel. These
cases were particularly complicated clinical scenarios, such as a diagnosis
with an uncommon imaging presentation. These cases require expert
evaluation, so a discordant assessment by the model is actually desirable
behavior. Thus, our model can be useful in categorizing cases where
concordance evaluation by a physician is needed.

27.4 AVENUES FOR FUTURE RESEARCH AND CONCLUSION

Our preliminary experience using a Bayesian network to model the
uncertainties associated with mammography diagnosis appear promising.
The model may provide several benefits. First, the model provides a
normative approach to integrating findings observed by the radiologist into a
ranked list of diagnoses. Second, the probabilities of disease given observed
findings can be integrated with biopsy results to predict which cases are
likely to be discordant, assisting patient management. Third, the model
makes the mammographic decision making process explicit, providing
radiologists of all levels of expertise a basis for communication and practice
improvement.

The benefit of a normative approach in mammography diagnosis is greater
consistency in mammography interpretation and subsequent improved health
outcomes. Theoretically, if two patients have the same risk factors and the
same abnormalities on mammography, they should have the same
differential diagnosis and subsequent workup. However, previous studies
have shown great variation in mammography practice [6-8]. Much of this
variation can be attributed to how the patient risk factors and mammography
findings are integrated into a differential diagnosis. Our model will produce
consistent results with consistent inputs, so we would expect this to reduce
some of the variation in mammography practice currently observed. Of
course, this assumes that the radiologist is able to consistently detect the
pertinent abnormalities on the mammogram in the first place, a fundamental
task in radiology. There will still likely remain variation among radiologists
with respect to identifying abnormalities on mammography images and
assigning BI-RADS descriptors, but at least the variation in decisions based
on these findings can be minimized using our Bayesian network.
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Beyond assisting mammography diagnosis, the model’s predictions and
other information such as biopsy results can be integrated to assist with
concordance assessment. We have shown that our model can identify those
patients whose results are so likely to be concordant that they do not need to
be manually reviewed by the radiologist. This would be particularly helpful
in practices that currently do not do imaging-histologic correlation due to
time constraints.

Our probabilistic approach is designed to support, rather than supplant,
physician decision making. The radiologist is the ultimate decision maker
regarding imaging-histologic correlation in difficult cases; our model can
help identify those cases that are most suspicious and would benefit most
from the expertise of the radiologist.

We have shown that our model performs well using the gold standard of a
panel of expert radiologists. The gold standard for detecting breast biopsy
sampling error is long term imaging and clinical follow-up to ensure that
patients do not subsequently develop breast cancer. We plan to conduct
studies evaluating our model using this preferred gold standard, which will
allow us to ascertain better how well our model performs in assessing
mammographic concordance. In the future, with refinement, our system
may be able to improve the radiologist’s ability to detect sampling error,
using the gold standard of long term follow-up.

The radiology community has only incorporated a small portion of the BI-
RADS descriptors into the decision-making process in this field. The entire
lexicon, with its probabilistic underpinnings, when coupled with our
Bayesian model has great potential to communicate quantitative probabilistic
information that will aid management decisions. Our model relates benign
and malignant breast diseases to BI-RADS descriptors and allows us to
integrate radiological observations in a principled fashion. In addition, BI-
RADS descriptors are crisply defined, with atlases showing examples of
their proper usage, helping to reduce variability.

We are pursuing several other directions. First, we are collecting a larger
series of confirmed cases to validate the model. This is important because
we are continuing to improve our conditional probability distributions.
Second, we are embarking on a large prospective data collection project in
which routine mammogram cases will be compiled and their findings
recorded to establish more accurately the probabilities of particular findings
given disease. This information may be used to update conditional
probability distributions in our Bayesian network that had little supporting
data when it was originally built. Third, we will be evaluating the value of
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information of BI-RADS descriptors in the model which can suggest to the
radiologist particular features on the mammogram that should be checked.

Finally, we wish to compare the diagnostic performance of the model
directly with experts and non-experts to determine how well it can elevate
performance of mammographers. Ultimately, our goal is to refine our
system as an aid in normative decision making and education. We hope to
demonstrate that the accuracy and quality of medical practice is elevated
among practitioners of varying experience using this approach. We believe
that with further testing and use our model will help to elevate the standard
of all mammography practice and improve the quality of patient care.



MAMMOGRAPHY INTERPRETATION 717

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

Greenlee, R.T., M.B. Hill-Harmon, T. Murray, and M. Thun (2001).
Cancer statistics, 2001. Cancer Journal for Clinicians, 51, 15-36.

Baker, L.H. (1982). Breast Cancer Detection Demonstration Project:
five-year summary report. Cancer Journal for Clinicians, 32, 194-
225.

Houn, F., M.L. Elliott, and J.L. McCrohan (1995). The
Mammography Quality Standards Act of 1992. History and
philosophy. Radiology Clinics of North America, 33, 1059-1065.

Pisano, E.D., et al. (2000). Has the Mammography Quality Standards
Act affected the mammography quality in North Carolina? American
Journal of Roentgenology, 174, 1089-1091.

Sickles, E.A., D.E. Wolverton, and K.E. Dee (2002). Performance
parameters for screening and diagnostic mammography: specialist
and general radiologists. Radiology, 224, 861-869.

Ciccone, G., P. Vineis, A. Frigerio, and N. Segnan (1992). Inter-
observer and intra-observer variability of mammogram interpretation:
a field study. European Journal of Cancer, 28A, 1054-1058.

Elmore, J.G., et al. (2002). Screening mammograms by community
radiologists: variability in false-positive rates. Journal of the National
Cancer Institute, 94, 1373-1380.

Elmore, J.G., C.K. Wells, C.H. Lee, D.H. Howard, and A.R.
Feinstein (1994). Variability in radiologists’ interpretations of
mammograms. New England Journal of Medicine, 331, 1493-1499.

Sirovich, B.E. and H.C. Sox, Jr. (1999). Breast cancer screening.
Surgery Clinics of North America, 79, 961-990.

Harris, R. (1997). Variation of benefits and harms of breast cancer
screening with age. Journal of the National Cancer Institute
Monographs, 139-143.

Christiansen, C.L., et al. (2000). Predicting the cumulative risk of
false-positive mammograms. Journal of the National Cancer
Institute, 92, 1657-1666.



718 OPERATIONS RESEARCH AND HEALTH CARE

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Brown, M.L., F. Houn, E.A. Sickles, and L.G. Kessler (1995).
Screening mammography in community practice: positive predictive
value of abnormal findings and yield of follow-up diagnostic
procedures. American Journal of Roentgenology, 165, 1373-1377.

American College of Radiology (1998). Breast Imaging Reporting
and Data System (BI-RADS). American College of Radiology,
Reston, VA.

Swets, J.A., et al. (1991). Enhancing and evaluating diagnostic
accuracy. Medical Decision Making, 11, 9-18.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann Publishers, San
Mateo, CA.

Colditz, G.A., et al. (1995). The use of estrogens and progestins and
the risk of breast cancer in postmenopausal women. New England
Journal of Medicine, 332, 1589-1593.

Ries, L.A.G. and National Cancer Institute (U.S.). Division of Cancer
Prevention and Control. (1997). SEER Cancer Statistics Review,
1973-1996. National Cancer Institute, Bethesda, MD.

Slattery, M.L. and R.A. Kerber (1993). A comprehensive evaluation
of family history and breast cancer risk. The Utah Population
Database. Journal of the American Medical Association, 270, 1563-
1568.

Monsees, B.S. (1995). Evaluation of breast microcalcifications.
Radiology Clinics of North America, 33, 1109-1121.

Evans, W.P. (1995). Breast masses. Appropriate evaluation.
Radiology Clinics of North America, 33, 1085-1108.

Howard, R.A. and J.E. Matheson (1984). Influence diagrams. In The
Principles and Applications of Decision Analysis, R.A. Howard and
J.E. Matheson, Eds., Strategic Decisions Group, Menlo Park, CA.

Shachter, R.D. (1986). Evaluating influence diagrams. Operations
Research, 34, 871-882.

Tabár, L. and P.B. Dean (1983). Teaching Atlas of Mammography.
Thieme Medical Publishers, New York.



MAMMOGRAPHY INTERPRETATION 719

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

Berg, W.A., et al. (1996). Lessons from mammographic-
histopathologic correlation of large-core needle breast biopsy.
Radiographics, 16, 1111-1130.

Ioffe, O.B., W.A. Berg, S.G. Silverberg, and D. Kumar (1998).
Mammographic-histopathologic correlation of large-core needle
biopsies of the breast. Modern Pathology, 11, 721-727.

Liberman, L., et al. (2000). Imaging-histologic discordance at
percutaneous breast biopsy. Cancer, 89, 2538-2546.

Jackman, R.J., et al. (1999). Stereotactic, automated, large-core
needle biopsy of nonpalpable breast lesions: false-negative and
histologic underestimation rates after long-term follow-up.
Radiology, 210, 799-805.

Lee, C.H., L.E. Philpotts, L.J. Horvath, and I. Tocino (1999). Follow-
up of breast lesions diagnosed as benign with stereotactic core-needle
biopsy: frequency of mammographic change and false-negative rate.
Radiology, 212, 189-194.

Liberman, L. (2000). Centennial dissertation. Percutaneous imaging-
guided core breast biopsy: state of the art at the millennium.
American Journal of Roentgenology, 174, 1191-1199.

Philpotts, L.E., N.A. Shaheen, D. Carter, R.C. Lange, and C.H. Lee
(1999). Comparison of rebiopsy rates after stereotactic core needle
biopsy of the breast with 11-gauge vacuum suction probe versus 14-
gauge needle and automatic gun. American Journal of
Roentgenology, 172, 683-687.

Burbank, F. (1997). Stereotactic breast biopsy: comparison of 14- and
11-gauge Mammotome probe performance and complication rates.
American Surgeon, 63, 988-995.

Sickles, E.A. (1995). Management of probably benign breast lesions.
Radiology Clinics of North America, 33, 1123-1130.

Kahn, C.E., Jr., L.M. Roberts, K. Wang, D. Jenks, and P. Haddawy
(1995). Preliminary investigation of a Bayesian network for
mammographic diagnosis of breast cancer. Proceedings of the Annual
Symposium on Computing Applied to Medical Care, 208-212.



720 OPERATIONS RESEARCH AND HEALTH CARE

[34]

[35]

[36]

Baker, J.A., P.J. Kornguth, J.Y. Lo, M.E. Williford, and C.E. Floyd,
Jr. (1995). Breast cancer: prediction with artificial neural network
based on BI-RADS standardized lexicon. Radiology, 196, 817-822.

Jiang, Y., et al. (1999). Improving breast cancer diagnosis with
computer-aided diagnosis. Academic Radiology, 6, 22-33.

Beam, C.A., P.M. Layde, and D.C. Sullivan (1996). Variability in the
interpretation of screening mammograms by US radiologists.
Findings from a national sample. Archives of Internal Medicine, 156,
209-213.



28 OPTIMIZATION
AND DECISION SUPPORT

IN BRACHYTHERAPY
TREATMENT PLANNING

Eva K. Lee1,2 and Marco Zaider3

1 Department of Industrial and Systems Engineering

Georgia Institute of Technology

Atlanta, GA 30332

2 Department of Radiation Oncology

Emory University

Atlanta, GA 30322

3 Department of Medical Physics

Memorial Sloan-Kettering Cancer Center

New York, NY 10021



722 OPERATIONS RESEARCH AND HEALTH CARE

SUMMARY

This chapter describes treatment planning optimization in brachytherapy and
the design of a clinical decision support system. Brachytherapy refers to the
placement of radioactive sources (seeds) inside a tumor site. The
fundamental problem in treatment planning for brachytherapy is to
determine where to place sources so as to deliver a sufficient radiation dose
to kill the cancer, while limiting exposure of healthy tissue. We first present
the sequence of steps that are involved in brachytherapy treatment planning.
State-of-the-art mixed integer programming models are then described and
some algorithmic approaches are outlined. The automated clinical decision
support system allows for real-time generation of optimal seed
configurations using ultrasound images acquired prior to seed implantation,
and dynamic dose correction during the implantation process.

KEY WORDS

Integer programming, Decision support system, Radiation treatment, Cancer
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28.1 INTRODUCTION

In recent years, technical advances in medical devices have led to a
resurgence in the use of radioactive implants as an alternative or supplement
to external beam radiation for treating a variety of cancers. This treatment
modality, known as brachytherapy, involves the placement of encapsulated
radionuclides (“seeds”) either within or near a tumor [1]. In the case of
prostate cancer, seed implantation is typically performed with the aid of a
transrectal ultrasound transducer attached to a template consisting of a
plastic slab with a rectangular grid of holes in it. The transducer is inserted
into the rectum and the template rests against the patient’s perineum. A
series of transverse images are taken through the prostate, and the ultrasound
unit displays the template grid superimposed on the anatomy of the prostate.
Needles inserted in the template at appropriate grid positions enable seed
placement in the target at planned locations.

Despite the advances in devices that assist in accurate placement of seeds,
deciding where to place the seeds remains a difficult problem. A treatment
plan must be designed so that it achieves an appropriate radiation dose
distribution to the target volume, while keeping the dose to surrounding
normal tissues at a minimum.

Traditionally, to design a treatment plan, several days (or weeks) prior to
implantation the patient undergoes a simulation ultrasound scan. Based on
the resulting images, an iterative process is performed to find a pattern of
needle positions and seed coordinates along each needle that will yield an
acceptable dose distribution. Adjustments are typically guided by repeated
visual inspection of isodose curves overlaid on the target contours. Since the
process requires manual inspection at each iteration, the process is not only
lengthy – sometimes taking up to four hours to complete – but it also means
that only a small fraction of possible configurations can actually be
examined. More importantly, by the time the implantation is performed
several days later, the prostate volume will have changed in both shape and
size, making the pre-plan invalid.

In recent years, computer-aided iterative approaches and automated methods
have been developed to aid in brachytherapy treatment planning in the
operating room [2-10]. At Memorial Sloan-Kettering Cancer Center
(MSKCC), we have developed a state-of-the-art intra-operative plan
optimization system for permanent prostate implants [6, 9, 10, 15]. This
chapter discusses these topics as applied to brachytherapy treatment for
prostate cancer. The methodology described below reflects (unavoidably)
accepted practice at MSKCC. In Section 28.2, we outline the sequence of
steps that are involved in brachytherapy treatment planning. Mixed integer
programming models used for designing treatment planning models are
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described in Section 28.3. Section 28.3 also outlines some algorithmic
approaches that could be applied in solving the models and an illustrative
example of solving an integer program. An integrated clinical decision
support system is briefly summarized in Section 28.4.

28.2  BRACHYTHERAPY TREATMENT FOR PROSTATE CANCER

Treatment planning in brachytherapy consists of a sequence of steps that
include the following: a) selection of appropriate sources, b) localization of
potential source positions, c) dose prescription, d) treatment plan design and
verification.

In brachytherapy, radioactive isotopes are selected based on two criteria: a)
the energy of the ionizing particle, and b) the decay rate of the radionuclide.
Low-energy sources are preferred because of their evident advantage in
terms of radiation protection. They also offer better flexibility in designing
conformal plans, as well as avoiding excess irradiation of healthy tissues that
surround the target. The main benefit of high-energy sources is that
(dosimetrically) they cover a larger volume and thus fewer sources may be
needed [16-22].

In permanent prostate implants, potential source positions are localized with
respect to a template that is placed in a fixed position relative to the
treatment region (the prostate gland). The template, shown in Figure 28.1,
has a rectangular pattern of holes; needles are inserted through the template
grid, and seeds are placed along each needle at positions (typically, in
multiples of 0.5 cm) determined by the treatment plan. A series of parallel
ultrasound (US) images is taken through the prostate, and firmware in the
ultrasound unit overlays a grid of dots onto these images that correspond to
the template holes (Figure 28.2). The grid coordinates on the template and
the distance of the US image away from the template uniquely identify the
three-dimensional coordinates of each potential seed position relative to the
gland anatomy. It is often the case that, as they penetrate into the prostate,
inserted needles deviate from the initial grid coordinates. However modern
planning systems have provisions for taking this into account in dosimetric
calculations.

The dose prescription is made relative to the clinical target. Specifically, the
recommended procedure is to use the minimum peripheral dose (mPD),
which is the largest-dose isodose surface that completely surrounds the
target (Figure 28.3) [11]. Often this is found to be too restrictive (and
perhaps unrealistic in terms of being able to implement the plan). A
different type of prescription makes use of D90, which means that one
stipulates that a dose equal to or larger than the prescription dose be
delivered to at least 90% of the target volume. The determination that the



BRACHYTHERAPY TREATMENT PLANNING 725

Figure 28.1 Template used in a prostate permanent implant

Figure 28.2 The grid superimposed on the ultrasound image
provides the (x,y) coordinates of the inserted needles. Potential seed
positions (x,y,z) are along these needles. The third coordinate (z) is
determined by the position of the ultrasound probe (equivalently, by

the image number).
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treatment plan achieves the required mPD or D90 can be made with the aid
of dose-volume histograms (DVH), which plot as a function of dose, D, the
probability that a randomly-selected voxel volume receives a dose of at least
D (this is, of course, the cumulative probability distribution of dose in the
target volume).

28.3 TREATMENT PLAN MODEL DESIGN AND ALGORITHMS

In brachytherapy, planning means finding a pattern of sources (of given
strength) that is consistent with dosimetric constraints – typically, a
minimum dose for the target and a maximum dose for the healthy tissues
adjacent to the target. The search for this optimal source distribution may be
performed using iterative (trial and error) methodology or – as described
here – using computer-based optimization. For the latter, a mathematical
model is usually developed which includes the essential dosimetric
constraints, and an objective function (often user-specific). The objective
function is a mathematical expression that measures the quality of the dose
distribution. This metric can be selected according to the desire of the
planner regarding the characteristics of the resulting plan. The model is then
solved by some algorithms.

Search algorithms used in brachytherapy treatment planning include exact
algorithms such as branch-and-bound, or heuristic approaches such as
simulated annealing and genetic algorithms. A branch-and-bound algorithm
is a tree search approach that works by searching through the set of all
feasible plans (those that satisfy all the input constraints in the model) and
returns an optimal plan that provides the best objective value. When allowed
to run to completion, this approach will return a proven-optimal plan.
Heuristic procedures work somewhat differently. Depending on the design,
the search does not necessarily return plans that satisfy all of the imposed
constraints; rather, the search attempts to obtain seed patterns that provide
the least violation to the imposed constraints. Furthermore, there is no
information on whether one obtains an optimal seed configuration or not.
Instead, termination for heuristic algorithms is often based on the number of
iterations that the user specifies. At each iteration, the algorithm obtains a
plan and evaluates its associated objective function value. If the objective
function is better than the incumbent plan, the incumbent plan will be
updated.
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Figure 28.3  Dose prescription for a permanent prostate implant. In
this 2D ultrasound image the white line delineates the prostate and

the 100% isodose line (mPD=144 Gy) is shown in green. Green dots
indicate seeds and red dots show unused seed locations along

needles.

28.3.1 Mixed integer programming based treatment planning models

The planning problem consists of determining if each possible source
location should be implanted with a radioactive source or not. Hence the
decision variables represent the locations of the grid position – a
mathematical model that consists of integer decision variables [6, 9, 10]. In
our case, it is the “yes” or “no” decision of placing a seed or not at each
possible location. Mathematically, let be a 0/1 decision variable for
recording the placement of a source at grid position j. The total dose, at
point P is given by:

where is a vector that gives the coordinates of grid position j, is
the Euclidean distance between P and and D(r) is the dose contribution
to P from a source at distance r away (within the point source
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approximation). For each point of interest one can define upper and
lower dose limits that must satisfy:

Generally, it is not possible to have all points P satisfy these constraints, in
which case there will be no feasible solution to this linear system. Instead,
one attempts to maximize the number of points that satisfy these inequalities.
This is achieved in the following manner. Let denote the absolute
maximum acceptable dose at point P, and similarly let denote the

absolute minimum dose. Further, let be binary (0/1) variables that
indicate whether equation (2) or (3) is satisfied (when equal to 1) or not
(when equal to 0). With this, the constraints, equations (2) and (3), can be
replaced by:

and the sum:

which depends on the configuration gives the total number of points that
satisfy the original constraints, equations (2) and (3). The optimization
problem consists of maximizing the objective function, F.

All points P need not have the same clinical importance: for instance,
avoiding urethral toxicity (a common side effect) may be more important
than satisfying the condition of dose uniformity across the target. This is

addressed by assigning different weights, and to and
respectively, and maximizing instead:
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The problem described by objective (7) and constraints (4) and (5) is known
as a linear integer programming (IP) problem because the objective function
is linear in the unknown variables and these variables can take only integer
(here 0 or 1) values. Other objectives can also be employed. For example,
instead of maximizing the number of points that satisfy the original
constraints (2) and (3), one can employ nonnegative continuous variables

and to capture the deviations of the dose level at a given point from

its target lower and upper bounds, respectively. In this case, equations (2)
and (3) become

and the sum F, to be minimized, is

When the target bounds and are expressed as multiples of a target
prescription dose, another natural approach is to capture the deviations
from directly [12]. In our mixed-integer programming (MIP) model, this
can be achieved by replacing constraints (8) and (9) with

where is a continuous variable, unrestricted in sign. In the objective, one
can then minimize the q norm of the vector y of all deviations; i.e.,

In this case, the problem becomes a quadratic 0/1 integer program. Details
of these models, and variations that take into account other planning
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parameters and possible enhancements, can be found in [9, 10, 13, 14].
Algorithms commonly used for solving this problem are now described.

