
VBA
Developer’s Handbook™,

Second Edition

Ken Getz
Mike Gilbert

SYBEX®

VBA Developer’s Handbook

Second Edition

This page intentionally left blank

San Francisco • Paris • Düsseldorf • Soest • London

VBA
Developer’s Handbook™

Second Edition

Ken Getz

Mike Gilbert

Associate Publisher: Richard Mills
Contracts and Licensing Manager: Kristine O’Callaghan
Acquisitions & Developmental Editor: Christine McGeever
Editors: Susan Berge, Raquel Baker
Technical Editor: David Shank
Book Designer: Kris Warrenburg
Graphic Illustrator: Tony Jonick
Electronic Publishing Specialist: Nila Nichols
Production Editor: Leslie E. H. Light
Proofreaders: Nancy Riddiough, Patrick J. Peterson, Molly Glover, Nelson Kim, Jennifer Campbell
Indexer: Ted Laux
CD Coordinator: Christine Harris
CD Technician: Keith McNeil
Cover Designer: Design Site
Cover Illustrator: Jack D. Meyers
SYBEX and the SYBEX logo are registered trademarks of SYBEX Inc. in the USA and other countries.

Developer’s Handbook is a trademark of SYBEX Inc.

TRADEMARKS: SYBEX has attempted throughout this book to distinguish proprietary trademarks from descriptive
terms by following the capitalization style used by the manufacturer.

The author and publisher have made their best efforts to prepare this book, and the content is based upon final release
software whenever possible. Portions of the manuscript may be based upon pre-release versions supplied by
software manufacturer(s). The author and the publisher make no representation or warranties of any kind with
regard to the completeness or accuracy of the contents herein and accept no liability of any kind, including but not
limited to performance, merchantability, fitness for any particular purpose, or any losses or damages of any kind
caused or alleged to be caused directly or indirectly from this book.

Copyright © 2000 SYBEX Inc., 1151 Marina Village Parkway, Alameda, CA 94501. World rights reserved. No part of
this publication may be stored in a retrieval system, transmitted, or reproduced in any way, including but not limited
to photocopy, photograph, magnetic or other record, without the prior agreement and written permission of the
publisher.

Copyright © 2000 SYBEX, Inc., 1151 Marina Village Parkway, Alameda, CA 94501. World rights reserved. The
authors created reusable code in this publication expressly for reuse by readers. SYBEX grants readers permission to
reuse for any purpose the code found in this publication or its accompanying CD-ROM so long as the authors are
attributed in any application containing the reusable code and the code itself is never distributed, posted online by
electronic transmission, sold, or commercially exploited as a stand-alone product. Aside from this specific exception
concerning reusable code, no part of this publication may be stored in a retrieval system, transmitted, or reproduced
in any way, including but not limited to photocopy, photograph, magnetic or other record, without the prior
agreement and written permission of the publisher.

Library of Congress Card Number: 2001089612

ISBN: 0-7821-2978-1

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Software License Agreement: Terms and Conditions

The media and/or any online materials accompanying this book
that are available now or in the future contain programs and/or
text files (the "Software") to be used in connection with the book.
SYBEX hereby grants to you a license to use the Software, subject to
the terms that follow. Your purchase, acceptance, or use of the
Software will constitute your acceptance of such terms.

The Software compilation is the property of SYBEX unless
otherwise indicated and is protected by copyright to SYBEX or
other copyright owner(s) as indicated in the media files (the
"Owner(s)"). You are hereby granted a single-user license to use the
Software for your personal, noncommercial use only. You may not
reproduce, sell, distribute, publish, circulate, or commercially
exploit the Software, or any portion thereof, without the written
consent of SYBEX and the specific copyright owner(s) of any
component software included on this media.

In the event that the Software or components include specific
license requirements or end-user agreements, statements of
condition, disclaimers, limitations, or warranties ("End-User
License"), those End-User Licenses supersede the terms and
conditions herein as to that particular Software component. Your
purchase, acceptance, or use of the Software will constitute your
acceptance of such End-User Licenses.

By purchase, use, or acceptance of the Software you further agree to
comply with all export laws and regulations of the United States as
such laws and regulations may exist from time to time.

Reusable Code in This Book

The authors created reusable code
in this publication expressly for reuse by readers. SYBEX grants
readers permission to reuse for any purpose the code found in this
publication or its accompanying CD-ROM so long as the authors
are attributed in any application containing the reusable code, and
the code itself is never sold or commercially exploited as a stand-
alone product.

Software Support

Components of the supplemental Software
and any offers associated with them may be supported by the
specific Owner(s) of that material but they are not supported by
SYBEX. Information regarding any available support may be
obtained from the Owner(s) using the information provided in the
appropriate read.me files or listed elsewhere on the media.
Should the manufacturer(s) or other Owner(s) cease to offer
support or decline to honor any offer, SYBEX bears no
responsibility. This notice concerning support for the Software is
provided for your information only. SYBEX is not the agent or
principal of the Owner(s), and SYBEX is in no way responsible for
providing any support for the Software, nor is it liable or
responsible for any support provided, or not provided, by the
Owner(s).

Any Microsoft product accompanying this book was reproduced
by SYBEX under special arrangement with Microsoft Corporation.
For this reason, SYBEX will arrange for its replacement. PLEASE
DO NOT RETURN IT TO MICROSOFT CORPORATION. Any
product support will be provided, if at all, by SYBEX. PLEASE DO
NOT CONTACT MICROSOFT CORPORATION FOR PRODUCT
SUPPORT. End users of this Microsoft program shall not be

considered "registered owners" of a Microsoft product and
therefore shall not be eligible for upgrades, promotions, or other
benefits available to "registered owners" of Microsoft products.

Warranty

SYBEX warrants the enclosed media to be free of
physical defects for a period of ninety (90) days after purchase. The
Software is not available from SYBEX in any other form or media
than that enclosed herein or posted to

www.sybex.com

. If you
discover a defect in the media during this warranty period, you
may obtain a replacement of identical format at no charge by
sending the defective media, postage prepaid, with proof of
purchase to:

SYBEX Inc.
Customer Service Department
1151 Marina Village Parkway
Alameda, CA 94501
(510) 523-8233
Fax: (510) 523-2373
E-mail: info@sybex.com

Web:

http://www.sybex.com

After the 90-day period, you can obtain replacement media of
identical format by sending us the defective disk, proof of
purchase, and a check or money order for $10, payable to SYBEX.

Disclaimer

SYBEX makes no warranty or representation, either
expressed or implied, with respect to the Software or its contents,
quality, performance, merchantability, or fitness for a particular
purpose. In no event will SYBEX, its distributors, or dealers be
liable to you or any other party for direct, indirect, special,
incidental, consequential, or other damages arising out of the use of
or inability to use the Software or its contents even if advised of the
possibility of such damage. In the event that the Software includes
an online update feature, SYBEX further disclaims any obligation to
provide this feature for any specific duration other than the initial
posting.

The exclusion of implied warranties is not permitted by some
states. Therefore, the above exclusion may not apply to you. This
warranty provides you with specific legal rights; there may be
other rights that you may have that vary from state to state. The
pricing of the book with the Software by SYBEX reflects the
allocation of risk and limitations on liability contained in this
agreement of Terms and Conditions.

Shareware Distribution

This Software may contain various
programs that are distributed as shareware. Copyright laws apply
to both shareware and ordinary commercial software, and the
copyright Owner(s) retains all rights. If you try a shareware
program and continue using it, you are expected to register it.
Individual programs differ on details of trial periods, registration,
and payment. Please observe the requirements stated in
appropriate files.

Copy Protection

The Software in whole or in part may or may
not be copy-protected or encrypted. However, in all cases, reselling
or redistributing these files without authorization is expressly
forbidden, except as specifically provided for by the Owner(s)
therein.

To Peter: Your patience and understanding
(especially that patience thing) have made it

possible to write books like this. Your working very
long hours didn’t hurt, either.

—K.N.G.

To Revi, Lynn, David, Tree, Michelle, Cynthia,
and Karishma: true friends and good souls all.

Thanks for being there when I needed you.

—M.T.G.

ACKNOWLEDGMENTS

A

s with any book, this one wouldn’t have been possible without the contribu-
tions of many people besides the authors. First of all, we’d like to thank our tire-
less developmental editor, Melanie Spiller, without whom we wouldn’t be writing
the kinds of books we write. Melanie continues to be an inspiration, a confidant,
and someone whose edits continue to provide new insights into how to get techni-
cal writing done right. This is the seventh book we’ve done with Melanie, and
every one has been made better by her patience, understanding, and care.

In addition, we’ve had the benefit of not one, but two careful, caring editors from
Sybex for this edition: Raquel Baker and Susan Berge survived our ever-changing
schedule and our procrastination, complaining, and (yes, we can say it) anal-retentive-
ness, with amazing grace and good nature. It’s been a pleasure working with both
Raquel and Susan, and we’d do it again in a heartbeat. There are many others at
Sybex we’d like to thank, as well, including all the folks in layout, production, and
other departments we never get to meet.

We’d also like to pay special tribute (again) to our technical editor, David Shank.
His eye for detail is unsurpassed, and in the course of reviewing this book, he pro-
vided innumerable comments that measurably improved the content and exam-
ples. If the book is complete and accurate, blame Dave. (On the other hand, any
errors or omissions are clearly our responsibility and not Dave’s.) This is our
fourth book with David (he also worked his way through

Access 97 Developer’s
Handbook

,

Visual Basic Language Developer’s Handbook

, and

Access 2000 Developer’s
Handbook: Desktop Edition

), and given the choice, we’d work with him on any and
every future project. David currently works on developer documentation at
Microsoft, having cowritten what may be the definitive book on Office develop-
ment:

Microsoft Office 2000/Visual Basic: Programmer’s Guide

 from Microsoft Press.
We don’t know how David does it, but he’s made an indelible contribution to each
of these books.

Thanks to Dan Haught of FMS, Inc., who originally prepared an outline for a book
similar to this one and then decided to go a different route; his company created

Total Access SourceBook

 and

Total VB SourceBook

, source code libraries for Microsoft
Access and Visual Basic, respectively, which include material that parallels the
topics covered in this book. Dan kindly provided us with his detailed outline,
from which we began the process of writing the book. For more information on
FMS, Inc. and their products, visit their Web site at

http://www.fmsinc.com

. Thanks
also to Luke Chung of FMS, Inc., who provided us with documentation and exam-
ples involving numeric rounding and calculation errors, which were helpful in the
creation of Chapter 2.

We’d also like to thank Mary Chipman and Andy Baron, senior consultants with
MCW Technologies. They both dug through the VBA issues surrounding numeric
operations and provided much of the material in Chapter 2 of this book. Thanks to
Terry Kreft, who added some new material to this chapter for this edition, as well.

Dev Ashish, the keeper of the Web site where you’ll find answers to almost any
Microsoft Access question (see the Access Web at

http://www.mvps.org/access/

),
revised Chapter 9, “Retrieving and Setting System Information,” for this edition of
the book. Dev loves digging into the Windows API, and this chapter shows that
off. He tirelessly dug through new Windows 2000 API calls, helping to add many
new properties and methods to the existing classes in this chapter.

Michael Kaplan of Trigeminal Software, Inc. crafted Chapter 11 for us in the previ-
ous edition of this book and revised it for this edition. This chapter, covering the
issues involved in working with networks programmatically, was greatly enhanced
by Michael’s contributions, based on his research and experience with networks
and network management. We’d also like to thank those experts who provided us
with suggestions, ideas for chapter topics, and code review, including Jim Fergu-
son, Mike Gunderloy, and Brian Randell. Several readers wrote to us with sugges-
tions, complaints, and ideas, including Philip Andrew, Doug Behl, Manuel Lopez,
Mindy Martin, Sanjay S. Mundkur, Peter Mundy, Carl Parmenter, and Brian
Wells. (We’ve surely missed a few and apologize in advance.) We truly appreciate
the ideas, support, and encouragement. Malcolm Stewart, of Microsoft’s Access
support group, provided the NEATCODE.MDB sample database from which we
began much of our research into some of the various programming topics.

In addition, we’d like to thank Neil Charney. Neil has been working with Office
and VBA for the past four years and is currently group product manager for VBA
and Microsoft Office Developer at Microsoft. Neil has been instrumental in get-
ting us the information and contacts we needed to write this book. In addition to
Neil, we’d also like to thank the members of the entire VBA development team,
especially Theresa Venhuis, David Holmes, Tom Quinn, and Russell Spence, who
not only are the ones responsible for the technology but were also gracious enough
to put up with our nitpicky questions. We’d also like to thank all the companies
that provided samples, demos, and information for the book’s CD-ROM.

Finally, Greg Reddick and Paul Litwin deserve special thanks. Paul not only
provided ideas and spiritual and moral support, he also graciously granted per-
mission for us to use some of the work he did for our sister book,

Access 2000
Developer’s Handbook

, also published by Sybex. Greg laboriously updated his nam-
ing conventions for Office 2000 and VBA, and we’ve included this document as
Appendix A.

ABOUT THE AUTHORS

Ken Getz

Ken Getz is a senior consultant with MCW Technologies, focusing on the Microsoft
suite of products. He has received Microsoft’s MVP award (for providing online
technical support) every year since 1993 and has written several books on devel-
oping applications using Microsoft products. Ken is a technical editor for

Access-
Office-VB Advisor

 magazine, which is published by Advisor Media, Inc. He is also
a contributing editor for

Microsoft Office & Visual Basic for Applications Developer

magazine, published by Informant Communications Group, Inc. Currently, Ken
spends a great deal of time traveling around the country for Application Devel-
oper’s Training Company, presenting training classes for Access and Visual Basic
developers. He also speaks at many conferences and trade shows throughout the
world, including Microsoft’s Tech*Ed, Advisor Publication’s DevCon, and Infor-
mant’s Microsoft Office and VBA Solutions conference. You can reach Ken at

kgetz@developershandbook.com

.

Mike Gilbert

Mike Gilbert works at Microsoft as a program manager designing object models for
business productivity and Web collaboration products. Prior to joining Microsoft,
he was a senior consultant with MCW Technologies, specializing in application
development using Microsoft Access, Visual Basic, SQL Server, and Microsoft
Office. He writes for several periodicals and is a contributing editor to

Microsoft
Office &Visual Basic for Applications Developer

magazine. He is also a regular speaker
at conferences such as Microsoft Tech*Ed and the Microsoft Office and VBA Solu-
tions conference. You can reach Mike at

mgilbert@developershandbook.com

.

CONTENTS AT A GLANCE

Introduction xxi

Chapter 1: Manipulating Strings 1

Chapter 2: Working with Numbers 93

Chapter 3: Working with Dates and Times 143

Chapter 4: Using VBA to Automate Other Applications 223

Chapter 5: Creating Your Own Objects with VB Class Modules 271

Chapter 6: Advanced Class Module Techniques 305

Chapter 7: Searching and Sorting in VBA 369

Chapter 8: Creating Dynamic Data Structures Using Class
Modules 431

Chapter 9: Retrieving and Setting System Information 485

Chapter 10: Managing Windows Registry Data 597

Chapter 11: The Windows Networking API 633

Chapter 12: Working with Disks and Files 701

Chapter 13: Adding Multimedia to Your Applications 809

Chapter 14: Using the Scripting Runtime Library Objects 879

Chapter 15: Writing Add-Ins for the Visual Basic IDE 931

Appendix A: The Reddick VBA Naming Conventions, Version 6 999

Index 1025

TABLE OF CONTENTS

Introduction xxi

Chapter 1 Manipulating Strings 1

How Does VBA Store Strings? 3
Unicode versus ANSI 4
Using Built-In String Functions 6

Comparing Strings 6
Converting Strings 10
Creating Strings: The Space and String Functions 11
Calculating the Length of a String 12
Formatting Data 12
Reversing a String 18
Justifying a String 19
Searching for a String 21
Working with Portions of a String 24
Replacing Portions of a String 26
Search and Replace in Strings 27
Working with Arrays of Strings 28
ANSI Values 35
Working with Bytes 36
Putting the Functions Together 38

Searching for and Replacing Text 39
Replacing Any Character in a List with Another Character 39
Removing All Extra White Space 43
Removing Trailing Null and Padding from a String 44
Replacing Numbered Tokens within a String 46

Gathering Information about Strings 49
Determining the Characteristics of a Character 49
Counting the Number of Times a Substring Appears 53
Counting the Number of Tokens in a Delimited String 55
Counting the Number of Words in a String 57

Converting Strings 58
Converting a Number into a String with the Correct

Ordinal Suffix 59
Converting a Number into Roman Numerals 60
Performing a “Smart” Proper Case Conversion 63
Encrypting/Decrypting Text Using XOR Encryption 71

Table of Contents

xii

Returning a String Left-Padded or Right-Padded
to a Specified Width 75

Using Soundex to Compare Strings 77
Working with Substrings 81

Returning a Specific Word, by Index, from a String 82
Retrieving the First or Last Word in a String 86
Converting a Delimited String into a Collection of Tokens 88

Summary 92

Chapter 2 Working with Numbers 93

How Does VBA Store Numeric Values? 94
Whole Numbers 97
Floating-Point Numbers and the Errors They Can Cause 98
Scaled Integers 102

Using Built-In Numeric Functions 105
Mathematical and Trigonometric Functions 105
Numeric Conversions and Rounding 109
Random Numbers 116
Financial Functions 120
Base Conversions 125

Custom Math and Numeric Functions 129
Mathematical Functions 130
Geometric Calculations 132
Statistics 136

Summary 142

Chapter 3 Working with Dates and Times 143

What Is a Date, and How Did It Get There? 144
An Added Benefit 145
Supplying Date Values 146

The Built-In VBA Date Functions 147
Exactly When Is It? 147
What If You Just Want One Portion of a Date/Time Value? 149
Pulling the Pieces Apart 149
Performing Simple Calculations 153

Odd Behaviors 159
Displaying Values the Way You Want 160
Beyond the Basics 167
Finding a Specific Date 168

Finding the Beginning or End of a Month 169
Finding the Beginning or End of a Week 170
Finding the Beginning or End of a Year 172

Table of Contents

xiii

Finding the Beginning or End of a Quarter 173
Finding the Next or Previous Weekday 176

Finding the Next Anniversary 178
Finding the

n

th Particular Weekday in a Month 180
Working with Workdays 182

Finding the Next, Previous, First, or Last
Workday in the Month 186

Manipulating Dates and Times 190
How Many Days in That Month? 190
How Many Mondays in June? 192
Is This a Leap Year? 194
Rounding Times to the Nearest Increment 196
Converting Strings or Numbers to Real Dates 199

Working with Elapsed Time 203
Finding Workdays between Two Dates 203
Calculating Age 207
Formatting Elapsed Time 209
Formatting Cumulative Times 214

Handling Time Zone Differences 217
Using the SystemTimeInfo Class 218

Summary 221

Chapter 4 Using VBA to Automate Other Applications 223

Automation Basics 224
Terminology 225
What’s the Value of Automation? 226
Object Classes 227
Type Libraries: The Key to Classes 228
Browsing Objects with Object Browser 230

Creating Object Instances 232
Early Binding and Late Binding 233
A Simple Early Binding Example 233
When to Instantiate 236
CreateObject and GetObject 237
Understanding Class Instancing 240

Controlling Other Applications 243
Learning an Application’s Object Model 243
Differences in Application Behavior 245
Memory and Resource Issues 246

Creating Automation Solutions with Microsoft Office 246
The Office Object Models 247

Example: Word as a Report Writer 253
Creating the Word Template 253

Table of Contents

xiv

Building the Invoice 255
Example: Populating an Excel Worksheet 260

Using an Existing File 260
Our Scenario 260
Creating an Object from an Existing Document 262
Updating the Worksheets and Chart 263

Tapping into Events Using WithEvents 266
What Is WithEvents? 266
Using WithEvents 267

Summary 270

Chapter 5 Creating Your Own Objects with VB Class Modules 271

Why Use Class Modules? 273
Encapsulate Data and Behavior 273
Hide Complex Processes from Other Developers 276
Making Development Easier 276

How Class Modules Work 277
Class Modules Are Like Document Templates 277
Class Instances Are the Documents 277

A Simple Example: A Text File Class 278
Creating an Object Class 278
Creating a Property 280
Creating a Method 281
Using the Object Class 284

Using Property Procedures 289
What Are Property Procedures, and Why Use Them? 289
Retrieving Values with Property Get 289
Setting Values with Property Let 290
Read-Only and Write-Only Properties 292
Creating Object Properties 292

Creating Enumerated Types 294
Defining an Enumerated Type 294
Using Enumerated Types with Methods and Properties 295

Applying Class Module Techniques to the Windows API 296
Working with the Clipboard 297
Designing the Clipboard Class 297
Testing the Clipboard Class 303

Summary 303

Chapter 6 Advanced Class Module Techniques 305

Object Model Design Principles 307
Determining Class Requirements 308
Specifying Class Members 310

Table of Contents

xv

Object Model Naming 312
Modeling Class Relationships 314

Developing Object Hierarchies 315
Creating a Parent Property 317
Self-Referencing 319

Collections of Objects 319
Collection Basics 319
Creating Your Own Collections 322
Creating a Collection Class 324
Collection Class Tricks 333

Creating and Using Custom Events 339
Defining Custom Events 339
Raising an Event 340
Responding to Events 342
Using Forms with WithEvents 345
Custom Events Caveats 347

Interface Classes and the Implements Keyword 347
Interface Inheritance 348
When to Inherit 348
Interface Inheritance Example: Callbacks 349

Other Advanced Considerations 356
Error Handling in Classes 356
Circular Reference Issues 360
Shared Classes 365

Summary 367

Chapter 7 Searching and Sorting in VBA 369

Timing Is Everything 371
Introducing the StopWatch Class 371
Using the StopWatch Class 373

Using Arrays 374
What Is an Array, Anyway? 374
Creating an Array 377
Using Data in an Array 377
Sizing an Array 378
Using a Variant to Point to an Array 380

Sorting Arrays 384
How Does Quicksort Work? 385
Watching Quicksort Run 396
Using Quicksort 398
Speed Considerations 399
Sorting Collections 401
Sorting Other Types of Data 408

Table of Contents

xvi

Searching 420
Why Use the Binary Search? 420
How Does Binary Search Work? 421
Using Binary Search 428

Summary 430

Chapter 8 Creating Dynamic Data Structures Using
Class Modules 431

Dynamic versus Static Data Structures 433
Simple Dynamic Structures 434
Recursive Dynamic Structures 434

How Does This Apply to VBA? 435
Retrieving a Reference to a New Item 436
Making an Object Variable Refer to an Existing Item 437
What If a Variable Doesn’t Refer to Anything? 437
Emulating Data Structures with Class Modules 438
Creating a Header Class 439

Creating a Stack 439
Why Use a Stack? 440
Implementing a Stack 440
The StackItem Class 441

Creating a Queue 448
Why Use a Queue? 448
Implementing a Queue 449

Creating Ordered Linked Lists 456
The ListItem Class 456
The List Class 456

Creating Binary Trees 469
Traversing Binary Trees 469
What’s This Good For? 470
Implementing a Binary Tree 472

The Tree Class 473
Adding a New Item 473
Adding a New Node: Walking the Code 476
Traversing the Tree 477
Traversing a Tree: Walking the Code 479

Optimizing the Traversals 481
The Sample Project 481
What Didn’t We Cover? 482
Summary 483

Table of Contents

xvii

Chapter 9 Retrieving and Setting System Information 485

VBA and System Information 487
The API Functions 490

Using the GetSystemMetrics Function 491
Using the SystemParametersInfo Function 492
Functions That Require Data Structures 496

Computer and Operating System Information 501
Using the SystemInfo Class 506
Windows Accessibility 527
Using the Accessibility Class 541
Creating the Accessibility Class 542

Keyboard Information 545
Using the Keyboard Class 546
Creating the Keyboard Class 551

Memory Status 553
Using the MemoryStatus Class 554
Creating the MemoryStatus Class 555

Mouse Information 558
Using the Mouse Class 561

Non-Client Metrics 565
Using the NonClientMetrics Class 567
Creating the NonClientMetrics Class 570

Power Status 577
Using the PowerStatus Class 580

Screen and Window Information 583
Using the ScreenInfo Class 589
Creating the ScreenInfo Class 590

System Colors 591
Using the SystemColors Class 592
Creating the SystemColors Class 594

Summary 596

Chapter 10 Managing Windows Registry Data 597

Registry Structure 599
Referring to Registry Keys and Values 601

VBA Registry Functions 601
Windows Registry Functions 604

Opening, Closing, and Creating Keys 605
Working with Registry Values 609
Enumerating Keys and Values 613

An Object Model for the Registry 617
An Overview 618

Table of Contents

xviii

Implementing the Classes 620
Using the Registry Objects 629

Summary 632

Chapter 11 The Windows Networking API 633

Basic Network Functionality 635
Using Common Network Dialogs 635
Handling Network Resources Yourself 642
Disconnecting from a Network Resource 647
Retrieving Information about Network Resources 650

Advanced Networking Functionality 656
Retrieving Universal Name Information 657
Enumerating Network Resources 663
Putting It All Together 674
The LAN Manager API 681

Summary 699

Chapter 12 Working with Disks and Files 701

The Built-In VBA Disk and File Functions 703
The Dir Function Explained 703
Using File Attributes 705
Doing the Disk File Shuffle 710
Some File Information: FileLen and FileDateTime 711
Directory Management 711

File I/O If You Must 716
Getting a Handle on Files 716
Using the Open Function 717
Manipulating File Position 720
Statements for Reading and Writing 721

The Windows API: Where the Real Power Is 730
Comparing API Functions with VBA Functions 730
Getting Disk Information 732
Fun with Paths 743
A Replacement for Dir 749
Windows Notification Functions 756
Searching for Files 763
Procuring Temporary Filenames 772
Getting a (Windows) Handle on Files 773
Windows API Dates and Times 778
Working with File Times 782

Using the Windows Common File Dialogs 788
Using the CommonDlg Class 788

Table of Contents

xix

Using the Windows File Open/Save Common Dialogs 795
Summary 808

Chapter 13 Adding Multimedia to Your Applications 809

An Introduction to Windows Multimedia 811
Multimedia Services and MCI 811

One-Step Multimedia 815
Beeping Away 816
MessageBeep: One Step Better 816
Playing Waveform Audio with PlaySound 817

Understanding the Media Control Interface 829
Working with MCI Devices 829
The MCI Command String Interface 834
The MCI Command Message Interface 837

Putting MCI to Work 847
Playing Audio CDs 848
Recording and Playing Waveform Audio 857
Putting Digital Video in a Window 869

Summary 877

Chapter 14 Using the Scripting Runtime Library Objects 879

Why Is This Chapter Different? 881
Referencing and Using SCRRUN.DLL 882
The FileSystemObject Object 884

Testing the Simple FileSystemObject Methods 890
Copying and Moving Files and Folders 891
The Drives Collection 893
The Drive Object 894
The Folder Object 897

Navigating through Folders 900
The Files Collection 902
The File Object 903

Methods of File Objects 905
Retrieving a Specific File Object 908
Modifying Attributes 909

The TextStream Object 913
Opening a TextStream 914
Making the TextStream Object Work 915
Properties of the TextStream Object 917
Using the TextStream Object 918

Working with the Dictionary Object 920
Taking the Dictionary for a Spin 922

Table of Contents

xx

A Simple Example 924
Why Is a Dictionary Better Than a Collection? 928

Summary 930

Chapter 15 Writing Add-Ins for the Visual Basic IDE 931

Working with the IDE Object Model 934
The Class Hierarchies 934
Working with Windows 937
Working with VBA Projects 943
Modifying Project Components 949
Manipulating Code Modules 959

Putting It Together: An Alternative Object Model 970
Examining Our Object Model 971
Using Our Object Model 975

COM Add-Ins 978
Using the COM Add-Ins Dialog 978
Exploring IDTExtensibility2 979

Building a COM Add-In for the VBA IDE 982
Using the COM Add-In Designer 983
Specifying Add-In Load Behavior 987
Adding the Type Library Reference 987
Coding the Add-In 988
Using Our Object Model 991
Debugging, Compiling, and Distributing 993
The Add-Ins Collection 996

Summary 997

Appendix A

The Reddick VBA Naming Conventions, Version 6 999

Changes to the Conventions 1000
An Introduction to Hungarian 1001

Tags 1002
Creating Data Types 1004
Constructing Procedures 1006
Prefixes 1007
Suffixes 1009
Filenames 1010
Host Application and Component Extensions to the

Conventions 1010
Summary 1024

Index 1025

INTRODUCTION

V

isual Basic for Applications (VBA) started its life as a tool that would allow
Excel, and then other Microsoft Office applications, to control their own environ-
ment programmatically and would work with other applications using OLE
Automation. In 1996, the VBA world exploded when Microsoft allowed other
vendors to license the VBA language engine and environment for their own prod-
ucts. At the time of this writing, hundreds of vendors have licensed this exciting
technology, making it possible for users of many products to control their applica-
tions and any Automation server using VBA.

The best part about all this for the VBA developer is that the skills you learn in
one product will carry directly to any other VBA host. The programming environ-
ment is the same, the debugging tools are the same, and the language is the same.
Finally, Basic programmers (after all, VBA is still a variant on the original BASIC
language) are getting some respect. Using tools that end-users can appreciate and
work with, you can write applications that they can live with, modify, and extend.

Here’s what Microsoft doesn’t make clear: VBA is a language, a development
environment, and a forms package. This book is only about one part of that trium-
virate: the language. We’ve attempted to dig into details of VBA, the language,
that you won’t find elsewhere. We’ve not made any attempt to discuss the forms
package that’s part of VBA, nor have we spent any time discussing the develop-
ment environment.

What this means is that this book applies to anyone using VBA 6, and that
includes Office 2000, Visual Basic 6, and the myriad of other products that have
licensed the VBA 6 technology. In essence, this book is host-agnostic, and all the
code runs equally well in VB6 or Access 2000.

About the Book

VBA has become the glue that ties together the various pieces of multi-platform
solutions, and many new programmers are being tossed into situations in which
they need programming help. In this book, you’ll find creative solutions to many
programming problems.

Is this book a replacement for the VB or VBA programmer’s reference manuals?
Not even close! Nor does it intend to provide you with a complete reference. This
book is about ideas, about solutions, and about learning. We’ve taken our com-
bined years of Basic programming; come up with a list of topics that we think are
interesting and that provide challenges to many developers; and created a book
that, we hope, collates all the information in useful and interesting ways.

Introduction

xxii

First and foremost, this book is

not

 product specific. That is, whether you’re using
Microsoft Office 2000 or any other product that hosts VBA 6 or later, you’ll be able to
take advantage of the code in this book. Because we’ve provided the code in three for-
mats (as Microsoft Access 2000 databases, Microsoft Excel 2000 workbooks, and as
separate text files with VB6 project files), anyone who has a CD-ROM reader can
immediately make use of this code. We’ll say it again: Although we used Office 2000
in developing this book,

the code provided here should work in any product that hosts VBA 6.

For these reasons, we’ve focused on code, not the user interface, so you’ll find
very few examples in the book that actually

look

like anything much. For the most
part, the examples involve calling code from the Immediate window. Don’t expect
lots of pretty examples with forms you can dig into—that wasn’t our goal at all.
We’ve provided the tools; now

you

 provide the spiffy interface!

Our goal in writing this book was both to provide useful code and to explain
that code so you can modify and extend it if you need to add more or different
functionality. We’ve covered a broad range of topics but haven’t even made an
attempt to be the absolute final word on these, or any, topics. Doing so would
require a book ten times the size of this one. No, this book is meant as a starting
place for explorations into new topics, in addition to providing a ton of useful code.

Is This Book for You?

This book is aimed squarely at the legions of developers, both new to, and experi-
enced with, VB and VBA development, who need help with specific coding situa-
tions. But if you’re looking for a description of how the If...Then construct works
or for someone to hold your hand while you write your first VBA procedure, per-
haps this isn’t the right book for you. On the other hand, if you want to work
through a great deal of code, copy and paste code and complete modules from our
samples directly into your applications, and work through the code line by line,
you’ve come to the right place.

This book will appeal to three separate audiences:

VBA beginner to intermediate

You’ve written a few procedures and are try-
ing to put together an application. You need help writing specific procedures; stop-
ping to figure out the code on your own would be an insurmountable task. You can
copy and paste code from the book right into your modules, skip the boring part
where we describe how the code works, and get back to work on your application.

VBA advanced

You’ve written a lot of code and are facing more and greater
coding challenges. You need specific procedures written and could do it your-
self, but there are other pressing needs (like getting your application finished
yesterday). You can take the routines from this book, modify them to exactly

 Introduction

xxiii

meet your needs, and work through the explanations provided here to add to
your working knowledge about the use of VBA.

VBA expert

Even if you’re among the most experienced of VBA program-
mers, there are some procedures you’ll need and just haven’t written yourself.
You can take the code provided here as a starting point and embellish and fine-
tune to your heart’s content. Of course, you may find a better way to rewrite the
code we’ve provided; if so, we’d love to hear from you!

If you find yourself in any one of these three categories, have we got some code
for you!

What You Need to Know

To make it possible to stuff as much code as possible into this book, we’ve had to
dispense with material specifically geared for beginners. If you’re not sure where to
put the code, how to create a module, or even what the different variable types are
in VBA, perhaps you’d do best to put this book aside for a week or so and study the
reference materials provided with the VBA host you’re working with. Make sure
you have a good grasp of the following topics before jumping into this book:

•

Creating modules

•

Creating procedures

•

Using variables and their data types

•

Using VBA syntax (including If…Then, For…Next, and other control
structures)

If you take the time to review these concepts before delving into this book,
you’ll get a great deal more out of the material here.

Conventions Used in the Book

Having worked on a number of projects together, we’ve found that a consistent
style and defined conventions make it much simpler for multiple programmers to
work together on a project. To make it easier for you to understand our code (and
for us to understand each other’s), we’ve adopted a naming standard, which
we’ve stuck to both throughout this book and in all our professional work.

We’ve used version 6 of the Reddick VBA (RVBA) naming conventions for the
naming of objects, which have been accepted by many VB and VBA developers as
the naming standard to follow. Greg Reddick, a noted Access and Visual Basic
developer and trainer, developed the standard, which bears his name. Even if you
don’t subscribe to the RVBA standard, you’ll likely appreciate the fact that it has
been used consistently throughout this book. These conventions, which were first
published in

Smart Access,

 are included in their entirety in Appendix A.

Introduction

xxiv

In addition to following the RVBA standard, we’ve prefaced all Public func-
tions, subroutines, and user-defined types that you may wish to use for your own
code, with the “dh” prefix (which stands for

Developer’s Handbook

). Also, we have
aliased all Public Windows API declarations using a “dh_api” prefix, and we have
prefixed all Public constants with “dhc”. These conventions should avoid naming
conflicts with any existing code in your applications. However, if you import mul-
tiple modules from various chapters’ samples into a single application, you may
find naming conflicts as a result of our using consistent naming throughout the
chapters. In that case, you’ll need to comment out any conflicting API declarations
or user-defined types.

A note about error handling: When writing utility procedures, such as those
found in this book, it’s always a toss-up whether to include extensive error han-
dling. We decided, both for the sake of simplicity and because we both hate using
service routines that display error messages, to include very little error handling,
except in cases where the procedures need it for their own use. This means that
your code, calling our procedures, will need to trap and handle errors that bubble
up from the code provided here. Of course, if you’d rather, you can simply add
your own error handling to the procedures you import. For more information on
using error handling, please see Appendix C, which is included on the CD-ROM
that accompanies this book.

Appendices

In addition to the fifteen chapters, we’ve included four appendices. Appendix A is
included in the book. Appendices B, C, and D are included on the CD-ROM that
accompanies this book.

•

Appendix A contains the complete Reddick VBA naming conventions.

•

Appendix B contains a chapter borrowed from our “sister” book (

Access
2000 Developer’s Handbook: Desktop Edition

, also from Sybex), which intro-
duces the use of the Windows API in VBA applications. If you’ve never
looked into how VBA apps can use the Windows API, you’ll want to at least
skim this appendix before working with the code in Chapters 9 through 13.

•

Appendix C focuses on writing bulletproof, well-tuned VBA applications,
including handling errors, creating event logs, and creating a procedure-
tracking stack for your applications. Because many of this book’s readers
already have the concepts presented in this appendix under their belts,
we’ve moved this from being a full chapter into the appendix territory for
this edition of the book.

 Introduction

xxv

•

Appendix D contains a Folder and File object model—that is, a set of classes you
can use for modeling the file system. This code was originally in Chapter 12.
However, we noticed that in this edition, Chapter 14’s coverage of the FileSyste-
mObject made this home-grown set of classes (perhaps) redundant. On the
other hand, there’s something to be said for having modifiable source code, so
we’ve included this as an appendix. Feel free to dig in if you’re interested.

Using the Chapter Samples

The CD-ROM includes an Installer (Setup.exe) that will install the chapter projects
on your hard drive in a folder named vbadh. Within the vbadh folder, there is a
folder for each chapter that has code examples. In these folders, you’ll find all the
example files used in the book. We’ve provided each chapter’s examples in at least
three formats. First, each chapter’s folder includes a Microsoft Excel 2000 work-
book containing all the modules discussed in the chapter, ready for you to experi-
ment with. In addition, we’ve provided each module as a separate BAS or CLS file
(along with a Visual Basic VBP file), so you can import these into your projects in
whatever VBA host you’re using. Finally, to make it simpler for Microsoft Access
2000 developers, we’ve created one database file for each of the chapters, with all
the modules imported for you.

Tell Us Who You Are

In order to make it easy for us to contact you with information about updates to
the book and other useful information about VB and VBA development, we’ve set
up a Web site that you can visit:

http://www.developershandbook.com

. At this
Web site, you can fill out a form with information about yourself so we can let you
know about changes, errata, enhanced examples, and other updates. Be the first
person on your block to know about updates to

VBA Developer’s

Handbook

. Visit
and sign up now.

How to Use This Book

We can think of two ways in which you might want to use this book. You may just
want to start at the beginning and plow straight through until you’ve reached the
other side. That’s fine, but keep some sticky notes at hand so you can mark interesting
code as it goes by. Otherwise, you’ll never remember where all the fun stuff was.

However, it’s more likely that you’ll peruse this Introduction, browse through a
few chapters, and then use the book as a reference when you need it. That’s fine,
too. Just do us two favors:

•

If you’re not comfortable with class modules, work your way through Chapter
5, at least, to find out how they work and what they bring to the VBA “party.”

Introduction

xxvi

•

If you’ve never used Windows API calls, be sure to visit Appendix B on the
CD-ROM that accompanies this book. This appendix introduces ways in
which the Windows API can contribute to your programming efforts and
explains how to use this valuable technique.

Both of these topics are crucial to a complete understanding of much of the rest
of the book, and attempting to work through the remaining chapters without an
understanding of at least these prerequisites will make for a steep climb.

Focusing on Business Logic

In 1991, Microsoft released Windows 3, the first widely adopted version of Win-
dows, and ushered in the era of the graphical user interface (the efforts of compa-
nies like Xerox and Apple notwithstanding). At the time, the only way to create
Windows applications was by using the C language and DOS-based tools like
Microsoft C 7. To make Windows more accessible to the legions of programmers
who grew up on Microsoft’s BASIC offerings, the company released Visual Basic 1
in 1992. VB 1 was heralded as revolutionary in terms of Windows development
tools because it insulated the programmer from most of the tedious details of Win-
dows programming, like memory allocation and message loops, and let them
focus instead on an application’s business logic.

The race was on to adapt VB technology to other programming tasks, such as
automating applications through a “macro” language. Programmers saw many
variations on this theme throughout the early 1990s, including WordBasic, Project
Basic, and Access Basic, all with their own idiosyncrasies in syntax and capabili-
ties. It quickly became apparent that a common syntax was needed if BASIC was
to maintain its importance in the realm of Windows development. Microsoft
responded to this need in 1993 with the introduction of Visual Basic for Applica-
tions (VBA) in Excel 5 for Windows. It wasn’t long until the entire Microsoft Office
product line had adopted VBA as the automation language of choice. By 1995,
VBA had become a common component for Access, Word, and Excel, sharing its
core technology (and source code) with Microsoft Visual Basic.

At the same time, other companies in the software industry were recognizing
the importance of providing an automation language along with a program’s core
functionality. The mid-1990s saw the introduction of a number of embedded lan-
guage technologies, most based on BASIC. During this period, Microsoft created a
version of the VBA development environment and run-time engine (version 5)
that could be factored out of Office and offered to third-party software develop-
ers. The first company to license VBA from Microsoft was Visio Corporation.
Visio released the first VBA 5–enabled product, Visio 4.5, in late 1996. Ironically,
Microsoft acquired Visio in 1999. Today, more than 100 companies have licensed

 Introduction

xxvii

VBA from Microsoft, making it one of the most widely adopted programming
technologies in the world. For the latest information on VBA, you can visit the
VBA Web site at

http://msdn.microsoft.com/vba/

.

A Language Is about Data

By looking at the differences between VB 1 and, say, QuickBasic, you can begin to
understand what makes up the core language and what belongs to the particular
platform and development environment. At the heart of any programming lan-
guage is the ability to model, store, and manipulate data. After all, that’s the goal of
most computer programs—accept input, perform calculations, and produce output.
All BASIC variants enable you to do this using variables, operators, and keywords.

Of course, unless you or your user can supply a program with data input or
view, the program’s output is not of much use. That’s why each implementation
of a language includes functions for obtaining and displaying data. Therefore, the
question is whether or not these functions are really part of the language. The
approach we’ve adopted in this book is that, for the most part, the Visual Basic
language is not about input or output but strictly about data manipulation. Adopting
this approach has enabled us to present examples that work in any recent variant
of the language, regardless of development environment.

What this means is that we don’t cover functions that deal with capturing user
input, monitoring the keyboard or mouse, drawing user interfaces, or printing.
We also don’t cover the object models of VB or other VBA hosts, like Access or
Excel. Instead, we focus on manipulating variables and data structures to accom-
plish common tasks, like computing dates, writing to disks, controlling other
applications through Automation, and reading system information. For the most
part, input and output in this book’s samples is limited to the Visual Basic equiva-
lent of a command line, the Immediate window.

The Visual Basic Family

Microsoft often refers to the current lineup of BASIC derivatives as the Visual
Basic family. There are currently three family members, Visual Basic, VBA, and
VBScript, each with their own role to play in enabling software development
using the Visual Basic language.

Visual Basic is the senior member of the group and represents the stand-alone
programming system that ships as part of Microsoft’s Visual Studio development
suite, as well as a separate product. The role of Visual Basic (or just VB) is to pro-
vide software developers with a tool for creating stand-alone components and
applications. Even though VB’s initial appeal was the ease with which developers

Introduction

xxviii

could create graphical interfaces, you can use VB to create pure, code-only compo-
nents. This has become an attractive way to factor a program’s functionality, lead-
ing to pieces that can easily be reused.

Visual Basic consists of a graphical development environment that enables you to
design your user interface, write program logic, and compile and debug your applica-
tion using the same tool. While it appears to the user as integrated, there are actually a
number of separate components that make up the VB development experience:

Development environment

Provides the user interface components for
viewing and editing code and creating forms. It also provides interactive win-
dows for debugging tasks. The development environment is also extensible,
enabling third parties to create

add-ins

 that assist developers in working with VB
projects and

designers

 that create components that become an integral part of a
compiled application.

Visual Basic forms engine

Provides all the user interface functionality and
is an inextricable part of the VB experience. In addition to the native capability
to display windows with primitive controls, like labels and text boxes, the forms
engine is responsible for supporting the ActiveX control architecture that pro-
vides developers with a rich set of interface options. Many developers have
wished for the ability to use VB forms in other products, but the truth is that the
two are so closely related that this is impossible.

Visual Basic language engine

Is responsible for parsing and compiling
source code. It translates variables, keywords, and operators into a proprietary
set of operation codes (op-codes) and performs optimizations for constructs like
For Next loops. Some people still think Visual Basic is an interpreted language.
It isn’t. The language engine has almost no knowledge of any of the user inter-
face or other components that make up a typical VB application, although there
are a few exceptions, such as keywords for primitive drawing operations held
over from earlier versions of the language.

Run-time engine

Acts as a counterpart to the language engine and is charged
with executing the op-codes generated by the language engine. The run-time
engine also provides debugging capability and implements the hooks necessary
to interact with the development environment’s user interface.

Automation infrastructure

Opens up the development environment to
external components and mediates communication among them. Many of the
capabilities you associate with VB, such as database access, are actually pro-
vided by separate components. VB uses COM Automation as the glue that ties
these components together. This infrastructure also enables you to create your
own components and is the foundation for VBA class modules.

 Introduction

xxix

Native code compiler

Is the most critical aspect of Visual Basic as a distinct
member of the VB family. After the language engine compiles source code into
op-codes that the run-time engine can execute, the native code compiler turns
these into machine instructions, producing a Windows executable or COM DLL.
In fact, VB uses the same compiler and linker as Visual C++. Visual Basic is the
only member of the VB family that can create stand-alone executable programs.

The other two family members, VBA and VBScript, inherit their features
(and, to some extent, their source code) from Visual Basic. Visual Basic for
Applications was designed as a hosted component to provide automation ser-
vices to any COM-based application. It uses the VB environment, Automation
infrastructure, language, and run-time engines to deliver these capabilities. It is
important to understand this if you are to overcome skepticism regarding the
power of VBA. It has the same core components as VB; the only thing it lacks is the
forms engine (although it does have its own) and the ability to create stand-alone
components. In every other respect, the language engine is just as powerful. In a
sense, VB could be described as VBA plus a forms engine and compiler. That’s
why we chose to write this book in the first place, and why we still refer to lan-
guage constructs as belonging to VBA rather than VB.

At the other end of the spectrum from VB, VBScript was designed to offer light-
weight automation capabilities and is optimized for Web-based applications. It
was subject to a very different set of design constraints than VB and VBA; thus, it
lacks many of their features and, it could be argued, some of their power. For
instance, VBScript is just one implementation of a script engine using Microsoft’s
ActiveX Scripting technology framework. ActiveX Scripting is a framework that
enables an application like Internet Explorer to host any number of different script
languages simply by installing a separate language component. JScript and Perl
are two examples of languages that have been implemented using this technol-
ogy. Furthermore, VBScript was designed to be installed over the Internet, which
placed tight constraints on the size of the script engine. For this reason, it has no
integrated development environment or debugging tools and is just a subset of
the complete VB language; although this is rapidly changing to include more and
more core language features.

Because VBA is a “universal” language, all the code examples in this book
should operate equally well in Office 2000, Office XP, VB6, and any other host
product that includes VBA 6 (including Visio, AutoCad, and myriad other
products that have licensed this technology from Microsoft). The file formats
for Office 2000 and Office XP remain essentially unchanged (Access 2002 does
provide a new file format, but it’s able to transparently load and work with

Introduction

xxx

Access 2000 files, and that’s the format we’ve chosen to use here), so all the exam-
ples work equally well in both products.

Why This Book Is Useful

We hope it’s now clear what the Visual Basic language is and what this book cov-
ers. Simply stated, the Visual Basic language is the core syntax, compiler, and run-
time engine shared by all members of the Visual Basic family (with small excep-
tions for VBScript). It does not concern itself with particular user interface imple-
mentations or host environments. In focusing on the pure language, this book
attempts to be a valuable resource for all developers wishing to get the most out of
their development tools, be those VB, VBA in Office, or third-party applications.

We leave it up to you to understand how to create forms or take advantage of the
object model provided by your particular VB language host. Although we must delve
into these areas occasionally, such as in our discussion of Automation, we make no
claim to be even a reasonable resource for this information. This book is meant to
complement any other material you discover that is geared directly toward your
development tool. If you keep this volume side-by-side with your VB, Access, Excel,
or Internet Explorer books and consult it as often, then we’ve succeeded in our efforts
to deliver to you valuable knowledge on what we call the Visual Basic language.

c h a p t e r

1

Manipulating Strings

�

Understanding how string values are stored and
used in VBA

�

Using the built-in VBA string-handling functions

�

Searching for and replacing text

�

Gathering information about strings

�

Converting strings

�

Working with substrings

Chapter 1

•

Manipulating Strings

2

A

lmost any VBA application will need t o handle string (text) data at one
point or another. VBA itself provides a useful set of string-handling functions, but
the functionality of other functions as a whole is not nearly as full-featured as that
provided by other, more text-centric programming languages. This chapter first
makes a quick pass through the existing functions and then provides many useful
routines to add to your string-handling bag of tricks. Surely, no chapter on this
topic could cover every possible combination of useful functions, but the ones we’ve
provided here should give you a good start in writing your own VBA solutions.

The sample files you’ll find on the CD-ROM that accompanies this book are
listed in Table 1.1:

Because the modules for this chapter take advantage of ADO, you’ll need to make
sure your own project includes a reference to the Microsoft ActiveX Data Object 2.1
Library before you import the StringsBAS module into the project. Use the Tools �

References menu (or Project �

 References menu, in Visual Basic) to add the neces-
sary reference. Otherwise, your code will not compile once you’ve added the

Strings module to your project.

T A B L E 1 . 1 :

String-Handling Functions

Filename Description

STRINGS.XLS Excel file with sample functions

STRINGS.BAS Text file with sample functions

TESTSTR.BAS Text file with test procedures

PROPER.MDB Access 2000 database, containing sample for dhProperLookup

PROPER.TXT Text version of sample for dhProperLookup

PROPER.XML XML-based recordset for dhProperLookup

STRINGS.VBP Visual Basic project with sample code

STRINGS.MDB Access 2000 database, containing sample functions

 How Does VBA Store Strings?

3

How Does VBA Store Strings?

A VBA string is simply a collection of bytes. To make it easier for VBA to work
with strings, each string also maintains its own information about its length. In
addition, unlike other programming languages, VBA takes care of creating,
destroying, and resizing string buffers. You needn’t worry about how VBA finds
strings in memory, whether they’re contiguous in memory, or how or when VBA
reclaims the memory of the string used once you’re done with it.

VBA provides two types of strings:

fixed-length

 and

dynamic

. Fixed-length
strings are those you declare with a fixed size, like this:

Dim strFixed As String * 100

In this case, strFixed will always contain exactly 100 characters, no matter how
many characters you’ve placed into it. When VBA first creates the variable, at run-
time, it fills the variable with 100 spaces. From then on, if you attempt to retrieve
the length of the string, the output will always be 100:

Debug.Print Len(strFixed)

VBA fills the extra positions with spaces. You’ll need to use the Trim function in
order to use the string in any other expression (see the section “Working with Por-
tions of a String” later in this chapter for more information). Fixed-length strings
can be no longer than 65,526 characters.

Online help for VBA states that a fixed-length string can be up to 2

16

 (or
65,536) characters long. Not so—if you attempt to create one with more than 65,526

characters, VBA won’t compile your code.

Dynamic strings, on the other hand, have no fixed size. As you add or remove
characters from these objects, VBA takes care of locating memory in which to
place the text and allocates and deallocates memory as necessary for your text. To
declare a dynamic string, you use a declaration like this:

Dim strDynamic As String

In this case, if you retrieve the length of the string, the result will accurately reflect
the amount of text you’ve placed into the variable. Dynamic strings can contain
up to around two billion characters.

Chapter 1

•

Manipulating Strings

4

How do you decide which type of string to use? Dynamic strings require a bit
more processing effort from VBA and are, accordingly, a bit slower to use. On the
other hand, you make up the time by not needing to use the Trim function to remove
excess space every time you use the string. As you’ll see by working through the
examples in this chapter, we use fixed-length strings only when it’s necessary.
When working with a single character at a time, it makes sense to use a fixed-length
string declared to contain a single character. Because you know you’ll always
have only a single character in the string, you’ll never need to trim off excess
space. You get the benefits of a fixed-length string without the extra overhead.

Unicode versus ANSI

The 32-bit Windows “universe” supports two character storage mechanisms:
ANSI and Unicode. The ANSI storage standard uses a single byte for every char-
acter, with only 256 different characters allowed in any ANSI character set. If you
want to display characters from a different set of 256, you must load a separate
code page. This limitation makes it difficult to create internationalized applica-
tions. Windows 95 and Windows 98 use this approach for compatibility with pre-
vious versions of Windows. The Unicode standard allows for 65,536 characters,
each taking up two bytes. The Unicode character set includes just about all the
known written characters and ideograms in a single entity. In this way, an appli-
cation that embraces the Unicode standard can support (once its text has been
translated) just about any written language. Windows NT and Windows 2000
support the Unicode standard.

No matter what operating system you’re using, VBA stores strings internally in
Unicode format. That is, every character takes up two bytes of space. When VBA
needs to communicate with Windows 95 or Windows 98 (when you include Win-
dows API calls in your code, for example), it must first convert strings to ANSI
format. This happens automatically when you use the ANSI version of a Win-
dows API call that involves strings. The only other time you’ll care about how
VBA stores strings is when you want to convert a string into an array of bytes—a
useful technique that we’ll take advantage of a few times in this chapter. In this
case, a string containing five characters becomes an array of bytes containing ten
bytes. For example, a string containing the text

Hello

 would contain the following
ten bytes, once converted to a byte array:

72 0 101 0 108 0 108 0 111 0

 Unicode versus ANSI

5

Each pair of bytes (72 and 0 for the

H

, for example) represents the Unicode stor-
age for a single character. However, if you were running Microsoft Excel in Korea,
for example, and were entering text in your native language, the second byte
wouldn’t be 0. Instead, it would be a value that combined with the first byte to
represent the character you’d typed.

Using Strings and Byte Arrays

Because it’s often faster and simpler to work with arrays of bytes than to work with indi-
vidual characters in a string (and you’ll find some examples in this chapter that use this
technique), VBA provides a simple way to convert strings into byte arrays and back. Simply
assigning a string to a byte array variable causes VBA to copy the data into the array.
When you’re done working with the array, you can assign it right back into the string vari-
able. For example, the following code fragment copies data from a string into a byte array,
performs processing on the array, and then copies the array back into the string:

Sub StringToByteArray()

 Dim strText As String

 Dim aByt() As Byte

 Dim intI As Integer

 strText = "Hello"

 ' VBA allows you to assign a string into

 ' a byte array and then back again.

 aByt() = strText

 For intI = LBound(aByt) To UBound(aByt)

 Debug.Print aByt(intI);

 Next intI

 Debug.Print

 strText = aByt()

 Debug.Print strText

End Sub

Although you won’t use this technique often, if you need to process each byte of a string,
it’s the best solution.

Chapter 1

•

Manipulating Strings

6

In previous versions of Basic, many programmers used string variables to contain
binary data (that is, non-textual data, such as bitmaps, sound files, and so on). In
VBA, this isn’t necessary, nor is it advisable. Instead, use arrays of bytes for non-
textual data. Because VBA performs ANSI-to-Unicode conversions on the fly,
you’re almost guaranteed that your non-text data will be ruined once you place it

into a string variable.

Using Built-In String Functions

VBA provides a large number of string-handling functions. This section intro-
duces many of those functions, broken down by the area of functionality, and dis-
cusses the most useful of the built-in functions. The remainder of the chapter
provides techniques that combine the built-in functions to perform tasks for
which you would otherwise need to write custom code.

Comparing Strings

VBA provides three ways for you to compare the contents of one string with
another: comparison operators (such as =, <, and so on), the Like operator, and the
StrComp function. In addition, you can specify the method of comparison for each
module using the Option Compare statement in the declarations area.

Option Compare

The Option Compare statement, if it’s used at all, must appear in a module before
any procedures, and it tells VBA how you want to make string comparisons
within the module. The choices are as follows:

Option Compare Binary

Comparisons are made based on the internal sort
order of the characters, using their binary representation. In this situation, char-
acters are treated case sensitively (that is,

A

 isn’t the same as

a

).

Option Compare Text

Comparisons are made based on the text sort order of
the current locale. Characters are treated, at least in English, case insensitively.

Option Compare Database

Is available only in Microsoft Access. Compar-
isons are made based on the locale ID of the current database.

 Using Built-In String Functions

7

If you don’t specify an Option Compare setting, VBA uses Option Compare Binary.
In that case, if you attempt to perform a simple comparison between

A

 and

a,

you’ll get a False return value. If you’re working with strings and performing
comparisons, make sure you’re aware of the Option Compare setting for the

module.

Comparison Operators

You can use the simple logical operators to compare two strings, like this:

If strText1 < strText2 Then...

In this case, VBA performs a character-by-character comparison according to the
Option Compare setting in force in the current module. The result of the compari-
son will most likely change, based on that setting. You can use the set of simple
comparison operators shown here.

In addition, VBA supplies the Like operator for comparing two strings. This
operator allows you to specify wildcards, character lists, and character ranges in
the comparison string, not just fixed characters. The following is a listing of all the
options for the comparison string using the Like operator:

Operator Description

< Less than

<= Less than or equal to

>= Greater than or
equal to

= Equal to

<> Not equal to

Characters in Pattern Matches in String

? Any single character

* Zero or more characters

Any single digit (0–9)

[charlist] Any single character in

charlist

[!charlist] Any single character not in

charlist

Chapter 1

•

Manipulating Strings

8

The string containing the wildcard information must be on the right-hand side of
the Like operator. That is, unlike many mathematical operators, this one is not

commutative: The order of the operands is significant.

For example, the following code fragment would compare a string with a
template that checks for valid Canadian Postal codes:

strTemp = "W1F 8G7"
If strTemp Like "[A-Z]#[A-Z] #[A-Z]#" Then
 ' You know strTemp is a valid Canadian Postal Code

End If

To check whether the single character in strTemp was a vowel, you could use
this expression:

If strTemp Like "[AEIOUaeiou]*" Then
 ' You know the first character in strTemp is a vowel

End If

If you want to see whether the word stored in strTemp doesn’t start with a
vowel, you could use an expression like this:

If strTemp Like "[!AEIOUaeiou]*" Then
 ' You know the word in strTemp doesn’t start with a vowel

End If

You’ll find the Like operator to be invaluable when you need to validate input.
Rather than parse the string yourself, you can use wildcards to allow various
ranges of characters.

The behavior of the Like operator depends on the Option Compare setting. Unless
you specify otherwise, each module uses Option Compare Binary (case-sensitive

comparisons).

There are a number of issues you need to be aware of when using the Like
operator (sorting, order of the characters within the range, and so on). Be sure to

check out the online help for this topic for more information.

 Using Built-In String Functions

9

Using the StrComp Function

The StrComp function provides a way for you to compare strings, overriding the
Option Compare statement within a given module. To use StrComp, you specify
the two strings and a comparison method (binary, text, or database), and the func-
tion returns a value indicating how the two strings compared. In general, you call
StrComp like this:

intRetVal = StrComp(strText1, strText2, CompareOption)

The two text strings can be any string expressions. The CompareOption value
should be one of the items from Table 1.2 or a locale ID integer that specifies a
local sort order for comparisons. Depending on the parameters, StrComp returns
one of the values from Table 1.3.

The CompareOption parameter for StrComp is optional. If you omit it, VBA uses
the option selected by the Option Compare setting for the module. If you omit the

Option Compare, of course, VBA will use binary comparisons (vbBinaryCompare).

Online help incorrectly supplies a fourth value, not shown in Table 1.2 (vbUse-
CompareOption, –1). This value doesn’t appear to work in the current version of
VBA. For any function that takes a comparison option as a parameter, you may not

use the vbUseCompareOption value. (No matter what the online help tells you.)

T A B L E 1 . 2 :

Compare Options for StrComp

Constant Option Compare Equivalent

vbBinaryCompare Option Compare Binary

vbDatabaseCompare Option Compare Database (Microsoft Access only)

vbTextCompare Option Compare Text

T A B L E 1 . 3 :

Return Values for StrComp

If StrComp Returns

strText1 is less than strText –1

strText1 is equal to strText 0

strText1 is greater than strText2 1

Chapter 1

•

Manipulating Strings

10

Using the StrComp function, even if you normally perform case-sensitive com-
parisons, you can override that requirement for one comparison:

If StrComp(strText1, strText2, vbTextCompare) = 0 Then
 ' You know that strText1 and strText2 are the same, as far
 ' as the text comparison goes.

End If

Converting Strings

Rather than provide individual functions to convert strings from one format to
another, VBA includes the single StrConv function. This function allows you to
specify a string, as well as a conversion parameter indicating the conversion you’d
like to make. In general, you call the function like this:

strOutput

= StrConv(

strInput

,

Conversion, [LocaleID]

)

where

strInput

 is the string to be converted;

Conversion

 is a value from the follow-
ing table; and

LocaleID

 (optionally) specifies the Windows LocaleID to use for the
conversion. (If you don’t specify a locale ID, VBA will use the current locale’s
information in order to perform the conversion.) StrConv returns the converted
string as its return value.

As you can see, the StrConv function performs two basic tasks: converting the
case (upper, lower, proper) of strings and converting strings from ANSI to Uni-
code and back.

If you’re working in a Japanese or other Far East locale, you’ll want to check out
the options for StrConv that are available only in those locales. See the VBA online

help for more information.

Constant Description

vbUpperCase Converts the string to uppercase characters.

vbLowerCase Converts the string to lowercase characters.

vbProperCase Converts the first letter of every word in the string
to uppercase.

vbUnicode Converts the string to Unicode using the default
code page of the system.

vbFromUnicode Converts the string from Unicode to the default
code page of the system.

 Using Built-In String Functions

11

Creating Strings: The Space and String Functions

VBA provides two functions that make it easy for you to create specific strings.
The Space function lets you create a string consisting only of spaces; you indicate
the number of spaces, and VBA does the rest. The general syntax looks like this:

strOut

= Space(

lngSpaces

)

Although this function has many uses, we’ve used it most often in two particu-
lar situations:

•

Creating string buffers when calling external DLLs (the Windows API, in
particular)

•

Padding strings so they’re left or right justified within a buffer of a particu-
lar size

You can use an expression like this to create a 10-character string of spaces:

strTemp = Space(10)

If you need more flexibility, you can use the String function to create a string of
any number of a specified character. For this function, you specify the number of
characters you need and the specific character or ANSI value to repeat:

strOut = String(lngChars, strCharToRepeat)
' or

strOut = String(lngChars, intCharToRepeat)

For example, either of the following fragments will return a string containing 10
occurrences of the letter a. (The ANSI value for a is 97.)

strOut = String(10, "a")
strOut = String(10, 97)

Although you’re unlikely to need this particular string, the following code frag-
ment creates a string consisting of one A, two Bs, three Cs, and so on.

Dim intI As Integer
Dim strOut As String
For intI = 1 To 26
 strOut = strOut & String(intI, Asc("A") + intI - 1)
Next intI

Chapter 1 • Manipulating Strings12

Calculating the Length of a String
Simple yet crucial, the Len function allows you to determine the length of any string
or string expression. To use the function, pass it a string or string expression:

lngCharCount = Len(strIn)

Certainly, you’ll often need to find the length of a string expression. But the Len
function also has an extra benefit: It’s fast! VBA stores strings with a long integer
preceding the string that contains the length of the string. It’s very simple for VBA
to retrieve that information at runtime. For example, what if you need to know
whether a particular string currently contains no characters? Many programmers
write code like this to check for an empty string:

If strTemp = "" Then
 ' You know strTemp is empty
End If

Because VBA can calculate string lengths so quickly, you’re better off using code
like this to find out if a string is empty:

If Len(strTemp) = 0 Then
 ' You know strTemp is empty
End if

Performing one non-optimized comparison isn’t going to make any difference in
the speed of your application, but if you check for empty strings often, consider
using the Len function instead.

Formatting Data
VBA allows you to format the output display of a string using placeholders that rep-
resent single characters from the input string. In addition, you can use the Format
function to convert an input string to upper- or lowercase. The placeholders and
conversion characters shown in Table 1.4 allow you to reformat an input string.

For example, if strTemp contains the string “8364928”, the following fragment
returns “()836-4928”:

strOut = Format("8364928", "(@@@)&&&-&&&&")

This fragment returns “()836-4928”:

strOut = Format("8364928", "(&&&)&&&-&&&&")

 Using Built-In String Functions 13

In addition, the Format function allows you to format normal strings one way
and empty or null strings another. Every character following the symbol will be
converted. For example, you may want to indicate an empty value differently
from a value with data. To do this, use two sections in the placeholder string sepa-
rated with a semicolon (;). The first section will apply to non-empty strings, and
the second will apply to empty strings. That is, the following statement places a
formatted phone number into strOut if strIn contains a non-empty string, or it
places “No phone” into strOut if strIn is an empty string or Null:

strOut = Format(strIn, "(@@@)&&&-&&&&;No phone")

To convert text to upper- or lowercase as it’s formatted, add the > or < character
to the format string. (It doesn’t matter where you place the > or < character within
the string. If it’s in there, VBA formats the string correctly.) Every character fol-
lowing the symbol will be converted. For example, the following fragment con-
verts the input text to uppercase and inserts a space between letters:

Format("hello there", ">@ @ @ @ @ @ @ @ @ @ @")

Although it’s beyond the scope of this chapter, the Format function can also
provide user-defined formatting for dates and numeric values. Check out Chapter 2
for more information on using Format with date values.

VBA also supplies two simple functions, UCase and LCase, that you can use to
convert your functions to upper- and lowercase. Pass the function the string you

T A B L E 1 . 4 : Placeholders and Conversion Characters for the Format Function

Character Description

@ Character placeholder for a character or a space. If the input string has a character in
the position where the At symbol (@) appears in the format string, display it; otherwise,
display a space in that position.

& Character placeholder for a character or nothing. If the input string has a character in
the position where the ampersand (&) appears, display it; otherwise, display nothing.

< Displays all characters in lowercase format.

> Displays all characters in uppercase format.

! Forces left to right fill of placeholders. The default is to fill placeholders from right to
left. The character can be placed anywhere in the format string.