28.3.2 Computational algorithms

Branch-and-Bound The classical approach to solving linear 0/1 mixed
integer programs is branch-and-bound. This is a tree search approach where,
at each node of the tree, certain binary variables are fixed to zero or one, and
the remaining binary variables are relaxed (i.e., allowed to assume any value
between zero and one). This results in a linear program (LP) being
associated with each node of the tree. The LP at the root node is simply the
original 0/1 MIP instance with all of the binary variables relaxed. The tree is
constructed such that the binary variables fixed in a parent node will be fixed
identically in any of its children, and each child will have an additional
binary variable fixed to zero or one. Typically, children are formed in pairs
as follows. Assume that the LP at a given node is solved, and one or more of
the relaxed binary variables is fractional in the optimal solution. One selects
such a fractional binary variable and branches on it. That is, two child nodes
are formed; one with the selected binary variable fixed to zero, and the other
with the selected binary variable fixed to one. Of course, each child also
inherits all of the fixed binary variables of its parent. Note that the objective
value of a child node can be no greater (in the case of maximization) than
the objective value of its parent.

If the linear program at a given node is solved and the optimal solution
happens to have integral values for all the relaxed binary variables, then this
solution is feasible for the original 0/1 mixed integer program. Once a
feasible solution for the original problem is found, the associated objective
value can be used as a lower bound (in the case of maximization) for the
objective values of LP’s at other nodes. In particular, if an LP at another
node is solved, and its objective value is less than or equal to the lower
bound, then none of its children could yield a feasible solution for the
original MIP with a greater objective value than the one already obtained.
Hence, no further exploration of this other node is needed, and the node is
said to be fathomed. Two other criteria for fathoming a node are obvious: if
the associated LP is infeasible, or if the optimal solution of the LP has
integral values for all relaxed binary variables, then no further exploration of
the node is required. In the latter case, the optimal objective value of the LP
will be compared with the current lower bound, and the lower bound will be
updated if needed. The tree search ends when all nodes are fathomed.

A variety of strategies have been proposed for intelligently selecting
branching variables and nodes to process. However, no strategy stands out as
being best in all cases. What has become clear from recent research in
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computational MIP is that branch-and-bound is most effective when coupled
with other computational devices, such as problem preprocessing, primal
heuristics, global and local reduced-cost fixing, and cutting planes. The
reader can refer to the article by Lee [23] for a concise description of branch-
and-bound methods for integer programming. The books by Schrijver [24],
Nemhauser and Wolsey [25] and Parker and Rardin [26] contain detailed
expositions of integer programming and related computational issues.
Branch-and-bound algorithms designed for determining optimal seed
locations for prostate implants can be found in [9, 10].

Genetic Algorithms were first proposed in connection with the optimal
allocation of trials in 1973 [27, 28]. A genetic algorithm is a heuristic
optimization method modeled on the biological mechanisms of evolution
and natural selection (e.g., see [29, 30]).

In nature the characteristics of an organism are encoded in streams of DNA
known as chromosomes. Likewise, in a genetic algorithm a potential
solution to a problem is encoded as a stream of symbols over a given
alphabet. Given an initial population of individuals (i.e., potential solutions
encoded as symbol streams), a subset of the population is selected to parent
offspring for the next generation. The parent selection process is stochastic,
but biased towards selecting those individuals that are most fit, as measured
by a pre-selected fitness function (e.g., the objective function that one is
trying to optimize).

After the parents are selected, they are paired off and mated. That is,
subsections of two parent symbol streams are interchanged, forming two
new members for the next generation. This is analogous to cross-over in
biological reproduction, where a child’s genetic composition is a
combination of its parents. Mutations are also possible. This is typically
implemented by randomly selecting a child symbol stream and randomly
altering one of its symbols. In order to ensure that the current best solution is
not lost, the strategy of elitism can be employed; that is, the data stream with
the highest fitness value is passed on unchanged to the next generation. This
is implemented by simply overwriting one of the newly created children.

The algorithm can be terminated after a specified number of generations
have been created (usually several thousands), or by examining when the
difference between the maximum and minimum fitness values between
consecutive generations remains less than a specified threshold for a number
of generations. Upon termination, the individual in the final generation with
the largest fitness value is selected as the operative solution to the problem at
hand. Readers are referred to [4, 8, 9] for implementation of genetic
algorithms for prostate implants.



732 OPERATIONS RESEARCH AND HEALTH CARE

Simulated Annealing, also referred to as Monte Carlo annealing,
probabilistic hill climbing, statistical cooling, and stochastic relaxation [31],
was first described as a heuristic for solving computer design problems [32]
and the traveling salesman problem [33]. Simulated annealing is the
application of statistical mechanics principles to combinatorial optimization.
It has proven effective in generating near-optimal solutions for certain large
problems.

Annealing is a process in which a solid is heated beyond its melting point
and then cooled slowly and carefully into a perfect lattice. The crystalline
structure of the perfect lattice represents a minimization of free energy for
the solid. The cooling process determines if the ground state is achieved or if
the solid retains a locally optimal lattice structure with crystal imperfections.
The Metropolis algorithm [34] was developed to characterize cooling
schedules that would produce favorable results. The central feature of the
algorithm is the Metropolis condition: as the solid is cooled, the current
configuration of the atoms is accepted with a certain probability and rejected
otherwise. At nonzero temperatures, transitions out of local optima are
always possible. Thus, the free energy is not monotonically decreased.

Simulated annealing applies these concepts to a combinatorial optimization
problem. The cost function, or objective, assumes the role of the free energy
function. The set of feasible solutions is analogous to the states of a solid.
Let f (i) be the value of the cost function for solution i. Suppose the
objective is to minimize f. A transition from state i to state j is accepted
according to the following distribution:

The parameter c is an artificial “temperature” that is usually reduced as the
number of iterations increases. At large values of c, large increases in the
objective are accepted while for smaller values only small increases are
accepted. Note that decreases in the objective are always accepted. The
cooling schedule is the method by which c is decreased. A simple cooling
schedule specifies as the initial temperature and a parameter such that

Other cooling schedules have been proposed [31].

The implementation of simulated annealing requires the following: 1) a
concise representation of the state space, 2) a method for randomly
generating state transitions, 3) an objective function measuring the
cost/benefit of transitions, and 4) cooling schedule parameters and a stop
criterion [32].
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Asymptotic convergence of the algorithm under various conditions on the
generation and acceptance distributions has been proven [35]. The sequence
of state transitions produces a discrete-time Markov chain. The method can
be generalized to problems producing continuous time and continuous state
space Markov chains [35, 36]. Solutions arbitrarily close to optimal usually
require exponential run times, but the asymptotic behavior can be
approximated in polynomial time [31]. The neighborhood structure of a
problem determines which solutions are accessible in one transition from the
current solution. For small problems, the neighborhood structure can have a
large impact on the time to find good solutions. For problems with a large
number of solutions and a relatively uniform distribution of values of the
cost function, structure plays a lesser role [2, 3, 31, 37].

28.3.3 Illustrative example

In this section, a two-variable integer program is solved using branch-and-
bound [23]. The most infeasible integer variable is used as the branching
variable, and best-bound is used for node selection. Consider the problem

The progress of the algorithm is indicated in Figure 28.4. Each box contains
the name of the subproblem, the solution to the LP relaxation, and its
associated objective value.

Initially, the set of active problems, L, consists of just this problem

The solution to the LP relaxation is with value

The most infeasible integer variable is so two new

subproblems are created, where and where and
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Figure 28.4 Branch-and-bound example

Both problems in L have the same bound, 59.5, so assume the algorithm

arbitrarily selects The optimal solution to the LP relaxation of is

with value The most infeasible integer variable

is so two new subproblems of are created, where and

where and now

The algorithm next examines since this is the problem with the best

bound. The optimal solution to the LP-relaxation is with

value Since is integral feasible, is then updated to 58 and

is fathomed.
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Both of the two subproblems remaining in L have the best bound greater
than 58, so neither can yet be fathomed. Since these two subproblems have

the same bound 59, assume the algorithm arbitrarily selects to examine
next. LP relaxation to this problem is infeasible, since it requires that x
satisfy and simultaneously. Therefore,

and this node can be fathomed by bounds since That

leaves the single problem in L. The solution to the LP relaxation of

this problem is with value Since

this subproblem can also be fathomed by bounds. The set L is now empty,

hence is an optimal solution for the integer-programming problem

28.4 SUMMARY – A CLINICAL DECISION SUPPORT SYSTEM
FOR BRACHYTHERAPY TREATMENT PLANNING

A dose calculation engine, the MIP-based treatment modeling module, a
branch-and-bound based optimization engine, and user evaluation tools are
integrated into a computerized decision support system for optimal treatment
planning design in the operating room. The decision support system takes
into account the discretized US images, clinicians’ planning prescriptions,
radioactive source and activity, and dose information, and returns an optimal
treatment plan prior to seed implantation. The system allows real-time dose
correction, and allows physicians to handle unforeseen problems arising
during the seed implantation process by enabling immediate re-optimization.

Figure 28.5 illustrates the flow diagram of the clinical decision support
system. The flow within the basic system, with our MlP-based optimization
module and solver incorporated, is shown in the lower portion of the figure.
Information about two new modules is shown in the upper portion. Shown in
the upper left is a module that allows for incorporation of MRS-images to
identify high cell-proliferation tumor pockets within the gland [13]. In the
upper right is a module that accounts for edema shrinkage and continuous
dose absorption over a period of 30 days to assist in treatment and dose
control over time [14]. Each module is designed and implemented in a
manner that is conducive to re-engineering and future modification and
expansion as experience with the system is gained. Thus, this in-house
automated treatment-planning system remains amenable to modifications
that reflect newly acquired clinical knowledge [13-15].
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Figure 28.5 The flow design of the computerized decision support
system used for brachytherapy
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SUMMARY

Intensity modulated radiotherapy treatment (IMRT) design is the process of
choosing how beams of radiation will travel through a cancer patient to treat
the disease, and although optimization techniques have been suggested since
the 1960s, they are still not widely used. Instead, the vast majority of
treatment plans are designed by clinicians through trial-and-error. Modern
treatment facilities have the technology to treat patients with extremely
complicated plans, and designing plans that take full advantage of the
technology is tedious. The increased technology found in modern treatment
facilities makes the use of optimization paramount in the design of
successful treatment plans. The goals of this work are to 1) present a concise
description of the linear models that are under current investigation, 2)
develop the analysis certificates that these models allow, and 3) suggest
future research avenues.

KEY WORDS

Mathematical programming, Intensity modulated radiotherapy treatment
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29.1 INTRODUCTION

Fast proliferating cells, such as those found in cancerous and displasiac
tissue, are more sensitive to radiation than healthy cells, and this fact has
allowed tremendous strides in the fight against cancer. Chemotherapy
exploits this property by injecting radioactive substances into the blood
stream, with the goal being to administer enough radiation to kill the
cancerous cells but not enough to kill the healthy cells. Because the
substances are injected into the blood stream, chemotherapy affects the
entire anatomy, and hence, all fast proliferating cells are attacked (such as
hair cells). Intensity modulated radiotherapy treatment (IMRT) is a similar
cancer treatment where external beams of radiation are focused on the
cancerous regions. Since the radiation is not injected into the blood stream,
IMRT is a local treatment. In fact, the radiation beams can be focused with
sub-millimeter precision, giving a medical physicist precise control of how
the radiation travels through the anatomy.

IMRT design is the process of deciding how beams of radiation will travel
through a patient so that they deliver a tumoricidal dose of radiation to the
cancerous region. At the same time, the critical structures surrounding the
cancer are to receive a limited dose of radiation so that they can survive the
treatment. The effect of IMRT on the tumor, which we want to receive a
high level of radiation, and the surrounding critical structures, which we do
not want to receive a high level of radiation, makes IMRT design a
complicated process. Moreover, modern treatment facilities have the
technology to deliver extremely complicated treatment plans, which in turn
allows a great amount of flexibility in the design process. Indeed, the amount
of flexibility that is permitted makes optimizing treatment plans beyond the
scope of human comprehension, and future technology will only increase the
degree of complication. If the IMRT planning process does not advance with
the technology patients will not receive the added benefits of the advanced
technology. So, the development of optimization models that take full
advantage of emerging technology is critical.

Three groups of specialists are important to the success of improved
treatment design: 1) oncologists, who tend to the needs of the patients, 2)
medical physicists, who know how to model the deposition of radiation, and
3) the operations researchers, who are experts in the field of applied
optimization. One of the difficulties of working in this field as an operations
researcher is to find an oncologist and/or a medical physicist to work with,
for a continued dialog between these three groups is important. Historically,
the bulk of the research on radiotherapy treatment design was accomplished
by oncologists and medical physicists. Only in the last few years have
operations researchers become interested in these problems. Because
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optimization is playing an increasing role in treatment design, it makes sense
that operations researchers be included, as they are accustomed to
investigating algorithms and performing solution analysis. The goal of this
chapter is to encapsulate the current research directions so that operations
researchers can quickly become familiar with the interdisciplinary field of
designing IMRT plans. Before we continue, we mention two Internet
resources. The Operations Research & Radiation Oncology web site at
http://www.trinity.edu/aholder/HealthApp/oncology/ has a depository of
recent papers and a list of interested researchers. The other resource is
PubMed, the index to the National Library of Medicine, located at
http://www.ncbi.nlm.nih.gov/. A recent search on “optimization” and
“radiotherapy” found 905 related citations, so the medical literature is
immense. Most of these articles are case studies about specific types of
cancer and are not directly related to operations research. The bibliography
at the end of this chapter is designed to help those who are interested get
started in the field.

29.2 MODELING DOSE DEPOSITION

To understand how and why linear optimization models appropriately model
the planning of IMRT design, one needs to have a basic understanding of
how radiation is deposited into the anatomy. The basic question is how does
a focused beam of radiation deposit energy as it travels through a patient.
The question has two perspectives. A forward problem is one in which we
know the amount of energy being transmitted along the beam, and we want
to know how much energy is deposited at a point in the anatomy. An inverse
problem is one where we know how much energy is to be deposited in the
anatomy, and we want to know what beam energies attain the desired
amounts. IMRT planning is an inverse problem because we limit the amount
of radiation received by certain tissues and find a collection of beam
intensities that adhere to these bounds. While a complete discussion of the
physics describing the dose deposition is beyond the scope of this article, we
briefly explain a continuous model and its discrete counterpart (see [1] and
[2] for more complete details).

We begin with a description of the equipment found in a standard treatment
facility (see Figure 29.1). The beams of radiation are formed by a linear
accelerator, and once formed, they travel through a gantry that is capable of
rotating around the patient (the center of the rotation is called the isocenter).
The fact that the gantry can rotate around the patient is important because
this allows the beam of radiation to be directed at the patient from any angle.
The head of the gantry is designed to accommodate one of several focusing
apparatuses, with most modern facilities using a multileaf collimator (see
Figure 29.2). This device can “shape” the beam of energy by blocking
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portions of the beam. Shaping the beam has tremendous benefits because it
allows sensitive regions to receive relatively low levels of radiation, while
nearby tumorous regions receive a higher amount of radiation. (We point out
that a tumor is not well defined because microscopic extensions, which may
or may not exist, do not appear in an image. As such, treatment planners
define a “tumorous region” that they believe includes the tumor and the
possible microscopic extensions.) A planning model must take into
consideration the fact that the beams can be focused on the patient from any
angle and in almost any shape.

Figure 29.1  A gantry is capable of rotating around the patient as he
or she lies on the couch. The head of the gantry contains a multileaf

collimator (see Figure 29.2).

Figure 29.2   A multileaf collimator is used to ‘shape’ the beam of
radiation so that surrounding tissues are shielded.
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Figure 29.3 The geometry of a continuous dose deposition
calculation

Consider the geometry depicted in Figure 29.3, where we want to calculate
the dose at The gantry in this figure is located at angle a, and the sub-
beam from angle a that passes through is i. The amount of energy that
is to be transmitted along sub-beam (a,i) is p(a,i). The distance from the cell
to the surface of the body, denoted by d in the diagram, affects the radiation
received by the cell. This is because the beam attenuates as it travels through
the body, meaning that it deposits more radiation when it first enters the
body and ‘decays’ as it travels through the tissue. This attenuation is

modeled as exponential decay -i.e. by where depends on the
particular beam of energy formed by the linear accelerator. Thus, the

radiation deposited at location by sub-beam (a,i) is p(a,i) To
calculate the total, or integral, dose at point we need to accumulate the
amount deposited from every possible sub-beam that passes through
Letting L = {f(a,i) : sub-beam (a,i) passes through we find that the
integral dose is:

Again, we point out that if we know p(a, i) and want to calculate
then we are dealing with a forward problem. However, IMRT planning is an
inverse problem because we limit the amount of radiation to be deposited
into the tissue and use these limits to calculate the amount of energy to
deliver along each sub-beam |i.e. we bound and want to calculate
p(a, i) to satisfy the bound. So, for continuous IMRT planning we need to
invert an integral transformation. There are a variety of techniques to
accomplish this task, but the difficulty lies in the fact that the calculation of
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p(a, i) must keep it non-negative, which is not guaranteed by these
techniques. The hidden assumptions on the integrand are what often make
inverse problems more difficult than forward problems.

In the continuous model we are integrating with respect to the angle a, so in
the discrete model there are a finite number of angles, denoted
We assume that each angle is comprised of sub-beams, which may be
elementary beams or pencils, the difference being that pencils radiate from a
point source and elementary beams run parallel to each other. Our
development does not depend on whether pencils or elementary beams are
chosen, only that there are a finite number of them. The patient image is
divided into N × M pixels, and we want to measure the amount of radiation
that is deposited into each pixel.

We let be the dose along the ith sub-beam of angle a, and be the
distance from where sub-beam enters the image to where it reaches the
center of pixel p. We further define to be the product of and
the geometric area common to both the sub-beam and pixel p. For
example, in Figure 29.4 we have a 2×2 patient image surrounded by 4
angles, each with 4 sub-beams (in this case they are elementary beams). The
elementary beam corresponding to intersects half of pixel 3, and the

distance to the center of this pixel along this elementary beam is

(assuming that each pixel has a width of one). Hence,

Figure 29.4  A discretized approximation to the continuous dose
deposition calculation

The components of the dose deposition matrix, denoted by A, are
where the rows of A are indexed by p and the columns are indexed by (a, i).
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Similarly, a treatment plan, or more succinctly a plan, is a non-negative
vector x whose components are where the order corresponds to the
columns of A. So, x is the vector of energies at the gantry, and the linear
transformation x Ax deposits the radiation into the anatomy.

Let pixel p contain point from the continuous model. The dose

calculation at is approximated by

where the last notation indicates that the integral dose to pixel p is the pth
component of Ax. Both the continuous and the discrete models are linear in
the energy transmitted along the sub-beams |i.e. the continuous model is
linear in p and the discrete model is linear in x. Physical measurements show
that the integral dose to a cell is a linear function of the amount of energy
transmitted along the sub-beams. So, the linear models are not crude
approximations, but rather they accurately measure how radiation is
deposited into the anatomy. With that said, the linear operator x Ax only
approximates the dose deposition because it does not take into account the
effects of scattering. The problem here is that some radiation “bounces” off
cells and scatters into areas where it was not intended. There are non-linear
models that measure scattering [2, 3], but once the scattering for a particular
patient is taken into account, the dose to a cell is linear in the energy
transmitted along the sub-beams. Because each patient is unique, the linear
coefficients depend on the patient, and in a clinical setting these linear
coefficients are decided during an initial planning appointment. For the
purposes of this article, we use the technique discussed above to calculate
the dose deposition matrix.

The rows of A are partitioned into the rows that represent the cancerous
regions, the critical structures, and the remaining healthy tissue. This
reordering is represented by the submatrices and as indicated
below:

Sub-beams that do not intersect the tumor are removed from consideration
by eliminating the columns of A that have a corresponding zero column in

For notational brevity, we keep the A notation for the sub-matrix with
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these columns removed. In what follows,

and Because radiation is measured in Grays

(Gy), the right-hand sides of the constraints are given in units of Gy.
Allowing e to be the vector of ones, where length is decided by the context
of its use, we can guarantee that the tumor pixels receive 80Gy, that the
critical structures receive no more than 40 Gy, and that the remaining tissue
receives no more than 90Gy by finding a nonnegative x that satisfies

If these are the only treatment goals, the design process is a feasibility
problem, meaning that any nonnegative vector satisfying these constraints
forms a suitable plan [4, 5].

29.3 TREATMENT CONCERNS

The primary goal of IMRT design is to construct a treatment plan that
delivers a tumoricidal dose to the cancerous region and at the same time
delivers low enough radiation levels to the surrounding tissues so that they
maintain functionality. However, several factors make this overriding
objective difficult to translate into an optimization model. When first
presented with the problem, most operations researchers believe that the
objective should be to deliver as much radiation as possible to the tumor.
This naively makes sense because killing the cancerous cells is the purpose
of the treatment. There are two reasons why maximizing the amount of
radiation deposited into the tumor is not an appropriate objective. First,
healthy and cancerous cells are often interspersed, and there is a limited
range of radiation that will kill a cancerous cell and allow a healthy cell to
survive. So, it is important to deliver enough radiation to kill the cancerous
cells, but not enough to kill the healthy cells within the tumor. This is
usually accomplished by the dosimetrist stating that he or she wants the
cancerous regions to attain a specified amount of radiation plus or minus
some percentage. For example, the tumor should receive 80 Gy ±2% means
that the tumor should receive between 78:4Gy and 81:6Gy. Second, if any
region of the anatomy receives an unreasonably high amount of radiation,
the cells within this region are killed. If the area is large enough, the human
physiology is disrupted, causing a condition known as necrosis. For these
two reasons, it is paramount for the tumor to receive a uniform, tumoricidal
dose of radiation and not simply as much as possible.

Treatment planning is further complicated by the fact that different organs
react to radiation in different ways. For example, the liver can receive a large
amount of radiation over a substantial portion of its tissue and maintain its
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functionality. However, if the entire liver receives a relatively low dose of
radiation, the organ will fail. The colon is different because it can handle a
relatively low, uniform dose but will fail if a small region receives a high
dose. Organs like the liver that can successfully receive a high level of
radiation over a portion of their tissue, but fail under a relatively low,
uniform dose, are called rope organs. A chain organ is one that can handle a
relatively low amount of radiation over its entirety but will fail when a small
amount of the tissue is destroyed (see [6-9] for more complete details on
rope and chain organs). So, in addition to making sure that the tumor
receives a uniform, tumoricidal dose, the dosimetrist must make sure that the
treatment plan delivers radiation to the critical structures in a suitable
manner.

The hope that every patient receiving IMRT is cured of cancer is unrealistic,
and because of this, patients and physicians routinely make difficult
decisions about a course of treatment. The best of all situations is when the
type and stage of cancer being treated has a high probability of cure with
standard treatments. The “best” treatment plan in such a case is one that
delivers a tumoricidal dose to the cancerous regions and as little radiation as
possible to the critical structures. The treatment goals change if a patient’s
illness is terminal or the standard treatments are not promising. For
terminally ill patients, destroying the cancer is not the primary objective, but
rather treatments are often designed to increase the patient’s quality of life.
In some instances, this means that some nearby regions should receive no
radiation. For example, in the case of a brain tumor it may be best to
minimize the radiation deposited into adjoining regions that control speech
and memory. However, minimizing the amount of radiation that is received
by these regions can mean that the tumor is not treated with a uniform,
tumoricidal dose, but because the patient’s illness is terminal, this is not
detrimental to the treatment plan. In cases where the standard treatments do
not provide a high probability of success, the question becomes to what
degree are the patient and physician willing to risk the nearby regions to
treat the tumor with higher amounts of radiation.

The point of highlighting these situations is that the objective of treatment is
not the same for all patients and is decided by the ethics and values of the
patient and physician. This ethical perspective of the objective is different
from the modeling perspective of the objective, which is concerned with
how we measure and penalize deviation from the physician’s demands. The
fact that ethical concerns often make it difficult to clearly state a primary
objective means that the optimization model needs to be flexible enough to
accommodate several scenarios.
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Before continuing with the mathematical models, we discuss two treatment
concerns that are not readily discussed in the literature, but that are
beginning to receive some attention. First, radiation therapy is not delivered
in a single session but is instead fractionated into several treatments (usually
20 to 30). Once a plan is developed, it is divided into a number of
treatments, and the patient receives these fractionated treatments daily. The
idea here is to accumulate the radiation slow enough so that the healthy
tissue has an increased chance of survival. This fractionization is the
difference between radiotherapy and radiosurgery, with the latter being
delivered all at once. A natural, but virtually unexplored, question is whether
it is beneficial to deliver the overall dose in non-uniform increments. The
optimization model associated with this question is a challenging optimal
control problem, with the only work being the recent paper of Ferris and
Voelker [10]. While the computational burden of solving their model makes
it impossible to develop a patient-specific course of treatment, their work
clearly indicates that delivering a uniform, fractionated dose is not typically
optimal. There are many related questions that are open for investigation,
such as deciding the number of fractionated treatments that maximize the
success of the treatment.

The second relatively new treatment question is how to move the gantry and
adjust the multileaf collimator so that the plan is delivered in as little time as
possible (see [11]). This is an extremely important question because typical
treatments last about 15 minutes, and if treatment plans can be delivered
more efficiently, more complicated plans are possible. In general, plans with
more than 5 to 7 angles are considered complicated because of the time it
takes to administer them. Hence, the number of angles in a treatment plan is
restricted, and the flexibility of the design is limited. The restriction on the
number of angles becomes less of a concern as we find more efficient ways
to move the gantry and adjust the multileaf collimator. This increased
efficiency allows more flexibility in the design process and translates into a
benefit for the patient.

29.4 OPTIMIZATION MODELS

In this section we develop a class of linear programs that aid IMRT design
[12, 13]. The first optimization model that was developed to aid IMRT
design was linear and appeared in the literature in 1968 [14]. Since then,
many researchers have experimented with linear models [15-22].

While linear models are natural because dose deposition is experimentally
linear, these models have been the focus of several complaints, and many
other researchers have investigated nonlinear models [18, 19, 21]. The first
complaint about linear models is that the physician’s demands often produce
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an empty feasible region. For example, the physician may desire that the
cancerous tissue receives 80Gy±2% and that the surrounding critical
structures receive no more than 20Gy. This translates into the following
constraints,

which may or may not be consistent. If the physician’s demands are not
possible, the optimization routine simply states that the underlying
optimization problem is infeasible and provides no information about how to
adjust the physician’s desires. Finding and explaining a source of
infeasibility is a difficult question, and there is a substantial amount of
literature that deals with this issue (e.g., [24-27]). Since we cannot ask the
physicians or the physicists to become experts in mathematical
programming, this is a problem that needs to be addressed. The linear
models that we develop overcome this difficulty by using elastic constraints.

The second major complaint about linear models has nothing to do with the
linearity of the problem but rather the solution technique. The problem here
is that the simplex algorithm terminates with an extreme point solution,
which means that some of the inequality constraints are guaranteed to hold
with equality at the solution. For example, in (1) we are guaranteed that
either some of the cancerous regions are going to receive their upper bound
of 81.6Gy, or that some of the cancerous regions are going to receive their
lower bound of 78.4Gy, or that some of the critical structures are going to
receive their upper bound of 20Gy. The problem here is that we are
guaranteeing that some regions are going to attain the limits placed on them,
and this is alarming because these limits are rules-of-thumb. We address this
issue in two ways. First, we use a path-following interior point algorithm to
solve our problems. This algorithm terminates with a solution that strictly
satisfies as many inequalities as possible. So, we find an optimal plan that
does not attain the limits placed on the regions, provided that such a plan is
possible. Second, the elastic constraints that we use allow the physician’s
desires to ‘float’ during the optimization process, and the objective is to
better them as much as possible.

From the dimensions of and we have that m is the total

number of pixels, is the number of tumorous pixels, is the number of

critical structure pixels, and is the number of remaining

pixels. A prescription comprises a physician’s aspirations for the tumor,
usually a tumoricidal dose, and upper bounds for the non-tumorous tissue.
Specifically, a prescription is the 4-tuple (TUB, TLB, CUB, GUB), where
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TUB is a vector of upper bounds for the tumor,

TLB is a vector of lower bounds for the tumor,

CUB is a vector of upper bounds for the critical structures, and

GUB is a vector of upper bounds for the remaining good tissue.

We make the realistic assumptions that and
Because a uniform, tumoricidal dose is to be delivered to the

tumor, the lower and upper bounds for the tumor pixels are a fixed
percentage of the physician’s goal for the tumor. So, if the physician’s goal
for a tumorous cell is TG, values for and are (1+tol)TG and (1 -
tol)TG, respectively. Here, tol is the percentage of variation permitted over
the cancerous region and is called the tumor uniformity level. Typical values
of tol found in the literature range from 0.02 to 0.15. The vector GUB
describes the highest amount of radiation that any single pixel is allowed,
and in general no tissue should receive more than 10% of the tumor’s desired
dose. Hence, we set GUB = (1.1) TG.

The model that we use separates how we measure and penalize any deviation
from the physician’s goals. This generality is permitted through the use of
semimonotone matrices, which are matrices whose Moore-Penrose
generalized inverse is nonnegative (see [28] for more information). For the
remainder of this chapter, the following semimonotone matrices are assumed

to have full column rank:

and We further assume that l, and are

positive, and that L, and are nonnegative with no row sum being zero

-i.e. Le>0,

satisfying these assumptions defines a set of elastic functions. The

feasible region, denoted by F, is the collection of

and that satisfy the following constraints:

and Any collection of l, L, and
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We note that because L and are semimonotone, and are nonnegative.

The constraints and

are called elastic because the bounds are allowed to vary with the vectors
and respectively. The matrices L, and define how we measure

the amount of elasticity, and with this in mind, we see that the assumption
that Le > 0, and makes sure that each constraint is
elastic. The elastic constraints are incorporated for two reasons. First,
Lemma 1 shows that F is not empty for any collection of L, and
Hence, the complaint that linear models are often infeasible does not apply
to this model. Second, the different lower bounds on the elastic functions
allow us to embody different treatment aspirations.

Each of L, and correspond with a vector, denoted by l, and

that decides how discrepancies are penalized. For example, measures
how deficient a plan is with regards to meeting the minimum tumor dose,

and is the total penalty assigned to these discrepancies. Similarly,

and measure a plans deviation from CUB and GUB, and and are
the aggregated penalties assigned to these deviations. The separation of how
we measure and penalize deviation is convenient because it allows us to
consider one set of constraints, decided by L, and and at the same

time we can manipulate the objective function to address different situations.
So we can design a patient-specific objective function that takes into account
their ethical desires.

The objective functions that we consider comprise the three penalty

functions and and we consider variants of the following
three optimization problems:
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The first math program, is a linear program that has three penalization

functions aggregated into a single objective, with the weight deciding the
importance of tumor uniformity. If is small, we are indicating that it is not
important to satisfy the tumor’s lower bound. As increases, we increase the
emphasis on finding a plan that achieves a uniform, tumoricidal dose. The
second math program is a multiple objective linear program, where the two
objectives are 1) to attain a uniform, tumoricidal dose and 2) to minimize the
radiation deposited into other structures. The third optimization problem is
another multiple objective linear program, where the three objectives are to
1) minimize any deficiencies in the cancerous regions, 2) make sure that the
critical structures receive as little radiation as possible, and 3) eliminate hot
spots by minimizing the amount of radiation deposited into the remaining
tissue.

We point out that each of the mathematical programs is capable of
addressing different ethical situations. In we adjust the relative
importance of the tumor receiving its desired amount of radiation by
adjusting the value of In Section 29.5.1 we show that the minimum
amount of tumor deficiency is uniformly bounded by the inverse of and
we use this result to construct an that guarantees that the tumor receives a
uniform, tumoricidal dose.

Because the other two mathematical programs have multiple objectives, we
need to define the sense of optimization that we are going to use. For
MOLP we are interested in the set of pareto optimal, or efficient, solutions.
We say that is pareto optimal if there exists a strictly between 0

and 1 such that is optimal to

Since is positive, we have that dividing the objective function by
transforms this problem into where So, the set of pareto
optimal solutions to MOLP is the same as the collection of all optimal
solutions to where is positive. While this means that and MOLP

are variants of each other, in the results that follow we use and MOLP

differently. So, we consider these separate, but related problems.

We use lexicographic optimization, instead of pareto optimization, for the

third optimization problem. For example, in we minimize

first, and then minimize over argmin Similarly,
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the third objective of minimizing is undertaken with only the solutions

of the second problem. Because the three objectives are treated individually,
we can easily alter their importance. In the case of a terminally ill patient, we
may decide that attaining a uniform, tumoricidal dose is the least important
objective, and hence we might order the objectives by 1) guaranteeing that
the critical structures are underneath their bounds, 2) making sure that there
are no unusually high depositions of radiation, and 3) attempting to deliver a
uniform, tumoricidal dose. In such a case, we use the subscript (C,G,T) to
indicate that the critical structures have the highest priority, that the normal
(good) tissue has the second highest priority, and that the tumor has the

lowest priority. So, the first objective is to minimize the second

objective is to minimize and the third objective is to minimize

To make sure that the consequences of lexicographic optimization are
understood, suppose for that there are treatment plans that

achieve a uniform, tumoricidal dose. This means that the set of optimal

solutions found by minimizing are exactly those plans that achieve a
uniform, tumoricidal dose. When the second objective is minimized, we are
only going to consider those treatment plans that achieve a uniform,
tumoricidal dose, and it is possible that none of these plans adhere to the
bounds placed on the critical structures. However, there may be a plan that
delivers sufficiently low levels to the critical structures and has only the
slightest tumor deficiency, but we would not find such a plan because it
would not be optimal to the first problem. This is the nature of lexicographic
optimization, and this type of optimization is appropriate only if a hierarchy
of the objectives is clear.

Different elastic functions lead to different interpretations of the solution,
and the following two collections are of particular interest.

Suppose that average analysis is chosen. Then tells us how

deficient a plan is with regards to meeting the minimum tumor dose for pixel

p, and is the average amount of such deficiencies. The

Average Analysis

Absolute Analysis
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interpretation of depends on the sign of the component. If

pixel p, which is contained in some critical structure, is

receiving more radiation than the physician intended. However, if

pixel p is receiving less radiation than is allowed. We now see that the

objective term expresses the desire to decrease the

average dose to the critical structures; in fact the desire is to have the critical
structures receive no radiation. Similarly, indicates how

much pixel p is over its allotted upper bound, and is the
average amount of radiation the normal tissue is over its prescribed dose.
The roles of and differ because of the different lower bounds. Since

any plan satisfying contributes zero to the objective

function. However, the lower bound of –CUB on means that plans with a
low integral dose to the critical structures are preferred. So, for the average
analysis case we see that the objective function is three tiered in its goals:

minimize the average amount that the tumor is under its prescribed
dose,

minimize the average amount of radiation that the critical structures
receive, and

minimize the average amount that the remaining pixels are over their
upper bounds.

The interpretation is similar if absolute analysis is chosen, with the
difference being that the elastic functions are each controlled by a single
parameter. So, instead of minimizing an average discrepancy, the goal is to
minimize the maximum amount of discrepancy. Hence, when absolute
analysis is chosen, the three goals of the objective function are to

minimize the maximum amount that the tumor is under its
prescribed dose,

minimize the maximum amount of radiation that the critical
structures receive, and

minimize the maximum amount any remaining pixel is over its
upper bound.

The literature contains several models, ranging from linear to mixed integer
to nonlinear models. While our concentration is on the linear models
developed above, it is important for operations researchers working in the
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field to have an awareness of these other models. We direct researchers to
the works listed in Table 29.1.

29.5 MATHEMATICAL AND COMPUTATIONAL RESULTS

As mentioned in the introduction, the medical literature associated with
IMRT design and optimization is immense. The history of the medical
research is to design a specific treatment plan for a specific type of cancer,
and then show that it is appropriate through several examples. So in the
medical literature, the methodology of treatment is verified through
examples – i.e. showing that a technique works because it has favorable
properties on these examples. While this verification approach is important,
and indeed the great strides we have made in medicine are a direct result of
such work, this type of research is foreign to a mathematician. The field of
mathematics is concerned with statements that can be universally proved and
not ones that can simply be shown to hold for a few examples. This means
that an applied mathematician’s perspective of a problem is different from
the perspective held by a practitioner. An applied mathematician, such as an
operations researcher, approaches a problem by finding the mathematical
language needed to describe the essence of the problem and then proceeds to
prove statements about the situation at hand. The proofs provide a theoretical
certificate for what can and cannot be stated about the problem. So, instead
of stating that a technique works because we can show that it does on a few
examples, we can guarantee that a technique does or does not work because
the proofs establish that they will, or will not. The benefit of this theoretical
approach is that it is not example dependent, so we do not have to wonder if
there are examples where the technique fails.

In this section we are interested in developing theoretical statements about
the linear models presented in Section 29.4. Unfortunately, mathematical
rigor is scarce in the literature. Consequently, this field of research has not
benefited from a sound mathematical development. This author hopes that
the operations researchers working in this field feel a sense of responsibility
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to provide the needed theoretical basis (areas in telecommunications and
geosciences have benefited greatly from a similar mathematical foundation).
The results of this section are divided into three subsections, each related to
one of the three models presented in Section 29.4. The proofs of the
mathematical results are excluded for brevity, but a citation is provided
where a proof can be located.

The numerical results in each of the following sections rely on the optimal
partition of a linear program. Consider the standard form linear program,

Allowing P* to be the optimality set, we have that
the optimal partition is defined by

The reason that the optimal partition is important is that it provides an
algebraic characterization of the optimal set. We do not have the space in
this chapter to rigorously develop this representation, but it is well known
that [30].

The optimal partition was not easily computed until path-following interior
point algorithms became viable alternatives to the simplex method. Path-
following interior point algorithms terminate with a solution that induces the

optimal partition, meaning that if x* is an optimal solution found by such an

algorithm, then and Having this type of
solution is important because it strictly satisfies as many inequalities as
possible: the B set indexes the entire collection of inequalities that can be
strictly satisfied by an optimal solution. So for IMRT design, the plan found
by a path-following interior point algorithm strictly satisfies as much of the
prescription as possible.

A path-following interior point algorithm is appropriate only if the strict
interiors of the primal and dual feasibility sets are non-empty. This means
that there must be an that strictly satisfies the inequalities in (2).
Fortunately, Lemma 1 states that we are guaranteed that a path-following
interior point algorithm is applicable.

Lemma 1 [13] We have for any collection of elastic functions that the
primal and dual strict interiors of MOLP, and MOLP’ are non-empty.
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29.5.1 Analysis certificates for

The objective function of is a weighted sum of three goals. While a

common criticism of such objective functions is that the weights are difficult
to understand, we show that choosing appropriately provides a meaningful
interpretation. The positive scalar weights the importance of a plan

achieving the minimum tumor dose – i.e. large values of encourage
to be as small as possible. We would like to have the property that there

exists a finite such that the optimal value of is zero. This follows
because the tumor is then guaranteed to receive its minimum radiation level.
Such an would serve as a certificate of a tumoricidal dose. The bad news

is that there are simple examples where the optimal value of is not zero
for all However, the good news is that we can calculate an that
certifies that the discrepancy between the amount delivered to the tumor and
the tumor’s lower bound is sufficiently small.

We say that a prescription allows tumor uniformity if there is a treatment
plan x such that Moreover, a prescription is attainable if

there is an in F such that and
Obviously every attainable prescription allows tumor uniformity, but not
every prescription that allows tumor uniformity is attainable. Theorem 1
shows that if the prescription allows tumor uniformity, then the tumor
deficiency is uniformly bounded above by the inverse of In what follows,
we let rs(M) be the minimum row sum of the matrix M, and we use the
standard big-O order notation – i.e.  f(x) = O(g(x)) if, for the nonnegative

functions f and g, there exists a positive constant such that

Also, we use the standard notations for the 1-norm, and the

infinity-norm

Theorem 1 [12] Let be an optimal solution to

For any collection of elastic functions we have that

provided that prescription allows tumor uniformity.

From Theorem 1 there is positive scalar such that which is

useful because an upper bound on is easily found if either average or
absolute analysis is used. In particular, setting
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we have from [12] that is no greater than

if average analysis is used, and no greater than

if absolute analysis is used. We let be the greater of these two bounds, so

that regardless of the type of analysis we have

Recall that TG was the goal dose for the tumorous region and that we
originally set TLB=(1-tol)TG e. To utilize the upper bound provided by
we slightly increase each component of TLB by – i.e. we instead let

After calculating we choose and solve

Theorem 1 now implies that the optimal value of is less than
and hence the sought after uniformity is guaranteed. So using only the
optimal objective value, we have from Theorem 1 the analysis found in
Figure 29.5. Of course a more detailed interpretation of the solution is

possible by examining the individual components of

A prototype treatment system called Radiotherapy optimAl Design, or RAD,
has been developed using MATLAB©. This system is available at
http://www.trinity.edu/aholder/research/oncology/. RAD uses a 64×64
grid, and allows angles evenly spaced at every 15, 5, or 1 degree(s), with
each beam comprising 10, 32, or 32 pencils, respectively. In addition to
allowing the user to choose from different angle geometries, RAD has the
following features.

Either absolute or average analysis can be used.

A prescription window allows the user to easily set the tissue type,
the prescription levels, and the tumor uniformity level.
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Figure 29.5 Interpreting the solution of average and absolute
analysis

A simplex-based solver is available.

After the optimization routine is complete, three figures are
presented. The first and second figures are a contour plot and a 3-D
image of the radiation levels delivered by the plan. The third figure
provides an explanation of the solution that depends on whether
absolute or average analysis was chosen.
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In the examples that follow there are 360 equally spaced beams, and each
beam contains 32 sub-beams. The amount by which TLB is increased is
internally set to The problems were solved
on a 1.5 GHz PC with 1G of RAM.

The first example is found in Figures 29.6 and 29.7. In this example a tumor
has grown half-way around a critical structure. The tumoricidal dose was
80Gy, and the critical structure was restricted to no more than 30Gy. The
tumor uniformity level was 2%, and an absolute analysis was used. The

value of was less than from  which we conclude that the
prescription allows tumor uniformity. Indeed, the maximum and minimum
doses were 78.42Gy and 81.57Gy, which are within the 80Gy±2%. Not
only does this plan strictly satisfy the tumor uniformity bounds, but it also
does not deliver any radiation to the critical structure.

So, we have designed a plan that delivers a uniform, tumoricidal dose to the
tumor and does not deposit any radiation in the critical structure.

The example in Figure 29.8 is significantly more complicated because the
tumor is nearly surrounded by critical structures. The tumoricidal dose is
78Gy, with a uniformity level of 4%. The plan depicted in Figures 29.9 and
29.10 attained the tumor uniformity with the minimum and maximum doses
inside the cancerous region being 75.17Gy and 81.1Gy. However, there is no
plan that achieves a uniform, tumoricidal dose that does not violate the
bounds placed on the critical structure. We know this because the value of

which is simply for the absolute analysis, is greater than and

the value of which is simply is 6.62. So, we know that some part

of a critical structure must receive 6.62Gy over its prescribed bound to attain
a uniform, tumoricidal dose. Depending on the type of critical structure, this
may or may not be acceptable, and if not, the planners need to reconsider
their desires for the tumor.