Chapter 1 • Manipulating Strings14

want converted, and its output will be the converted string. The following example
places the word “HELLO” into strOut:

strOut = UCase("hello")

This chapter presents three ways to convert text to upper- or lowercase: the UCase/
LCase functions, the > and < characters in the Format function, and the
vbUpperCase and vbLowerCase constants with the StrConv function. Use the technique
that’s most comfortable for you.

Because using the Format function can be overkill in some circumstances, VBA
also supplies simpler, special-case functions for situations when you simply need
to format a date, a number, or a percent.

FormatCurrency, FormatNumber, FormatPercent

The FormatCurrency, FormatNumber, and FormatPercent functions each accept a
numeric expression and optional parameters that specify how you want the out-
put value to be formatted. The obvious differences between the functions are that
the FormatCurrency function formats its output as currency, while the other two
functions simply format their output as a numeric value. FormatPercent also mul-
tiplies its result by 100 and tacks on a percent (%) sign. However, no matter what
choices you make, the output value from all of these functions is always a string.
Table 1.5 lists the parameters for the FormatCurrency, FormatNumber, and For-
matPercent functions. (All display options other than those shown in Table 1.5 are
controlled by the Windows regional settings.) These parameters make it simple to
format currency, numeric, and percent values.

Several of these functions include parameters that would appear to be Boolean
values (True or False) but, in fact, support three values: True, False, or Use Default.
That is, you can set these options to be either True or False specifically, or you can
use the default value specified in the Windows regional settings. To make it easier
for you to specify which of these three values you’d like to use, VBA provides an
enumerated type, vbTriState. All functions that can accept one of these three
values allow you to choose from the constants vbTrue (–1), vbFalse (0), or
vbUseDefault (–2).

 Using Built-In String Functions 15

None of these functions does much that the more generic Format function can’t.
But they’re a lot simpler to use (no character masks to memorize). Figure 1.1
shows a session in the Immediate window, trying out various parameters for the
FormatCurrency and FormatPercent functions. (FormatNumber would return
similar results, but without the currency symbol.)

F I G U R E 1 . 1
You can use the Immediate

window to test out the
FormatCurrency and

FormatPercent functions.

T A B L E 1 . 5 : Formatting Function Parameters

Parameter Required/
Optional

Data Type Default Description

Expression Required Numeric Numeric value to be formatted.

NumDigitsAfterDecimal Optional Numeric –1 (Use regional
settings.)

Number of places after the decimal
to be displayed. Use –1 to force
regional settings.

IncludeLeadingDigit Optional vbTriState vbUseDefault Display leading 0 for fractional
values?

UseParensForNegativeNumbers Optional vbTriState vbUseDefault Display parentheses around
negative numbers?

GroupDigits Optional vbTriState vbUseDefault Group digits. In the United States,
this means to group every three
digits from the right with a comma
separator to indicate groupings of
thousands?

Chapter 1 • Manipulating Strings16

FormatDateTime

The FormatDateTime provides a simple-to-use, but very limited, technique for
formatting dates and times. It lacks the flexibility and power of the built-in Format
function, but it is quite simple to use. It accepts a date/time value and, optionally,
a formatting specifier, and returns a string formatted as a date and/or time. Table 1.6
lists the parameters for the FormatDateTime function. Table 1.7 lists all the possible
date formatting constants. Choose from these values when formatting a date.

Figure 1.2 shows a short debugging session, demonstrating the range of format-
ting possibilities with the FormatDateTime function.

T A B L E 1 . 6 : Parameters for the FormatDateTime Function

Parameter Required/
Optional

Data Type Default Description

Expression Required Numeric Numeric value to
be formatted

NamedFormat Optional Numeric vbGeneralDate (0) Named format,
selected from the
values shown in
Table 1.7,
indicating how
you want the
date formatted

T A B L E 1 . 7 : Date Formatting Constants

Constant Value Description

vbGeneralDate 0 Return date and/or time. If there is a date part, include a
short date. If there is a time part, include a long time.
Include both date and time parts if both are available.

vbLongDate 1 Return a date using the long date format specified by your
computer’s regional settings.

vbShortDate 2 Return a date using the short date format specified by your
computer’s regional settings.

vbLongTime 3 Return a time using the time format specified by your
computer’s regional settings.

vbShortTime 4 Return a time using the 24-hour format (hh:mm).

 Using Built-In String Functions 17

F I G U R E 1 . 2
The FormatDateTime

function is simple, but lim-
ited, as you can see from

this debugging session.

MonthName and WeekdayName

Although seemingly simple, these two functions don’t have counterparts in previ-
ous versions of VBA. In VBA 5, if you need to find the name of a month, given its
number, you might resort to writing a function like the MonthName shown here.
(Actually, this is a complete replacement for the VBA 6 function, in case you need
such a function in the previous version of VBA. And yes, you could use a simple
Select Case statement, based on the Month value, but how would you get your
function to work in other languages if you did that?)

Function MonthName(Month As Long, _
 Optional Abbreviate As Boolean = False) As String
 Dim strFormat As String

 If Abbreviate Then
 strFormat = "mmm"
 Else
 strFormat = "mmmm"
 End If
 MonthName = Format(DateSerial(2000, Month, 1), strFormat)
End Function

But you needn’t write or call this function: VBA 6 includes a built-in MonthName
function. Given a month number and a Boolean value indicating whether you
want to abbreviate the name, MonthName returns the localized month name.

Chapter 1 • Manipulating Strings18

WeekDayName fills the same need, but instead returns the name of the day of
the week corresponding to a numeric value (1 through 7, or vbSunday through
vbSaturday). The syntax for WeekDayName looks like this:

strName = WeekdayName(weekday, [abbreviate], [firstdayofweek])

where the various parts are

weekday The day of the week, as a number. Normally, 1 corresponds with
Sunday, and 7 corresponds with Saturday, although the firstdayofweek parame-
ter (and the local settings) can alter this behavior.

abbreviate Optional Boolean value that allows you to abbreviate the output
weekday name. The default is False, which means that the weekday name isn’t
abbreviated.

firstdayofweek Optional numeric value indicating the first day of the week.
You can use vbUseSystem (0) to use the system value, or you can specify a par-
ticular day using the constants vbSunday (1) through vbSaturday (7).

Figure 1.3 shows a sample debugging session using these two functions.

F I G U R E 1 . 3
You can use the Immediate
window to test out Month-
Name and WeekDayName.

Reversing a String
StrReverse returns the string you send it, with the order of the characters reversed.
We’re having a hard time finding a real use for this (except for writing your own
InstrRev function, but that’s built into VBA now, too). Perhaps this is a good use:

Public Function IsPalindrome(strTest As String) As Boolean
 ' Is strTest a palindrome (the same forwards as backwards)?
 IsPalindrome = (StrComp(_
 strTest, StrReverse(strTest), vbTextCompare) = 0)
End Function

 Using Built-In String Functions 19

It’s not clear how often you’ll need to know if a given string is the same forward
and backward (that’s what a palindrome is: a string that’s the same in both direc-
tions), but should you ever need to know, this function does the work. For example,
one of the famous palindromes “Madam, I’m Adam” works correctly in IsPalin-
drome, but only if you supply the value correctly. This function call returns True:

? IsPalindrome("madamimadam")

StrReverse does exactly what it was intended to do, for those who need this
functionality.

Justifying a String
VBA provides two statements, LSet and RSet (note that these aren’t functions) that
allow you to justify a string within the space taken up by another. These state-
ments are seldom used in this context but may come in handy. In addition, LSet
gives you powerful flexibility when working with user-defined data types, as
shown later in this section.

LSet and RSet allow you to stuff a new piece of text at either the beginning or the
end of an existing string. The leftover positions are filled with spaces, and any text
in the new string that won’t fit into the old string is truncated.

For example, after running the following fragment, the string strOut1 contains
the string “Hello ” (“Hello” and three trailing spaces) and strOut2 contains
“ Hello” (three leading spaces and then “Hello”).

strOut1 = "ABCDEFG"
strOut2 = "ABCDEFG"
LSet strOut1 = "Hello"
RSet strOut2 = "Hello"

Let’s face it: Most programmers don’t really take much advantage of LSet and
RSet with strings. They’re somewhat confusing, and you can use other string
functions to achieve the same result. However, using LSet with user-defined types
is key to moving data between different variable types and is discussed in the
following paragraphs.

LSet also supplies a second usage: It allows you to overlay data from one user-
defined type with data from another. Although the VBA help file recommends

Chapter 1 • Manipulating Strings20

against doing this, it’s a powerful technique when you need it. Simply put, LSet
allows you to take all the bytes from one data structure and place them on top of
another, not taking into account how the various pieces of the data structures are
laid out.

Imagine that you’re reading fixed-width data from a text file. That is, each of the
columns in the text file contains a known number of characters. You need to move
the columns into a user-defined data structure, with one field corresponding to
each column in the text file. For this simple example, the text file has columns as
described in the following list.

To work with the data from the text file, you’ve created a user-defined data structure:

Type TextData
 FirstName As String * 10
 LastName As String * 10
 ZipCode As String * 5
End Type

You’ve used the various file-handling functions (see Chapter 5 for class mod-
ules to help work with text files) to retrieve a line of text from the file, and a String
variable named strTemp now contains the following text:

"Peter Mason 90064"

How do you get the various pieces from strTemp into a TextData data structure?
You could parse the characters out using other string-handling functions, but you
needn’t—LSet can do the work for you.

The only limitation of this technique is that you cannot use LSet to move data
between a simple data type and a user-defined data type. It works only with two
simple data elements (the technique shown earlier in this section) and with two
user-defined data types. Attempting to write code like the following will fail:

Dim typText As TextData
' This won't work
LSet typText = strTemp

Column
Name

Width

FirstName 10

LastName 10

ZipCode 5

 Using Built-In String Functions 21

To cause LSet to coerce data from one type to another, you’ll need to copy your
text data into yet another user-defined type. However, all this takes is a data type
with a single fixed-length string, like this:

Type TextTemp
 strText As String * 25
End Type

Given that data type, it takes just one extra step to perform the conversion. You
must copy the text into the strText member of the TextTemp data type. With the
text there, you can use LSet to copy the bytes from the temporary data structure
on top of the real data structure.

Dim typTest As TextData
Dim typTemp As TextTemp
' Copy the data into the temporary data structure,
' and from there into the real data structure.
typTemp.strText = strText
LSet typTest = typTemp
' Test the data and see if it arrived OK.
Debug.Print typTest.FirstName
Debug.Print typTest.LastName
Debug.Print typTest.ZipCode

As you can see, LSet provides a very specific usage, but it can save you many
lines of code if you’ve got to move a large number of fields from a text string into a
data structure.

We’ve just barely scratched the surface of all the interesting, and potentially dan-
gerous, tricks you can play with LSet. Beware that VBA does no checking for you
when you use LSet to move data from one data structure to another.

Searching for a String
In many of the solutions presented later in this chapter, procedures will need to
search a string for the inclusion of another string. The InStr function can deter-
mine whether one string contains another, and it can start looking at a specified
location in the string. In addition, you can optionally specify whether the search
should be case sensitive.

In general, the syntax for the InStr function looks like this:

lngLocation = InStr([lngStart,] strSearched, strSought[, Compare])

Chapter 1 • Manipulating Strings22

Table 1.8 explains the parameters and their return values.

For example, the following example returns 3:

lngPos = InStr("This is a test", "is")

This example, which starts looking later in the string, returns 6:

lngPos = InStr(4, "This is a test", "is")

Finding the Last Occurrence of a Substring

At one time or another, you’ve likely written a function that needs to know the
location of the final backslash in a full path. Most likely, you either looped back-
ward through the string, one character at a time, searching for the final backslash.
Or, perhaps you used InStr, looking forward until you didn’t find any more matches.
Both approaches work, and both are inefficient. The InStrRev function works sim-
ilarly to the InStr function, locating the position of one string within another.
Instead of looking from left to right for the sought string, InStrRev looks from
right to left. Just as with InStr, you can specify the starting position and the com-
parison mode. The only difference is the direction of the search. One more differ-
ence is that if you don’t specify a starting position, the search begins at the final
character, not the first character. If you want to explicitly specify a starting position,

T A B L E 1 . 8 : Parameters for the InStr Function

Part Description

lngStart Optional. Sets the starting position for each search. If omitted, the search begins
at the first character position. The lngStart argument is required if you specify
the Compare argument.

strSearched Required. String expression being searched.

strSought Required. String expression sought.

Compare Optional. Specifies the type of string comparison. The compare argument can
be omitted, or it can be one of the values from Table 1.2. If Compare is omitted,
the Option Compare setting for the module determines the type of comparison.
If specified, you must also specify intStart (normally, use a value of 1 for that
parameter).

Return value 0 if strSought is not found in strSearched; character position where the first
occurrence of strSought begins (1 through the length of strSearched) if
strSought is found; intStart (or 1, if intStart is omitted) if strSought is zero-length

 Using Built-In String Functions 23

you can do that. You can also pass –1 for the starting position, to indicate that you
want to start at the end of the string. Whether you omit the parameter or specify
–1, you don’t need to calculate the length of the string before performing a search
that starts at the final character of the string.

The syntax for calling InstrRev looks like this:

lngLocation = InstrRev(stringcheck, stringmatch[, start[, compare]])

Table 1.9 describes each of the parameters and the return value.

Figure 1.4 shows two instances of calling InStrRev, searching for “\” within a
string containing a file path. Use the numbers on the figure to help verify the
return values.

F I G U R E 1 . 4
InStrRev searches within

one string for another,
starting at the right.

T A B L E 1 . 9 : Parameters for the InStRev Function

Part Description

stringcheck Required. String expression being searched.

stringmatch Required. String expression sought.

start Optional. Sets the starting position for each search. If omitted, the search
begins at the final character position. Use –1 (or omit) to indicate you want the
search to start at the final character.

compare Optional. Specifies the type of string comparison. The compare argument can
be omitted, or it can be one of the values from Table 1.2. If compare is omitted,
the Option Compare setting for the module determines the type of comparison.
If specified, you must also specify intStart (normally, use a value of 1 for that
parameter).

Return value 0 if stringmatch is not found in stringcheck; character position where the first
occurrence of stringmatch begins (1 through the length of stringcheck) if
stringmatch is found; start (or the length of stringcheck, if start is omitted, or
start is –1) if stringmatch is zero-length.

Chapter 1 • Manipulating Strings24

Working with Portions of a String
Many string operations involve extracting a chunk of a string, and VBA makes
this task simple by providing a series of functions that let you retrieve any portion
of a string. Combined with the InStr function (see the previous section), you’ll be
able to find substrings and then extract them as necessary.

VBA supplies three simple functions for working with substrings: Left, Mid,
and Right. The Left function allows you to extract the left portion of a string:

strOut=Left(strIn, lngChars)

and returns the first lngChars characters from strIn. For example, this fragment
returns the first two letters of the specified string:

strLeft2 = Left("This is a test", 2)

The following fragment returns the first word from strIn:

' This code fails miserably if there’s no space in strIn.
' You can’t ask Left for the first -1 characters in a string!
strWord = Left(strIn, InStr(strIn, " ") - 1)

The Right function performs the same trick, but takes characters from the right
side of the string instead. The following fragment appends a backslash (\) to the
filename stored in strFileName, if it’s not already there:

If Right(strFileName, 1) <> "\" Then
 strFileName = strFileName & "\"
End If

The Mid function is a bit more complex because it does more. It allows you to
retrieve any specified piece of a string. You supply the string, the starting location,
and (optionally) the number of characters to retrieve, and VBA does the rest. If
you don’t specify the number of characters to retrieve, you get the rest of the char-
acters. The formal syntax for Mid looks like this:

strOut = Mid(strIn, lngStart[, lngLen])

For example, after running the following line of code:

strOut = Mid("This is a test", 6, 2)

strOut will contain the text “is”. The following example places all the text of strIn,
after the first word, into strRest:

strRest = Mid(strIn, InStr(strIn, " ") + 1)

 Using Built-In String Functions 25

Don’t ever do what we’ve done in these examples! That is, never pass an
unchecked value to Left, Right, or Mid unless you’ve included error handling in
your procedure. In the examples that retrieved the first word, or all text after the
first word, it’s quite possible that the variable didn’t actually contain a space, and
InStr will return 0. In that case, you’ll be passing –1 to the Left or Mid, and the
functions won’t take kindly to that. In cases like this, make sure you’ve checked
the value returned from InStr before you call Left or Mid. For more information on
slicing a word from a multi-word string, see the section “Working with
Substrings” later in this chapter.

One common use of the Mid function is to loop through a string, one character
at a time, working with each character. For example, the following loop prints
each character in a string:

Dim strTest As String
Dim intI as Integer
strTest = "Look at each character"
For intI = 1 To Len(strTest)
 Debug.Print Mid(strTest, intI, 1)
Next intI

In addition to using the Left, Mid, and Right functions to extract portions of a
string, you may need to remove leading or trailing white space from an existing
string. VBA provides the LTrim, RTrim, and Trim functions to take care of these
tasks. Each of these simple functions does one thing: LTrim removes leading spaces,
RTrim removes trailing spaces, and Trim removes both leading and trailing spaces.
The following fragment demonstrates the usage and results of these functions:

Dim strTest As String
strTest = " This is a test "
strTest = RTrim(strTest)
' strTest is now " This is a test"
strTest = LTrim(strTest)
' strTest is now "This is a test"

strTest = " This is a test "
strTest = Trim(strTest)
' strTest is now "This is a test"
' You could use LTrim(RTrim(strTest))
' to replace the call to Trim, if you have the urge!

Chapter 1 • Manipulating Strings26

None of the Trim, LTrim, or RTrim functions removes white space from within a
string. If you want to remove extraneous spaces (and, optionally, tabs) from within
a string, see the dhTrimAll function, described in the section titled “Removing All
Extra White Space” later in the chapter.

Replacing Portions of a String
Although you’ll find several routines later in this chapter that make it easy to
replace various portions of a string with other text, VBA includes a single state-
ment that implements much of the functionality you’ll need. The Mid statement
(yes, it has the same name and parameters as the Mid function) allows you to
replace text within a string with text supplied by another string.

To replace a substring within a string, use the Mid statement on the left-hand side
of a line of code. The syntax for the Mid statement is as follows:

Mid(strText, lngStart[, lngLength]) = strReplace

The lngStart value indicates where in strText to start replacing. The lngLength
value indicates how many characters from strReplace to place in strText at intStart.

For example, after calling the following code:

Dim strText As String
strText = "That car is fast."
Mid(strText, 6, 3) = "dog"

the variable strText will contain the text “That dog is fast.” Although the Mid
statement has its uses, it’s rather limited because you can’t control how much of
the original string is replaced. You can control only how much of the replacement
string is used. That is, if you try the following code:

Dim strText As String
strText = "That car is fast."
Mid(strText, 6, 4) = "fish"

there’s no way to tell VBA to replace the word car with the word fish. Because the
words are of differing lengths, you’ll end up with “That fishis fast.” The Replace
function, discussed in the next section, can perform a search and replace operation
within a VBA string for you.

 Using Built-In String Functions 27

Search and Replace in Strings
New in VBA 6, the VBA Replace function allows you to replace one substring
within another string a certain number of times, starting anywhere within the
string, case sensitive or not. You just have to wonder how many developers have
written their own version of this function over the years. (We’ve certainly written
it a number of times ourselves.) Replace is built into VBA, and it works well.
Table 1.10 lists and describes the parameters for the Replace function.

The syntax for the Replace function looks like this:

modifiedString = Replace(expression, find, replace[, start[, count[, compare]]])

Beware! If you specify a value for Start, that’s where the output string starts. The
output from Replace may not contain the entire input string with replacements
made if you specify a value for the Start parameter. This certainly took us by sur-
prise, but it’s documented as working this way.

T A B L E 1 . 1 0 : Parameters for Replace

Parameter Required/Optional Data Type Description

expression Required. String String to search in.

find Required. String Substring being searched for.

replace Required. String Replacement substring.

start Optional. Default is 1,
indicating that the search
should start at the beginning.

Long Position within expression where
substring search is to begin.

count Optional. Default is –1,
indicating that you want all
substitutions made.

Long Number of substring substitutions
to perform.

compare Optional. Default is
vbBinaryCompare.

Long Kind of comparison to use when
evaluating substrings. Choose
one of vbBinaryCompare,
vbDatabaseCompare, or
vbTextCompare, or supply a
Windows locale ID. See Table 1.2
for more information.

Chapter 1 • Manipulating Strings28

Figure 1.5 shows some examples using the Replace function. Note the effect of
each of the parameters on the output string.

F I G U R E 1 . 5
The Replace function

allows you to replace one
string within another.

However, Replace does have its limitations. It can only replace a single sub-
string with another substring. What if you want to replace one character at a time
from an input map with the corresponding character in an output map? For exam-
ple, what if you want to convert from text-based telephone numbers (1-800-CAR-
TALK) into the corresponding string of digits (1-800-227-8255). You know how
much of a pain that conversion is, manually. (And it turns out that in many coun-
tries telephones don’t even have the letters printed on the buttons anymore!)
What you need is a function that uses Replace for each character in an input
string, mapping that character to the corresponding character in another string.
The dhTranslate function, shown later in this chapter, provides this capability
(without using the Replace function).

You’ll find the Replace function to be useful in your development efforts. If you
need to replace a single string with a single replacement string, you can’t beat it.
Many of the examples from the second half of this chapter use it, and others could
use it but don’t. It turns out that in many cases, you can handcraft code that runs
faster. That’s exactly what we’ve done in several cases, including the dhTranslate
function.

Working with Arrays of Strings
The three string functions, Split, Join, and Filter, all work with arrays of strings.
(And they’re all new in VBA 6.) They’re all useful and are all somewhat tricky to
write on your own. The next few sections outline how to use each of these func-
tions and provide examples of why you might want to use them.

 Using Built-In String Functions 29

Split a String into an Array

The Split function takes a string and a delimiter, and returns an array full of the
pieces of the string. For example, the following function, GetLastWord, splits the
input string up into an array of words and returns the final word in the array.

Public Function GetLastWord(strText As String) As String
 Dim astrWords() As String

 If Len(strText) = 0 Then
 GetLastWord = strText
 Else
 astrWords = Split(strText, " ")
 GetLastWord = astrWords(UBound(astrWords))
 End If
End Function

The GetLastWord function, shown here, is somewhat limited. We’ve created a
more full-featured version, dhLastWord, discussed later in the chapter.

The syntax for the Split function is as follows:

outputArray = Split(expression[, delimiter[, limit[, compare]]])

Table 1.11 describes the parameters for the function.

T A B L E 1 . 1 1 : Parameters for the Split Function

Parameter Required/Optional Data Type Description

expression Required. String String expression containing
substrings and delimiters.

delimiter Optional. Default is “ ”. String String character used to identify
substring limits.

count Optional. Default is –1, indicating
you want all the substrings.

Long Number of substrings to be
returned.

compare Optional. Default is
vbBinaryCompare.

vbCompare
Method

Numeric value indicating the kind
of comparison to use when
evaluating substrings. See Table
1.2 for a list of values.

Chapter 1 • Manipulating Strings30

Some things to note about the Split function:

• If the input string is an empty string, the output value will be a simple vari-
ant, not an array. Therefore, you must always check the input value (as does
the GetLastWord function, shown previously) and handle that special case
individually.

• If your input string contains multiple delimiters next to each other, or ends
with a delimiter, the output array will contain empty elements correspond-
ing to those delimited items. Be aware that Split isn’t terribly smart—it takes
what it gets and splits the input string based on the parameter you specify. If
your input string contains extra delimiters, you’ll get extra elements in the
output array.

• If the Delimiter parameter is an empty string, the function returns an array
with one element: the entire input string. (We do wish that there were some
way to get the output array to contain an array of all the characters in the
input string, one character per array element. But, there’s no such way. As a
matter of fact, there’s no easy way to do that at all in VBA. You must loop
through each character in turn. You could copy the string into a byte array,
but that’s even uglier.)

• The documentation specifies that you could use –1 (vbUseCompareOption)
for this and other functions to specify the compare mode. This value is not
allowed by any of the functions at runtime. You might check your version of
Office 2000 or Visual Basic to see if this parameter value works as it’s docu-
mented, or if they removed it from the documentation altogether. (You may
have a later version than we did when writing this text.)

Perhaps you’ve had a need to extract a particular token from within a string (for
example, to find the fourth token in a string like “Name|Address|City|State|Zip”,
with the delimiter “|”). The Extract function, shown in Listing 1.1, does this work
for you. It allows you to specify an input string, the particular item you need, and
a string containing a delimiter character. It returns the particular substring you
requested. If you specify a substring that’s out of range (that is, asking for the six-
tieth substring from a string with only four words), it returns an empty string. For
example, the following expression returns the value “Los Angeles”:

Debug.Print _
 Extract("Joe Clark|123 Smith Street|Los Angeles|CA|90065", 3, "|")

 Using Built-In String Functions 31

Feel free to analyze how Extract does its work, but that’s not the point here—it
counts on Split to do its work and would be more complex without the availability
of that useful VBA function.

Although Extract is useful, it’s still more limited than you might like. We’ve provided
the dhExtractString function, discussed later in the chapter, which is more powerful.

➲ Listing 1.1: A Simple Function to Extract a Single Substring Using Split
Function Extract(_
 ByVal strIn As String, _
 ByVal intPiece As Integer, _
 Optional ByVal strDelimiter As String = " ") As String

 Dim astrItems() As String

 On Error GoTo HandleErrors

 If Len(strDelimiter) = 0 Then
 ' No delimiter supplied. Return
 ' the entire input string.
 Extract = strIn
 Else
 ' Split the string into
 ' an array, and return the requested piece.
 ' Don't forget that the array returned by Split
 ' is always 0-based.
 astrItems = Split(_
 Expression:=strIn, _
 Delimiter:=strDelimiter, _
 Compare:=vbTextCompare)
 Extract = astrItems(intPiece - 1)
 End If

ExitHere:
 Exit Function

Chapter 1 • Manipulating Strings32

HandleErrors:
 Select Case Err.Number
 Case 9 ' Subscript out of range.
 ' The caller asked for a token that doesn't
 ' exist. Simply return an empty string.
 Resume ExitHere
 Case Else
 Err.Raise Err.Number, Err.Source, _
 Err.Description, Err.HelpFile, Err.HelpContext
 End Select
End Function

Join Array Elements Back into a String

The Join function does just the opposite of the Split function, and it’s a lot simpler.
It takes an array containing string values, along with a delimiter value, and creates
an output string with the values concatenated. For example, the combination of
the Split and Join functions allows you to take a string, split it apart into tokens
(normally, into words), do something to each word in turn, and then put it back
together. Perhaps you’d like to convert text to pig latin. Of course, that requires
working with each word individually. That’s exactly what the pair of Split and
Join was meant for. The ToPigLatin function shown in Listing 1.2 uses both to
accomplish its high-minded goals.

➲ Listing 1.2: Convert Text to Pig Latin Using the Split and Join
Functions

Public Function ToPigLatin(strText As String) As String
 Dim astrWords() As String
 Dim i As Integer
 If Len(strText) > 0 Then
 ' Break the string up into words.
 astrWords = Split(strText)
 For i = LBound(astrWords) To UBound(astrWords)
 ' Convert each word to pig latin.
 ' Warning: you may not agree with these conversion
 ' rules. We didn't make them up! (And the
 ' exact conversion isn't our point here.)

 Using Built-In String Functions 33

 ' 1. If a word begins with a consonant,
 ' the first letter is moved to the end
 ' of the word, and 'ay' is added.
 ' Example: The word 'bridge' would become 'ridgebay'.

 ' 2. If a word begins with an vowel, the
 ' first letter is moved to the end,
 ' and 'ey' is added.
 ' Example: The word 'anchor' would become 'nchoraey'.

 ' 3. Exception to rule #2: if the vowel is
 ' an 'e', use 'ay' instead of 'ey'.
 ' Example: The word 'elevator' would become 'levatoreay'.

 Select Case LCase(Left$(astrWords(i), 1))
 Case "a", "i", "o", "u"
 astrWords(i) = Mid$(astrWords(i), 2) & _
 Left(astrWords(i), 1) & "ey"
 Case "a" To "z"
 ' Most vowels have been caught already, do it doesn't
 ' hurt to have cases for them again. Don't
 ' change the order of the cases, however!
 astrWords(i) = Mid$(astrWords(i), 2) & _
 Left(astrWords(i), 1) & "ay"
 End Select
 Next i
 ToPigLatin = Join(astrWords)
 End If
End Function

In case you were planning on taking this translator to the big time, note that it
doesn’t work on hyphenated words (“next-door” should be converted to “extnay-
oorday”, but it won’t be—Split is only looking for spaces as its delimiters. To get
this right, you’d want to modify ToPigLatin so that it accepts an optional delimiter
(defaulting to a space, of course) as one of its parameters. Then, you’d have to
look at each word for hyphens, and call Split once again, splitting each word into
sub-words. Then, you could call ToPigLatin recursively, passing in the hyphen
delimiter. We’ll leave this as an exercise for the reader, although it’s not difficult at all.

Chapter 1 • Manipulating Strings34

Filter an Array, Looking for Specific Values

The Filter function allows you to filter an array of strings, returning a subset array
of strings, that either contains or doesn’t contain the text you’re searching for. If
you’ve used Split to create an array of strings, you can then use Filter to return an
array containing just the strings that contain a specified substring. You might
need to look hard to find a pressing need for this function, but it seems like it
could be useful, in the right circumstances. That is, should you ever need to create
a new string from all the words containing a particular substring within a larger
string, Split, Join, and Filter make a great team.

Table 1.12 contains the parameters you pass into the Filter function. The syntax
for the Filter function looks like this:

result = Filter(sourcearray, match[, include[, compare]])

For example, the WordsContaining function, shown in Listing 1.3, uses the
Split, Join, and Filter functions to return a new string consisting of all the words
from the input string that contain the requested substring. Figure 1.6 shows a
small debugging session testing out the WordsContaining function.

T A B L E 1 . 1 2 : Parameters for the Filter Function

Parameter Required/Optional Data Type Description

sourcearray Required Array of strings One-dimensional array of
strings to be searched.

match Required String String to find within each
element of the InputStrings
value.

include Optional Boolean Should Filter return an array of
strings that contain Value, or
those that don’t? If True,
returns those that do. If False,
returns those that don’t.

compare Optional Long Numeric value indicating the
kind of string comparison to
use. See Table 1.2 for a list of
values.

 Using Built-In String Functions 35

F I G U R E 1 . 6
The WordsContaining func-
tion does its job, returning

subsets of words.

➲ Listing 1.3: Find Words Containing a Substring Using the Split, Join,
and Filter Functions

Public Function WordsContaining(_
 strIn As String, strFind As String) As String
 ' Return a string containing all the words
 ' in the input string containing a supplied substring.
 Dim astrItems() As String
 Dim astrFound() As String

 If Len(strIn) > 0 And Len(strFind) > 0 Then
 astrItems = Split(strIn)
 astrFound = Filter(astrItems, strFind, True, vbTextCompare)
 WordsContaining = Join(astrFound)
 Else
 WordsContaining = strIn
 End If
End Function

ANSI Values
It’s the job of the operating system’s character set to map numbers representing
text characters to those characters. When using the ANSI character set, Windows
maps the values 0 through 255 to the 256 different characters that are available in
each Windows code page. (When using Unicode, Windows NT does the same sort
of mapping, with values from 0 to 65535.) Each individual character represents a
value between 0 and 255, and VBA provides two functions, Asc and Chr, to con-
vert back and forth between the values and the characters themselves. These func-
tions are inverses of each other—that is, using both functions on a value returns
the original value.

Chapter 1 • Manipulating Strings36

The Asc function returns the character code corresponding to the first character
of the string expression you pass it. The Chr function returns a character corre-
sponding to the numeric value you pass it. For example, the following code frag-
ment demonstrates the use of these two functions:

Dim intCh as Integer
Dim strCh as String * 1
intCh = Asc("This is a test")
' intCh now contains 84, the value corresponding to
' the "T" character.
strCh = Chr(intCh)
' strCh now contains "T", the letter corresponding to
' the value 84.

Working with Bytes
In addition to all the functions VBA provides for working with standard strings,
you’ll find a set of functions for working with bytes within the strings and a set for
working directly with the characters in Unicode strings.

If you want to work with the bytes that make up a string, you can use the LeftB,
RightB, MidB, LenB, AscB, InStrB, and ChrB functions. Each of these functions
does what its normal relative does, but each works on bytes instead of characters,
as shown in Figure 1.7. For example, for a 10-character string, Len returns 10, but
LenB returns 20 (each character takes two bytes). The first fragment in Listing 1.4

Speed Considerations with the Asc and Chr Functions
The following two logical expressions are equivalent:

If Asc(strChar) = intANSIValue Then

' and

If strChar = Chr(intANSIValue) Then

However, you’ll want to use the first construct because it’s actually quite a bit more effi-
cient to compare two numeric values than it is to compare two strings. If you’re comparing
a large number of characters to specific ANSI values, make sure you convert the character
to ANSI rather than convert the ANSI value into a character. This optimization can save you
considerable processor time if you use it often.

 Using Built-In String Functions 37

loops through all the characters in a string, printing each to the Debug window.
The second loop in the fragment works through all the bytes in the string and lists
each one. In this case, the output will include a 0 between bytes because the alter-
nate bytes are 0 for English characters.

➲ Listing 1.4: Loop through Characters and Bytes
Sub DumpBytes()
 ' Dump the characters, and then bytes, of
 ' the text "Hello" to the Debug window.
 Dim intI As Integer
 Dim strTest As String
 strTest = "Hello"
 For intI = 1 To Len(strTest)
 Debug.Print Asc(Mid(strTest, intI, 1));
 Next intI
 Debug.Print
 For intI = 1 To LenB(strTest)
 Debug.Print AscB(MidB(strTest, intI, 1));
 Next intI
 Debug.Print
End Sub

Generally, you won’t write code using MidB, like that shown in Listing 1.4.
Instead, you’ll convert the string into a byte array and work with each element of
the byte array. However, the other byte functions are necessary in order to extract
just the bytes you need from the string.

F I G U R E 1 . 7
Looping through bytes as

opposed to characters

Chapter 1 • Manipulating Strings38

Putting the Functions Together
Now that you’ve seen all the basic string-handling functions, you can start to put
them together in various combinations to tackle more complex situations. The
remainder of this chapter, which provides a number of techniques for use in real-
world situations built up from our personal function libraries, is broken into four
sections:

• Searching for and Replacing Text

• Gathering Information about Strings

• Converting Strings

• Working with Substrings

About the Functions Ending in $
VBA supplies all the functions that return strings in two formats—one with a dollar sign ($)
at the end and one without. Why did they bother? The versions without $s return variants,
and the ones with $s return strings. The variant versions are able to propagate a null value
through an expression; the string functions cannot. That is, if the input value is a variant
containing Null, the variant functions return Null, and the string functions trigger a run-
time error. The string functions, on the other hand, are faster; because they don’t need to
perform any data type conversions, they can do their work faster.

How do you decide which version to use? If you’re concerned about wringing the best
performance out of your application and you can ensure that you won’t be sending null
values to these functions, by all means, use the string-specific version of any function you can.

Using Optional Parameters
Many of the procedures in the following sections accept one or more optional parameters.
In each case, if you don’t specify the parameter in your function call, the receiving function
assigns that parameter a value.

When you use optional parameters, you have two basic choices:

• Use a Variant parameter and check for the parameter using the IsMissing function.

 Searching for and Replacing Text 39

Searching for and Replacing Text
In this section, you’ll find techniques for finding and replacing text within strings.
Although these procedures require more code than almost any other procedures
in the chapter, they’re used by many of the later solutions, so it makes sense to
present them first.

In particular, this section includes solutions to performing the following tasks:

• Replace any character in a specified list with a single other character.

• Remove all white space, leaving one space between words.

• Remove trailing Null and padding from string.

• Replace tokens within a string (by position in an array passed in).

Replacing Any Character in a List with Another
Character

Editing text often involves replacing any one of a list of characters with another
single character. For example, if you want to count the number of words in a sen-
tence, you may need to take the input sentence, replace all the punctuation charac-
ters with spaces, and then count the spaces. Or you may want to just remove all
extraneous characters. For example, you might want to convert a phone number
in the format (213) 555-1212 into the format 2135551212. The function provided in
this section, dhTranslate, makes both these tasks simple. (See Listing 1.5 for the
entire function.)

Using dhTranslate, you could replace all punctuation characters with spaces,
like this:

strText = dhTranslate(strText, " ,.!:;<>?", " ")

• Use a strongly typed parameter and assign a default value in the formal declaration.

We’ve opted for the second alternative because this allows for type-checking when calling
the procedure. On the other hand, it also removes the possibility of using the IsMissing
function to check for the omission of the parameter.

Chapter 1 • Manipulating Strings40

To remove extraneous characters, you could call dhTranslate like this:

strText = dhTranslate("(213)555-1212", "()-", "")

But dhTranslate does more than that: If you specify a mapping between the set
of search characters and the set of match characters, it will replace characters in a
one-to-one correspondence. That is, imagine you want to replace letters in a
phone number with the corresponding digit. You know, someone says to call
l-800-CALLKEN, but you really want to store just the digits to be dialed. You can
use dhTranslate to map specific characters to digits, like this:

strPhone = dhTranslate("1-800-CALLKEN", _
 "ABCDEFGHIJKLMNOPRSTUVWXY", _
 "222333444555666777888999")

That function call will replace each letter with its appropriate digit.

If the replacement string is shorter than the search string, dhTranslate pads it to
make it the same width as the search string. That is, when you call dhTranslate
with a short replacement string:

strText = dhTranslate(strText, " ,.!:;<>?", " ")

the function converts the third parameter into a string with the same number of
characters as the second parameter, internally, so it’s as though you’d called the
function like this:

strText = dhTranslate(strText, " ,.!:;<>?", " ")

That way, each character in the second string has been mapped to a space for its
replacement character.

To call dhTranslate yourself, pass three required parameters and one optional
parameter, like this:

strText = dhTranslate(strIn, strMapIn, strMapOut[, lngCompare])

The parameters for dhTranslate are as follows:

• strIn is the string to be modified.

• strMapIn is the string containing characters to find.

• strMapOut is the string containing 0 or more characters to replace the corre-
sponding characters from strMapIn. If this string is shorter than strMapIn, the
function pads the string with its final character to match the length of strMapIn.

• lngCompare is optional. Select a comparison value from Table 1.2 (as you
have with many other functions in this chapter) to determine how the func-
tion compares strings. If you don’t specify a value, the function assumes you
want to use binary comparisons (vbBinaryCompare).

 Searching for and Replacing Text 41

The function’s return value is a copy of the original string (strIn) with the
requested modifications.

➲ Listing 1.5: Translate One Set of Characters to Another Set
Public Function dhTranslate(_
 ByVal strIn As String, _
 ByVal strMapIn As String, _
 ByVal strMapOut As String, _
 Optional lngCompare As VbCompareMethod = vbBinaryCompare) As String

 Dim lngI As Long
 Dim lngPos As Long
 Dim strChar As String * 1
 Dim strOut As String

 ' If there's no list of characters
 ' to replace, there's no point going on
 ' with the work in this function.
 If Len(strMapIn) > 0 Then
 ' Right-fill the strMapOut set.
 If Len(strMapOut) > 0 Then
 strMapOut = Left$(strMapOut & String(Len(strMapIn), _
 Right$(strMapOut, 1)), Len(strMapIn))
 End If

 For lngI = 1 To Len(strIn)
 strChar = Mid$(strIn, lngI, 1)
 lngPos = InStr(1, strMapIn, strChar, lngCompare)
 If lngPos > 0 Then
 ' If strMapOut is empty, this doesn't fail,
 ' because Mid handles empty strings gracefully.
 strOut = strOut & Mid$(strMapOut, lngPos, 1)
 Else
 strOut = strOut & strChar
 End If
 Next lngI
 End If
 dhTranslate = strOut
End Function

Chapter 1 • Manipulating Strings42

Before it does any other work, dhTranslate checks to make sure strMapIn actu-
ally contains some text. If not, there’s no work to do, and the function quickly
exits.

Next, dhTranslate ensures that the strMapOut parameter contains as many
characters as strMapIn. To do that, it takes the right-most character of strMapOut,
creates a string of that character as wide as strMapIn, appends it to strMapOut,
and then truncates the string to the same width as strMapIn:

' Right-fill the strMapOut set.
If Len(strMapOut) > 0 Then
 strMapOut = Left$(strMapOut & String(Len(strMapIn), _
 Right$(strMapOut, 1)), Len(strMapIn))
End If

For example, if strMapIn is “1234567890” and strMapOut is “ABCDE”, the code
creates a string of Es that is 10 characters long (the same length as strMapIn),
appends it to the end of strMapOut (so it becomes “ABCDEEEEEEEEEEE”), and
then truncates the entire string to the length of strMapIn (10 characters, or
“ABCDEEEEEE”). This mechanism makes it possible to replace a series of charac-
ters, supplied in strMapIn, with a single character, supplied in strMapOut.

Finally, dhTranslate performs the replacements, using brute force. For each charac-
ter in the input string, dhTranslate attempts to find that character in strMapIn:

strOut = strIn
For lngI = 1 To Len(strOut)
 strChar = Mid$(strIn, lngI, 1)
 lngPos = InStr(1, strMapIn, strChar, lngCompare)
 ' The code continues...
Next lngI

If the InStr search found a match, lngPos will be greater than 0. dhTranslate finds
the appropriate matching character in strMapOut and replaces that character in the
output string.

If intPos > 0 Then
 ' If strMapOut is empty, this doesn't fail,
 ' because Mid handles empty strings gracefully.
 strOut = strOut & Mid$(strMapOut, intPos, 1)
Else
 strOut = strOut & strChar
End If

 Searching for and Replacing Text 43

In this way, one character at a time, dhTranslate uses either the character from
the input string or its replacement from strMapOut. Either way, it returns strOut
as its return value.

Many other functions within this chapter count on dhTranslate to do their work
for them. You’ll surely find many uses for it in your own applications, as well.

Removing All Extra White Space
If you need to remove all extraneous white space from a string (and certainly, the
dhCountWords function later in this chapter that counts the number of words in a
string has reason to need this functionality), the dhTrimAll function will help.
This function traverses a string and makes a new output string, copying over only
a single space every time it finds one or more spaces inside the string. You can
optionally request dhTrimAll to remove tabs, as well.

For example, the following function call:

strOut = dhTrimAll(" This is a test" & _
 " of how this works")

places “This is a test of how this works” into strOut. By default, the function
removes tabs as well as spaces. If you want the function to disregard tabs and
remove only spaces, send a False value for the second parameter. Listing 1.6
shows the entire dhTrimAll function.

➲ Listing 1.6: Remove All White Space from a String
Function dhTrimAll(_
 ByVal strInput As String, _
 Optional blnRemoveTabs As Boolean = True) As String

 Const conTwoSpaces = " "
 Const conSpace = " "

 strInput = Trim$(strInput)
 If blnRemoveTabs Then
 strInput = Replace(strInput, vbTab, conSpace)
 End If

Chapter 1 • Manipulating Strings44

 Do Until InStr(strInput, conTwoSpaces) = 0
 strInput = Replace(strInput, conTwoSpaces, conSpace)
 Loop
 dhTrimAll = strInput
End Function

How does dhTrimAll do its work? It starts by calling the Trim function to
remove any leading or trailing spaces. Then, it continues by replacing all the tabs
with spaces, if necessary, using the built-in Replace function:

If blnRemoveTabs Then
 strInput = Replace(strInput, vbTab, conSpace)
End If

The rest of the procedure is a simple loop: the code checks to see if the input
string contains two contiguous spaces, and if so, replaces the pair with a single
space. It continues this same action until the input string contains no pairs of
spaces, side by side. Once that condition is true, the function has done its job and
can return the output string.

Do Until InStr(strInput, conTwoSpaces) = 0
 strInput = Replace(strInput, conTwoSpaces, conSpace)
Loop

Removing Trailing Null and Padding from a String
Although you’ll probably need the dhTrimNull function only if you’re working
with the Windows API, it’s invaluable when you do. API functions don’t know
what the source of the string is, and they tend to place null-terminated strings into
the buffers you send them. Unfortunately, VBA needs to have the length of the
string set explicitly, so you need to find the first null character (Chr$(0), or vbNull-
Char) in the string and truncate the string there using the Left function. Examples
in later chapters will use this function, and it’s important to have it ready to go
when you need it.

The dhTrimNull function, in Listing 1.7, accepts a single string and returns the
same string, truncated at the first null character.

 Searching for and Replacing Text 45

➲ Listing 1.7: Trim Strings at the First Null Character
Public Function dhTrimNull(ByVal strValue As String) As String
 Dim lngPos As Long

 lngPos = InStr(strValue, vbNullChar)
 Select Case lngPos
 Case 0
 ' Not found at all, so just
 ' return the original value.
 dhTrimNull = strValue
 Case 1
 ' Found at the first position, so return
 ' an empty string.
 dhTrimNull = vbNullString
 Case Is > 1
 ' Found in the string, so return the portion
 ' up to the null character.
 dhTrimNull = Left$(strValue, lngPos - 1)
 End Select
End Function

To do its work, dhTrimNull calls the InStr function, passing it the original string
to search in and the constant vbNullChar to search for. Depending on the return
value of InStr (stored in lngPos), the function does one of three things:

• If lngPos is 0, the function returns the original string. There weren’t any null
characters in the string to begin with.

• If lngPos is 1, the first character was null, so the function returns an empty
string.

• If lngPos is greater than 1, the function uses the Left function to pull out the
part up to, but not including, the null character.

Using all three cases removes any possibility that you’ll attempt to pass an illegal
starting position to the Left function.

Chapter 1 • Manipulating Strings46

Replacing Numbered Tokens within a String
If you’re creating text resources that need to be translated to local languages, or if
you just need to replace a series of tokens in a string with a series of text strings,
the function shown in Listing 1.8 will help you out. This function allows you to
pass in a list of text strings to replace numbered tokens (%1, %2, and so on) in a
larger text string.

If you separate the text for your application from the application’s user inter-
face, it’s far easier to prepare the application for international use. However, it’s
inevitable that some of your strings will need to contain replaceable parameters.
Using dhTokenReplace makes it simple to perform those replacements at runtime.
For example, running the following fragment:

strText = dhTokenReplace("Unable to add file %1 to %2", _
 "C:\AUTOEXEC.BAT", "C:\FOO.ZIP")

would place the text “Unable to add file C:\AUTOEXEC.BAT to C:\FOO.ZIP”
into strText. (The assumption here is that the resource string “Unable to add…” is
coming from a table, a resource file, or some other source external to your applica-
tion and is translated for use in countries besides your own.) But what if, in a par-
ticular language, the correct phrasing would be (translated back into English)
“C:\FOO.ZIP is unable to contain C:\AUTOEXEC.BAT”? In that case, the transla-
tor could modify the resource to be “%2 is unable to contain %1”, and your code
would still function correctly.

Even if you’re not producing internationalized applications, dhTokenReplace
will make your work simpler. Being able to replace multiple substrings in one
pass can make your applications run faster and certainly will make them code
faster.

Using ParamArray to Pass an Array of Parameters
Although the ParamArray construct has been available in the past few versions of VBA,
few programmers have run across it. It’s not used often, but when you need it, it’s indis-
pensable. In this case, being able to pass a virtually unlimited number of parameters to a
function makes it possible to write one function that can handle unlimited situations.

To use this feature, you declare your function to accept a ParamArray parameter, like this:

Public Function dhTokenReplace(ByVal strIn As String, _

 ParamArray varItems() As Variant) As String

 Searching for and Replacing Text 47

➲ Listing 1.8: Replace Numbered Tokens in a String
Public Function dhTokenReplace(ByVal strIn As String, _
 ParamArray varItems() As Variant) As String
 On Error GoTo HandleErr

 Dim lngPos As Long
 Dim strReplace As String
 Dim intI As Integer

 For intI = UBound(varItems) To LBound(varItems) Step -1
 strReplace = "%" & (intI + 1)
 lngPos = InStr(1, strIn, strReplace)
 If lngPos > 0 Then
 strIn = Left$(strIn, lngPos - 1) & _
 varItems(intI) & Mid$(strIn, lngPos + Len(strReplace))
 End If
 Next intI

ExitHere:
 dhTokenReplace = strIn
 Exit Function

HandleErr:
 ' If any error occurs, just return the
 ' string as it currently exists.

Then, when you call the function, you can pass as many items as you like after the required
parameter(s), and VBA will convert them into an array and pass them to the procedure.
Your procedure receives the array in the parameter you declared as ParamArray, and you
can use any array-handling technique to work with the parameters.

The rules? The ParamArray parameter must be

• The final parameter

• Not mixed with the Optional, ByVal, or ByRef keyword

• Declared as an array of variants

Chapter 1 • Manipulating Strings48

 Select Case Err.Number
 Case Else
 ' MsgBox "Error: " & Err.Description & _
 ' " (" & Err.Number & ")"
 End Select
 Resume ExitHere
End Function

To do its work, dhTokenReplace loops through all the elements of the input
array, from the upper bound back down to the lower bound:

For intI = UBound(varItems) To LBound(varItems) Step -1
 ' (Code removed)
Next intI

If dhTokenReplace didn’t work its way backward through its tokens, it would have
trouble if you specified more than 10 parameters. It would replace “%1” with
some replacement text, and that would also replace the “%1” in “%10”,
rendering each of the two-digit replacement values inoperative. By working
backward, this problem won’t occur.

For each item in the array, the code builds a new item number (such as “%1”,
“%2”, and so on) and then searches for the string within the text:

strReplace = "%" & (intI + 1)
lngPos = InStr(1, strIn, strReplace)

If InStr found a match (that is, lngPos is greater than 0), dhTokenReplace modifies
the input string to contain all the text before the match, then the replacement text,
and then all the text after the match:

If lngPos > 0 Then
 strIn = Left$(strIn, lngPos - 1) & _
 varItems(intI) & Mid$(strIn, lngPos + Len(strReplace))
End If

That’s it! Repeating the steps for each item in the input array ends up with all
the tokens replaced with text.

 Gathering Information about Strings 49

Make sure you call the dhTokenReplace function correctly. That is, supply a single
text string, containing text and “%x”, with values to be replaced. Follow that
string with individual text parameters, containing the strings to be placed into
each of the replacement tokens. If you’re an advanced developer, it may be
tempting to supply a string and an array of replacements, but that technique
won’t work with this function. If you like, you could modify the function to work
that way, but we like the simplicity provided by the ParamArray modifier.

Gathering Information about Strings
In this section, you’ll find techniques for retrieving information about an existing
string, including:

• Determining whether a character is alphanumeric

• Determining whether a character is alphabetic

• Determining whether a character is numeric

• Counting the number of times a substring appears in a string

• Counting the number of tokens in a delimited string

• Counting the number of words in a string

Determining the Characteristics of a Character
When validating text, you may want to check the contents of each individual char-
acter in a string. You may want to know whether any specific character is alpha-
betic (A–Z, in English), alphanumeric (A–Z, 0–9 in English), or just numeric (0–9).
The first two tests are most quickly accomplished using API calls, and the final
one can be accomplished a few different ways.

Although the examples in this section focus only on the ANSI character set, the
examples on the CD-ROM also take into account the Unicode character set. See
the sidebar “Working with Wide Character Sets” later in this chapter for more
information.

Chapter 1 • Manipulating Strings50

Is This Character Alphabetic?

Should you need to verify that a given character is alphabetic (and not numeric,
punctuation, a symbol, and so on), you might be tempted to just check the charac-
ter and see whether it’s in the range of A–Z or a–z. This would be a mistake for
two reasons:

• If you want your application to be able to be localized for countries besides
your own, this code is almost guaranteed to break in any other language.

• Using VBA to handle this task is almost certainly the slowest way possible.

A better bet is to let Windows handle this task for you. Using the IsCharAlpha
API function, you can allow Windows to decide whether the selected character is
alphabetic. That way, the test runs faster, and you needn’t worry about interna-
tionalization issues—Windows will know, for the local environment, whether a
given character is alphabetic.

To use the API function, you must first declare the function. (This declaration is
included in the sample code for this chapter.)

Private Declare Function IsCharAlphaA Lib "USER32" _
 (ByVal bytChar As Byte) As Long

To use the IsCharAlphaA API function, you can call the dhIsCharAlpha function:

Function dhIsCharAlpha(strText As String) As Boolean
 ' Is the first character of strText an alphabetic character?
 dhIsCharAlpha = CBool(IsCharAlphaA(Asc(strText)))
End Function

This simple wrapper function converts the first letter of the text you pass to a
numeric value (using the Asc function), calls IsCharAlphaA, and converts the
result to a Boolean value.

The function you’ll find in the sample project is a bit more complex than this
representation because it attempts to handle both ANSI and Unicode character
sets. See the “Working with Wide Character Sets” for more information. This
applies to the next few functions, as well.

 Gathering Information about Strings 51

To verify that the first letter of a value a user supplies is alphabetic, you might
use dhIsCharAlpha like this:

If dhIsCharAlpha(strText) Then
 ' You know the first letter of strText is alphabetic.
End If

Is This Character Alphanumeric?

Expanding on the previous function, if you need to know whether a character is
either alphabetic or numeric, Windows provides a simple function for this test, as
well. You can use the IsCharAlphaNumericA API function, declared like this:

Private Declare Function IsCharAlphaNumericA Lib "USER32" _
 (ByVal byChar As Byte) As Long

Just as before, we’ve provided a simple wrapper function for the API function,
making it easier to call:

Function dhIsCharAlphaNumeric(strText As String) As Boolean
 ' Is the first character of strText an alphanumeric character?
 dhIsCharAlphaNumeric = CBool(IsCharAlphaNumericA(Asc(strText)))
End Function

This function will return True if the first character of the value you pass it is either
a letter or a digit.

Is This Character Numeric?

Although the task of determining whether a character is numeric could be quite
simple, finding the best approach took a few iterations. We ended up with two
techniques that are almost identical in their performance, and you’ll need to
choose one based on your own preferences.

The first technique uses the two previous solutions—that is, a character is
numeric if it’s alphanumeric but not alphabetic. Therefore, dhIsCharNumeric per-
forms the first determination.

Function dhIsCharNumeric(strText As String) As Boolean
 ' Is the first character of strText a numeric character?
 dhIsCharNumeric = dhIsCharAlphaNumeric(strText) _
 And Not dhIsCharAlpha(strText)
End Function

Chapter 1 • Manipulating Strings52

An alternative technique is to use the Like operator, discussed in the section
“Comparison Operators” earlier in this chapter. If you’re checking only to see
whether a character is numeric, this is the best solution; it involves no API calls
and no declarations. If you’re already using the other two API-reliant functions,
you might as well use them here. This alternative checks the first character of the
string you send it, comparing it to “[0–9]*”:

Function dhIsCharNumeric1(strText As String) As Boolean
 ' Is the first character numeric?
 ' Almost identical in speed to calling the two API functions.
 dhIsCharNumeric1 = (strText Like "[0-9]*")
End Function

Working with Wide Character Sets
Unfortunately, the two techniques shown here that call the Windows API will fail if your
version of Windows uses wide (two-byte) characters or if you want your solutions to run
on machines that use wide characters. In these cases, you’ll need to take extra steps.

The simplest solution is to determine the maximum character width in the selected charac-
ter set and choose the correct API function to call based on that determination. (The code
examples on the CD-ROM do take these extra steps.) The 32-bit Windows API specification
includes two versions of most functions that involve strings: one for the ANSI environment
and one for DBCS and Unicode environments. In the examples shown here, we’ve used
the ANSI solution because that solution works for English text.

To determine whether you need to use the alternate API calls, you can use the dhIs-
CharsetWide function. Once you’ve got the return value from that function, you can
decide whether to call the ANSI or the Unicode version of the API functions, like this:

Function dhIsCharAlphaNumeric(strText As String) As Boolean

 If dhIsCharsetWide() Then

 dhIsCharAlphaNumeric = _

 CBool(IsCharAlphaNumericW(AscW(strText)))

 Gathering Information about Strings 53

Counting the Number of Times a Substring Appears
The InStr built-in VBA function can tell you whether a particular string appears
within another string (InStr returns a position within the string if the substring is
there and 0 if it’s not), but it can’t tell you how many times the substring appears.
If you want to count occurrences (and several of the other functions in this chapter
will need to do this), you can use the dhCountIn function, shown in Listing 1.9.

➲ Listing 1.9: Find the Number of Occurrences of a Substring
Public Function dhCountIn(strText As String, strFind As String, _
 Optional lngCompare As VbCompareMethod = vbBinaryCompare) As Long

 Dim lngCount As Long
 Dim lngPos As Long

 ' If there's nothing to find, there surely can't be any
 ' found, so return 0.
 If Len(strFind) > 0 Then
 lngPos = 1
 Do
 lngPos = InStr(lngPos, strText, strFind, lngCompare)
 If lngPos > 0 Then
 lngCount = lngCount + 1
 lngPos = lngPos + Len(strFind)
 End If
 Loop While lngPos > 0
 Else
 lngCount = 0

 Else

 dhIsCharAlphaNumeric = _

 CBool(IsCharAlphaNumericA(Asc(strText)))

 End If

End Function

Note that you must also call the AscW function when working with the “wide” versions of
the API functions.

Chapter 1 • Manipulating Strings54

 End If
 dhCountIn = lngCount
End Function

Of course, if there’s nothing to find, the function just returns 0:

If Len(strFind) > 0 Then
 ' the real code goes here
Else
 intCount = 0
End If

To perform the search, the code loops through the input text, looking for the
search string, until it no longer finds any matches (that is, until the return value
from InStr is 0). Along the way, if it finds a match, it increments the value of
intCount and moves the start position to the character after the end of the sought
string in the input text. This not only speeds up the search (why look for the text at
the very next character after you just found it if the text you’re looking for is, say,
four characters long?), it also avoids finding overlapping matches. Here’s the code
fragment that does the major portion of the work:

lngPos = 1
Do
 lngPos = InStr(lngPos, strText, strFind, lngCompare)
 If lngPos > 0 Then
 lngCount = lngCount + 1
 lngPos = lngPos + Len(strFind)
 End If
Loop While lngPos > 0

To find the number of vowels in a string, you might write code like this:

intVowels = dhCountIn(strText, "A") + dhCountIn(strText, "E") + _
 dhCountIn(strText, "I") + dhCountIn(strText, "O") + _
 dhCountIn(strText, "U")

The dhCountIn function, like all the functions in this chapter that perform
searching, is case sensitive by default. If you want to perform case-insensitive
searches, either modify the source code or pass in the appropriate optional
parameter value (vbTextCompare).

 Gathering Information about Strings 55

Counting the Number of Tokens in a Delimited String
The dhCountTokens function, shown in Listing 1.10, is a general-purpose func-
tion that allows you to find out how many “chunks” of text there are in a string,
given text delimiters that you supply. The function interprets any one of the char-
acters in your list of delimiters as a token separator, so

Debug.Print dhCountTokens("This is a test", " ")

returns 4, as does

Debug.Print dhCountTokens("This:is!a test", ": !")

Because every delimiter character must delimit a token, the following example
returns 10:

Debug.Print dhCountTokens("This:!:is:!:a:!:test", ": !")

You’ll have to look carefully to see them, but the individual tokens are

This, "", "", is, "", "", a, "", "", test

Counting Vowels Revisited
You could use the dhCountIn function to count vowels, as shown in the previous example. You
might also take advantage of the dhTranslate and Split functions to do the same job. That
is, you can have dhTranslate replace all vowels with a single vowel, and then use the Split
function to split the text, based on that single vowel. The size of the array returned from
Split tells you how many vowels you have. For example, you might write the code this way
(see the next section for more information on using dhTranslate in this manner):

Public Function CountVowels(ByVal strIn As String) As Long

 ' An alternative way to calculate vowels in a piece of text.

 Dim astrItems() As String

 strIn = dhTranslate(strIn, "AEIOU", "A", vbTextCompare)

 astrItems = Split(strIn, "A")

 CountVowels = UBound(astrItems) - LBound(astrItems)

End Function

Chapter 1 • Manipulating Strings56

➲ Listing 1.10: Count the Number of Tokens in a String
Public Function dhCountTokens(ByVal strText As String, _
 ByVal strDelimiter As String, _
 Optional lngCompare As VbCompareMethod = vbBinaryCompare) As Long

 Dim strChar As String * 1

 ' If there's no search text, there can't be any tokens.
 If Len(strText) = 0 Then
 dhCountTokens = 0
 ElseIf Len(strDelimiter) = 0 Then
 ' If there's no delimiters, the output
 ' is the entire input.
 dhCountTokens = 1
 Else
 strChar = Left$(strDelimiter, 1)

 ' Flatten all the delimiters to just the first one in
 ' the list.
 If Len(strDelimiter) > 1 Then
 strText = dhTranslate(strText, strDelimiter, _
 strChar, lngCompare)
 End If
 ' Count the tokens. Actually, count
 ' delimiters, and add one.
 dhCountTokens = dhCountIn(strText, strChar) + 1
 End If
End Function

The dhCountTokens function is somewhat tricky—it uses the dhCountIn func-
tion, which can count the occurrence of only a single item. Rather than call
dhCountIn multiple times, once for each different delimiter, dhCountTokens “flat-
tens” the delimiters in the input text. That is, it first calls the dhTranslate function
to map all the different delimiters to the first character in your list of delimiters:

strChar = Left$(strDelimiter, 1)

' Flatten all the delimiters to just the first one in
' the list.
If Len(strDelimiter) > 1 Then
 strText = dhTranslate(strText, strDelimiter, strChar)
End If

 Gathering Information about Strings 57

That is, if you called dhCountTokens as

Debug.Print dhCountTokens("This:!:is:!:a:!:test", ": !")

after the code fragment listed previously, strText would contain

"This:::is:::a:::test"

Now it’s just a matter of counting the number of times the first delimiter appears
in the string and adding 1. (If there are four delimiters, there must be five tokens.)

dhCountTokens = dhCountIn(strText, strChar) + 1

That’s all there is to it. The next section shows a typical reason to call dhCountTokens.

Counting the Number of Words in a String
Although the dhCountTokens function provides you with total flexibility, you’re
more often going to want to count specific types of delimited objects. Counting
words is a typical task, and dhCountWords uses techniques similar to those used
in dhCountTokens to make the task simple. The code, shown in Listing 1.11, takes
the following steps:

1. Checks the length of the input text. If it’s 0, there’s not much point in con-
tinuing.

2. Calls dhTranslate to convert all the delimiters to spaces. The function uses a
standard set of delimiters, declared as follows:

Const dhcDelimiters As String = " ,.!:;<>?"

Counting Vowels Re-Revisited
Now that you’ve got the dhCountTokens function ready to use, you could rewrite the
CountVowels function discussed in the previous section, like this:

Public Function CountVowels2(ByVal strIn As String) As Long

 ' An alternative way to calculate vowels in a piece of text.

 CountVowels2 = _
 dhCountTokens(strIn, "aeiou", vbTextCompare) – 1

End Function

For example, if a string breaks down into 16 tokens, it must contain 15 vowels. This simple
function shows the power of the parsing functions included in this chapter.

Chapter 1 • Manipulating Strings58

3. Calls dhTrimAll to remove leading and trailing spaces and converts all
groups of spaces to a single space within the text.

4. Calls dhCountIn to count the spaces in the string and adds 1 to the result.

For example, calling dhCountWords like this:

dhCountWords("Hi there, my name is Cleo, what’s yours?")

returns 8, the number of words in the string.

➲ Listing 1.11: Count the Number of Words in a String
Public Function dhCountWords(ByVal strText As String) As Long
 If Len(strText) = 0 Then
 dhCountWords = 0
 Else
 ' Get rid of any extraneous stuff, including delimiters and
 ' spaces. First convert delimiters to spaces, and then
 ' remove all extraneous spaces.
 strText = dhTrimAll(dhTranslate(strText, dhcDelimiters, " "))
 ' If there are three spaces, there are
 ' four words, right?
 dhCountWords = dhCountIn(strText, " ") + 1
 End If
End Function

Converting Strings
This section presents a series of techniques for performing common tasks involv-
ing the conversion of a string from one form to another. The section includes the
following topics:

• Converting a number into a string with the correct ordinal suffix

• Converting a number to roman numerals

• Performing a “smart” proper case conversion

• Encrypting/decrypting text using XOR password encryption

• Returning a string left-padded or right-padded to a specified width

• Using Soundex to compare strings

 Converting Strings 59

Another common string conversion trick is the conversion from a numeric value
into written text (as you might when writing a check, for example). You’ll find a
procedure that does this work for you in Chapter 2.

Converting a Number into a String with the Correct
Ordinal Suffix

If you want to be able to represent a numeric value as its ordinal position in a set,
you’ll need to write a function that, when provided with an integer, returns a
string containing the value and its suffix as a string. The simple dhOrdinal func-
tion, shown in Listing 1.12, does what you need; it takes in a numeric value and
returns a string containing the ordinal representation of that value. For example:

dhOrdinal(34)

returns “34th”, and

dhOrdinal(1)

returns “1st”.

The dhOrdinal function counts on standard rules to calculate the suffix (once
it’s removed all but the final two digits, using the Mod operator:

• All values between 11 and 19, inclusive, use “th”.

Otherwise:

• Numbers that end in 1 use “st”.

• Numbers that end in 2 use “nd”.

• Numbers that end in 3 use “rd”.

• All numbers that haven’t yet been claimed use “th”.