29.5.2 Evaluating an angle’s value with MOLP

We see from the examples in Section 29.5.1 that the plans developed by a
path-following interior point algorithm tend to design plans that use many
angles. In fact, these plans use so many angles that they are not practical –
i.e. the time that it would take to deliver such a plan is well beyond the 15
minutes of a typical treatment. The problem here is that a path-following
interior point algorithm terminates with a solution that strictly satisfies as
many inequalities as possible, and as already mentioned, this is favorable
because we design a plan that strictly satisfies as much of the prescription as
possible. However, this is bad because we also design a plan that uses as
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Figure 29.6  A contour plot showing how the deposition pattern
‘bends’ around the critical structure

Figure 29.7  The vertical height is the amount of radiation delivered
by the plan over the image

many angles and sub-beams as possible. What is needed is a technique to
prune the collection of possible angles so that the ‘best’ angles remain in the
pruned collection. This and the following section develop ways to measure
the importance of an angle when the priorities of the treatment are uncertain.

The set of pareto optimal solutions of MOLP, called the efficient frontier,
induces an optimal partition for the multiple objective program that is
similar to the linear programming optimal partition [13].
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Figure 29.8  A difficult geometry to plan because the tumor is almost
surrounded by low-dose critical structures.

Figure 29.9 The vertical height is the amount of radiation delivered
by the plan over the image

Figure 29.10 The amount of radiation over the image.
The amount over the tumor is fairly uniform, but there is a spike

between the tumor and one of the critical structures
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Definition 1 Let be the efficient frontier of MOLP. The MOLP optimal

partition, denoted is defined by

The definition of the MOLP optimal partition retains the quality that an
index being in N indicates that the component is zero in every pareto optimal
solution. Likewise, an index in B demonstrates that the component is
allowed to be positive on the efficient frontier. A property that is
unfortunately lost is that the MOLP optimal partition is not capable of
characterizing the efficient frontier, i.e.

However, we do have

An algorithm to compute the MOLP optimal partition is found in [13]. This
algorithm uses the parameterization in (3) by finding the linear programming

optimal partition for every value of between 0 and 1. The set is the

union of all the linear programming B sets, and is

So, indexes the sub-beams that are not used for any Recall

that the value of is a measure of how important it is to deliver a uniform,
tumoricidal dose, with values near 0 and 1 giving the cancerous regions a

high and low importance, respectively. This means that contains the
sub-beams that are not used in any weighting of the objectives, and hence,
these sub-beams should never be used in a treatment plan. The other side of

this is that indexes the sub-beams that are used for some collection of
weights, and hence, there is at least one circumstance where each of these
sub-beams is used.
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Because of the way the algorithm works, we actually acquire more
information than just described. Consider the situation depicted in Figure
29.11, where a tumor is surrounded by three critical structures. This
experiment was run with 72 equally spaced angles, each with 32 sub-beams.
The tumor uniformity level was ± 4% and an average analysis was used.
Figure 29.12 and 29.13 provide information about which angles are used,
and not used, as  traverses the interval (0,1). We saved the optimal
partition for each  and used this information to calculate how often an
angle is used. We say that an angle is used at Level k if there are k sub-
beams from that angle with positive amounts of radiation in the optimal
plan. Furthermore, we say that an angle is on provided its level of use is at
least 1. In Figure 29.12 we calculated each angle’s level of use, and then
added these together for each of the 399 different optimal partitions. These
values are recorded above the circle around the image. The highest peak is at
90° and has a value of 1,424, which means that 1,424 sub-beams were used
from this angle as traversed the interval (0,1). Figure 29.13 is similar, but
instead of accumulating sub-beams from each angle, the percentage of times
an angle is on is displayed over the circle. Angle 85° was on in 100% of the
optimal partitions, and while 90° had the highest amount of sub-beam usage,
it was not on in each optimal partition (it was used in 99.75% of the optimal
partitions).

The point of Figures 29.12 and 29.13 is that a dosimetrist can easily decide
which angles are, and are not, important. The most definitive information
lies in the angles that are never used, as there is no situation where these
angles are in an optimal plan. Similarly, any angle whose use is 100%,
which is only 85° for this example, is used in every situation. The graphs
provide a measure of an angle’s usefulness in other situations. For example,
if a dosimetrist wants a three-beam plan, then he or she might decide to use
angles 85°, 40°, and 205°, all of which have higher peaks in Figure 29.13.

29.5.3 Using MOLP’ to reduce the number of angles

Recall that we use lexicographic optimization for MOLP’ and that the order
in which the objectives are considered is indicated by the subscript.
Lexicographic optimization has its own optimal partition, which is easily
calculated for our problem [13]. As an example, consider

where we calculate the lexicographic optimal partition as follows.

Step 1 Solve and let be the optimal
partition.
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Figure 29.11 A tumor surrounded by three critical structures

Figure 29.12 Accumulative totals of sub-beam usage along each
angle

Figure 29.13 Percent totals for each angle

Step 2 Solve and let

be the optimal partition.
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Step 3 Solve and let

be the optimal partition.

The last partition, is called the lexicographic optimal partition. If

we rearranged the priorities, to say (G,C,T), the only difference would be

that the objective function in step 1 would become in step 2 it would

become and in step 3 it would become

Similar to the MOLP optimal partition, the lexicographic optimal partition
provides an insight into the usefulness of an angle. As an example, consider
the problem in Figure 29.14, where a tumor has gown around a critical
structure. There were 72 equally spaced angles, each containing 32 sub-
beams. The tumor uniformity level was ± 4%, and an average analysis was
used, We calculated the lexicographic optimal partition for each of the 6
possible orderings of the objectives, and Figures 29.15 through 29.20 show
each angles level of use in me corresponding optimal plan. Again, the most
definitive information comes from the angles that have a zero level of use,
for these angles are not to be considered for that priority list. As an example,
angle 170° has a zero level of use for the priority list (T,C,G), but has a level
of use of two for the priority list (T,G,C). There were nine angles whose
level of use was zero in all six priority lists: 55°, 75°, 120°, 125°, 205°, 225°,
250°, 310°, and 355°. These are the angles that can be excluded from
consideration regardless of how the dosimetrist orders the priorities (which
means we have removed 12.5% of the angles from consideration).

29.6 CONCLUSION

We conclude this chapter with a plea to the operations research community.
Operations research has successfully been used in many disciplines, but one
of the few areas that has not witnessed the benefits of the field is clinical
medicine. Of course, the statistical training that most operations researchers
posses is useful in drug trials and other data intensive medical applications.
However, many of the medical procedures that are used in practice have not
been mathematically modeled and optimized, which means that any
improvement in the treatment is found by trial and error. The area of IMRT
design is starting to benefit from the optimization process, and we are now at
a point where the operations researchers can make a substantial
improvement in a patient’s treatment. The author urges those who work in
the field of operations research to consider working on a problem that
involves some clinical treatment, for all of humankind benefits from this
work.
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Figure 29.14  A tumor that has grown around a critical structure

Figure 29.15  Each angle’s use for priority list (T,C,G)

Figure 29.16  Each angle’s use for priority list (T,G,C)
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Figure 29.17 Each angle’s use for priority list (G,T,C)

Figure 29.18 Each angle’s use for priority list (G,C,T)

Figure 29.19 Each angle’s use for priority list (C,G,T)

Figure 29.20 Each angle’s use for priority list (C,T,G)
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SUMMARY

This chapter describes a suite of optimization tools for radiation treatment
planning within the Matlab programming environment. The data included
with these tools was computed for real patient cases using a Monte Carlo
dose engine. The formulation of a series of optimization models is described
that utilizes this data within a modeling system. Furthermore, visualization
techniques are provided that assist in validating the quality of each solution.
The versatility and utility of the tools are shown using a sequence of
optimization techniques designed to generate a practical solution. These
tools and the associated data are available for download from
www.cs.wisc.edu/~ferris/3dcrt.
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30.1 INTRODUCTION

The optimization of radiation treatment for cancer has become an active
research topic in recent years [1-9]. Many types of cancer are treated by
applying radiation from external sources, firing beams into a patient from a
number of different angles in such a way that the targeted tumor lies at the
intersection of these beams. The increasing sophistication of treatment
devices – the aperture through which the beams pass can take on a variety of
shapes, multiples apertures can be delivered for each beam angle, and
wedges can be used to vary the radiation intensity across the beam – allows
delivery of complex and sophisticated treatment plans, achieving a specified
dose to the target area while sparing surrounding tissue and nearby critical
structures. Optimization techniques are proving to be useful in the design of
such plans.

This chapter describes a selection of tools that allow optimization
approaches to be applied, visualized and iteratively refined. The tools use the
Matlab programming environment for overall control and visualization, and
the GAMS modeling language for formulation and solution of the
underlying optimization models. One of the strengths of this work is that we
utilize data that corresponds to real patient cases and thus include a variety
of inhomogeneities due to different tissue types. Several useful tools for
visualization of the results, along with a sophisticated use of an existing
interface between the Matlab programming environment and the GAMS
modeling language, are explained via example. We also show how a
succession of optimization problem solutions can be used to satisfy the
constraints of a realistic plan, for example dose-volume histogram
constraints and the location-specific control of hot and cold spots.

The tools described in this chapter can be used for creating radiation therapy
treatment plans delivered using either of two treatment techniques: (1) three-
dimensional conformal radiotherapy (3DCRT) or (2) intensity modulated
radiation therapy (IMRT).

3DCRT is the most common delivery technique used in radiation therapy.
With this approach, each beam is shaped to match the view of the tumor
from the given direction. In addition, one can choose to include a wedge
filter in the beam, which results in a linear variation in intensity across the
beam. This is particularly useful for treating tumors near the patient’s surface
and for compensating for the curved surface of the patient.

IMRT is a more advanced delivery technique that significantly increases the
complexity of radiation delivery but provides an improved ability to conform
the radiation to the tumor volume. In IMRT, a nonuniform radiation
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intensity is delivered from each beam angle. The dose delivered to the tumor
volume from each beam angle is typically highly nonuniform, but the total
dose delivered to the tumor from all angles provides adequate dose
uniformity in the tumor with a rapid falloff in dose in the normal tissue.

While the data and techniques used to solve both types of models have much
in common, we restrict the discussion in this chapter to 3DCRT for clarity
and ease of exposition. Section 30.2 describes the data generation for the
treatment planning problem. We believe that there is a fundamental core of
optimization models that are useful for treatment planning. Several of these
optimization models are discussed in Section 30.3, and the use of the
environment in a simple example is given in Section 30.4. Matlab routines
are presented to examine the solution quality in Section 30.5. All of these
routines are available from www.cs.wisc.edu/~ferris/3dcrt.

We understand that these models should be used in combination and in an
iterative fashion to achieve the goals of the planner. Thus, although the core
optimization model remains the same, the data that describes a particular
instantiation of the model can change in an iterative way as the optimization
proceeds. We believe that this is where our environment will be most useful.
In Section 30.6, we outline two more complex examples of its use, showing
how to incorporate sampling techniques and multiple dose volume histogram
(DVH) constraints on a single sensitive structure. While the suite of tools we
have developed here are already useful for treatment design and refinement,
we believe mat their strength is their easy extensibility to provide the basis
for significant treatment improvements over the coming years.

30.2 PROBLEM DATA

Our planning tool is designed within the Matlab programming environment.
The problem data consists of two broad components, namely a set of
structures (organs) to which a certain level of radiation must be delivered,
and a set of beamlets for delivering this radiation. The amount of data is
large and patient/case specific. We have designed our environment to allow
the use of actual patient data as well as simulated data. We have a growing
collection of examples of such problems. We have chosen to store these
examples as a “gdx” file [29], a “Gams-Data-eXchange” format that allows
the data to be accessed very quickly within a GAMS optimization model,
and also (via an API) by other programs.

For patient cases, three-dimensional organ geometries are outlined by a
physician on a set of CT or MRI images. The physician outlines the GTV
(“Gross Tumor Volume,” the tumor region) and OARs (for “Organs At
Risk,” also known as “sensitive structures” or “critical structures”). Since the
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coordinates of these geometries are continuous, they are not directly usable
within our optimization models and have to be converted to a discrete set of
voxels. A program “gendata” converts these three-dimensional organ
geometries into a set of discrete set of voxel coordinates and stores these
(named) sets in the gdx file.

For treatment planning, the planning target volume (PTV) must also be
constructed. To construct the PTV, one begins with the GTV that
encompasses known macroscopic disease. Next, a margin is added to include
regions of suspected microscopic disease. The new volume is called the
clinical target volume (CTV). An additional margin is added to account for
anatomical and patient setup uncertainties. The final volume is the PTV.
While this procedure is standard, it has some drawbacks in that some voxels
may appear in the PTV and also in a sensitive structure. The normal tissue is
implicitly stored in the gdx file by saving a rectangular grid of voxels
encompassing all the organs of interest.

The second component of the data is the beamlets. The specific details of
their generation are given in Section 30.2.1. We store all the resulting patient
specific beamlet data in the same gdx file as the organ structures. It should
be noted that the beamlet data is very large and that it does not need to be
present in the Matlab environment. We simply use an external program to
generate the gdx file, and use the beamlet data only within our optimization
models. Such design allows the optimization process to be independent of
Matlab if desired. In the 3DCRT case, the beamlet data is given for every
voxel indexed over a set of angles and optionally a set of wedges. Section
30.2.1 describes the generation process in detail, and it can be outlined
without continuity loss to the reader.

We also provide a suite of problems based on a water cylinder. These
problems can be generated using rotational symmetry from a single beamlet
and hence can be stored much more economically. Due to this fact, we
ensure that our program “gendata” can generate a corresponding gdx file
based on this compact representation. The details of the extra input that is
needed in this case is given in the Appendix. In the cylinder case, we also
provide a Matlab routine “neworgans” to create simulated organ structures,
that may be of use in tuning models. This routine enables users to create
simulated organ structures within the cylinder.

Finally, the desired or required dose information for each region is specified
by the planner, typically as a sequence of dose volume constraints. For
example, requirements are of the form “no more than X% of structure A
should receive more than Y Gy”. For each patient case, these prescriptions
are available from the web site.
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The organ structures can be manipulated directly within Matlab. In Matlab,
each structure is stored as an m × 3 matrix consisting of the m “voxels” that
are part of that structure. We provide two routines that allow a user to read a
structure from a gdx file and to write a new structure to a gdx file. Access to
these structures is useful both for visualization and for sampling as we
demonstrate in the sequel.

30.2.1 Pencil beams and apertures

Modern linear accelerators use a multileaf collimator, located inside the head
of the accelerator, to shape the beam of radiation [11, 12]. To calculate the
radiation dosage that can be delivered by a beam applied from a given angle,
the rectangular aperture obtained by opening the collimator as widely as
possible is divided into rectangular subfields arranged in a regular M × N
rectangular pattern, as shown in Figure 30.1. Each of the subfields is called a
pencil beam or beamlet. M represents the number of leaf pairs in the
multileaf collimator, while N represents the number of possible settings we
allow for each leaf. We identify each beamlet by the index pair (i,j), where i
= 1, 2,..., M and j = 1, 2,..., N. In our work, the leaves of the multileaf
collimator are 1 cm wide, and a pencil beam is assigned a length of 0.5 cm.
Thus, for a 10 cm by 10 cm field, we would use M = 10 and N = 20, giving a
total of 200 beamlets.

A separate three-dimensional dose distribution is computed for each pencil
beam. The dose distribution matrix for each pencil beam from each angle is
calculated using a Monte Carlo technique, which simulates the track of
individual radiation particles, for a large number of particles. A unit-
intensity, non-wedged beam is assumed for the purposes of these
calculations. Each dose distribution consists of the radiation deposited by the
beam into each of the small three-dimensional regions (“voxels”) into which
the treatment area is divided.

As described in the introduction, the pencil beam data sets provided by this
tool can be used for either 3DCRT or IMRT. For IMRT optimization, the
pencil beam intensities are optimized directly. Thus, an optimized intensity
map (fluence map) is produced for each beam angle. In conformal
radiotherapy, the shape of each beam is set to match the beam’s-eye view
(BEV) of the tumor volume, which is essentially the projection of the three-
dimensional shape of the tumor onto the plane of the multileaf collimator
[11, 13-17]. One technique for determining the BEV is to employ a ray-
tracing algorithm from the radiation source to the tumor volume, setting the
beam’s-eye view to include all of the rays that pass through the tumor
volume. We use an alternative approach based on the dose matrices of the
pencil beams. We include in the BEV all pencil beams whose field of
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Figure 30.1 Division of aperture into pencil beams (shaded area
represents one beamlet)

Figure 30.2 An example of beam’s-eye view
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significant dose intersects with the target region. To be specific, given a
threshold value T, we include a pencil beam in the BEV if its dose delivered
to at least one voxel within the target region is at least T% of the dose
delivered by that pencil beam to any voxel. Figure 30.2 shows an example of
a BEV. Once the BEV from a particular angle has been chosen, we can
construct the dose matrix for the BEV aperture by simply summing the dose
matrices of all the pencil beams that make up the BEV.

The choice of threshold parameter T is critical. If the value of T used in the
determining the BEV is too small, the BEV overestimates the target,
producing an aperture that irradiates not only the target but also nearby
normal tissue and organs at risk. On the other hand, if the value of T is too
large, the BEV underestimates the target, and the optimizer might not be
able to find a solution that adequately delivers radiation dose within the
required range to all parts of the target. The best value of T to use depends
somewhat on the shape of the tumor. We choose T as the minimum value
such that the resulting BEVs provide a complete 3D coverage of the target
from all beam angles considered in the problem. Based on our experiments,
a value of T of between 7% and 13% appears to be appropriate.

30.3 OPTIMIZATION MODELS

Optimization models can be used in conjunction with the data outlined
above to provide treatment plans that specify how to operate the particular
delivery device to generate a dose distribution over the area of interest. The
basic optimization models are described more fully in [18], including
techniques used to reformulate the problems suitably for optimization
solvers.

In conformal radiation therapy, the data that we generate using the procedure
outlined above is provided to an optimization model as:

– the dose contribution to voxel (i,j,k) from a beam of weight 1

from angle A,
T  – a collection of voxels on the target,
S – a collection of voxels on the sensitive structure(s),
N  – a collection of voxels on the normal tissue

When wedges are allowed in the optimization, the data will be provided as

– the dose contribution to voxel (i,j,k) from a beam of weight 1

from angle A, using wedge orientation F
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30.3.1 Beam weight optimization

The classical optimization problem in conformal radiation therapy is to
choose the weights (or intensity levels) to be delivered from a given a set of
angles. While much of the literature reformulates the constraints of the
problem into the objective using penalization, we propose here to exploit the
power of constrained optimization. Thus, these problems can be cast as a
quadratic programming problem, minimizing the Euclidean distance
between the dose delivered to each voxel and the prescribed dose [4, 19-21].
Our formulation uses to represent the beam weight delivered from angle

A, for the total dose deposited to voxel (i,j,k) and to represent the

relative weighting factors in the objective function. For simplicity we
assume that a target prescription of is given, the penalty on overdose in
the target is the same as for underdose, and that a representative sensitive
structure regards a dose exceeding as being hot.

Note that can be reformulated using extra constraints and

variables as a smooth quadratic as detailed in [18]. Furthermore, we have
imposed hard upper and lower bound constraints on the target dose, as well
as the objective requirement to be close to the prescription. Other constraints
may be useful to deal with prescription constraints at other locations. An
implementation of this model is given as qp.gms in the Appendix.

Linear programming (LP) has also been extensively used to improve
conventional treatment planning techniques [20, 22-25]. The strength of LP
is its ability to control hot and cold spots or integral dose on the organs using
constraints, and the presence of many state-of-the-art LP solvers.

An example of an LP formulation is as follows:



784 OPERATIONS RESEARCH AND HEALTH CARE

The model here replaces the Euclidean norm objective function with a
polyhedral one, for which standard reformulations (see [18]) result in linear
programming problems. This model is available as lp.gms on the website.
While these techniques still suffer from large amounts of data in

they are typically solved in acceptable time frames. These models tend to
find optimal solutions more quickly than the corresponding quadratic
programming formulations.

Another technique to convert the quadratic (or more generally convex)
problem to a linear program is via a piecewise-linear approximation of the
objective (see [26]). For a quadratic function, a uniform spacing for the
breakpoints guarantees small approximation errors from the piecewise linear
interpolant [27]. Since the piecewise linear interpolant is convex, standard
techniques can be used to reformulate this as a linear program [28]. The
paper [27] suggests a particular formulation and the use of an interior point
method to solve the resulting problems.

Recently, some of the medical physics literature has been advocating the use
of other forms of objective function in place of the ones outlined above. A
popular alternative to those given above is that of generalized equivalent
uniform dose (EUD). This is defined on a per structure basis as

Note that EUD is a scaled version of the a-norm of the dose to the particular
structure, and hence is known to be a convex function for any and
concave for [29]. Thus the problem
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is a convex optimization problem provided and b, As such,
nonlinear programming algorithms will find global solutions to these
problems. An example is provided as eud.gms on the website.

30.3.2 Beam angle and wedge selection

Optimization also lends itself to solving the more complex problem of
selecting which angles to use as well as their intensities. Mixed Integer
Programming (MIP) is a straightforward technique for selecting beam angles
from among many candidates.



786 OPERATIONS RESEARCH AND HEALTH CARE

The variable is used to determine whether or not to use an angle A for

delivery. The choice of M plays a critical role in the speed of the
optimization; further advice on its choice is given in [18]. This is
implemented as optangle.gms.

Finally, we describe an optimization model that simultaneously optimizes
beam angles, wedge orientations, and beam intensities. Wedges are placed in
front of the collimator to produce a gradient over the dose distribution and
can be effective for reducing dose to organs at risk. This can be done by
adding an extra dimension F to the variable

Note that the data for this problem is considerably larger, increasing by a
factor related to the number of wedge orientations allowed. An
implementation of (4) is available as optwedge.gms. Additional optimization
models relating to (4) can also be found in [18].

It should be noted that beam energy and non-coplanar beams can also be
treated in a similar fashion to wedges within this framework at the cost of
increasing the amount of data.

The models described above have been implemented within the GAMS
modeling system. The Appendix gives an example for model (1). Most of
the notation used in this GAMS file tries to imitate the mathematical
symbols used in (1) with a few exceptions: PTV represents T, OAR is for S,
Normal is used for N, and sumDose represents D. For debugging purposes,
this model can be executed directly at the command prompt:
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Note that “matsol.gms” is a reserved file for the system.

30.4 OPTIMIZATION PROCESS

We demonstrate the entire treatment planning process using a set of prostate
data that is generated by our phantom cylinder configuration. There are two
organs in this example, namely “prostate” and “rectum”. The tumor volume
has 5245 voxels, while the rectum consists of 1936 voxels. We are interested
in optimizing beam intensities of 36 beam angles for a treatment plan.

We take two steps to generate data that is needed for the rest of treatment
planning. The first step is to collect appropriate input data for the Matlab
command “gendata” using the second example given in the Appendix. It
creates a Matlab structure array “prob” with data values necessary to utilize
the “prostate” example. The second step is to produce the necessary data for
the optimization using the inputs (prob) created above:

This generates both a GAMS include file (initdata.gms) and a GDX (GAMS
Data Exchange) file [10], typically named data.gdx, that are used in the
GAMS models. The file initdata.gms is a problem specific file that defines
sets and parameters that are used in the optimization model. It is described in
more detail in the Appendix. It is included at the very beginning of any
GAMS files in our toolbox:

A Matlab program “rungms” generates a treatment plan based on this data:

This command uses the interface [30] to execute the GAMS program
“qp.gms” of the Appendix. At the end of the run, the Matlab variable “Dose”
contains the dose that is delivered as determined by the optimization of the
model (1). If necessary, GAMS options can be added followed immediately
after the GAMS file name. The last two lines of “qp.gms” facilitate the
return of the Dose variable to the Matlab environment.

Since it is typical that a user will wish to update the various organs that are
contained in the model and visualize the DVH plots of various structures in
the problem, we provide a Matlab command “readstruct” to retrieve the
coordinates from the GDX file. For example,
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retrieves the three-dimensional coordinates of “prostate” from “data.gdx”
into PTV. These coordinates are stored in a Matlab matrix that has a positive
number of rows and three columns. Each row holds the three-dimensional
coordinates of a given voxel in the structure.

More complex use of “rungms” is as follows.

Users can specify the GAMS solver options immediately after the GAMS
file name. The additional (optional) input arguments are Matlab structures
representing organs. Each organ structure must have a name field. The name
field must be the string that is the set name used in GAMS. For an example,
we define a Matlab structure array for the target, another for the sensitive
structure, and the third for the normal tissue as follows:

In the above example, the target (prostate) is extracted from the “data.gdx”
file, whereas the sensitive structure (rectum) uses the voxels provided in the
samplerect matrix (which has the same format as that described above for
PTV). The M-file “rungms” automatically writes out “samplerect” to a GDX
file (rectum.gdx) using a Matlab command “writestruct”:

The set normal contains the set of those voxels that are neither target nor
sensitive and is generated automatically.

The specified GAMS file is executed and returns the three-dimensional
matrix of the final dose distribution. This can be used to evaluate the
treatment quality using DVH and dose distribution plots as will be explained
in the next section.

A final output is always returned, namely the intensities w:

In the “rungms” example immediately above, the intensities are returned in
w. Note that the “qp” model will only have a target structure in this case, i.e.
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the sensitive and normal structures will be empty in the optimization
problem.

The amount of voxels in normal can be unnecessarily large. We provide a
Matlab command “genrind” that can be useful to reduce the amount of
normal voxels. For example,

generates a set of three-dimensional voxel coordinates that surrounds the
PTV within a distance of five voxels. The rind of the PTV can be used as a
substitute for the normal structure to reduce the number of voxels in the
optimization.

Thus the following Matlab commands set up a rind of the PTV as normal
tissue, again with no sensitive structures included in the optimization:

While “initdata.gms” contains default values that allow the model to be run,
we also provide a mechanism to update the values of the parameters in the
optimization model. For example,

generates new values for various parameters in “qp.gms”. The data argument
(a Matlab structure) must be the last argument to “rungms”. To distinguish it
from the organ structures, it cannot have a ‘name’ field. The remaining fields
use execution time assignments to update the values of the given fields.
Thus, kBeams gets reset to the value 6, to the value 0.97, etc. For

parameters defined over one-dimensional sets (e.g., ), we update a subset

of its components by specifying new values in a structure. Thus will
be reset to 0.4 in the above example. The communication mechanism to
facilitate this is a file “updatedata.gms”.

30.5 VISUALIZATION

Medical experts rely on visualizations of the dose to examine the quality of
treatment plans, instead of the objective function that operation researchers
typically employ. Two such visualizations are the dose volume histogram
(DVH) and a slicewise dose distribution plot. The Matlab routines “dvh” and
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“doseplot” are provided to allow both sets of users to determine if the quality
of solutions are in broad agreement.

30.5.1 Plotting DVH

The quality of a treatment plan is typically specified and evaluated using a
DVH. The DVH shows what fraction of the volume receives at least a
certain level of dose. To make a DVH plot of the current solution, the final
dose distribution and sets of three-dimensional organ coordinates are passed
to a Matlab routine “dvh”. “Dose” must be the first input argument for
“dvh”, followed by the organs of interest:

This generates a Matlab figure with dose volume histograms for the
specified organs. Optionally, the user can specify a line property for the
DVH plot as follows:

where the color blue (‘b-’) with a solid line is specified for the “PTV” and red
(‘r’) for the “OAR.”

An example DVH is shown in Figure 30.3. The x-axis is normalized so that
the target prescribed dose is one. The y-axis represents the fraction of
the volume. For example, the line of the normal tissue approximately passes
through the coordinate (0.2,0.2). This means that 80% of the normal tissue
receives 20% or less of the target prescribed dose level. Note that the labels
on the structures are created manually using the Matlab figure editor;
alternatively the “legend” command could be used.

30.5.2 Plotting dose distribution

Although a DVH provides information about the fraction of each organ
receiving each dose level, it does not give spatial information with regard to
the location of “hot spots”, “cold spots”, or “streaking”. Visualizing the dose
distribution becomes important to finalize treatment plans for practical use.

To meet this need, a Matlab routine “doseplot” is provided to examine the
dose distribution from different viewpoints: axial, sagittal, and coronal. To
visualize the dose distribution of the current solution from the axial
viewpoint, the following command suffices:
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Figure 30.3 Dose volume histogram

This produces a Matlab figure with dose distribution of the current solution
using the default viewpoint (“axial” slice). All slices can be viewed one slice
at a time by pressing any button on the keyboard. Optional arguments are
also allowed. These include sets of three-dimensional organ coordinates, a
string (“axial”, “coronal” or “sagittal”) representing the viewpoint of the
image, and a vector of slice numbers:

In the above examples, the PTV and OAR structures will be outlined on the
same slice of the dose distribution. The slice number must come after the
choice of the viewpoint. The PTV and OAR structures are indicated on the
resulting “axial” output as shown in Figure 30.4. The second case allows
only slices 15 to 20 to be displayed as opposed to all slices. In a color
display of this figure, the color blue would represent the cold spots while red
would indicate hot spots, as depicted in the Matlab color bar located on the
right side of Figure 30.4. For each structure, an optional argument facilitates
the change of the outline color of a given organ, e.g.,
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Figure 30.4 Dose distribution plot in axial slice

outlines the target in blue on all coronal slices.

30.6 EXAMPLE USAGE OF TOOLBOX

We outline the use of some of the tools described above for a particular
example of 3D conformal radiation therapy treatment planning in a prostate
case. We use the model format (3) that has been encoded in a GAMS file
“optangle.gms”.

To start the process, we use the Matlab command “gendata” to generate files
initdata.gms and data.gdx as discussed in Section 30.4. These files are
required for running optimization models. Using the first example of the
Appendix,
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generates “initdata.gms” and uses the existing “data.gdx” file. Alternatively,
a new GDX file can be generated as discussed in the second example of the
Appendix.

A Matlab command “readstruct” is used to extract the organ geometries
from the GDX file into the Matlab workspace:

As discussed in Section 30.4, some parameters of the optimization model
can be updated as follows:

30.6.1 Data sampling

A large number of voxels comprise the normal tissue. Although voxels in the
normal tissue are important for the final treatment plan, it is known that
using sampled voxels of the normal structure in the optimization problem
has an insignificant effect on the optimal treatment plan dose distribution
[18]. A random sampling of voxels can also be used to speed up the
computation [31].

In addition to these data reduction techniques, rather than using the complete
sets of organ structures, we follow an interactive approach that tries to
determine promising beam angles based on an a% sampling of the sensitive
structure as outlined in [18]. The sampling scheme is also noted elsewhere
[32].

A self-explanatory example of our sampling scheme is as follows:
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We used these sampled problems (that solve very quickly) to determine
which subset of the angles are promising. The Matlab vector “goodAngles”
contains a count of sample how many solutions used as given angle. We then
resolve the full model using just those angles that were used in more than
one sample case.

Note that the Matlab structure “data” holds new values for parameters that
are already declared in the GAMS model “optangle”. In particular, the
parameter “wup” is used to set new upper bounds on the weights in the
model. By resetting some of these to be zero, the model ignores the
corresponding bad angles.

We continue to sample the normal structure, but include all those voxels that
are close to the target.

30.6.2 Refining solutions

At this stage, the DVH may show a sensitive structure that is violating a
“dvh” constraint. To rectify this situation, we have three recourses. We can
update the parameter in (3) using:
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This will penalize dose on the rectum that exceeds 0.2, instead of the
original value of 0.4. Secondly, we can update the penalty parameters in
relation to the organ structures:

Thirdly, we can update the structure itself to allow a subset of the problem
voxels to violate the constraints:

By executing the above line, the Matlab command “extract” sorts the values
of the dose delivered to all voxels in the rectum. Then it extracts (the
bottom) 82% of the voxels that received the low dose. The sensitive
structure is updated using this new set of voxels in the rectum:

This is a heuristic, based on a DVH that allows 20% of the voxels to be
essentially ignored; we actually ignore slightly less than this. Note that the
command “extract”,

offers two different option types for the user to sample a fraction of voxels in
the specified organ structure: absolute option and relative option. The
relative option was displayed in the previous example of “extract”. The same
command line can be replaced by

Two options are available for the absolute option: “above” and “below”.
The command

can be used to extract all voxels that received more than 90% of the target
prescribed dose in the rectum.

Resolving the newly updated problem,
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gives a new DVH. Furthermore, other changes to the parameters of the
formulation may be carried out, or changes to the formulation itself can be
implemented by simply updating the GAMS model file, or the Matlab
solution process.

Another example where iterative solution can be useful is in the treatment of
location-specific hot or cold spots. The DVH plot does not distinguish
between the locations of such spots, but clinically cold spots in the center of
a tumor location are more serious than those on the periphery. If one of the
models (1), (2) or (3) is used, then this should not be a problem since the
model incorporates hard upper and lower bound constraints on the dose in
the tumor. However, in practice, these hard constraints can lead to
infeasibilities or overly homogeneous solutions, and may be dropped or
relaxed within the modeling process.

To isolate voxels on the periphery of a given structure we can use the routine
“genrind”. In the following example, we extract the “internal” rind of size 3
from the tumor (in this case, the prostate):

To find the cold spots that are centrally located in the tumor we invoke the
routine “extract” to find the voxels that are dosed below a given cutoff value,
and throw away those voxels that are close to the periphery as follows:

Similar techniques could be used to find hot spots within a sensitive
structure.

In order to pass new constraints on these substructures to the optimization
routines, we use any number of additional organ structures that our toolbox
provides by default. These additional organs are called org1,..., org100.
Thus, to impose a strict lower bound of 0.95 on the dose in the center of the
tumor, the following additional lines would suffice:

The additional organs could also be subject to soft constraints - the user just
has to define and appropriately. For example,
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30.6.3 Streaking control

When relatively few angles are used for treatment, “streaking” can occur in
the normal tissue. Essentially, high dose is delivered along particular rays
that due to the decay mechanism results in hot spots of radiation close to
beam entry locations. These hot spots must be removed before the treatment
plan is finalized. We take two steps to do this. First, the normal structure is
divided into two distinct sets, innormal and outnormal. The set “innormal” is
an external rind of the target structure while “outnormal” is defined as the
remainder. Second, a strict dose upper bound is applied only on
“outnormal”. Note that “innormal” is not considered in the optimization
model. The following lines of Matlab code show an implementation of this
method that also uses sampling to reduce the normal voxels considered.

The same technique using additional organs org1,..., org100 could be used
to impose different bounds on different pieces of the structure. Thus, to
remove hot spots in the normal tissue close to the tumor whilst maintaining
streaking control, we would use an additional organ org2, for example:

30.7 CONCLUSIONS

We have provided clinical data for radiation therapy treatment planning
within the Matlab environment. We have shown how to use a small suite of
programs (gendata, rungms, genrind, extract, dvh, doseplot) in conjunction
with a library of optimization models to provide an effective and adaptive
treatment planning procedure. We have demonstrated the utility of the
Matlab environment to facilitate more complex data and optimization
control.
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Appendix

A. Problem Specification

The routine “gendata” reads in user input that specifies the total number of
beam angles considered in the problem‚ a flag indicating if wedges are to be
used‚ the name of the PTV‚ GAMS set names for the organ structures‚ the
GAMS include file name that will store set and parameter definitions‚ organ
geometries‚ and the dose matrix. This data is provided as a Matlab structure.

For documentation purposes‚ we have provided Matlab code that generates
the appropriate structure for some existing examples. The first example

retrieves its data from a GDX file. Note that the flag “gengdx” is set to “no”
here since the GDX file is assumed to exist already.

The second example shows how to utilize the existing Beamdata and
structure information to generate a new GDX file:
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B. File initdata.gms

This file is generated automatically from the problem input described above.
This file has six components. First‚ basic sets and their dimensions are
defined for solving the optimization problems. An example is shown below.

Note that the set “angle” is a subset of all angles considered in the
optimization. This set is particularly useful for MIP problems ((3) and (4)) to
automatically reduce the solution search space. The use of “angle” can be
seen in the Appendix.

The next component is to define sets of the three-dimensional coordinates
and their dimensions. Sets “prostate” and “rectum” provide coordinates of
organs‚ “PTV”‚ “OAR”‚ and “Normal” are auxiliary set definitions for the
target‚ the sensitive‚ and the normal structures respectively. The name of the
parameter to store the dose distribution is also defined:

The third component is to define the collection of organ names:

Note that the set “allorgans” has dummy organs “orgl*org 100”. These extra
empty organs play an important role when new organ structures (not defined
in the GDX file) are added. As shown in Section 30.6‚ an immediate
application of this feature can be seen on the local dose control over a subset
of an organ structure.

In the next component‚ global variables for the GAMS model are defined for
the target and the critical structures. We then define a set “organs” as the
collection of critical structures of interest for the particular instance. In our
example‚ the following three lines
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make the global variable target contain “prostate” and the variable critical
contain “rectum”. If there is more than one critical (sensitive) structure‚ the
string “rectum” is replaced by a single quoted string of comma separated
organ names‚ e.g.‚ ‘rectum‚ bladder’. The set “organs” is defined over the
critical structure “rectum”. The “rungms” interface automatically updates
this set if a user excludes organs from consideration as outlined in Section
30.4.

All necessary data for the optimization is stored (by “gendata”) in GAMS
GDX format. Therefore‚ the next component is written to retrieve the data in
the GAMS file:

“$GDXIN data.gdx” opens the GDX file “data.gdx” for input. The second
line is used to load sets from “data.gdx”. Note that a set can be renamed at
this stage: the stored set “target” is now named “PTV” in the GAMS file.
The last line “$GDXIN” closes the file “data.gdx”.

Finally‚ a set “Sensitive” of the sensitive structures is defined as a collection
of “allorgans” in the GAMS file. Each organ must be defined explicitly as
shown in the second line below:

Note that gendata forms this file for a given input of the types shown at the
start of the Appendix.

C. Program qp.gms

This program solves the 3D conformal radiation treatment problem.

The solution includes: optimal beam weights
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SUMMARY

The effects of immunity stimulated by natural colonization with
Nontypeable Haemophilus influenzae (NTHi) were assessed using
population models of transmission and data from the literature on NTHi
colonization prevalence by age‚ NTHi acute otitis media (AOM) incidence
by age‚ NTHi antibody levels‚ and colonization duration. The models
allowed both contact patterns and immunity to influence colonization and
disease patterns by age. To fit the data‚ the models required colonization to
stimulate immunity affecting both transmission (susceptibility and
contagiousness) and pathogenicity (AOM given colonization). Model
analysis demonstrated that immunity affecting transmission influenced
AOM incidence in the first year of life from 4.6 to 39.5 times as much as
immunity reducing pathogenicity. This differential decreased with age until
age three and then rose again. It was important‚ however‚ across all age
groups. The conclusion that immunity affecting transmission had larger
effects on AOM incidence than immunity affecting pathogenicity was robust
to model form and to reasonable variation in the data. Because sensitivity to
NTHi strain interactions and age patterns of infection by strain could not be
assessed and because data on the distribution of NTHi strains across all ages
are deficient‚ this conclusion must still be viewed as tentative. Nonetheless‚
these results make it imperative that trials of potential NTHi vaccines be
designed to insure accurate assessment of effects on transmission. The
models presented here provide the basis for the construction of discrete
individual simulation models for use in designing the most informative and
powerful vaccine trials.

KEY WORDS

Infection‚ Models‚ Vaccines‚ Transmission‚ Bacteria
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31.1 INTRODUCTION

It is often unclear whether vaccines should be developed to protect against
transmission of infectious agents or to protect against illness given
transmission. Likewise‚ it is controversial whether vaccine trials should be
designed to detect effects on transmission or just protection against disease.
The de facto stance has been just to assess effects on disease. We address
this issue here for Nontypeable Haemophilus influenzae (NTHi) where little
is known about the extent to which naturally acquired immunity keeps NTHi
from passing from one person’s throat to another’s or the extent to which
such immunity prevents disease once a person’s throat is colonized. The
analysis we performed used a model of NTHi colonization and transmission
that kept NTHi at its endemic levels. Our results show that immunity
against transmission has larger effects on AOM incidence than immunity
against disease given that the agent is in the throat.

Haemophilus influenzae are bacteria that inhabit the human nasopharynx.
They are classified by the presence of their capsular polysaccharide as types
a through f or‚ in the absence of the capsule‚ as nontypeable. When
Haemophilus influenzae are found in someone’s nose or throat‚ we say that
person is colonized. Most often colonization is asymptomatic but these
organisms do cause several types of human disease. Type b strains cause
bacteremia‚ septic arthritis‚ cellulitis‚ and meningitis – invasive infections
that are successfully prevented by the Haemophilus influenzae type b (Hib)
vaccine‚ which consists of the type b capsule. Nontypeable H. influenzae
(NTHi) cause respiratory tract infections such as acute otitis media (AOM)
and sinusitis in healthy individuals‚ bronchitis in patients with underlying
pulmonary disease such as chronic obstructive pulmonary disease and cystic
fibrosis‚ and pneumonia in children in developing countries. NTHi generate
medical care costs of greater than $1 billion per year in the US. Indirect
costs in lost work are even greater.

31.2.1 NTHi

31.2 BACKGROUND

We have organized our presentation first with a statement of the problem
and presentation of some background on NTHi and vaccines in Section 31.2.
In Section 31.3 we present our methods and the data to which we fit our
models. Section 31.4 presents the results with a focus on comparing inferred
immune effect on transmission versus disease and the robustness of our
conclusions to a wide spectrum of model and data variations. Finally in
Section 31.5 we discuss our results with a focus on explaining their
significance and encouraging engineers to work with epidemiologists so that
more analyses of this type will be performed.
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These bacteria are highly transmissible and endemically present at all times
in most populations. Their only reservoir is the human nasopharynx.
Although antibiotics are usually highly effective in treating H influenzae
infections‚ emerging antibiotic resistance will continue to compromise
antibiotic efficacy. Thus‚ prevention by vaccines offers more effective‚
more enduring‚ and less costly control of these infections. Progress is being
made in developing vaccines against NTHi [1]. Because a simple vaccine
target like the capsule of Hib is not available for NTHi‚ diverse approaches
to vaccine development are being pursued and are likely to stimulate varying
degrees and types of immunity against H. influenzae transmission or disease.

31.2.2 Immunity against transmission or disease

Immunity effects upon transmission can keep NTHi from passing from one
person to another either by impairing the ability of NTHi to colonize the
throat of immune individuals‚ reducing the ability of immune individuals to
spread NTHi when they are colonized‚ or by reducing the time that NTHi
stay in a person’s throat‚ thus shortening the time when the individual can
transmit the infection.

Immunity has both direct effects on the person who has acquired the
immunity and indirect effects on other individuals who may be spared
infection because of someone else’s immunity. There are three sources of
indirect effects. First‚ vaccinated individuals who are directly protected
against colonization by the vaccine’s susceptibility effect are no longer a
source of infection to other individuals. This sets off a reverberating effect
on transmission dynamics that reduces the risk of everyone down all chains
of transmission stopped by vaccination. Second‚ vaccinated individuals who
do get colonized can be made less contagious by immunity. In that case we
say that the vaccine has a contagiousness effect. That will reduce the
infection risk of everyone with whom they come in contact‚ vaccinated and
unvaccinated alike. Again this effect will reverberate down chains of
transmission. Third‚ vaccination can reduce the duration of colonization‚
thus reducing the time available to transmit infection.