➲ Listing 1.12: Convert a Value to Its Ordinal Suffix
Public Function dhOrdinal(lngItem As Long) As String
 Dim intDigit As Integer
 Dim strOut As String * 2
 Dim intTemp As Integer

Chapter 1 • Manipulating Strings60

 ' All teens use "th"
 intTemp = lngItem Mod 100
 If intTemp >= 11 And intTemp <= 19 Then
 strOut = "th"
 Else
 ' Get that final digit
 intDigit = lngItem Mod 10
 Select Case intDigit
 Case 1
 strOut = "st"
 Case 2
 strOut = "nd"
 Case 3
 strOut = "rd"
 Case Else
 strOut = "th"
 End Select
 End If
 dhOrdinal = lngItem & strOut
End Function

The code first uses the Mod operator to retrieve the final two digits and checks
for values between 11 and 19—these should all use the “th” suffix. For other val-
ues, the code looks at the “ones” digit because that’s all it takes to determine
which suffix to use. To find the digit that ends each number, the code uses the
Mod operator, which returns the remainder when you divide by the second oper-
and. For example:

41 Mod 10

returns 1, the remainder you get when you divide 41 by 10.

The dhOrdinal function would need to be completely overhauled for any language
besides English; it’s not clear that the ordinal suffixes would even group the same
way in any other language. If you intend to distribute applications globally, be
sure to allot time for rewriting this function for each localized language.

Converting a Number into Roman Numerals
If you’re creating legal documents programmatically, or if your job involves copy-
right notifications (well, it is somewhat difficult coming up with compelling sce-
narios for this one), you’re likely to require the capability to convert integers into

 Converting Strings 61

roman numerals. Although this need may not come up often, when it does, it’s
tricky enough that you’ll want to avoid having to write the code yourself.

The dhRoman function, in Listing 1.13, can accept an integer between 1 and
3999 (the Romans didn’t have a concept of 0), and it returns the value converted
into roman numerals. For example:

Debug.Print dhRoman(1997)

displays “MCMXCVII”, and

Debug.Print dhRoman(3999)

displays “MMMCMXCIX”.

Attempting to convert a number greater than 3999 or less than 1 will raise a run-
time error in dhRoman.

➲ Listing 1.13: Convert Numbers to Roman Numerals
Public Function dhRoman(ByVal intValue As Integer) As String

 Dim varDigits As Variant
 Dim lngPos As Integer
 Dim intDigit As Integer
 Dim strTemp As String

 ' Build up the array of roman digits
 varDigits = Array("I", "V", "X", "L", "C", "D", "M")
 lngPos = LBound(varDigits)
 strTemp = ""
 Do While intValue > 0
 intDigit = intValue Mod 10
 intValue = intValue \ 10
 Select Case intDigit
 Case 1
 strTemp = varDigits(lngPos) & strTemp
 Case 2
 strTemp = varDigits(lngPos) & _
 varDigits(lngPos) & strTemp

Chapter 1 • Manipulating Strings62

 Case 3
 strTemp = varDigits(lngPos) & _
 varDigits(lngPos) & varDigits(lngPos) & strTemp
 Case 4
 strTemp = varDigits(lngPos) & _
 varDigits(lngPos + 1) & strTemp
 Case 5
 strTemp = varDigits(lngPos + 1) & strTemp
 Case 6
 strTemp = varDigits(lngPos + 1) & _
 varDigits(lngPos) & strTemp
 Case 7
 strTemp = varDigits(lngPos + 1) & _
 varDigits(lngPos) & varDigits(lngPos) & strTemp
 Case 8
 strTemp = varDigits(lngPos + 1) & _
 varDigits(lngPos) & varDigits(lngPos) & _
 varDigits(lngPos) & strTemp
 Case 9
 strTemp = varDigits(lngPos) & _
 varDigits(lngPos + 2) & strTemp
 End Select
 lngPos = lngPos + 2
 Loop
 dhRoman = strTemp
End Function

How does dhRoman do its work? As you probably know, all numbers built in
roman numerals between 1 and 3999 consist of the seven digits I, V, X, L, C, D, and
M. The I, X, C, and M digits represent 1, 10, 100, and 1000; V, L, and D represent 5,
50, and 500, respectively. The code loops through all the digits of your input value
from right to left, using the Mod operator to strip them off one by one:

Do While intValue > 0
 intDigit = intValue Mod 10
 intValue = intValue \ 10
 ' (Code removed)
 intPos = intPos + 2
Loop

 Converting Strings 63

At each point in the loop, intDigit contains the right-most digit of the value, and
intValue keeps getting smaller, one digit at a time. For example, the following
table shows the values of the two variables while dhRoman tackles the value 1234:

In addition, intPos indicates which array element to use in building the string as
the code moves through the ones, tens, hundreds, and thousands places in the
value.

Based on the value in intDigit, the code uses a Select Case construct to choose
the characters to prepend to the output string. (That’s right—prepend. dhRoman
constructs the output string from right to left, adding items to the left of the string
as it works.) For example, for the value 1234, dhRoman finds the digit 4 when int-
Pos is 0. The code says to use

strTemp = varDigits(intPos) & _
 varDigits(intPos + 1) & strTemp

in this case. Because intPos is 0, the output is IV (varDigits(0) & varDigits(1)). If
the 4 had been in the hundreds place (imagine you’re converting 421 to roman
numerals), then intPos would be 2, the expression would say to use varDigits(4) &
varDigits(5), and the output would be “CD” for this digit.

You won’t use this function every day. However, when you do need to convert
a value to roman numerals, it will be waiting.

Performing a “Smart” Proper Case Conversion
Although VBA provides the built-in StrConv function to convert words to proper
case, it does just what a brute-force hand-coded solution would do: It converts the
first letter of every word to uppercase and forces the rest of each word to lower-
case. This doesn’t help much for articles (a, the, and so on) or prepositions (of, for,
and so on) or for handling proper names like MacDonald or Port of Oakland. Writ-
ing code to handle all the special cases would be prohibitively difficult, but if a

intValue intDigit intPos Character

123 4 0 I

12 3 2 X

1 2 4 C

0 1 6 M

Chapter 1 • Manipulating Strings64

“smart” proper-casing routine were to look up the exceptions to the rules in a
table, the routine might work a bit better than through code alone.

One possible solution, dhProperLookup (in Listing 1.14), walks through the text
you pass it, building up “words” of alphabetic characters. As soon as it finds a
non-alphabetic character, it checks out the most current word it’s collected and
looks it up in a table. If it’s there, it uses the text it finds in the table. If not, it per-
forms a direct conversion of the word to proper case. The code then continues the
process with the rest of the text. Once it hits the end of the string, it handles the
final word and returns the result.

➲ Listing 1.14: A “Smart” Proper Case Function
Public Function dhProperLookup(_
 ByVal strIn As String, _
 Optional blnForceToLower As Boolean = True, _
 Optional rst As ADODB.Recordset = Nothing, _
 Optional strField As String = "") As Variant

 Dim strOut As String
 Dim strWord As String
 Dim lngI As Long
 Dim strC As String * 1

 On Error GoTo HandleErr

 strOut = vbNullString
 strWord = vbNullString

 If blnForceToLower Then
 strIn = LCase$(strIn)
 End If

 For lngI = 1 To Len(strIn)
 strC = Mid$(strIn, lngI, 1)
 If dhIsCharAlphaNumeric(strC) Or strC = "'" Then
 strWord = strWord & strC

 Converting Strings 65

 Else
 strOut = strOut & dhFixWord(strWord, rst, strField) & strC
 ' Reset strWord for the next word.
 strWord = vbNullString
 End If
NextChar:
 Next lngI

 ' Process the final word.
 strOut = strOut & dhFixWord(strWord, rst, strField)

ExitHere:
 dhProperLookup = strOut
 Exit Function

HandleErr:
 ' If there's an error, just go on to the next character.
 ' This may mean the output word is missing characters,
 ' of course. If this bothers you, just change the Resume
 ' statement to resume at "ExitHere."
 Select Case Err
 Case Else
 ' MsgBox "Error: " & Err.Description & _
 ' " (" & Err.Number & ")"
 End Select
 Resume NextChar

End Function

To call dhProperLookup, you can pass the following set of parameters:

• strIn (required) is the text to be converted.

• blnForceToLower (optional; default = True) causes the function to convert all
the text to lowercase before performing the proper case conversion. If you
set the parameter to False, dhProperLookup won’t affect any characters
except the first character of each word.

• rst (optional; default = Nothing) is an open ADO recordset, containing the
list of special cases. This recordset can come from a database, from an XML
file, or from any other source of an ADO recordset. The recordset must have
been opened using some cursor type besides the default, which doesn’t
allow for random access within the recordset.

Chapter 1 • Manipulating Strings66

• strField (optional; default = “”) is a string expression containing the name of
the field to be used for lookups in the recordset referred to by rst. If you
specify the recordset, you must also specify this field name.

Because of an anomaly in the current version of ADO, the dhFixWord function
(the function that retrieves special cases from the recordset) will fail if your special
case text includes more than one apostrophe.

For example, suppose you have a database named PROPER.MDB containing a
table named tblSpecialCase. In that table, a field named Lookup contains special
cases for spelling. The sample code shown in Listing 1.15 opens the database, cre-
ates a recordset, and calls the dhProperLookup function.

➲ Listing 1.15: Test the dhProperLookup Function
Sub TestProperMDB()
 ' Test procedure for dhProperLookup

 Dim rst As ADODB.Recordset

 Set rst = New ADODB.Recordset
 rst.Open "tblSpecialCase", _
 "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source = " & ActiveWorkbook.Path & "\Proper.MDB", _
 adOpenKeyset

 Debug.Print dhProperLookup(_
 "headline: cruella de ville and old macdonald eat dog's food", _
 True, rst, "Lookup")
End Sub

The examples in this chapter assume that you’re running them from within the
sample Excel workbook. As you can see, this particular example uses Active-
Workbook.Path, a property of the current Excel workbook that’s only valid for a
saved workbook. If you use this sample code in another application, or in a new
Excel workbook, you’ll need to take this into account. This issue is already handled
in the Access and VB versions of the samples on the CD-ROM.

 Converting Strings 67

If tblSpecialCase contains at least the words a, and, de, and MacDonald, the out-
put from the call to dhProperLookup would be

Headline: Cruella de Ville and Old MacDonald Eat a Dog’s Food

If you don’t supply recordset and field name parameters for dhProperLookup,
it performs the same task as would a call to StrConv, although it does its work
somewhat less efficiently than the built-in function. (In other words, unless you
intend to supply the recordset, you’re probably better off calling the built-in func-
tion.) To do its work, dhProperLookup starts by checking the blnForceToLower
parameter and converting the entire input string to lowercase if the parameter’s
value is True:

If blnForceToLower Then
 strIn = LCase$(strIn)
End If

To work its way through the input string, dhProperLookup performs a loop, visit-
ing each character in turn:

For lngI = 1 To Len(strIn)
 strC = Mid$(strIn, lngI, 1)
 ' (Code removed)
Next lngI

The code examines each character. If the character is alphanumeric or an apos-
trophe, it’s appended to strWord. If not, the loop has reached the end of a word, so
the code calls the dhFixWord procedure to perform the conversion and then tacks the
word and the current (non-word) character onto the end of the output string.

If dhIsCharAlphaNumeric(strC) Or strC = "’" Then
 strWord = strWord & strC
Else
 strOut = strOut & dhFixWord(strWord, rst, strField) & strC
 ' Reset strWord for the next word.
 strWord = vbNullString
End If

Rather than setting strWord to be “”, the code uses vbNullString instead. This
optimization allows your code to run a tiny bit faster. Because this code executes
for each character you’re converting, you need all the help you can get! VBA
provides the vbNullString constant, and although this constant’s value is not really
“” (it contains a reference to a known, “null” string pointer), when you assign it
to a string variable, VBA converts it into its value, “”. You can use vbNullString in
any situation where you might otherwise use “” in your code.

Chapter 1 • Manipulating Strings68

Once the loop has concluded, one final step is necessary: Unless the text ends
with a character that’s not part of a word, the code will never process the final
word. To make sure that last word ends up in the output string, dhProperLookup
calls dhFixWord one last time, with the final word:

' Process the final word.
strOut = strOut & dhFixWord(strWord, rst, strField)

The dhFixWord function, shown in Listing 1.16, does its work using a recordset
containing the special cases for specific words’ spellings passed in from dhProper-
Lookup. Supplying that information is up to you, and the function presented here
counts on your having created an ADO recordset object filled with the rows of
special names. If you have not supplied the recordset and field name, dhFixWord
simply capitalizes the first letter of the word you’ve sent it and then returns.

➲ Listing 1.16: dhFixWord Converts a Single Word to Proper Case
Private Function dhFixWord(_
 ByVal strWord As String, _
 Optional rst As ADODB.Recordset = Nothing, _
 Optional strField As String = "") As String

 ' "Properize" a single word
 Dim strOut As String

 On Error GoTo HandleErr

 If Len(strWord) > 0 Then
 ' Many things can go wrong. Just assume you want the
 ' standard properized version unless you hear otherwise.
 strOut = UCase(Left$(strWord, 1)) & Mid$(strWord, 2)
 ' Did you pass in a recordset? If so, lookup
 ' the value now.
 If Not rst Is Nothing Then
 If Len(strField) > 0 Then
 rst.MoveFirst
 rst.Find strField & " = " & _
 "'" & Replace(strWord, "'", "''") & "'"
 If Not rst.EOF Then
 strOut = rst(strField)
 End If

 Converting Strings 69

 End If
 End If
 End If

ExitHere:
 dhFixWord = strOut
 Exit Function

HandleErr:
 ' If anything goes wrong, anything, just get out.
 Select Case Err.Number
 Case Else
 ' MsgBox "Error: " & Err.Description & _
 ' " (" & Err.Number & ")"
 End Select
 Resume ExitHere
End Function

The dhFixWord function does the bulk of its work in a few simple lines of code:

rst.MoveFirst
rst.Find strField & " = " & _
 "'" & Replace(strWord, "'", "''") & "'"
If Not rst.EOF Then
 strOut = rst(strField)
End If

It uses the recordset’s FindFirst method to look up a string in the format

Lookup = 'macdonald'

If it finds a match in the table, it replaces the output string with the word it found.
In this case, it would replace the value of strOut with the text “MacDonald”. (The
rest of the code in dhFixWord simply validates input and prepares the lookup
string.)

What’s missing from this solution? First of all, it’s not terribly smart. It can work
only with the specific words you’ve added to the list. If you’ve added McGregor
but not MacGregor, there’s no way for the code to know how to handle the word
that’s not there. It’s not possible to work with proper names that contain spaces
(such as de Long, for example), although you could add many of the proper name
prefixes to the lookup table to avoid their being capitalized incorrectly. The code
checks only for alphabetic characters and apostrophes as legal characters in words.
You may find you need to add to the list of acceptable characters. In that case, you

Chapter 1 • Manipulating Strings70

may want to create a list of acceptable characters as a constant and use the InStr
function to see whether strC is in the list. For example, to treat apostrophes and
hyphens as valid word characters, you could declare a constant:

Const conWordChars = "’-"

and modify the check for characters like this:

If dhIsCharAlphaNumeric(strC) Or _
 (InStr(conWordChars, strC) > 0) Then

Where Does the Recordset Come From?
In this example (and others throughout this book), you may need to supply an ADO record-
set as a parameter value. In the traditional sense, a recordset normally comes from a table
in some database. However, using ADO, a recordset can come from many different places.
You can read data from a standard database, or from a text file, or from an XML file; or
you can even create the recordset on-the-fly, with no connection to stored data. If you’re
distributing an application, you may find it easiest to distribute your lookups for the
dhProperLookup as a text file rather than as a full MDB file. We actually tried this out, cre-
ating a recordset from tblSpecialCase and then calling the Save method to create an XML
file, like this:

 Sub CreateProperXML()

 ' Create XML file for recordset.

 Dim rst As ADODB.Recordset

 Dim strPath As String

 Dim strFile As String

 strPath = ActiveWorkbook.Path

 Set rst = New ADODB.Recordset

 rst.Open "tblSpecialCase", _

 "Provider=Microsoft.Jet.OLEDB.4.0;" & _

 "Data Source = " & strPath & "\Proper.MDB", _

 adOpenKeyset

 On Error Resume Next

 strFile = strPath & "\Proper.xml"

 Kill strFile

 Converting Strings 71

Encrypting/Decrypting Text Using XOR Encryption
If you need a simple way to encrypt text in an application, the function provided in
this section may do just what you need. The dhXORText function, in Listing 1.17,
includes code that performs both the encryption and decryption of text strings.
That’s right—it takes just one routine to perform both tasks.

 rst.Save strFile, adPersistXML

 rst.Close

 Set rst = Nothing

End Sub

Then, to test this out, you can try code like this:

Public Sub TestProperXML()

 ' Test procedure for dhProperLookup

 Dim rst As ADODB.Recordset

 Dim strText As String

 ' You don't even need a database. You can use a

 ' saved XML file.

 Set rst = New ADODB.Recordset

 rst.Open ActiveWorkbook.Path & "\Proper.xml", , _

 adOpenKeyset, adLockReadOnly, Options:=adCmdFile

 strText = _

 "headline: cruella de ville and old macdonald " & _

 "eat dog's food"

 Debug.Print dhProperLookup(strText, True, rst, "Lookup")

 rst.Close

 Set rst = Nothing

End Sub

As you can see, this technique requires that you supply only a single text file (Proper.xml) in
order to open a recordset—no need to bring along a big database, just to use dhProper-
Lookup. You may find it interesting to open Proper.xml in a text editor—it’s simply a text
file, containing all your data.

Chapter 1 • Manipulating Strings72

To encrypt text, pass dhXORText the text to encrypt and a password that sup-
plies the encryption code. To decrypt the text, pass dhXORText the exact same
parameters again. For example:

dhXORText(dhXORText("This is a test", "Password"), "Password")

returns “This is a test”, the same text encrypted and then decrypted.

➲ Listing 1.17: Use the XOR Operator to Encrypt Text
Public Function dhXORText(strText As String, strPWD As String) _
 As String
 ' Encrypt or decrypt a string using the XOR operator.
 Dim abytText() As Byte
 Dim abytPWD() As Byte
 Dim intPWDPos As Integer
 Dim intPWDLen As Integer
 Dim intChar As Integer

 abytText = strText
 abytPWD = strPWD
 intPWDLen = LenB(strPWD)
 For intChar = 0 To LenB(strText) - 1
 ' Get the next number between 0 and intPWDLen - 1
 intPWDPos = (intChar Mod intPWDLen)
 abytText(intChar) = abytText(intChar) Xor _
 abytPWD(intPWDPos)
 Next intChar
 dhXORText = abytText
End Function

The dhXORText function counts on the XOR operator to do its work. This built-
in operator compares each bit in the two expressions and uses the following rules
to calculate the result for each bit:

If Bit1 is And Bit2 is The result is

1 1 0

1 0 1

0 1 1

0 0 0

 Converting Strings 73

Why XOR? Using this operator has a very important side effect: If you XOR two
values and then XOR the result with either of the original values, you get back the
other original value. That’s what makes it possible for dhXORText to do its work.
To try this, imagine that the first byte of your text is 74 and the first byte of the
password is 110.

74 XOR 110

returns 36, which becomes the encrypted byte. Now, to get back the original text,

36 XOR 110

returns 74 back. Repeat that for all the bytes in the text, and you’ve encrypted and
decrypted your text.

To perform its work, dhXORText copies both the input string and the password
text into byte arrays. Once there, it’s just a matter of looping through all the bytes
in the input string’s array, repeating the password over and over until you run out
of input text. For each byte, XOR the byte from the input string and the byte from
the password to form the byte for the output string.

Figure 1.8 shows a tiny example, using “Hello Tom” as the input text and “ab”
as the password. Each byte in the input string will be XOR’d with a byte from the
password, with the password repeating until it has run out of characters from the
input string.

F I G U R E 1 . 8
XOR each byte from the

input string and the pass-
word, repeated.

The code loops through each character of the input string—that’s easy!

For intChar = 0 To LenB(strText) - 1
 ' (Code removed)
Next intChar

Chapter 1 • Manipulating Strings74

The hard part is to find the correct byte from the password to XOR with the
selected byte in the input string: The code uses the Mod operator to find the cor-
rect character. The Mod operator returns the remainder, when you divide the first
operand by the second, which is guaranteed to be a number between 0 and one
less than the second operand. In short, that corresponds to rotating through the
bytes of the password, as shown in Table 1.13 (disregarding the null bytes). If the
password were five bytes long, the “Position Mod 2” (“Position Mod 5”, in that
case) column would contain the values 0 through 4, repeated as many times as
necessary.

' Get the next number between 0 and intPWDLen - 1
intPWDPos = (intChar Mod intPWDLen)
abytText(intChar) = abytText(intChar) Xor abytPWD(intPWDPos)

As you can probably imagine, passwords used with dhXORText are case sensitive,
and you can’t change that fact. Warn users that passwords in your application will
need to be entered exactly, taking upper- and lowercase letters into account.

T A B L E 1 . 1 3 : Steps in the Encryption of the Sample Text

Char from
Input

Position Position Mod 2 Char from
Password

XOR

H (72) 0 0 a (97) 41

e (101) 1 1 b (98) 7

l (108) 2 0 a (97) 13

l (108) 3 1 b (98) 14

o (111) 4 0 a (97) 14

 (32) 5 1 b (98) 66

T (84) 6 0 a (97) 53

o (111) 7 1 b (98) 13

m (109) 8 0 a (97) 12

 Converting Strings 75

Although no XOR-based algorithm for encryption is totally safe, the longer your
password, the better chance you have that a decryption expert won’t be able to
crack the code. The previous example, using “ab” as the password, was only for
demonstration purposes. Make sure your passwords are at least four or five char-
acters long—the longer, the better.

Returning a String Left-Padded or Right-Padded to a
Specified Width

If you’re creating a phone-book listing, you may need to left-pad a phone number
with dots so it looks like this:

............(310) 123-4567

..................555-1212

Or you may want to left-pad a part number field with 0s (zeros), so “1234”
becomes “001234”, and all part numbers take up exactly six digits. You may want
to create a fixed-width data stream, with spaces padding the fields. In all of these
cases, you need a function that can pad a string, to the left or to the right, with the
character of your choosing. The two simple functions dhPadLeft and dhPadRight,
in Listing 1.18, perform the work for you.

To call either function, pass a string containing the input text, an integer indicat-
ing the width for the output string, and, optionally, a pad character. (The func-
tions will use a space character if you don’t provide one.)

For example:

dhPadLeft("Name", 10, ".")

returns “......Name” (the word Name preceded by six periods).

dhPadRight("Hello", 10)

returns “Hello ” (Hello followed by five spaces).

Neither dhPadLeft nor dhPadRight will truncate your input string. If the original
string is longer than you indicate you want the output string, the code will just
return the input string with no changes.

Chapter 1 • Manipulating Strings76

➲ Listing 1.18: Pad with Characters to the Left or to the Right
Public Function dhPadLeft(strText As String, intWidth As Integer, _
 Optional strPad As String = " ") As String

 If Len(strText) > intWidth Then
 dhPadLeft = strText
 Else
 dhPadLeft = Right$(String(intWidth, strPad) & _
 strText, intWidth)
 End If
End Function

Public Function dhPadRight(strText As String, intWidth As Integer, _
 Optional strPad As String = " ") As String

 If Len(strText) > intWidth Then
 dhPadRight = strText
 Else
 dhPadRight = Left$(strText & _
 String(intWidth, strPad), intWidth)
 End If

End Function

Both functions use the same technique to pad their input strings: They create a
string consisting of as many of the pad characters as needed to fill the entire out-
put string, append or prepend that string to the original string, and then use the
Left$ or Right$ function to truncate the output string to the correct width. For
example, if you call dhPadLeft like this:

dhPadLeft("123.45", 10, "$")

the code creates a string of 10 dollar signs and prepends that to the input string.
Then it uses the Right$ function to truncate:

Right$("$$$$$$$$$$123.45", 10)
' returns "$$$$123.45"

 Converting Strings 77

Using Soundex to Compare Strings
Long before the advent of computers, people working with names knew it was
very difficult to spell surnames correctly and that they needed some way to group
names by their phonetic spelling rather than by grammatical spelling. The algo-
rithm demonstrated in this section is based on the Russell Soundex algorithm, a
standard technique used in many database applications.

The Soundex algorithm was designed for, and works reliably with, surnames only.
You can use it with any type of string, but its effectiveness diminishes as the text
grows longer. It was intended to make it possible to match various spellings of last
names, and its discriminating power is greatest in short words with three or more
consonants.

The Soundex algorithm is based on these assumptions:

• Many English consonants sound alike.

• Vowels don’t affect the overall sound of the name as much as the consonants
do.

• The first letter of the name is most significant.

• A four-character representation is optimal for comparing two names.

For example, all three of the following examples return “P252”, the Soundex
representation of all of these names:

dhSoundex("Paszinslo")
dhSoundex("Pacinslo")
dhSoundex("Pejinslo")

All three provide very distinct spellings of the difficult name, yet all three return
the same Soundex string. As long as the first letters match, you have a good
chance of finding a match using the Soundex conversion.

The concept, then, is that when attempting to locate a name, you’d ask the user
for the name, convert it to its Soundex representation, and compare it to the Soun-
dex representations of the names in your database. You’d present a list of the pos-
sible matches to the user, who could then choose the correct one.

The Soundex algorithm follows these steps:

1. Use the first letter of the string, as is.

Chapter 1 • Manipulating Strings78

2. Code the remaining characters, using the information in Table 1.14.

3. Skip repeated values (that is, characters that map to the same value) unless
they’re separated by one or more separator characters (characters with a
value of 0).

4. Once the Soundex string contains four characters, stop looking.

The full code for dhSoundex, in Listing 1.19, follows these steps in creating the
Soundex representation of the input string.

➲ Listing 1.19: Convert Strings to Their Soundex Equivalent
Const dhcLen = 4

Public Function dhSoundex(ByVal strIn As String) As String

 Dim strOut As String
 Dim intI As Integer
 Dim intPrev As Integer
 Dim strChar As String * 1
 Dim intChar As Integer

T A B L E 1 . 1 4 : Values for Characters in a Soundex String

Letter Value Comment

W,H Ignored

A,E,I,O,U,Y 0 Although removed from the output string, these letters act as
separators between significant consonants

B,P,F,V 1

C,G,J,K,Q,S,X,Z 2

D,T 3

L 4

M,N 5

R 6

 Converting Strings 79

 Dim blnPrevSeparator As Boolean
 Dim intPos As Integer

 strOut = String(dhcLen, "0")
 strIn = UCase(strIn)
 blnPrevSeparator = False

 strChar = Left$(strIn, 1)
 intPrev = CharCode(strChar)
 Mid$(strOut, 1, 1) = strChar

 intPos = 1
 For intI = 2 To Len(strIn)
 ' If the output string is full, quit now.
 If intPos >= dhcLen Then
 Exit For
 End If
 ' Get each character, in turn. If the
 ' character's a letter, handle it.
 strChar = Mid$(strIn, intI, 1)
 If dhIsCharAlpha(strChar) Then
 ' Convert the character to its code.
 intChar = CharCode(strChar)

 ' If the character's not empty, and if it's not
 ' the same as the previous character, tack it
 ' onto the end of the string.
 If (intChar > 0) Then
 If blnPrevSeparator Or (intChar <> intPrev) Then
 intPos = intPos + 1
 Mid$(strOut, intPos, 1) = intChar
 intPrev = intChar
 End If
 End If
 blnPrevSeparator = (intChar = 0)
 End If
 Next intI
 dhSoundex = strOut
End Function

Now that you’ve found the Soundex string corresponding to a given surname,
what can you do with it? You may want to provide a graduated scale of matches.

Chapter 1 • Manipulating Strings80

That is, perhaps you don’t require an exact match but would like to know how
well one name matches another. A common method for calculating this level of
matching is to use a function such as dhSoundsLike, shown in Listing 1.20. To use
this function, you supply two strings, not yet converted to their Soundex equiva-
lents, and dhSoundsLike returns a number between 0 and 4 (4 being the best
match) indicating how alike the two strings are. (If you’d rather, you can pass in
two Soundex strings, and dhSoundsLike won’t perform the conversion to Soun-
dex strings for you. In that case, set the optional blnIsSoundex parameter to True.)

➲ Listing 1.20: Use dhSoundsLike to Compare Two Soundex Strings
Public Function dhSoundsLike(ByVal strItem1 As String, _
 ByVal strItem2 As String, _
 Optional blnIsSoundex As Boolean = False) As Integer

 Dim intI As Integer

 If Not blnIsSoundex Then
 strItem1 = dhSoundex(strItem1)
 strItem2 = dhSoundex(strItem2)
 End If
 For intI = 1 To dhcLen
 If Mid$(strItem1, intI, 1) <> Mid$(strItem2, intI, 1) Then
 Exit For
 End If
 Next intI
 dhSoundsLike = (intI - 1)
End Function

It’s hard to imagine a lower-tech technique for performing this task. dhSounds-
Like simply loops through all four characters in each Soundex string. As long as it
finds a match, it keeps going. Like a tiny game of musical chairs, as soon as it finds
two characters that don’t match, it jumps out of the loop and returns the number
of characters it found that matched; the more characters that match, the better the
rating.

To test out dhSoundsLike, you could try

Debug.Print dhSoundsLike("Smith", "Smitch")

 Working with Substrings 81

which returns 3, or

Debug.Print dhSoundsLike("S125", "S123", True)

which returns 3, as well. Of course, you’re not likely to call dhSoundsLike with
string literals. More likely, you’d call it passing in two string variables and com-
pare their contents.

There are variants of this algorithm floating around that aren’t as effective as the
one used here. Those (admittedly simpler) algorithms don’t notice repeated
consonants that are separated by a vowel and therefore oversimplify the creation
of the Soundex string for a given name. The algorithm presented here is more
complex but yields more reliable results.

Working with Substrings
To finish off the chapter, this section provides a few techniques for parsing and
extracting substrings from a longer string. Specifically, you’ll find out how to per-
form these tasks:

• Return a specific word, by index, from a string.

• Retrieve the first or last word in a string.

• Convert a delimited string into a collection of tokens.

Returning a Specific Word, by Index, from a String
Of all the functions in this chapter, the function in this section, dhExtractString,
has received the most use in our own applications. It allows you to retrieve a
chunk of a string, given a delimiter (or multiple delimiters), by the position within
the string. Rather than write laborious code to parse a string yourself, you can use
dhExtractString to pull out just the piece you need. For example, if you need to
take the following string:

ItemsToBuy=Milk,Bread,Peas

Chapter 1 • Manipulating Strings82

and retrieve the item names individually, you could either write the code to parse
the string or call dhExtractString in a loop:

Public Sub TestExtract(strIniText As String)

 ' Test sub for dhExtractString
 Dim intI As Integer
 Dim strText As String

 intI = 2
 Do While True
 strText = dhExtractString(strIniText, intI, "=,")
 If Len(strText) = 0 Then
 Exit Do
 End If
 Debug.Print strText
 intI = intI + 1
 Loop
End Sub

You might wonder why you would use dhExtractString rather than the built-in
Split function. You can easily retrieve an array of strings from the Split function.
Then you can retrieve just the item you need from that array. Our function
provides two benefits over Split (whether they’re benefits or detriments depends
on your exact needs): dhExtractString allows you to specify more than one
alternate character as a delimiter (Split allows only a single delimiter), and Split
splits up the entire string, even if you need only the first piece of the string. When
you need only the second word of a paragraph, there’s no point asking Split to do
its work, splitting up the entire paragraph into words so you can retrieve the
second word. In timing tests, dhExtractString was often significantly faster than Split
because dhExtractString stops working as soon as it retrieves the item you need.

You can be creative with dhExtractString: You can call it once with one set of
delimiters and then again with a different set. For example, you might have tack-
led the previous problem by first parsing the text to the right of the equal sign as a
single chunk:

strVals = dhExtractString(strIniText, 2, "=")

Then you could pull the various comma-delimited pieces out of strVals:

strItem1 = dhExtractString(strVals, 1, ",") ' Returns "Milk"
strItem2 = dhExtractString(strVals, 2, ",") ' Returns "Bread"
strItem3 = dhExtractString(strVals, 3, ",") ' Returns "Peas"

 Working with Substrings 83

As you can see, you can supply a single delimiter character or a list of them. That
is, you could also parse the previous expression using code like this:

strItem1 = dhExtractString(strIniText, 2, ",=") ' Returns "Milk"
strItem2 = dhExtractString(strIniText, 3, ",=") ' Returns "Bread"
strItem3 = dhExtractString(strIniText, 4, ",=") ' Returns "Peas"

You’ll find the full listing for dhExtractString in Listing 1.21.

The return value from dhExtractString can be somewhat misleading. If the input
string contains two contiguous delimiter characters, dhExtractString sees that as
an empty string delimited by those two characters. This means that you cannot
loop, calling dhExtractString, until it returns an empty string (unless you’re sure
the string contains no contiguous delimiters). You’ll need to call dhCountIn first,
find out how many substrings there are, and then iterate through the string that
many times. See the section “Converting a Delimited String into a Collection of
Tokens” later in this chapter for an example of using this technique.

If you don’t supply dhExtractString with a delimiter or a list of delimiters, it will
default to using the standard text delimiters in the dhcDelimiters constant. Of
course, you can change those default values simply by modifying the constant in
the code.

➲ Listing 1.21: Extract a Specified Substring
Public Function dhExtractString(ByVal strIn As String, _
 ByVal intPiece As Integer, _
 Optional ByVal strDelimiter As String = dhcDelimiters) As String

 Dim lngPos As Long
 Dim lngPos1 As Long
 Dim lngLastPos As Long
 Dim intLoop As Integer

 lngPos = 0
 lngLastPos = 0
 intLoop = intPiece

Chapter 1 • Manipulating Strings84

 ' If there's more than one delimiter, map them
 ' all to the first one.
 If Len(strDelimiter) > 1 Then
 strIn = dhTranslate(strIn, strDelimiter, _
 Left$(strDelimiter, 1))
 End If
 strIn = dhTrimAll (strIn)
 Do While intLoop > 0
 lngLastPos = lngPos
 lngPos1 = InStr(lngPos + 1, strIn, Left$(strDelimiter, 1))
 If lngPos1 > 0 Then
 lngPos = lngPos1
 intLoop = intLoop - 1
 Else
 lngPos = Len(strIn) + 1
 Exit Do
 End If
 Loop
 ' If the string wasn't found, and this wasn't
 ' the first pass through (intLoop would equal intPiece
 ' in that case) and intLoop > 1, then you've run
 ' out of chunks before you've found the chunk you
 ' want. That is, the chunk number was too large.
 ' Return "" in that case.
 If (lngPos1 = 0) And (intLoop <> intPiece) And (intLoop > 1) Then
 dhExtractString = vbNullString
 Else
 dhExtractString = Mid$(strIn, lngLastPos + 1, _
 lngPos - lngLastPos - 1)
 End If
End Function

The first thing dhExtractString does is to “flatten” multiple delimiters down to
the first item in the list. That is, if you pass a group of delimiters, such as a comma,
a space, and a hyphen, the function first replaces all of these with a comma charac-
ter (,) in the input string:

If Len(strDelimiter) > 1 Then
 strIn = dhTranslate(strIn, strDelimiter, Left$(strDelimiter, 1))
End If

 Working with Substrings 85

Next, dhExtractString loops through the string until it’s found the delimiter it
needs. If you’ve asked for the fourth token from the input string, it will loop until
it finds the third instance of the delimiter. It also keeps track of the last position at
which it found a delimiter (lngLastPos) and the position of the delimiter it’s just
found (lngPos). If the current search for a delimiter using InStr fails (it returns 0),
the loop indicates that the current position is one character past the end of the
input string and just exits the loop:

Do While intLoop > 0
 lngLastPos = lngPos
 lngPos1 = InStr(lngPos + 1, strIn, Left$(strDelimiter, 1))
 If lngPos1 > 0 Then
 lngPos = lngPos1
 intLoop = intLoop - 1
 Else
 lngPos = Len(strIn) + 1
 Exit Do
 End If
Loop

The logic for determining whether to return an empty string or a chunk of the
input string is complex (perhaps too complex). There are three conditions that
must all be met in order for dhExtractString to return an empty string:

lngPos1 = 0 This indicates that the input string ran out of delimiters before it
stopped looking for tokens. This could happen, of course, if you requested the
final token from a string—there wouldn’t be a delimiter after that token, so
lngPos1 would be 0.

intLoop <> intPiece The intLoop variable counts down, starting at the
value of intPiece, as it loops through the delimiters in the input string. If intLoop
is the same as intPiece, this indicates there was only one token to begin with,
and no delimiters at all. In such a case, dhExtractString returns the entire input
string, not an empty string.

intLoop > 1 If intLoop is 0, it indicates that the loop progressed through all
the delimiters in the string, and you may have selected the final token in the
input string. It also may indicate that you asked for a token past the number of
tokens in the string. (That is, perhaps you asked for the sixth word in a sentence
that contains only four words. In that case, the function should return an empty
string, and it will because the other two conditions will also be true.)

Chapter 1 • Manipulating Strings86

Unless all three of these conditions are met, the code extracts the string starting
at lngLastPos + 1 and takes lngPos – lngLastPos – 1 characters:

If (lngPos1 = 0) And (intLoop <> intPiece) And (intLoop > 1) Then
 dhExtractString = vbNullString
Else
 dhExtractString = Mid$(strIn, lngLastPos + 1, _
 lngPos - lngLastPos - 1)
End If

Remember that dhExtractString treats consecutive delimiters as though there was
an empty token between them. Requesting the second token from “This;;is;a;test”,
using “ ;” as the delimiter, you’ll receive an empty string as the return value.

You’ll see that several of the other functions in this section use dhExtractString
to do their work. We’re sure you’ll find this extremely useful parsing function
invaluable in any code you write that extracts portions of text strings.

Retrieving the First or Last Word in a String
Each of the two functions presented in this section, dhFirstWord and dhLast-
Word, breaks its input string into two pieces: the selected word and, optionally,
the rest of the string. Calling dhFirstWord (see Listing 1.22) returns the first word
of the input string and fills an optional parameter with the rest of the string. Call-
ing dhLastWord (see Listing 1.23) returns the final word of the input string and
fills an optional parameter with the first portion of the string. For example:

Dim strRest As String
Dim strReturn As String
strReturn = dhFirstWord("First words are mighty important", strRest)

returns “First” and places “ words are mighty important” (note the leading space)
into strRest. On the other hand:

Dim strRest As String
Dim strReturn As String
strReturn = dhLastWord("First words are mighty important", strRest)

returns “important” and places “First words are mighty ” (note the trailing space)
into strRest.

 Working with Substrings 87

➲ Listing 1.22: Return the First Word from a String
Public Function dhFirstWord(_
 ByVal strText As String, _
 Optional ByRef strRest As String = "") As String

 Dim strTemp As String

 ' This is easy!
 ' Get the first word.
 strTemp = dhExtractString(strText, 1)

 ' Extract everything after the first word,
 ' and put that into strRest.
 strRest = Mid$(strText, Len(strTemp) + 1)

 ' Return the first word.
 dhFirstWord = strTemp
End Function

➲ Listing 1.23: Return the Final Word from a String
Public Function dhLastWord(_
 ByVal strText As String, _
 Optional ByRef strRest As String = "") As
String

 Dim intCount As Integer
 Dim strTemp As String

 ' Find the number of words, and then
 ' extract the final word.
 intCount = dhCountWords(strText)
 strTemp = dhExtractString(strText, intCount)

 ' Extract everything before the last word,
 ' and put that into strRest.
 strRest = Trim(Left$(strText, Len(strText) - Len(strTemp)))
 dhLastWord = strTemp

End Function

Chapter 1 • Manipulating Strings88

The dhFirstWord function is simple because it can use the dhExtractString func-
tion discussed earlier in this chapter. It first pulls out the first word:

strTemp = dhExtractString(strText, 1)

Then it places the rest of the string into strRest:

strRest = Mid$(strText, Len(strTemp) + 1)

The dhFirstWord and dhLastWord functions needn’t make any explicit check to
see whether you’ve passed in a variable for the strRest parameter. If you haven’t
specified the parameter, VBA uses only the local copy of the value and just doesn’t
pass anything back. No harm done, and it saves adding logic to check the status of
that parameter.

The dhLastWord function is bit more complex, because the code must first find
the number of words in the string, and then extract the correct one:

intCount = dhCountWords(strText)
strTemp = dhExtractString(strText, intCount)

Once it has the final word, it can extract the previous portion of the string and
place it into strRest:

strRest = Left$(strText, Len(strText) - Len(strTemp))

Of course, once you have as many string functions under your belt as you do by
now, you can probably create several alternatives to either of these tasks. You may
find it interesting to pursue other methods, and perhaps your solutions will be
even more efficient!

Converting a Delimited String into a Collection of
Tokens

VBA provides support for easy-to-use, variable-sized Collection objects, and you
may want to parse a string into a collection of words. The function in this section,
dhExtractCollection, lets you specify input text and, optionally, the delimiters to use
in parsing the text. It returns a collection of strings, filled in from your input text.

 Working with Substrings 89

For example, the following code parses a text string and then prints each word
to the Immediate window:

Function TestExtractCollection()
 Dim varText As Variant
 Dim colText As Collection
 Set colText = dhExtractCollection(_
 "This string contains a bunch of words")
 For Each varText In colText
 Debug.Print varText
 Next varText
 TestExtractCollection = colText.Count
End Function

The collection returned from dhExtractCollection has all the properties and meth-
ods of any other collection in VBA. The example routine uses a simple For…Next
loop to visit each item in the returned collection, and the Count property to
inspect the number of items in the collection. Listing 1.24 includes the full listing
of dhExtractCollection.

➲ Listing 1.24: Return a Collection Filled with Substrings
Public Function dhExtractCollection(ByVal strText As String, _
 Optional ByVal strDelimiter As String = dhcDelimiters) As Collection

 Dim colWords As Collection
 Dim lngI As Long
 Dim strTemp As String
 Dim strChar As String * 1
 Dim astrItems() As String

 Set colWords = New Collection

 ' If there's more than one delimiter, map them
 ' all to the first one.
 If Len(strDelimiter) = 0 Then
 colWords.Add strText
 Else
 strChar = Left$(strDelimiter, 1)
 If Len(strDelimiter) > 1 Then
 strText = dhTranslate(strText, strDelimiter, strChar)
 End If

Chapter 1 • Manipulating Strings90

 astrItems = Split(strText, strChar)

 ' Loop through all the tokens, adding them to the
 ' output collection.
 For lngI = LBound(astrItems) To UBound(astrItems)
 colWords.Add astrItems(lngI)
 Next lngI
 End If

 ' Return the output collection.
 Set dhExtractCollection = colWords
End Function

Given the rest of the routines in this chapter, dhExtractCollection is simple. Its
first step, after declaring a local collection object to contain all the strings, is to
“flatten” the list of delimiters to a single delimiter character so the built-in Split
function can return an array filled with tokens from the input string:

Dim colWords As Collection
Set colWords = New Collection
' (Code removed)
strChar = Left$(strDelimiter, 1)
If Len(strDelimiter) > 1 Then
 strText = dhTranslate(strText, strDelimiter, strChar)
End If
astrItems = Split(strText, strChar)

Next, the function loops through the number of words in the input string, using
the LBound and UBound functions to control the loop. For each word it finds, it
adds the word to a local collection:

For lngI = LBound(astrItems) To UBound(astrItems)
 colWords.Add astrItems(lngI)
Next lngI

Finally, the function sets its return value to the local collection, returning that
collection to the function’s caller:

Set dhExtractCollection = colWords

Note that there’s no reason not to use dhExtractCollection to find a particular
word in a string, if that’s what you need. For example, either

 Summary 91

dhExtractCollection("This is a test").Item(2)

or

dhExtractCollection("This is a test")(2)

will return the word “is”. You’ll get the same result calling

dhExtractString("This is a test", 2)

and dhExtractString is a bit more efficient. But there’s no reason besides speed not
to call dhExtractCollection, and you may find its syntax easier to use.

Summary
VBA programs seem unable to avoid working with strings as part of each and
every application. This chapter has provided an overview of the built-in VBA
functions and a long laundry list of additional procedures that provide additional
functionality. Specifically, this chapter covered

• How VBA stores and uses strings

• Many of the built-in string functions and options for:

• Comparing strings

• Converting strings

• Creating strings

• Calculating the length of a string

• Formatting a string

• Justifying a string

• Searching for a string

• Working with and replacing portions of a string

• Using ANSI values and bytes

Chapter 1 • Manipulating Strings92

• Additional functions for:

• Searching and replacing text

• Gathering information about strings

• Converting strings

• Working with substrings

For similar chapters covering dates and numbers, see Chapters 2 and 3,
respectively.

c h a p t e r 2

Working with Numbers

� Understanding how numeric values are stored
in VBA

� Using the built-in VBA numeric functions

� Generating random numbers

� Using custom numeric functions

Chapter 2 • Working with Numbers94

At some point in the development process of your application, you’re most
likely going to need to work with numbers. You’ll be faced with choosing how to
store the numeric values you’re working with, and you’ll probably want to use
some of the built-in numeric functions. You may find that you need to create your
own functions to expand the functionality VBA provides.

This chapter explains how VBA stores and computes numbers and takes a look
at the built-in numeric functions. The remainder of the chapter provides and
explains several advanced functions using mathematical algorithms.

The sample files you’ll find on the CD-ROM that accompanies this book are
listed in Table 2.1.

How Does VBA Store Numeric Values?
As human beings, we count things in base 10, mainly because we have 10 fingers.
The earliest mathematicians found that fingers made handy counting tools, and it
was easier to group larger numbers of items in groups of 10 than in groups of
eight, two, or any other arbitrary number. However, your computer, not having
10 fingers, does not group things by 10s; it uses a base 2, or binary, representation
of numbers to store and track information. Because a base-2 system requires only
two digits, 0 and 1, it’s convenient for mapping numbers to electronic circuits,
where open and closed switches can represent 1s and 0s.

T A B L E 2 . 1 : Sample Files

Filename Description

NUMBERS.XLS Excel 2000 workbook containing sample code

NUMBERS.MDB Access 2000 database containing sample code

NUMBERS.VBP VB6 project containing sample code

NUMBERS.BAS Numeric functions listed in this chapter

TEST.BAS Test functions listed in this chapter

QUICKSORT.BAS Quicksort procedure from Chapter 7

 How Does VBA Store Numeric Values? 95

A convenient way of indicating the base of any particular number is to place the
base as a subscript to the number, so decimal 10 could be shown as 1010, and
binary 10 could be shown as 102. In the following chapter the subscript will be
used in the body text for any number that is not base 10.

Our counting system relies on two factors: The first is the value of the digit used
and the second is the placing of the digit. So, for example, the number 111 uses
only the digit 1, but that digit has three separate meanings due to the three posi-
tions where it is placed within the number.

The position of a digit within a number is directly related to the concept of powers
of the base, and those positions start numbering from 0, moving from right to left
within a number. Therefore, the number 123 is another way of saying (1 * 102) +
(2 * 101) + (3 * 100). (In case you’ve forgotten your high-school algebra, 10 to the
0 power is 1, 10 to the 1 power is 10, and 10 to the 2 power is 100.)

Just as each position in a decimal number can contain any digit from 0 to 9, each
position in a binary number, called a bit, can contain only a 0 or a 1. Bits are usu-
ally grouped in packages of eight, called bytes. One byte can hold 256 combina-
tions of 0s or 1s and can therefore be used to represent only 256 different numbers.
To represent larger ranges of numbers, more bytes are required.

In a similar way to decimal numbers, each position in a binary number represents a
power of the base, so 1002 is the same as 22, 102 is the same as 21, and 12 is the
same as 20.

You need to take two factors into account when considering numbers you want
to store in a variable in VBA. First, how big do the numbers need to be? If you’re
counting stars in the universe, you need to be able to store larger numbers than if
you are counting legs on a pig. The second factor is precision. When counting
stars in the universe, you may accept being off by a few million, but your leg count
needs to be exactly right. The question of precision becomes especially tricky
when you’re dealing with very large numbers and numbers that include fractions;
the fact that you’re counting in base 10 and your computer uses base 2 for storage
can create pitfalls for the unwary.

Chapter 2 • Working with Numbers96

VBA supports several data types for storing numeric values in variables. Which
one you choose for a particular variable will depend on how large the numbers
you’re working with can become and on how much precision is needed.

The general rule of thumb when choosing a variable’s data type is to choose the
smallest possible one that will fit the task and, if possible, avoid the floating-point
data types (Single and Double). For example, if you’re counting bovine append-
ages, which rarely exceed four per animal and never go less than zero, you might
use a Byte variable (it can hold values from 0 up to 255). If you need fractions only
because you’re working with money, use the Currency data type. If you use a
Double just to be on the safe side (because it seems to cover the largest possible
range and precision), you could run into unanticipated complications when your
base-2 computer tries to store or manipulate floating-point numbers. (We’ll have
more on that later.)

The available data types for storing numeric values are summarized in Table 2.2.

T A B L E 2 . 2 : VBA Numeric Data Types

Data Type Storage Size Range

Byte 1 byte 0 to 255

Integer 2 bytes –32,768 to 32,767

Long (long integer) 4 bytes –2,147,483,648 to 2,147,483,647

Single (single-precision
floating-point)

4 bytes –3.402823E38 to –1.401298E–45 for negative
values; 1.401298E–45 to 3.402823E38 for positive
values

Double (double-precision
floating-point)

8 bytes –1.79769313486232E308 to –
4.94065645841247E–324 for negative
values; 4.94065645841247E–324 to
1.79769313486232E308 for positive values

Currency (scaled integer) 8 bytes –922,337,203,685,477.5808 to
922,337,203,685,477.5807

Decimal (available only as a
Variant subtype)

14 bytes +/–79,228,162,514,264,337,593,543,950,335
with no decimal point;
+/–7.9228162514264337593543950335
with 28 places to the right of the decimal;
smallest nonzero number is +/–
0.0000000000000000000000000001

Variant (with numbers) 16 bytes Any numeric value up to the range of a Double

 How Does VBA Store Numeric Values? 97

The data types summarized in Table 2.2 and the ranges they support are exam-
ined in detail in the following sections. They can be divided into three groups:
those that can hold only whole numbers, those that can hold fractions using float-
ing-point mathematics, and a hybrid group, called scaled integers, that uses whole
numbers to store fractions.

You can use the Variant data type to store values of any of the other data types.
VBA provides a function, TypeName, that returns the data type of any value or
variable that is passed to it. If a Variant is passed to TypeName, the subtype of the
variant is returned. The use of TypeName is demonstrated in the section “Floating-
Point Numbers and the Errors They Can Cause” later in this chapter.

No matter what it appears that we’re saying here, be wary about using Byte
variables to hold small values. If you actually were keeping track of pigs’ legs, in
code, we’d recommend that you use an Integer, not a Byte. VBA handles Byte
values specially, because they’re really meant for storing bytes in an array of bytes
(see Chapter 1 for more information on byte arrays). You’ll pay a price in terms of
performance if you use a Byte variable for anything but working with arrays of
bytes.

Whole Numbers
The Byte data type is the most straightforward, and the most limited, of the numeric
data types. It is simply stored as an 8-bit binary number. For example, the number 10
would be stored as 000010102, which represents 1 times 2 to the first power (21 = 2),
plus 1 times 2 to the third power (23 = 8). No negative numbers can be stored in a
Byte, and the largest number that can be stored is 111111112, or 255.

To understand the ranges of the other data types, you need to know about
another important difference between decimal and binary numbers. In addition to
the digits 0 through 9, the decimal system uses two special symbols that are essen-
tial for representing certain values: the decimal point and the minus sign. Since
binary numbers are so useful precisely because numeric values can be represented
using only 0s and 1s, ways have been developed to represent fractions and nega-
tive numbers without the use of any special symbols.

Chapter 2 • Working with Numbers98

For example, the Integer data type, which uses 16 bits of storage, employs one of
these bits to indicate the sign, positive or negative. This leaves 15 bits to represent
the absolute value of the number. The largest number that can be represented with
15 bits is 215 – 1, or 32,767. The reason it’s 215 – 1 and not simply 215 is that one num-
ber is needed to represent 0. Because there’s no need for a negative 0, one extra neg-
ative number can be represented, which is why the range starts at –32,768 (–1 * 215).

The Long data type stores only whole numbers, just as the Byte and Integer data
types do. With the storage size increased to 4 bytes (32 bits), the largest possible
number becomes 231 – 1 (approximately 2 billion), and the lowest possible nega-
tive number is –231.

To use computer memory most efficiently, always choose one of the whole
number data types, if possible. The only time you should consider one of the
floating-point data types to store whole numbers is when the numbers you are
working with could exceed 2 billion (the largest Long value), or if you need to work
with fractional data. In the section “The ‘Hidden’ Decimal Data Type” later in this
chapter, you’ll learn how to use this new data type to store large numbers more
safely.

Floating-Point Numbers and the Errors They Can Cause
The two floating-point data types that cause developers headaches are Single and
Double. To understand why those headaches come about, you need to know a little
about how the floating-point data types use binary digits to store potentially large
numbers and fractions.

The Single data type uses the same number of bytes as the Long data type (4 bytes),
but it uses these 32 binary digits in a completely different way. The method used
for both Single and Double data types is an industry standard that was developed by
the Institute of Electrical and Electronics Engineers (IEEE). (Coincidentally, the
acronym is also the sound most people make when trying to understand this con-
cept, “Eye-Eeeeeeee!”) A full explanation of floating point mathematics is beyond the
scope of this book, but the basic strategy behind it is quite simple.

Floating-point numbers are similar to scientific notation in that they express a
number as the product of two other numbers. For example, the decimal number
1500 can be expressed in scientific notation as 1.5 * 103, or 1.5E3, and the number .0015
can be expressed as 1.5 * 10–3, or 1.5E–3. This way of expressing numbers consists

 How Does VBA Store Numeric Values? 99

of two parts. The first part is a multiplier, called the mantissa. The second part is an
exponent. Positive exponents are used for whole numbers and negative exponents
for fractions. The number of digits allowed in the mantissa determines the level of
precision, and the maximum size of the exponent determines the range.

In binary floating-point numbers, the bits that are available get divided between
those that represent the mantissa and those that represent the exponent. For example,
a Double uses 1 bit for the sign (positive or negative), 11 bits for the exponent, and
52 bits for the mantissa for a total of 64 bits, or 8 bytes.

As you can see in Table 2.2, Single and Double data types can hold some huge
positive and negative numbers and some tiny fractions. However, unlike the Inte-
ger and Long data types, the floating-point data types cannot store every possible
number within their ranges. Some of the numbers within that range, including
some large whole numbers, cannot be represented exactly, so they get rounded to
the nearest available value. Since there is an infinite number of possible fractional
values within any given range, there will always be an infinite number of precise
fractions that will also have to be rounded.

Another reason floating-point numbers get rounded is that binary (base 2) num-
bers cannot represent all fractions exactly. Of course, decimal numbers are also
unable to exactly represent certain fractions. For example, the fraction 1/3 cannot
be exactly represented by any combination of powers of 10. The decimal represen-
tation of 1/3, .3333333, does not exactly equal 1/3, and no matter how many more 3s
are added on after the decimal point, it never will. Similarly, some fractional num-
bers that can be exactly represented in decimal notation, like 0.0001, can never be
precisely stored as binary values. There is just no exact combination of powers of 2
that can accomplish the task. This rounding that sometimes occurs with floating-
point numbers can cause errors, as you can see in the procedure shown in Listing 2.1.

More on Binary Inaccuracy
To understand why a binary representation of a value has problems with numbers such as
0.0001, you need to dig a bit deeper into the concept of positional representation of digits
within a value. Earlier we noted that (using binary) 12 = 20 and that 102 = 21; carrying on
the trend we can see that 0.12 = 2–1 and 0.012 = 2–2 and so on.

Chapter 2 • Working with Numbers100

➲ Listing 2.1: Demonstrating Floating-Point Errors
Public Sub TestFloatingPoints()

 Dim intI As Integer
 Dim sngSum As Single
 Dim dblSum As Double

 Debug.Print "Both results should be 1.0"

 For intI = 1 To 10000
 sngSum = sngSum + 0.0001
 Next intI

 'This prints "Single: 1.000054"
 Debug.Print TypeName(sngSum) & ":"; sngSum

 For intI = 1 To 10000
 dblSum = dblSum + 0.0001
 Next intI
 'This prints, "Double: .999999999999906"
 Debug.Print TypeName(dblSum) & ":"; dblSum
End Sub

The TestFloatingPoints procedure, in Listing 2.1, sums the value 0.0001 in a
loop, repeating 10,000 times. The code attempts this first using a Single variable,
and then again using a Double. The result, in a perfect world, would be 1.0 in both
cases. As you find, if you run the procedure, the result for the Single variable is a
little greater than 1, and the result for the Double variable is a little less than 1. If

If 102 = 22 (which is equal to 4) and 12 = 20 (which is equal to 1), then 0.12 = 2–1 (which is
equal to 0.5) and 0.012 = 2–2 (which is equal to 0.25).

If you tried to convert 0.000110 to binary, you would get a number something like
0.00011001100110011001100110011001100110011001100110011001100110012
(note the repeating groups), at which point it would still not be resolved. If you convert
this binary value back to decimal, you actually get the value
0.000099999999999999990703165210. Although it’s close to 0.000110, it’s not exactly
right.

 How Does VBA Store Numeric Values? 101

nothing else, this procedure demonstrates two ways errors can occur. The first
problem is that rounding can cause mathematical operations to produce incorrect
results. The second problem is that the same operation can produce different
results depending on the floating-point data type that is used. Not only did the
use of Single and Double data types both produce wrong numbers, but the wrong
numbers were not even the same wrong numbers! This means that if you compare
a Single number to a Double number and test for equality, the test may fail even if
the numbers seem like they should be equal.

To make this situation even more maddening, some floating-point rounding
errors can remain completely hidden when the numbers are displayed, and some
equality test results can defy the laws of logic. For example, in the code shown in
Listing 2.2, dbl1 equals sng1, sng1 equals sng2, sng2 equals dbl2, but dbl1 does not
equal dbl2!

➲ Listing 2.2: Rounding Errors Cause Erroneous Inequality
Public Sub TestEquality()
 Dim sng1 As Single
 Dim sng2 As Single
 Dim dbl1 As Double
 Dim dbl2 As Double

 sng1 = 69.82
 sng2 = 69.2 + 0.62
 dbl1 = 69.82
 dbl2 = 69.2 + 0.62

 'This prints: "sng1 = 69.82, sng2 = 69.82"
 Debug.Print "sng1 = " & sng1 & ", sng2 = " & sng2

 'This prints: "dbl1 = 69.82, dbl2 = 69.82"
 Debug.Print "dbl1 = " & dbl1 & ", dbl2 = " & dbl2

 'This prints: "dbl1 = sng1: True"
 Debug.Print "dbl1 = sng1: "; (dbl1 = sng1)

 'This prints: "sng1 = sng2: True"
 Debug.Print "sng1 = sng2: "; (sng1 = sng2)

 'This prints: "sng2 = dbl2: True"

Chapter 2 • Working with Numbers102

 Debug.Print "sng2 = dbl2: "; (sng2 = dbl2)

 'This prints: "dbl1 = dbl2: False" !!!
 Debug.Print "dbl1 = dbl2: "; (dbl1 = dbl2)

 ' Strip off the whole number portion.
 dbl1 = dbl1 - 69
 dbl2 = dbl2 - 69
 sng1 = sng1 - 69
 sng2 = sng2 - 69

 ' You'll be amazed!
 ' This prints: "sng1: 0.8199997 "
 Debug.Print "sng1: "; sng1

 ' This prints: "sng2: 0.8199997"
 ' No wonder the inequality fails!
 Debug.Print "sng2: "; sng2
 ' This prints: "dbl1: 0.819999999999993"
 Debug.Print "dbl1: "; dbl1

 ' This prints: "dbl2: 0.820000000000007"
 ' No wonder the inequality fails!
 Debug.Print "dbl2: "; dbl2
End Sub

In the section “Rounding Numbers” later in this chapter, you’ll find algorithms
you can use to round floating-point numbers to the level of precision you need. By
using these functions, you can avoid the hidden rounding errors that were dis-
cussed in this section. Another way to avoid these errors is to use the scaled inte-
ger data types whenever possible, as described in the next section.

Scaled Integers
Rounding errors can occur when you’re working with decimal fractions that don’t
have exact binary equivalents. The Currency and Decimal data types use a method
called integer scaling to avoid these errors. This method relies on the fact that all
decimal whole numbers do indeed have exact binary equivalents. Even though the
same can’t be said for fractions in base 10, any decimal integer value can be exactly
represented as some combination of powers of 2. Scaled integers convert decimal

 How Does VBA Store Numeric Values? 103

fractions to whole numbers before storing them in binary form, by multiplying
them by a number large enough to eliminate the decimal point.

The Currency Data Type

You can use the Currency data type to store any number that falls within its range
and has no more than four decimal places. The number is multiplied internally by
10,000, thereby eliminating the need for the decimal point, and then stored in
binary form as an integer. This prevents the rounding errors that can occur when
decimal fractions are stored as binary floating-point numbers. The procedure
shown in Listing 2.3 demonstrates how using the Currency data type can solve
problems with floating-point data types.

➲ Listing 2.3: Solve Rounding Errors with the Currency Data Type
Sub TestCurrency()
 Dim intI As Integer
 Dim dblSum As Double
 Dim curSum As Currency

 For intI = 1 To 10000
 dblSum = dblSum + 0.0001
 Next intI
 'This prints "Double: .999999999999906"
 Debug.Print TypeName(dblSum) & ":"; dblSum

 For intI = 1 To 10000
 curSum = curSum + 0.0001
 Next intI
 'This prints "Currency: 1"
 Debug.Print TypeName(curSum) & ":"; curSum
End Sub

The “Hidden” Decimal Data Type

Although it’s not easy to find, VBA includes one more numeric data type: Deci-
mal. The Decimal data type was introduced in version 5.0 of VBA and still hasn’t
reached full data type standing. As you’ll see, you cannot declare a variable “As
Decimal.”

Chapter 2 • Working with Numbers104

Using 12 bytes, the Decimal data type extends the advantages of the Currency
data type to numbers that can be much larger and more precise than Currency val-
ues. The range of values you can store using the Decimal data type is variable and
depends on the number of decimal places of precision you need. As more decimal
places are required, the available range gets smaller. At one extreme, you can
store a number with 28 decimal places, but the number would have to fall within
the very narrow range between approximately –8 and 8. At the other extreme, if
you’re working with whole numbers that require no decimal places, huge positive
and negative values can be stored. At this time, you can use the Decimal data type
only with variables that are declared as Variants, which can hold anything you
care to stuff into them. It’s not now possible to directly declare a variable as Deci-
mal: You must use the CDec function to specifically cast a Variant value into this
particular data type. The procedure shown in Listing 2.4 illustrates how you can
use the CDec function to create a Decimal Variant and avoid floating-point errors.

➲ Listing 2.4: Use the New Decimal Variant Subtype
Public Sub TestDecimal()
 Dim intI As Integer
 Dim dblSum As Double
 Dim varDblSum As Variant
 Dim varDecSum As Variant

 For intI = 1 To 10000
 dblSum = dblSum + 0.0001
 Next intI
 'This prints, "Double: .999999999999906"
 Debug.Print TypeName(dblSum) & ":"; dblSum

 For intI = 1 To 10000
 varDblSum = varDblSum + 0.0001
 Next intI
 'This prints, "Variant Double: 0.999999999999906"
 Debug.Print "Variant " & TypeName(varDblSum) & ":"; varDblSum

 For intI = 1 To 10000
 varDecSum = varDecSum + CDec(0.0001)
 Next intI
 'This prints,"Variant Decimal: 1"
 Debug.Print "Variant " & TypeName(varDecSum) & ":"; varDecSum
End Sub

 Using Built-In Numeric Functions 105

Because of the hidden errors floating-point data types can introduce, you should
always use the scaled integer data types when you can. They are slightly less
efficient in their use of memory because they need more bytes of storage, but
your code will be more efficient if you avoid the need to use special code to
handle rounding.

Using Built-In Numeric Functions
VBA provides a large variety of built-in numeric functions. This section presents
these functions, broken into several categories. The remainder of the chapter pro-
vides techniques and algorithms for performing more complex computations and
a few tasks that are not covered by the built-in functions.

In addition to functions that manipulate numeric values, VBA also includes functions
for formatting numeric data (FormatNumber, FormatCurrency, and so on).
Chapter 1 covers these in detail.

Mathematical and Trigonometric Functions
Table 2.3 lists the built-in VBA mathematical and trigonometric functions. Each of
these takes an argument, called number in the table, which can be any valid
numeric expression.

T A B L E 2 . 3 : Mathematical and Trigonometric Functions in VBA

Function Description Syntax

Atn Returns a Double specifying the angle
that is the arctangent of a number in
radians

Atn(number), where number is the ratio
between two sides of a right triangle

Cos Returns a Double specifying the ratio
that is the cosine of an angle

Cos(number), where number is an angle
in radians

Sin Returns a Double specifying the ratio
that is the sine of an angle

Sin(number), where number is an angle
in radians

Chapter 2 • Working with Numbers106

Trigonometry is the mathematics of right triangles. It allows you to calculate
angles by knowing the ratio between the lengths of two sides of a right triangle
or to calculate the ratios by knowing the angles. VBA uses radians as the unit of
measure for angles. Because 180 degrees equal π (pi) radians (π being roughly
3.14159265358979), you can convert degrees to radians by multiplying degrees by
π/180, and you can convert radians to degrees by multiplying radians by 180/π.
The functions we created to handle these conversions are shown in Listing 2.5 and use
a reasonably precise approximation of π. Note the explicit conversion of the argument
to the Decimal Variant subtype. This increases the accuracy of the calculation.