Pathogenicity is defined as the fraction of colonization episodes that result in
AOM. An immune response affecting pathogenicity keeps bacteria that
colonize the throat from causing symptoms in the respiratory tract‚ including
the ear. When immunity only affects pathogenicity and not transmission‚ by
definition there are no indirect effects. Because asymptomatic colonization
of the nose and throat with NTHi is so common‚ there has been a tendency to
think that vaccines should be developed to prevent disease given
colonization rather than to reduce NTHi transmission. The analysis we
present here indicates that would be a mistake.
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31.2.3 Approaches to separately estimating effects on transmission or
disease

The analysis we present uses deterministic compartmental models of NTHi
transmission to infer immune effect parameters that explain patterns of
NTHi colonization prevalence and AOM incidence. It might seem that
inferences about the immunity stimulated by NTHi colonization could be
better made on the basis of more direct observations. Such direct
observations would involve following children in contact with each other
carefully and determining the rate of transmission between them and the
duration of colonization as a function of the number of times children have
been previously colonized. Colonization can only be detected by swabbing
the throat and nasopharynx. To avoid missing colonization episodes‚ swabs
should be taken twice a week or more often. From each isolate one needs
refined molecular distinction between NTHi strains from the colonized
subjects and their contacts. That is because it is so easy for an infection
acquired elsewhere to look like a transmission between study children.
Because immunity is acquired slowly over the course of many colonization
episodes‚ the time that children would have to be followed would cover the
entire preschool years. Not only would this be very expensive‚ it would be
very difficult: swabbing would have to be more frequent and over longer
periods than most parents would tolerate‚ as this is not a pleasant experience
for their children.

31.2.4 A changing spectrum of vaccines

Vaccines have been a mainstay of public health for at least seven decades.
In the early years‚ the science that went into developing and evaluating
vaccines proceeded mainly on a trial and error basis. Theories of infectious
agent disease causality and immune protection were simple and the
evaluation of these theories needed only tests of hypothesis rather than
detailed causal model analyses. For the infections to which vaccines were
directed‚ it was possible to empirically devise effective vaccines just by
denaturing the agents or by developing non-pathogenic variants of them.
The focus of early vaccines was on preventing disease‚ not infection. There
was almost no perceived need to analyze vaccine effects on infection
transmission dynamics through populations.

Currently‚ vaccines for more complex infectious agents are being assessed
using more complex theories at both the individual level (how vaccines act
within individuals) and the population level (how vaccines affect the
circulation of infection in populations). To address this complexity‚ medical
scientists and epidemiologists need to collaborate with experts in the
analysis of complex system behavior.
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Recent vaccine success against Haemophilus influenzae type b (Hib) has
motivated greater interest in the effects of vaccines on the circulation of
bacterial agents. Hib vaccine development and evaluation focused almost
wholly on vaccine effects against disease. Hib disease‚ although most
frequent in infants and toddlers‚ was occasionally found in
immunocompromised or elderly adults. Hib colonization was felt to be
nearly universal in childhood but only a small fraction of colonized
individuals suffered serious disease. Colonization in older age groups was
likely to represent repeat colonization. Given this picture‚ it was thought
that the vaccine would not have much of an effect on infection levels –
especially in individuals who were not vaccinated. It was thus a surprise to
find that vaccination of a small fraction of children reduced circulation of
Hib to near zero in many locations [2]

The Hib vaccine effect on transmission is most likely explained by five
interacting characteristics:

Hib presents a simple and uniform antigenic face to the outside world‚
as it is covered completely with a type b polysaccharide coat;

this type b polysaccharide coat is the key element in pathogenesis by
Hib;

the vaccine is composed of this type b polysaccharide and the immune
response is directed against it;

immunity to this type b polysaccharide reduces or eliminates Hib from
vaccinated individuals; and

herd effects of vaccination in children could reduce the ability of the
infectious agent to circulate in all age groups.

1.

2.

3.

4.

5.

Now attention is being turned to other bacterial agents such as NTHi and
other agents such as Moraxella cattharalis and Streptococcus pneumonia
that cause AOM and other respiratory and invasive infections. Vaccines
against Streptococcus pneumonia are directed against surface
polysaccharides just like the Hib vaccine. However‚ there is an important
difference. Streptococcus pneumonia has over 90 capsular types‚ and
immunity stimulated by one type only slightly protects against infection or
disease with other types. The currently licensed vaccine against
Streptococcus pneumonia contains the seven capsular types most likely to
cause invasive infections in children in the United States. Recent studies
have shown that vaccinated individuals are colonized with‚ and develop
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infections from‚ capsular types of S. pneumoniae not present in the seven-
valent vaccine.

31.2.5 NTHi vaccines

The potential market size of more than $1 billion per year in the United
States for NTHi vaccines has stimulated intense efforts at vaccine
development. However‚ NTHi vaccine development differs from
Streptococcus pneumonia vaccine development with regard to the much
greater the strain-to-strain diversity of potential vaccine target molecules in
NTHi and the lack of knowledge about which type of immunity against
which targets might provide vaccine protection.

Unlike Streptococcus pneumonia where one surface polysaccharide alone
generates protective immunity and therefore an ideal classification criteria‚
there is no well-accepted classification system to use in choosing serotypic
or pathogenic variants for an NTHi vaccine. Many different surface proteins
are involved in NTHi immunity. Our lack of understanding regarding the
NTHi antigenic variations is one important reason why we are still ignorant
as to whether NTHi strains that circulate in adults are significantly different
from those that circulate in children. If NTHi transmission dynamics and
diversity patterns are not better understood by the time vaccine trials begin‚
those trials might not be informative enough to choose the best of the variety
of vaccines being developed and to determine how those vaccines should be
used to maximize their population benefit.

31.3 MODEL DEVELOPMENT STRATEGY

31.3.1 General approach

We used a standard deterministic compartmental model approach based on
differential equations that parameterize the flow of population between
compartments. Age groups‚ daycare attendance‚ colonization or disease
status‚ and level of immunity defined the compartments. Three alternative
compartment structures for the natural history of infection and immunity
were used in order to insure that our conclusions were not sensitive to this
aspect of compartment structure conformation. We lumped all NTHi strains
together and did not define different compartments for different strains of
NTHi.

We fixed population structure parameters to correspond to a developed
country population. Nine other parameters were fixed by finding values that
fit specified patterns of NTHi related AOM incidence and NTHi
colonization prevalence. These included three contact pattern parameters‚
three immune effect parameters‚ a parameter specifying the duration of
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colonization episodes in the absence of immunity‚ a parameter specifying the
fraction of colonization episodes that result in AOM in the absence of
immunity‚ and a parameter specifying the speed with which immunity
acquired after colonization is lost. Both contact patterns and naturally
acquired immunity affecting transmission could contribute to the decreasing
prevalence of NTHi colonization with age. The model parameters are listed
in Table 31.1.

For simplicity in this first stage of model development‚ our model defined
only a single disease state‚ AOM. Again for the sake of simplicity‚ and in
the absence of clear evidence to the contrary‚ it treated every colonization
episode as being contagious and as stimulating immunity that moves
individuals up one level of immunity. Immunity rose after every
colonization episode and was not acquired any differently when colonization
led to AOM.

31.3.2 Infection prevalence and otitis incidence data to fit model

Given nine parameters to fit‚ we selected various sets of nine data points
covering a range of values consistent with the literature. Four of the data
points represent NTHi colonization prevalence in 1) preschool children
attending daycare‚ 2) preschool children not in daycare‚ 3) school children‚
and 4) adults. The remaining five data points represent AOM incidence
across daycare and non-daycare children for each of the first five preschool
years of life. The literature can only specify these nine values imprecisely
and they vary considerably from one population to another. Therefore we
specified various data sets that we felt cover the plausible values for these
nine data points and capture patterns to which our results might be sensitive.
We then fit parameters to each of the selected data sets.

To select sets of colonization prevalence and AOM incidence for our
analyses we used the literature summarized in Tables 31.2 and 31.3 along
with data on the fraction of AOM where NTHi is found [3-7]. We
calculated expected prevalence for children in and out of daycare assuming
that 33% of preschool children attended daycare and that the relative risk of
NTHi colonization comparing children in daycare to those not in daycare
was 2.5. We varied age patterns of AOM incidence and colonization
prevalence explicitly to cover a range of patterns we thought might affect
our results. The final sets of data points used are presented in Table 31.4.

We fit the nine parameters to each combination of high and low baseline
AOM incidence and colonization prevalence.
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For sensitivity analysis‚ we fitted models to two alternatives with sharper
and flatter age trends for each baseline data set. For a sharper age trend by
colonization prevalence‚ we decreased prevalence in school children to half
of baseline and that in adults to one-fourth of baseline levels. For the
sharper age trend of AOM‚ instead of the flat 30% that we assumed for the
baseline proportion of AOM caused by NTHi‚ we set the first year at 40%
and decreased each subsequent year by 5%. For a flatter trend in
colonization prevalence we set the prevalence in school children equal to
that in non-daycare preschool children and the prevalence in adults twice its
baseline level. For a flatter trend in AOM by age‚ we set the proportion of
AOM caused by NTHi in the first year at 20% and increased each
subsequent year by 5%.

31.3.3 Model population structure

Each compartment in the model has several dimensions. First is the division
of individuals into compartments defined by demographic characteristics.
Compartments and flows between them are presented in Figure 31.1.
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Figure 31.1 Structure of the 20 population groups by age and
daycare attendance in all models
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Because the population under age five years is the key population we seek to
protect‚ and because colonization and disease vary strongly by age in this
group‚ we divide the population into nine six-month age groups under age 5
starting with the second six months of life and ending at age 5. For the sake
of simplicity‚ we model maternal immunity as completely protective for the
first six months of life and therefore disregard this age group. We divide the
preschool children into those that do and do not attend daycare. We define
constant rates of entering and leaving daycare that result in patterns of
daycare attendance corresponding to national observations[18] At age five
all children enter school and leave daycare if they were in daycare. Beyond
age five we divide the population into a school age group and adults. The
birth‚ death‚ and daycare flows from Figure 31.1 are shown in Table 31.5.
This demographic conformation has 20 categories of individuals in terms of
age and daycare attendance. We use the subscript “i” to represent these
groups in subsequent descriptions.

31.3.4 Model contact structure

To define the contact structure through which NTHi are transmitted‚ we
break the population into four groups. These are preschool children not in
daycare‚ preschool children in daycare‚ school age children‚ and adults. By
specifying three mixing sites (daycare‚ school‚ and a general site) where the
four groups mix according to structured mixing formulations [19] as
indicated in Figure 31.2‚ and by assuming that all age groups have the same
effective contact rate at a general site‚ we reduce the mixing parameters to
three as seen in Figure 31.2. We use effective contact rate parameters‚
which are equivalent to the total number of contacts an individual makes per
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Figure 31.2 Structure of mixing by different age groups at different
sites

unit time multiplied by the transmission probability per contact given that
both susceptibles and infectives have never been previously infected.

The base model has all four population groups making contact at the general
site in proportional relations of 1 : 1 : 1: 1 for daycare : non-daycare : school
: and adults. As a perhaps more realistic alternative for sensitivity analysis‚
we also used relationships 1 : 1.5 : 2 : 3.

31.3.5 Natural history of infection and immunity structure

We model all NTHi strain variants jointly by modeling the acquisition of
immunity to the collection of strains as a step-wise process. In our model
each infection ratchets one up to the next higher level of immunity but one’s
immunity is continually waning so individuals are always moving down to
lower immunity levels. In the real world this waning of immunity has two
sources. The first is the biological loss of immunity due to immune system
dynamics in the host. The second is the loss of immunity that results from
changes in the circulating strains of NTHi that enable them to escape the
immune responses that have been stimulated.

An alternative approach would be to model a set of cross-reacting strains
whose frequencies fluctuate according to the immune pressure that affects
their circulation. This would provide greater realism than our approach as
well as insights about strain dynamics that might prove crucial for the design
and evaluation of vaccines. However‚ modeling such a group of individual
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strains is complicated‚ expensive‚ and less readily focused on the issue we
address.

The natural history of infection and immunity is modeled as flows between
compartments as shown in Figure 31.3. This structure is consistent with the
observations that AOM occurs within the context of nasopharyngeal
infection and that ear infection is more readily eliminated by treatment than
is nasopharyngeal infection. Each of the C compartments represents
individuals with nasopharyngeal colonization. The D compartments
represent individuals with AOM. All C and D compartments at any level are
equally contagious. Only individuals without current colonization or disease
can be newly colonized. The first of the four levels of these variables has no
acquired immunity. Three levels of acquired immunity are modeled. An
infection moves an individual only one immunity level higher. All C
compartments have the same average duration. In some analyses‚ this
depends upon the immunity level. We fixed the average stay in the D
compartment at seven days for all immunity levels.

Figure 31.3 Structure of natural history of infection and immunity+

+ All notation is defined in Table 31.1.
* All individuals who have never before been infected fall in Level 1.
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In sensitivity analysis we also examined a model with eight levels of
immunity following the pattern in Figure 31.3. In a further sensitivity
analysis‚ we examined a model that eliminated one compartment for each
immunity level but otherwise preserved the same parameter structure. The
flow diagram of that arrangement from immunity level one to level two is
shown in Figure 31.4. The susceptibility‚ contagiousness‚ and duration
parameters act in the same way as for Figure 31.3‚ as described in the next
section.

Figure 31.4 Alternative structure of natural history of infection and
immunity considered in sensitivity analysis

31.3.6 Immunity effects of natural infection

Acquired immunity can decrease the fraction of colonization episodes that
progress to disease (captured by the pathogenicity effect parameter in
Table 31.1)‚ decrease susceptibility to colonization (captured by the
susceptibility effect parameter in Table 31.1)‚ decrease the contagiousness
of colonized individuals (captured by the contagiousness effect parameter
in Table 31.1)‚ and/or decrease the duration of colonization (captured by the
duration effect parameter in Table 31.1). In all models we used both
susceptibility and pathogenicity effects‚ as models without either of these
could not fit the data. Immunity effects on either contagiousness or duration
reduce the total number of transmissions from a colonized individual. Using
just a contagiousness parameter fit the data better than using just a duration
parameter. This also gave patterns of immunity levels by age and durations
of infection that were more consistent with observations from the literature.
Consequently we chose this conformation as our base model. In sensitivity
analyses we used duration instead of contagiousness or a single parameter
defining equal contagiousness and duration effects.
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Each infection up to and including the third has the same multiplicative
immune effects. All the immunity parameters have values from zero to one
and we use 1 minus the values of these parameters as the measure of the
amount of immunity stimulated by an infection (Table 31.1). So‚ the lower
the value of these parameters‚ the greater is the immunity stimulated by
colonization.

31.3.7 Rate-of-infection formulation

The rate of infection varies by age‚ daycare attendance‚ and level of
immunity. The rate calculations for these categories are as follows:

See Table 31.1 for definitions relevant to this equation. In this equation the
susceptibility parameter acts on individuals equally regardless of where
they are mixing. There are three mixing sites for which the force of
infection an individual experiences is calculated. This force is determined
by the effective contact rate of the individual at each site‚ the fraction of
individuals I that are infected at each site‚ and the degree of contagiousness

of those individuals.

31.3.8 Fitting parameters to data on AOM incidence and NTHi prevalence

We use the boundary values function of Berkeley Madonna [20] to find the
values of the nine parameters that in the endemic state of the model
reproduce observed infection and disease frequencies. To check for
identifiability problems‚ wide search intervals that put the estimated values
at each end of those intervals are used and results are checked to see that the
fitted parameter values do not change.

After fitting‚ we check to see that the patterns generated by our models are
consistent with available data on antibody levels by age group and with data
on the duration of NTHi colonization. Antibody levels peak during school
age years [21] so we only accept models that similarly generate peak levels
of immunity in this group. Duration of colonization measurements are less
firmly established but we reject models that generate average durations of
less than a week or more than six months.
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31.4 RESULTS

31.4.1 Fitted parameter values

Parameter values that fit all four data combinations were found. As seen in
Table 31.6‚ the root mean square errors were small in each case. The
identifiability of the parameter values found was confirmed by observing
that the same values were reached from diverse starting points. For all four
data conformations the average durations of colonization and average
immunity levels by age group are consistent with observations. The most
important observation in Table 31.6 is that across all data conformations‚ of
the three immunity effects in the model‚ the strongest effects are on
susceptibility to colonization. In three of the four data conformations
examined‚ the second strongest effects are on pathogenicity and in the fourth
case contagiousness came in second place.

31.4.2 Relative effects of immunity against transmission or disease given
infection

In Table 31.7 we compare the effects of a 10% decrease in the effect of
infection on immunity to transmission (effect on susceptibility and
contagiousness parameters) versus a 10% decrease in the effect of infection
on the risk of disease given colonization (an effect on the pathogenicity
parameter). Here we see that no matter what data conformation is being fit‚
disease incidence is much more sensitive to immunity affecting transmission
than to immunity affecting disease given colonization. Even if transmission
effects were slightly less than pathogenicity effects‚ they would deserve
consideration for the design of vaccines and the measurement of vaccine
effects. We see in Table 31.7‚ however‚ that transmission effects are truly
dominant. This is especially true at the very youngest ages.

To understand why the effects of immunity on transmission are so important
in the young ages‚ note that immunity effects on pathogenicity start out low
in the youngest group and then progressively increase with age (Table 31.7).
In contrast‚ immunity effects on transmission start out high‚ decrease‚ and
then increase. For the models fitted to low colonization prevalence and high
AOM incidence‚ this pattern is not evident because the rebound began very
early in the second year.

The increasing effect with age of reducing colonization-induced immunity
affecting pathogenicity is due to the fact that immunity effects are
cumulative across sequential colonization episodes. Changing the
pathogenicity parameter thus has a greater effect the higher the level of
immunity. Given that older children have experienced more infections and
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are at a higher level of immunity‚ this means that any change in the
pathogenicity parameter has a greater effect on older children.

The same phenomenon accounts for the late rise in AOM incidence by age
when colonization-induced immunity affecting transmission is reduced. The
difference with immunity effects‚ however‚ is that they have indirect effects.
These indirect effects are strongest in the youngest ages because the



826 OPERATIONS RESEARCH AND HEALTH CARE

youngest are most susceptible. Indirect effects decrease with the acquisition
of immunity and therefore decrease with age.

31.4.3 Sensitivity of transmission dominance to model form‚ assumptions‚
and parameters

To strengthen the conclusion from Table 31.7 that immunity affecting
transmission has far greater effects on the risk of AOM in young children
than does immunity against AOM given colonization‚ we conducted
extensive sensitivity analyses. These are presented in Table 31.8. We
generated tables like Table 31.7 for each of the sensitivity analyses. To
present the results of these compactly‚ we divided each relative increase
from transmission parameters by the relative increase from the pathogenicity
parameter and then we averaged these ratios across the four different data
sets. This reduces the eight numbers that could appear in each column to a
single summary number.
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First we examined the effects of different parameterizations of immunity
effects on transmission. Models that lacked immunity affecting
susceptibility to colonization or immunity affecting pathogenicity would not
fit the data from Table 31.4 well in any of the four combinations. Thus for
sensitivity analyses we always kept a susceptibility effect and changed
contagiousness and duration effects. The baseline has susceptibility and
contagiousness effects but no duration effect (first row in Table 31.8). The
row after the baseline in Table 31.8 has no duration or contagiousness
effects. Then a model with no contagiousness effect but with a duration
effect is examined. Finally we examined a model where contagiousness and
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duration effects were entered but with a single parameter (fourth row of
Table 31.8).

One might speculate that a reason our analysis showed immunity effects on
transmission to be greater than effects on pathogenicity is that we fit two
parameters affecting transmission and only one affecting pathogenicity. We
see no logic regarding either transmission dynamics or the way we fit our
parameters to support such a conclusion. Indeed when transmission is only
affected by a single transmission parameter‚ namely only a susceptibility
parameter‚ the effects are not much different from those in the base model.
Likewise‚ the model with a duration effect parameter instead of a
contagiousness effect parameter still shows a dominance of immunity
affecting transmission. The effect is less than with the base model‚ but still
impressive. The same can be said for the model where a single parameter
was used to equally affect immunity to both contagiousness and duration of
colonization.

Our choice of four levels of immunity for our model was initially due to the
fact that we did not see improvement of fit to higher numbers of levels. But
using only four levels of immunity to a single agent to capture the effects in
the real world of a diversity of cross-reacting agents is simplification whose
effects on the issue we are addressing is unclear. When we examined a
model with eight levels of immunity‚ our conclusions were unchanged (fifth
row of Table 31.8). Even though the relative increases in AOM incidence
were less than with four immunity levels‚ they were still impressive.

In addition we examined a model with perhaps a more realistic assumption
about general mixing as described in Section 31.2 under “Model Contact
Patterns”. With the new relationship the immune effects on transmission are
even more dominant (sixth row of Table 31.8).

The one analysis where in some age groups changing immunity to
pathogenicity affected AOM incidence more than immunity to transmission
was when we used steeper age curves of NTHi prevalence and AOM
incidence (seventh row of Table 31.8). In Table 31.8 we see that this is true
for ages 3 and 4 as the ratio of transmission effects to pathogenicity effects is
less than one. In no way‚ however‚ should this pattern be interpreted as
representing a greater effect of immunity to pathogenicity. When the
immunity to transmission is decreased in this situation‚ its effects on
increasing circulation of NTHi are so great that much higher stages of
immunity are reached in the third and fourth years of life. Referring back to
our explanation of the U-shaped curves of transmission effects‚ fitting our
model to steeper age drops in colonization and in AOM incidence generates
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a steeper drop in the indirect effects of immunity on transmission and a
faster rise in the direct pathogenicity effects on AOM.

Fitting our model to flatter age drops in colonization and AOM (eighth row
of Table 31.8) has the opposite effect. The indirect effects of immunity
affecting transmission are less at the start but fall more slowly while the
effects of immunity on pathogenicity rise more slowly. Overall whether the
age relationships are steeper or flatter‚ the dominance of immunity affecting
transmission remains impressive.