➲ Listing 2.5: Radian-to-Degree Conversion Functions
Public Function dhDegToRad(varDegrees As Variant) As Variant
 ' Converts degrees to radians
 Const PI = 3.14159265358979
 dhDegToRad = (CDec(varDegrees) / 180) * PI
End Function

Public Function dhRadToDeg(varRadians As Variant) As Variant
 ' Converts radians to degrees
 Const PI = 3.14159265358979
 dhRadToDeg = (CDec(varRadians) / PI) * 180
End Function

Tan Returns a Double specifying the ratio
that is the tangent of an angle

Tan(number), where number is an angle
in radians

Exp Returns a Double specifying e (the base
of natural logarithms) raised to a power

Exp(number). If the value of number
exceeds 709.782712893, an error
sometimes referred to as the
antilogarithm occurs.

Log Returns a Double specifying the natural
logarithm of a number

Log(number), where number is any valid
expression greater than 0

Sqr Returns a Double specifying the square
root of a number

Sqr(number), where number is any valid
expression greater than or equal to 0

Sgn Returns a Variant (integer) indicating the
sign of a number

Sgn(number), where number is any valid
numeric expression

T A B L E 2 . 3 : Mathematical and Trigonometric Functions in VBA (continued)

Function Description Syntax

 Using Built-In Numeric Functions 107

Logarithmic Functions

VBA’s logarithmic functions use natural logarithms. The natural logarithm is the
logarithm to the base e, where the constant e is approximately 2.718282. You can
calculate base–n logarithms for any number x by dividing the natural logarithm of
x by the natural logarithm of n as follows:

Logn(x) = Log(x) / Log(n)

The following function, dhLogN, converts any decimal number to a logarithm
with any base. Of course, because base 10 is the most common logarithmic scale,
the base is optional and defaults to 10:

Public Function dhLogN(varDecimal As Variant, _
 Optional varLogBase As Variant = 10) As Variant
 dhLogN = CDec(Log(varDecimal) / Log(varLogBase))
End Function

In case the theory of logarithms has escaped you temporarily, Log10(x) returns the
power you’d have to raise 10 to, in order to end up with x. For example,
Log10(100) is 2, and Log10(1000) is 3. In the same vein, Log8(64) is 2, and Log64(8)
is 0.5. The dhLogN function performs these types of calculations for you.

Just as VBA’s Log function returns the natural log of a number (that is, the power
you’d need to raise the value e to, in order to end up with the argument), it also
provides the inverse function, Exp. The Exp function returns the value e to the
specified power. For example, Exp(2) returns e * e, or 7.38905609893065. When
working with advanced trigonometric formulas, or working with chemistry or
physics, these functions can be important.

Determining Sign

The Sgn function returns an integer indicating whether its argument is positive,
negative, or 0. It returns +1 if its argument was positive, –1 if its argument was neg-
ative, or 0 (if its argument was 0). For example, Sgn(3) returns 1, Sgn(–3) returns –1,
and Sgn(3 – 3) returns 0.

As with any of the mathematical functions that take numeric expressions as argu-
ments, if you pass Sgn a null value, you’ll get back a runtime error (error 94,
“Invalid use of Null”).

Chapter 2 • Working with Numbers108

Derived Trigonometric Functions

VBA doesn’t supply every possible useful trigonometric function, but you can
combine the built-in trigonometric functions to create more complex functions.
Table 2.4 shows the formulas you can use to derive these more complex functions
from the ones VBA provides.

T A B L E 2 . 4 : Derived Trigonometric Functions

Function Derived Equivalents

Secant Sec(X) = 1 / Cos(X)

Cosecant Cosec(X) = 1 / Sin(X)

Cotangent Cotan(X) = 1 / Tan(X)

Inverse Sine Arcsin(X) = Atn(X / Sqr(–X * X + 1))

Inverse Cosine Arccos(X) = Atn(–X / Sqr(–X * X + 1)) + 2 * Atn(1)

Inverse Secant Arcsec(X) = Atn(X / Sqr(X * X – 1)) + Sgn((X) – 1) * (2 * Atn(1))

Inverse Cosecant Arccosec(X) = Atn(X / Sqr(X * X – 1)) + (Sgn(X) – 1) * (2 * Atn(1))

Inverse Cotangent Arccotan(X) = Atn(X) + 2 * Atn(1)

Hyperbolic Sine HSin(X) = (Exp(X) – Exp(–X)) / 2

Hyperbolic Cosine HCos(X) = (Exp(X) + Exp(–X)) / 2

Hyperbolic Tangent HTan(X) = (Exp(X) – Exp(–X)) / (Exp(X) + Exp(–X))

Hyperbolic Secant HSec(X) = 2 / (Exp(X) + Exp(–X))

Hyperbolic Cosecant HCosec(X) = 2 / (Exp(X) – Exp(–X))

Hyperbolic Cotangent HCotan(X) = (Exp(X) + Exp(–X)) / (Exp(X) – Exp(–X))

Inverse Hyperbolic Sine HArcsin(X) = Log(X + Sqr(X * X + 1))

Inverse Hyperbolic Cosine HArccos(X) = Log(X + Sqr(X * X – 1))

Inverse Hyperbolic Tangent HArctan(X) = Log((1 + X) / (1 – X)) / 2

Inverse Hyperbolic Secant HArcsec(X) = Log((Sqr(–X * X + 1) + 1) / X)

Inverse Hyperbolic Cosecant HArccosec(X) = Log((Sgn(X) * Sqr(X * X + 1) + 1) / X)

Inverse Hyperbolic Cotangent HArccotan(X) = Log((X + 1) / (X – 1)) / 2

 Using Built-In Numeric Functions 109

Here’s an example of how you can use the formulas in Table 2.4 to create your
own custom trigonometric functions:

Public Function dhHyperbolicSine(ByVal dblNumber As Double) As Variant
 ' Calculates hyperbolic sine using the Exp function
 dhHyperbolicSine = (CDec(Exp(dblNumber)) – CDec(Exp(-dblNumber))) _
 / 2
End Function

Numeric Conversions and Rounding
As mentioned earlier in this chapter, the various numeric data types differ in the
levels of precision they support. Therefore, rounding often occurs automatically
when you convert a number from one data type to another. Sometimes that’s the
reason you want to convert to a different data type—to round the number. How-
ever, there are other ways of rounding, and sometimes you’ll want to use them
without having to resort to converting the number to a different data type. This
section describes the built-in numeric conversion functions VBA provides, how
you can use them for rounding, and how you’ll sometimes need other rounding
algorithms to get the results you want.

Conversion Functions

Table 2.5 lists the VBA functions that perform numeric conversions from one data
type to another. Decimal to hexadecimal and decimal to octal conversions are dis-
cussed in the section “Base Conversions” later in this chapter.

T A B L E 2 . 5 : Numeric Conversion Functions

Function Returns Rounding

CByte(expression) Byte (range 0–255) To whole number; 0.5 rounded to nearest even
number

CInt(expression) Integer To whole number; 0.5 rounded to nearest even
number

CLng(expression) Long Integer To whole number; 0.5 rounded to nearest even
number

CCur(expression) Currency To four decimal places; rounding to five decimal
places is undocumented (See the “Rounding
Numbers” section for more information.)

Chapter 2 • Working with Numbers110

The expression argument that’s passed to any of the numeric conversion func-
tions can be any valid numeric or string expression. String expressions must be
interpretable as numbers using the conventions of the installed locale. For example,
CLng(“–34,734.687”) would return –34735 in locales that use commas as thousand
separators. If expression doesn’t fall within the acceptable range for that data type,
a runtime error occurs (error 13, “Type mismatch,” or error 6, “Overflow”).

You can also use another VBA function, Val, to convert expressions to numbers.
However, there’s an important disadvantage to using Val for this purpose. Unlike
the conversion functions in Table 2.5, Val does not provide internationally aware
conversions. Different decimal separators, thousands separators, and currency
options will be correctly recognized by the conversion functions according to the
locale setting of your computer. However, Val doesn’t have the ability to use the com-
puter’s locale setting and therefore may not recognize numbers that were typed
using standards other than those used in the United States.

Rounding Numbers

The CInt and CLng functions, used to convert to the Integer and Long Integer data
types, round fractions to whole numbers. They’ll sometimes round up and some-
times round down when passed numbers ending in .5. The rounding in these
cases will always result in an even number. For example, CInt(1.5) evaluates to 2,
and CInt(2.5) also evaluates to 2.

CDec(expression) Decimal Variant To a variable number of decimal places
depending on the size of the number

CSng(expression) Single To the nearest floating-point number in the
range

CDbl(expression) Double To the nearest floating-point number in the
range

CVar(expression) Variant Double if numeric;
Variant Date/Time if
delimited by #; Variant
String otherwise

Same as Double for numeric values

T A B L E 2 . 5 : Numeric Conversion Functions (continued)

Function Returns Rounding

 Using Built-In Numeric Functions 111

The CCur function, which converts a number to the Currency data type, rounds
numbers to four decimal places of precision. Unfortunately, Microsoft hasn’t doc-
umented the rule used in rounding Currency values that have five digits to the
right of the decimal place, where the fifth digit is a 5. Sometimes these numbers
are rounded up, and sometimes they’re rounded down. The examples in Table 2.6
demonstrate that there is no clear pattern to this undocumented rounding behavior.

Because such seemingly random rounding behavior might not be reliable enough
for your computations, you may want to round numbers yourself to a specified
number of decimal places instead of letting VBA do it with the CCur function. A
little later in this section, you’ll see the dhRound custom function, which you can
use to round values predictably to a specified number of decimal places.

Two VBA functions, Int(number) and Fix(number), remove the fractional part of
a number. They don’t round the number; they just chop off the part to the right of
the decimal place. Both functions return an Integer if the result falls within the
Integer range (–32,768 to 32,767) and a Long if the result is outside the Integer
range but within the Long range (–2,147,483,648 to 2,147,483,647). It doesn’t mat-
ter which of these functions you use for positive numbers, but for negative num-
bers, you have to remember that Int returns the first negative Integer less than or
equal to number, whereas Fix returns the first negative Integer greater than or equal
to number. Table 2.7 shows the output of Int and Fix in the Immediate window.

T A B L E 2 . 6 : Unpredictable Currency Rounding

Type in Immediate Window Result

?CCur(.00005) 0.0001

?CCur(.00015) 0.0001

?CCur(.00025) 0.0003

?CCur(.00035) 0.0003

?CCur(.00045) 0.0004

?CCur(.00095) 0.0009

?CCur(.00995) 0.01

?CCur(.00895) 0.0089

?CCur(.01895) 0.019

Chapter 2 • Working with Numbers112

Fix(number) is equivalent to Sgn(number) * Int(Abs(number)).

Beware of using Int with expressions. Doing so will sometimes yield unantici-
pated results. For example, Int((1.55 * 10) + 0.5) evaluates to 16, as you would expect.
However, Int((2.55 * 10) + 0.5) evaluates to 25, even though you would expect it to
evaluate to 26. (Why? It turns out that 2.55 * 10 is actually slightly less than 25.5,
because of binary round-off issues. Then, when you add 0.5, the result is slightly
less than 26. The Int function truncates the result, which ends up being 25.) For this
reason, it’s best to set your expression equal to a variable first and then pass the
variable to Int, as the procedure shown in Listing 2.6 illustrates.

➲ Listing 2.6: Use a Variable to Control the Int Function
Sub TestInt()
 Dim dblNumber As Double

 ' Prints: "25"
 Debug.Print Int((2.55 * 10) + 0.5)

 dblNumber = (2.55 * 10) + 0.5
 ' Prints: "26"
 Debug.Print Int(dblNumber)
End Sub

As discussed earlier in this chapter, rounding often presents problems with
floating-point numbers because some decimal numbers are rounded unpredict-
ably when converted to floating-point binary numbers. VBA has finally added a

T A B L E 2 . 7 : Using Int and Fix

Type in Immediate Window Result

?Int(–9.4) –10

?Fix(–9.4) –9

?Int(9.6) 9

?Fix(9.6) 9

 Using Built-In Numeric Functions 113

Round function, in the most current incarnation of the language, but it still has a
few flaws:

• Numbers supposedly round to the nearest even value. That is, Round(9.585,
2) is supposed to return 9.58, and Round(9.595, 2) is supposed to return 9.60.
Contrary to what everyone thinks a Round function should do, this one uses
the IEEE standard, which dictates that the function should round to the
nearest even value.

• Unless you supply the number to be rounded using the Decimal data type,
you can’t be guaranteed that the function will work correctly (such as that is,
given the previous bullet point). To demonstrate this, see Figure 2.1. In that
debugging session, the request to round 9.575 to two decimal places
returned (incorrectly) 9.57. Rounding 9.585 to two decimal places also fails,
but testing with 9.595 works fine. On the other hand, if you always convert
the number to be rounded into a Decimal data type first, VBA’s Round func-
tion always rounds correctly. (Again, taking into account that “correctly”
means “to the nearest even value.”)

• The VBA Round function does not correctly handle rounding to tens, or
hundreds, and so on. The way we learned how to round numbers, if you ask
to round to –2 places, your number is rounded to the 100s. That is, rounding
1234 to –1 decimals returns 1230, and rounding 1234 to –2 decimals returns
1200. The built-in Round function simply doesn’t allow you to specify nega-
tive values for the number of decimals.

F I G U R E 2 . 1
The built-in Round function

performs somewhat
erratically.

What’s going on here? Why isn’t Round working as it should? It turns out that
unless you specify otherwise, Round assumes that you’re passing it a Double. In
its use of that Double, Round must convert the value to binary and back, and in

Chapter 2 • Working with Numbers114

doing so, causes some inaccuracies in the least-significant decimal places. If
you’ve ever studied computer science, you’ve most likely seen the standard algo-
rithm for rounding a value to a specific number of decimal places. Listing 2.7
shows a working Round function that uses the algorithm we learned in school.
(This version also allows you to pass in a True value as a third parameter indicat-
ing that you want it to use IEEE-style rounding. This way, you get the round-to-
the-nearest-even-value behavior, and the function takes care of the conversion to
Decimal type for you.)

➲ Listing 2.7: A Generic Rounding Function
Public Function dhRound(_
 ByVal Number As Variant, NumDigits As Long, _
 Optional UseIEEERounding As Boolean = False) As Double
 ' Rounds a number to a specified number of decimal
 ' places. 0.5 is rounded up

 Dim dblPower As Double
 Dim varTemp As Variant
 Dim intSgn As Integer

 If Not IsNumeric(Number) Then
 ' Raise an error indicating that
 ' you've supplied an invalid parameter.
 Err.Raise 5
 End If
 dblPower = 10 ^ NumDigits
 ' Is this a negative number, or not?
 ' intSgn will contain -1, 0, or 1.
 intSgn = Sgn(Number)
 Number = Abs(Number)

 ' Do the major calculation.
 varTemp = CDec(Number) * dblPower + 0.5

 ' Now round to nearest even, if necessary.
 If UseIEEERounding Then
 If Int(varTemp) = varTemp Then
 ' You could also use:
 ' varTemp = varTemp + (varTemp Mod 2 = 1)
 ' instead of the next If ...Then statement,

 Using Built-In Numeric Functions 115

 ' but we hate counting on True == -1 in code.
 If varTemp Mod 2 = 1 Then
 varTemp = varTemp - 1
 End If
 End If
 End If
 ' Finish the calculation.
 dhRound = intSgn * Int(varTemp) / dblPower
End Function

You can round numbers to whole digit places (for example, round 1234 to 1200)
by specifying a negative value for the number of places. That is, specifying 0 for
NumDigits rounds to the ones place, –1 rounds to tens, –2 rounds to hundreds,
and –3 rounds to thousands.

If you don’t care about IEEE rounding, we’ve also included a simplified version of
dhRound in the basNumbers module (dhRoundSimple). You can use this version, if
you’d rather.

Subtracting Floating-Point Numbers While Maintaining
Precision

You might assume that VBA wouldn’t have problems with simple subtraction,
because the result of subtraction can’t have more decimal places than either of the
two numbers involved, but you would be wrong. Table 2.8 shows some of the sur-
prising results in the Immediate window for subtracting various decimal values,
all of which look like they ought to result in 0.1. To avoid errors in subtraction,
you need to first prepare your values, either by rounding to the correct number of
digits, or by using the CDec function to convert to the special Decimal data type.

T A B L E 2 . 8 : Errors in Floating-Point Subtraction

Type in Immediate Window Result

?100.8–100.7 9.99999999999943E–02

?10.8–10.7 0.100000000000001

?1.8–1.7 0.1

Chapter 2 • Working with Numbers116

You can safely subtract one floating-point value from another by using the Dec-
imal data type. We created a subtraction function, shown in Listing 2.8, that over-
comes the rounding error.

➲ Listing 2.8: Use Decimal Variants for Subtraction
Public Function dhSubtract(varVal1 As Variant, _
 varVal2 As Variant) As Double
 dhSubtract = CDec(varVal1) - CDec(varVal2)
End Function

Random Numbers
The subject of generating random numbers often causes confusion. First, there’s
the Randomize statement:

Randomize [number]

Then there’s the Rnd function:

Rnd[(number)]

Why two functions? Which one do you use?

VBA generates random numbers by starting with a seed value and then running
that seed through a proprietary algorithm that creates a number greater than or
equal to 0 and less than 1. Starting with a particular seed will always result in
exactly the same “random” number. The VBA Randomize statement initializes the
Rnd function by creating a new seed value. If you don’t use the optional argument
for Randomize, the new seed value is based on the system timer.

If you elect not to use Randomize at all and just call the Rnd function with no
arguments, Rnd always uses the same number as a seed the first time it’s called.
Each subsequent time Rnd is called during that session, it uses the number that
was generated by the last call as its new seed. So, unless you use Randomize or
supply an argument to Rnd, you’ll always get the same sequence of numbers. The
number argument passed to Rnd affects the value that’s returned, as summarized
in Table 2.9.

 Using Built-In Numeric Functions 117

The number returned by Rnd is a Single value that’s greater than or equal to 0
and less than 1. If you want to create random integers within a certain range of
values, you can use the following formula:

i = Int((<high number> – <low number> + 1) * Rnd) + <low number>

For example, if you want to create a random number between 1 and 10, the
expression would look like this:

i = Int((10 - 1 + 1) * Rnd) + 1

Using 10 as the upper bound won’t give you a very wide range of numbers, and
after running this procedure a few times, you’ll run into duplicates. There’s a mis-
conception that using the Randomize function in front of Rnd will eliminate
duplicates, but this is not true. Randomize will only reset the random number
generator so that it starts at a different place in the set of numbers it generates;
nothing keeps it from returning duplicates in a given sequence. The following
procedure generates a set of random numbers:

Dim i As Integer
Randomize
For i = 1 To 10
 Debug.Print Int(Rnd * 10) + 1;
Next i

The output from the Immediate window when run five times might return
results like these:

2 7 1 2 10 4 1 10 5 7
6 2 8 1 8 5 2 2 8 7
6 9 7 2 3 10 6 10 4 2
5 9 6 8 5 4 4 10 1 6
9 5 9 3 3 7 2 9 5 6

T A B L E 2 . 9 : Pass an Argument to Rnd

Rnd Argument Number Generated by Rnd

< 0 The same number every time, depending on the negative argument used

> 0 Next random number in the sequence, regardless of the positive argument used

= 0 Repeats the most recently generated number

Not supplied Next random number in the sequence (same as with a positive argument)

Chapter 2 • Working with Numbers118

What this means is that if you want to avoid duplicates in a list of integers, you
have to keep track of them yourself. We’ve provided the procedure shown in List-
ing 2.9 to shuffle numbers from 1 to 10, producing a random list of the 10 integers
with no duplicates.

➲ Listing 2.9: Generate Random Numbers with No Duplicates
Public Function dhRandomShuffle(Optional lngItems As Long = 10) _
 As Long()
 Dim alngValues() As Long
 Dim i As Long
 Dim lngPos As Long
 Dim lngTemp As Long

 ReDim alngValues(1 To lngItems)

 ' Fill in the original values.
 For i = 1 To lngItems
 alngValues(i) = i
 Next i

 ' Loop through all the items except the last one.
 ' Once you get to the last item, there's no point
 ' using Rnd, just get it.
 For i = lngItems To 2 Step -1
 ' Get a random number between 1 and i
 lngPos = Int(Rnd * i) + 1
 lngTemp = alngValues(lngPos)
 alngValues(lngPos) = alngValues(i)
 alngValues(i) = lngTemp
 Next i
 dhRandomShuffle = alngValues()
End Function

The dhRandomShuffle procedure creates an array large enough for the number
of items you’ve requested and fills the array with the numbers from 1 up to your
requested value. The procedure works its way from the end of the array back to
the beginning, picking a random number between 1 and the current location in the
array, and swaps the value at the selected location with the value at the current
location. By the time the function has reached the beginning of the array, the numbers

 Using Built-In Numeric Functions 119

are in random order, and the function returns the array as its return value. Table 2.10
simulates shuffling a 10-item array.

To test the dhRandomShuffle procedure, we’ve provided the TestShuffle proce-
dure, shown below. This procedure calls dhRandomShuffle, requesting 10 items.
It takes the return value from dhRandomShuffle and iterates through all its items,
printing them to the Immediate window.

Sub TestShuffle()
 Dim alngItems() As Long
 Dim i As Long

 alngItems = dhRandomShuffle(10)

 For i = LBound(alngItems) To UBound(alngItems)
 Debug.Print Right$(Space(4) & alngItems(i), 4);
 Next i
 Debug.Print
End Sub

T A B L E 2 . 1 0 : Simulation of Shuffling an Array (Items Swapped in the Current Step
Marked in Bold)

Selected
Item

1 2 3 4 5 6 7 8 9 10

4 1 2 3 10 5 6 7 8 9 4

4 1 2 3 9 5 6 7 8 10 4

1 8 2 3 9 5 6 7 1 10 4

3 8 2 7 9 5 6 3 1 10 4

2 8 6 7 9 5 2 3 1 10 4

3 8 6 5 9 7 2 3 1 10 4

2 8 9 5 6 7 2 3 1 10 4

2 8 5 9 6 7 2 3 1 10 4

Chapter 2 • Working with Numbers120

Financial Functions
VBA provides a number of built-in functions you can use for performing financial
calculations. These are divided into three basic groups: depreciation functions,
annuity functions, and cash-flow functions, as described in the following sections.

Depreciation Functions

The depreciation functions are used in accounting to calculate the amount of mone-
tary value a fixed asset loses over a period of time. For example, a business that
owns a truck needs to calculate the amount the truck depreciates each year to deter-
mine the current value of the truck at any point in time. Because depreciation affects
taxes, governments often mandate the depreciation formulas that can be used. For
example, the double-declining method of depreciation uses the following formula:

Depreciation over period = ((cost – salvage) * 2) / life

Table 2.11 summarizes the VBA depreciation functions and their arguments,
and Table 2.12 describes the arguments used in depreciation functions.

T A B L E 2 . 1 1 : Depreciation Functions

Function Description

DDB(cost, salvage, life, period[, factor]) Returns a Double specifying the depreciation of an asset for
a specific time period using the declining balance method

SLN(cost, salvage, life) Returns a Double specifying the straight-line depreciation of
an asset for a single period

SYD(cost, salvage, life, period) Returns a Double specifying the sum-of-years’ digits
depreciation of an asset for a specified period

T A B L E 2 . 1 2 : Arguments Used in Depreciation Functions

Argument Description

Cost Initial cost of the asset

Salvage Value of the asset at the end of its useful life

Life Length of the useful life of the asset; must be in the same unit of measure as Period

Period Period for which asset depreciation is calculated

[Factor] Optional rate at which the balance declines; if omitted, 2 (double-declining method)
is assumed

 Using Built-In Numeric Functions 121

Annuity Functions

An annuity is a series of payments that represents either the return on an invest-
ment or the amortization of a loan. Negative numbers represent monies paid out,
like contributions to savings or loan payments. Positive numbers represent mon-
ies received, like dividends. Tables 2.13 and 2.14 summarize the VBA annuity
functions and their arguments.

T A B L E 2 . 1 3 : Annuity Functions

Function Description

FV(rate, nper, pmt[, pv[, type]]) Returns a Double specifying the future value of an annuity
based on periodic fixed payments and a fixed interest rate

Rate(nper, pmt, pv[, fv[, type[, guess]]]) Returns a Double specifying the interest rate per period for
an annuity

NPer(rate, pmt, pv[, fv[, type]]) Returns a Double specifying the number of periods for an
annuity

IPmt(rate, per, nper, pv[, fv[, type]]) Returns a Double specifying the interest payment for a
given period of an annuity

Pmt(rate, nper, pv[, fv[, type]]) Returns a Double specifying the payment for an annuity

PPmt(rate, per, nper, pv[, fv[, type]]) Returns a Double specifying the principal payment for a
given period of an annuity

PV(rate, nper, pmt[, fv[, type]]) Returns a Double specifying the present value of an annuity
based on periodic fixed payments to be paid in the future at
a fixed interest rate

T A B L E 2 . 1 4 : Arguments Used in Annuity Functions

Argument Description

Rate Interest rate per period; must use the same unit for Period as used for Nper

Nper Total number of payment periods in the annuity

Pmt Payment to be made each period

Pv Present value (or lump sum) that a series of payments to be paid in the future is worth now

[Fv] Optional value of the annuity after the final payment has been made (if omitted, 0 is
assumed, which is the usual future value of a loan)

[Type] Optional number indicating when payments are due: 0 if payments are due at the end
of the payment period and 1 if payments are due at the beginning of the period; if
omitted, 0 is assumed

Chapter 2 • Working with Numbers122

We created a procedure, shown in Listing 2.10, that uses the Pmt function to cal-
culate the monthly payment on a loan.

➲ Listing 2.10: Calculate the Payment on a Loan
Public Function dhCalcPayment(ByVal dblRate As Double, _
 ByVal intNoPmts As Integer, _
 ByVal curPresentValue As Currency, _
 Optional varFutureVal As Variant = 0, _
 Optional varWhenDue As Variant = 0) As Double
 ' Calculates payments using Pmt function
 If varWhenDue <> 0 Then
 ' set to only other possible value
 ' of 1 indicating payment to occur
 ' at beginning of period
 varWhenDue = 1
 End If
 dhCalcPayment = Pmt((dblRate / 12), intNoPmts, _
 -CDbl(curPresentValue), varFutureVal, varWhenDue)
End Function

Cash-Flow Functions

The cash-flow functions perform financial calculations based on a series of peri-
odic payments and receipts. As with the annuity functions, negative numbers rep-
resent payments and positive numbers represent receipts. However, unlike the
annuity functions, the cash-flow functions allow you to list varying amounts for
the payments or receipts over the course of the loan or investment. Payments and
receipts can even be mixed up within the cash-flow series.

Tables 2.15 and 2.16 summarize the VBA cash-flow functions and their arguments.

T A B L E 2 . 1 5 : Cash-Flow Functions

Function Description

IRR(values()[, guess]) Returns a Double specifying the internal rate of return for a series of
periodic cash flows

MIRR(values(), finance_rate,
reinvest_rate)

Returns a Double specifying the modified internal rate of return for a
series of periodic cash flows

NPV(rate, values()) Returns a Double specifying the net present value of an investment
based on a series of periodic cash flows and a discount rate

 Using Built-In Numeric Functions 123

In order to look at how Net Present Value (NPV) and Internal Rate of Return
(IRR) work, you must understand how Discount Rate works. Take an example
where the rate of interest for a particular investment is 20 percent. The discount
rate is 1/(1 + 20/100) or 0.8333 in the first year; in the second year it would be
(1/(1 + 20/100)) ^ 2 or 0.6944.

The NPV function, in effect, gives an evaluation of the profitability of an invest-
ment. Imagine that a company was looking at buying a machine for $17,000, they
predicted the machine would make money for them at the rate of $6,000 per year,
and they expect a yield of 20 percent from their investment. This would produce
results as shown in Table 2.17.

This tells them that purchasing the machine would be a profitable exercise
(because 17943 – 17000 is greater than 0). If, on the other hand, the machine had

T A B L E 2 . 1 6 : Arguments Used in Cash-Flow Functions

Argument Description

Values() Array of cash-flow values; the array must contain at least one negative value (a
payment) and one positive value (a receipt)

Rate Discount rate over the length of the period, expressed as a decimal

Finance_rate Interest rate paid as the cost of financing

Reinvest_rate Interest rate received on gains from cash reinvestment

[Guess] Optional value you estimate will be returned; if omitted, Guess is 0.1 (10 percent)

T A B L E 2 . 1 7 : Cash Flows for an NPV Exercise

Year Cash Flow Discount Rate
(20% Interest)

NPV of Cash Flows

1 6000 0.833333333333333 5000

2 6000 0.694444444444444 4166.66666666666

3 6000 0.578703703703703 3472.22222222222

4 6000 0.482253086419752 2893.51851851851

5 6000 0.40187757201646 2411.26543209876

Totals 30000 17943.672839506

Chapter 2 • Working with Numbers124

cost $18,000, the company would have lost money in the future (because 17943 –
18000 is less than 0). The function provided in Listing 2.11 illustrates how you can
use the NPV function to calculate the net present value of a business investment.

➲ Listing 2.11: Calculate the Net Present Value of an Investment
Public Function dhNetPresentValue(ByVal dblRate As Double, _
 ParamArray varCashFlows()) As Double
 ' Calculates net present value
 Dim varElement As Variant
 Dim i As Integer
 Dim lngUBound As Long
 Static dblValues() As Double

 ' get upper bound of ParamArray
 lngUBound = UBound(varCashFlows)
 ' size array to ParamArray
 ReDim dblValues(lngUBound)
 i = 0
 ' place elements of ParamArray into Array
 For Each varElement In varCashFlows
 dblValues(i) = varElement
 i = i + 1
 Next
 dhNetPresentValue = NPV(dblRate, dblValues())
End Function

The IRR cash-flow function uses multiple iterations to arrive at its final return
value. It starts with the value, Guess, and continues running calculations until it
achieves a result that’s accurate to within 0.00001 percent. If a satisfactory result
hasn’t been reached after 20 attempts, the function fails.

The IRR function takes the cash-flow information provided in the Values array
and attempts to find the discount rate where cash-flow-in matches cash-flow-out.
The higher the discount rate returned by IRR, the more profitable the investment.

As an example of this, imagine that a firm was considering the purchase of two
different machines (Machine D and Machine E): Machine D costs $80,000 to pur-
chase, and Machine E costs $90,000 to purchase.

Table 2.18 shows the predicted cash flows for the two machines and the dis-
count rate returned by the IRR function, based on the predicted cash flows.

 Using Built-In Numeric Functions 125

This indicates that although Machine E costs more, its profitability outweighs
that of Machine D and would therefore be the better purchase.

Base Conversions
To convert numbers between base 16 (hexadecimal), base 8 (octal), and base
10 (decimal), your best bet is to use the built-in VBA functions Hex, Oct, and
CLng, which are summarized in Table 2.19.

Hexadecimal and Octal Conversion

The Hex and Oct functions return a string with the hexadecimal or octal value in
it. However, the radix prefixes, &H and &O, are not added to the string. For example,
Hex(255) returns “FF,” not “&HFF,” which is how you would represent the number
in code. If you ever want to convert to hexadecimal or octal and then back to decimal,

T A B L E 2 . 1 8 : Cash Flows for an IRR Exercise

 Machine D Machine E

Purchase –80000 –90000

Year 1 40000 40000

Year 2 30000 40000

Year 3 30000 35000

Year 4 25000 30000

Year 5 5000 8000

IRR 0.2384 (23.84%) 0.2527 (25.27%)

T A B L E 2 . 1 9 : Base Conversion Functions

Function Description

Hex(number) Returns a String representing the hexadecimal value of a number

Oct(number) Returns a Variant representing the octal value of a number, up to 11 octal
characters. Returns Null if the number is Null, 0 if the number is Empty (Only a
Variant that has not been initialized is Empty.)

CLng(string) Returns Double numeric values that are contained in a string, including
Hexadecimal and Octal values that use the radix prefixes, &H and &O

Chapter 2 • Working with Numbers126

be sure to add the prefix that a VBA conversion function like CLng will need to
recognize the number, as illustrated in Table 2.20.

The Hex function rounds fractions to the nearest whole number before performing
the conversion. For example, Hex(256) returns 100, and Hex(256.4) also returns
100. Although it’s possible to represent fractional data in hexadecimal format (see
the dhDecToHex function in the sample), there’s no practical reason to do so. VBA
conversion functions like CLng recognize only whole hexadecimal numbers.

Binary Conversions

VBA doesn’t include any built-in binary conversion functions. The custom func-
tions shown in Listing 2.12 can be used to convert hexadecimal numbers to binary
(base 2) numbers, to convert binary to hexadecimal, and to convert decimal num-
bers to binary.

Each of these functions does its work in a slightly different manner:

• The dhHexToBinary function works its way through each “digit” of the Hex
value and uses a Select Case statement to convert each digit (0 through F)
into its corresponding four binary bits.

• The dhBinaryToHex function does the opposite. Once it’s padded the origi-
nal binary string with enough leading zeros so that the number of digits is
divisible by four, it takes each four-digit chunk and uses Select Case to con-
vert the chunk back to the corresponding hex digit.

• The dhBinaryToDec function takes advantage of the dhBinaryToHex func-
tion. Once the input value’s converted to Hex, the procedure uses the CLng
function to convert from hex to decimal.

• The dhDecToBinary function first uses the built-in Hex function to convert
the decimal value to Hex. Then, it calls the dhHexToBinary procedure to
convert to binary and removes any leading zeros.

T A B L E 2 . 2 0 : Converting to Hex and Back to Decimal

Type in Immediate Window Result

?Hex(255) FF

?CLng(Hex(255)) Error 13 (type mismatch)

?CLng(“&H” & Hex(255)) 255

 Using Built-In Numeric Functions 127

➲ Listing 2.12: Binary Conversion Functions
Public Function dhHexToBinary(strNumber As String) As String
 Dim strTemp As String
 Dim strOut As String
 Dim i As Integer
 For i = 1 To Len(strNumber)
 Select Case Mid(strNumber, i, 1)
 Case "0"
 strTemp = "0000"
 Case "1"
 strTemp = "0001"
 Case "2"
 strTemp = "0010"
 Case "3"
 strTemp = "0011"
 Case "4"
 strTemp = "0100"
 Case "5"
 strTemp = "0101"
 Case "6"
 strTemp = "0110"
 Case "7"
 strTemp = "0111"
 Case "8"
 strTemp = "1000"
 Case "9"
 strTemp = "1001"
 Case "A"
 strTemp = "1010"
 Case "B"
 strTemp = "1011"
 Case "C"
 strTemp = "1100"
 Case "D"
 strTemp = "1101"
 Case "E"
 strTemp = "1110"
 Case "F"
 strTemp = "1111"
 Case Else

Chapter 2 • Working with Numbers128

 ' This can’t happen, right?
 strTemp = ""
 End Select
 strOut = strOut & strTemp
 Next i
 dhHexToBinary = strOut
End Function

Public Function dhBinarytoHex(ByVal strNumber As String) As String
 Dim strTemp As String
 Dim intI As Integer
 Dim intLen As Integer
 Dim strOut As String
 ' First, pad the value to the left, with "0".
 ' To do this, find the length of the string
 ' rounded to the next highest multiple of 4.
 intLen = Len(strNumber)
 ' Find the next higher multiple of 4:
 intLen = Int((intLen - 1) / 4 + 1) * 4
 strNumber = Right$(String(intLen, "0") & strNumber, intLen)
 ' Now walk through each group of 4 digits, converting each
 ' to hex.
 For intI = 1 To intLen Step 4
 Select Case Mid(strNumber, intI, 4)
 Case "0000"
 strTemp = "0"
 Case "0001"
 strTemp = "1"
 Case "0010"
 strTemp = "2"
 Case "0011"
 strTemp = "3"
 Case "0100"
 strTemp = "4"
 Case "0101"
 strTemp = "5"
 Case "0110"
 strTemp = "6"
 Case "0111"
 strTemp = "7"
 Case "1000"
 strTemp = "8"
 Case "1001"
 strTemp = "9"

 Custom Math and Numeric Functions 129

 Case "1010"
 strTemp = "A"
 Case "1011"
 strTemp = "B"
 Case "1100"
 strTemp = "C"
 Case "1101"
 strTemp = "D"
 Case "1110"
 strTemp = "E"
 Case "1111"
 strTemp = "F"
 End Select
 strOut = strOut & strTemp
 Next intI
 dhBinarytoHex = strOut
End Function

Public Function dhBinaryToDec(ByVal strNumber As String) As Long
 dhBinaryToDec = CLng("&H" & dhBinarytoHex(strNumber))
End Function

Public Function dhDecToBinary(ByVal lngNumber As Long) As String
 Dim strTemp As String
 Dim intI As Integer
 strTemp = Hex(lngNumber)
 strTemp = dhHexToBinary(strTemp)
 ' Rip off leading 0s.
 Do While Left(strTemp, 1) = "0"
 strTemp = Mid(strTemp, 2)
 Loop
 dhDecToBinary = strTemp
End Function

Custom Math and Numeric Functions
In this section we’ve provided several handy custom functions that perform basic
mathematical and statistical calculations. You’ll also find a function that converts
numbers to text. These functions will save you time if you ever need the calcula-
tions they perform, but the programming techniques employed are pretty straight-
forward, so the functions are presented with little additional comment.

Chapter 2 • Working with Numbers130

Mathematical Functions
Several mathematical functions have already been presented in this chapter.
These were mostly built-in VBA functions and combinations thereof. Here are a
few more that you can use in specialized situations.

Finding the Greatest Common Factor (GCF) of Two
Integers

The greatest common factor (GCF) of two numbers is the largest number that will
evenly divide into each. The function shown in Listing 2.13 accepts two argu-
ments and computes their GCF.

➲ Listing 2.13: Compute the Greatest Common Factor of Two
Numbers

Public Function dhGreatestCommonFactor(_
 ByVal lngX As Long, ByVal lngY As Long) As Long

 Dim lngTemp As Long
 lngX = Abs(lngX)
 lngY = Abs(lngY)
 lngTemp = lngX Mod lngY
 Do While lngTemp > 0
 lngX = lngY
 lngY = lngTemp
 lngTemp = lngX Mod lngY
 Loop
 dhGreatestCommonFactor = lngY
End Function

Finding the Lowest Common Multiple (LCM) of Two
Integers

A similar numeric relationship between two numbers is the lowest common multiple
(LCM). The LCM of two numbers is the smallest number of which the two num-
bers are factors. Listing 2.14 shows a function that computes this.

 Custom Math and Numeric Functions 131

➲ Listing 2.14: Compute Two Numbers’ Lowest Common Multiple
Public Function dhLowestCommonMultiple(_
 ByVal intX As Integer, ByVal intY As Integer) As Long
 ' Returns the smallest number of which both
 ' intX and intY are factors
 intX = Abs(intX)
 intY = Abs(intY)
 dhLowestCommonMultiple = _
 intY * (intX \ dhGreatestCommonFactor(intX, intY))
End Function

Is This Number Prime?

Prime numbers can be divided evenly only by themselves and by 1. There are
many algorithms for figuring out whether a number is prime. Listing 2.15 illus-
trates a function that employs one of the more commonly used methods. It uses
several If statements to eliminate common cases like 0, 1, 2, and other even numbers.
It then uses a For…Next loop to determine the “primeness” of other numbers. Be
aware that for large numbers, this function can take a bit of time to run.

➲ Listing 2.15: Determine Whether a Number Is Prime
Public Function dhIsPrime(ByVal lngX As Long) As Boolean
 ' Find out whether a given number is Prime.
 ' Treats negative numbers and positive numbers
 ' the same.

 Dim intI As Integer
 Dim dblTemp As Double
 dhIsPrime = True
 lngX = Abs(lngX)

 If lngX = 0 Or lngX = 1 Then
 dhIsPrime = False
 ElseIf lngX = 2 Then
 ' dhIsPrime is already set to True.
 ElseIf (lngX Mod 2) = 0 Then
 dhIsPrime = False

Chapter 2 • Working with Numbers132

 Else
 For intI = 3 To Int(Sqr(lngX)) Step 2
 dblTemp = lngX / intI
 If dblTemp = lngX \ intI Then
 dhIsPrime = False
 Exit Function
 End If
 Next intI
 End If
End Function

Geometric Calculations
There’s a whole host of problems involving geometry that you can solve using VBA
(computing the surface area of a sphere, for instance). If you paid attention during
junior high geometry class, you probably already know how to write the required
VBA code. If, on the other hand, that’s just a distant memory, we’ve provided you
with some code that will do the trick. Listing 2.16 shows these functions.

➲ Listing 2.16: Miscellaneous Geometry Functions
Const PI = 3.14159265358979

Public Function dhAreaofCircle(ByVal dblRadius As Double) As Double
 ' Return the area of a circle
 dhAreaofCircle = PI * dblRadius ^ 2
End Function

Public Function dhAreaOfSphere(ByVal dblRadius As Double) As Double
 ' Return the area of a sphere
 dhAreaOfSphere = 4 * PI * dblRadius ^ 2
End Function

Public Function dhAreaOfRectangle(ByVal dblLength As Double, _
 ByVal dblWidth As Double) As Double
 ' Return the area of a rectangle
 dhAreaOfRectangle = dblLength * dblWidth
End Function

Public Function dhAreaOfTrapezoid(ByVal dblHeight As Double,

 Custom Math and Numeric Functions 133

 ByVal dblSide1 As Double, _
 ByVal dblSide2 As Double) As Double
 ' Return the area of a trapezoid
 dhAreaOfTrapezoid = dblHeight * (dblSide1 + dblSide2) / 2
End Function

Public Function dhVolOfPyramid(ByVal dblHeight As Double, _
 ByVal dblBaseArea As Double) As Double
 ' Return the volume of a pyramid
 dhVolOfPyramid = dblHeight * dblBaseArea / 3
End Function

Public Function dhVolOfSphere(ByVal dblRadius As Double) As Double
 ' Return the volume of a sphere
 dhVolOfSphere = PI * (dblRadius ^ 3) * 4 / 3
End Function

Converting Currency Numbers to Text

If you’re programming an application that writes checks, you may need to trans-
late numbers to a textual description. For example, the value $149.56 would be
translated as “one hundred forty-nine and fifty-six hundredths.” The dhNum-
ToStr function shown in Listing 2.17 demonstrates how to do this by using some
of the built-in numeric functions, as well as some string functions, which were dis-
cussed in Chapter 1. Listing 2.17 also shows the dhHandleGroup function, which
dhNumToStr calls.

The dhNumToStr function uses zero-based arrays. For it to work properly, make
sure you don’t use the Option Base 1 statement in any module where you place
this function.

➲ Listing 2.17: Convert a Number to Descriptive Text
Public Function dhNumToStr(ByVal varValue As Variant) As String
 On Error GoTo HandleErrors

 Dim intTemp As Integer
 Dim varNames As Variant

Chapter 2 • Working with Numbers134

 Dim lngDollars As Long
 Dim intCents As Integer
 Dim strOut As String
 Dim strTemp As String
 Dim intI As Integer

 If Not IsNumeric(varValue) Then Exit Function

 ' 999,999,999.99 is the largest possible value.
 If varValue > 999999999.99 Then Exit Function
 varNames = Array("", "Thousand", "Million")

 varValue = Abs(varValue)
 lngDollars = Int(varValue)
 intCents = (varValue - lngDollars) * 100

 If lngDollars > 0 Then
 ' Loop through each set of three digits,
 ' first the hundreds, then thousands, and then
 ' millions.
 Do
 intTemp = lngDollars Mod 1000
 lngDollars = Int(lngDollars / 1000)
 ' Prepend spelling of new triplet of digits to the
 ' existing output.
 If intTemp <> 0 Then
 strOut = dhHandleGroup(intTemp) & " " & _
 varNames(intI) & " " & strOut
 End If
 intI = intI + 1
 Loop While lngDollars > 0
 ' Handle the cents.
 strOut = RTrim(strOut) & " and " & _
 Format$(intCents, "00") & "/100"
 End If

ExitHere:
 dhNumToStr = strOut
 Exit Function

 Custom Math and Numeric Functions 135

HandleErrors:
 ' Handle all errors by returning an empty string
 strOut = ""
 Resume ExitHere
End Function

Private Function dhHandleGroup(ByVal intValue As Integer) As String
 ' Called by dhNumToStr
 Static varOnes As Variant
 Static varTens As Variant
 Dim strOut As String
 Dim intDigit As Integer

 If IsEmpty(varOnes) Then
 varOnes = Array("", "One", "Two", "Three", "Four", "Five", _
 "Six", "Seven", "Eight", "Nine", "Ten", _
 "Eleven", "Twelve", "Thirteen", "Fourteen", "Fifteen", _
 "Sixteen", "Seventeen", "Eighteen", "Nineteen", "Twenty")
 End If
 If IsEmpty(varTens) Then
 ' Elements 0 and 1 in this array aren't used.
 varTens = Array("", "", "Twenty", "Thirty", "Forty", _
 "Fifty", "Sixty", "Seventy", "Eighty", "Ninety")
 End If

 ' Get the hundreds digit, and then the rest.
 intDigit = intValue \ 100
 intValue = intValue Mod 100

 ' If there's a hundreds digit, add that now.
 If intDigit > 0 Then strOut = varOnes(intDigit) & " Hundred"

 ' Handle the tens and ones digits.
 Select Case intValue
 Case 1 To 20
 strOut = strOut & varOnes(intValue)
 Case 21 To 99
 intDigit = intValue \ 10
 intValue = intValue Mod 10
 If intDigit > 0 Then
 strOut = strOut & " " & varTens(intDigit)
 End If

Chapter 2 • Working with Numbers136

 If intValue > 0 Then
 strOut = strOut & "-" & varOnes(intValue)
 End If
 End Select

 dhHandleGroup = strOut
End Function

Statistics
This section presents several useful statistical functions, including functions to
calculate factorials, to compute various types of averages and standard deviation,
and to find minimum and maximum values.

Factorials

Statistical functions often make use of factorial calculations. You can use the two
functions shown in Listing 2.18 to calculate recursive and nonrecursive factorials.
You may have a preference for one over the other (some people find recursion
confusing or upsetting), but they both return the same values.

➲ Listing 2.18: Compute Recursive and Nonrecursive Factorial
Expressions

Public Function dhFactorialRecursive(intX As Integer) As Double
 If intX < 0 Or intX > 170 Then
 dhFactorialRecursive = 0
 ElseIf intX = 0 Then
 dhFactorialRecursive = 1
 Else
 dhFactorialRecursive = intX * _
 dhFactorialRecursive(intX - 1)
 End If
End Function

Public Function dhFactorial(intX As Integer) As Double
 Dim i As Integer
 Dim dblX As Double

 If intX < 0 Or intX > 170 Then
 dhFactorial = 0

 Custom Math and Numeric Functions 137

 Else
 dblX = 1
 For i = 2 To intX
 dblX = dblX * i
 Next i
 dhFactorial = dblX
 End If
End Function

Mean, Median, Mode, and Standard Deviation of an Array

The most common statistical functions are those that determine the mean,
median, mode, and standard deviation of a series of numbers. The mean is noth-
ing more than the arithmetic average of the series. The median, on the other hand,
is the number that occurs in the “middle” of the series. The mode is the number
that occurs most frequently. It’s usually close to the mean, but since it’s one of the
numbers in the series, it might not be exact. Finally, the standard deviation is a
measurement of how closely numbers in the series are gathered around the mean.
Listing 2.19 shows four functions that compute these values based on an array
passed as an argument.

The dhArrayMedian and dhModeOfArray functions use the dhQuickSort function
from Chapter 7 to sort the array prior to determining the mode. For a complete
discussion of sorting, see Chapter 7.

➲ Listing 2.19: Mean, Median, Mode, and Standard Deviation
Functions

Public Function dhArrayAverage(varArray As Variant) As Variant
 Dim varItem As Variant
 Dim varSum As Variant
 Dim lngCount As Long

 If IsArray(varArray) Then
 For Each varItem In varArray
 varSum = varItem + varSum
 lngCount = lngCount + 1

Chapter 2 • Working with Numbers138

 Next
 dhArrayAverage = varSum / lngCount
 Else
 dhArrayAverage = Null
 End If
End Function

Public Function dhArrayMedian(varArray As Variant) As Variant
 Dim varItem As Variant
 Dim varTemp As Variant
 Dim varMedian As Variant
 Dim intI As Integer
 Dim lngTemp As Long
 Dim lngLBound As Long
 Dim lngElements As Long

 If IsArray(varArray) Then
 ' Sort the array
 Call dhQuickSort(varArray)
 ' Compute the number of array elements
 ' and the index of the "middle" one

 lngLBound = LBound(varArray)
 lngElements = (UBound(varArray) - lngLBound + 1)
 ' Find the midpoint in the array. For an odd
 ' number of elements, this is easy (it’s the
 ' middle one)...
 If (lngElements Mod 2) = 1 Then
 dhArrayMedian = varArray(lngLBound + _
 (lngElements \ 2))
 Else
 ' For an even number of elements, it’s the
 ' midpoint between the two middle values...
 lngTemp = ((lngElements - 1) \ 2) + lngLBound
 dhArrayMedian = ((varArray(lngTemp + 1) - _
 varArray(lngTemp)) / 2) + varArray(lngTemp)
 End If
 Else
 dhArrayMedian = Null
 End If
End Function

 Custom Math and Numeric Functions 139

Public Function dhArrayStandardDeviation(varArray As Variant) As Double
 Dim lngN As Long
 Dim dblSumX As Double
 Dim dblSumX2 As Double
 Dim dblVar As Double
 Dim intCounter As Integer

 lngN = 0
 dblSumX = 0
 dblSumX2 = 0
 For intCounter = LBound(varArray) To UBound(varArray)
 If Not IsNull(varArray(intCounter)) Then
 lngN = lngN + 1
 dblSumX = dblSumX + varArray(intCounter)
 dblSumX2 = dblSumX2 + varArray(intCounter) ^ 2
 End If
 Next intCounter

 dblVar = 0
 If lngN > 0 Then
 dblVar = (lngN * dblSumX2 - dblSumX ^ 2) / (lngN * (lngN - 1))
 If dblVar > 0 Then
 dhArrayStandardDeviation = Sqr(dblVar)
 End If
 End If
End Function

Public Function dhArrayMode(varArray As Variant) As Variant
 Dim varItem As Variant
 Dim varLast As Variant
 Dim lngCount As Long
 Dim lngOccur As Long
 Dim lngLastOccur As Long
 Dim lngTotalOccur As Long

 If IsArray(varArray) Then
 ' Sort the array so elements are in order
 Call dhQuickSort(varArray)

 ' Capture the first item
 varItem = varArray(LBound(varArray))

 ' Loop through all the elements

Chapter 2 • Working with Numbers140

 For lngCount = LBound(varArray) To UBound(varArray)
 ' Increment the occurrence counter
 lngOccur = lngOccur + 1

 ' If the value is not the same as the last one,
 ' see if the occurrences of the last value
 ' exceed the current maximum
 If varArray(lngCount) <> varLast Then
 If lngLastOccur >= lngTotalOccur Then
 ' If so, make it the new maximum and
 ' capture the prior value
 lngTotalOccur = lngLastOccur
 varItem = varArray(lngCount - 1)
 End If

 ' Record this element as the last one visited
 varLast = varArray(lngCount)

 ' Reset the counter
 lngOccur = 0
 End If

 lngLastOccur = lngOccur
 Next

 ' Return the value with the most occurrences
 ' (make sure to check the final value)
 If lngOccur > lngTotalOccur Then
 dhArrayMode = varArray(lngCount - 1)
 Else
 dhArrayMode = varItem
 End If
 Else
 dhArrayMode = Null
 End If
End Function

Finding Minimum and Maximum Values
Surprisingly, VBA does not include functions for determining the minimum or
maximum values in a series of numbers. It’s relatively easy, however, to construct
a function to do this using an array. Listing 2.20 shows two functions we’ve cre-
ated that compute the minimum or maximum values, given an array.

 Custom Math and Numeric Functions 141

➲ Listing 2.20: Custom Maximum and Minimum Functions
Function dhArrayMax(varArray As Variant) As Variant
 ' Return the maximum value from an array

 Dim varItem As Variant
 Dim varMax As Variant
 Dim i As Long

 If IsArray(varArray) Then
 If UBound(varArray) = -1 Then
 dhArrayMax = Null
 Else
 varMax = varArray(UBound(varArray))
 For i = LBound(varArray) To UBound(varArray)
 varItem = varArray(i)
 If varItem > varMax Then
 varMax = varItem
 End If
 Next i
 dhArrayMax = varMax
 End If
 Else
 dhArrayMax = Null
 End If
End Function

Function dhArrayMin(varArray As Variant) As Variant
 ' Return the minimum value from an array

 Dim varItem As Variant
 Dim varMin As Variant
 Dim i As Long

 If IsArray(varArray) Then
 If UBound(varArray) = -1 Then
 dhArrayMin = Null
 Else
 varMin = varArray(LBound(varArray))
 For i = LBound(varArray) To UBound(varArray)
 varItem = varArray(i)

Chapter 2 • Working with Numbers142

 If varItem < varMin Then
 varMin = varItem
 End If
 Next i
 dhArrayMin = varMin
 End If
 Else
 dhArrayMin = varArray
 End If
End Function

Summary
VBA has many useful functions for handling numbers, but there are problems in
using these functions that are not apparent on the surface. This chapter has provided
an overview of the built-in functions, as well as some of the problems inherent in
floating-point data types and rounding. Several handy custom functions for perform-
ing numeric calculations were also presented. Specifically, this chapter covered

• How VBA stores and computes numbers:

• Understanding the different data types in VBA

• Problems with floating-point numbers and how to solve them

• Built-in numeric functions:

• Mathematical

• Type conversion and rounding

• Generating random numbers

• Financial

• Base conversions

• Custom functions:

• Mathematical

• Geometric

• Converting numbers to text

• Statistics

For similar chapters covering strings and dates, see Chapters 1 and 3, respectively.

c h a p t e r 3

Working with Dates and
Times

� Understanding how date/time values are stored
in VBA

� Using the built-in VBA date/time functions

� Extending the built-in functions with new
generalized procedures

� Using the Windows API to manage system time and
time zone issues

Chapter 3 • Working with Dates and Times144

This chapter is devoted to providing solutions to common problems involving
date and time values, including manipulating date values, finding a particular
date, and working with elapsed times. Although VBA supplies a rich set of func-
tions that help you work with date/time values, their use can be confusing, and
there are many programmatic questions that require functions other than those
supplied by the built-in VBA date-handling functions.

Table 3.1 lists the sample files you’ll find on the accompanying CD-ROM.

What Is a Date, and How Did It Get There?
All other definitions aside, to VBA, a date is an 8-byte floating-point value that can
contain information indicating a specific point in time. In particular, the integer
portion of the value contains a number of days since December 30, 1899. The frac-
tional portion of the date value represents the portion of the day stored in the value.
For example, if the current date is 5/22/97 at 3:00 P.M., VBA stores the value inter-
nally as 35572.625. That is, the current date is 35572 days after 12/30/1899, and
3:00 P.M. is 625/1000th of a full day. In general, you don’t have to care about the
storage mechanism; VBA handles the conversions gracefully to and from the
internal floating-point format and the external date display.

T A B L E 3 . 1 : Sample Files

Filename Description

DATETIME.XLS Excel 2000 workbook with sample functions (contains all the modules)

DATETIME.MDB Access 2000 database with sample functions (contains all the modules)

DATETIME.BAS Text file with sample functions

DATETIMEADO.BAS Sample functions, using ADO recordsets

HOLIDAYS.MDB Access 97 database containing tblHolidays

HOLIDAYS.TXT Exported text version of tblHolidays

HOLIDAYS.XML XML file containing sample holiday recordset

SYSTEMTIMEINFO.CLS Class module containing system time and time zone information
properties

TESTDATETIME.BAS Module containing test procedures

DATETIME.VBP Visual Basic 6 project containing demo code

 What Is a Date, and How Did It Get There? 145

Note that a date/time value to VBA represents only a point in time, not an elapsed
time. If you want to work with elapsed times, you’ll need to write some code.
We’ve provided procedures, discussed later in this chapter, that allow you to
calculate and format elapsed times. You should never treat VBA date/time values
as anything but what they are, however: simply, a point in time.

Perhaps it seems odd that the 0 date, to VBA, is 12/30/1899. This means that day
1 is 12/31/1899, and day 2 is 1/1/1900. Why the odd numbering? The story we
heard (and this may be totally apocryphal, so don’t hold us to this) is that some
other company—to remain unnamed—released an extremely popular
spreadsheet product before Microsoft’s first spreadsheet. This other spreadsheet
stored dates in the same fashion as described here, and Microsoft wanted to
provide a compatible date format. The other company had designated 12/31/
1899 as day 0, and 1/1/1900 as day 1. Unfortunately, the other company had
neglected to notice that 1900 wasn’t a leap year. (See the section titled “Is This a
Leap Year?” later in the chapter for more information on why 1900 wasn’t a leap
year.) Microsoft developers, working on their first spreadsheet, worked to find a
way so that their dates, correctly taking into account the fact that 1900 wasn’t a
leap year, could coincide with the dates used by their competitor. Their solution?
Back up the 0 date one day, so that only the days before March 1, 1900 would be
different from the competitors’. Maybe it’s true; maybe it’s not. It makes a good
story.

An Added Benefit
Because VBA stores dates internally as serial values, you get the added benefit of
being able to treat dates as numeric values in expressions if you want. Although
VBA supplies the DateAdd function, covered in more detail in the section “Per-
forming Simple Calculations” later in this chapter, you needn’t use it if you’re
adding a number of days to a given date value. For example, to get tomorrow’s
date, you could just add 1 to today’s date, like this:

dtmTomorrow = Date + 1

Date is a built-in VBA function that returns the date portion (the integer part) of
the current date and time retrieved from Windows. Adding 1 to that value returns
a date that represents the next day.

Chapter 3 • Working with Dates and Times146

The same mechanism works for subtracting two dates. Although VBA supplies
the DateDiff function for finding the interval spanned by two date/time values, if
you just need to know the number of days between the two dates, you can simply
subtract one from the other. For example, to find the number of days between
5/22/97 and 1/10/97, you could use an expression like this:

intDays = #5/22/2000# - #1/10/2000#

Afterward, intDays will contain the value 133, the number of days between May 22
and January 10 in a leap year.

Supplying Date Values
Like some weird date-munching omnivore, VBA’s expression engine can “eat”
dates in any of several formats. As long as you enclose date literals within number
signs (#) and format the literal in some reasonable, unambiguous way, VBA should
be able to understand what you mean.

VBA understands any of the following formats (if you’re running a VBA host in
the United States, that is):

#January 1, 1998#
#Jan 1 1998#
#1-Jan-98#
#1 Jan 1998#
#1 1 98#

VBA uses your Windows international settings to determine how to parse the
value you’ve entered. This does, of course, cause trouble with dates entered with
nothing differentiating days and months. (How is VBA supposed to know, unless
you tell it otherwise, that #5/1/98# represents May 1 and not January 5?) To be
completely unambiguous, especially in cases in which your application must run in
various localized VBA hosts, you might consider abandoning date literals in code
altogether and using the DateSerial function instead. This function, discussed in
the section “Putting the Pieces Together” later in this chapter, takes three distinct
values representing the year, month, and day portions of a date and returns a date
value representing the selected date. Using this mechanism, you’ll never have any
issues with localized versions of your code parsing date literals differently than
you’d expected.

 The Built-In VBA Date Functions 147

When converting from other data types into dates, VBA stores the portion to the left
of the decimal point (the whole number part) as the date and the portion to the right of
the decimal point as the time. For example, if you were to write code like this:

Dim dbl As Double
Dim dtm As Date
dbl = 3005 / 12.6
dtm = dbl

Debug.Print dbl
Debug.Print dtm

the output would be

238.492063492063
8/25/1900 11:48:34 AM

Judging from the results, it looks like 8/25/1900 is 238 days after 12/30/1899, and
.4920634… is about 11:48:34 A.M.

The Built-In VBA Date Functions
Although VBA provides a large number of built-in functions, there aren’t many
logical groups as tightly entwined as the VBA functions handling date and time
manipulations. The next few sections provide details and examples of using the
intrinsic functions to solve simple problems. The remainder of the chapter pro-
vides more complex solutions that, in each case, use these basic building blocks.

Exactly When Is It?
VBA provides three functions enabling you to determine the current date and
time set in your computer’s hardware. These functions—Now, Date, and Time—
check your system clock and return all or part of the current setting. None of these
functions requires any parameters, and the functions can be summarized simply:

Function Return Value

Now Returns the current date and time

Date Returns the date portion of the current date and time

Time Returns the time portion of the current date and time

Chapter 3 • Working with Dates and Times148

Although these functions seem somewhat redundant, they do each have their
purpose. For example, if you want to display only the current time without the
date portion, it’s simpler to call the Time function than to call the Now function
and remove the date portion.

You can use the Date and Time statements to set the current date and time as
well. Placing either keyword on the left-hand side of an equal sign allows you to
assign a new value to the system date and time.

For example, the following fragment checks the current time, and if it’s past 1:00
P.M., executes some code.

If Time > #1:00 PM# Then
 ' Only execute this code if it’s after 1 PM.
End if

On the other hand, the following comparison wouldn’t make any sense in this
context because the value in Now (a value like 34565.2345) is guaranteed to be
greater than #1:00 PM# (the value 0.5416666667):

If Now > #1:00 PM# Then
 ' Only execute this code if it's after 1 PM.
End if

Unlike most other functions, Now, Date, and Time don’t require trailing parentheses.
In fact, if you enter the parentheses, VBA often politely removes them for you.

You may run across the Date$ and Time$ functions if you’re reading other people’s
code. These functions represent special cases of the Date and Time functions. In
each case, the string version (Date$ and Time$) returns a string representing the
date or time. Date$ always returns a string in the format mm-dd-yyyy; Time$
always returns a string in the format hh:mm:ss.

 The Built-In VBA Date Functions 149

What If You Just Want One Portion of a Date/Time
Value?

To retrieve just the date portion of a date/time value, use the built-in DateValue
function. This function, discussed in the section “Converting Text to Date/Time
Format” later in this chapter, takes in either a string or a date value and returns
only the date portion. Using DateValue, you can compare the date portion of a
Date variable to a specific date value, like this:

If DateValue(dtmSomeDate) = #5/14/70# Then
 ' You know the date portion of dtmSomeDate is 5/14/70
End If

On the other hand, if you need just the time portion of a date variable, you can
use the TimeValue function. Using this function, you could write code that checks
the time portion of a date variable against a particular time, like this:

If TimeValue(dtmSomeDate) > #1:00 PM# Then
 ' You know the date variable contained a time portion
 ' with a time after 1:00 PM.
End If

Pulling the Pieces Apart
Of course, if you’re working with dates, you’re also working with years, months,
days, hours, minutes, and seconds. You might also like to work with a date in
terms of its placement within the year, or which quarter it’s in, or which day of the
week it is. VBA provides simple and useful functions for retrieving all this infor-
mation, and more.

Retrieving Just the Part You Need

To start with, you’ll find the functions listed in Table 3.2 to be helpful in extracting
simple information from a date value. Each of these functions accepts a date param-
eter and returns an integer containing the requested piece of information. (You
can also use the DatePart function, described in the section “One Function Does It
All” later in this chapter, to retrieve any of these values. It’s simpler to call the
functions in Table 3.2 if you just need one of the values listed.)

Chapter 3 • Working with Dates and Times150

You can use any of these functions to retrieve a portion of a date value. For
example, the following fragment displays the current year value:

MsgBox "The current year is " & Year(Now)

and the following fragment displays the month and day of a date variable:

Dim dtmDate As Date
dtmDate = #1/15/1947#
MsgBox "Month: " & Month(dtmDate) & " Day: " & Day(dtmDate)

The following fragment checks the current time and allows you to take an action
at 1:12 P.M.:

If Hour(Time) = 13 And Minute(Time) = 12 Then
 ' You know it's 1:12 PM
End If

Don’t try sending the Date function to functions that return time portions of a
date/time value. Because the return value from the Date function doesn’t include
any time information (its fractional portion is 0), the Hour, Minute, and Second
functions will all return 0. The same warning applies to the Day, Month, and Year
functions: Don’t send them the Time function, because the return value from that
function doesn’t include any date information.

What Day of the Week Is This?

In addition to working with months and days, you may need to know the day of
the week represented by a date value. Of course, you could calculate this yourself

T A B L E 3 . 2 : Simple Date/Time Functions

Function Return Value

Year Year portion of the date

Month Month portion of the date

Day Day portion of the date

Hour Hour portion of the date

Minute Minutes portion of the date

Second Seconds portion of the date

 The Built-In VBA Date Functions 151

(there are published algorithms for calculating the day of a week, given a date),
but why bother? VBA knows the answer and can give it to you easily, using the
built-in WeekDay function. (You can also use the DatePart function, discussed in
the next section, to retrieve the same information.)

To determine the day of the week represented by any date value, use the Week-
Day function. Supply it with a date value, and it will return the day of the week on
which that date falls. For example,

Debug.Print WeekDay(#5/16/1956#)

returns 4, indicating that May 16 fell on a Wednesday in 1956.

Sunday Isn’t Always the First Day of the Week
Online help indicates that you can pass a second parameter to WeekDay, indicating the
first day of the week. In some countries, Monday is considered the first day of the week, so
most of the VBA date functions allow you to specify what you consider to be the first day
of the week. If you don’t specify a value, VBA uses the Windows setting for your local
country. If you specify a constant (vbSunday through vbSaturday) for this parameter, VBA
treats that day as the first day of the week and offsets the return value accordingly. If you
supply the constant value vbUseSystemDayOfWeek, the function uses its default, the value
supplied by Windows.

For example, the following lines represent a sample session in the Immediate window (run
in the United States, where Sunday is the first day of the week):

? WeekDay(#5/1/98#)

6

? WeekDay(#5/1/98#, vbUseSystemDayOfWeek)

6

? WeekDay(#5/1/98#, vbMonday)

5

Note that as you change the value of the FirstDayOfWeek parameter, the return value
changes as well. You need to be aware that WeekDay (and the corresponding functional-
ity in the DatePart function) doesn’t return a fixed value but, rather, a value relative to the
local first day of the week.

Of course, if you want a fixed value, no matter where your code runs, simply specify the
first day of the week. The following example returns 6 no matter where you run it:

? WeekDay(#5/1/98#, vbSunday)

Chapter 3 • Working with Dates and Times152

One Function Does It All

In addition to the functions described in the previous sections, VBA supplies the
DatePart function. This function allows you to retrieve any portion of a date/time
value and also performs some simple calculations for you. (It can retrieve the
quarter of the year containing your date value, as well as all the other, simpler
information.)

To call DatePart, pass to it a string indicating which information you want returned
and a date value. The function returns the requested piece of information from the
date value you send it. Table 3.3 lists the possible values for the DatePart func-
tion’s Interval argument.

For example, the following two lines of code are equivalent:

Debug.Print Day(Date)
Debug.Print DatePart("d", Date)

But these two lines have no simple alternatives:

' Return the ordinal position of the current day within the year.
Debug.Print DatePart("y", Date)
' Return the quarter (1, 2, 3, or 4) containing today's date.
Debug.Print DatePart("q", Date)

T A B L E 3 . 3 : Values for the Interval Argument of the DatePart Function

Setting Description

yyyy Year

q Quarter

m Month

y Day of year

d Day

w Weekday

ww Week

h Hour

n Minute

s Second

 The Built-In VBA Date Functions 153

DatePart allows you to optionally specify the first day of the week (just as you
can do with the WeekDay function) in its third parameter. It also allows you to
optionally specify the first week of the year in its fourth parameter. (Some coun-
tries treat the week in which January 1st falls as the first week of the year, as does
the United States. Other countries treat the first four-day week as the first week,
and still others wait for the first full week in the year and call that the first week.)

Performing Simple Calculations
VBA supplies two functions, DateAdd and DateDiff, which allow you to add and
subtract date and time intervals. Of course, as mentioned above, if you’re just
working with days, you don’t need these functions—you can just add and sub-
tract the date values themselves. The following sections describe each of these
important functions in detail.

Adding Intervals to a Date

The DateAdd function allows you to add any number of intervals of any size to a
date/time value. For example, you can calculate the date 100 days from now or
the time 35 minutes ago. The function accepts three required parameters, as shown
in Table 3.4. Table 3.5 lists the possible values for the Interval parameter.

T A B L E 3 . 4 : Parameters for the DateAdd Function

Parameter Description

Interval A string expression indicating the interval of time to add

Number Number of intervals to add. It can be positive (to get dates in the future) or
negative (to get dates in the past)

Date Date to which the interval is added

T A B L E 3 . 5 : Possible Interval Settings for DateAdd

Setting Description

yyyy Year

q Quarter

m Month

Chapter 3 • Working with Dates and Times154

For example, to find the date one year from the current date, you could use an
expression like this:

DateAdd("yyyy", 1, Date)

rather than add 365 days to the current date (a common, although incorrect, solu-
tion). What about calculating the time two hours from now? That’s easy, too:

DateAdd("h", 2, Now)

DateAdd will never return an invalid date, but if you try to add a value that
would cause the return date to be before 1/1/100 or after 12/31/9999, VBA trig-
gers a runtime error.

Watch out! The abbreviation for adding minutes to a date/time value is “n,” not
“m,” as you might guess. (VBA uses “m” for months.) Many VBA developers have
used “m” inadvertently and not noticed the error until the program was in use.

Subtracting Dates

If you need to find the number of intervals between two dates (where the interval
can be any item from Table 3.5), use the DateDiff function. Table 3.6 lists the
parameters for this function.

y Day of year

d Day

w Weekday

ww Week

h Hour

n Minute

s Second

T A B L E 3 . 5 : Possible Interval Settings for DateAdd (continued)

Setting Description

 The Built-In VBA Date Functions 155

For example, to calculate the number of hours that occurred between two date
variables, dtmValue1 and dtmValue2, you could write an expression like this:

DateDiff("h", dtmValue1, dtmValue2)

DateDiff’s return value can be confusing. In general, it performs no rounding at
all, but the meaning of the difference varies for different interval types. For example,

DateDiff("h", #10:00#, #12:59:59#)

returns 2 because only two full hours have elapsed between the two times.

When working with months or years, DateDiff returns the number of month or
year borders that have been crossed between the dates. For example, you might
expect the following expression to return 0 (no full months have been traversed),
yet the function returns 1 because a single month border has been crossed:

DateDiff("m", #11/15/2000#, #12/1/2000#)

The same goes for the following expression, which returns 1 even though only a
single day has transpired:

DateDiff("yyyy", #12/31/2000#, #1/1/2001#)

When working with weeks, DateDiff becomes, well, strange. VBA treats the “w”
(weekday) and “ww” (week) intervals differently, but both return (in some sense)
the number of weeks between the two dates. If you use “w” for the interval, VBA
counts the number of the day on which Date1 falls until it hits Date2. It counts
Date2 but not Date1. (This explanation requires visual aids, so consult Figure 3.1
for an example to work with.) For example,

DateDiff("w", #12/5/2000#, #12/18/2000#)

T A B L E 3 . 6 : Parameters for the DateDiff Function

Parameter Required? Data Type Description

Interval Yes String Interval of time used to calculate the
difference between Date1 and Date2

Date1, Date2 Yes Date The two dates used in the calculation

FirstDayOfWeek No Integer constant The first day of the week. If not
specified, Sunday is assumed.

FirstWeekOfYear No Integer constant The first week of the year. If not
specified, the first week is assumed to
be the week in which January 1 occurs.

Chapter 3 • Working with Dates and Times156

returns 1 because there’s only one Wednesday following 12/5/2000 before stop-
ping at 12/18. On the other hand,

DateDiff("w", #12/5/2000#, #12/19/2000#)

returns 2 because there are two Wednesdays (12/6 and 12/13) in the range.

Using “ww” for the range, DateDiff counts calendar weeks. (That is, every time
it hits the first day of the week, it bumps the count.) Therefore, the previous two
examples both return 2, using the “ww” interval; in both cases, there are two Sun-
days between the two dates. Just as with the “w” interval, VBA counts the end
date if it falls on a Sunday, but it never includes the starting date, even if it is a
Sunday. Given that caveat, DateDiff should return the same answer for either the
“w” or “ww” interval if Date1 is a Sunday.

F I G U R E 3 . 1
A visual aid for DateDiff

calculations

If you use date literal values (like #5/1/2001#), VBA uses the exact date you specify
in its calculations. If, on the other hand, you use a string that contains only the
month and date (like “5/1”), VBA inserts the current year when it runs the code.
This allows you to write code that works no matter what the year is when you run
it. Of course, this makes it difficult to compare dates from two different years
because there’s no way to indicate any year except the current one. But if you
need to perform a calculation comparing dates within the current year, this
technique can save you time.

Converting Text to Date/Time Format

Sometimes your code needs to work with date values that are stored as strings.
Perhaps you’ve received data from some outside source and need to convert it to
date format, or perhaps the user has entered a value into a text box somewhere
and you now need to work with it as a date. VBA provides four functions to help

 The Built-In VBA Date Functions 157

you make the necessary conversions: IsDate, DateValue, TimeValue, and CDate.
Each of these functions accomplishes a slightly different task, and their differences
aren’t apparent from the online help.

The IsDate function takes in a single value (a string or a date value) and deter-
mines if VBA can correctly interpret the value as a date. If so, the function returns
True; otherwise, False. For example, each of the following expressions returns
True when run in the Immediate window (in the United States):

? IsDate(#12/30/2000#)
? IsDate("12/30/2000")
? IsDate("30/12/2000")
? IsDate(#12-30-2000#)
? IsDate("December 30 2000")

Obviously, VBA is quite lenient in terms of what it accepts as a date, and it will
attempt to convert the value to a date using the CDate function shown below. You
should note, however, that VBA may return True when you’d expect it to return
False. In the preceding examples, the date value “30/12/2000” returned True,
even though the string represents an invalid date in the current locale. Under the
covers, VBA determined that if it swapped the month and day, this would be a
legal date, and it attempts to do this for you. You may not like this behavior, but
that’s how it works.

The IsDate function does not validate a date/time value. All it does is determine if,
by some means, no matter how much effort it takes, VBA can manage to interpret
the data you send it as a date. It may not be a valid date or a reasonable one, but
VBA will be able to convert it into some type of date value. For example, try pass-
ing “3a1-2-3” to IsDate—it returns True. Then try passing the same value to the
DateValue and TimeValue functions—you may be surprised at the results.

DateValue and TimeValue each accept a single argument (usually a string expres-
sion) and convert that value into either a date or a time. (As mentioned earlier in
this chapter, you can also use these functions to extract just the time or date por-
tion of a combined date/time value.) DateValue can convert any string that matches
the internal date formats and any recognizable text month names as well. If the
value you send it includes a time portion, DateValue just removes that informa-
tion from the output value.

Chapter 3 • Working with Dates and Times158

For example, all of the following expressions return the same value (assuming
the variable intDate contains the value 30):

DateValue("12 30 2001")
DateValue("December 30 2001")
DateValue("December " & intDate & " 2001")
DateValue("12/30/01 5:00 PM")
DateValue("30/12/2001")

The final example returns December 30 no matter where you are, of course, only
because the date is unambiguous. Try that with a date like “12/1/2001,” and
you’ll get the date as defined in your international settings (December 1 in the
United States, January 12 in most of the rest of the world).

The TimeValue function works similarly to the DateValue function. You can
send it a string containing any valid expression, and it returns a time value. If
you send TimeValue a string containing date information, it disregards that
information as it creates the output value.

For example, all of the following return the same time value:

TimeValue("5:15 PM")
TimeValue("17:15")
TimeValue("12/30/2001 5:15 PM")

The CDate function coerces any value it can get its hands on into a date/time
value, if it can. Unlike the TimeValue and DateValue functions, it returns a full
date/time value, with all the information it was sent intact. In addition, it can con-
vert numeric values into dates. For example, all of the following examples return
the same value. (The last example is redundant, of course, but it works.)

CDate("12/30/2001 5:15 PM")
CDate(37255.71875)
CDate(#12/30/97 5:15 PM#)

Most often, you’ll use CDate to convert text into a full date/time value, and you’ll
use DateValue and TimeValue to convert text into a date or a time value only.

Putting the Pieces Together

What if, rather than text, you’ve got the pieces of a date or a time as individual
numeric values? In that case, although you could use any of the functions in the
previous section to perform the conversion (building up a complex string expres-
sion and then calling the function), you’re better off using the DateSerial and
TimeSerial functions in this case. Each of these functions accepts three values—

 Odd Behaviors 159

DateSerial takes year, month, and day, in that order; TimeSerial takes hour, min-
utes, and seconds, in that order—and returns a date or a time value, much like the
DateValue and TimeValue functions did with a single expression as input. Many
of the functions presented in the remainder of this chapter use the DateSerial or
TimeSerial function to create a date from the three required pieces.

For example, what if you need to know the first day of the current month? The
simplest solution is to write a function that uses an expression like this:

FirstDayInCurrentMonth = DateSerial(Year(Date), Month(Date), 1)

As you’ll see, this is exactly the technique the dhFirstDayInMonth function, dis-
cussed later in this chapter, uses. By creating a new date that takes the year portion
of the current date, the month portion of the current date, and a day value of 1, the
function returns a new date that corresponds to the first day in the current month.

The TimeSerial function works just the same way. You pass it hour, minutes,
and seconds values, and it creates the appropriate time value for you. You’ll use
both functions together to build a full date/time value if you’ve got six values
containing the year, month, day, hour, minutes, and seconds. That is, you might
find yourself with an expression like this:

DateSerial(intYear, intMonth, intDay) + _
 TimeSerial(intHour, intMinutes, intSeconds)

Because a date/time value is simply the sum of a whole number representing
days and a fraction representing time, you can use both functions together to cre-
ate a full date/time value.

One useful feature of VBA’s built-in date functions is that they never return an
invalid date. For example, asking for DateSerial(2000, 2, 35), which certainly
describes a date that doesn’t exist, politely returns 3/6/2000. If you use an expres-
sion such as DateSerial(1999, 12, 0), DateSerial happily returns the 0th day of
December. From a computer’s point of view, that date is 11/30/1999. We’ll actu-
ally use these features to our benefit, as you’ll see in the section “Is This a Leap
Year?” later in this chapter.

Odd Behaviors
DateSerial and TimeSerial both have some behaviors that you might consider odd,
unless you really stop and think about them. First, consider what this expression
should return:

DateSerial(0, 0, 0)

Chapter 3 • Working with Dates and Times160

On first trying this, we expected this function call to return the zero date (12/30/
1899). But it doesn’t; it returns 11/30/1999. After some discussion, the result
became clearer. DateSerial saw the year 0 and attempted to interpret that as a
valid year. If you supply the value 75 for the year, DateSerial assumes you mean
1975, and if you supply 23 for the year, DateSerial assumes you mean 2023. (The
choices made here are based on the built-in cutoff for interpreting two-digit years,
as discussed in the sidebar, “The Turn of the Century Approacheth and Passeth”
later in the chapter.) If you’ve entered 0 for the year, DateSerial assumes you mean
the year 2000. Then, you’ve asked for the 0th month in 2000. Because January is
month number 1, month 0 is December 1999. Then, you’ve asked for day 0 within
the selected month. Because day 1 would be 12/1/1999, day 0 is 11/30/1999. And
so it goes.

As another interesting example, try this expression:

TimeSerial(0, -60, 0)

You might expect this to return a value corresponding to 11:00 P.M. on 12/29/1899.
That is, because you’ve not specified a date, the expression uses the zero date,
12/30/1899, and because you’ve requested a value of –60 minutes, you might
assume you’d get a value 60 minutes before midnight. That’s not the way Time-
Serial works, however. Remember that a time is a fractional portion of a date/time
value, and the date is the whole number portion of the value. When you enter
TimeSerial(0, -60, 0), VBA converts the expression into its corresponding date value:
–0.0417 (that is, 1/24th of a day). But, because VBA interprets that value as a date/
time pair, the date part, –0, might as well be 0. The time part is 0.0417 (positive)
either way. That is, the result would be the same, using either of these expressions:

TimeSerial(0, -60, 0)
TimeSerial(0, 60, 0)

This may not be what you expect, but it is the way it works. (It’s interesting to note
that the DateAdd function does handle negative time intervals the way you might
expect. See the section “Adding Intervals to a Date” earlier in the chapter for more
information.)

Displaying Values the Way You Want
In your applications, you most likely will want to display dates in a variety of for-
mats. VBA supplies the Format function, which you can use to format date values
just the way you need. (You can also use the Format function to format numeric

 Displaying Values the Way You Want 161

values, and string values as well. See the VBA online help for more information on
the specifics of using Format with other data types.)

When you use the Format function, you supply an expression to be formatted (a
date/time value, in this case) and a string expression containing a format speci-
fier. Optionally, you can also supply both a constant representing the first day of
the week you want to use and a constant representing the manner in which you
want to calculate the first week of the year. (For more information on these two
parameters, see Table 3.6 earlier in this chapter.)

The format specifier can be either a built-in, supplied string or one you make up
yourself. Table 3.7 lists the built-in date/time formats.

To test out these formats, we took a field trip to a fictional country. The region’s
time settings for Windows are displayed in Figure 3.2, and their date settings are
shown in Figure 3.3. The screen in Figure 3.4 shows some tests, using the Format
function, with the various date and time formats.

T A B L E 3 . 7 : Named Date/Time Formats for the Format Function

Format Name Description Use Local Settings

General Date Displays a date and/or time, depending on the value in
the first parameter, using your system’s Short Date
style and the system’s Long Time style

Yes

Long Date Displays a date (no time portion) according to your
system’s Long Date format

Yes

Medium Date Displays a date (no time portion) using the Medium
Date format appropriate for the language version of
the host application

No

Short Date Displays a date (no time portion) using your system’s
Short Date format

Yes

Long Time Displays a time (no date portion) using your system’s
Long Time format; includes hours, minutes, seconds

Yes

Medium Time Displays time (no date portion) in 12-hour format using
hours and minutes and the AM/PM designator

Yes

Short Time Displays a time (no date portion) using the 24-hour
format; for example, 17:45

Yes

Chapter 3 • Working with Dates and Times162

F I G U R E 3 . 2
Regional settings for times
in a fictitious environment.

(Screen shot taken in
Windows 2000.)

F I G U R E 3 . 3
Regional settings for

dates in the same fictitious
environment. (Screen shot
taken in Windows 2000.)

 Displaying Values the Way You Want 163

F I G U R E 3 . 4
Test of regional date for-

mats in the Microsoft Excel
Immediate window

Back from your field trip, if you’re feeling creative, or hampered by the limita-
tions of the named time and date formats, you can create your own formats using
the options shown in Table 3.8. If you build a string containing combinations of
these characters, you can format a date/time value any way you like. Figure 3.5
demonstrates a few of the formats you can create yourself, using the characters
listed in Table 3.8.

F I G U R E 3 . 5
Use the Format function

with user-defined formats
for complete control.

T A B L E 3 . 8 : User-Defined Time/Date Formats for the Format Function

Character Description Use
Regional
Settings?

Comments

(:) Time separator. Separates
hours, minutes, and seconds
when time values are
formatted

Yes In some locales, this character may
have been translated and may not be
a colon (:). Output value is determined
by local settings.

(/) Date separator. Separates the
day, month, and year when
date values are formatted

Yes In some locales, this character may
have been translated and may not be
a slash (/). Output value is determined
by local settings.

Chapter 3 • Working with Dates and Times164

c Displays the date as ddddd
and displays the time as ttttt,
in that order

Yes Same as the named General Date
format

d Displays the day as a number
without a leading 0 (1–31)

No

dd Displays the day as a number
with a leading 0 (01–31)

No

ddd Displays the day as an
abbreviation (Sun–Sat)

Yes

dddd Displays the day as a full
name (Sunday–Saturday)

Yes

ddddd Displays the date as a
complete date (including day,
month, and year)

Yes Same as the named Short Date format

dddddd Displays a date as a complete
date (including day, month,
and year)

Yes Same as the named Long Date format

w Displays the day of the week
as a number (1 for Sunday
through 7 for Saturday)

No Output depends on the setting of the
FirstDayOfWeek parameter.

ww Displays the week of the year
as a number (1–54)

No Output depends on the
FirstWeekOfYear parameter.

m Displays the month as a
number without a leading 0
(1–12)

No If “m” follows “h” or “hh,” displays
minutes instead

mm Displays the month as a
number with a leading 0
(01–12)

No If “mm” follows “h” or “hh,” displays
minutes instead

mmm Displays the month as an
abbreviation (Jan–Dec)

Yes

mmmm Displays the month as a full
month name (January–
December)

Yes

T A B L E 3 . 8 : User-Defined Time/Date Formats for the Format Function (continued)

Character Description Use
Regional
Settings?

Comments

 Displaying Values the Way You Want 165

q Displays the quarter of the
year as a number (1–4)

No

y Displays the day of the year
as a number (1–366)

No

yy Displays the year as a two-
digit number (00–99)

No

yyyy Displays the full year (100–
9999)

No

h Displays the hour as a
number without leading
zeros (0–23)

No

hh Displays the hour as a
number with leading zeros
(00–23)

No

n Displays the minute as a
number without leading
zeros (0–59)

No

nn Displays the minute as a
number with leading zeros
(00–59)

No

s Displays the second as a
number without leading
zeros (0–59)

No

ss Displays the second as a
number with leading zeros
(00–59)

No

ttttt Displays a time as a complete
time (including hour, minute,
and second)

Yes Same as the named Long Time format

AM/PM Uses the 12-hour clock No Use “AM” for times before noon and
“PM” for times between noon and
11:59 P.M.

am/pm Uses the 12-hour clock No Use “am” for times before noon and
“pm” for times between noon and
11:59 P.M.

T A B L E 3 . 8 : User-Defined Time/Date Formats for the Format Function (continued)

Character Description Use
Regional
Settings?

Comments

Chapter 3 • Working with Dates and Times166

If you want to include literal text in your format string, you have two choices.
You can do either of the following:

• Precede each character with a backslash (\).

• Enclose the block of text within quotes inside the string.

The first method becomes quite tedious and difficult to read if you have more
than a few characters. The second method requires you to embed a quote inside a
quoted string, and that takes some doing on its own.

For example, if you want to display a date/time value like this:

May 22, 2002 at 12:01 AM

you have two choices. With the first method, you could use a format string
including \ characters:

Format(#5/22/2002 12:01 AM#, "mmm dd, yyyy \a\t h:mm AM/PM")

Using the second method, you must embed quotes enclosing the word “at” into
the format string. To do that, you must use two quotes where you want one in the
output. VBA sees the two embedded quotes as a single literal quote character and
does the right thing:

Format(#5/22/2002 12:01 AM#, "mmm dd, yyyy ""at"" h:mm AM/PM")

Either way, the output is identical.

A/P Uses the 12-hour clock No Use “a” for times before noon and
“p” for times between noon and
11:59 P.M.

a/p Uses the 12-hour clock No Use “A” for times before noon and
“P” for times between noon and
11:59 P.M.

AMPM Uses the 12-hour clock and
displays the AM/PM string
literal as defined by your
system

Yes The case of the AM/PM string is
determined by system settings

T A B L E 3 . 8 : User-Defined Time/Date Formats for the Format Function (continued)

Character Description Use
Regional
Settings?

Comments

 Beyond the Basics 167

If you want to make things simpler, you can also use the FormatDateTime
function, discussed in Chapter 1, to format your date and time values. Because
the function outputs strings, its description fell into that chapter. It could just as
easily have ended up here.

Beyond the Basics
Once you get the built-in date-handling functions under your belt, you’ll find
innumerable other tasks you need to solve involving dates and times. The remain-
der of this chapter presents a series of solutions to common problems that require
stand-alone procedures, grouped by their functionality. The three sections deal
with three types of date/time issues:

• Finding a specific date

• Manipulating dates and times

• Working with elapsed time

The Turn of the Century Approacheth and Passeth
How does VBA handle the year 2000 issue? Actually, quite gracefully. Normally, users are
accustomed to entering two-digit year values, and this, of course, is what has caused the
great, late 20th-century computer controversy. VBA interprets two-digit years in a some-
what rational manner: If you enter a date value with a two-digit year between 1/1/00 and
12/31/29, VBA interprets that as a date that begins with “20.” If you enter a date with a
two-digit year between 1/1/30 and 12/31/99, VBA interprets that as being a date that begins
with “19.” If you’re using Windows 98 or Windows 2000, you can modify this “window”
in the Regional settings Control Panel applet. The following list summarizes how VBA
treats date values entered with a two-digit year value, by default:

• Date range 1/1/00 through 12/31/29: treated as 1/1/2000 through 12/31/2029

• Date range 1/1/30 through 12/31/99: treated as 1/1/1930 through 12/31/1999

Chapter 3 • Working with Dates and Times168

Finding a Specific Date
In this section, you’ll find solutions to many simple problems that involve locating
a date. Specifically, the routines include

• Returning the first or last day of a specified month

• Returning the first or last day of the week, given a date

• Returning the first or last day of the year, given a date

• Returning the first or last day of the quarter, given a date

• Returning the next or previous specific weekday, given a date

• Finding the next anniversary date

• Returning the date of the nth particular weekday (Monday, Tuesday, and so
on) of a month

• Returning the next or previous working day, given a date

• Returning the first or last working day of a specified month

Using Optional Parameters
Many of the procedures in the following sections accept one or more optional parameters.
In each case, if you don’t specify the parameter in your function call, the receiving function
assigns that parameter a value. In most cases, this allows you to omit the date parameter,
and the function assumes the current date when it runs.

When you use optional parameters, you have two basic choices:

• Use a Variant parameter, and check for the parameter using the IsMissing function.

• Use a strongly typed parameter, and assign a default value in the formal declaration.

We’ve opted for the second alternative because this allows for type checking when calling
the procedure. On the other hand, this technique also removes the possibility of using the
IsMissing function to check for the omission of the parameter. Because the value you
assign to the parameter in the formal declaration can only be a constant, not a function
value, our solution when working with dates was to use the value 0 to indicate that you’d
omitted the date parameter. For example, you’ll see declarations like this:

Function dhFirstDayInMonth(Optional dtmDate As Date = 0) As Date

 Finding a Specific Date 169

Unless specified otherwise, all the procedures that follow are saved in the sample
module named DateTime.

Finding the Beginning or End of a Month
Finding the first day in a specific month is easy: Use the DateSerial function,
breaking out the year and month portions of the specified date, asking for the day
value 1. The dhFirstDayInMonth function, in Listing 3.1, performs this function
call after first checking the incoming parameter and converting it to the current
date if necessary. Calling the function as

dhFirstDayInMonth(#5/7/70#)

returns 5/1/70, of course.

Determining the last day in the month requires using an obscure, but docu-
mented, detail of the DateSerial function. It turns out that any (or all) of the three
parameters to the DateSerial function can be numeric expressions. Because VBA
will never return an invalid date, you can request the day before the first day of a
month by incrementing the month value by 1 and decrementing the day by 1. The
dhLastDayInMonth function in Listing 3.1 does just that. Using this expression:

DateSerial(Year(dtmDate), Month(dtmDate) + 1, 0)

it finds the 0th day of the following month, which is, of course, the final day of the
requested month.

This requires the procedure to check for the 0 value and replace it with the current date:

' Did the caller pass in a date? If not, use

' the current date.

If dtmDate = 0 Then

 dtmDate = Date

End If

We assumed you would be very unlikely to ever actually use the date 0 (12/30/1899) as a
parameter to one of these procedures. If you do attempt to send 12/30/1899 to any of the
procedures that accept an optional date parameter, the procedure will treat your input as
though you’d entered the current date. If you must allow that date as input, you’ll need to
either remove the optional parameter or find some other workaround.

Chapter 3 • Working with Dates and Times170

➲ Listing 3.1: Find the First or Last Day in a Month

Public Function dhFirstDayInMonth(Optional dtmDate As Date = 0) As Date
 ' Return the first day in the specified month.

 ' Did the caller pass in a date? If not, use
 ' the current date.
 If dtmDate = 0 Then
 dtmDate = Date
 End If

 dhFirstDayInMonth = DateSerial(_
 Year(dtmDate), Month(dtmDate), 1)
End Function

Public Function dhLastDayInMonth(Optional dtmDate As Date = 0) As Date
 ' Return the last day in the specified month.

 ' Did the caller pass in a date? If not, use
 ' the current date.
 If dtmDate = 0 Then
 dtmDate = Date
 End If

 dhLastDayInMonth = DateSerial(_
 Year(dtmDate), Month(dtmDate) + 1, 0)
End Function

Finding the Beginning or End of a Week
Finding the first or last day in a week counts on the fact that you can subtract inte-
gers from a date value and end up with another date value. If the specified date
was a Sunday, to find the first day of the week (assuming Sunday was the first day
of the week), you’d subtract 0 from the date. If the date was a Monday, you’d sub-
tract 1; if Tuesday, you’d subtract 2, and so on. Because the WeekDay function
returns a number between 1 and 7, all you need to do is subtract the WeekDay
return value from the date and then add 1. The dhFirstDayInWeek function, in
Listing 3.2, does this work for you.

 Finding a Specific Date 171

To be completely correct, the dhFirstDayInWeek and dhLastDayInWeek functions
specify the first day of the week for the WeekDay function, using the vbUse-
SystemDayOfWeek constant. This way, the first and last days in the week
correspond to the local settings.

The dhLastDayInWeek function in Listing 3.2 uses the same concepts. This time,
however, you want to add 6 to the first day of the week. That is (assuming you’re
in the United States), if the date in question is a Wednesday, you subtract the
Weekday return value (4), which takes you to Saturday. Adding 1 takes you to the
first day of the week, and adding 6 more takes you to the last day of the week.

➲ Listing 3.2: Find the First or Last Day in a Week

Public Function dhFirstDayInWeek(Optional dtmDate As Date = 0) As Date
 ' Returns the first day in the week specified by the
 ' date in dtmDate. Uses localized settings for the first
 ' day of the week.

 ' Did the caller pass in a date? If not, use
 ' the current date.
 If dtmDate = 0 Then
 dtmDate = Date
 End If

 dhFirstDayInWeek = dtmDate - _
 Weekday(dtmDate, vbUseSystemDayOfWeek) + 1
End Function

Public Function dhLastDayInWeek(Optional dtmDate As Date = 0) As Date
 ' Returns the last day in the week specified by the
 ' date in dtmDate.
 ' Uses localized settings for the first day of the week.

 ' Did the caller pass in a date? If not, use
 ' the current date.
 If dtmDate = 0 Then
 dtmDate = Date
 End If

Chapter 3 • Working with Dates and Times172

 dhLastDayInWeek = dtmDate - _
 Weekday(dtmDate, vbUseSystemDayOfWeek) + 7
End Function

To call dhFirstDayInWeek and dhLastDayInWeek, pass a date value to specify a
date, or pass no parameter to use the current date. For example, the following
code calculates the first and last day in two different weeks:

Debug.Print "First day in the current week: " _
 & dhFirstDayInWeek()
Debug.Print "Last day in the current week: " & dhLastDayInWeek()
Debug.Print _
 "First day in the week of 1/1/98: " & dhFirstDayInWeek(#1/1/98#)
Debug.Print _
 "Last day in the week of 1/1/98: " & dhLastDayInWeek(#1/1/98#)

Finding the Beginning or End of a Year
Finding the first or last day in a year is simple, compared to the other functions in
this section. Once you understand the DateSerial function, it’s just a matter of
building up a date value that’s January 1 or December 31 in the specified year.
Because those dates are fixed as the first and last days in the year, no more calcula-
tion is necessary. The dhFirstDayInYear and dhLastDayInYear functions, in List-
ing 3.3, show all that’s necessary.

➲ Listing 3.3: Find the First or Last Day in a Year

Public Function dhFirstDayInYear(Optional dtmDate As Date = 0) As Date
 ' Return the first day in the specified year.

 ' Did the caller pass in a date? If not, use
 ' the current date.
 If dtmDate = 0 Then
 dtmDate = Date
 End If

 dhFirstDayInYear = DateSerial(Year(dtmDate), 1, 1)
End Function

Public Function dhLastDayInYear(Optional dtmDate As Date = 0) As Date
 ' Return the last day in the specified year.

 Finding a Specific Date 173

 ' Did the caller pass in a date? If not, use
 ' the current date.
 If dtmDate = 0 Then
 dtmDate = Date
 End If

 dhLastDayInYear = DateSerial(Year(dtmDate), 12, 31)
End Function

To call either of these functions, either pass no value (to work with the current
year) or pass a date value indicating the year. The functions will each return the
requested date. For example, the following code fragment calculates the first and
last days in two ways:

Debug.Print "First day in the current year: " & _
 dhFirstDayInYear()
Debug.Print "Last day in the current year: " & dhLastDayInYear()
Debug.Print _
 "First day in the next year: " & _
 dhFirstDayInYear(DateAdd("yyyy", 1, Date))
Debug.Print _
 "Last day in the previous year: " & _
 dhLastDayInYear(DateAdd("yyyy", -1, Date))

Finding the Beginning or End of a Quarter
Finding the beginning or end of a quarter takes a bit more effort than do the other
functions in this section because there’s little support for working with quarters
(January though March, April through June, July through September, October
through December) in the VBA function library. Listing 3.4 shows the functions
that solve this problem, dhFirstDayInQuarter and dhLastDayInQuarter.

➲ Listing 3.4: Find the First and Last Day in a Quarter

Public Function dhFirstDayInQuarter(Optional dtmDate As Date = 0) _
 As Date
 ' Returns the first day in the quarter specified by the
 ' date in dtmDate.

Chapter 3 • Working with Dates and Times174

 Const dhcMonthsInQuarter As Integer = 3
 Dim intMonth As Integer

 ' Did the caller pass in a date? If not, use
 ' the current date.
 If dtmDate = 0 Then
 dtmDate = Date
 End If

 ' Calculate the first month in the quarter.
 intMonth = Int((Month(dtmDate) - 1) / dhcMonthsInQuarter) * _
 dhcMonthsInQuarter + 1

 dhFirstDayInQuarter = DateSerial(Year(dtmDate), intMonth, 1)
End Function

Public Function dhLastDayInQuarter(Optional dtmDate As Date = 0) _
 As Date
 ' Returns the last day in the quarter specified by the
 ' date in dtmDate.

 Const dhcMonthsInQuarter As Integer = 3
 Dim intMonth As Integer

 ' Did the caller pass in a date? If not, use
 ' the current date.
 If dtmDate = 0 Then
 dtmDate = Date
 End If

 ' Calculate the last month in the quarter.
 intMonth = Int((Month(dtmDate) - 1) / dhcMonthsInQuarter) * _
 dhcMonthsInQuarter + (dhcMonthsInQuarter + 1)

 dhLastDayInQuarter = DateSerial(Year(dtmDate), intMonth, 0)
End Function

Certainly, once you know how to find the first day in the quarter, you know how
to find the last; that’s just a matter of adding three months and subtracting one day.
But how do you find the first day in the quarter containing a specified date? You
know the year portion of the date (it’s the same as the date you’ve specified) and the

 Finding a Specific Date 175

day portion (which has to be 1), but what month do you use? You could, of course,
use the brute-force technique, with a Select Case statement like this:

Select Case Month(dtmDate)
 Case 1, 2, 3
 intMonth = 1
 Case 4, 5, 6
 intMonth = 4
 ' etc.
End Select

But you just know there has to be a better way! This is one situation in which it’s
worth pulling out some paper and thinking through what’s really going on. You
may find it useful to create a table listing the input and output of a proposed cal-
culation, in this case, to convert from any month to the first month in that quarter:

Remember, you’re looking for a mathematical relationship between the two col-
umns. (Reminds you of high school algebra, right?) It looks as though each output
“step” is a multiple of 3, plus 1. After much scribbling, you might come up with
the following algebraic relation between the two columns, which turns out to be the
exact solution dhFirstDayInQuarter uses:

First Month of Quarter = Int((Month - 1) / 3) * 3 + 1

Month First Month of Quarter

1 1

2 1

3 1

4 4

5 4

6 4

7 7

8 7

9 7

10 10

11 10

12 10

Chapter 3 • Working with Dates and Times176

This expression finds, for each month value, the largest multiple of 3 less than or
equal to the number, multiplies the result by 3, and then adds 1. This calculation,
based on the value in the first column, returns the value in the second column in
every case. Therefore, rather than asking VBA to perform a lookup and a jump for
each call to the function, it performs a moderately simple calculation.

Once dhFirstDayInQuarter has found the first month in the quarter, finding the
first day is simple: The function calls DateSerial, building a date from the supplied
year, the calculated month, and the day value 1. To find the last day in the quarter,
dhLastDayInQuarter repeats the calculation from dhFirstDayInQuarter, adds 1 to
the month it calculated to move to the next month, and then uses 0 for the day
value. As discussed in the section “Finding the Beginning or End of a Month” ear-
lier in this chapter, supplying 0 for the Day parameter to DateSerial returns the
final day of the previous month, which is exactly what you want in this context.

Finding the Next or Previous Weekday
In many financial calculations, you’ll need to know the next specific weekday
after a given date. For example, you might need to know the date of the Friday
immediately following April 30, 2002, or the Monday immediately preceding the
same date. As when finding the first or last day in a week, calculating these dates
counts on the fact that you can subtract an integer from a date value and end up
with another date value.

In this case, it seems simplest to just calculate the beginning of the week contain-
ing the specified date and then add on enough days to get to the requested date.
That code, from the procedures in Listing 3.5, looks like this:

dtmTemp = dtmDate - Weekday(dtmDate) + lngDOW

Say you’re looking for the Thursday before 10/7/97 (a Tuesday). In this case,
Weekday(dtmDate) will be 3 (Tuesday’s day of the week) and lngDOW will con-
tain 5 (Thursday’s day of the week). The expression

dtmDate - Weekday(dtmDate) + intDOW
' the same as:
' #10/7/97# - 3 + 5

 Finding a Specific Date 177

will return the date 10/9/1997. This, clearly, is not the Thursday before 10/7/97,
but the Thursday after. The final step of the calculation, then, is to subtract one
week, if necessary. The entire set of statements looks like this:

dtmTemp = dtmDate - Weekday(dtmDate) + lngDOW
If dtmTemp >= dtmDate Then
 dtmTemp = dtmTemp - 7
End If

When would you not need to subtract 7 to move to the previous week? Reverse
the dates in the example. If you’re looking for the Tuesday before 10/9/97, the
expression would be

dtmDate - Weekday(dtmDate) + lngDOW
' the same as:
' #10/9/97# - 5 + 3

which returns #10/7/1997#, the correct answer. There’s no need to subtract 7 to
move to the previous week. The same logic applies to calculating the following
weekday, but reversed. In this case, you may need to add 7 to move to the next
week if the day you were looking for has already occurred in the current week.

➲ Listing 3.5: Find the Previous or Next Specific Weekday

Public Function dhPreviousDOW(lngDOW As VbDayOfWeek, _
 Optional dtmDate As Date = 0) As Date
 ' Find the previous specified day of week before
 ' the specified date.

 Dim dtmTemp As Date

 ' Did the caller pass in a date? If not, use
 ' the current date.
 If dtmDate = 0 Then
 dtmDate = Date
 End If

 dtmTemp = dtmDate - Weekday(dtmDate) + lngDOW
 If dtmTemp >= dtmDate Then
 dtmTemp = dtmTemp - 7
 End If
 dhPreviousDOW = dtmTemp
End Function

Chapter 3 • Working with Dates and Times178

Public Function dhNextDOW(lngDOW As VbDayOfWeek, _
 Optional dtmDate As Date = 0) As Date
 ' Find the next specified day of week after the specified date.

 Dim dtmTemp As Date

 ' Did the caller pass in a date? If not, use
 ' the current date.
 If dtmDate = 0 Then
 dtmDate = Date
 End If

 dtmTemp = dtmDate - Weekday(dtmDate) + lngDOW
 If dtmTemp <= dtmDate Then
 dtmTemp = dtmTemp + 7
 End If
 dhNextDOW = dtmTemp
End Function

The following examples demonstrate calling the two functions:

Debug.Print "The Monday before 12/25/2000 is " & _
 dhPreviousDOW(vbMonday, #12/25/2000#)
Debug.Print "The Friday after 12/25/2000 is " & _
 dhNextDOW(vbFriday, #12/25/2000#)
Debug.Print "It's " & Date & _
 ". The next Monday is " & dhNextDOW(vbMonday)

Finding the Next Anniversary
Often, when working with dates, you have stored away a birthday or a wedding
date and need to find out the next occurrence of the anniversary of that date. The
function in this section, dhNextAnniversary (Listing 3.6), will do that chore for
you. Given a date, it finds the next anniversary of that date, taking into account
the current date.

 Finding the Next Anniversary 179

➲ Listing 3.6: Find the Next Anniversary of a Date

Public Function dhNextAnniversary(dtmDate As Date) As Date
 ' Given a date, find the next anniversary of that date.

 Dim dtmThisYear As Date

 ' What's the corresponding date in the current year?
 dtmThisYear = DateSerial(Year(Now), Month(dtmDate), Day(dtmDate))

 ' If the anniversary has already occurred, then add 1 to the year.
 If dtmThisYear < Date Then
 dtmThisYear = DateAdd("yyyy", 1, dtmThisYear)
 End If
 dhNextAnniversary = dtmThisYear
End Function

This one’s actually quite easy. The code follows these steps:

1. Finds the date corresponding to the anniversary in the current year

2. If the date has already passed in the current year, adds one year to the date

To find the anniversary date in the current year, the code uses this expression:

dtmThisYear = DateSerial(Year(Now), Month(dtmDate), Day(dtmDate))

To correct the result if the date has already passed in the current year, the function
uses this fragment:

If dtmThisYear < Date Then
 dtmThisYear = DateAdd("yyyy", 1, dtmThisYear)
End If

Either way, dtmThisYear contains the next occurrence of the anniversary.

To try out the procedure, you might use code like the following fragment. Given
that the current date is 12/15/2001,

dhNextAnniversary(#5/16/56#)

returns 5/16/2002 because that date has already passed in 2001.

Chapter 3 • Working with Dates and Times180

Finding the nth Particular Weekday in a
Month

Perhaps your application needs to find the third Tuesday in November, 1997. The
function presented here, dhNthWeekday, in Listing 3.7, solves this puzzle for you.
The function accepts three parameters:

• A date specifying the month and year to start in

• An integer greater than 1 that specifies the offset into the month

• A long integer specifying the day of week to retrieve (Use the vbSunday…
vbSaturday constants, defined as part of the VbDayOfWeek enumeration.)

The function returns a date representing the nth specific weekday in the month. If
you pass an invalid day of week value or an invalid offset, the function returns the
date you passed it.

➲ Listing 3.7: Find the nth Specific Weekday in a Month

Public Function dhNthWeekday(dtmDate As Date, intN As Integer, _
 lngDOW As VbDayOfWeek) As Date

 ' Find the date of the specified day within the month. For
 ' example, retrieve the 3rd Tuesday's date.

 Dim dtmTemp As Date

 If (lngDOW < vbSunday Or lngDOW > vbSaturday) _
 Or (intN < 1) Then
 ' Invalid parameter values. Just
 ' return the passed-in date.
 dhNthWeekday = dtmDate
 Exit Function
 End If

 ' Get the first of the month.
 dtmTemp = DateSerial(Year(dtmDate), Month(dtmDate), 1)

 ' Get to the first lngDOW including or after the first
 ' day of the month.
 dtmTemp = dtmTemp + ((lngDOW - Weekday(dtmTemp) + 7) Mod 7)

 Finding the nth Particular Weekday in a Month 181

 ' Now you've found the first lngDOW in the month.
 ' Just add 7 for each intN after that.
 dhNthWeekday = dtmTemp + ((intN - 1) * 7)
End Function

The function is moderately simple. To do its work, it must:

1. Verify the parameters

2. Find the first day of the specified month

3. Move to the first specified weekday in the month

4. Add enough weeks to find the nth occurrence of the specified weekday

If either the day of the week value or the number of weeks to skip is invalid, the
function returns the passed-in starting date. The code that handles the verification
looks like this:

If (lngDOW < vbSunday Or lngDOW > vbSaturday) _
 Or (intN < 1) Then
 ' Invalid parameter values. Just
 ' return the passed-in date.
 dhNthWeekday = dtmDate
 Exit Function
End If

Finding the first day of the specified month is, as you know by now, simple. It
takes one line of code:

dtmTemp = DateSerial(Year(dtmDate), Month(dtmDate), 1)

Moving to the first specified weekday requires a bit more work. This procedure
uses logic similar to that shown in the section “Finding the Next or Previous
Weekday” earlier in this chapter. In this case, the procedure uses the Mod opera-
tor to verify that the code never adds more than 6 to the current day. Mod returns
the remainder when you divide a value by Mod’s second operand, and in this
case, using Mod 7 returns a value between 0 and 6, which is exactly what you
need:

dtmTemp = dtmTemp + ((lngDOW - Weekday(dtmTemp) + 7) Mod 7)

Finally, to move to the nth occurrence of the weekday, you just need to add the
correct multiple of 7 to the date:

dhNthWeekday = dtmTemp + ((intN - 1) * 7)

Chapter 3 • Working with Dates and Times182

For example, to find the date of the third Tuesday in March, 1998, you could call
the function like this:

dtm = dhNthWeekday(#3/98#, 3, vbTuesday)

The return value will be the date #3/17/1998#, the third Tuesday in March, 1998.

Working with Workdays
Many calculations involve the five typical workdays (Monday through Friday),
but VBA doesn’t provide any support for this subset of dates. The functions in this
section provide information about the next and previous workday and finding the
first and last workday in a month. Skipping weekend days is simple and not wor-
thy of much explanation. The hard part is dealing with the other factor affecting
these calculations: holidays. VBA is blissfully unaware of the real world and
knows nothing of national and religious holidays. Supplying that information is
up to you, and the functions presented here count on your having created an ADO
recordset object filled with the rows of information about holidays. You needn’t
supply a recordset if you don’t need this functionality; the recordset parameter to
the functions shown here is optional. If you do supply a reference to an open
recordset, you must also pass in the name of the field containing holiday date
information so the code knows the field in which to search.

We’ve stored all the procedures in this section in the module named
DateTimeADO. Because these procedures require a reference to ADO 2.1 (or
higher) in your projects, it’s important that we kept them separate from the
procedures that don’t require a special reference. If you want to use these procedures
in your own applications, import DateTimeADO into your project, and use the
Tools � References menu to locate and select Microsoft ActiveX Data Objects 2.1
(or higher, if you’ve installed a product that supplies a later version—2.1 was
current at the time of this book’s writing).

Because all the functions in this section count on the same support routines, it
makes sense to explain these underlying procedures first. The first routine, IsWeek-
end, shown in Listing 3.8, accepts a date parameter and returns True if the date
falls on a weekend and False otherwise.

 Working with Workdays 183

➲ Listing 3.8: Indicate Whether a Date Falls on a Weekend

Private Function IsWeekend(dtmTemp As Date) As Boolean
 ' If your weekends aren't Saturday (day 7)
 ' and Sunday (day 1), change this routine
 ' to return True for whatever days
 ' you DO treat as weekend days.
 Select Case WeekDay(dtmTemp)
 Case vbSaturday, vbSunday
 IsWeekend = True
 Case Else
 IsWeekend = False
 End Select
End Function

The second support function, SkipHolidays (shown in Listing 3.9), takes a refer-
ence to a recordset, a field to search in, a date value, and the number of days to
skip (normally +1 or –1). It skips over weekend days and holidays until it finds a
date that is neither a weekend nor a holiday. It skips past increments of the
parameter passed in, so the same code can be used to skip forward or backward.

➲ Listing 3.9: Move a Date Value over Holidays and Weekends

Private Function SkipHolidays(_
 rst As ADODB.Recordset, strField As String, _
 dtmTemp As Date, intIncrement As Integer) As Date
 ' Skip weekend days, and holidays in the recordset
 ' referred to by rst.
 ' Return dtmTemp + as many days as it takes to get to
 ' a day that's not
 ' a holiday or weekend.

 Dim strCriteria As String
 Dim strFieldName As String
 On Error GoTo HandleErr

 ' Move up to the first Monday/last Friday, if the first/last
 ' of the month was a weekend date. Then skip holidays.
 ' Repeat this entire process until you get to a weekday.
 ' Unless rst contains a row for every day in the year (!)
 ' this should finally converge on a weekday.

Chapter 3 • Working with Dates and Times184

 Do
 Do While IsWeekend(dtmTemp)
 dtmTemp = dtmTemp + intIncrement
 Loop
 If Not rst Is Nothing Then
 If Len(strField) > 0 Then
 strFieldName = strField
 If Left$(strField, 1) <> "[" Then
 strFieldName = "[" & strFieldName & "]"
 End If
 rst.MoveFirst
 Do
 strCriteria = strFieldName & " = " & _
 "#" & Format(dtmTemp, "mm/dd/yyyy") & "#"
 rst.Find strCriteria, , adSearchForward
 If Not rst.EOF Then
 dtmTemp = dtmTemp + intIncrement
 End If
 Loop Until rst.EOF
 End If
 End If
 Loop Until Not IsWeekend(dtmTemp)

ExitHere:
 SkipHolidays = dtmTemp
 Exit Function

HandleErr:
 ' No matter what the error, just
 ' return without complaining.
 ' The worst that could happen is that we
 ' include a holiday as a real day, even if
 ' it's in the table.
 Resume ExitHere
End Function

The code starts out by skipping over any weekend days. If you send it a date
that falls on a weekend, this first bit of code will loop until it lands on a non-week-
end date:

Do While IsWeekend(dtmTemp)
 dtmTemp = dtmTemp + intIncrement
Loop

 Working with Workdays 185

Its next task is to ensure that the recordset variable is instantiated, that it points
to something, and that the field name has been supplied. Once that happens, if the
field name doesn’t include a leading [character, the code adds leading and trail-
ing brackets. This guards against problems that can occur if the field name
includes spaces.

If Not rst Is Nothing Then
 If Len(strField) > 0 Then
 strFieldName = strField
 If Left$(strField, 1) <> "[" Then
 strFieldName = "[" & strFieldName & "]"
 End If

Finally, the code enters the loop shown below, checking for a match in the
recordset against the current value of dtmTemp. If the code finds a match in the
table, it moves to the next day and tries again. It continues in this way until it no
longer finds a match in the table. Most of the time, however, this code will execute
only once. (There are few, if any, occurrences of consecutive holidays.) Normally,
there won’t be any match, and the code will drop right out. If the code finds a
match in the table, there’s rarely more than one. Unless you add a row to the table
for each day of the year, this code should be quite fast.

Do
 strCriteria = strFieldName & " = " & _
 "#" & Format(dtmTemp, "mm/dd/yyyy") & "#"
 rst.Find strCriteria, , adSearchForward
 If Not rst.EOF Then
 dtmTemp = dtmTemp + intIncrement
 End If
Loop Until rst.EOF

Because this step could drop you off on a weekend date, the entire process
repeats until you run out of holidays and don’t end up on a weekend date. Of
course, the outer loop most likely is never going to be used, but it takes care of an
important problem.

There are many ways to create an ADO recordset, and the examples later in the
chapter show two different ways to do it. You might want to peruse the example
procedures in the TestDateTime module to see how you can create the necessary
recordsets. For more information on using ADO, we recommend both our “sister”
book, Access 2000 Developer’s Handbook (Sybex, 1999), and Visual Basic
Developer’s Guide to ADO by Mike Gunderloy (Sybex, 1999).

Chapter 3 • Working with Dates and Times186

Finding the Next, Previous, First, or Last Workday in
the Month

Once you’ve got the routines to skip holidays, the rest is simple. If you need to
find the previous or next workday, it’s just a matter of skipping weekends and
holidays until you find another workday. For example, the procedures in Listing 3.10
find the next or previous workday simply by calling the SkipHolidays function. In
each case, the function accepts three optional parameters:

• A date, indicating the month in which to search. If this parameter is omitted,
the code uses the current date.

• An open recordset, containing holiday information. If this parameter is
omitted, the code skips just weekends, not holidays. If it is supplied, you
must supply the field name in the next parameter.

• A string containing the name of a field to be searched in the open recordset.
This parameter is used only if the recordset parameter isn’t omitted, and it is
required if you supply the recordset.

As you can see from the code in Listing 3.10, there’s not much to these routines,
given the workhorse procedure, SkipHolidays.

➲ Listing 3.10: Find the Next or Previous Workday

Public Function dhNextWorkday(Optional dtmDate As Date = 0, _
 Optional rst As ADODB.Recordset = Nothing, _
 Optional strField As String = "") As Date

 ' Return the next working day after the specified date.
 ' If you want to look up holidays in a table, pass in
 ' an ADO recordset object containing the rows.

 ' Did the caller pass in a date? If not, use
 ' the current date.
 If dtmDate = 0 Then
 dtmDate = Date
 End If

 dhNextWorkday = SkipHolidays(rst, strField, dtmDate + 1, 1)
End Function

 Working with Workdays 187

Public Function dhPreviousWorkday(Optional dtmDate As Date = 0, _
 Optional rst As ADODB.Recordset = Nothing, _
 Optional strField As String = "") As Date

 ' Return the previous working day before the specified date.
 ' If you want to look up holidays in a table, pass in
 ' an ADO recordset object containing the rows.

 ' Did the caller pass in a date? If not, use
 ' the current date.
 If dtmDate = 0 Then
 dtmDate = Date
 End If

 dhPreviousWorkday = SkipHolidays(rst, strField, dtmDate - 1, -1)
End Function

If you want to find the first or last workday in a given month, all you need to do
is maneuver to the first or last day in the month and then skip holidays forward or
backward. For example, the dhFirstWorkdayInMonth function, shown in Listing 3.11,
handles this for you. The function accepts the same three optional parameters as
the previous examples.

The dhFirstWorkdayInMonth function first finds the first day in the month,
using the same code as in other procedures in this chapter. Once it gets to the first
day, it calls SkipHolidays, passing the recordset, the field name, the starting date,
and the increment (1, in this case). The date returned from SkipHolidays will be
the first working day in the month.

➲ Listing 3.11: Find the First Workday in a Given Month

Public Function dhFirstWorkdayInMonth(Optional dtmDate As Date = 0, _
 Optional rst As ADODB.Recordset = Nothing, _
 Optional strField As String = "") As Date

 ' Return the first working day in the month specified.
 ' If you want to look up holidays in a table, pass in
 ' an ADO recordset object containing the rows.

 Dim dtmTemp As Date

Chapter 3 • Working with Dates and Times188

 ' Did the caller pass in a date? If not, use
 ' the current date.
 If dtmDate = 0 Then
 dtmDate = Date
 End If

 dtmTemp = DateSerial(Year(dtmDate), Month(dtmDate), 1)
 dhFirstWorkdayInMonth = SkipHolidays(rst, strField, dtmTemp, 1)
End Function

Finding the last workday in the month is very similar. In dhLastWorkdayInMonth,
shown in Listing 3.12, the code first finds the final day of the month, using code dis-
cussed earlier in this chapter, and then calls the SkipHolidays function to move back-
ward through the month until it finds a day that is neither a weekend nor a holiday.

➲ Listing 3.12: Find the Last Workday in a Given Month

Public Function dhLastWorkdayInMonth(Optional dtmDate As Date = 0, _
 Optional rst As ADODB.Recordset = Nothing, _
 Optional strField As String = "") As Date

 ' Return the last working day in the month specified.
 ' If you want to look up holidays in a table, pass in
 ' an ADO recordset object containing the rows.

 Dim dtmTemp As Date

 ' Did the caller pass in a date? If not, use
 ' the current date.
 If dtmDate = 0 Then
 dtmDate = Date
 End If

 dtmTemp = DateSerial(Year(dtmDate), Month(dtmDate) + 1, 0)
 dhLastWorkdayInMonth = SkipHolidays(rst, strField, dtmTemp, -1)
End Function

To work with these procedures, you might write a test routine like the one shown in
Listing 3.13 (from the module TestDateTime). This procedure assumes the following:

• You have OLEDB and ADO installed on your machine.

• You have a reference set to the ADO 2.1 or higher type library in your project.

 Working with Workdays 189

• You have an XML file named HOLIDAYS.XML available (and you’ve modi-
fied the code to point to the actual location of HOLIDAYS.XML). You can
use the CreateHolidaysXML procedure to create this XML file, based on tbl-
Holidays in the supplied Jet 4 MDB file, Holidays.MDB. (In order for this to
work, you must have the Jet 4 OLEDB provider installed on your machine. If
you’ve installed ADO 2.1 or higher, you have this. If not, you’ll need to
download the most current ADO providers from Microsoft’s Web site at
http://www.microsoft.com/data.)

• tblHolidays, in Holidays.MDB, includes a date/time field named Date, con-
taining one row for each holiday you want tracked.

Make sure to run the CreateHolidaysXML procedure after you modify the data in
tblHolidays, or this test procedure won’t “see” the changes you’ve made.

You needn’t use an XML file for transporting your recordset around. You could
place your table containing holiday information into any database that OLEDB can
open and read from, including MDB files and SQL Server databases. But it’s a lot
simpler to include a simple text file (that is, the XML file) instead of carting around
a big MDB file or installing data into a client’s SQL Server installation.

➲ Listing 3.13: Test Routine for the SkipHolidays Function
Sub TestSkipHolidays()
 Dim rst As ADODB.Recordset

 Set rst = New ADODB.Recordset
 ' You'll need to modify the path in the next line, to point
 ' to your sample XML file. Use the CreateHolidaysXML
 ' procedure to create the necessary XML file.
 rst.Open ActiveWorkbook.Path & "\Holidays.xml", , _
 adOpenKeyset, adLockReadOnly, Options:=adCmdFile

 Debug.Print dhFirstWorkdayInMonth(#8/1/1999#, rst, "Date")
 Debug.Print dhLastWorkdayInMonth(#12/31/1999#, rst, "Date")
 Debug.Print dhNextWorkday(#12/30/1999#, rst, "Date")
 Debug.Print dhNextWorkday(#5/27/1999#, rst, "Date")
 Debug.Print dhPreviousWorkday(#1/1/2000#, rst, "Date")
 Debug.Print dhPreviousWorkday(#5/23/1999#, rst, "Date")
End Sub

Chapter 3 • Working with Dates and Times190

If you don’t have ADO installed, or you just don’t care about holidays, you
could also call these routines like this:

Debug.Print dhFirstWorkdayInMonth(#1/1/97#)
' or
Debug.Print dhLastWorkdayInMonth(#12/31/97#)

In this case, the procedure calls would just skip weekend days, if necessary, to
return the first and last workday, respectively.

The sample CD with this book includes HOLIDAYS.MDB (which contains tblHolidays)
that you can use as a start for preparing your list of holidays. If you have any
product that can work with Access databases, you’re ready to start filling in your own
list of holidays for use with these routines. If not, we’ve included HOLIDAYS.TXT, a
text file you can import into your own database program for use with these samples. If
you want to use Holidays.MDB and export a recordset to XML, see the
CreateHolidaysXML procedure in the TestDateTime module. This procedure opens
the Holidays.MDB database, creates a recordset based on tblHolidays, and saves the
recordset as an XML file. From then on, all you need is the XML file (a small text file)
in order to reopen the recordset on a client’s machine.

Manipulating Dates and Times
This section provides solutions to five common date manipulation issues:

• Finding the number of days in a specified month

• Counting the number of iterations of a specific weekday in a month

• Determining whether a specified year is a leap year

• Rounding time to a specified increment

• Converting numbers or strings to dates, given an input format specification

In each case, we’ve provided a VBA function or two, as well as some examples
showing the usage of the function, to help get you started.

How Many Days in That Month?
Although there’s no built-in function to determine the number of days in a speci-
fied month, it’s not a difficult task. There are many ways to accomplish this. You

 Manipulating Dates and Times 191

could create a Select Case statement and, knowing the month and year, look up
the length of the month. This requires, of course, knowing the year, because leap
years affect February’s length.

An alternative is to let VBA do as much of any calculation as possible. Because
you can subtract one date value from another to determine the number of days
between the dates, you can use the DateSerial function to find the first day in the
specified month and the first day in the next month and then subtract the first
value from the second.

The dhDaysInMonth function, in Listing 3.14, performs the necessary calcula-
tions. You send it a date, and it calculates the number of days in the month repre-
sented by that date. In this function, as in many others, if you don’t pass a date at
all, the function assumes you want to use the current date and finds the number of
days in the current month.

➲ Listing 3.14: Calculate the Days in a Given Month

Public Function dhDaysInMonth(Optional dtmDate As Date = 0) As Integer
 ' Return the number of days in the specified month.

 ' Did the caller pass in a date? If not, use
 ' the current date.
 If dtmDate = 0 Then
 dtmDate = Date
 End If

 dhDaysInMonth = _
 DateSerial(Year(dtmDate), Month(dtmDate) + 1, 1) - _
 DateSerial(Year(dtmDate), Month(dtmDate), 1)
End Function

Although this tip applies to many functions in this chapter, it is key to this
particular function. VBA accepts dates in many formats, as you’ve seen. One that
we haven’t mentioned is the #mm/yy# format. That is, you can pass just a month
and year as a date, and VBA will assume you mean the first of that month. With
the dhDaysInMonth function, it’s useful to be able to just send in the month and
year portion if you don’t care to handle the day portion as well. That is, you could
pass either #12/31/2001# or #12/2001# as a parameter to this function, and it
would return the same value either way.

Chapter 3 • Working with Dates and Times192

How Many Mondays in June?
If your application needs to know how many occurrences there are of a particular
weekday in a given month, the dhCountDOWInMonth function is for you. This
function, shown in Listing 3.15, allows you to specify a date and, optionally, a spe-
cific day of the week. It returns the number of times the specified day of the week
occurs in the month containing the date. If you don’t pass a day of the week value,
the function counts the number of times the day indicated by the date parameter
occurs within its own month.

➲ Listing 3.15: Count the Number of Specific Weekdays in a Month

Public Function dhCountDOWInMonth(ByVal dtmDate As Date, _
 Optional lngDOW As VbDayOfWeek = 0) As Integer

 Dim dtmFirst As Date
 Dim intCount As Integer
 Dim intMonth As Integer

 If (lngDOW < vbSunday Or lngDOW > vbSaturday) Then
 ' Caller must not have specified DOW, or it
 ' was an invalid number.
 lngDOW = Weekday(dtmDate)
 End If
 intMonth = Month(dtmDate)

 ' Find the first day of the month
 dtmFirst = DateSerial(Year(dtmDate), intMonth, 1)

 ' Get to the first lngDOW including or after the first
 ' day of the month.
 dtmFirst = dtmFirst + ((lngDOW - Weekday(dtmFirst) + 7) Mod 7)

 ' Now, dtmFirst is sitting on the first day
 ' of the requested number in the month.

 ' There are either 4 or 5 of each weekday in each month.
 ' Assume there are 5. If that gives you a date outside
 ' the month, there are only 4. If there are 5 of a
 ' given day within a month, the 5th one will be
 ' 28 days after the first.

 Manipulating Dates and Times 193

 intCount = 5
 If (Month(dtmFirst + 28) <> Month(dtmFirst)) Then
 intCount = 4
 End If
 dhCountDOWInMonth = intCount
End Function

The dhCountDOWInMonth function takes four simple steps to do its work. It
must do the following:

1. Verify the parameters.

2. Find the first day of the specified month.

3. Move forward within the month to the first day matching the day of week
you’re interested in.

4. Calculate the number of matching days in the month. The month must con-
tain either four or five instances of a given weekday. Assume there are five.
Add 28 days to the starting date, and if the date you get is in a different
month than the starting date, set the result to be four.

To verify the parameters, the code checks the lngDOW parameter, making sure
the value is between vbSunday and vbSaturday. If not, it overrides the value and
uses the day of the week represented by the dtmDate parameter:

If (lngDOW < vbSunday Or lngDOW > vbSaturday) Then
 ' Caller must not have specified DOW, or it
 ' was an invalid number.
 lngDOW = WeekDay(dtmDate)
End If

Finding the first day of the month requires yet another call to the DateSerial
function:

' Find the first day of the month
dtmFirst = DateSerial(Year(dtmDate), intMonth, 1)

Finding the day matching the required day of the week takes just a single line,
using the same logic shown in several earlier procedures:

' Get to the first lngDOW including or after the first
' day of the month.
dtmFirst = dtmFirst + ((lngDOW - Weekday(dtmFirst) + 7) Mod 7)

Chapter 3 • Working with Dates and Times194

Finally, assume the result is five, check the date four weeks later, and see if the
months match. If not, set the result to be four:

intCount = 5
If (Month(dtmFirst + 28) <> Month(dtmFirst)) Then
 intCount = 4
End If
dhCountDOWInMonth = intCount

To test this function, you might write code like this:

If dhCountDOWInMonth(#12/1999#, vbFriday) > 4 Then
 MsgBox "There are more than four Fridays in December 1999!"
End If

Is This a Leap Year?
Although VBA provides very rich date and time support, it includes no built-in
function that will tell you whether a given year is a leap year. Calculating this
answer is actually more complex than checking to see whether the year is evenly
divisible by four. If that’s all it took, you could just check like this:

' (Assuming that intYear holds the year in question)
' MOD returns the remainder when you divide, so
' the following expression will return True if
' intYear is evenly divisible by 4.
If intYear MOD 4 = 0 Then

But that’s not all there is. The year is defined as the length of time it takes to pass
from one vernal equinox to another. If the calendar gains or loses days, the date
for the equinox shifts. Because the physical year isn’t exactly 365.25 days in length
(as the calendar says it should be), the current calendar supplies three too many
leap years every 385 years. To make up for that, years divisible by 100 aren’t leap
years unless they’re a multiple of 400. Got all that? (In case you’re concerned, this
schedule will result in an error of only three days in 10,000 years. Not to worry…)
This means that 1700, 1800, and 1900 weren’t leap years, but 2000 is.

Yes, you could write the code to handle this yourself, and it’s not all that diffi-
cult. But why do it? VBA is already handling the algorithm internally. It knows
that the day after February 28 (in all but a leap year) is March 1 but in a leap year
it’s February 29. To take advantage of this fact, dhIsLeapYear (shown in Listing 3.16)
calculates the answer for you.

 Manipulating Dates and Times 195

➲ Listing 3.16: Is the Specified Year a Leap Year?

Public Function dhIsLeapYear(Optional varDate As Variant) As Boolean
 ' Is the supplied year a leap year?
 ' Check the day number of the day
 ' after Feb 28 to find out.