Finally‚ we examined a different compartmental flow structure for the
natural history of infection and immunity. This is the flow structure
illustrated in Figure 31.4. Use of the alternative structure had little effect on
our conclusions (last row of Table 31.8).

31.4.4 Age groups sustaining transmission

Another question to address is which groups can sustain circulation of NTHi.
We isolated preschool children‚ school children‚ and adults in our models
and found that in the absence of contact with other age groups‚ each group
can sustain the circulation of NTHi by themselves. This finding was robust
to the NTHi incidence and AOM prevalence conformations to which model
parameters were fit. The finding was similarly unaffected by whether
immunity affected contagiousness or duration of colonization. This is
certainly in marked contrast to the observation that Hib immunization of
only young children has been effective in dramatically reducing Hib
infection and disease levels in all age groups.

31.5 DISCUSSION

31.5.1 Major conclusions

Descriptions of NTHi infection patterns and NTHi transmission dynamics
are sketchy and imprecise. But our analysis of the NTHi transmission
system shows that infection and disease observations are sufficient to
conclude that acquired immunity to transmission will be an essential element
of a successful vaccine against this agent. Across a broad range of data
conformations that are consistent with developed country situations‚ and
across a broad range of model conformations‚ we observed that AOM
incidence was more sensitive to immunity affecting transmission than to
immunity affecting the risk of AOM given NTHi colonization.

Our estimates of relationships between pathogenicity and transmission
effects probably underestimate the dominance of transmission effects
because of the way we handle NTHi diversity. We tried to capture the
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effects of diversity with four immune levels. We treated all age groups as
having identical immunity effects within each immunity level and identical
rates of waning immunity. Most likely there is considerable diversity in
NTHi transmissibility‚ pathogenicity‚ and the strength of immunity
stimulated. A strain with greater invasive and pathogenicity potential is
likely to stimulate a stronger immune response than a strain with less
invasive and pathogenic potential. That means that immunity will be
acquired first to the most pathogenic strains and that NTHi colonizing adults
will have less pathogenic potential than NTHi colonizing children. Thus if
we were to model just the most pathogenic strains‚ we would have a steeper
age curve of colonization and our estimates of immunity against
transmission would be greater.

Our model-based conclusions are consistent with studies showing that
individuals with nasopharyngeal anti-P6 sIgA antibody obtained during
NTHi colonization were protected from re-colonization [22-24]. Also the
observation that NTHi have evolved two different anti-IgA proteases [25]
strongly argues for immunity against colonization being a dominant force
driving the evolution of NTHi.

In our models each age group in isolation can sustain circulation if NTHi.
This indicates that indirect effects of vaccinating preschool children will not
have the dramatic effects on NTHi prevalence in other age groups that they
had on Hib. However‚ we did demonstrate strong indirect effects on the
youngest age groups that most urgently need protection against infection.
This is encouraging‚ as it is always more difficult to stimulate adequate
immunity with a vaccination program in the youngest age groups.

31.5.2 Solidifying and extending results by melding data and models more
productively

While strong‚ our conclusion about the dominance of immunity affecting
transmission over immunity affecting pathogenicity of NTHi is tentative. In
order for pathogenicity parameters to have greater effects than transmission
parameters‚ the prevalence relationships by age would have to be flatter and
the fraction of AOM due to NTHi would have to fall more steeply by age
than seems likely. Better data on NTHi colonization prevalence by age
across the entire age range as well as better data on the age distribution of
AOM caused by NTHi is needed to solidify this conclusion. Studies that
gather both types of data from the same population are needed. Our
conclusions are solid enough‚ however‚ to mandate that in any trial of NTHi
vaccines‚ assessing effects on transmission should be a major objective.
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One way to solidify the theory we have presented regarding immunity
effects is to use the theory to make predictions about the outcomes of novel
observations. When such predictions made by two theories conflict‚ a basis
for choosing between theories exists. One such area that deserves
exploration relates to the extent of fluctuations in endemic NTHi
colonization prevalence. The stronger the effects of immunity on
circulation‚ the greater the fluctuations should be in endemic prevalence. If
there are diverse strains with little cross-reactive immunity‚ fluctuations will
have to be specified by type to evaluate such a prediction.

Besides solidifying the general conclusion about transmission effects‚ we
should pursue better definition of how effects on susceptibility‚
contagiousness and colonization duration contribute to these effects. This is
necessary to predict the population effects of vaccination programs. But‚ as
we argued in the background section‚ direct measurement of these effects
with very few model assumptions is infeasible. Making immunity and
vaccine effects reliably identifiable from collectible data should be a goal of
future modeling efforts. The approach taken in this paper needs to be
refined so that parameter estimation procedures can be developed to provide
valid statistical inference for these parameters using data collected in
carefully planned studies that maximize power. Model explorations in this
direction should not confine themselves to consideration of only pathogen
culture results. Immunity information is likely to add powerfully to
estimation potential. IgA measurement from throat washes might be
particularly useful. Also‚ molecular studies that can indicate when
transmission could or could not have occurred between individuals would be
helpful. However‚ such studies will not be able to resolve immunity effects
unless they are designed and analyzed in the context of transmission system
models.

The use of data on the dynamic fluctuations of NTHi prevalence seems
likely to provide more powerful parameter estimates than achieved by the
procedures in this paper‚ which assume observed prevalence values represent
endemic prevalence levels. Molecular distinction between strains would add
value to such studies by distinguishing infections in families or daycare
centers that come from within or from outside of those families or daycare
centers. Even with models like those in this paper that do not distinguish
different strains‚ the strain data could be very useful for constraining the
range of parameter estimates. Models with different strains might be even
more helpful in extracting knowledge from such data.
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31.5.3 Models and strains of NTHi

Our understanding of NTHi immune effects would be improved by
ascertaining the molecular determinants of cross-reactive immunity and of
pathogenicity. Use of transmission models to analyze epidemiological data
may be essential to achieve these ends for two reasons. First‚ a model that
conforms better to reality than statistical models that assume away
transmission may be essential to perceive patterns of cross-reactive
immunity and pathogenicity [26]. Second‚ even with fine molecular
distinctions‚ model assumptions may be necessary to get reasonable power
because of the frequency and duration of swabbing needed to directly
measure these effects.

A first step in this direction should be studies and models that assess strain
distribution by age. There is a great tendency to confine epidemiological
data on NTHi colonization to the age group suffering most from infection.
But if the effects of immunity are to be understood on the transmission
dynamics of NTHi‚ data from across the age range will be essential. It
seems remarkable so little data exist on differences in NTHi molecular
patterns by age. We have such data for Streptococcus pneumoniae mainly
because of the well-established ties between immunity and infection risks to
dominant surface antigens. In NTHi where surface antigens and genome
patterns are more diverse‚ the picture can be confusing. But a simple
distinction between molecular patterns by age would go a long way to
helping fit models that include multiple strains.

31.5.4 The need for further transmission system analysis

We see three reasons why the analyses we present here need to be extended.
First‚ further assessment of the sensitivity of our conclusions to model form
and parameter values is needed to solidify our conclusions. Second‚ the
population consequences of vaccines stimulating different patterns of
immunity should be explored using our models to help direct vaccine
research into the most useful directions. Finally‚ and most importantly‚ the
design of vaccine trials needs to be explored using discrete individual
stochastic models based on our deterministic compartmental models to
insure that the effects of vaccines on transmission are fully and efficiently
assessed.

Further sensitivity analyses We approximate reality roughly by handling
the phenomenon of repeated NTHi colonization using four levels of immune
response. We argued in the previous section that models with more realistic
strain diversity would only amplify the effects‚ leading to the conclusion that
immunity against transmission should be the primary objective of vaccine
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development. But the NTHi transmission system is complex‚ and surprises
that invalidate predictions in complex systems are not uncommon. Thus our
logic that models with multiple strains will even more strongly support our
conclusions needs to be assessed by building and analyzing such models.

Exploration of potential vaccine effects How sensitivity to immunity
parameters translates into vaccination effects cannot be deduced accurately
without an appropriate model analysis. Many issues such as the number of
repeat vaccinations required‚ how vaccine effects vary by age‚ how
effectively young children can be reached by a vaccination program‚ and
how vaccine effects differ from natural infection effects will affect the
overall effects of vaccine induced immune effects on transmission or
pathogenicity. In general‚ however‚ it seems that adding realism in any of
these dimensions will only increase the importance of indirect effects from
vaccine effects on transmission.

Perhaps the most important issue regarding vaccine effects that deserves
exploration is how vaccination programs could affect the mix of agents with
different pathogenic potential. How important is it to insure that vaccines
preferentially target the most pathogenic organisms? What would be the
consequences of decreasing the circulation of less pathogenic strains?

Exploration of vaccine trial designs It is evident from our analysis that
vaccine trial designs that fail to capture effects on transmission would be a
mistake. To capture transmission effects‚ trials must be conducted in
transmission units like families or daycare centers. The classical design that
studies only individuals who are randomly assigned vaccine or placebo can
only detect susceptibility effects. Many questions deserve exploration
regarding the design of trials that will detect transmission effects. What size
of transmission unit maximizes the efficiency of trial designs? What age
range of children to be vaccinated maximizes trial efficiency? How do
different randomization schemes affect the predictive value of parameters
that can be estimated in a trial? What frequency of swabs in a trial
maximizes the efficiency of the trial? Is it worthwhile to study effects of
infant and toddler vaccination on older sibling and parent colonization rates?

The models we have presented could be used as a base for transition to the
individual event history models needed to answer these questions. The
Model Transition Sensitivity Analysis (MTSA) strategy is indicated for this
[27]. Biomedware‚ Inc. has been supported by the National Institutes of
Health to develop software that will effect transition at the click of a mouse
from the deterministic compartmental models we used here to stochastic
individual models needed to assess trial design.
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31.5.5 Promoting involvement of systems scientists in transmission analyses

No single body of scientists is ready to undertake the type of tasks we have
listed above. Acquired skills in visualizing the consequences of changes in
system conformation and parameters is needed to identify all of the
sensitivity analyses needed to solidify model analysis conclusions. Likewise
skill in designing computer experiments of the issues outlined above is
needed if the issues that need resolution are to be resolved efficiently.
Perhaps most importantly‚ the design of analytic methods to estimate system
parameters from data is a crucial issue to which diverse system scientists
need to contribute. Collaborations between systems scientists and
epidemiologists seem essential. To promote such collaboration‚
epidemiology needs to develop a specialty area of systems science‚ and
engineering needs to develop a specialty area in infection transmission
system analysis. Broader conference and journal forums need to extend the
forum of this book if such collaborations are to flourish.
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SUMMARY

Motivated by recent therapeutic initiatives for Alzheimer’s disease‚ we
developed a mathematical model of the accumulation of amyloid‚

in the brain. The model incorporates the production and clearance of
monomers‚ and the elongation and fragmentation of polymers by

monomer aggregation and break-off‚ respectively. Our analysis suggests that
dynamics are dictated by a single unitless measure referred to as the

polymerization ratio‚ which is the product of the production and elongation
rates divided by the product of the clearance and fragmentation rates.
Cerebral burden (i.e.‚ the total number of molecules‚ whether they
exist as monomers or polymers) attains a finite steady-state level if this ratio
is less than one‚ and undergoes sustained growth if this ratio is greater than
one. The highly nonlinear relationship between the polymerization ratio and
the steady-state burden implies that a modest reduction in the
polymerization ratio achieves a significant decrease in the burden. Our
model also predicts that after initiation or discontinuation of treatment‚ it
may take months to reach a new steady-state burden. Taken together‚ our
findings suggest that the research community should focus on developing
agents that provide a modest reduction of the polymerization ratio while
avoiding long-term toxicity. Finally‚ our model can be used to indirectly
estimate several crucial parameters that are difficult to measure directly: the
production rate‚ the fragmentation rate and the strength of treatment.

KEY WORDS

Alzheimer’s disease‚ Smoluchowski equation
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32.1 INTRODUCTION

More than four million people in the U.S. suffer from Alzheimer’s disease
(AD)‚ and the prevalence among people over 85 years old is about 50%.
The U.S. spends roughly 100 billion dollars annually to treat AD. The
cerebral build-up of amyloid and its aggregation into
oligomers and polymers are key components of the pathogenesis of
Alzheimer’s disease (AD) [1]. Recent studies suggest that accumulation
plays an important role in AD neurodegeneration [2‚ 3]. is produced
when two enzymes‚ and sequentially cut the amyloid
precursor protein (APP)‚ which is expressed in the brain [1]. Consequently‚
a variety of treatment strategies are being aggressively pursued‚
including the enhancement of clearance via immunization with [4-6]‚
and the reduction of production by inhibiting [7‚ 8]. The
kinetics of production‚ aggregation (polymerization)‚ disaggregation and
clearance‚ and the effect of these novel treatments on the time-dependent
variation of levels are not well understood. Although there exist several
mathematical models that focus on either fibrillogenesis [9-16] or plaque
formation [17-19]‚ these studies neither consider the impact of treatment nor
allow for a continuously renewable source of from APP molecules.
Recently‚ a mathematical analysis was undertaken of an agent that blocks
amyloid formation by capping polymer ends [20]. Here we continue in this
vein by formulating and analyzing a parsimonious mathematical model that
tracks the dynamics of production‚ polymer elongation‚ fragmentation
and clearance during the course of treatment. Simple formulas and
numerical results are presented that elucidate the impact of treatment on
burden.

32.1.1 Mathematical Model

In AD brain tissue‚ the level of extracellular (and perhaps intracellular)
(particularly the 42 amino-acid form of increases over time‚ which
gives rise to polymerization. Some of these polymers cluster into light
microscopically-visible particles consisting of which can accumulate
to create diffuse (amorphous) plaques‚ the apparent initial neuropathological
lesion of AD. Further‚ some polymers containing and/or can
eventually fold into long filamentous assemblies called amyloid fibrils.
Clumped masses of these are referred to as amyloid (senile) plaques. Our
mathematical model idealizes this process in several important ways. First‚
we only consider extracellular which is likely to be in a dynamic
equilibrium with intracellular We do not distinguish between and

or between soluble and insoluble because there is insufficient
information in the current literature about the precise dynamic changes in
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these species over time in the preclinical and clinical phases of AD. Finally‚
because our primary goal is to understand the impact of treatment on total
cerebral burden (as opposed to the number and size of plaques)‚ we
restrict our attention to polymerization‚ and do not attempt to capture the
downstream processes of fibrillization or plaque formation in vivo.
However‚ later in the chapter we discuss how this model might be
interpreted in terms of – and generalized to incorporate – plaque formation.

Our model is an infinite system of nonlinear differential equations that tracks
the temporal evolution of the concentration of extracellular i-mers‚ for
i = 1‚ 2‚.... It is related to a large class of related models in polymer
chemistry [21] and actin dynamics [22]‚ and to the Smoluchowski equation
[23-24]‚ which has been used for nearly a century to study aggregation
processes such as galaxy formation‚ crystallization‚ and cloud formation [25-
26]. While the polymerization and depolymerization processes in some of
these works are more general than the AD-specific processes we assume
here‚ the novelty of our model is to simultaneously incorporate
fragmentation‚ a source monomer production)‚ and a sink monomer
loss).

For i = 1‚ 2‚...‚ we let denote the concentration of i-mers at time t;
i.e.‚ i = 1 denotes monomers‚ i = 2 denotes dimers‚ etc. The differential
equations dictate the time rate of change of denoted by and are
given by

and for
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The model captures four processes - production‚ elongation‚ fragmentation‚
and loss (i.e.‚ clearance). For ease of reference the corresponding mnemonic
parameters are displayed in Table 32.1. In equation (1)‚ monomers are
produced via cleavage of the APP at a constant rate p‚ and are lost at time t
at rate that is‚ monomers live for time units on average before
being cleared by cell internalization (e.g.‚ microglial ingestion)‚ degradation
by proteases or removal from the brain via the circulation.

Equations (1)-(3) assume that elongation occurs by monomer addition with
elongation constant e‚ so that is the rate at which (i-1)-mers
elongate to i-mers for Similarly‚ to limit the number of model
parameters required‚ we assume that fragmentation occurs only by monomer
break-offs‚ with fragmentation rate constant f‚ so the  is the rate at which
an i-mer fragments into an (i-1)-mer and a monomer. Hence‚ for the
concentrations of i-mers in equations (2)-(3) increase due to elongation of
(i-1)-mers and fragmentation of (i+1)-mers‚ and decrease due to elongation
and fragmentation of i-mers. The factor 2 in equation (1) arises because the
elongation to a dimer requires two monomers‚ and the term f / 2 in equation
(2) stems from the fact that a dimer can only fragment in one location‚ while
larger i-mers possess two potential fragmentation sites. Fragmentation of
dimers occurs at rate f / 2 and creates two monomers‚ and hence the factors
2 and 1/2 cancel each other out in the term in equation (1).

An alternate modeling approach is to allow direct clearance of monomers off
of i-mers (e.g.‚ to represent microglial ingestion of polymers)‚ rather than
requiring a two-step procedure of monomer fragmentation followed by
monomer clearance. This alternative would result in the omission of the “all
fragmentations” term in equation (1) and the re-interpretation of f as an
ingestion rate‚ but would not change the qualitative nature of our results: it
would mainly change the precise conditions for a steady-state solution and
the relative values of steady-state monomer and dimer concentrations‚ and
slightly hasten the approach to a post-treatment steady-state. Finally‚ while
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treatment parameters are not explicitly incorporated into equations (1)-
(3)‚ treatment can be included in the model‚ as explained later.

32.2 RESULTS

32.2.1 Steady-state solution

Our analysis begins by seeking conditions for the existence of a steady-state
(i.e.‚ equilibrium) solution‚ to equations (1)-(3); our analytical approach is
standard and the derivations are omitted. To describe our results in a concise
manner‚ we define the polmerization ratio

which is a unitless quantity that incorporates the four model parameters.
Setting the left side of equations (1)-(3) (i.e.‚ the rates of change of i-mer
concentration) to zero and solving for reveals that there are two regimes: a
steady-state (or subcritical) regime where r < 1 and a supercritical regime
where r > 1. In the former case‚ the levels settle into a steady state
where

Hence‚ i-mer concentrations decay geometrically for and monomers
are more prevalent than dimers if r < 0.5‚ and less prevalent than dimers if
r > 0.5. In contrast‚ if r > 1 then the burden grows indefinitely. Because
the burden appears to remain relatively stable over time in symptomatic
AD patients [27-29]‚ we focus primarily on the steady-state regime‚ and
defer until later a discussion of the supercritical regime.

Equation (5) implies that the steady-state value for the total
concentration (i.e.‚ total number of molecules in the system‚ whether

they exist as monomers or i-mers)‚ which is denoted by and

referred to as the burden‚ is given by

Notice that the total burden c approaches infinity as the polymerization
ratio r approaches 1. We now use equations (5)-(6) to estimate the values of
the model parameters. These parameter values‚ in turn‚ allow us to calibrate
the key relationship (6) (i.e.‚ burden) to the clinical setting.
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32.2.2 Parameter estimation

The value of the monomer loss rate l in Table 32.1 corresponds to a half-
life of 41.6 minutes‚ which is close to the crude experimental value of 38
minutes reported by one group in the brains of APP transgenic mice [8].
Protofibrils [30]‚ fibrils [11‚ 14] and plaques [31] appear to grow primarily
via monomer addition‚ and we use an elongation rate e in Table 32.1
taken from a synthetic fibril analysis [14]‚ which is within a factor of two of
other estimates for fibrils [11] and protofibrils [30].

The fragmentation rate f and the monomer production rate p are difficult to
estimate empirically. Fortunately‚ we can use equations (5)-(6)‚ together
with estimates from human AD brains‚ to estimate these two quantities
as follows. A recent study [3] estimated that 1.4% of in the human brain
is soluble‚ and found that this soluble compartment consists primarily of
monomers‚ dimers and trimers. A related study [32] measured the weighted
average (of and soluble fraction of in human brains to be
1.2%. By taking the average of these two estimates (we ignore a third
estimate that is only 0.05% [33]) and assuming that the soluble dimers and
trimers are exactly offset by any insoluble monomers‚ we equate the fraction
of that consists of monomers‚ to 0.013. We recognize that this

analysis will underestimate the percentage of soluble in the brain if there
are large amounts of soluble dimers and trimers in AD brain. By equations

(5)-(6)‚ and setting this expression equal to 0.013

yields the polymerization ratio r = 0.84. We also equate the burden on
the right side of equation (6) to the average of the total levels plus

found in five different cortical regions of wet brain tissue of patients
with a clinical dementia rating (CDR) score of 5.0 (severe dementia) in
Table 1 of [2] (this estimate of 2819 pmol/g is similar in magnitude to those
in [34])‚ by assuming that the density of wet cortical tissue (which is about
87% water) is equal to that of water. Substituting our estimates for l and r
into the right side of equation (6) and equating this expression to 2819
pmol/g yields the value of the production rate p in Table 32.1. Finally‚
because r = pe/(fl)‚ the polymerization ratio estimate r = 0.84‚ together

with our earlier estimates of e‚ l and p‚ yield the value for the fragmentation
rate f in Table 32.1. Note that this value of f is about 70 times smaller than
the value of the loss rate l‚ which suggests that within the context of our
model‚ an vaccine [4‚ 5] that directly ingests monomers off of oligomers
can be accurately represented as a fragmentation enhancer.
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Figure 32.1 Steady-state burden and clinical dementia rating
(CDR) score as a function of the polymerization ratio r‚ with p and 1
fixed at the values in Table 1. A CDR score of 0.0 (0.5‚1.0‚ 2.0 and
5.0‚ respectively) corresponds to no (questionable‚ mild‚ moderate‚

and severe‚ respectively) dementia. The relationship between steady-
state ?burden (left ordinate) and CDR score (right ordinate) is

based on Table 1 of [2] as explained in the text.