 ' Missing? Use the current year.
 If IsMissing(varDate) Then
 varDate = Year(Date)

 ' Is it a date? Then use that year.
 ElseIf VarType(varDate) = vbDate Then
 varDate = Year(varDate)

 ' Is it an integer? Use that value, if it's value.
 ' Otherwise, use the current year.
 ElseIf VarType(varDate) = vbInteger Then
 ' Only years 100 through 9999 are allowed.
 If varDate < 100 Or varDate > 9999 Then
 varDate = Year(Date)
 End If

 ' If it's not a date or an integer, just use the
 ' current year.
 Else
 varDate = Year(Date)
 End If
 dhIsLeapYear = (Day(DateSerial(varDate, 2, 28) + 1) = 29)
End Function

Almost all the code in dhIsLeapYear handles the “optional” parameter; because
you can pass either a date or an integer representing a year, you need a larger
amount of error-checking code than normal. If you pass nothing at all, the code
uses the current year:

If IsMissing(varDate) Then
 varDate = Year(Date)

If you pass a date, the function uses the year portion of the date:

' Is it a date? Then use that year.
ElseIf VarType(varDate) = vbDate Then
 varDate = Year(varDate)

Chapter 3 • Working with Dates and Times196

If you pass an integer, the code treats that integer as the year to check. Because
VBA can only process years between 100 and 9999, it verifies that your integer
falls in that range. If you pass a value that’s neither a date nor an integer, it uses
the current year:

ElseIf VarType(varDate) = vbInteger Then
 ' Only years 100 through 9999 are allowed.
 If varDate < 100 Or varDate > 9999 Then
 varDate = Year(Date)
 End If
' If it's not a date or an integer, just use the
' current year.
Else
 varDate = Year(Date)
End If

After performing all that parameter checking, the code that calculates the return
value is simple: It checks the Day function’s return value for the day after the 28th
of February in the specified year. If the value is 29, you’ve got a leap year. If it’s
something else (hopefully 1, otherwise VBA is in bad shape), it’s not a leap year:

dhIsLeapYear = (Day(DateSerial(varDate, 2, 28) + 1) = 29)

You might try calling the procedure in any of these three ways:

If dhIsLeapYear() Then
 ' You know the current year is a leap year.
If dhIsLeapYear(1956) Then
 ' You know 1956 was a leap year.
If dhIsLeapYear(#12/1/92#) Then
 ' You know 1992 was a leap year.

The moral of this story (if there is one) is to let VBA do as much work as possible
for you. Although you could have written the dhIsLeapYear function to take into
account the algorithm used by the Gregorian calendar, what’s the point? The VBA
developers have done that work already. You’ll get better performance (and fewer
bugs) by taking advantage of the work that’s already been done.

Rounding Times to the Nearest Increment
If you’re writing a scheduling application, you may need to round a time to a
specified number of minutes. For example, given a time, you may need to find the
nearest 5-, 10-, 15-, 20-, or 30-minute interval. The solution isn’t trivial, and the
code shown in Listing 3.17 takes care of this problem.

 Manipulating Dates and Times 197

To call dhRoundTime(), pass it a date/time value and an interval to round to.
(You must use any divisor of 60, but you’ll most likely use 5, 10, 15, 20, 30, or 60.)
For example,

? dhRoundTime(#12:32:15#, 5)

returns

12:30:00 PM

and

? dhRoundTime(#12:32:35#, 5)

returns

12:35:00 PM

If you pass dhRoundTime a full date and time value, it will preserve the date
portion and just modify the time part.

➲ Listing 3.17: Round Time Values to the Nearest Interval

Public Function dhRoundTime(_
 dtmTime As Date, intInterval As Integer) As Date

 ' Round the time value in varTime to the nearest minute
 ' interval in intInterval

 Dim decTime As Variant
 Dim intHour As Integer
 Dim intMinute As Integer
 Dim lngdate As Long

 ' Get the date portion of the date/time value
 lngdate = DateValue(dtmTime)

 ' Get the time portion as a number like 11.5 for 11:30.
 decTime = CDec(TimeValue(dtmTime) * 24)

 ' Get the hour and store it away. Int truncates,
 ' CInt rounds, so use Int.
 intHour = Int(decTime)

Chapter 3 • Working with Dates and Times198

 ' Get the number of minutes, and then round to the nearest
 ' occurrence of the interval specified.
 intMinute = CInt((decTime - intHour) * 60)
 intMinute = CInt(intMinute / intInterval) * intInterval

 ' Build back up the original date/time value,
 ' rounded to the nearest interval.
 dhRoundTime = CDate(lngdate + _
 ((intHour + intMinute / 60) / 24))
End Function

This procedure is probably the most complex in this chapter, at least in terms of
the calculations it performs. Its first step is to store away the date portion of the
original date/time value so it can preserve the value, which will never be altered
by the function:

' Get the date portion of the date/time value
lngdate = DateValue(dtmTime)

Next, the procedure retrieves the time portion of the parameter and converts it
into a decimal number, multiplying the value by 24:

' Get the time portion as a number like 11.5 for 11:30.
decTime = CDec(TimeValue(dtmTime) * 24)

Because the time portion of a date/time value is the fraction of a full day repre-
sented by the time, taking a value representing 12:32:15 P.M. (0.522395833333333)
and multiplying it by 24 will result in the value 12.5375. Once you have the time in
a format like that, you can round it as needed.

Note the use of the CDec function in this example. Because you do want to preserve
the accuracy of the calculation, you want to reduce rounding errors. The Decimal
data type (discussed in more detail in Chapter 2) doesn’t cause any rounding errors,
and although it’s not likely that multiplication will cause any rounding problems, it
can’t hurt to preserve accuracy when possible.

Once the function knows the time, it can tuck away the hour portion, because
that value will also never change.

' Get the hour and store it away. Int truncates,
' CInt rounds, so use Int.
intHour = Int(decTime)

 Manipulating Dates and Times 199

The next step is to pull off just the fractional portion (representing the minutes)
and multiply by 60 to find the number of minutes involved. Using the example of
12.5375, multiplying the fractional part by 60 and converting to an integer would
return 32, which is the number of minutes involved:

' Get the number of minutes, and then round to the nearest
' occurrence of the interval specified.
intMinute = CInt((decTime - intHour) * 60)

The crucial step involves rounding the number of minutes to the correct interval:

intMinute = CInt(intMinute / intInterval) * intInterval

Once you’ve rounded the value, the final step is to reconstruct the full date/time
value. The following line of code adds the hour portion to the minute portion
divided by 60, divides the entire time portion by 24 to convert to the appropriate
fraction, adds the result to the preserved date value, and returns the entire value:

dhRoundTime = CDate(lngdate + _
 ((intHour + intMinute / 60) / 24))

You may find it useful to single-step through this procedure, checking the value
of various variables as it runs. Try calling dhRoundTime from the Immediate win-
dow, passing in various times and divisors of 60 as intervals. Once you get the
hang of what dhRoundTime is doing, you’ll find it useful in many applications
that involve time and scheduling.

Converting Strings or Numbers to Real Dates
The world of data isn’t perfect, that’s for sure, and data can come to your applica-
tion in many formats. Dates are particularly troublesome because there are so
many ways to display and format them. If you routinely need to gather informa-
tion from outside sources, you’ll appreciate the two functions in this section. The
first, dhCNumDate (Listing 3.18), attempts to convert dates stored in numeric val-
ues into true Date format. The second function, dhCStrDate (Listing 3.19), per-
forms the same sort of task, but with formatted strings as input.

Some computer systems, for example, store dates as integers such as 19971231
(representing #12/31/1997#) or 52259 (representing #5/22/1959#). The code in
dhCNumDate can convert those values into real VBA date/time format, as long as
you tell it the layout of the number coming in. For example, to perform the first
conversion, you might use

dtmBirthday = dhCNumDate(19971231, "YYYYMMDD")

Chapter 3 • Working with Dates and Times200

The function, knowing how the date number was laid out, could pull out the vari-
ous pieces.

The dhCStrDate function does similar work but with string values as its input.
For example, if all the dates coming in from your mainframe computer were in the
format “MMDDYYYY,” you could use

' strOldDate contains "05221959"
dtmNewDate = dhCStrDate(strOldDate, "MMDDYYYY")

to convert the string into a real date.

➲ Listing 3.18: Convert Formatted Numbers to Real Dates

Public Function dhCNumDate(ByVal lngdate As Long, _
 ByVal strFormat As String) As Variant
 ' Convert numbers to dates, depending on the specified format
 ' and the incoming number. In this case, the number and the
 ' format must match, or the output will be useless.

 Dim intYear As Integer
 Dim intMonth As Integer
 Dim intDay As Integer

 Select Case strFormat
 Case "MMDDYY"
 intYear = lngdate Mod 100
 intMonth = lngdate \ 10000
 intDay = (lngdate \ 100) Mod 100

 Case "MMDDYYYY"
 intYear = lngdate Mod 10000
 intMonth = lngdate \ 1000000
 intDay = (lngdate \ 10000) Mod 100

 Case "DDMMYY"
 intYear = lngdate Mod 100
 intMonth = (lngdate \ 100) Mod 100
 intDay = lngdate \ 10000

 Case "DDMMYYYY"
 intYear = lngdate Mod 10000
 intMonth = (lngdate \ 10000) Mod 100
 intDay = lngdate \ 1000000

 Manipulating Dates and Times 201

 Case "YYMMDD", "YYYYMMDD"
 intYear = lngdate \ 10000
 intMonth = (lngdate \ 100) Mod 100
 intDay = lngdate Mod 100

 Case Else
 ' Raise an error and get out.
 ' Error 5 normally indicates an invalid parameter.
 Err.Raise 5, "dhCNumDate", "Invalid parameter"
 End Select
 dhCNumDate = DateSerial(intYear, intMonth, intDay)
End Function

You’ll find an interesting code technique in dhCNumDate. Given a number like
220459 (#4/22/59# in date format), retrieving the month portion requires some
effort. The code accomplishes this by first using integer division (the \ operator),
resulting in 2204. Then, to retrieve just the month portion, the code uses the Mod
operator to find the remainder you get when you divide 2204 by 100. You’ll find
the integer division and the Mod operator useful if you want to retrieve specific
digits from a number, as we did in dhCNumDate.

➲ Listing 3.19: Convert Formatted Strings to Real Dates

Public Function dhCStrDate(_
 strDate As String, Optional strFormat As String = "") As Date

 ' Given a string containing a date value, and a format
 ' string describing the information in the date string,
 ' convert the string into a real date value.
 '
 Dim strYear As String
 Dim strMonth As String
 Dim strDay As String

 Select Case strFormat
 Case "MMDDYY", "MMDDYYYY"
 strYear = Mid$(strDate, 5)
 strMonth = Left$(strDate, 2)
 strDay = Mid$(strDate, 3, 2)

Chapter 3 • Working with Dates and Times202

 Case "DDMMYY", "DDMMYYYY"
 strYear = Mid$(strDate, 5)
 strMonth = Mid$(strDate, 3, 2)
 strDay = Left$(strDate, 2)

 Case "YYMMDD"
 strYear = Left$(strDate, 2)
 strMonth = Mid$(strDate, 3, 2)
 strDay = Right$(strDate, 2)

 Case "YYYYMMDD"
 strYear = Left$(strDate, 4)
 strMonth = Mid$(strDate, 5, 2)
 strDay = Right$(strDate, 2)

 Case "DD/MM/YY", "DD/MM/YYYY"
 strYear = Mid$(strDate, 7)
 strMonth = Mid$(strDate, 4, 2)
 strDay = Left$(strDate, 2)

 Case "YY/MM/DD"
 strYear = Left$(strDate, 2)
 strMonth = Mid$(strDate, 4, 2)
 strDay = Right$(strDate, 2)

 Case "YYYY/MM/DD"
 strYear = Left$(strDate, 4)
 strMonth = Mid$(strDate, 6, 2)
 strDay = Right$(strDate, 2)

 Case Else
 ' If none of the other formats were matched, raise
 ' an error and get out.
 Err.Raise 5, "dhCStrDate", "Invalid parameter"
 End Select
 dhCStrDate = DateSerial(Val(strYear), Val(strMonth), Val(strDay))
End Function

There’s no doubt about it—the code in both these functions relies on brute force.
Given the examples already in the functions, you should find it easy to add your
own new formats, should the need arise. In each case, it’s just a matter of using the
correct mathematical or string functions to perform the necessary conversions.

 Working with Elapsed Time 203

Working with Elapsed Time
No matter how much you’d like VBA date/time values to be able to track elapsed
time, they’re not built that way. As designed, VBA date/time values store a partic-
ular point in time, not a span of time, and there’s no way to store more than 24
hours in a given date/time variable. If you want to work with elapsed times,
you’ll generally have to do some conversion work, storing the elapsed times in a
numeric data type and converting them back to a formatted output for display.
Other elapsed time issues simply return an integer value indicating the number of
elapsed units (year, days, months) between two dates.

This section covers several standard issues when dealing with elapsed times,
including these topics:

• Finding the number of workdays between two dates

• Returning a person’s age, in years, given the birth date

• Formatting elapsed time using a format specification string

• Formatting cumulative times

Finding Workdays between Two Dates
Many applications require you to calculate the number of days between two dates
(and you can simply use DateDiff or subtract the first date value from the second,
if that’s all you need). In addition, many business applications need to know the
number of workdays between two dates, and that’s a bit more complex. The func-
tion in this section, dhCountWorkdays, uses the SkipHolidays and IsWeekend
procedures presented previously (see the section “Working with Workdays”) to
skip holidays and weekends. Listing 3.20 shows the entire function. (You can find
the dhCountWorkdays function in the module named DateTimeADO. It’s grouped
in this module because it relies on ADO to find holidays, as discussed previously
in the chapter.)

➲ Listing 3.20: Count the Number of Workdays between Two Dates

Public Function dhCountWorkdays(_
 ByVal dtmStart As Date, ByVal dtmEnd As Date, _
 Optional rst As ADODB.Recordset = Nothing, _
 Optional strField As String = "") _

Chapter 3 • Working with Dates and Times204

 As Integer

 ' Count the business days (not counting weekends/holidays) in
 ' a given date range.

 Dim intDays As Integer
 Dim dtmTemp As Date
 Dim intSubtract As Integer

 ' Swap the dates if necessary.
 If dtmEnd < dtmStart Then
 dtmTemp = dtmStart
 dtmStart = dtmEnd
 dtmEnd = dtmTemp
 End If

 ' Get the start and end dates to be weekdays.
 dtmStart = SkipHolidays(rst, strField, dtmStart, 1)
 dtmEnd = SkipHolidays(rst, strField, dtmEnd, -1)
 If dtmStart > dtmEnd Then
 ' Sorry, no Workdays to be had. Just return 0.
 dhCountWorkdays = 0
 Else
 intDays = dtmEnd - dtmStart + 1

 ' Subtract off weekend days. Do this by figuring out how
 ' many calendar weeks there are between the dates, and
 ' multiplying the difference by two (because there are two
 ' weekend days for each week). That is, if the difference
 ' is 0, the two days are in the same week. If the
 ' difference is 1, then we have two weekend days.
 intSubtract = (DateDiff("ww", dtmStart, dtmEnd) * 2)

 ' The answer to our quest is all the weekdays, minus any
 ' holidays found in the table.
 ' If rst is Nothing, this call won't subtract any dates.
 intSubtract = intSubtract + _
 CountHolidays(rst, strField, dtmStart, dtmEnd)

 dhCountWorkdays = intDays - intSubtract
 End If
End Function

 Working with Elapsed Time 205

To call dhCountWorkdays, pass it two dates (the starting and ending dates). In
addition, if you want to take holidays into account, pass it a reference to an open
ADO recordset and the name of the field within the recordset containing the holi-
day date information. For more information on working with this type of func-
tion, see the section “Working with Workdays” earlier in this chapter. Unlike the
functions presented there, however, this one requires a bit of effort to find the
right answer.

There are, of course, many ways to solve this problem. The solution we came up
with takes these steps:

1. Move the starting date forward, skipping weekend and holiday dates, until
it finds a workday:

dtmStart = SkipHolidays(rst, strField, dtmStart, 1)

2. Take the same step with the ending date, moving backward.

dtmEnd = SkipHolidays(rst, strField, dtmEnd, -1)

3. If the starting date is now past the ending date, there are no workdays in the
interval, so just return 0:

If dtmStart > dtmEnd Then
 ' Sorry, no workdays to be had. Just return 0.
 dhCountWorkdays = 0

4. Calculate the difference between the dates so far:

intDays = dtmEnd - dtmStart + 1

Now for the tricky part, the final three steps:

5. Subtract the number of weekend days. DateDiff, using the “ww” interval
specifier, gives you the number of weeks, and there are two weekend days
per weekend:

intSubtract = (DateDiff("ww", dtmStart, dtmEnd) * 2)

6. Subtract the number of holiday days. If you’ve not supplied a recordset vari-
able, the CountHolidays function returns without doing any work, report-
ing no holidays in the interval:

intSubtract = intSubtract + _
 CountHolidays(rst, strField, dtmStart, dtmEnd)

Chapter 3 • Working with Dates and Times206

7. Finally, return the total number of workdays in the interval:

dhCountWorkdays = intDays - intSubtract

To work with these procedures, you might write a test routine like the one
shown in Listing 3.21 (from the TestDateTime module). This procedure makes
these assumptions:

• You have OLEDB and ADO installed on your machine.

• You have a reference set to the ADO 2.1 or higher type library in your
project.

• You have an XML file named HOLIDAYS.XML available (and you’ve modi-
fied the code to point to the actual location of HOLIDAYS.XML). You can
use the CreateHolidaysXML procedure to create this XML file, based on tbl-
Holidays in the supplied Jet 4 MDB file, Holidays.MDB. (In order for this to
work, you must have the Jet 4 OLEDB provider installed on your machine. If
you’ve installed ADO 2.1 or higher, you have this. If not, you’ll need to
download the most current ADO providers from Microsoft’s Web site at
http://www.microsoft.com/data.)

• tblHolidays, in Holidays.MDB, includes a date/time field named Date, con-
taining one row for each holiday you want tracked.

➲ Listing 3.21: Test Procedure for dhCountWorkdays

Sub TestCountWorkdays()
 Dim rst As ADODB.Recordset

 ' You'll need to modify the path in the next line, to point
 ' to your sample database.
 Set rst = New ADODB.Recordset
 rst.Open ActiveWorkbook.Path & "\Holidays.xml", , _
 adOpenKeyset, adLockReadOnly, Options:=adCmdFile

 Debug.Print dhCountWorkdays(#7/2/2000#, #7/5/2000#, rst, "Date")
 Debug.Print dhCountWorkdays(#7/2/2000#, #7/5/2000#)

 Debug.Print dhCountWorkdays(#12/27/1999#, #1/2/2000#, rst, "Date")
 Debug.Print dhCountWorkdays(#12/27/1999#, #1/2/2000#)
End Sub

 Working with Elapsed Time 207

Calculating Age
Calculating someone’s age, given that person’s birth date, is a commonplace need
in data manipulation. Unfortunately, VBA doesn’t give a complete and correct
method for calculating a person’s age.

You might be tempted to use this formula:

Age = DateDiff("yyyy", Birthdate, Date)

to calculate age, but this doesn’t quite work. If the birth date hasn’t yet occurred
this year, the Age value will be off by 1. For example, imagine your birthday is
December 31, and you were born in 1950. If today is October 1, 2000, subtracting
the year portions of the two dates (2000 – 1950) would indicate that you were 50 years
old. In reality, by the standard way of figuring such things, you’re still only 49.
(And you’d better take advantage of it while you can!)

To handle this discrepancy, the dhAge function in Listing 3.22 not only sub-
tracts one Year portion of the dates from the other, it checks whether the birth date
has already occurred this year. If it hasn’t, the function subtracts 1 from the calcu-
lation, returning the correct age.

In addition, dhAge allows you to pass an optional second date: the date on which
to calculate the age. If you pass nothing for the second parameter, the code assumes
you want to use the current date as the ending date. That is, if you use a call like this:

intAge = dhAge(#5/22/59#)

you’ll find the current age of someone born on May 22, 1959. If you call the func-
tion like this:

intAge = dhAge(#5/22/59#, #1/1/2010#)

you’ll find out how old the same person will be on the first day of 2010.

➲ Listing 3.22: One Solution for Calculating Age

Public Function dhAge(dtmBD As Date, _
 Optional dtmDate As Date = 0) As Integer

 Dim intAge As Integer

 If dtmDate = 0 Then
 ' Did the caller pass in a date? If not, use
 ' the current date.
 dtmDate = Date
 End If

Chapter 3 • Working with Dates and Times208

 intAge = DateDiff("yyyy", dtmBD, dtmDate)
 If dtmDate < DateAdd("yyyy", intAge, dtmBD) Then
 intAge = intAge - 1
 End If
 dhAge = intAge
End Function

You might also be tempted to solve this problem by dividing the difference
between the two dates, in days, by 365.25. This works for some combinations of
dates, but not for all. It’s just not worth the margin of error. The functions
presented here are simple enough that they’re a reasonable replacement for the
simple division that seems otherwise intuitive.

If you’re looking for the smallest possible solution, perhaps at the expense of
readability, you could use the version in Listing 3.23 instead. It relies on the fact
that a true expression is equal to the value –1 and a false expression is equal to 0.
The function adds –1 or 0 to the year difference, depending on whether the speci-
fied birth date has passed.

➲ Listing 3.23: A Second Solution for Calculating Age

Public Function dhAge1(dtmBD As Date, _
 Optional dtmDate As Date = 0) As Integer

 Dim intAge As Integer

 If dtmDate = 0 Then
 ' Did the caller pass in a date? If not, use
 ' the current date.
 dtmDate = Date
 End If
 intAge = DateDiff("yyyy", dtmBD, dtmDate)
 dhAge1 = intAge + _
 (dtmDate < DateAdd("yyyy", intAge, dtmBD))
End Function

 Working with Elapsed Time 209

Formatting Elapsed Time
VBA provides no support for elapsed times or for displaying formatted elapsed
times. You’ll have to take steps on your own if you want to take two dates, find
the difference between them, and display the difference formatted the way you
want it. The function in this section, dhFormatInterval, in Listing 3.24 (certainly
the longest procedure in this chapter), allows you to specify two dates and an
optional format specifier and returns a string representing the difference. As the
function is currently written, you can use any of the format specifiers listed in
Table 3.9. You are invited, of course, to add your own specifiers to the list by mod-
ifying the source code. (For information on retrieving the time delimiter program-
matically, see the section “Formatting Cumulative Times” later in this chapter.)

➲ Listing 3.24: Format the Interval between Two Dates

Public Function dhFormatInterval(dtmStart As Date, datend As Date, _
 Optional strFormat As String = "H:MM:SS") As String
 ' Return the difference between two times,
 ' formatted as specified in strFormat.

T A B L E 3 . 9 : Available Format Specifications for dhFormatInterval

Format Example

D H 3 Days 3 Hours

D H M 3 Days 2 Hours 46 Minutes

D H M S 3 Days 2 Hours 45 Minutes 45 Seconds

D H:MM 3 Days 2:46

D HH:MM 3 Days 02:46

D HH:MM:SS 3 Days 02:45:45

H M 74 Hours 46 Minutes

H:MM 74:46 (leading 0 on minutes, if necessary)

H:MM:SS 74:45:45

M S 4485 Minutes 45 Seconds

M:SS 4485:45 (leading 0 on seconds, if necessary)

Chapter 3 • Working with Dates and Times210

 Dim lngSeconds As Long
 Dim decMinutes As Variant
 Dim decHours As Variant
 Dim decDays As Variant

 Dim intSeconds As Integer
 Dim intMinutes As Integer
 Dim intHours As Integer

 Dim intRoundedHours As Integer
 Dim intRoundedMinutes As Integer

 Dim strDay As String
 Dim strHour As String
 Dim strMinute As String
 Dim strSecond As String
 Dim strOut As String

 Dim lngFullDays As Long
 Dim lngFullHours As Long
 Dim lngFullMinutes As Long

 Dim strDelim As String

 Const dhcDays As String = "Days"
 Const dhcHours As String = "Hours"
 Const dhcMinutes As String = "Minutes"
 Const dhcSeconds As String = "Seconds"

 Const dhcDay As String = "Day"
 Const dhcHour As String = "Hour"
 Const dhcMinute As String = "Minute"
 Const dhcSecond As String = "Second"

 ' If you don't want to use the local delimiter,
 ' but a specific one, replace the next line with
 ' this:
 ' strDelim = ":"
 strDelim = GetTimeDelimiter()

 Working with Elapsed Time 211

 ' Calculate the full number of seconds in the interval.
 ' This limits the calculation to 2 billion seconds (68 years
 ' or so), but that's not too bad. Then calculate the
 ' difference in minutes, hours, and days, as well.
 lngSeconds = DateDiff("s", dtmStart, datend)
 decMinutes = CDec(lngSeconds / 60)
 decHours = CDec(decMinutes / 60)
 decDays = CDec(decHours / 24)

 ' Get the full hours and minutes, for later display.
 lngFullDays = Int(decDays)
 lngFullHours = Int(decHours)
 lngFullMinutes = Int(decMinutes)

 ' Get the incremental amount of each unit.
 intHours = Int((decDays - lngFullDays) * 24)
 intMinutes = Int((decHours - lngFullHours) * 60)
 intSeconds = CInt((decMinutes - lngFullMinutes) * 60)

 ' In some instances, time values must be rounded.
 ' The next two lines depend on the fact that a true statement
 ' has a value of -1, and a false statement has a value of 0.
 ' The code needs to add 1 to the value if the following expression
 ' is true, and 0 if not.
 intRoundedHours = intHours - (intMinutes > 30)
 intRoundedMinutes = intMinutes - (intSeconds > 30)

 ' Assume all units are plural, until you find otherwise.
 strDay = dhcDays
 strHour = dhcHours
 strMinute = dhcMinutes
 strSecond = dhcSeconds

 If lngFullDays = 1 Then strDay = dhcDay
 Select Case strFormat
 Case "D H"
 If intRoundedHours = 1 Then strHour = dhcHour
 strOut = _
 lngFullDays & " " & strDay & " " & _
 intRoundedHours & " " & strHour

Chapter 3 • Working with Dates and Times212

 Case "D H M"
 If intHours = 1 Then strHour = dhcHour
 If intRoundedMinutes = 1 Then strMinute = dhcMinute
 strOut = _
 lngFullDays & " " & strDay & " " & _
 intHours & " " & strHour & " " & _
 intRoundedMinutes & " " & strMinute

 Case "D H M S"
 If intHours = 1 Then strHour = dhcHour
 If intMinutes = 1 Then strMinute = dhcMinute
 If intSeconds = 1 Then strSecond = dhcSecond
 strOut = _
 lngFullDays & " " & strDay & " " & _
 intHours & " " & strHour & " " & _
 intMinutes & " " & strMinute & " " & _
 intSeconds & " " & strSecond

 Case "D H:MM" ' 3 Days 2:46"
 strOut = lngFullDays & " " & strDay & " " & _
 intHours & strDelim & Format(intRoundedMinutes, "00")

 Case "D HH:MM" ' 3 Days 02:46"
 strOut = lngFullDays & " " & strDay & " " & _
 Format(intHours, "00") & strDelim & _
 Format(intRoundedMinutes, "00")

 Case "D HH:MM:SS" ' 3 Days 02:45:45"
 strOut = lngFullDays & " " & strDay & " " & _
 Format(intHours, "00") & strDelim & _
 Format(intMinutes, "00") & strDelim & _
 Format(intSeconds, "00")

 Case "H M" ' 74 Hours 46 Minutes"
 If lngFullHours = 1 Then strHour = dhcHour
 If intRoundedMinutes = 1 Then strMinute = dhcMinute
 strOut = lngFullHours & " " & strHour & " " & _
 intRoundedMinutes & " " & strMinute

 Case "H:MM" ' 74:46 (leading 0 on minutes, if necessary)
 strOut = lngFullHours & strDelim & _
 Format(intRoundedMinutes, "00")

 Working with Elapsed Time 213

 Case "H:MM:SS" ' 74:45:45"
 strOut = lngFullHours & strDelim & _
 Format(intMinutes, "00") & strDelim & _
 Format(intSeconds, "00")

 Case "M S" ' 4485 Minutes 45 Seconds
 If lngFullMinutes = 1 Then strMinute = dhcMinute
 If intSeconds = 1 Then strSecond = dhcSecond
 strOut = lngFullMinutes & " " & strMinute & " " & _
 intSeconds & " " & strSecond
 Case "M:SS" ' 4485:45 (leading 0 on seconds)"
 strOut = lngFullMinutes & strDelim & _
 Format(intSeconds, "00")

 Case Else
 strOut = vbNullString
 End Select
 dhFormatInterval = strOut
End Function

For example, to test out the function, you might write a test routine like the sample
shown in Listing 3.25 (from the module named TestDateTime). This sample exer-
cises all the predefined format specifiers.

➲ Listing 3.25: Test Routine for dhFormatInterval

Sub TestInterval()
 Dim dtmStart As Date
 Dim dtmEnd As Date

 dtmStart = #1/1/97 12:00:00 PM#
 dtmEnd = #1/4/97 2:45:45 PM#

 Debug.Print dhFormatInterval(dtmStart, dtmEnd, "D H")
 Debug.Print dhFormatInterval(dtmStart, dtmEnd, "D H M")
 Debug.Print dhFormatInterval(dtmStart, dtmEnd, "D H M S")
 Debug.Print dhFormatInterval(dtmStart, dtmEnd, "D H:MM")
 Debug.Print dhFormatInterval(dtmStart, dtmEnd, "D HH:MM")
 Debug.Print dhFormatInterval(dtmStart, dtmEnd, "D HH:MM:SS")
 Debug.Print dhFormatInterval(dtmStart, dtmEnd, "H M")
 Debug.Print dhFormatInterval(dtmStart, dtmEnd, "H:MM")

Chapter 3 • Working with Dates and Times214

 Debug.Print dhFormatInterval(dtmStart, dtmEnd, "H:MM:SS")
 Debug.Print dhFormatInterval(dtmStart, dtmEnd, "M S")
 Debug.Print dhFormatInterval(dtmStart, dtmEnd, "M:SS")
End Sub

Let’s face it: The dhFormatInterval function defines the term brute force.
Although we attempted to make this routine as simple as possible, it requires sev-
eral steps to provide all this flexibility.

How does it work? The function first calculates the difference between the two
dates in seconds and then calculates the total number of days, hours, minutes, and
seconds. In addition, it calculates the number of leftover hours, minutes, and sec-
onds so it can display those, too. Finally, it also calculates rounded values for
hours and minutes. That way, if you choose not to display seconds, the minutes
value will be rounded accordingly. The same goes for hours: If you decide not to
display minutes, the hours value must be rounded to the nearest full hour. Once
the routine has those values, it uses a large Select Case statement to determine
which type of output string to create and takes the steps to create the correct
result.

Because dhFormatInterval calculates the difference between the two dates in sec-
onds and places that value in a long integer, you’re limited to around 68 years
between the two dates. Most likely that won’t be a terrible limitation, but you
should be aware of it before using this function in a production application.

Formatting Cumulative Times
As we’ve already stated, VBA has no way of storing, or measuring, elapsed times
in its date/time fields. When you assign 8:30 to a Date variable, you may think
you’re entering the number of hours someone worked, but you’re actually enter-
ing a specific time: 8:30 A.M. on December 30, 1899. VBA has no qualms about per-
forming aggregate calculations on date/time fields—they’re stored internally as
floating-point values, so there’s no problem performing the calculation—but the
result will not be what you had in mind.

The task, then, is to allow you to enter time values as you’ve become accus-
tomed. You’ll need to convert them to some simple value for calculations and then
format the output as a standard time value for display. To make all this happen,
you’ll need the two functions included here, dhCMinutes and dhCTimeStr. The

 Working with Elapsed Time 215

dhCMinutes function accepts a date/time value as a parameter and returns the
time portion, converted to the corresponding number of minutes. Given that
value, you can easily sum up a series of time values. Then, when you’re ready to
display your sum, you’ll need the dhCTimeStr function. This one, given a number
of minutes, returns a string representing the total, in hh:mm format.

For example, imagine you need to find the sum of 8:30, 12:30, and 13:25 (in each
case, a span of time). To sum the three time values and convert that sum back into
a time format, you could use an expression like this:

dhCTimeStr(dhCMinutes(#8:30#) + dhCMinutes(#12:30#) + _
 dhCMinutes(#13:25#))

The result of that expression would be the string “34:25.”

Each of the functions consists of just a few lines of code. The dhCMinutes func-
tion, shown in Listing 3.26, uses the TimeValue function to extract the time por-
tion of the date and multiplies the resulting fraction by 24*60, resulting in the
number of minutes represented by the fractional portion.

➲ Listing 3.26: Convert a Date/Time Value into Elapsed Minutes

Public Function dhCMinutes(dtmTime As Date) As Long
 ' Convert a date/time value to the number of
 ' minutes since midnight (that is, remove the date
 ' portion, and just work with the time part.) The
 ' return value can be used to calculate sums of
 ' elapsed time.

 ' Subtract off the whole portion of the date/time value
 ' and then convert from a fraction of a day to minutes.
 dhCMinutes = TimeValue(dtmTime) * 24 * 60
End Function

The function that converts the number of minutes back to a string formatted as a
time value, dhCTimeStr (Listing 3.27), is just as simple. It takes the number of
minutes and performs an integer division (using the \ operator) to get the number
of hours. Then it uses the Mod operator to find the number of minutes (the
remainder when you divide by 60). The function formats each of those values and
concatenates them as a string return value.

Chapter 3 • Working with Dates and Times216

➲ Listing 3.27: Convert Elapsed Minutes into a Formatted String

Public Function dhCTimeStr(lngMinutes As Long) As String
 ' Convert from a number of minutes to a string
 ' that looks like a time value.
 ' This function is not aware of international settings.
 '
 dhCTimeStr = Format(lngMinutes \ 60, "0") & _
 GetTimeDelimiter() & Format(lngMinutes Mod 60, "00")
End Function

There’s just one small wrinkle here: Not everyone uses the same time delimiter
character. The built-in VBA formatting specifiers take that into account, but in this
case, you’re supplying your own formatting. The solution is to ask Windows for
the local time delimiter, of course. Although you can retrieve the information
directly from the Registry, that requires much more work and isn’t the recom-
mended method. The answer is to use the Windows API, calling the GetLocale-
Info function. This function requires you to specify a LocaleID value (a number
representing the current “locale” that’s being used on your computer) and a con-
stant indicating which locale-specific information you want to retrieve. It digs into
the registry for you, finds the information you need, and returns it. (In order to
determine your current LocaleID value, the function first calls the GetSystemDefault-
LCID function.)

The function GetTimeDelimiter (Listing 3.28) does the work for you, so any
function needing to format time values can use the native delimiter.

You’ll find the GetLocaleInfo function invaluable if you want to do any work requiring
localized settings. Visit http://msdn.microsoft.com for more information on
this and all the other Windows API functions.

➲ Listing 3.28: Retrieve the Local Time Delimiter

Private Function GetTimeDelimiter() As String
 ' Retrieve the time delimiter. Use the GetLocaleInfo
 ' API function to return information about the current
 ' user's settings.

 Handling Time Zone Differences 217

 Dim lngLCID As Long
 Dim lngLen As Long
 Dim strBuffer As String
 Const MAX_CHARS = 4

 lngLCID = GetSystemDefaultLCID()
 strBuffer = Space(MAX_CHARS + 1)
 lngLen = GetLocaleInfo(lngLCID, LOCALE_STIME, _
 strBuffer, Len(strBuffer))
 ' lngLen includes the trailing Null character.
 GetTimeDelimiter = Left$(strBuffer, lngLen - 1)
End Function

If you use the GetTimeDelimiter function in your own applications, you’ll also need
to copy the associated API declarations into your application as well. Be careful
when copying functions that use API calls out of their sample modules. You may
find that you must copy the API information as well.

Handling Time Zone Differences
Perhaps you’ve noticed, but it’s not the same time all over the world. When it’s
midnight in Los Angeles, it’s eight in the morning in London. In some applica-
tions, you may need to have some way to compare exact times, taking into
account the time zone differences between the locations where events occurred.
Perhaps you want to know whether a sales order from California came in before
an order for the same item in London, but all you have are local times when the
orders were placed.

In order to make it possible to retrieve information about absolute times, Win-
dows stores times internally as an absolute value, based on the time in Greenwich,
England, home of the prime meridian. (Think back, hard, to third grade. It will all
come back to you.) This coordinated universal time (oddly abbreviated as UTC
within Windows documentation) allows code to be able to compare times and
dates based on some absolute, as opposed to local times. For every earthly loca-
tion Windows is aware of, you can determine the bias (the number of minutes the
current locale is removed from Greenwich, England), the state of daylight saving
time, and the dates daylight saving time starts and stops.

Chapter 3 • Working with Dates and Times218

Working with these values requires a bit of Windows API manipulation, and to
keep things simple, we wrapped up all the workings in a simple class module. Yes,
class modules won’t be covered until Chapter 5, so we won’t dwell here on how
this class works—instead, we’ll focus on how you can use it in your own code.

Using the SystemTimeInfo Class
You can think of the SystemTimeInfo class, provided with the chapter samples,
just as you might think of any other object you work with in VBA. That is, just as
you might program a form, a control, or an ADO recordset, you can program an
instance of the SystemTimeInfo class. It has several properties, some read/write,
some read-only. (It doesn’t have any methods, or events, but it could.) In order to
use the SystemTimeInfo class, it must exist as part of your project, and you must
write code to get it into memory so you can use it (much like an ADO recordset
object):

Dim sti As SystemTimeInfo
Set sti = New SystemTimeInfo

Once you’ve created the object, you can work with its various properties, like
this:

Debug.Print "The current time zone name is " & sti.CurrentTimeZoneName
Debug.Print "The current time zone bias is " & sti.Bias

In this chapter, we won’t delve into how the SystemTimeInfo class works—for
information on creating and using class modules, see Chapter 5. We’ve skipped
ahead a little because it just makes sense, given the particular API calls, to create a
class module here. (For more info on using the Windows API in general, see
Appendix B, located on the CD-ROM.)

In general, a class module contains public property procedures (procedures that
run when you attempt to set or retrieve the value of a property of the object) and
public procedures (treated as methods of the object). In this case, the System-
TimeInfo class contains the properties listed in Table 3.10. Once you’ve created an
instance of a SystemTimeInfo object, you can use any of these properties to deter-
mine (or, in some cases, change) the time zone behavior of the machine running
your code. Although you won’t need this function in every application, if you
ever do need to be able to compare times and dates in different locales, you may
find this class useful.

 Handling Time Zone Differences 219

T A B L E 3 . 1 0 : Properties Provided by the SystemTimeInfo Class

Property Data Type Description

Bias Long Read-only long representing the number of minutes
between the UTC and the current time. Takes into
account daylight saving time. For example, Pacific
daylight time has a bias of 420 minutes, meaning that
UTC time is local time + 420 minutes. The standard bias
for this region is 480 minutes, but when daylight saving
time is active, you must subtract 60 minutes. The class
module handles all these issues for you. For a particular
bias (standard or daylight), see the appropriate property,
StandardBias or DaylightBias.

CurrentTimeZoneName String * 32 Read-only string containing the name of the current
time zone. The name may be different in different times
of the year. For example, the name may be Pacific
standard time, or Pacific daylight time, depending on
whether daylight saving time is active. For a particular
time zone name, see the appropriate property,
StandardTimeZoneName or DaylightTimeZoneName.

DaylightBias Long Read/write long containing the number of minutes
between UTC time and local time, if daylight saving time
is currently active. Normally, this value is either –60 or 0.
That is, when daylight saving time is active, the local
clock has normally been set ahead one hour (making the
offset between UTC and local time 60 minutes less).
Some states (Arizona, for example) don’t use daylight
saving time, so this value is 0 in that state. If you want to
retrieve the current bias, taking into account daylight
saving time, see the Bias property.

DaylightTimeZoneName String * 32 Read/write string containing the name of the time zone,
if daylight saving time is currently active. To retrieve the
current name, whether daylight saving time is active or
not, see the CurrentTimeZoneName property.

StandardBias Long Read/write long containing the number of minutes
between UTC time and local time, if daylight saving time
is not currently active. When daylight saving time is not
active, you can use a formula such as UTC = local time +
StandardBias to calculate times. (Daylight saving time
normally adds 60 minutes from the local time,
subtracting 60 minutes from the bias.) If you want to
retrieve the current bias, taking into account daylight
saving time, see the Bias property.

Chapter 3 • Working with Dates and Times220

The following procedure demonstrates all the properties of the SystemTimeInfo
class:

Sub TestSystemTimeInfo()
 Dim sti As SystemTimeInfo
 Set sti = New SystemTimeInfo

 Debug.Print "Current time zone name is : " & _
 sti.CurrentTimeZoneName
 Debug.Print "Current time zone bias is : " & _
 sti.Bias

 Debug.Print "Daylight time zone name is: " & _
 sti.DaylightTimeZoneName
 Debug.Print "Daylight time zone bias is: " & _
 sti.DaylightBias

 Debug.Print "Standard time zone name is: " & _
 sti.StandardTimeZoneName
 Debug.Print "Standard time zone bias is: " & _
 sti.StandardBias

 Debug.Print "System date/time (UTC) is : " & _
 sti.SystemDateTime
 Set sti = Nothing
End Sub

StandardTimeZoneName String * 32 Read/write string containing the name of the current
time zone, if daylight saving time is not currently active.
To retrieve the current name, whether daylight saving
time is active or not, see the CurrentTimeZoneName
property.

SystemDateTime Date Read/write date value, allowing you to set or retrieve the
system date/time value, which corresponds to UTC time.
(That is, the SystemDateTime property minus the Bias
property will give you the current date/time. You can use
an expression like this, should you need to perform this
calculation: DateAdd("n", -sti.Bias,
sti.SystemDateTime).) If you need to know the local
date/time, use the Now function instead.

T A B L E 3 . 1 0 : Properties Provided by the SystemTimeInfo Class (continued)

Property Data Type Description

 Summary 221

Windows provides many more time and date handling functions, most of which
work with file dates and times. Chapter 12 covers many of these in its coverage of
working with disk files. See that chapter if you’re interested in working with file
dates and times. For more information on working with classes and class modules,
see Chapter 5.

Summary
Almost any VBA application will sooner or later need to work with date values,
and this chapter has provided solid coverage of the built-in date functions, as well
as many procedures that use those functions to provide more general functionality.
Specifically, we covered these topics:

• How dates are represented in VBA

• All the built-in date functions:

• Date, Time, Now

• DatePart, WeekDay, Year, Month, Day, Hour, Minute, Second

• DateAdd, DateDiff

• DateValue, TimeValue, CDate

• DateSerial, TimeSerial

• Format

• Additional extended functions, for:

• Finding a specific date

• Manipulating dates and times

• Working with elapsed time

• Working with Windows system date and time, and time zone information

Given the functions presented in this chapter and the information about writing
your own additional functions, you should be ready to handle any date/time
challenge facing you in your own applications. For similar chapters covering text
and numbers, see Chapters 1 and 2, respectively.

This page intentionally left blank

c h a p t e r

4

Using VBA to Automate
Other Applications

�

Understanding how Automation works

�

Writing simple Automation code

�

Creating integrated solutions with Microsoft
Office 2000

�

Creating event sinks to monitor other applications

Chapter 4

•

Using VBA to Automate Other Applications

224

T

he term

Automation

 refers to a technology that allows two separate applica-
tion components to communicate with each other. Communication can take the
form of data exchanges or commands issued by one component for another to
carry out. The driving force behind the creation and exploitation of this technol-
ogy is the desire to combine numerous independent software components into a
single integrated solution. Almost since its beginning, the Visual Basic language
has supported the programming interfaces that make Automation possible. In this
chapter, we explain the basics of Automation and explore ways to use it to create
integrated solutions using applications like those found in Microsoft Office. After
reading this chapter, you should have an understanding of how the pieces of the
Automation puzzle fit together and how you can use them to your advantage.

Table 4.1 lists the sample files included on the CD-ROM for this chapter.

Automation Basics

Under the covers, Automation is a very complex technology that involves numer-
ous programming interfaces. Fortunately, VBA has encapsulated those interfaces
and made Automation relatively simple to implement. Its greatest strength is that
it lets you work with objects from other applications using the same techniques

T A B L E 4 . 1 :

Sample Files

Filename Description

AUTOMATE.XLS Excel file with sample functions

AUTOMATE.MDB Access 2000 database with sample functions

AUTOMATE.BAS General Automation functions

AUTOMATE.VBP Visual Basic project file with sample functions

EXCEL.BAS Excel Automation functions

GLOBALS.BAS Global constants

WORD.BAS Word Automation functions

WORDEVNT.CLS Word WithEvents class module

INVOICE.DOT Sample Word document template

MAIN.FRM Start-up form for the Visual Basic project

STATREQ.XLS Sample Excel workbook

 Automation Basics

225

you use now with objects built into VBA or those you create using class modules.
Before beginning to write integrated solutions using Automation, you should be
familiar with the basics. In this section, we explain the terminology we’ll be using,
where Automation information is stored, and how to examine an Automation
component’s objects, properties, and methods.

Terminology

There have been some changes in Automation terminology since we began writing
about it in earlier books and magazine articles. In addition, some of the terms used in
this book have meanings that differ when taken outside the context of Automation. In
both cases, it’s important that you understand the specific meanings of these terms.

Changes in Terminology

In the beginning, Microsoft created Object Linking and Embedding and it saw
that it was good. But the masses cried, “That’s too much to remember! Give us a
three-letter acronym!” So Microsoft decried that Object Linking and Embedding
would be henceforth known as OLE and it saw that that was also good. And OLE
grew and prospered and before long it encompassed much and so Microsoft cre-
ated ActiveX, which it said was OLE but with much greatness. And the custom-
ers rejoiced, yea, the programmers were confused. And then there came the
Internet with much promise and mystery. So Microsoft created COM and pro-
claimed that COM was supreme and forever and that Object Linking and Embed-
ding, and OLE, and ActiveX had never been. And Microsoft rejoiced, yea, the
customers and programmers were confused.

Well, if there’s one thing Microsoft can’t be accused of, it’s letting its names for
technology get stale. Over the past decade, we’ve seen a number of technologies
designed to enable software to work better together. As this book was being writ-
ten, the

nom du jour

was COM, short for Component Object Model. (And COM+ is
right around the corner!) COM is the all-encompassing term for everything we
once knew as Object Linking and Embedding, OLE, and ActiveX. (Despite this,
the term ActiveX is still used for some subset technologies.) The following list pro-
vides both the old and new terms for some of the technologies involved.

•

OLE Automation is now COM Automation or simply Automation.

•

OLE Automation components are now COM components.

•

OLE custom controls or OLE controls are now ActiveX controls.

•

OLE document objects are now ActiveX documents.

Chapter 4

•

Using VBA to Automate Other Applications

226

Terminology Used in This Chapter

Now, let’s clarify some common terms used in this chapter.

Automation requires a client (sometimes called a

controller

) and a server. The

server

 is the application or component that provides services to the client. It may
exhibit behaviors independently of the client, but, for the most part, it depends on
the client’s giving it commands to do things. The

client,

 on the other hand, is the
application that uses the services of an Automation server. In a narrow context, a
client application is one that implements a development language that allows you
to write code that controls a server. (Of course, you could create your own client
from scratch using C++ as the development tool.) Automation clients include
Microsoft Visual Basic, Excel, Word, PowerPoint, and Outlook. In fact, any appli-
cation that supports VBA has Automation client capabilities. An Automation
client need not be a development tool, but development tools such as Access and
Visual Basic are the ones of most interest here.

In addition to understanding clients and servers, you should be familiar with
the difference between object classes and objects.

Object classes

 are the types of
objects that an Automation server makes available for you to control. Object
classes have a defined set of properties, methods and, in some cases, events that
dictate how instances of that object class look and act. When you write Automa-
tion code, you manipulate

objects—

particular instances of object classes. The same
holds true for VBA class modules and the instances you create and manipulate.
(For more information on class modules, see Chapter 5.) You can think of objects
and object classes as being similar to variables and data types. VBA supports a
fixed set of data types, but you can declare and use as many variables of a single
type as you wish. In this chapter, when we discuss a server application’s

object
model,

 we are talking about its set of object classes. When you write VBA code,
you’re using instances of those classes, which are called objects.

What’s the Value of Automation?

Automation’s biggest benefit is its capacity to let you use pre-built, robust, and
debugged software components in your applications. Just imagine having to build
your own spreadsheet module instead of using Microsoft Excel. Obviously, for
simple tasks, you may decide to “roll your own,” but as the complexity of a com-
ponent increases, the benefits of using off-the-shelf software increase, as well.
Automation takes component reuse one step further by allowing you to control
objects using your own code, extending whatever built-in intelligence the objects

 Automation Basics

227

may have. Finally, the architecture of Automation lets you do this unobtrusively.
That is, you control objects using Automation the same way you control them in
VBA, by using sets of properties, methods, and events. With a few extensions to
your current understanding of VBA and its objects, you can start controlling other
applications’ objects, such as those found in Microsoft Office (Access, Excel,
Word, PowerPoint, FrontPage, and Outlook) and ActiveX controls.

Object Classes

Before you can start controlling objects, you need to understand which objects are
available to you. As you install applications and ActiveX controls, these compo-
nents will make entries in the Windows Registry that mark them as controllable to
Windows. (Technically speaking, Automation servers are those applications that
support the IDispatch programming interface.) Because each application may
make more than one object class available to Automation clients, you need to
know not only the application name, but the object type, as well. This information
is encapsulated in the program identifier, or ProgID, for the particular object class.
ProgIDs are expressed as follows:

ApplicationName.ObjectClass

For example, Microsoft Excel exports a controllable Chart class that has an asso-
ciated ProgID of Excel.Chart. Furthermore, this convention lets you append a ver-
sion number to the ProgID to restrict manipulation of the object to a particular
version of the software. Excel.Chart.5 refers to a Chart object that is manipulated
by Excel version 5. Most applications register a pointer to the latest version
installed on your computer, so leaving off the version number will force VBA to
use the latest version.

As software versions are released at an ever-increasing pace, it occasionally
becomes necessary to have multiple versions of a particular program installed on
your computer. Furthermore, sometimes you will install an older version of a pro-
gram on a computer that already has a newer version installed. When this hap-
pens with an Automation component, the older version sometimes overwrites the
Registry information so that an unqualified ProgID (one with no version number
appended) will point to the older version. Automation clients that use this ProgID
and depend on features that exist only in the newer version will no longer work.
When this happens, you should reinstall the newer version. This should restore the
Registry settings. However, as a precaution, you can use qualified ProgIDs if you

depend on certain features that aren’t available in all versions.

Chapter 4

•

Using VBA to Automate Other Applications

228

While it is not always the case, most applications that feature a user interface (as
opposed to “UI-less” servers, which operate transparently behind the scenes) reg-
ister an Application class. Normally, this object represents the highest-level object
in the application’s object model, and from it you can derive most other object
types. As we discuss the examples in this chapter, the use of ProgIDs should
become clear.

Type Libraries: The Key to Classes

These days, almost all COM components implement

type libraries

. Type libraries
are databases that list the objects, methods, properties, and events offered by a
server application. Automation clients, such as VBA, can use the information
stored in a library to “learn” about another application. Type libraries offer a
number of benefits:

•

VBA does not actually have to run the server application to interrogate its
object model.

•

The VBA editor and interpreter can use type libraries to perform syntax
checking on your Automation code.

•

You can obtain context-sensitive help for another application’s keywords.

Type libraries can exist as separate files or be implemented as part of an applica-
tion EXE or DLL. Most components’ type libraries that exist as separate files have
a TLB or OLB (for object library) file extension, and you use them in your VBA
project by adding them to the list of references in the References dialog. Most
well-behaved components make the proper Registry entries to make this happen
automatically. However, occasionally you must add it to the references list your-
self. To do this, follow these steps:

1.

Open the Visual Basic development environment.

2.

Select the References command from either the Project menu (VB) or the
Tools menu (VBA). You should see a list of references similar to the ones
shown in Figure 4.1.

3.

Check the box next to the reference you want to add.

4.

If the reference is not listed, click the Browse button and locate the type
library or executable file of the component you want to use.

 Automation Basics

229

F I G U R E 4 . 1

References dialog showing
loaded and available refer-

ences

Once you’ve loaded a type library, you can use the objects, properties, and
methods in your VBA code. VBA will be able to correctly verify syntax, as well as
provide context-sensitive help for the server component’s keywords. One impor-
tant issue is that the complete path to the type library is stored with your VBA
project. If you move the type library or install your application on another com-
puter, you will need to reestablish the link to the type library.

Type libraries are also essential to

early binding

, the preferred approach to

Automation, described in the following sections.

Type Libraries, References, and Broken Apps

In the many years we’ve been writing, teaching, and speaking on Automation, a few
issues regarding server applications and references have been raised again and again. A
common one is, “If I use Automation to control Application X, do my users need Applica-
tion X in order to run my solution?” The answer, of course, is yes. Automation does not
magically compile a server application’s functionality into your program; it merely controls
the application at runtime. The server application must be installed in order for your pro-
gram to work.

Chapter 4

•

Using VBA to Automate Other Applications

230

Browsing Objects with Object Browser

Once you’ve added references to an Automation component’s type library, you
can use the VBA Object Browser to view a list of the component’s classes, proper-
ties, methods, and events. To make Object Browser available, open the Visual
Basic environment and press the F2 key, click the Object Browser toolbar button or
select the View �

 Object Browser menu command. Figure 4.2 shows Object
Browser open to the Application class of Microsoft Excel’s type library.

When Object Browser first opens, it displays a list of all the classes exposed by
every referenced Automation component, including the current VBA project. You
can use the Project/Library drop-down list at the top left of the screen to select a
single component, thus making the list of classes a bit more manageable. Object
Browser changes the contents of the Classes and Members lists to reflect the
change. The Classes list shows all the object classes available from the Automation
component. Selecting any one of them causes Object Browser to display the meth-
ods and properties for that class in the right-hand list. Icons denote various ele-
ments of the type library, such as constants, classes, properties, and methods.

Another common question is, “What happens if the application isn’t installed and a user
tries to run my program?” The answer depends on whether you’ve used a type library ref-
erence or not. If not, and your code is running in a VBA host like Access, the first time you
try to start an Automation session, VBA will raise a run-time error that you can trap and
handle as you see fit. However, if you have used a type library, it’s a bit trickier since VBA
tries to resolve type library references prior to executing code. However, in this case, you
can be proactive and run code to validate references. Fortunately the VBA project informa-
tion is available through the object model at runtime, and you can fix up any broken links.

To do this, you must completely separate the code that uses Automation servers from the
code that checks for valid references in different code modules. This is necessary because
of VBA’s demand load behavior. VBA loads and compiles modules only as needed but will
preload modules when they contain procedures referenced by a loaded module. (Of
course, this is necessary to compile the requested module completely.) By having a com-
pletely separate module that runs a start-up procedure to check references, you have the
opportunity to find missing type library references before getting a compile error.

However, if you’re running your code in a compiled VB application, you’re out of luck. You
cannot change the project information (and thus references) at runtime. You should make
sure you have very robust error handling to account for code that won’t be able to run due
to the missing Automation server.

 Automation Basics

231

Note that collections are also shown in the left-hand (object) list. When you select
a collection, usually denoted as the plural form of the object class name, Object
Browser displays the methods and properties for the collection, not the object.

F I G U R E 4 . 2

Object Browser showing
details on Excel’s Applica-

tion object

If you’re not sure of the exact name of a property or method, you can use Object
Browser’s search engine. Enter a text string in the text box just below the list of
libraries and click the Find button (the one with binoculars on it). After searching
the selected type libraries, Object Browser opens the Search Results pane, as shown
in Figure 4.3. You can collapse the pane by clicking the button with the up arrows.

Figures 4.2 and 4.3 also show the Application object’s Goto method highlighted
in the right-hand list. Note the syntax example at the bottom of the dialog. Object
Browser shows you the calling syntax of the property or method, including any
arguments. You can highlight any portion of the syntax and use the Copy button
to copy the highlighted portion to the clipboard for subsequent pasting into a
module. If you don’t highlight any of the syntax, the Copy button simply copies
the method or property name to the clipboard. If the type library being viewed
supports a help file, pressing the Help button (the one with a question mark) or
pressing F1 opens that file to the proper page for the displayed property or method.

Chapter 4

•

Using VBA to Automate Other Applications

232

F I G U R E 4 . 3

Object Browser displaying
search results

Object Browser can be especially helpful when you’re using an Automation
component for the first time. It gives you a class-by-class overview of the object
model, allowing you to browse the individual classes and their properties and
methods. As you become more familiar with a component, you’ll be able to write
Automation code from memory, but until then, Object Browser is a good place to
start learning about what’s available and how to use it.

Creating Object Instances

All Automation sessions begin with the client application creating an instance of a
server object. By

creating

 an object instance, we mean establishing a conversation
with the server application and telling it which of its objects you wish to control.
The result of this creation process is a pointer to an instance of the server’s object
stored in an object variable. Using this object variable, you can control the server
application’s object using the same techniques you use to control VBA objects—by
manipulating their methods and properties.

 Creating Object Instances

233

Early Binding and Late Binding

There are two approaches to creating instances of Automation component objects:
early binding and late binding. Each approach has its own pros and cons.

With

early binding,

 you add a reference to a component’s type library at design
time to inform VBA about the Automation server and its objects. This technique is
called early binding because VBA knows which object classes the component sup-
ports (along with all their properties and methods) before you execute your code.

On the other hand, late binding

 does not require a reference to a type library. Instead,
you instantiate objects at runtime. This approach is known as late binding because
VBA has no way of knowing what type of object will be created until runtime.

Most Automation components support early binding, and you should use early
binding whenever possible. Early binding offers several benefits:

Speed

Because you tell VBA about a component in advance, it does not need to
worry that a particular property or method might not be supported. With late bind-
ing, extra communication takes place to determine whether the server supports a
given property or method

with each line of code

! This decreases performance.

VBA editor support

When you use early binding, VBA can perform syntax
checking on your source code and provide developer IntelliSense features like
statement completion.

Online help

Early binding gives you context-sensitive help for components
that have help files. Just highlight any member name and press F1.

However, early binding has a drawback. Since you must use a reference to a
type library, if the type library or application is not installed on a user’s worksta-
tion, your solution will not compile or run. Late binding, at least, lets your code
compile and run because it does not require a reference in the first place. (How-
ever, statements that reference the Automation server’s objects, properties, and
methods will still fail.) In general, you should use late binding only when an
Automation component does not support early binding.

A Simple Early Binding Example

Controlling Automation components using early binding is extremely simple and
very similar to the way you work with built-in VBA components and custom
classes constructed using VBA class modules. To demonstrate early binding,
we’ve created a simple example that uses Microsoft Excel as an Automation

Chapter 4

•

Using VBA to Automate Other Applications

234

server. If you already know everything there is to know about early binding, you
can skip to the next section. Otherwise follow these steps:

1.

Create a new project in your favorite VBA development tool. (You can even
use Excel if you like.)

2.

Open the Visual Basic environment.

3.

Add a new module to the project.

4.

Open the References dialog by selecting the References menu command.

5.

Locate “Microsoft Excel 9.0 Object Library” in the list and mark the check
box. Click OK to close the dialog.

6.

Enter the VBA code shown in Listing 4.1 in the new module. (If you’re using
VB, it’s probably easier to put the code in the Form_Load procedure of the
project’s start-up form.)

7.

Highlight any line of code in the TestXL procedure and press F8 to step
through the code.

➲

Listing 4.1: A Simple Procedure Demonstrating Automation Basics

Sub TestXL
 Dim objXL As Excel.Application

 ' Create a new instance of Excel
 Set objXL = New Excel.Application

 ' Reference a few properties
 MsgBox objXL.Name & " " & objXL.Version
 objXL.Visible= True
 objXL.Quit
 Set objXL = Nothing

End Sub

Notice that we prefaced the object class (Application) with the name of the server
(Excel). It’s good practice to qualify the object class with the server name whenever
the object class might be ambiguous. (Other Automation servers also have an
Application object.) If you’re unsure of the server name to use, look at the list of
libraries in Object Browser. Object Browser uses the name of each component,

which is what you should use to qualify objects exported by that component.

 Creating Object Instances

235

As you step through the code, you’ll notice several things happen. First, you’ll
observe a slight delay and some disk activity as you execute the New statement.
This is because a new instance of Excel is being launched. After the new instance
loads, VBA continues executing code and displays the dialog announcing Excel’s
name and version.

At this point, a new copy of Excel will be running, but you won’t be able see it.
That’s because when Excel is launched in response to a request from an Automa-
tion client, it makes its main window invisible. This behavior is application-spe-
cific. For more information on how the other Microsoft Office applications react,
see the section “Differences in Application Behavior” later in this chapter.

To make Excel’s main window visible, execute the next statement. Excel’s
Application object has a Visible property that controls this behavior. Changing the
property to True displays Excel’s main window.

Executing the next statement (objXL.Quit) terminates Excel. You’ll notice
another slight delay as Excel shuts down. The final statement, which sets the
object variable to the intrinsic constant Nothing, is a housekeeping task that frees
any memory VBA was using to manage the Automation session.

What Happens When You Say “New” Anyway?

Another question might be, “Why do my Automation solutions seem so fragile?” The
answers to both questions can be found by looking at how Windows manages Automa-
tion servers—through the system registry.

The registry entries required to support Automation were actually designed to make using
Automation easier by abstracting attributes like the physical location of an Automation
server. However, sometimes these entries get altered or corrupted and nothing seems to
work, so it makes sense to understand a bit how this abstraction happens.

In this chapter, we’ve discussed using an Automation server’s ProgID to initiate an Auto-
mation session. In fact, this is a convenience designed for us humans. In reality, COM
Automation is based on each server having its own Globally Unique Identifier (GUID),
which is a 64-bit integer, normally expressed in hexadecimal notation. For example, Excel
2000’s GUID is 00024500-0000-0000-C000-000000000046. Easy to remember, right?

Chapter 4

•

Using VBA to Automate Other Applications

236

When to Instantiate

In the previous example, you saw how a new instance of Excel was created when
you executed a New statement. This forced VBA to create a new instance of Excel
explicitly. As an alternative (and just like VBA class modules), if you

declare

 an
object variable using the New keyword, the object is instantiated the first time you
reference one of its properties or methods. For instance, you could modify the
prior example shown in Listing 4.1 to make it look like the one shown in Listing 4.2.

➲

Listing 4.2: Using Implicit Instantiation to Launch Excel

Sub TestXLDelayed()
 Dim objXL As New Excel.Application

 ' Excel is started on the next line automatically
 MsgBox objXL.Name & " " & objXL.Version
 objXL.Visible= True
 objXL.Quit
 Set objXL = Nothing

End Sub

The registry lists all Automation components by GUID under the HKEY_LOCAL_MACHINE\
Software\Classes\CLSID key. For instance, if you look up Excel’s GUID, you’ll find a key
with the GUID’s name containing a number of subkeys, such as LocalServer32, ProgID,
and VersionIndependentProgID. LocalServer32 contains a value that is the path to
EXCEL.EXE on your machine. (The path also includes the \automation command line
switch.) If this doesn’t point to the location where Excel is really installed, you’re in trou-
ble! The other two subkeys, ProgID and VersionIndependentProgID, contain the strings
Excel.Application.9 and Excel.Application, respectively, and exist so that given a GUID, you
can determine the ProgID.

But VBA works in the reverse fashion, taking the ProgID and looking up the GUID. How
does this work? Well, if you look at the HKEY_LOCAL_MACHINE\Software\Classes key,
you’ll see there are probably hundreds of ProgID keys, Excel.Application being one of
them. Digging into this key reveals, you guessed it, a CLSID subkey containing the match-
ing GUID. So, you can see how a tool like VBA can easily find the right GUID and pass it to
the COM Automation functions in Windows to provide you with a pointer to a running
Automation server. You should also be able to see how chaos can result if any of these
many registry keys and values are corrupted. So, if you ever get Automation errors where
Windows can’t find or start Automation servers, you should first check to make sure your
registry isn’t messed up.

 Creating Object Instances

237

In this case, Excel will be launched automatically the first time VBA references a
property or method, in this case, by the Name property in the MsgBox statement.
However, in general, we don’t recommend this technique, even though it saves
you typing one line of code. The reason is that in a complex application, it may not
be obvious (as it is here) when the object becomes instantiated. This can make
debugging Automation problems more difficult. Therefore, you should always
use explicit instantiation.

You cannot use a specific Automation server version (such as Excel.Application.9)
with the New keyword. If you need access to version-specific objects, you must

use the CreateObject or GetObject functions described in the next section.

CreateObject and GetObject

CreateObject and GetObject are VBA functions (as opposed to a keyword, like
New) used to instantiate Automation component objects. Both return pointers to
an instantiated object that you must store in an object variable. You can declare a
variable using the generic Object data type, or you can use a server-specific data
type if you have added a reference to the server’s type library to your VBA project.
For example:

' If you don't want to use the type library, do this:
Dim objExcel As Object

' If you are using the type library you can do this:
Dim objExcel As Excel.Application

Both CreateObject and GetObject are essential to working with late-bound
Automation servers (those that don’t use a type library) but can also be used with
early binding.

Using CreateObject

CreateObject accepts two arguments: a string containing a component object’s
ProgID, as described in the section “Object Classes” earlier in this chapter, and an
optional machine name for use with remote servers (see the sidebar “Using Dis-
tributed COM with Automation Servers”). When you call CreateObject, VBA
attempts to create an object of the type specified using the application specified. If
it cannot create the object, perhaps because the application is not installed or does
not support the object type, it fails with a run-time error.

Chapter 4 • Using VBA to Automate Other Applications238

If you want to try a simple example of late-bound Automation using CreateOb-
ject, create the procedure shown in Listing 4.3 and walk through it.

➲ Listing 4.3: Instantiating Excel without Using a Type Library

Sub TestXLLateBound()
 Dim objXL As Object

 ' This creates a new instance
 Set objXL = CreateObject("Excel.Application.9")

 ' The rest is pretty much the same as before
 MsgBox objXL.Name & " " & objXL.Version
 objXL.Visible = True
 objXL.Quit
 Set objXL = Nothing
End Sub

You’ll notice that this is almost the same code as in the prior examples, except
that we’ve used a generic Object variable to store the pointer to Excel’s Applica-
tion object. If you don’t include a reference to a component’s type library, you
must use the Object data type. We’ve also used CreateObject to instantiate the
object variable rather than the New keyword. Note that the ProgID (Excel.Appli-
cation.9) is passed as text. We could have stored this in a variable that VBA could
evaluate at runtime. This is something that is not possible if you use the New key-
word because the ProgID must be hard coded as part of the New statement.

Using Distributed COM with Automation Servers
Distributed COM (or DCOM for short) is an extension to standard COM that enables you
to control applications and components installed on other workstations than the one your
code runs on. It is an extremely powerful technology that supports application features like
fault tolerance and load balancing. Prior to VBA 6, support for DCOM was available only
through the operating system, and VBA had no knowledge of it. When DCOM was
enabled (through a complex set of steps involving machine name/automation server map-
ping and security administration), calls from VBA to Automation servers were intercepted
and routed over the network via remote procedure calls (RPCs). While complex to set up,
when DCOM worked, it worked well.

 Creating Object Instances 239

Using GetObject

GetObject is similar to CreateObject, but instead of accepting a single argument
for ProgID, it allows for two optional arguments: a document name and/or a
ProgID. The general form of a GetObject statement is

Set objectvariable = GetObject([docname], [ProgID])

Note that both arguments are optional, but you must supply at least one of them.
GetObject is a more flexible function that you can use to create an object from an
application’s document (an Excel workbook file, for example) or from an existing
instance of an application. The flexibility of GetObject is revealed by the combina-
tion of arguments used. Table 4.2 explains the results of these combinations.

VBA 6 makes using DCOM even easier by letting you simply select the machine name
where an Automation server is located in the CreateObject function call. For example, sup-
pose you wanted to launch a copy of Excel on a remote workstation called myserver. You
would write code like this:

Set objXL = CreateObject("Excel.Application", "myserver")

Of course, you still need to enable DCOM on the remote workstation and set up security
attributes. (After all, you wouldn’t want someone launching applications on your machine,
would you?) But, if you have need for advanced application features, the effort may be
worth it.

T A B L E 4 . 2 : Various Uses of the GetObject Function

Combination Example Results

Document name only Set objAny =
GetObject(“C:\BOOK1.XLS”)

The application associated with the
document type is launched and used
to open the specified document. If
the application supports it, an
existing instance will be used. If the
document is already open, the object
pointer will refer to that instance.

Object class only Set objAny = GetObject (,
“Excel.Application”)

If the server application is running,
an object pointer is created for the
running instance. Otherwise,
GetObject returns a run-time error.

Chapter 4 • Using VBA to Automate Other Applications240

As you can see, GetObject is more complex than CreateObject, although it does
offer the benefit of using running instances of applications rather than launching
new copies each time your Automation code runs. This is especially critical on
low-memory computers.

Understanding Class Instancing
In the preceding examples using the Application class, a new copy of Microsoft
Excel is launched each time VBA requests a new instance of the class. This is
because the Application class is, by default, a single-use class. Automation server
classes fall into two broad categories: single-use and multiple-use.

Single-Use Classes

Single-use classes cause a new instance of the application to launch when a client
application instantiates them. We’ve illustrated this in Figure 4.4. Each instance of
the Application class created by client applications references an Application
object created by a separate copy of Excel.

F I G U R E 4 . 4
Single-use classes are each
hosted by a different copy

of the application.

Object class and empty
document name

Set objAny = GetObject (“”,
“Excel.Application”)

Same behavior as CreateObject.
Opens a new instance of the
application.

Both document name
and object class

Set objAny =
GetObject(“C:\BOOK1.XLS”,“Exc
el.Application”)

Same behavior as passing only the
document name, except you can
pass document names that aren’t
normally associated with the server
(as determined by the file extension).

T A B L E 4 . 2 : Various Uses of the GetObject Function (continued)

Combination Example Results

 Creating Object Instances 241

Multiple-Use Classes

On the other hand, multiple-use classes allow multiple Automation client applica-
tions to share the same instance of the class. An example of a multiple-use class is
Microsoft Outlook’s Application class. Only one instance of the class can exist at
any given time. Figure 4.5 illustrates this type of class. Even though client applica-
tions might instantiate the class using the New keyword or CreateObject, all refer-
ences point to the same instance in the server application. Applications that expose
multiple-use classes are typically those that allow you to launch only one instance
from the Windows shell.

F I G U R E 4 . 5
Multiple-use classes are all
hosted by a single copy of

the application.

What’s more, classes that are single-use by default can sometimes be used like a
multiple-use class, as illustrated in Figure 4.6. For example, you can use Excel’s
Application class as though it were a multiple-use class, even though it is single-
use by default. To accomplish this, you must first ensure that a copy of the appli-
cation is already running. Then, instead of using the New keyword or CreateObject
function to instantiate an object, use a normal Set statement or the GetObject func-
tion. The code in Listing 4.4 demonstrates this.

F I G U R E 4 . 6
Using a single-use class as

though it were multiple-use

Chapter 4 • Using VBA to Automate Other Applications242

While you can use most single-use classes in the multiple-use role, the converse
is not true. Each time you request a new instance of a multiple-use class, you
receive a new reference to a pre-existing instance if one exists. Only the first
request results in a copy of the application being launched. Therefore, you should
be careful about programmatically terminating a multi-use server because other
clients (or users) might be using it.

➲ Listing 4.4: Using GetObject to Attach to a Running Instance of
Excel

Sub TestXLExisting()
 Dim objXL As Excel.Application

 ' Use an existing instance (this will fail
 ' if Excel isn't running!)
 Set objXL = GetObject(,"Excel.Application.9")

 ' The rest is the same
 MsgBox objXL.Name & " " & objXL.Version
 objXL.Visible = True
 objXL.Quit
 Set objXL = Nothing
End Sub

Table 4.3 lists the programs in Microsoft Office 2000 and indicates whether they
are single-use or multiple-use by default.

T A B L E 4 . 3 : Single-Use and Multiple-Use Office 2000 Applications

Application Default Behavior Multiple-Use?

Access Single-use Yes

Excel Single-use Yes

FrontPage Multiple-use N/A

Outlook Multiple-use N/A

Publisher N/A N/A

PowerPoint Multiple-use N/A

Word Single-use Yes

 Controlling Other Applications 243

Reference Counting and Server Termination

When working with multiple references to object instances, you need to be aware
of reference counting by the server application. Every time you ask a server applica-
tion for an object instance using New, CreateObject, or GetObject, the server appli-
cation increments an internal counter. Conversely, when you destroy an object
reference by setting it equal to Nothing (or when the object variable goes out of
scope), the server decrements the counter. With multiple-use classes, this can lead
to problems if you’re not careful.

Most Automation servers terminate automatically when the internal reference
count reaches zero. Furthermore, some will not terminate unless the count is zero.
For this reason, you should take care when creating multiple references to a single
Automation class in your program. If you must do this for whatever reason, be
sure to destroy all references to the server when your application terminates. There
is no way to determine a server’s internal reference count using VBA code.

Some applications will not terminate automatically when the reference count
reaches zero if you’ve done something that enabled the user to interact with the
application. For example, displaying Excel’s main window will prevent Excel
from terminating if the user creates a new workbook.

Controlling Other Applications
Now that you understand the basics of Automation, you’re ready to start writing
code to control Automation components. The rest of this chapter explains how you
can write code like this, using several applications in Microsoft Office to illustrate.

Learning an Application’s Object Model
The techniques involved in using another component’s objects through Automa-
tion are the same as those for manipulating VBA objects; the only difference is the
set of objects themselves. Before beginning to write Automation client code, you
must familiarize yourself with the server component’s object model. Unfortu-
nately, the availability and quality of documentation vary enormously, even among
Microsoft products. As a general rule, those applications that have their own
development language (such as VBA in Microsoft Excel, Outlook, Word, FrontPage,
and PowerPoint) have better documentation than those that don’t (for example,

Chapter 4 • Using VBA to Automate Other Applications244

MapPoint). Resources are available that you can use to learn another application’s
object model. Two of them are listed here:

• The Microsoft Office 2000/Visual Basic Programmer’s Guide is included with
Microsoft Office 2000 Developer, as well as separately from Microsoft Press,
and contains information on creating integrated solutions with Microsoft
Office, including object model descriptions.

• The Microsoft Developer Network Library is an online and CD-ROM resource
for those developing solutions with any type of Microsoft technology. You
can access a portion of the library (as well as sign up for a paid membership
that includes quarterly CD mailings) at http://msdn.microsoft.com/.

As mentioned earlier, you can also use Object Browser to interrogate a compo-
nent’s object model. Even with online help, this tends to be a trial-and-error method
that does not offer the supplementary information that other documentation
sources do.

Perhaps one of the most productive ways to get an overview of an object model
is by inspecting a graphical view of the relationships between objects. Office 2000
includes help files for each application that include a diagram like the one shown
in Figure 4.7. However, finding the diagram can be tricky.

F I G U R E 4 . 7
Office 2000 includes help

files with object model
diagrams.

 Controlling Other Applications 245

First, you need to make sure you’ve installed the VBA help files. (They’re an
optional component of the standard install.) Then, the easiest way to locate the
diagrams is to do the following:

1. Launch the Visual Basic development environment.

2. Set a reference to an application’s type library.

3. Open the Object Browser and select the application’s type library from the
drop-down list.

4. Click the Help button.

The application’s object model diagram should appear as the default help topic.
If you don’t see it, you should be able to select it from the help browser’s topic list.
It would be nice if it were easier than this but, alas, the perky Office Assistant
seems woefully unaware of object models.

Differences in Application Behavior
When creating Automation objects, be aware that component applications exhibit
unique behavior when used as Automation servers. Differences in an applica-
tion’s behavior will dictate how you use it in your Automation client code. Table
4.4 lists differences in behavior of the Application object among the programs that
make up Microsoft Office 2000. The table explains four facets of Office application
behavior:

• Does the application open as a hidden window when launched through
Automation?

• Does the application include a Visible property for toggling the visible state
of the main window?

• Does the application terminate automatically when its internal reference
count equals zero?

• Does the application have a UserControl property to indicate that the user
has interacted with the application?

As you use other Automation components, you may want to note how they
behave in respect to the list provided.

Chapter 4 • Using VBA to Automate Other Applications246

Memory and Resource Issues
One very important piece of information to keep in mind when creating inte-
grated solutions using Automation is how controlling multiple applications at the
same time will affect the overall performance of a user’s system. Large server
applications, such as Excel and Word, consume a lot of memory. While it is now
more difficult to produce the dreaded “Out of System Resources” error, thanks to
better memory management in Windows 9.x and NT, RAM is still an issue. Due to
disk swapping, computers with fewer than 32 megabytes of RAM may perform
poorly when many large applications are running. If low memory is a problem,
you may want to consider closing each server after using it.

The other side of the coin is the time it takes to start and stop large applications.
If you frequently use large applications as Automation servers, you may want to
leave them open despite the effect this will have on memory consumption. In
other words, you will likely have to experiment to get the right mix of perfor-
mance and memory utilization.

Creating Automation Solutions with
Microsoft Office

Statistically speaking, if you are reading this book, you probably already own a
copy of Microsoft Office or have access to one. This gives you an opportunity to

T A B L E 4 . 4 : Differences in Behavior among Microsoft Office 2000 Applications

Application Opens Hidden? Visible Property? Terminates
When Ref

Count = 0?1

UserControl
Property?

Access Yes Yes2 Yes Yes

Excel Yes Yes Yes Yes

PowerPoint Yes Yes No No

Outlook Yes No3 No No

Word Yes Yes No Yes

1. Assumes user has not interacted with the application.
2. Does not always work correctly. You may want to use the Windows API ShowWindow function instead.
3. You must use the Windows API ShowWindow function to change the visible state.

 Creating Automation Solutions with Microsoft Office 247

leverage the vast functionality in those applications by creating integrated solu-
tions based on Automation. To get you started, we’ll spend a good portion of this
chapter demonstrating several sample applications that use Office components.
You’ll be able to see examples of how each can be controlled from VBA. We’ll also
point out some of the minor differences and idiosyncrasies that still exist in this
supposedly integrated suite of products.

Specifically, we’ll illustrate Automation using two moderately simple examples:

• Creating and manipulating documents and tables using Microsoft Word

• Charting database data using Microsoft Excel

Each of the two examples will highlight a slightly different aspect of using
Automation. First, the Word application demonstrates the basics of controlling an
Automation component and shows how to work with a document-oriented
server. The Excel example shows how to use existing documents as the target of
Automation commands.

You can find more examples of using other Automation servers in Microsoft Office
in Access 2000 Developer’s Handbook: Volume I, Desktop Edition, from Sybex.

The Office Object Models
While we don’t have nearly enough room in this chapter to fully explain the object
models of Office applications, we can describe some of their more significant
aspects. This will provide a good basis for explaining the sample applications in
the rest of the chapter. We’ve included diagrams from the Office help files that
illustrate abridged versions of the object models. They include just a few of the
applications’ classes. Table 4.5 lists the classes that are exposed to Automation cli-
ents. All the other classes implemented by the applications are available through
collections, methods, and properties of the exposed classes.

T A B L E 4 . 5 : Object Classes Exposed by Microsoft Office 97 Applications

Server Name Class Name Description

Access Application Pointer to an instance of Microsoft Access.

Excel Application Pointer to an instance of Microsoft Excel.

 Chart Pointer to a new Chart object. Launches Excel and
opens a new workbook if necessary.

Chapter 4 • Using VBA to Automate Other Applications248

Excel

Excel has what might be described as the granddaddy of Office object models. It
was the first application to integrate VBA (with version 5 in 1993), and with that
came a very rich object model that allowed developers complete control over
Excel worksheet-based applications. Figure 4.8 illustrates a small portion of the
object model.

F I G U R E 4 . 8
A very small portion of the

Excel object model

 Sheet Pointer to a new Worksheet object. Launches Excel
and opens a new workbook if necessary.

FrontPage Application Pointer to an instance of Microsoft FrontPage.

Outlook Application Pointer to an instance of Microsoft Outlook.

PowerPoint Application Pointer to an instance of Microsoft PowerPoint.

Word Application Pointer to an instance of Microsoft Word.

 Document Pointer to a new Document object. Launches Word
if necessary.

T A B L E 4 . 5 : Object Classes Exposed by Microsoft Office 97 Applications (continued)

Server Name Class Name Description

 Creating Automation Solutions with Microsoft Office 249

As you can see in Figure 4.8, Excel’s object model follows its user interface
design very closely. Its top-level class, Application, represents the main Excel
application. Descending from that is a Workbooks collection representing all open
workbooks (XLS files). And contained within each workbook is a collection of
Worksheets.

Within each worksheet are collections of objects representing embedded charts,
lines, pictures, and so on. What you won’t see is any collection symbolizing data
in individual cells. This is because implementing a Cells collection, for example,
would require managing 16,777,216 objects (because an Excel worksheet is 256
columns wide by 65,536 rows deep)! Instead, you use methods to return refer-
ences to data. These references are stored using a generic Range object. A range
can be a single cell, a block of cells, a discontinuous group of cells, or an entire row
or column. You’ll find numerous methods designed to return Range objects—for
example, Cells, Range, Column, Row, Union, and Intersect. Once you have a valid
Range object, you can use some of its more than 160 properties and methods to
manipulate data, change formats, and evaluate results.

Word

Word 97 was the first version of Microsoft’s flagship word processor to have an
exposed object model. While it has been an Automation component since version 2,
prior versions have exposed only a single class, Word.Basic, representing Word’s
macro interpreter. You used this class to execute WordBasic commands against
the current instance of Word. Without a rich object model, writing Automation
code was cumbersome. WordBasic macros operate only on the currently selected
text or object, so it took a great deal of code to ensure that the proper element was
selected before you could execute a command that modified it.

Fortunately, this limitation became history with Word 97, and Microsoft has
extended the object model in Word 2000. Figure 4.9 illustrates a small portion of
Word’s object model.

Word’s object model shares a number of similarities with that of Excel. At its
root is the Application object, which contains a collection of Document objects,
one for each open document. Each Document object has several properties that
allow you to manipulate text, including Sections, Paragraphs, Sentences, and
Words. Each property returns a pointer to a Range object. Word Range objects are
similar in concept to those in Excel in that they give you access to the contents and
formatting of blocks of text.

Chapter 4 • Using VBA to Automate Other Applications250

F I G U R E 4 . 9
Highlights of Word’s object

model

PowerPoint

While PowerPoint has had an object model since PowerPoint 95, it wasn’t until
Microsoft integrated the VBA development environment in PowerPoint 97 that
developers really began taking advantage of its functionality. PowerPoint has a
rich object model that, like Excel and Word, is aimed at managing the contents of
documents. (In Excel, workbooks are the “documents.”) However, PowerPoint’s
document paradigm deals with presentations and slides. Figure 4.10 shows a por-
tion of the PowerPoint object model, which should look familiar to you by now. It
features the requisite Application object and Presentations and Slides collections.

Manipulating textual information in PowerPoint is a bit more convoluted than
in Word or Excel because of the unstructured, free-form nature of PowerPoint
slides. Each Slide object has a collection of Shapes representing the various graph-
ical components placed on the slide. For those shapes that can contain text, there is
a TextFrame object, which controls how contained text is displayed (margins, ori-
entation, and so on). Finally, the TextFrame object contains a TextRange object
with text and formatting properties and methods.

 Creating Automation Solutions with Microsoft Office 251

F I G U R E 4 . 1 0
PowerPoint’s object model

deals with Presentation and
Slide objects.

Outlook

Microsoft added an object model to Outlook in its first release, Outlook 97, and
made minor enhancements in Outlook 98, an interim release. With Outlook 2000,
Microsoft has added new members to the object model, as well as greatly expand-
ing Outlook’s support of events. However, Outlook’s object model is unlike any of
the other Office products primarily because it does not follow the same docu-
ment-centric metaphor. The data it manipulates is far less structured and, like its
predecessor Schedule+, the object model can be difficult to learn and use. Further-
more, Outlook is designed to be an integral part of your electronic messaging sys-
tem and, as such, must cope with various service providers, addressing schemes,
storage mechanisms, and electronic mail functions.

Figure 4.11 illustrates the Outlook object model, which may at first appear less
complex than that of the other applications. It has an Application class at its root,
but that’s where similarities end.

Chapter 4 • Using VBA to Automate Other Applications252

F I G U R E 4 . 1 1
Outlook’s object model is
quite different from other

Office applications.

First, Outlook requires that you create a reference to what it calls a Namespace
class. This represents one of the messaging service provider layers that Outlook
depends on for data storage (although MAPI is the only type of namespace Out-
look supports). MAPI (Messaging Application Programming Interface) imple-
ments persistent data storage using a hierarchical folder metaphor similar to disk
subdirectories. Outlook’s Namespace class contains a Folders collection repre-
senting the top-level folder of each installed storage system. Each of these, in turn,
contains a Folders collection with members for each subfolder (Inbox, Outbox,
and so on). Every folder object has a Folders collection, allowing for infinite nest-
ing of data storage.

Data in folders is represented by an Items collection. Each element of this collec-
tion can be one of a variety of object classes that represent such things as mail mes-
sages, appointments, journal entries, contacts, and tasks. It is this uncertainty
about what a folder contains that makes programming with Outlook challenging.

Office Objects

Finally, Microsoft Office implements a set of objects that individual programs
share. These include the Office Binder, Office Assistant, command bars, a file
search tool, PhotoDraw, and Microsoft Graph. You’ll find information about these
objects in online help.

 Example: Word as a Report Writer 253

Example: Word as a Report Writer
It might seem odd to suggest using Word as a report writer given the other
options available to developers these days. Word documents are often more flexi-
ble and certainly more powerful than many reports created using specialized
tools, since a user can take the output and modify it further. They are also more
portable and produce richer HTML output for Web applications. For this reason
(and because it’s a great demonstration of basic Word Automation techniques),
we’ve chosen to create a sample that accomplishes the following tasks:

• Launches Microsoft Word if it is not already running.

• Creates a new Invoice document based on a Word template with several
bookmarks defined.

• Copies customer and order data from an Access database to the invoice
header in Word.

• Copies line item data from an ADO recordset to a Word table.

• Previews the document using Word’s print preview mode.

To run this sample, you’ll need to have Word installed on your computer and have
the sample template INVOICE.DOT in the same directory as the sample database,
AUTOMATE.MDB. You will also need to modify the conPath constant in
basAutomation to reflect the directory where you copied the sample files from this
chapter.

Creating the Word Template
The sample application code relies on the existence of a Microsoft Word template
file with predefined bookmarks. Figure 4.12 shows the template open in Microsoft
Word. The vertical gray bars on the left side of the document are Word book-
marks. The sample uses the bookmarks to denote where to insert text. Consider
creating Word templates containing static elements and bookmarks for your
applications rather than creating entire documents from scratch.

You define a bookmark by setting the insertion point at the spot in the docu-
ment where you want to create the bookmark and then choosing the Insert �
Bookmark command. Figure 4.13 shows the dialog that appears. It lists any exist-
ing bookmarks, and you can click the Go To button to go to the point in the document

Chapter 4 • Using VBA to Automate Other Applications254

marked by the bookmark. To create a new bookmark or redefine an existing one,
enter the name of the bookmark in the text box and click the Add button.

F I G U R E 4 . 1 2
The sample invoice tem-
plate uses bookmarks to

define data insertion
points.

F I G U R E 4 . 1 3
Word’s Bookmark dialog,

showing bookmarks
defined in the sample

template

 Example: Word as a Report Writer 255

You can see in Figure 4.13 that our sample template has a number of bookmarks
already defined. We’ll use these bookmarks to drive the data transfer process.

Building the Invoice
Once you’ve copied the invoice template to your hard disk, you can test our appli-
cation by running the PrintInvoiceWithWord procedure. (Remember: Make sure
INVOICE.DOT is in the same directory as AUTOMATE.MDB). The procedure is
contained in basWord, and it creates the invoice in three steps:

• Loads the template in Word.

• Adds header information.

• Builds the details table.

We’ve included the code for PrintInvoiceWithWord in several chunks in the next few
sections. For a complete listing, open the procedure yourself in the Visual Basic Editor.

To try this example you’ll need to call the PrintInvoiceWithWord function and pass
an order number that exists in the sample database. You can choose any order
contained in the Orders table in AUTOMATE.MDB. Order number 10250 is a safe
choice. For your convenience we’ve also provided a test routine, TestInvoice, in
basWord.

Loading the Template in Word

The first step is to launch Microsoft Word and load a new document based on the
invoice template. Word implements a Documents collection representing all open
documents, and you create new ones by calling the collection’s Add method.
Here’s the code that does it (objWord is declared as a Word Application object):

' Launch Word and load the invoice template
Set objWord = New Word.Application
objWord.Documents.Add _
 conPath & "\Invoice.dot"
objWord.Visible = True

The Add method accepts as its first argument the name of a document template
to base the new document on. You can see we’ve provided a complete path to
INVOICE.DOT contained in the same folder as the sample database. If you omit
the path, Word looks in the standard Office template folders. You can also omit the

Chapter 4

•

Using VBA to Automate Other Applications

256

template entirely, in which case, Word will base the new document on the default
template, NORMAL.DOT.

Adding Header Information

Once Word creates the new document, you can begin adding text to it. Our sam-
ple procedure uses bookmarks to control the location of inserted text. While you
can insert text at any point in a document using objects and collections like Para-
graphs, Sentences, Words, and Characters, you’ll find it much easier to use pre-
defined bookmarks. Bookmarks retain the same relative location in a document as
additional content is added or removed. The aforementioned collections change,
and this often makes it hard to position text at a precise location. Listing 4.5 shows
the Automation code that copies the invoice header from an ADO Recordset
object to the Word document.

A complete coverage of ADO is beyond the scope of this book. For a more in-
depth discussion of database access and query processing using ADO, we
encourage you to check out

Visual Basic Developer’s Guide to ADO

 or

Access

2000 Developer's Handbook, Volume 1: Desktop Edition

, both from Sybex.

➲

Listing 4.5: Copying the Invoice Header from an ADO Recordset

' Add header information using predefined bookmarks
With objWord.ActiveDocument.Bookmarks
 .Item("OrderID").Range.Text = rst!OrderID
 .Item("OrderDate").Range.Text = rst!OrderDate
 .Item("CompanyName").Range.Text = rst!CompanyName
 .Item("Address").Range.Text = rst!Address
 .Item("Address2").Range.Text = rst!City & ", " & _
 rst!Region & " " & rst!Country & " " & _
 rst!PostalCode

End With

The code in Listing 4.5 shows how to reference individual bookmarks using the
Document’s Bookmarks collection. Bookmark objects implement a Range method
that returns a reference to a text range enclosed by the bookmark. In our example,
this is a simple insertion point, although, bookmarks can span blocks of text and
other objects.

Once the procedure has a reference to a bookmark’s Range object, it’s a simple
matter to set the Text property to a value from the Recordset object.

 Example: Word as a Report Writer 257

Building the Details Table

The final stage in the process is to add invoice details based on the currently selected
order. This involves querying the database for the required information, transfer-
ring the data to Word, and building and formatting a Word table. Listing 4.6
shows the code that accomplishes these tasks.

➲ Listing 4.6: Constructing a Word Table from Recordset Data

' Build SQL string for details
strSQL = "SELECT [Product Name], [Unit Price], Quantity, " & _
 "Disc, Extended FROM [Order Details Formatted] " & _
 "WHERE OrderID = " & lngOrderID

' Get details from database and create a table
' in the document
Set rst = New Recordset
rst.Open strSQL, cnn
With CreateTableFromRecordset(_
 objWord.ActiveDocument.Bookmarks("Details").Range, rst, True)

 ' Apply formatting
 .AutoFormat wdTableFormatProfessional
 .AutoFitBehavior wdAutoFitContent

 ' Fix up paragraph alignment
 .Range.ParagraphFormat.Alignment = wdAlignParagraphRight
 .Columns(1).Select
 objWord.Selection.ParagraphFormat.Alignment = wdAlignParagraphLeft
 objWord.Selection.MoveDown
End With

Getting the data is pretty straightforward—we simply use a predefined query,
Order Details Formatted, to create an ADO Recordset object.

After creating the Recordset, our procedure calls a custom function called Cre-
ateTableFromRecordset (see Listing 4.7). CreateTableFromRecordset is a very use-
ful generic function that builds a table in a Word document given an ADO Recordset.
PrintInvoiceWithWord takes the table returned by CreateTableFromRecordset,
applies some formatting, and then fixes up paragraph alignment of the columns
containing numeric data—it’s a pretty simple task.

Chapter 4 • Using VBA to Automate Other Applications258

➲ Listing 4.7: A Generic Table-Building Function

Function CreateTableFromRecordset(_
 rngAny As Word.Range, _
 rstAny As ADODB.Recordset, _
 Optional fIncludeFieldNames As Boolean = False) _
 As Word.Table

 Dim objTable As Word.Table
 Dim fldAny As ADODB.Field
 Dim varData As Variant
 Dim strBookmark As String
 Dim cField As Long

 ' Get the data from the Recordset
 varData = rstAny.GetString()

 ' Create the table
 With rngAny

 ' Creating the basic table is easy,
 ' just insert the tab-delimted text
 ' add convert it to a table
 .InsertAfter varData
 Set objTable = .ConvertToTable()

 ' Field names are more work since
 ' you must do them one at a time
 If fIncludeFieldNames Then
 With objTable

 ' Add a new row on top and make it a heading
 .Rows.Add(.Rows(1)).HeadingFormat = True

 ' Iterate through the fields and add their
 ' names to the heading row
 For Each fldAny In rstAny.Fields
 cField = cField + 1
 .Cell(1, cField).Range.Text = _
 fldAny.Name
 Next
 End With
 End If
 End With
 Set CreateTableFromRecordset = objTable
End Function

 Example: Word as a Report Writer 259

CreateTableFromRecordset works like this: First it calls the recordset’s Get-
String method, which returns the recordset’s data as a tab and carriage return
delimited string. Once we have the data, we copy it to the Word document using
the InsertAfter method of the Word Range object passed to the procedure. The
Range object indicates where in the document you want to create the table. Next,
the procedure calls the Range object’s ConvertToTable method to morph the
newly inserted text into a table. This technique of creating a table from delimited
text is the fastest way to create tables in Word using Automation—far faster than
copying data one row and column at a time.

From here, it’s relatively simple to add field names to the table by inserting a
new row in the table and iterating through recordset fields, copying their names
to each newly added cell. Once the process is complete, the function returns a
pointer to the newly created table.

Figure 4.14 shows the completed document. Even though this was a relatively
simple example, it illustrated two techniques for automating Word and manipu-
lating bookmarks and tables, which you will find useful in your applications.

F I G U R E 4 . 1 4
A completed invoice

created using Automation
to control Microsoft Word

Chapter 4 • Using VBA to Automate Other Applications260

Example: Populating an Excel Worksheet
Microsoft Excel is probably one of the most satisfying Automation servers you can
work with. It has a rich, well-documented object model that lets you control just
about every element of an Excel worksheet, right down to individual character
formatting within a cell. In this section, we show you how to update a simple
worksheet and chart with data in an Access database. We’ve already discussed
most of what you need to know about using Automation servers, so we’ll keep
this section brief.

To run this sample, you’ll need to modify the conPath constant in basAutomation
to reflect the directory where you copied the sample files from this chapter.

Using an Existing File
What we haven’t discussed is using an Automation server to manipulate an exist-
ing document. Manipulating existing documents is a technique that becomes criti-
cal when you need to retrieve data from a file that was edited by another process
or even a (gasp!) human being. Because you don’t have complete control over it,
you must be careful when altering and saving it to make sure you don’t inadvert-
ently overwrite another person’s changes. Using existing files is also a good com-
promise between completely manual and completely automated creation of
documents. For example, the VBA code required to create a complex Excel chart
can be quite long. It is often better to use an existing chart and modify only a few
properties.

From a programming standpoint, you can approach this problem in one of two
ways. You can either create an instance of Excel’s Application object and use it to
open an existing file, or you can use the GetObject function, which will return a
reference directly to the workbook. In this example, we’ve used GetObject to dem-
onstrate how to use it with existing documents. GetObject lets you specify a docu-
ment name and path instead of a ProgID. As long as the file type is correctly
registered, Windows will start the appropriate Automation component applica-
tion (if it’s not already running) and load the specified file.

Our Scenario
The scenario for our sample Excel application involves a fictitious airline.

AUTOMATE.MDB contains a table of airport codes (tblAirports) and a table filled

 Example: Populating an Excel Worksheet 261

with randomly generated lost-luggage rates (tblLostCount) for each North Ameri-
can airport for the months of January 1999, January 2000, January 2001, and January
2002. (The sample code is written to use a date in January of the current year so if
you’re still using the sample code in 2003 you’ll either need to add more data or
change the code).

 In our example, we’ve also created an Excel workbook called STATREQ.XLS
that allows users to request data on any given airport. You might think of it as a
query form a user could fill out and send to someone else for processing. The
workbook contains two worksheets. The Query worksheet, shown in Figure 4.15,
lets the user fill in an airport code (the standard, three-character code assigned by
the International Air Transport Association) in a cell. Our example procedure will
query the database and, based on the current date, return information on month-
to-date lost-luggage rates. The second worksheet in STATREQ.XLS, Results, pro-
vides a table of data and a chart. In our example, we show you how to perform the
following steps using Automation to control Excel:

1. Open the workbook.

2. Retrieve the airport code from the Query worksheet.

3. Query the Access database.

4. Return the results to the worksheet.

5. Redefine the data range the chart uses to reflect new data.

F I G U R E 4 . 1 5
Query worksheet in

STATREQ.XLS

Chapter 4 • Using VBA to Automate Other Applications262

Creating an Object from an Existing Document
There is no user interface for our simple example function. Rather, we’ve created
one procedure, called UpdateAirportStats, in basExcel, which handles all the pro-
cessing. BasExcel, in AUTOMATE.MDB on the companion CD-ROM, shows the
entire subroutine. We’ve saved space by printing only the relevant portions here.
If you view the module in Design view, you can see from the variable declarations
that we use quite a few Excel object variables in the procedure.

The first thing the procedure does is call GetObject, passing it the path to the
STATREQ.XLS file:

 Set objXLBook = GetObject(_
 conPath & "STATREQ.XLS")

As long as Excel is installed correctly and the path is valid, GetObject should
return a reference to an Excel workbook. This differs from the other examples
we’ve discussed so far, which used the Application object of each Automation
server. Keep this in mind as you create object references to documents. The object
you create will be somewhere in the middle of the object hierarchy, not at the top,
as is the case with Application objects.

Because we will want to manipulate Excel’s Application object in addition to a
Workbook object, we need a way to create a reference to it. Fortunately, rather
than using another call to GetObject or CreateObject, we can use the Parent prop-
erty of Excel objects to return a reference to the object immediately above the cur-
rent object in the object hierarchy. Using the Parent property, we can create
references to the Application object using the following code:

Set objXLApp = objXLBook.Parent

With Excel 97, Microsoft has made a change to the way an XLS file is referenced
using GetObject. Passing an XLS file now returns a Workbook object. In prior ver-
sions, GetObject returned a Worksheet object representing the first worksheet in
the XLS file. This will undoubtedly break some existing applications. If you have
existing VBA code that uses GetObject in this fashion, be sure to take note of this
change in behavior.

 Example: Populating an Excel Worksheet 263

Updating the Worksheets and Chart
The bulk of the processing in UpdateAirportStats involves running a query
against the tblLostCount table and poking the results into the Results worksheet
in STATREQ.XLS. We do this by first querying the data and placing the results in
a Variant array using the GetRows method of an ADO Recordset object:

 ' Run our query (note that it has
 ' parameters we need to set)
 strSQL = "SELECT tblLostCount.DateLost," _
 & " tblLostCount.LostCount" _
 & " FROM tblLostCount" _
 & " WHERE (((tblLostCount.DateLost)" _
 & " Between [pStart] And [pEnd]) AND ((" _
 & " tblLostCount.IATACode)=[pIATACode]))"

 Set cnnLost = New ADODB.Connection
 cnnLost.Open "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=" & conPath & "AUTOMATE.MDB"
 Set cmdLost = New Command
 With cmdLost
 .ActiveConnection = cnnLost

 .CommandText = strSQL
 .Prepared = True

 .Parameters("[pIATACode]") = varIATACode
 .Parameters("[pStart]") = varStart
 .Parameters("[pEnd]") = varEnd

 Set rstLost = .Execute()
 End With

 ' Snag all the results into an array using GetRows
 ' and a large (2 ^ 15) row count to get all rows
 varResults = rstLost.GetRows(2 ^ 15)
 rstLost.Close

We then clear any existing data using the Clear method of a Range object corre-
sponding to the data shown in Figure 4.16. This figure also shows the Chart object,
which we will update once all the data has been copied.

Chapter 4 • Using VBA to Automate Other Applications264

F I G U R E 4 . 1 6
Results worksheet showing

a data table and chart

The code that clears the existing data is shown here. Notice that we use the
worksheet’s Range method with a named cell range.

objResultsSheet.Range("rngDataAll").Clear

We can now copy the results of our query into the Excel worksheet. The sim-
plest and fastest way to do this is to construct a Range object that refers to the
block of cells where the data belongs and set its FormulaArray property equal to
the query results stored in our Variant array. The other alternative, iterating through
each cell in the range, is extremely slow because Excel is running as an out-of-pro-
cess server. (If you want to know more, see the sidebar “In-Process versus Out-of-
Process Servers” later in the chapter.) The following code demonstrates how to
use the FormulaArray property. Note that we need to use Excel’s Transpose func-
tion because the array returned by GetRows is not oriented correctly.

Set objXLRange = objResultsSheet. _
 Range("B4:C" & 4 + UBound(varResults, 2))

objXLRange.FormulaArray = _
 objXLApp.Transpose(varResults)

The last task remaining once the data is on the worksheet is to redefine the
source for the chart to reflect the current amount of data. We use Excel’s Union
method (a method of the Application object) to combine the data range computed
in the prior step with cells B2 and C2, which contain the headings for the data and

 Example: Populating an Excel Worksheet 265

chart. We use this with the ChartWizard method of the Chart object on the Results
worksheet to set the new data source equal to the existing data set:

objResultsSheet.ChartObjects(1). _
 Chart.ChartWizard Source:=objXLApp. _
 Union(objResultsSheet.Range("B2:C2"), _
 objXLRange)

If you run the UpdateAirportStats from the example Excel project, Excel will load
STATREQ.XLS in the same application instance as AUTOMATE.XLS. This just
proves that an application can be run interactively and as an Automation server
simultaneously.

In-Process versus Out-of-Process Servers
Automation components can be grouped into two categories that describe how the oper-
ating system treats their program code. In-process servers are loaded into the same mem-
ory address space (or process space) as the client application. ADO is an example of an in-
process server, as are ActiveX controls. For example, when you reference an ADO object,
you’re communicating with an instance of ADO loaded into Access’s process space using
Automation. You can also create your own in-process servers using Visual Basic, where
they are called COM DLLs.

On the other hand, out-of-process servers are loaded into their own address space. All the
Microsoft Office applications, as well as normal Automation servers you create in Visual
Basic, are out-of-process servers.

From a practical standpoint, the biggest difference between the two types of servers is the
rate at which communication takes place between them and your client application. As a
rule, in-process servers are much faster than out-of-process servers. This is because Win-
dows does not need to manage data and communications between two separate pro-
cesses and address spaces.

While you can’t control what type of server an Automation server is, you can modify your
code when using out-of-process servers. Try to avoid repeated references to objects, prop-
erties, and methods. In our example, we’ve taken advantage of the fact that you can insert
several cells’ worth of data into an Excel worksheet with a single statement. We avoided
referencing individual cells one at a time.

Chapter 4 • Using VBA to Automate Other Applications266

Tapping into Events Using WithEvents
You’ve just seen how you can control other applications using Automation. This is
a powerful capability but very one-sided. That is, your code tells the Automation
server to do something and that’s it. What if the server could tell your code things
without your code having to ask? Wouldn’t that be handy sometimes? Well, servers
can by exposing events that you can “listen to” using a feature called WithEvents.

WithEvents is also explained in Chapter 6 in regard to custom VBA class modules.

What Is WithEvents?
WithEvents is a VBA keyword used in conjunction with an object variable declara-
tion. It signals to VBA that, in addition to exposing the object’s properties and
methods, you want VBA to notify you of any events that that object exposes.
WithEvents is most useful when using Automation components like those in
Microsoft Office or with your own custom class modules (see Chapter 6 for more
information on the latter). But, in theory, you can use WithEvents with any Auto-
mation component that exposes events.

WithEvents uses the same mechanism that AcitveX controls use to send events
to forms.

How do you know if an Automation component exposes events? The easiest
way to find out is by looking at the component’s entries in Object Browser. When
you select a class that exposes events, Object Browser lists them along with prop-
erties and methods, marking them with a lightning bolt icon. Figure 4.17 shows
Object Browser displaying information on Microsoft Word’s Application class.
Near the bottom of the Members list, you can see the events exposed by the class.

 Tapping into Events Using WithEvents 267

F I G U R E 4 . 1 7
Object Browser displaying
events exposed by Word’s

Application class

Using WithEvents
You use WithEvents in a variable declaration. However, there are a couple of
catches. You can use it only in a class module (including form modules), and it
must appear in the declarations section. You can’t declare a variable using With-
Events in the body of a procedure. We’ve included a class module called
clsWordEvents in the sample database, which contains the following declaration:

Private WithEvents mobjWordApp As Word.Application

Note that the WithEvents keyword is listed before the object variable name.
When you add a declaration using WithEvents to the declarations section of a
class module, VBA adds an entry to the Object drop-down list that corresponds to
the variable name. Selecting that entry from the list displays the object’s events
in the Procedure list. Figure 4.18 shows clsWordEvents open in Design view with
the DocumentChange event procedure selected. You can see that we’ve responded
to the event by opening a dialog that displays the name of the current active
document.

Chapter 4 • Using VBA to Automate Other Applications268

F I G U R E 4 . 1 8
Editing mobjWordApp’s
DocumentChange event

procedure

Before you can begin using the event functionality exposed by an Automation
component, you must do two things that are normally taken care of for you when
using ActiveX controls. You need to instantiate the Automation component class,
and you need to create an instance of the VBA class where the component class
variable is declared.

We satisfied the first requirement in the Initialize event of our class using the
following code:

Private Sub Class_Initialize()
 Set mobjWordApp = New Word.Application
 mobjWordApp.Visible = True
End Sub

To satisfy the second requirement, you need to create a new instance of the
clsWordEvents class. We have included an example in basAutomation:

Global gobjWordEvents As clsWordEvents

Sub InitWordEvents()
 Set gobjWordEvents = New clsWordEvents
End Sub

That’s all you need to create a custom event sink for Microsoft Word. Note that
we’ve declared the object variable as Global. If we had declared it in the body of
the InitWordEvents procedure, it would have been destroyed, along with our
event sink, when the procedure terminated.

If you declare a variable using WithEvents in a module belonging to a user interface
object, like a VBA form, the event sink will be created as soon as you open the object.

 Tapping into Events Using WithEvents 269

Figure 4.19 illustrates how event sinking with VBA works. Our object variable,
gobjWordEvents, points to an instance of our VBA class, clsWordEvents. The class
instance, in turn, contains another pointer (mobjWordApp) that references an
instance of Word’s Application class. As the Application class generates events,
Word calls our VBA event procedures defined in clsWordEvents. The gobjWordE-
vents variable is required only to give our event sink “life.”

F I G U R E 4 . 1 9
How VBA event sinking

works

To see WithEvents in action, run InitWordEvents and open the Immediate win-
dow. Then open, close, activate, and save several documents in the Microsoft
Word instance that appears. You’ll see messages printed to the Immediate win-
dow as each event fires, as shown in Figure 4.20.

F I G U R E 4 . 2 0
Monitoring events in

Microsoft Word

Chapter 4 • Using VBA to Automate Other Applications270

Event procedures created using WithEvents are nothing more than functions that
an Automation component calls when an event occurs. Just as with normal func-
tions, the Automation component cannot continue processing until an event pro-
cedure finishes. Beware of anything that could prevent or delay the completion of
an event procedure.

Summary
In this chapter, we’ve explored the basic concepts behind Automation, including:

• The role of Automation clients and servers, the use of type libraries, and the
creation of objects in another application

• The similarities between Automation code and the VBA code you write
every day

• How to manipulate other applications using objects, properties, and meth-
ods, just as you do VBA objects

We used several sample applications that demonstrated how to use the other
programs in the Microsoft Office suite in integrated solutions. In each example,
we stressed the similarities between Automation code and plain VBA code.

You can use VBA to control other applications. Automation can also help you
become more productive by giving you the tools to integrate other robust, feature-
filled applications into a customized solution.

c h a p t e r 5

Creating Your Own Objects
with VB Class Modules

� Exploring class modules and how they work

� Creating your own object classes

� Implementing custom properties and methods

Chapter 5 • Creating Your Own Objects with VB Class Modules272

With the introduction of Visual Basic 4 in 1993, Microsoft endowed Basic
developers with a new tool: class modules. While other Basic dialects (prior ver-
sions of Visual Basic and Access Basic, as examples) had already introduced object-
oriented constructs, class modules gave you the ability to create and manipulate
your own classes of objects. If you have programmed in other object-oriented lan-
guages, such as SmallTalk or C++, you are familiar with the benefits this ability
provides. If you haven’t, we hope to surprise you with the power they give you as
a programmer. We make heavy use of class modules in this book to do everything
from implementing data structures such as linked lists to abstracting Windows
API functions. This chapter explains what class modules are and how they work
and provides some examples of how you can use them in your applications.

If you purchased the first edition of this book or are familiar with the basics of
class module usage, you might find it expeditious to skip ahead to Chapter 6,
where we discuss more advanced class module topics.

Since this chapter deals with creating your own objects, it assumes you are
familiar with using objects provided by VBA or a host application. That is, you
should be comfortable with concepts such as properties and methods, as well as
how to declare and use object variables.

Table 5.1 lists the sample files included on the CD-ROM. You’ll find all the sam-
ple code discussed in the chapter in these files.

T A B L E 5 . 1 : Sample Files

Filename Description

CLASSES.XLS Excel workbook containing sample code

CLASSES.MDB Access 2000 database containing sample code

CLASSES.VBP Visual Basic project containing sample code

TEXT1.CLS TextFile class module

CLIP.CLS Clipboard class module

TEST.BAS Test procedures for class modules

 Why Use Class Modules? 273

Trying to understand object-oriented programming (OOP) techniques for the first
time can be a daunting task. Many people find the line that distinguishes OOP
from procedural programming very fine. If you fit this description, you may find it
helpful to work through the examples as we present them in this chapter.

Why Use Class Modules?
If you’ve been developing applications or routines using Basic for any length of
time, you might be asking yourself, “Why use class modules anyway? I’ve been
getting along without them for some time.” Well, like any product feature, class
modules have their benefits and costs. The primary cost is the learning curve required
to understand them so you can use them effectively. While many VBA program-
mers take working with built-in objects (such as the Debug and Err objects) for
granted, they find the idea of creating their own object types difficult to compre-
hend. We hope that after reading this chapter you won’t feel that way.

Once you’ve mastered the basics of class modules, the benefits become clear.
They make your code more manageable, self-documenting, and easier to main-
tain, especially if you deal with complex sets of related data. The sections that fol-
low examine some reasons for using class modules.

Encapsulate Data and Behavior
One of the primary benefits of object-oriented programming in general, and VBA
class modules in particular, is the ability to encapsulate data and behavior in high-
level programming constructs. What does this really mean? It means you associ-
ate all the variables and procedures that are conceptually linked to some “thing”
and make it part of a programmable entity. This entity is easily manipulated using
VBA code and remains a discreet part of your application, never mingling its data
or behavior with other entities. In essence, class modules allow you to create and
use your own object types in your application. Why would you want to do this?
Well, imagine you want to write an application that tracks information on employ-
ees in your company. Using traditional Basic, you might create separate variables
to store each employee’s name, manager, and salary, among other things. If you’re
really clever, you might create an array of user-defined data types, and you might
also write procedures to handle such tasks as hiring or transferring an employee

Chapter 5 • Creating Your Own Objects with VB Class Modules274

or giving an employee a raise. The problem with this approach is that there is
nothing inherent in the program or the language that ties together all these bits of
information and processes. Figure 5.1 illustrates this situation. All the data and all
the processes are free floating. It’s up to you, the programmer, to ensure that each
element is used correctly, and the task increases in difficulty if there are many
developers working on the source code.

F I G U R E 5 . 1
Managing data using

traditional Basic constructs

With nothing enforcing relationships among the items in Figure 5.1, chaos can
result. For example, suppose two or more separate procedures modify the salary
data using a particular set of rules. Changes to the rules necessitate changes to the
program logic in several places.

Encapsulating these data and program components in an object makes the man-
agement task much easier. First of all, any references to data (properties) must be
associated with a particular object, so you always know what “thing” it is you’re
operating on. Second, processes that operate on an object are defined as part of
that object. In other words, the processes are defined as methods of the object. The
consumers of the object (other procedures in your program) are insulated from
the inner workings of each method and cannot modify properties directly unless
you allow them to. This “shield” enforces a degree of control over data that the
object represents. Finally, since each property and method is defined in one place
(the object type’s definition), any code modifications need be implemented only
once. An object’s consumers will benefit automatically from the change. Figure 5.2

 Why Use Class Modules? 275

represents this type of object-oriented development. All data and processes are
defined as part of the object, and the application program interacts with them
through a central point, a reference to an instance of the object.

F I G U R E 5 . 2
Managing data using

object-oriented techniques

Is VBA Really Object Oriented?
At this point many of you who have experience in other object-oriented languages are
probably thinking, “What are they talking about? VBA isn’t really object oriented!” While
we concede that VBA does not exhibit some of the characteristics of a “true” object-ori-
ented language, such as polymorphism and implementation inheritance, we believe that it
just doesn’t matter. So what if VBA isn’t as feature rich as C++ or SmallTalk? For most
people, it’s much easier to understand than those languages, and what’s really important
is that VBA offers a way for developers to think about applications in terms of a group of
related objects, not as masses of disparate data structures.

Chapter 5 • Creating Your Own Objects with VB Class Modules276

Hide Complex Processes from Other Developers
If you find the idea of encapsulating data and processes within an object compel-
ling, you’ll be even more excited about another benefit of using class modules: the
ability to abstract complex processes, hiding their detail from other developers (or
even yourself). Suppose you are trying to create an application that manages
internal purchases within an organization. Determining the amount to charge one
department for goods or services received from another (called the transfer price)
can be a complicated task. With traditional programming techniques, the logic for
computing the transfer price might be an integral component of the application.
Not only does it make the program code harder to maintain, it means you must
understand the logic.

By using object-oriented techniques, on the other hand, you could create object
classes for each good or service being transferred, making the transfer-price com-
putation logic part of each object class. This makes the application code easier to
understand and write. You need only know that there is an object being trans-
ferred and that the object knows how to compute the transfer price. The logic for
computing that price is maintained separately, perhaps by another programmer
more familiar with the intricacies of transfer pricing theory.

When you create an object, you define an interface to that object. This isn’t a user
interface but a list of the object’s properties, methods, and collections. This is all
that users of the object (other programmers) need to know to use the object. It’s
then up to you to implement each feature in the object’s source code using VBA
class modules.

Making Development Easier
In the preceding example, another programmer was charged with the task of
maintaining the transfer pricing logic encapsulated in the object being transferred.
This brings up a continual challenge facing development managers: how to coor-
dinate large, complex programming projects. Object-oriented techniques (which
include using VBA class modules) can make managing projects easier. Because
objects are autonomous entities that encapsulate their own data and methods, you
can develop and test them independent of the overall application. Programmers can
create custom objects using VBA class modules and then test them using only a small
amount of generic Basic code. Once a programmer has determined that a custom
object behaves as desired, you can merge it into the overall project by including
the appropriate class modules.

 How Class Modules Work 277

How Class Modules Work
Have we convinced you that object-oriented techniques in general, and VBA class
modules in particular, are worth learning about? If so, you’re ready for this sec-
tion of the chapter, which explains how VBA class modules work by discussing
the difference between object classes and object instances. (If we haven’t yet, just
bear with us. It’ll be worth it.)

Class Modules Are Like Document Templates
VBA class modules define the properties and methods of an object but cannot, by
themselves, be used to manipulate those properties. In other words, when you
create a new class module and declare, let’s say, a procedure within it, you cannot
just call that procedure from elsewhere in your code. This differs from standard
modules. An object’s definition is called an object class. You can think of VBA
class modules, and thus object classes, as being similar to document templates in
applications like Microsoft Word, Excel, PowerPoint, and FrontPage. A document
template defines what a new document will look like when you create one from it.
It may include a set of defined styles or boilerplate text. It may even contain some
macros, thus implementing its own behavior.

In the case of VBA class modules, you don’t create boilerplate text or styles but
instead define a set of properties, including their data types and whether they are
read-only or read/write, and methods, including the data type returned (if any)
plus any parameters they might require. You’ll see how to add a class module to
your VBA project and use it to define properties and methods in the next section.

Class Instances Are the Documents
To make use of an object class, you must create a new instance of that class. In our
analogy, object instances are the documents you create from a template. Each has
the set of properties and methods defined by the class, but you can also manipu-
late class instances individually as real programming entities just as you can edit,
save, and print individual documents separately from the template. When you
create a new instance of a class, you can change its properties independent of any
other instance of the same class.

Chapter 5 • Creating Your Own Objects with VB Class Modules278

A Simple Example: A Text File Class
To demonstrate the basic techniques required to create and use class modules, this
section shows you how to create a class that represents a text file. It will include
properties that let you manipulate the filename and contents, as well as methods
for reading and writing the contents from and to disk. Not only will this relatively
simple example illustrate class module concepts, but you’ll find it a useful class to
add to your VBA projects that must work with text files as an alternative to the
Scripting Runtime component described in Chapter 14.

You’ll find the sample code for this section in CLASSES.XLS and CLASSES.MDB. If
you don’t have a copy of Microsoft Access or Excel, look in the individual files
TEXT1.CLS and TEST.BAS.

Creating an Object Class
Before you can start working with your own custom objects, you must create the
object class from which they will be fabricated. You do this by adding a new class
module to your project.

Inserting a New Class Module

To add a new class module to your VBA project, select Class Module from the
Insert menu (or select Add Class Module from the Project menu, if you’re using
VB). VBA opens a new module window and adds a reference to the new class to
the Project Explorer window. You edit class modules pretty much the same way
you do normal code modules. The only difference is that class modules have two
events, Initialize and Terminate, associated with the creation and destruction of a class
instance. (See the section “The Initialize and Terminate Events” later in this chapter.)

Naming Your Class

All class modules have a Name property that is integral to the definition of an
object class: It determines the class name. The class name is what appears when
you look in the Object Browser. VB, VBA, and countless applications and compo-
nents define classes you can use in your applications. Figure 5.3 shows the Object
Browser open in the sample project. The Classes list on the left-hand side lists all
the classes available to you (or you can filter them by library using the drop-down
list), with the ones you’ve implemented using class modules shown in bold.

 A Simple Example: A Text File Class 279

F I G U R E 5 . 3
Browsing classes available

in the sample project

To name a class module, select the class module’s code window or its reference
in the Project Explorer window and open the Properties window. Set the Name
property, being sure to assign the name you want to use in any VBA programs
that use the class. Figure 5.4 shows the Properties window for one of the classes
introduced in this chapter.

F I G U R E 5 . 4
Setting the Name property

of a class module

Chapter 5 • Creating Your Own Objects with VB Class Modules280

The other class property shown in Figure 5.4, Instancing, is used in Visual Basic
programs that act as COM Automation servers—a topic not discussed in this
book—and to share classes with other VBA projects, a topic we discuss in Chapter 6.

Normally you’ll want to choose a name that is both unique and emblematic of
the class module’s purpose (e.g., TextFile). A more extensive discussion of class
naming can be found in Chapter 6.

Creating a Property
Now you know how to create a new class in your project. Yippee. Most classes are
not very useful unless they have properties you can set and retrieve. Properties
store values representing characteristics of the object. While we have seen classes
that implement methods for setting and returning values, we don’t recommend
this approach; methods are normally used to symbolize actions an object takes.

For a more in-depth discussion of when to use properties and methods, see “Specifying
Class Members” in Chapter 6.

There are two ways to create a property. The simplest approach is to create a
Public variable in the declarations section of the class module. (For the second
approach, see the section “Using Property Procedures” later in this chapter.) Consum-
ers of your class will then be able to set and retrieve a value stored in that variable. (In
other words, the property is read/write.) The variable’s name determines the name of
the property used by other parts of your program, so, as with class names, choose
something with symbolic or literal meaning. Our sample class defines a property
called AutoCreate using the following statement in the declarations section:

Public AutoCreate As Boolean

The AutoCreate property controls whether a new file is automatically created if
it doesn’t already exist.

While using Public variables to define properties is the simplest approach, it
does have several drawbacks:

• Your class has no way of knowing when an outside process has changed the
value of the property. This may be critical to your object for, say, restricting val-
ues to a given range or taking other actions in response to a change in value.

 A Simple Example: A Text File Class 281

• You can’t restrict property values or perform other data validation. For
example, you might want to restrict a property representing a person’s age
to positive real numbers.

• You can’t create read-only properties. Often it’s important for your program
to retrieve property values but not to set them, especially if they are calcu-
lated based on other data.

To overcome these drawbacks, you’ll have to use Property procedures, a topic
discussed in the section “Using Property Procedures” later in this chapter.

You can declare Private variables in your class modules. Just as with standard
modules, these become available only to procedures within the module.

Creating a Method
Just as declaring a Public variable creates a property, declaring a Public procedure
creates a method. You can create Public functions and Public subs, the only differ-
ence being that a Public function can return a value to the calling process. Our
class implements, among other things, a FileOpen method that carries out the task
of opening the file specified by the Path property of the class. Listing 5.1 shows the
VBA code that makes up the FileOpen method. Pay close attention to the Select
Case statement that calls the VBA Open statement.

We would have liked simply to call our method Open, but this conflicted with a
reserved word of our host application, Visual Basic. You may find that VBA reports
a syntax error when declaring methods or properties. In these cases, make sure
you haven’t inadvertently used a reserved word, and change the method or
property name if necessary.

➲ Listing 5.1: FileOpen Method of the TextFile Class

Public Function FileOpen() As Boolean
 On Error GoTo HandleError

 ' If a file is already open, close it
 If Me.IsOpen Then
 Me.FileClose
 End If

Chapter 5 • Creating Your Own Objects with VB Class Modules282

 ' Get next available file handle
 mhFile = FreeFile

 ' Open file based on file open mode property
 Select Case Me.OpenMode
 Case tfOpenReadOnly
 If Me.AutoCreate Then
 Open Me.Path For Binary Access Read As mhFile
 Else
 Open Me.Path For Input Access Read As mhFile
 End If
 Case tfOpenReadWrite
 Open Me.Path For Binary Access Read Write As mhFile
 Case tfOpenAppend
 Open Me.Path For Append Access Read Write As mhFile
 Case Else
 ' Bad value of OpenMode, throw an error
 Err.Raise conErrInvalidProcCall
 End Select

' Set IsOpen property variable and return value
 mfIsOpen = True
 FileOpen = True

 ' Read first line into buffer
 Me.ReadNext
ExitProc:
 Exit Function
HandleError:
 FileOpen = False
 Resume ExitProc
End Function

While the code shown in Listing 5.1 is not earth shattering by any standard (it
uses low-level file I/O functions that have been around for years), you should be
able to see the benefits of encapsulating the code in a class. You no longer have to
remember all the various forms of the Open statement. All you need to do is set
the object’s Path and OpenMode properties and call its FileOpen method. The
code encapsulated in the class does the rest, including error handling!

One item of note in Listing 5.1 is the use of the reserved word Me (for example,
“Select Case Me.OpenMode”). You use Me in class modules to refer to the current

 A Simple Example: A Text File Class 283

instance of that class. You may already be used to using Me in Visual Basic and
Access form modules. In fact, the module behind a VB or Access form, Access
report, or Office document is a class module! While you could refer to variables or
procedures directly, using Me lets you use the same object-oriented coding style
that external consumers of your object use.

Using the Me object has another benefit. If you’ve implemented a property using
a property procedure (described later in the chapter), VBA will call the procedure.
If you simply refer to the variable directly, you won’t be referencing the property
value the same way external processes do.

Table 5.2 lists all the properties and methods of the TextFile class. You may find
it useful to look through the class module and see how all the methods and prop-
erties have been declared.

T A B L E 5 . 2 : Methods and Properties of the Simple TextFile Class

Member Description

AutoCreate property If True, then a new file is created during the Open method if one
does not already exist

EOF property Returns True if you’ve reached the end of the text file (read-only)

Exists method Determines whether the file exists, based on a directory search.
Returns True or False

FileClose method Closes the text file

FileOpen method Opens the requested file, once you’ve supplied the Path (and
optionally, the OpenMode) property. If you don’t supply an
OpenMode value, the code assumes you want read-only access.

Handle property Contains the operating system file handle for the opened file (read-
only)

IsOpen property Contains True if the file is currently open, False if not (read-only)

OpenMode property Contains the file open mode:
0 for read-only
1 for read/write
2 for append
3 for read-only (fails if file does not exist)
(Read/write until the file is open, read-only after that)

Chapter 5 • Creating Your Own Objects with VB Class Modules284

Using the Object Class
Once you’ve defined a class and given it a few properties and methods, you can
use it in other VBA procedures. The first step in using a class is creating a new
instance of the class. As we mentioned earlier, you can’t simply refer to variables
or call procedures the way you would with a standard module. If you don’t believe
us, try running the following code from the Immediate window with the sample
project active:

Call FileOpen

VBA reports a compile error, “Sub or function not defined,” because it can’t
locate the procedure name in its global namespace. It remains “hidden” until you
create a new instance of the TextFile class, and then you may call it only as a
method of the class instance you create.

Creating New Class Instances

To create a new class instance, declare an object variable based on the class. You’ll
use it to store a reference to a new class instance. Variables referencing custom
classes adhere to the same rules as those referencing VBA or host application objects.
You can declare them using the Dim, Private, Public, or Global reserved word. For
example, the following code fragment declares a variable called objFile that will
hold an instance of the TextFile class:

Dim objFile As TextFile

Note that the data type in this example is the class name we defined earlier.

Path property Contains the path of the text file (read/write until the file has been
opened, read-only after that)

ReadNext method Reads the next line of text into the internal buffer. Use the Text
property to retrieve the value.

Text property Contains the text of the current line from the text file (read-only)

T A B L E 5 . 2 : Methods and Properties of the Simple TextFile Class (continued)

Member Description

 A Simple Example: A Text File Class 285

The next step is to create a new instance of the object and store a reference to it in
the variable. To do this, you use the Set statement in conjunction with the New
keyword, as in:

Set objFile = New TextFile

Although the syntax might seem redundant, you must use the New keyword in
the Set statement to create a new instance of the object. If you don’t, VBA will gen-
erate an “Object variable or With block variable not set” runtime error if you try to
use any of the properties or methods of the class. Simply declaring an object vari-
able with a Dim statement is not enough to create a new object instance.

Using Properties and Methods

Once you’ve got a variable storing a reference to a new class instance, you can use
the properties and methods defined by the class module. Listing 5.2 shows some
sample code that uses the TextFile class to open a file (we’ve used AUTOEXEC.BAT
in this case because it’s on most people’s PCs) and print each line using the prop-
erties (Path, EOF, Text) and methods (FileOpen, ReadNext, FileClose) of the class.

Save a Line of Code, but at What Cost?
It is possible to create a new instance along with the variable declaration by adding the
New keyword to the variable declaration. For example,

Dim objFile As New TextFile

Immediately after declaring an object variable in this manner, you can start using the object’s
properties and methods without first using Set. The first time VBA encounters the object
variable it will automatically instantiate the object. We don’t recommend this approach,
however. Why not?

This method of implicit instantiation saves one line of code, but it does have a drawback—
in a complex application it may not be clear where and when VBA instantiates the object.
Knowing when an object is instantiated could be crucial while debugging an application.
For this reason we recommend you use explicit instantiation—that is, use a separate Set
New statement—in your applications.

Chapter 5 • Creating Your Own Objects with VB Class Modules286

Although we have not included full listings of class modules in this chapter, you
can find them in the VBA projects on the accompanying CD-ROM.

➲ Listing 5.2: Print a File’s Contents Using the TextFile Class

' Create new instance of TextFile class
Set objFile = New TextFile

' Set the Path property
objFile.Path = "C:\AUTOEXEC.BAT"

' Try to open the file--if successful,
' read until the end of the file,
' printing each line
If objFile.FileOpen() Then
 Do Until objFile.EOF
 Debug.Print objFile.Text
 objFile.ReadNext
 Loop
 objFile.FileClose
End If

' Destroy class instance
Set objFile = Nothing

Now, isn’t this code better than including the low-level I/O routines themselves
in your code? In fact, if you’ve used DAO or ADO in VB, Access, or VBA, the code
should look very familiar. It’s similar to the way you manipulate database data
using Recordset objects.

So What Have We Done?

The few lines of code in Listing 5.2 have accomplished a number of things. First,
the code created a new instance of the object and stored a reference to it in the
object variable objFile. Then it used the reference to call the object’s properties and
methods.

 A Simple Example: A Text File Class 287

The reference stored would be called a pointer in other languages such as Pascal
and C++. A pointer is an integer that holds the memory address of another piece
of data. In other words, it points to the other piece of data. VBA doesn’t expose
the actual value of the pointer, as other languages do, but you don’t really need it.
All you need to know is that it points to some object you’ve defined and you can
use it to access that object’s properties and methods. We use the terms pointer
and reference interchangeably in this chapter to refer to the contents of an object
variable. The only time you need to think pointers is in terms of reference counting
and termination, which we describe in detail in Chapter 6.

One important point to remember is that you can have more than one pointer to
the same object. As long as an object has at least one pointer to it, VBA will keep it
in memory. For example, the code in Listing 5.3 demonstrates how you can create
two pointers to the same object by setting a second pointer variable equal to the
first. You can tell whether two pointers refer to the same object by using the Is
operator in a conditional statement.

➲ Listing 5.3: Create Multiple Pointers to the Same Class Instance

Dim objFirst As TextFile
Dim objSecond As TextFile

' Create new instance of TextFile class
Set objFirst = New TextFile

' Create a second pointer to the new instance
Set objSecond = objFirst

' Compare the two pointers
If objFirst Is objSecond Then
 ' Both pointers refer to same object
End If

In a sense, VBA keeps the object alive until nothing points to it—until it is no
longer needed. When does this happen? It can happen when the object variable
pointing to the object goes out of scope. You can also explicitly break the connec-
tion between a pointer and the object it points to by setting the pointer variable to
the intrinsic constant Nothing. That’s what we did in Listing 5.2. While this was
unnecessary because our pointer was local in scope, it is good programming style

Chapter 5 • Creating Your Own Objects with VB Class Modules288

to explicitly release objects you no longer need rather than relying on the rules of
variable scope to do it for you.

There are cases when even setting the variable to Nothing does not destroy the
pointer. This normally happens only if you have circular references. We describe
what these are and how to correct them in the section “Circular Reference Issues”
in Chapter 6.

The Initialize and Terminate Events

It is important to consider when an object instance is created and destroyed, because
you have the opportunity to run VBA code in response to each event. Unlike regu-
lar VBA modules that have no events, class modules have Initialize and Terminate
events that are triggered, respectively, when an instance of the class is first created
and when the last pointer to it is released or destroyed. You can use the Initialize
event to do such things as setting default property values and creating references
to other objects. Use the Terminate event to perform cleanup tasks.