32.2.3 Aß burden

With these parameter values in hand‚ we now return to equation (6) for the
steady-state total burden c. This nonlinear relationship between the
polymerization ratio and the steady-state burden is shown in Figure 32.1‚
and implies that a given treatment will generally achieve a greater (relative
and absolute) reduction in steady-state burden for patients with higher
pretreatment burdens. To position this relationship within the clinical
context‚ we convert the burden in Figure 32.1 to the CDR scale using the
data in Table 1 of [2]. This conversion allows us to explore the potential
clinical impact (assuming that the neurodegeneration associated with can
be reversed) of a reduction in the polymerization ratio via treatment. Recent
studies reveal that peptide vaccination reduces not only burden but
also cognitive impairment in APP transgenic mice [35‚ 36]‚ implying that the
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neurodegeneration is at least partially reversible in mice. We note that the
CDR scales on the right ordinates of Figures 32.1‚ 32.2 and 32.3 can be
ignored if the reader believes that CDR will not fall in synchrony with
burden in humans; the latter ordinate is still valid.

32.2.4 inhibitors

Because of their potentially adverse effect on Notch signaling‚ which is a
crucial mechanism controlling cell differentiation‚ progression‚ and death
[37-40]‚ inhibitors might best be used to reduce only modestly
the monomer production rate‚ perhaps by 20-60%. To assess the effect
of such treatment‚ we numerically solve equations (1)-(3) assuming that a
symptomatic patient is in a pretreatment steady state on days 0-250‚ and is
administered a inhibitor that decreases the production rate p
by 40% on days 250-620 (i.e.‚ for 1 year). As shown in Figure 32.2‚ the
post-treatment steady state represents an 18-fold drop in the burden and a
theoretical decrease in the concomitant CDR score from 5.0 (severe
dementia) to 0.0 (no dementia). The perturbation dynamics in Figure 32.2
are rather sluggish: the relaxation time‚ which we define to be the time from
the start of treatment until the burden drops to 90% of the way towards
the post-treatment steady state (i.e.‚ the time until the burden equals the
steady-state post-treatment burden plus 0.1 times the difference of the
steady-state pretreatment and post-treatment burdens) is 113 days.
Interestingly‚ it takes much longer – about 600 days after the discontinuation
of treatment – for the burden to revert to 90% of its pretreatment steady
state (assuming a polymerization ratio r of 0.84 (Table 32.1)).

32.2.5 Comparing different treatments

Equation (6) allows us to compare various treatment approaches. Within the
context of our model‚ treatments can affect all four parameters:
inhibitors [7‚ 8]‚ or other agents that target the upstream mechanism by
which is produced from APP (e.g.‚ inhibitors)‚ reduce the
production rate p; agents that promote the fragmentation of monomers from
polymers and/or enhance the monomer clearance rate [4‚ 5] increase the
fragmentation rate f and loss rate l‚ respectively; and agents that inhibit the
deposition of monomers reduce the elongation rate e. By equations (4)
and (6)‚ if the production rate p is reduced by x%‚ then the resulting
burden c is x% lower than if the elongation rate e is reduced by x%.
Similarly‚ if the fragmentation rate f is increased by y%‚ then the resulting

burden is y% higher than if the loss rate is increased by y%. Hence‚ the
parameters p and l have somewhat more leverage than e and f respectively‚
in reducing the burden. Moreover‚ an x% reduction in the production
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Figure 32.2 burden and CDR score versus time. A
inhibitor‚ which reduces the production rate by 40%‚ is administered
from day 250 to day 620 (i.e.‚ for 1 year). The slope of the dashed
line is the predicted rate of change in burden immediately after

treatment‚ where is given in equation (8).

rate (elongation rate‚ respectively) has the same effect as a y% increase in
the loss rate (fragmentation rate‚ respectively)‚ where

For example‚ Figure 32.2‚ which was computed using a inhibitor
that reduces the production rate p by 40%‚ would also result from a
treatment that increased the loss rate by 66.7%.

Unfortunately‚ there is no simple formula to compare the burden
reduction achieved by changes in p vs. f or by changes in e vs. l. However‚
in Figure 32.3 we plot the post-treatment steady-state burden (and
corresponding CDR score) as a function of both the percentage reduction in
production rate p achieved by a inhibitor and the percentage
increase in fragmentation rate f achieved by‚ for example‚ an vaccine
(recall that l is 70 times larger than f in Table 32.1). This graph strongly
suggests that only a modest (e.g.‚ 10%) change in these parameter values is
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Figure 32.3 Post-treatment burden and CDR score versus the
percentage inhibition of production rate (via a inhibitor)
and the percentage increase in fragmentation rate (e.g.‚ via an

vaccine).

required to achieve a several-fold reduction in burden and potentially a
clinically significant effect on dementia. Because monomers need to be
cleared after they break off‚ this figure also shows that an infinite
fragmentation rate still leads to a finite steady-state burden‚ given the
limits of the monomer loss rate l.

Additional computational results (not shown here) reveal that a
fragmentation rate enhancer has a smaller (i.e.‚ faster) relaxation time than a
production rate inhibitor‚ probably because the relaxation time depends in
large part on the fragmentation rate. For example‚ an agent that increases
the fragmentation rate by 118% achieves the same post-treatment steady-
state burden as the 40% inhibitor in Figure 32.2‚ but the
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relaxation time is only 40 days compared to 113 days for the
inhibitor.

32.2.6 Post-treatment kinetics

To analyze the post-treatment kinetics‚ we make the simplifying

assumption that the total number of oligomers‚ remains constant

immediately after treatment; we denote this quantity by which equals

by equation (6). The monomer level after treatment quickly

reaches a new level and thereafter changes much more gradually. This new
level‚ is approximated by setting the left side of equation (1) to zero and
solving for which gives

In equation (8)‚ is the pre-treatment number of oligomers and the four
polymerization parameters represent the post-treatment values: for example‚
if we use a inhibitor that reduces the production rate by 40%‚
then we set p in equation (8) to 0.6 times the pretreatment production rate.

Finally‚ summing equations (1)-(3) gives and so immediately

after treatment we predict that the total burden changes linearly at rate
where is given in equation (8). The dashed line in Figure 32.2

shows that this approximation is accurate in the initial period after treatment
(in this case‚ for about 15 days)‚ and can be used to estimate drug efficacy
parameters (e.g.‚ % inhibition) from post-treatment data.

32.2.7 Supercritical regime

Thus far‚ we have assumed that r < 1‚ so that a steady state is achieved. If
r >1 then the burden grows indefinitely‚ eventually (perhaps after many
years) increasing linearly at rate p(r – 1) /r (Figure 32.4). Moreover‚ for all

the distribution of polymers no longer decays geometrically‚ but tends
over time to a uniform distribution‚ where each i-mer (starting with smaller
values of i) successively achieves the concentration for

i = 2.



BURDEN IN ALZHEIMER’SDISEASE 851

Figure 32.4  A simulation of equations (1)-(3) when the
polymerization ration r = 1.03. The slope of the curve approaches the

asymptotic linear growth rate, p(r – 1)/r.

Hence, there are three possibilities for the effect of treatment: (i) the
burden is in a pretreatment steady state and drops to a lower post-

treatment steady state, as in Figure 32.2; (ii) treatment causes the burden
to shift from the supercritical regime to the steady-state regime (Figure
32.5a); and (iii) treatment does not allow the burden to exit the
supercritical regime, although it does lower the growth rate (Figure 32.5b).
Comparison of Figure 32.5a to Figure 32.2 shows that it may take much
longer to achieve a post-treatment steady state in case (ii) than in case (i).

32.2.8 Sensitivity analysis

Because we do not possess precise estimates for our parameter values, we
performed a sensitivity analysis that varies the pretreatment polymerization
ratio r, which is the primary driver of the dynamics, according to our
analysis. We use the same parameter estimation technique as before: fix l
and e to their values in Table 32.1, find r from the fraction of monomer
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Figure 32.5 burden versus time. An production inhibitor is
begun on day 30 in (a) and on day 245 in (b), and is assumed to

continue indefinitely. In (a), the polymerization ratio r is greater than 1
before treatment, and is less than 1 after treatment. In (b), the

polymerization ratio r is greater than 1, both before and after the start
of treatment.
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use the average burden of to derive p, and use r and

p to calculate f. Rather than equating to 1.3%, we now allow it to vary
in order to generate a wide range of values for r, which in turn causes p and f
to change. In Figures 32.6a and 32.6b, we investigate the effect caused by a
40% reduction in the production rate (via a inhibitor) as a
function of the pretreatment polymerization ratio r. Figure 32.6a plots the
pretreatment steady-state burden divided by the post-treatment steady-
state burden (i.e., the fold-reduction in burden), and Figure 32.6b
shows the relaxation time, which was defined earlier. Recalling our
assumption that a three-fold reduction in burden leads to a clinically
significant improvement in CDR score (Figure 32.1), Figure 32.6a shows
that the 40% production inhibition appears capable of a significant clinical
improvement for essentially all practical values of r (i.e., corresponding to
percentages of monomeric less than 30%), and a 1-to-2 log drop

in burden as r increases from 0.76 to 0.93. Figure 32.6b shows that our
base case of r = 0.84 is on the steep portion of the curve of relaxation time
versus polymerization ratio. Hence, if the fraction of monomeric is
actually 5% rather than 1% of total then r drops from 0.84 to 0.7 and the
relaxation time decreases from 113 days to only two weeks.

32.3 DISCUSSION

The most basic result of our analysis is that there are two possible regimes,
depending upon the value of the polymerization ratio r, which equals
pe/ (fl). If this unitless quantity is less than 1, then the burden enters a
steady-state regime and takes on a finite value. If the polymerization ratio is
greater than one, then the burden grows indefinitely, eventually
increasing linearly at rate p(r – 1 ) / r . Researchers in other areas of
polymerization [22] and in other disciplines have found that the dynamics of
some complex systems are dictated by a single measure that leads to a
subcritical regime if the measure is less than 1 and a supercritical regime if
the measure is greater than 1; two examples are the basic reproductive rate

of an infectious pathogen in epidemiology [41] and the traffic intensity ?
in queueing theory [42]. Moreover, as with AD, in these disciplines the
ultimate measures of performance (size of the epidemic and queue length,
respectively) have a highly nonlinear relationship with the unitless measure.
Applied researchers in these disciplines have adopted these unitless
measures as a central part of their mental model of these complex systems,
and routinely estimate them and monitor achieved reductions in them. We
propose that AD researchers follow suit by adopting the polymerization ratio
pe/ (fl) as the key  “ driver” in this disease.
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Figure 32.6 (a) The pretreatment steady-state burden divided by
the post-treatment steady-state burden, as a function of the

pretreatment polymerization ratio r. (b) The relaxation time (see the
text for a definition) to a post-treatment steady-state burden, as a
function of the pretreatment polymerization ratio r. In both figures, it is
assumed that a inhibitor reduces the production rate by
40%. In the parameter estimation procedure, r is varied by changing

the fraction of that is monomer (i.e.,
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Several studies have shown that the burden does not appear to be closely
correlated with the duration or clinical severity of AD [27-29], which
suggests that the polymerization ratio is less than 1 for symptomatic AD
patients. It is possible that the total level is in a quasi-steady state, where
some of the four parameters change slowly over time (on the order of years),
causing a slow increase in the burden. Although previous mathematical
models of plaque formation [18, 19] have also proposed a dynamic
equilibrium of aggregation and disaggregation, the model in [19] requires
that the disaggregation rate be modulated by the amount of plaque via a
feedback mechanism that minimizes the changes that occur in the brain.
While some feedback mechanism – for example, a cytotoxic T-lymphocyte
response [43] – may exist, our model shows that when production is
incorporated, a steady-state burden can be achieved by a constant
fragmentation rate (i.e., in the absence of any feedback).

Nonetheless, our estimate for r is of the order of (rather than or
smaller), and so it is conceivable that certain aggressive forms of the disease
in humans or mice (strongly amyloidogenic presenilin mutations) may
achieve a polymerization ratio greater than 1. More importantly, while
studies [27-29] assess burden by counting plaques, a more recent study
measures burden biochemically, and these more refined data suggest that

burden is correlated with clinical severity of AD, which is not
inconsistent with linear growth of burden (i.e., the supercritical regime in
our model). Although further research may be required to further elucidate
whether burden is in a steady state or is increasing continually in
symptomatic AD patients, our identification of two regimes (steady-state and
supercritical) suggests that there are three types of possible treatment
outcomes: a reduction in burden from a pretreatment steady state to a
post-treatment steady state (Figure 32.1), a change in regime from
pretreatment growth to post-treatment steady state (Figure 32.5a), and a
reduction in growth rate from a pretreatment supercritical regime to a post-
treatment supercritical regime (Figure 32.5b). These results suggest that the
failure of a drug to reduce the burden in a subset of mice or humans may
not necessarily be due to drug inactivity, but rather could signal a
pretreatment supercritical regime. Also, even if the pretreatment
polymerization ratio is less than 1, a patient may revert to his pretreatment

burden within several months after treatment is discontinued (see Figure
32.6b); consequently, it is important to attempt to measure the burden
throughout the course of treatment in a clinical trial. In contrast, if the
pretreatment polymerization ratio is greater than 1, then after discontinuation
of treatment a patient’s burden will always be smaller than if he had not
received treatment.
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Equation (6) provides a simple formula for the steady-state burden in
terms of the polymerization ratio r (provided r < 1) and the production rate-
to-loss rate ratio, p /l. As pictured in Figure 32.1, the burden is a highly

nonlinear (increasing, convex) function of the polymerization ratio, and
approaches infinity as r approaches 1. Hence, the impact of a modest
reduction in r appears to be sufficient to produce a many-fold reduction in
the burden; for the parameter values in Table 32.1, a 40% reduction in
the production rate via a inhibitor achieves an 18-fold reduction
in burden. Such a reduction is consistent with recently reported data in
mice [5, 8], and appears to be sufficient to convert the disease process to a
non-pathological state [2, 3, 32], assuming neuronal dysfunction is con-
commitantly decreased. Figure 32.1 also shows that, while the magnitude of
the burden reduction increases with the strength of treatment, there are
decreasing returns to scale as the treatment gets stronger. Our analysis
predicts that the percentage reduction in burden achieved by a given
treatment is a unimodal function (i.e., first increasing, then decreasing) of
the polymerization ratio r. For r < 1, the percentage reduction in burden
increases with r, and hence one might expect that a larger percentage
reduction would be achieved in forms of AD that are particularly aggressive
(e.g., the Swedish familial AD mutation [44], or the trisomy 21 mutation that
occurs in Down syndrome [45]). However, as explained in the previous
paragraph, the burden continues to grow in the face of treatment if the
post-treatment polymerization ratio is greater than 1.

Our model is flexible enough to incorporate a variety of treatment
approaches that affect any of the four model parameters. Equation (5)
allows us to perform an apples-to-apples comparison of production
inhibitors, elongation inhibitors, clearance enhancers, and fragmentation
enhancers. For a given percentage change in parameters caused by a treat-
ment, this analysis shows that the production inhibitors (clearance
enhancers, respectively) are somewhat more effective in reducing the
burden than elongation inhibitors (fragmentation enhancers, respectively).
Equation (7) and Figure 32.3 provide an explicit comparison between
production inhibitors and fragmentation enhancers. Computational results
show that a fragmentation enhancer attains its post-treatment steady-state
faster than a production inhibitor. These comparisons, coupled with future
data on drug toxicity, may be useful in determining the optimal mix and
level of treatments that minimize the burden subject to toxicity
constraints.

Figure 32.2 shows that it takes several months for treatment to reduce the
burden to a new post-treatment steady state, and the return to a pretreatment
steady-state burden following the discontinuation of treatment is even
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more gradual. However, Figure 32.6b shows that the speed at which the
level changes is highly sensitive to the pretreatment polymerization ratio r,
suggesting that aggressive forms of AD (having high r) are likely to take
much longer to get under control. Our lack of a precise estimate for the
pretreatment polymerization ratio prevents us from accurately predicting the
rapidity of response to treatment, but in some cases this response may be
considerably quicker than suggested in Figure 32.2.

This general state of affairs is similar to HIV infection, as revealed several
years ago in two seminal papers [46, 47]. The stability of plasma HIV levels
over many years lulled the research community into believing that HIV was
a relatively static disease process, but a perturbation of this steady state by a
powerful protease inhibitor revealed a highly dynamic equilibrium, where a
high virus production rate was offset by an equally high virus clearance rate.
Hence, antiviral therapy led to a precipitous drop in plasma HIV levels, and
discontinuation of treatment allowed for a rapid return of HIV levels to the
pretreatment steady state. To borrow an analogy often used in the HIV field,
the water level (i.e., the level) in the bath may change very slowly, but
the tap (production of monomer from APP) and drain ( loss) may be
operating at deceptively high rates. It is worthwhile for AD researchers to
keep in mind the lessons learned by the HIV clinical research community: (i)
if toxicities of various types of agents are non-overlapping, then drug
combinations (e.g., a inhibitor plus an vaccine) are likely to
outperform monotherapy; (ii) drug resistance, which is the Achilles heel of
HIV treatment [48], may be a problem for AD treatment as well; and (iii)
given the dynamic equilibrium of – which implies that AD patients may
require chronic treatment – and the interaction between production and
Notch signaling [37-40], efforts should focus on developing drugs that avoid
long-term toxicity, which is beginning to plague the HIV community [49].

Several of the model parameters, particularly the production rate and the
fragmentation rate, are difficult to measure in vivo. One benefit of our
analysis is that equations (5) and (6) allow an indirect estimation of the
production rate p and the fragmentation rate f given published data on the

burden [2] and the fraction of that is monomer [3, 32] (or, more
generally, any quantity, such as mean polymer length, that can be derived
from the steady-state distribution of i-mers). Equation (5) can also be used
to measure the strength (i.e., percentage inhibition or enhancement) of a
treatment in vivo, given data on the pretreatment and post-treatment steady-
state burdens. Moreover, the transient analysis in equation (8) allows for
indirect estimation of a third model parameter from serial measurements of
post-treatment burden.
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Our study has two important limitations. First, our model does not currently
differentiate between the various forms of vs. soluble vs.
insoluble). However, while we have been careful to restrict the model to
polymerization per se and ignore protofibril-to-fibril conversion and plaque
growth, it is clear that our model can, in fact, be viewed as a representation
of plaque growth if deposition onto plaques and fragmentation of plaques are
primarily due to monomer addition and break-off, respectively. While
monomer deposition onto plaques is believed to be the main form of
aggregation in vitro [31, 50], it is quite likely that polymers coalesce in vivo
[19]. Similarly, fragmentation of oligomers [51] and plaques may be more
complex than the monomer release that is assumed here. Hence, a more
realistic model of plaque growth might use a variation of Smoluchowski’s
equation that allows i-mers and j-mers to coalesce (e.g., at a rate
proportional to where k = 2/3 or 1, depending on the porosity of
plaques) and allows fragmentation of monomers from the plaque surface (at
rate or the entire plaque (at rate While such a model would
drastically change the distribution of i-mers relative to the current model
(skewing the distribution towards huge polymers that represent plaques), it is
unlikely to significantly alter the basic nature of our results pertaining to the

burden. However, to the extent that the model parameters – including
the effect of treatment – vary for vs. or soluble vs. insoluble
then these model generalizations would be worth pursuing in the future.

The second main weakness of our study is that our parameter values are not
necessarily indicative of human AD brains: the loss rate l was derived from
the brains of mice [8], and the elongation rate e was measured from synthetic

in a low pH environment [11, 14]. Also, we crudely equated the fraction
of that is monomer with the fraction of that is soluble. Our
sensitivity analysis (Figures 32.6a and 32.6b) suggests that, regardless of
how inaccurate our parameter estimates are, a modest (several-fold) change
in a parameter value caused by treatment will still lead to a clinically
significant (i.e., at least three-fold) reduction in the steady-state burden,
but the time to achieve this post-treatment steady state (i.e., relaxation time)
is quite sensitive to our parameter values.

Despite the model’s simplicity, our analysis elucidates the basic nature of the
kinetics of the burden in the face of etiologic treatments, and provides a
framework – and a novel metric, the polymerization ratio – within which to
interpret the laboratory and clinical results that are likely to be generated
during the next few years. As more progress is made on the identity of the
toxic moiety [3, 33] the elucidation of the inflammatory and neurotoxicity
cascade, and the parameter values and mechanisms related to
polymerization and plaque growth, our hope is that models such as this one
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will be refined and generalized to provide some guidance about the optimal
way to employ the emerging drug arsenal.

The biggest obstacle preventing the validation and subsequent use of our
mathematical model is the infeasibility of unintrusively measuring the
level in the human brain. Indeed, there is an urgent need to develop
alternative biomarkers that are easy to monitor. Two obvious choices are the

level in the cerebrospinal fluid (CSF) and plasma. We recently
generalized the work presented in this chapter by considering a three-
compartment model consisting of the in the brain, CSF and plasma [52].
In much the same way that Jim Jackson guessed, and then confirmed, the
product-form steady-state solution to single-class queueing networks [53],
we show that the steady-state brain levels in the compartmental model
are similar to those derived here, except that the actual production and
loss rates in the brain are replaced by effective rate that are derived by
analyzing the intercompartmental flows. Our results suggest that production
inhibitors reduce levels in all three compartments. More interestingly,
however, treatments that ingest monomers off of polymers, or that increase
fragmentation or block elongation, produce little change – or even transient
increases – in CSF and plasma levels. Hence, considerable care must be
taken when interpreting these biomarkers. We are currently working with
scientists at Elan Pharmaceuticals, makers of the vaccine [4-5] and
several secretase inhibitors, to estimate the key model parameters from their
data.
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