Listing 5.4 shows the Initialize and Terminate event code for the TextFile class.
During processing of the Initialize event, the code sets the default open mode prop-
erty. In the Terminate event, the code checks to see whether a file is still open (if you
have not explicitly called the FileClose method) and then closes it. If you want a
more obvious example of when these events are triggered, try inserting a MsgBox
statement in each and watching what happens as you use instances of the class.

➲ Listing 5.4: TextFile’s Initialize and Terminate Events

Private Sub Class_Initialize()
 ' Set default file open mode property
 Me.OpenMode = tfOpenReadOnly
End Sub

Private Sub Class_Terminate()
 ' If a file is still open then close it
 ' before terminating
 If Me.IsOpen Then
 Me.FileClose
 End If
End Sub

 Using Property Procedures 289

Using Property Procedures
You now know the basic techniques for creating and using class modules in VBA.
If you’ve looked at the complete source code for the sample TextFile class, how-
ever, you will have noticed some things that we’ve not yet discussed. The remain-
der of this chapter is devoted to some of these, beginning with the second way to
implement custom properties, Property procedures. Chapter 6 builds on what
we’ve described here with a discussion of more advanced techniques.

What Are Property Procedures, and Why Use Them?
You’ve already seen how to implement properties simply by declaring a Public
variable in the declarations section of a class module. Consumers of your class can
then reference that property using the syntax object.property. We also mentioned
that the one major drawback to this approach is that your class has no way of
knowing when the value of the property has changed. Property procedures solve
this problem. Property procedures are VBA procedures that are executed when a
property is set or retrieved. During the processing of a property procedure, you
can take action regarding the property.

Property procedures come in three varieties: Property Get, Property Let, and
Property Set. Property Get procedures retrieve (or get) the values of class instance
properties. Property Let and Property Set procedures, on the other hand, set the
values of properties. The distinction between the two is that Property Let is used
for scalar values (Integer, String, and so on), while Property Set is used for object
data types. The sections that follow explain each of these in detail.

Retrieving Values with Property Get
The Property Get procedure is probably the easiest of the three types of property
procedures to understand. In its basic form, it consists of a declaration, which
includes the property name and data type, and a body, just like a normal function.
It’s up to you to return a property value by setting the procedure name equal to
the return value. For example, the following code is the Property Get procedure
for the Path property of the sample class:

Property Get Path() As String
 ' Return the path of the file from the
 ' Private class variable
 Path = mstrPath
End Property

Chapter 5 • Creating Your Own Objects with VB Class Modules290

The name of the Property procedure, Path, defines the property name, and the
return type (String, in this case) defines the property’s data type. When another
procedure references the property using code like this:

Debug.Print objFile.Path

VBA calls the procedure, and the value of a Private class module variable (mstr-
Path) is returned. Of course, you can do anything within a Property procedure
that you can within any VBA procedure (such as perform a calculation or query a
database), so how you arrive at the value to be returned is completely up to you.

Going beyond the simple example shown above, you can create Property Get
procedures that accept arguments, although it is rather unconventional (normally
only methods accept arguments). Property procedure arguments are declared just
like arguments of normal VBA procedures. You could use parameters to imple-
ment multivalued properties. For example, suppose your application required
you to compute weekly payroll dates. You might create a class with a PayDay
property that accepts a week number and returns the associated payroll date. The
declaration of that property might look like this:

Property Get PayDay(ByVal intWeek As Integer) As Date
 ' Compute the appropriate payroll date
 PayDay = datSomeDate
End Property

Your program could then access the property by passing the arguments inside
parentheses, after the property name:

datPayDay = objPayRoll.PayDay(12)

In practice there are very few properties that accept parameters, even though it is
possible to create them. Normally developers use methods instead, adding a verb
to the member name, as in GetPayDay(number) and SetPayDay(number).

Setting Values with Property Let
The counterpart to Property Get is Property Let. You create Property Let proce-
dures to allow consumers of an object to change the value of a property. Listing
5.5 shows the Property Let procedure for the Path property of the sample class.

 Using Property Procedures 291

➲ Listing 5.5: Property Let Procedure for the Path Property

Property Let Path(ByVal strPath As String)
 ' Set the path property of the file--
 ' If a file is already open, close it
 If Me.IsOpen Then
 Me.FileClose
 End If
 mstrPath = strPath
End Property

Notice that the code in Listing 5.5 uses the same name (Path) as the Property Get
procedure. Property procedures are the only VBA procedures that can have the
same name within a single module. Notice also the argument to the procedure,
strPath. VBA passes the value set by the object’s consumer in this argument. For
example, if another VBA procedure used a statement like this:

objFile.Path = "C:\AUTOEXEC.BAT"

VBA would pass the string “C:\AUTOEXEC.BAT” to the Property procedure in
the strPath argument.

This syntax takes a little getting used to. Normally parameter values are not passed
to a procedure using an assignment statement, but Property Let (and Property Set)
procedures are the exception.

Like Property Get procedures, Property Let procedures can accept additional
parameters. In this case, the last argument in the list is the property value set by
the calling procedure. Continuing the above example, suppose your VBA pro-
gram allowed procedures to set the payday of a given week. Your Property Let
procedure might look like this:

Property Let PayDay(ByVal intWeek As Integer, _
 ByVal datPayDay As Date)
 ' Change the appropriate payroll date
End Property

You could then set the property value using code like this:

objPayRoll.PayDay(12) = #3/22/2000#

Chapter 5 • Creating Your Own Objects with VB Class Modules292

The date value (in this case, March 22, 2000) is passed to the Property procedure in the
last argument, datPayDay. The week number is passed to the procedure in intWeek.

The two primary benefits of using a Property Let procedure rather than a Public
variable are (1) taking action in response to a property value change and (2) per-
forming data validation. The Path Property Let demonstrates the first benefit,
closing an existing file before allowing the property value to be changed. For an
example of data validation, see the OpenMode Property Let statement described
in the section “Creating Enumerated Types” later in this chapter.

Read-Only and Write-Only Properties
You need not have Property Get and Property Let procedures for each property
you wish to implement. By defining only a Property Get procedure, you create, in
effect, a read-only property—one that can be retrieved but not set. Likewise,
defining only a Property Let procedure produces a write-only property (although
these are rare in practice).

We make heavy use of read-only properties in our sample TextFile class for
properties like Handle, which makes no sense to set directly as it’s derived from
the operating system. While consumers of the class can’t set the value of read-only
properties, procedures inside the class can by writing directly to the Private vari-
ables that store the property values.

Creating Object Properties
The Property Set procedure, designed to let you create object properties, is a vari-
ation of the Property Let procedure. Object properties are properties that are them-
selves pointers to objects, rather than scalar values. For example, suppose you
wanted to create a property of one class that was itself a pointer to an instance of
another class. You would need to define a Property Set procedure to allow con-
sumers of the first class to set the property value.

The code in Listing 5.6 defines a Property Set procedure called SaveFile that
might be part of a class representing text documents. The class stores a pointer to
the TextFile object used for persistent storage of the document’s contents.

 Using Property Procedures 293

➲ Listing 5.6: Property Set Procedure for an Object Property, SaveFile

' Private variable used to store a reference
' to the TextFile object associated with this class
Private mobjSaveFile As TextFile

Property Set SaveFile(objFile As TextFile)
 ' Make the private class variable point
 ' to the TextFile object passed to the procedure
 Set mobjSaveFile = objFile
End Property

VBA procedures could then set the pointer defined by the SaveFile property to
point to another instance of the TextFile class. (Important: note the use of the Set
reserved word.)

Set objDoc.SaveFile = New TextFile

Once the reference has been established, the procedure could then manipulate
properties and call methods of the TextFile object pointed to by the document
object’s SaveFile property:

objDoc.SaveFile.Path = "C:\AUTOEXEC.BAT"
objDoc.SaveFile.FileOpen

At this point you might be wondering, “If I use Property Set to set the value of
an object property, how do I retrieve its value?” As it turns out, you can use Prop-
erty Get procedures for both scalar values and object pointers. You just need to
declare the return value as an object data type. For instance, if you wanted to write
the corresponding Property Get procedure for the SaveFile property, it might look
like this:

Property Get SaveFile() As TextFile
 ' Return the pointer contained in the
 ' private class variable
 Set SaveFile = mobjSaveFile
End Property

Again, notice the use of the Set reserved word in all assignment statements
involving object pointers.

Chapter 5 • Creating Your Own Objects with VB Class Modules294

Creating Enumerated Types
Often when developing custom classes you’ll find yourself needing to define a
series of constants for a given property or method. The OpenMode property of
our TextFile class is a good example. There are only three discrete values that
OpenMode can have and these are represented by constant values. While normal
VBA constants are useful, you can provide even more usability by defining an
enumerated type for a set of constants. Enumerated types provide you with enhanced
developer IntelliSense features when using your class. We’ve created an enumer-
ated type for OpenMode constants that provides the pop-up list of possible values
while coding, shown in Figure 5.5.

F I G U R E 5 . 5
An enumerated type

defines the list of constants
displayed while

writing code.

Defining an Enumerated Type
You create an enumerated type just like a user-defined type—using a multiline
structure. Here’s the definition for the enumerated type used by the OpenMode
property:

' Enumeration for file open mode
Public Enum TextFileOpenMode
 tfOpenReadOnly
 tfOpenReadWrite
 tfOpenAppend
End Enum

 Creating Enumerated Types 295

As you can see, the code block begins with the Enum keyword (optionally mod-
ified by Public or Private keywords) and a unique name for the type. Unless you
declare the type as Private, the type name must be unique with respect to the
scope of the entire project. End Enum terminates the code block. The lines in
between represent each enumerated constant value. You’ll notice in our exam-
ple that we’ve included only constant names and no values. This is perfectly valid,
and VBA will assign each constant a long integer value starting at zero and incre-
menting by one. Therefore tfOpenReadOnly evaluates to 0, tfOpenReadWrite is 1,
and tfOpenAppend is 3. We’ve omitted values since we only need to distinguish
between different constants—the actual numeric values have no intrinsic mean-
ing. If you want or need to, however, you can assign specific values, as in this
example:

' This uses some specific values
Public Enum TextFileOpenMode
 tfOpenReadOnly = -1
 tfOpenReadWrite = 1
 tfOpenAppend
End Enum

In this case the first two constants have explicitly assigned values. The other
constant is assigned an incrementing value starting at the last explicit value (i.e.,
the number 2).

Enumerated type constants are limited to long integers. You cannot create enumerated
types using other data types.

Using Enumerated Types with Methods and Properties
Once you’ve defined an enumerated type, you use it just as you would any other
data type, for example, in variable, argument, and return type definitions. It’s this
usage that provides the IntelliSense features in the editor. The OpenMode prop-
erty of our TextFile class uses the TextFileOpenMode type as its return and argu-
ment data types:

Property Get OpenMode() As TextFileOpenMode
 ' Retrieve the open mode of the file
 OpenMode = mlngOpenMode
End Property
Property Let OpenMode(ByVal lngMode As TextFileOpenMode)

Chapter 5 • Creating Your Own Objects with VB Class Modules296

 If Not Me.IsOpen Then
 Select Case lngMode
 Case tfOpenReadOnly, tfOpenReadWrite, tfOpenAppend
 mlngOpenMode = lngMode
 Case Else
 Err.Raise conErrInvalidProcCall
 End Select
 End If
End Property

Whenever you use an enumerated type in place of a normal data type, VBA dis-
plays the list of constant values when it detects that you’re editing an assignment
or comparison statement. This makes it very easy to remember which choices
apply and is extremely helpful for other developers using your classes.

Simply defining an argument or variable using an enumerated type does not limit
the values to those defined as part of the enumerated type. VBA treats the vari-
able or argument internally as a long integer, and thus you can substitute any long
integer value in place of one of the constants. That’s why our code uses a Select
Case statement to ensure that the parameter is one of the allowable values. If it’s
not, the procedure raises runtime error 5, “Invalid procedure call or argument.”

Applying Class Module Techniques to the
Windows API

The Windows API (Application Programming Interface) is an extremely powerful
library of functions from which all Windows applications are created. Numbering
in the thousands, API functions let Windows programmers do everything from
creating new application windows to managing memory to obtaining critical
operating information, such as free disk space. Through VBA’s ability to call
external library functions, including those in the Windows API (WinAPI for
short), you can tap into this power. Traditionally, however, calling WinAPI func-
tions has been a complex undertaking, requiring knowledge of internal Windows
architecture and the C programming language, the lingua franca of Windows
developers. By taking advantage of VBA class modules, though, you (or someone
else) can encapsulate Windows API functionality in easy-to-use object classes. In

 Applying Class Module Techniques to the Windows API 297

this section we suggest one example, creating a class module containing Windows
clipboard functions, as a way of proving the usefulness of class modules. Other
chapters of this book explore the Windows API in more depth, and you’ll find we
use class modules extensively.

Working with the Clipboard
The Windows clipboard is an ideal candidate for our example class for two rea-
sons. First, working with the clipboard is complex, requiring no fewer than 12 API
functions to move text to and from it. Second, with the exception of Visual Basic,
there is no way to interact with it using VBA alone. In this example we show you
how to create a VBA class with methods to copy text to the clipboard and back.

Before discussing the required functions, let’s look at what needs to be done to
put a text string onto the clipboard:

1. Allocate a block of global memory to hold the text.

2. Lock the memory so Windows doesn’t move it while you’re working with it.

3. Move the text from VBA’s memory into the global memory block.

4. Unlock the global memory block. (You can’t send the clipboard locked
memory.)

5. Empty the current contents of the clipboard.

6. Open the clipboard. This gives you access to it.

7. Point the clipboard at your global memory block. This is, in effect, what
“copies” the data to the clipboard.

8. Close the clipboard.

9. Free the global memory.

And that’s just getting the text there! Getting it back involves a similar number
of steps.

Designing the Clipboard Class
To make things simpler, we’ve created a Clipboard class that implements three
methods and one property, as described in Table 5.3.

Chapter 5 • Creating Your Own Objects with VB Class Modules298

You might be asking yourself why we implemented seemingly redundant
methods, GetText and SetText, when the class has a Text property. The reason is
that even though using a property like Text is more intuitive, the Clipboard object
implemented by Visual Basic uses methods. By implementing both we make it
easy to copy code from a VB project that uses the built-in clipboard object to a
VBA project that uses our custom class. For new VBA projects you can simply use
the Text property (which itself calls the methods).

Listing 5.7 shows the code that makes up the property and methods. Note the
relative complexity of GetText and SetText.

➲ Listing 5.7: Contents of the Clipboard Class Module

Function SetText(Text As String) As Variant
 Dim varRet As Variant
 Dim fSetClipboardData As Boolean
 Dim hMemory As Long
 Dim lpMemory As Long
 Dim lngSize As Long

 varRet = False
 fSetClipboardData = False

 ' Get the length, including one extra for a CHR$(0)
 ' at the end.
 lngSize = Len(Text) + 1
 hMemory = GlobalAlloc(GMEM_MOVABLE Or _
 GMEM_DDESHARE, lngSize)

T A B L E 5 . 3 : Methods and Properties of the Clipboard Class

Member Description

Text property Sets or retrieves text from the clipboard

GetText method Retrieves text from the clipboard

SetText method Places text on the clipboard

GetErrorText Returns the textual description of a clipboard error given an error code

 Applying Class Module Techniques to the Windows API 299

 If Not CBool(hMemory) Then
 varRet = CVErr(ccCannotGlobalAlloc)
 GoTo SetTextDone
 End If

 ' Lock the object into memory
 lpMemory = GlobalLock(hMemory)
 If Not CBool(lpMemory) Then
 varRet = CVErr(ccCannotGlobalLock)
 GoTo SetTextGlobalFree
 End If

 ' Move the string into the memory we locked
 Call MoveMemory(lpMemory, Text, lngSize)

 ' Don't send clipboard locked memory.
 Call GlobalUnlock(hMemory)

 ' Open the clipboard
 If Not CBool(OpenClipboard(0&)) Then
 varRet = CVErr(ccCannotOpenClipboard)
 GoTo SetTextGlobalFree
 End If

 ' Remove the current contents of the clipboard
 If Not CBool(EmptyClipboard()) Then
 varRet = CVErr(ccCannotEmptyClipboard)
 GoTo SetTextCloseClipboard
 End If

 ' Add our string to the clipboard as text
 If Not CBool(SetClipboardData(CF_TEXT, _
 hMemory)) Then
 varRet = CVErr(ccCannotSetClipboardData)
 GoTo SetTextCloseClipboard
 Else
 fSetClipboardData = True
 End If

SetTextCloseClipboard:
 ' Close the clipboard

Chapter 5 • Creating Your Own Objects with VB Class Modules300

 If Not CBool(CloseClipboard()) Then
 varRet = CVErr(ccCannotCloseClipboard)
 End If

SetTextGlobalFree:
 If Not fSetClipboardData Then
 'If we have set the clipboard data, we no longer own
 ' the object--Windows does, so don't free it.
 If CBool(GlobalFree(hMemory)) Then
 varRet = CVErr(ccCannotGlobalFree)
 End If
 End If

SetTextDone:
 SetText = varRet
End Function

Public Function GetText() As Variant
 Dim hMemory As Long
 Dim lpMemory As Long
 Dim strText As String
 Dim lngSize As Long
 Dim varRet As Variant

 varRet = ""

 ' Is there text on the clipboard? If not, error out.
 If Not CBool(IsClipboardFormatAvailable _
 (CF_TEXT)) Then
 varRet = CVErr(ccClipboardFormatNotAvailable)
 GoTo GetTextDone
 End If

 ' Open the clipboard
 If Not CBool(OpenClipboard(0&)) Then
 varRet = CVErr(ccCannotOpenClipboard)
 GoTo GetTextDone
 End If

 ' Get the handle to the clipboard data
 hMemory = GetClipboardData(CF_TEXT)

 Applying Class Module Techniques to the Windows API 301

 If Not CBool(hMemory) Then
 varRet = CVErr(ccCannotGetClipboardData)
 GoTo GetTextCloseClipboard
 End If

 ' Find out how big it is and allocate enough space
 ' in a string
 lngSize = GlobalSize(hMemory)
 strText = Space$(lngSize)

 ' Lock the handle so we can use it
 lpMemory = GlobalLock(hMemory)
 If Not CBool(lpMemory) Then
 varRet = CVErr(ccCannotGlobalLock)
 GoTo GetTextCloseClipboard
 End If

 ' Move the information from the clipboard memory
 ' into our string
 Call MoveMemory(strText, lpMemory, lngSize)

 ' Truncate it at the first Null character because
 ' the value reported by lngSize is erroneously large
 strText = Left$(strText, InStr(1, strText, Chr$(0)) - 1)

 ' Free the lock
 Call GlobalUnlock(hMemory)

GetTextCloseClipboard:
 ' Close the clipboard
 If Not CBool(CloseClipboard()) Then
 varRet = CVErr(ccCannotCloseClipboard)
 End If

GetTextDone:
 If Not IsError(varRet) Then
 GetText = strText
 Else
 GetText = varRet
 End If
End Function

Chapter 5 • Creating Your Own Objects with VB Class Modules302

Property Get Text() As String
' Wrapper for GetText method

 Dim varRet As Variant

 varRet = Me.GetText
 If IsError(varRet) Then
 Err.Raise vbObjectError + varRet, , GetErrorText(CLng(varRet))
 Else
 Text = CStr(varRet)
 End If
End Property

Property Let Text(strText As String)
' Warpper for SetText method

 Dim varRet As Variant

 varRet = Me.SetText(strText)
 If IsError(varRet) Then
 Err.Raise vbObjectError + varRet, , GetErrorText(CLng(varRet))
 End If
End Property

You can see from the comments in the code that it follows the steps listed in the
previous section.

Note the use of Err.Raise in the Text property procedures to raise a custom runtime
error. Handling errors inside class modules is discussed in the section “Error
Handling in Classes” in Chapter 6.

 Summary 303

Testing the Clipboard Class
Using our Clipboard class is about as easy as understanding the code in Listing 5.7 is
difficult! To place text on the clipboard, all you have to do is declare a new instance of
the class and call its Text property. Similarly, to retrieve text from the clipboard,
retrieve the Text property value. The following code illustrates these steps:

Sub TestClip()
 Dim objClip As Clipboard

 ' Instantiate the object
 Set objClip = New Clipboard

 ' Put some text on the clipboard
 objClip.Text = "Test String"

 ' Take it off
 Debug.Print objClip.Text
End Sub

If this example doesn’t convince you of the value of class modules, we doubt
anything will. We’ve encapsulated several pages of complex API source code into
a single, simple property. As you use VBA and the Windows API together, you’ll
likely see other functions that would benefit from encapsulation in this manner—
in fact, you’ll find a great deal more in other chapters of the book!

Summary
This chapter has provided you with the basic information necessary to begin
using VBA class modules, one of the most powerful features of VBA. By encapsu-
lating complex functionality and code in class modules, you can develop applica-
tions that are easier to program and maintain. Of course, it all starts with thinking
about the problem you’re trying to solve in terms of object classes. Once you’ve
identified the components, it is relatively easy to model them using class modules.
Simply create one class for each “thing” you want to model.

Chapter 5 • Creating Your Own Objects with VB Class Modules304

This chapter also explored class module coding techniques. We showed you
how to create a class, its properties, and methods and how to create and use an
instance of that class. Finally, we presented a useful class example for manipulat-
ing the Windows clipboard.

When deciding how to take advantage of VBA class modules, you are limited
only by your imagination. Just keep the following tips in mind:

• Create one class for each “thing” you want to model.

• Use Property procedures when you need to control how property values are
set and retrieved.

• Use enumerated types to help yourself (and others) use your classes.

Chapter 6 continues our discussion of class modules by looking at more advanced
techniques like collections, object models, and error handling.

c h a p t e r

6

Advanced Class Module
Techniques

�

Establishing a hierarchy of object classes

�

Creating and managing collections of objects

�

Developing interface classes

�

Enabling classes with custom events

Chapter 6

•

Advanced Class Module Techniques

306

O

nce you’ve mastered the basics of using VBA class modules, there’s still a lot
more to learn about these powerful tools. As your classes get more complex and as
their numbers increase, it becomes more important to know how to use them most
effectively. This chapter continues what Chapter 5 started by discussing a number
of advanced topics. By reading this chapter, you’ll learn about creating object
model hierarchies, a required skill for developing complex, class-based applica-
tions. Creating collections of objects is another required skill, and you’ll see how
to use VBA class modules to create collections far more useful than VBA’s built-in
collection object. We also discuss a number of other topics that will round out
your knowledge of class modules, including error handling, interface classes and
the Implements keyword, and custom events. Before diving into source code, we
begin the chapter by taking a look at the design principle around object models
and class hierarchies.

Table 6.1 lists the sample files included on the CD-ROM. You’ll find all the sample
code discussed in the chapter in these files.

T A B L E 6 . 1 :

Sample Files

Filename Description

ADVCLASS.XLS Excel workbook containing sample code

ADVCLASS.MDB Access 2000 database containing sample code

ADVCLASS.VBP Visual Basic project containing sample code

TEXT2.CLS TextFile2 class module

TEXT3.CLS TextFile3 class module

TEXT4.CLS TextFile4 class module

LINE.CLS Line class module

LINES.CLS Lines collection class module

TEST.BAS Test functions

CUST.CLS Sample Customer class

INVOICE.CLS Sample Invoice class

EVENTS.CLS Custom events test class

ICALLBACK.CLS Callback interface class

IWCALL.CLS Immediate window callback class

 Object Model Design Principles

307

Object Model Design Principles

In this chapter, we show you how to take multiple classes and link them together
in what’s known as an

object model

. An object model expresses the relationships
between classes

.

 Usually, a natural hierarchy is formed by object relationships.
Consider the diagram in Figure 6.1, which graphically depicts the object model for
a fictitious accounting application.

F I G U R E 6 . 1

The object model for a
fictitious accounting

application

You can see from Figure 6.1 that a relationship exists between invoice and cus-
tomer and between invoice and payment. It is generally a good idea to create a
sketch like the one in Figure 6.1 before beginning to program an application. It
makes it very clear what object classes exist and how they relate to one another.

The exact way in which the classes are arranged, plus the way each class itself is
designed, determines how useful the object model is and how easy it is for other

LBCALL.CLS List box callback class

REF1.CLS Circular reference test class

REF2.CLS Circular reference test class

MAIN.FRM Start-up form for the Visual Basic project

EVENTS.FRM/EVENTS.FRX Custom events test form

IMPL.FRM/IMPL.FRX Callback test form

REF.XLS Project reference test project

T A B L E 6 . 1 :

Sample Files

(continued)

Filename Description

Chapter 6

•

Advanced Class Module Techniques

308

developers to understand. Therefore, it makes sense to spend some time thinking
about the overall design before you begin writing code. There are several factors
you should consider when designing an object model for an application:

•

What classes are you going to need?

•

What members (properties, methods, events, etc.) will each class require?

•

How should you name your classes and members?

•

Are there relationships between classes, and how will you represent them?

•

Are any relationships one-to-many?

In this and the next sections, we’ll provide guidelines and coding examples that
should help you address these factors in your applications.

Determining Class Requirements

Not surprisingly, the first question you need to ask yourself revolves around the
classes you require to effectively model your application. There is no fixed rule
that adequately serves every situation, but there are guidelines that you can fol-
low that should help you. As you become more experienced in creating objects,
you’ll take these guidelines into account implicitly.

Conceptual Data Objects

Perhaps the easiest way to begin is by examining the different data entities in your
application. For example, if you were to create a customer management applica-
tion, you might model customers, accounts, salespeople, and promotions as data
objects. These are all candidates for representing as classes since they all have things
that describe them (properties), and they all have things that they do or have done
to them (methods). Data classes are also pretty easy to define since they map closely to
any database schema you create, usually having a one-to-one relationship with
the main data tables you define.

User Interface Constructs

Another area of your application to look at is the user interface (UI). Often it makes
sense to model your user interface using classes, even if you’re using a tool like
Visual Basic that provides object-based UI tools. The reason is that classes let you

 Object Model Design Principles

309

extend the interfaces of built-in UI objects to add additional business logic. The
same holds true for Office documents programmatically exposed through VBA.
For example, suppose you are developing an expense-reporting application using
Microsoft Excel and using Excel worksheets as your main user interface element.
Your code could manipulate instances of the Worksheet class directly but it’s
likely that expense reports, being a particular type of worksheet, have additional
business logic associated with them. The solution is to either extend the Work-
sheet class by adding additional properties and methods, or to create a new class
that “wraps” the Worksheet class and exposes its own interface.

Application Processes

A third area of your application to examine for the potential to apply class module
techniques are processes that operate on data or services that your application
provides. These are processes not necessarily linked to a particular data object,
like a customer, but more generic services like disk storage or memory allocation.
For instance, take the example of an application that writes disparate types of data
to a single data store like Microsoft Exchange. An alternative to encoding the logic
for reading and writing data in each data object class would be to create a single
class to manage storage that could operate on any data object passed to it. The
advantage to this approach is that if you decide to add or change the data storage
mechanism, you need to add or change a single class containing the specific code.
Your data classes remain unchanged.

Remember: Draw Strict Boundaries

Above all, when developing your list of classes, remember to draw very clear
boundaries between classes. The key to proper encapsulation and the long-term
capacity for reuse is making sure each class implements very discrete areas of
functionality. For example, avoid defining a class that represents both customers
and invoices unless you’re sure that’s the best way to model your application. It
will be unlikely that you could use the class for other applications later on that
need only one or the other data object. And, never mix user interface logic with
data logic. This ties the class to a particular user interface implementation and
makes it difficult or impossible to reuse it in other applications that use different
technology.

Chapter 6

•

Advanced Class Module Techniques

310

Specifying Class Members

Once you’ve decided what classes your application will need, you can specify the
exact properties, methods, and events each one will have. While this might seem like
an obvious step, it’s important to approach it with just as much care as any other part
of the design process. The members you decide to implement (and, just as important,
those you don’t) determine the usefulness of your class. Once again, there is no set
rule for defining members, except a set of guidelines that you can follow.

Keep It Simple

The first, and most important, rule for deciding what properties, methods, and
events a class needs is to start simple and try to keep it that way. You don’t neces-
sarily have to implement everything someone would want to do with a class in
the class itself. After all, you and other developers need to write some code that
uses the class; otherwise, programming an application would be very boring! Fur-
thermore, once you implement and start using a class, it becomes nearly impossible
to change it because developers and applications depend on the initial interface
you define. In other words, it’s very easy to add new members over time in response
to experience and feedback, but it’s very difficult to remove or change existing ones.

Choose Properties for Values and Methods for Actions

When designing a custom class, it’s entirely up to you to decide which members
should be represented as properties and which as methods. Under the covers, in the
COM world, there is no difference—everything’s a function call—but properties
and methods are closer conceptually to object-oriented principles. Traditionally,
properties are used to represent simple values implemented using single variables
or calculations based on in-memory data. On the other hand, methods usually
denote an implementation requiring non-trivial amounts of code and indicate some
appreciable measure of “work” required to achieve the desired result.

Sometimes it is necessary to implement as a method what would normally be
considered a property. You might do this because retrieving or setting the value
requires more work than referencing a variable, and you want to imply this in the
object model. (For example, a property that determines if a printer is functioning
properly might require several, possibly time-consuming, steps. So, you might
choose to implement this as a method instead.) This approach also applies when
changing a property setting requires more than one value. In this case, a method
with multiple arguments is more appropriate.

 Object Model Design Principles

311

Whenever you choose to implement a method when a property might also make
sense, a good way to call this out in the object model is to prefix

Get

 and/or

Set

 to

the name, as in SetThreeDFormat and GetSetting.

Don’t Reinvent the Wheel

One common urge felt by application designers when designing classes is to come
up with a better way to implement existing functionality. You can even see this
“not invented here” attitude reflected in software from large commercial compa-
nies like Microsoft. For example, for years the accepted way to determine the
number of items in a collection was to inspect the

Count

 property. However,
recently, Microsoft’s Internet technologies (IE, MSHTML, MSXML) implemented
object models in which collection items were inventoried using a property called

length

. Developers making the transition from applications like VB and Office to
Web technologies have had to deal with this difference. While we’re sure someone
thought there was a good reason for this, we use it as an example of how changing
the way common tasks are performed usually serves no purpose but to annoy and
confuse developers. If you’re implementing commonly recognized functionality,
do your customers a favor and just design it the way everybody’s used to.

Avoid Overusing Computed Properties

Another common urge, and one that violates the first rule of simplicity, is to add a
large number of computed properties to a class. A computed property is one
that’s derived from other property values. A good example would be the Total
property of an invoice line item. Chances are it’s a read-only property based on
the Price and Quantity properties and, therefore, is something the consumer of
your class could derive herself. The question you should ask yourself is, “How
often will someone need to compute this property?” In our example, the Total
property is probably used often, and, therefore, it makes sense to include it as an
intrinsic class property. On the other hand, something like IsQuantityGreater-
ThanTwelve is probably not worth implementing in the class because it won’t be
used that often. Okay, we’re being a little extreme in this case, but only to make a
point. Remember that the developers using your class can always compute what-
ever value they need. You don’t have to do it all for them.

Help the Developer

That’s not to say you shouldn’t add members that help the developer perform
tasks that would be inconvenient, difficult, or impossible otherwise. The Total

Chapter 6

•

Advanced Class Module Techniques

312

property, mentioned in the last section, is one example because it’s used often.
Therefore, not implementing it would only make needless work for the developer.
Another example commonly found in object hierarchies is the Parent property of
an object. Parent provides a pointer to the object immediately above the current
one in the hierarchy and makes it easy for a developer to write code that navigates
the entire tree. Microsoft Office object models feature this property extensively.

Other examples include

active object

 properties. These properties, such as Active-
Window, ActiveForm, or ActiveControl, are found in user interface object models
and return pointers to objects that have the input focus, or appear at the top of the
three-dimensional on-screen Z-order. If your application maintains state informa-
tion internally, it often makes sense to expose things like the active window as
properties of a class. And it’s not limited to user interface objects, either. Data
properties, like ActiveConnection and CurrentUser, are other examples.

Extend Your Classes Using Events

One tool that aids in keeping your classes simple is the ability to create custom
events, a subject we cover in detail later in this chapter. Events are your way to let
other developers take action in response to things you do inside the class’s code.
They relieve you of the burden of trying to figure out in advance everything a
developer might want your class to do. Consider the example of a data class that
implements a method for deleting a record from a database. In developing the
class, you might ask yourself, “I wonder if the developer would want to write to a
log file that the record was deleted. Should I add this to the class’s code?” By imple-
menting the right events, such as BeforeDelete and AfterDelete, you let the devel-
oper decide what additional action needs to be taken. Again, you don’t need to
think of everything yourself, and your class is kept simple.

Object Model Naming

Believe it or not, what you name your classes and their members can be a very
controversial issue. That’s because, like everything else involved in the design
process, the decisions you make affect the general usability of the object model.
Here’s what you should think about when deciding on a name.

Many of the example names in this section come from Microsoft Excel’s object model.

 Object Model Design Principles

313

Say What It Does

The most important consideration is to choose names that represent the function-
ality of the class and its members. Typically, this means brief, English word
descriptions like Form, Workbook, Visible, Caption, etc.

Even if you localize your application class, member names should remain in English
to accommodate scripting languages that rely on names to access properties and

methods.

When necessary, you can use short phrases to describe members. But be careful
not to make them too long because this quickly becomes inconvenient for other
developers. Also, use abbreviations when necessary—for example, PromptFor-
SummaryInfo, ActivateMicrosoftApp, WorkbookBeforeSave.

Prefixing

It’s common practice when writing code to prefix names with letters that indicate
the data type and other information. You can apply the same rules to classes, but
you should keep in mind how the classes will be used. Classes exposed to VB and
VBA applications normally don’t include prefixes on class, member, or argument
names because this makes it easier to read the declarations in the Object Browser
and editor IntelliSense prompts.

One suggested exception is an

interface class

. An interface class defines the interface
for an object but not for its implementation. You normally use interface classes with
one or more

implementation classes

 by adding the Implements keyword to an imple-
mentation class’s declarations section. Interface class names are often prefixed with a
capital

I

 to indicate that they define the interface only and have no intrinsic functional-
ity. We explain interface classes and the Implements keyword later in this chapter.

Occasionally, you will see object models where every non-interface class is
prefixed with a capital

C

. While this does distinguish an implementation class from
the interface class it’s based on, unless you have a large number of interface

classes, the

C

 is redundant, and you’re better off omitting it.

Capitalization

Traditionally, object models have featured class, member, and argument names that
begin with capital letters and include other capital letters at word breaks when the

Chapter 6

•

Advanced Class Module Techniques

314

name is made up of more than one word (for example, Workbook, ActiveWindow).
Recently, Microsoft’s Web technologies have adopted a naming convention that
changed the initial letter to lowercase, referred to as “camel case” (for example, length,
parentWindow). Now that there are two precedents, the convention you choose
depends on what realm your application belongs in and who your developers are. If
you are developing a traditional Windows application and the developers using your
object model are VB or VBA programmers, you should stick to the traditional initial-
caps convention. On the other hand, if you’re developing components for Web appli-
cations, follow those guidelines. In either case, be consistent across your object model.

Verbs, Nouns, and Adjectives

Another choice you need to make is whether to use verbs, nouns, or adjectives in
your member names. Normally, nouns and adjectives are used to denote proper-
ties, and verbs are used to denote methods. While this is a subtle difference, verbs
imply more substantial action than simply to “set or retrieve this value.” Exam-
ples of noun and adjective properties include Worksheets, Visible, Height, and
Name. Common verbs include Calculate, Undo, and CopyPicture.

For Boolean properties, consider prefixing property names with the word

Is

 to
imply a True or False value (for example, IsOpen, IsCalculated). Unfortunately,
the Microsoft object models are not consistent in this regard, but it is a useful sug-
gestion nonetheless.

Event naming is also inconsistent in Microsoft object models. Traditional object
models, like those in Microsoft Office, simply use the name of the event as a verb,
as in Activate, Close, and Calculate. When the state context is important, it’s added
to the beginning of the name (for example, BeforeDelete, AfterDelConfirm). Web-
based object models use a slightly different approach, beginning each event with
the word

on

, as in onload, onfocus, and onclick. (Note, too, that these are all lower-
case words.) This makes it easy to distinguish events from methods, something
that can be unclear otherwise. (For instance, Excel’s Workbooks have both an Acti-
vate method and an Activate event.) Again, which convention you choose should
be driven by consistency with your focus and developer base, although a hybrid
approach is also possible—for instance, combining the

on

 prefix with mixed case.

Modeling Class Relationships

Almost without exception, whenever you have an object model with more than a
few classes, there will be natural relationships between classes. (If there aren’t,

 Developing Object Hierarchies

315

perhaps you haven’t factored each class correctly.) One of the final steps in object
model design is identifying and properly modeling these relationships.

Containment

The most common type of relationship is containment, where one class can be
viewed as being contained within, or subordinate to, another. An obvious example,
because of its user interface implications, is the relationship between Excel Work-
sheet and Workbook classes. Just by looking at the user interface, it’s easy to see
that a Worksheet is contained within a Workbook. Therefore, it should appear
subordinate to the Workbook class in the object model.

This also implies a parent-child relationship, meaning that the Worksheet class
should implement a Parent property that holds a pointer to the Workbook that it’s

contained within.

Another, non-UI example is the relationship between an Excel add-in and the
Application class. An add-in is a feature of the application and, therefore, is subor-
dinate to it in the object model, even though there is no user interface to provide
this guideline.

One-to-Many Relationships

Both of the previous examples, worksheets and add-ins, are one-to-many relation-
ships. That is, one workbook can contain one or more worksheets, and there may
be one or more add-ins loaded in the application. In these cases, you’ll need to
implement a collection of objects, and it is the collection class, not the individual
object class, that becomes the subordinate object. For example, Excel’s Workbook
class actually implements a property that returns a pointer to a Worksheets collec-
tion. The individual object class then becomes subordinate to the collection class.
We show you how to create collections and collection classes later in this chapter.

Developing Object Hierarchies

Now that we’ve covered the theory behind designing object models, its time to
show you the techniques you use in VBA to implement them. Since Chapter 5 cov-
ered the basics of individual class design, we pick up where it left off and discuss

Chapter 6

•

Advanced Class Module Techniques

316

implementing object model hierarchies. For the first few examples, refer back to
Figure 6.1, which depicted a fictitious accounting object model involving custom-
ers, invoices, and payments.

Visual Basic includes a wizard (the Class Builder Wizard) that can assist you in
creating classes and object models. It’s available from the VB Add-in Manager. It
features a menu-driven and tree-view interface but gives you no control over the
code it produces. If you aren’t particular about coding style or naming conventions,

you might find this tool useful.

Once you have an object model that represents your application, you can begin
constructing class modules—one for each object in the diagram. To represent rela-
tionships between objects, declare pointers to child objects in the declarations sec-
tion of the parent class module. For example, to model the relationship between
invoice and customer (assuming classes named Invoice and Customer, respec-
tively), you would create a Customer property of the Invoice class that returned a
pointer to a Customer class instance:

Private mobjCustomer As Customer

Property Get Customer() As Customer
 ' Return pointer to Customer instance
 Set Customer = mobjCustomer

End Property

Note that you can, in fact, declare object variables and properties with the same

name as the class they are based on.

As with any class, you need to create a new instance of the Customer class. Nor-
mally, the correct place to do this is in the Invoice class’s Initialize event:

Private Sub Class_Initialize()
 ' Create a new Customer instance
 Set mobjCustomer = New Customer

End Sub

 Developing Object Hierarchies

317

By placing the code here, a Customer class instance is automatically created
when you create a new instance of the Invoice class. You can then use the invoice
object to set properties of the customer instance, as the following code fragment
demonstrates:

Dim objInvoice As Invoice

Set objInvoice = New Invoice
Set objInvoice.Customer.FirstName = "Jane"
Set objInvoice.Customer.LastName = "Smith"

' and so on...

The ability to create object hierarchies using class-level pointer variables is an
extremely powerful feature of VBA. It lets you develop and test objects, like the
Customer object in this example, separately and then assemble them into a robust,
object-oriented representation of your application.

The technique just described works great for one-to-one relationships, but what
about one-to-many relationships? For example, what if an invoice could have a
number of customers associated with it? In this situation, you need to use a collection,

as discussed in the section “Creating Your Own Collections” later in this chapter.

Creating a Parent Property

In many object models, classes within the hierarchy implement a property that
contains a pointer to the instance of the class immediately above it in the hierar-
chy. This makes it convenient to traverse the hierarchy using VBA code. Tradition-
ally, this property is named Parent, representative of the parent-child relationship
between classes. For example, the Excel Worksheet class implements a Parent prop-
erty that points to the Workbook instance in which the worksheet is contained.

You can implement a Parent property in your own classes by creating Property
Set and Property Get procedures in the child class. For example, suppose you
want to be able to reference the Invoice object from the Customer object it con-
tains. Listing 6.1 shows you how to do this.

Chapter 6

•

Advanced Class Module Techniques

318

➲

Listing 6.1: Implement a Parent Property

' Private variable to store pointer to parent
Private mobjParent As Invoice

Property Set Parent(objParent As Invoice)
 ' If property hasn’t been set yet, do so

 If mobjParent Is Nothing Then
 Set mobjParent = objParent
 End If

End Property

Property Get Parent() As Invoice
 ' Return the pointer stored in mobjParent
 Set Parent = mobjParent

End Property

In this case, Parent is a

write-once

 property

.

 That is, after you set the value of the
property, it cannot be set again. This prevents you from changing an object’s par-
ent after establishing the initial value. (Imagine how you would’ve felt as a child if
someone had changed your parents after you were initialized!) You set the value
after creating a new object instance by using the Me object to refer to the instance
of the parent class. The best place to do this is in the parent class’s Initialize event
because it sets up the parent-child relationship right away. Here’s the updated
code from the Invoice class’s Initialize event:

Private Sub Class_Initialize()
 ' Create a new Customer instance
 Set mobjCustomer = New Customer

 ' Establish the parent-child relationship

 Set mobjCustomer.Parent = Me
End Sub

It would be nice if there were a way to declaratively define the relationship so
that you didn’t have to write the code yourself. This would ensure that it always
got populated with a value, but there is currently no mechanism in VBA for one
class to know which instance of another class created it.

 Collections of Objects 319

In this example, we’ve declared the Property procedures to accept and return a
specific object type: Invoice. If you are creating a class that might be used by a number
of other classes (and thus have different types of parents), you can use the generic
Object data type or the Implements keyword (described later), if all parents are
derived from the same base type.

Self-Referencing
One type of relationship you can model using VBA class modules is the relation-
ship between one instance of a class module and another instance of the same
class. Consider the case of a class representing a person. You could use the class to
model a variety of interpersonal relationships (parent-child, employee-manager,
and so on).

Self-referencing is simply a specialized type of hierarchy. In the declarations
section of a class module, just create a pointer to an instance of the same class.
When an instance of the class is created by a VBA procedure, you can instantiate
the pointer or leave it with its default value, Nothing.

In Chapter 8, we’ll use VBA’s ability to create self-referencing classes to model
data structures, such as linked lists and queues.

Collections of Objects
Often, when creating an object model for an application, you will find that the
relationship between two objects is one-to-many. That is, one instance of a class
relates to many instances of another class. The set of related objects is called a col-
lection, and, like a single child object, the parent object contains the set. Fortu-
nately, VBA includes a Collection class that you can use to create and manipulate
your own custom collections.

Collection Basics
This section begins by discussing collections in general and then shows you how
to use VBA’s Collection object to create your own. If you’re already familiar with

Chapter 6 • Advanced Class Module Techniques320

the way collections work, you might want to skip ahead to the section “Creating
Your Own Collections.”

Using Collections

It’s likely that you are already familiar with collections from your experience
using VBA or other Microsoft Basic dialects. For example, Microsoft Excel imple-
ments a Workbook object representing the data stored in an XLS file. This object,
in turn, contains a collection of unique Worksheet objects. Each Worksheet object
represents an individual worksheet tab within the workbook file.

If you’re familiar with how collections of objects work, you already know that
you refer to objects in a collection using the collection name along with the name
of one of the objects it contains. You can also use the relative position of the object
in the collection by specifying a numeric index. For example, to print the Visible
property of a particular worksheet in the active workbook, you could use either of
these statements:

Debug.Print ActiveWorkbook.Worksheets("Sheet1").Visible
Debug.Print ActiveWorkbook.Worksheets(1).Visible

In some aspects, collections are similar to arrays in that both contain a set of
similar objects, and each can be referenced using a numeric index. Collections are
much more robust when dealing with sets of objects because a collection
implements built-in methods for adding, removing, and referencing objects. You
must write your own procedures for manipulating arrays.

Collection Properties and Methods

As an object, a collection implements a number of methods and properties designed
to help you put other objects into the collection, take them out, and reference par-
ticular ones. Unfortunately, not all products and components implement these
properties and methods the same way. For example, to add a new worksheet to an
Excel workbook, you call the Add method of the Worksheets collection. On the
other hand, to add a new table to a database using ADOX, you first create a new
instance of the Table class. After setting properties of the new Table object, you
call the Append method of the Catalog class’s Tables collection.

 Collections of Objects 321

Sound confusing? Don’t worry. If you’re interested only in creating your own
collections of objects using VBA, you’ll need to know about only three methods
and one property:

The Add method Adds objects to a collection. You pass a pointer to the
object and an optional unique identifier as parameters.

The Remove method Removes objects from a collection. You pass an
object’s unique identifier (or position in the collection) as a parameter.

The Item method References a particular object in a collection and returns a
pointer to it. You pass an object’s unique identifier (or position in the collection)
as a parameter.

The Count property Returns the number of objects in the collection.

We’ll revisit these in the section “Creating Your Own Collections” later in this
chapter.

Manipulating Objects in a Collection

Once an object is in a collection, you manipulate its properties and methods directly
by referring to its place in the collection using either a unique identifier (or key) or
its numeric position. An earlier example in this chapter demonstrated this tech-
nique using the Visible property of an Excel worksheet. You can also capture a
pointer to the object in a variable. For example:

Dim wks As Worksheet
Set wks = ActiveWorkbook.WorkSheets(1)

Both techniques have been available in Microsoft Basic since the introduction of
its object-oriented features. VBA added two new ways to work with objects and
collections. The first, the With statement, is not limited to collections, but it can
make working with complex object models much easier. The With statement lets
you specify an object and then work with that object’s properties or methods simply
by starting each line with the dot separator character. Consider the following
example from Microsoft Excel:

With Workbooks("BOOK1.XLS"). _
 Worksheets("Sheet1").ChartObjects("Chart1").Chart
 .Rotation = 180
 .Elevation = 30
 .HasLegend = True
End With

Chapter 6 • Advanced Class Module Techniques322

This method of referring to the Chart object embedded on Sheet1 of BOOK1.XLS
is certainly easier, not to mention faster, than repeating the collection syntax over
and over!

Another VBA feature specific to collections is the For Each loop. Like a regular
For loop, a For Each loop uses a “counter” variable to iterate through a series of
values. However, each value in the series is a pointer to an object in a collection.
To use a For Each loop, you first declare a variable of the appropriate object type.
You then use it in the For Each statement, along with a reference to the collection
you want to loop through. During each iteration of the loop, the variable is reset to
point to successive objects in the collection. For example, to display all the work-
sheets in an Excel workbook, you could use code like this:

Dim wksEach As Worksheet
For Each wksEach In ActiveWorkbook.Worksheets
 wksEach.Visible = True
Next

You can use both of these constructs with collections you create using VBA’s Col-
lection class.

Creating Your Own Collections
VBA allows you to create your own collections using a special Collection class. An
instance of the VBA Collection class contains pointers to other objects.

Instantiating a Collection and Adding Objects

To use the VBA Collection class, you must create a new instance of it in your VBA
code. For example:

Dim SomeObjects As Collection

Set SomeObjects = New Collection

You can then add objects to the collection using the object’s Add method. Assum-
ing the variable objSomething contained a pointer to an object, you could use a
statement like this:

SomeObjects.Add objSomething

However, when you add an object to a collection in this manner, the only way to
refer back to it is by its position in the collection. Typically, you don’t want to rely

 Collections of Objects 323

on an object’s position; it might change as other objects are added or removed.
Instead, specify an alphanumeric key as the second parameter to the Add method:

SomeObjects.Add objSomething, "Object1"

Once you’ve done this, you can refer to the object later by either its position or
the unique key:

Set objSomething = SomeObjects(1)
' or
Set objSomething = SomeObjects("Object1")

Selecting unique key values for objects can be tricky. For more information, see
the section “Setting Unique Object Keys” later in this chapter.

Collections created using VBA’s Collection object are one based, and there is no
way to change this. The first object added is object 1, the second is object 2, and
so on. As objects are removed from the middle of the collection, higher numbers
are adjusted downward to maintain continuity. You can also add objects to a
collection at a specific point by specifying either the optional before or after
parameters of the Add method. (See online help for more information.) It is for
these reasons that you should not depend on an object’s position in a collection.

You can represent one-to-many relationships in your object model by creating a
collection as a property of an object class. For example, suppose the SomeObjects col-
lection in the previous example was declared as a Public variable of a class called
Application. To add an object to the collection, you would use a statement like this
(assuming objApp contained a pointer to an instance of Application):

objApp.SomeObjects.Add objSomething, "Object1"

Likewise, referring back to the object would require you to include a reference to
the parent class:

Set objSomething = objApp.SomeObjects("Object1")

While simple to implement, this approach does have its drawbacks. To find out
what these are, as well as how to overcome them, see the section “Creating a Col-
lection Class” a little later in this chapter.

Chapter 6 • Advanced Class Module Techniques324

Collections and Pointer Lifetime

It’s important to note that adding an object to a collection creates a new pointer to
the object. The new pointer is stored as part of the collection. Consider the follow-
ing code fragment:

Dim objSomething As SomeObject
Dim colObjects As Collection

' Instantiate the collection
Set colObjects = New Collection

' Create a new object and add it to the collection
Set objSomething = New SomeObject
colObjects.Add objSomething

' Destroy the object pointer
Set objSomething = Nothing

What happens to the new instance of SomeObject after the objSomething pointer
is set to Nothing? The answer is nothing. Even though the code explicitly destroyed
the pointer contained in objSomething, an implicit pointer exists as part of the
colObjects collection. Therefore, the new object instance is not terminated until it
is removed from the collection.

Also, pay attention to where you declare the Collection object variable. As a
variable, it obeys VBA’s rules concerning scope and lifetime. For instance, if you
declare a Collection object variable in the body of a procedure, it will disappear
when the procedure terminates, destroying all the object pointers it contains! Typ-
ically, collections are declared as module or global variables if they’re needed else-
where in a program.

You can use this behavior to your advantage. Suppose you wanted to clear out a
collection by destroying all the object pointers it contained. You could loop
through each object and remove it individually from the collection, but an easier
approach would be to set the Collection variable to Nothing.

Creating a Collection Class
VBA makes it simple to create your own collections using the Collection object.
The Collection object does have one serious drawback, however: There is no way

 Collections of Objects 325

to limit the type of objects placed into a VBA collection. Traditionally, collections
contain similar objects, but you can place pointers to any object type in a VBA col-
lection. Unless you are extremely careful, this could lead to problems, especially
in large development projects where you might have many people working on the
same source code.

To demonstrate the potential for problems, consider this example, which refers
to an object’s properties or methods using collection syntax:

SomeObjects(1).Amount = 10

But what happens if the object represented by SomeObjects(1) doesn’t have an
Amount property? VBA generates a run-time error. To control the type of objects
placed into a collection, you must create a collection class.

A collection class is a VBA class that defines a Private Collection object and
implements methods to add, remove, retrieve, and count objects in the collection.
Since the Collection object is Private, you don’t have to worry about external pro-
cedures cluttering it up with invalid object pointers. Using a class also gives you
the ability to create custom replacements for the standard Add, Remove, and Item
methods.

Normally, you create two classes to represent a collection of objects in this man-
ner. One defines the object that will be contained in the collection, and the other
defines the collection itself.

To demonstrate this, we’ve created a new version of the TextFile class intro-
duced in Chapter 5, called TextFile2. Rather than reading one line of text at a time,
the TextFile2 class implements a collection containing all the lines in a file and
reads them all in at one time. Listing 6.2 shows the module that defines the Line
class, which represents a single line of text.

➲ Listing 6.2: The Line Class Module

Option Explicit

' Private variables for line of text
Private mstrText As String

' Private ID variable
Private mstrID As String

Chapter 6 • Advanced Class Module Techniques326

' Public variable for changed flag
Public Changed As Boolean

Property Get Text() As String
 ' Return value of private variable
 Text = mstrText
End Property

Property Let Text(ByVal strText As String)
 ' Change private variable and set changed flag
 mstrText = strText
 Me.Changed = True
End Property

Property Get Length() As Long
 ' Use Len function to return string length
 Length = Len(mstrText)
End Property

Property Get ID() As String
 ' Return value of private variable
 ID = mstrID
End Property

Private Sub Class_Initialize()
 ' Set the object’s ID property to a random string
 mstrID = TypeName(Me) & CLng(Rnd * (2 ^ 31))
End Sub

Listing 6.3 shows the module code for the Lines collection class. Note the Pri-
vate Collection object in the module’s declarations section. Note also the Add,
Remove, and Item methods implemented as Public procedures, and the Count
Property Get procedure.

The code in Listing 6.3 also implements a Changed property that indicates whether
any of the lines in the collection have been modified. This illustrates another
reason for using collection classes: You can create custom properties and methods
of your collection, something not possible with standard VBA Collection objects.

 Collections of Objects 327

➲ Listing 6.3: The Lines Collection Class Module

Option Explicit

' Private collection to store Lines
Private mcolLines As Collection

Private Sub Class_Initialize()
 ' Initialize the collection
 Set mcolLines = New Collection
End Sub

Public Sub Add(ByVal strText As String, _
 Optional ByVal varBefore As Variant)

 ' Declare new Line object
 Dim objLine As New Line

 ' Set Text property to passed string
 objLine.Text = strText
 ' Add to private collection, using object’s
 ' ID property as unique index
 mcolLines.Add objLine, objLine.ID, varBefore
End Sub

Public Sub Remove(ByVal varID As Variant)
 ' Call Remove method of private collection object
 mcolLines.Remove varID
End Sub

Public Function Item(ByVal varID As Variant) As Line
 ' Set return value of property to item within
 ' the private collection object specified by
 ' the passed index value (Note the return type!)
 Set Item = mcolLines.Item(varID)
End Function

Property Get Count() As Long
 ' Return Count property of private collection
 Count = mcolLines.Count
End Property

Chapter 6 • Advanced Class Module Techniques328

Property Let Changed(ByVal fChanged As Boolean)
 Dim objLine As Line

 ' Set Changed property of each Line to value
 For Each objLine In mcolLines
 objLine.Changed = fChanged
 Next
End Property

Property Get Changed() As Boolean
 Dim objLine As Line
 ' Loop through all Line objects in collection--
 ' if any Changed property is True then the
 ' Changed property of the collection is True
 For Each objLine In mcolLines
 If objLine.Changed Then
 Changed = True
 Exit For
 End If
 Next
End Property

For simplicity, we’ve omitted error-handling code from our examples. You should
add error handling to your own procedures to catch possible errors, such as calling
the Item method with a key value that doesn’t exist.

Implementing the Remove method and the Count property in our custom col-
lection class is straightforward. They are simple wrappers around the Collection
class’s method and property. However, our Add method is a bit more complex.
Rather than being a simple wrapper, it has been declared to accept a string param-
eter representing a line of text and, optionally, an index of an existing Line object
before which to insert the new line. After creating a new instance of the Line class,
the code sets the Line’s Text property to the string passed to the Add method and
then adds the object to the Private Collection object, using the new Line’s ID prop-
erty as the unique index.

This is where the magic protection of the collection class comes into play. Since
the Add method has strong type parameters, only specific data can be used to
create the Line object. When accessing the collection, you can now be sure it con-
tains nothing but valid Lines.

 Collections of Objects 329

Lastly, the Item method returns a particular object from the collection using an
index passed to it.

The arguments to the Item and Add methods that represent an object’s index are
declared as variants. This is necessary because the index could be either an
object’s unique alphanumeric identifier or its ordinal position in the collection.

Using a Collection Class

Using a collection class is similar to using any object class. You create a new instance
of it and then manipulate its properties and methods. In the case of our Lines class,
we’ve declared a new instance of it in the declarations section of the TextFile2 class
module. We made this a Private declaration and added a Property Get method to
return a reference to it:

Private mobjLines As Lines

Property Get Lines() As Lines
 Set Lines = mobjLines
End Property

We can then use the properties and methods of the class to add new instances of
Line objects to the collection as the code reads each line of text from the file. List-
ing 6.4 shows a portion of the FileOpen method of the class. After reading a line of
text into the local variable strLine, the code adds a new object to the Lines collection.

➲ Listing 6.4: Add Lines of Text from a File to a Collection

Dim strLine As String

' ... other statements to open file

' Read all lines into the Lines collection
Set mobjLines = New Lines
If LOF(mhFile) > 0 Then
 Do Until EOF(mhFile)
 Line Input #mhFile, strLine
 Me.Lines.Add strLine
 Loop
End If

Chapter 6 • Advanced Class Module Techniques330

Once the collection of lines has been established, printing each one becomes
trivial. You simply loop through each element in the collection. Listing 6.5 demon-
strates this.

You can find the sample code in the TestTF2 procedure in basTest. The procedure
reads in a text file (AUTOEXEC.BAT), strips out all blank lines, and saves the file.

➲ Listing 6.5: Use the Collection to Print Each Line

Dim cLines As Long

' Assume objFile is an open TextFile2 object

For cLines = 1 To objFile.Lines.Count
 Debug.Print objFile.Lines.Item(cLines).Text
Next

While our example shows a loop that simply accesses each element of the collec-
tion using the Item method, be careful when using the Remove method inside a
loop. If you use a For loop, as we do in our examples, you will encounter a run-
time error as the loop reaches its halfway point. That’s because, as you remove
items from the collection, the initial Count property value is no longer valid. To
remedy this problem, loop backward from the initial Count to 1.

The Downside to Collection Classes

While collection classes give you an added level of safety and flexibility, there is a
downside to using them. This is because, by default, VBA treats your class as a
normal object, not a collection, resulting in the loss of two very handy collection
operators.

First, with true collections, you normally don’t need to specify the Item method
when referring to objects within the collection. That’s because Item is a collection’s
default member. For example, using VBA with Microsoft Excel, the following two
statements are equivalent:

Debug.Print Workbooks.Item(1).Name
Debug.Print Workbooks(1).Name

 Collections of Objects 331

However, when using a collection class, you must always specify the Item method
because, by default, no property or method is marked as the default member.

In the C++ world of COM, a class’s default member is the one listed first in the
vtable or with its dispid set to 0.

The second feature that will not work with collection classes is the For Each loop
because VBA can’t find a special enumeration method that a collection class must
implement. If you wish to enumerate all the objects in your collection, you must
use a standard For loop with a numeric variable. Use the Count property to deter-
mine the number of objects in the collection, and loop from 1 to this number.

If you want to support these features with your collections, you need to do a lit-
tle more work. How much work depends on whether you’re using Visual Basic or
the VBA IDE. Later in the chapter, we explain what you need to do in the section
“Collection Class Tricks.”

Setting Unique Object Keys

Having said earlier that you should set a unique key for objects added to collec-
tions, we should point out that it is not always intuitive or easy to do this. First, an
object’s key cannot be numeric, making the generation of arbitrary, incrementing
keys cumbersome. Second, once you set the key value, you cannot change it.
Doing so requires destruction of the object.

Ideally, you would want to use a property of the object being added. For exam-
ple, the unique key for Excel Worksheet objects is the name of the worksheet. Intu-
itive, is it not? Unfortunately, you cannot mimic this feature in VBA without
writing some code because the name of the object might change. If your object has
a property that will not change, great—use that. Otherwise, you have two options.
The first and easiest option is to create an arbitrary property of objects added to
collections (for example, one called ID) to hold the unique key. Set the value of
this property to a random value during the Initialize event of the class. For exam-
ple, this code fragment sets the value of a Private variable to a random alphanu-
meric value:

Private Sub Class_Initialize()
 ' Set the object’s ID property to a random string
 mstrID = TypeName(Me) & CLng(Rnd * (2 ^ 31))
End Sub

Chapter 6 • Advanced Class Module Techniques332

We use the TypeName function, passing in an instance of the class, to return the
class name. Therefore, in this example taken from the sample Line class, the ID
property would be set to something like “Line521448990”. Using TypeName instead
of hard-coding the class name makes the code very portable to other classes.

By setting this value in the Initialize event, you ensure that it will always have a
value, since Initialize is always triggered when an instance of the class is created.
You can then use the value as the object’s unique index in a collection. Consider
the code shown in Listing 6.6. A new instance of the Line class is created and then
added to a collection named mcolLines. The new ID property of the Line property
is used as the unique key.

➲ Listing 6.6: Use an Object’s Unique ID Property as a Collection Key

Public Sub Add(ByVal strText As String, _
 Optional ByVal varBefore As Variant)

 ' Declare new Line object
 Dim objLine As New Line

 ' Set Text property to passed string
 objLine.Text = strText

 ' Add to private collection, using object’s
 ' ID property as unique index
 mcolLines.Add objLine, objLine.ID, varBefore
End Sub

The second and more complicated approach is to build on the first method by
allowing referencing by name by doing a search inside the Item method. Consider
the code shown in Listing 6.7. It iterates through the Lines collection looking for
one where the Name property matches the text that is passed in. If the procedure
finds a match, it returns the object to the calling function. (Of course, this is a con-
trived example because our Line class doesn’t have a Name property, but you
should be able to apply the concept to other collection classes that you create.)

 Collections of Objects 333

➲ Listing 6.7: Allowing Item Referencing by Name

Public Function Item(ByVal varNameOrID As Variant) As Line
 Dim objLine As Line
 Dim cLine as Long

 ' If text was passed in try to find the object by it's name
 If Not IsNumeric(varNameOrID) Then
 For cLine = 1 To mcolLines.Count
 If mcolLines.Item(cLine).Name = varNameOrID Then
 Set Item = mcolLines.Item(cLine)
 Goto ExitHere
 End If
 Next
 End If

 ' If we reached this point we haven't found it so
 ' try by index or ID
 Set Item = mcolLines.Item(varNameOrID)
ExitHere:

End Function

If no match is found, the method simply reverts to its normal behavior, using
the numeric position in the collection or unique ID property to return an object.
While this approach requires more code and may be a bit less efficient with large
collections, it does give you the flexibility of referencing objects in collections by
an updateable property like Name.

Collection Class Tricks
If you’re going to go to the trouble of creating a collection class, you’ll probably
want it to work like other collections. Making it do so requires a little extra work
to define a default Item function and enumeration method. This section explains
how to do that.

Default methods or properties are not only useful for collection classes but for
other classes, as well. Typically, the most commonly used property or method
(such as Name, Value, and so on) is a good candidate for the default. Follow the
steps in the next section to create them in your classes.

Chapter 6 • Advanced Class Module Techniques334

Specifying Default Members

Specifying a class’s default member requires you to set a procedure attribute that
has special meaning to VBA. If you use VB, you can do this simply by opening a
dialog box and making a few selections. In the VBA IDE, it takes a little more
effort. We’ll discuss VB first and then show you the workaround for VBA.

The Visual Basic IDE features a Procedure Attributes dialog that contains all the
settings you need to create a default member or enumeration method. To access
the dialog box, select Procedure Attributes from the Tools menu, making sure the
module containing the procedure you want to modify is active. You should see a
dialog box like the one in Figure 6.2.

F I G U R E 6 . 2
The Visual Basic Procedure

Attributes dialog box

You need to change the Procedure ID property. This field that is located in the
Advanced section of the dialog box. Click the Advanced button and you should
see the dialog box expand, as in Figure 6.3.

F I G U R E 6 . 3
Advanced Procedure

Attributes

 Collections of Objects 335

To create a default property or method, first make sure the name of the member
is selected in the Name drop-down list. Then select (Default) from the Procedure
ID combo box. When you click OK to commit your change and look at the class
module in the Object Browser, you should see a little blue marble next to the mem-
ber name, indicating that it’s the default one. Figure 6.4 shows the Lines class.
Note that the Item method is listed as the default member both in the Members list
and in the description at the bottom of the dialog box.

F I G U R E 6 . 4
Viewing the default

member using the
Object Browser

Setting Procedure Attributes in VBA

For some reason, Microsoft chose not to include the Procedure Attributes dialog in
the latest version of the VBA IDE, even though VBA will recognize these attributes
if they exist. How do you get VBA to recognize them? The only way we’ve found
is to import a module containing the attribute information along with the source
code. There are two options for doing this, either by importing the module into
Visual Basic and using its Procedure Attributes dialog or by making the changes
manually.

In either case, you must start by exporting and removing the module from your
VBA project. The simplest way to do this is by selecting the module in the Project
Explorer window and choosing the File � Remove menu command. When asked

Chapter 6 • Advanced Class Module Techniques336

whether you want to save the file before removing it, choose Yes (if you choose
No, you’ll lose all your code) and then provide a filename using the subsequent
dialog.

If you export the file and don’t remove it from the project, you’ll get a duplicate
module when you re-import it. So be sure to remove the module as, or after, you
export it.

Once you’ve exported the module from the VBA project, if you have a copy of
VB, just open the module in the VB IDE by double-clicking the .CLS file in Win-
dows Explorer. (Or you can add it to an open project by choosing the Project �
Add File menu command.) You can now use the Procedure Attributes dialog dis-
cussed in the last section. Once you’ve set the Procedure ID property, save the file
and re-import it back into your VBA project. It’s not pretty, but it works.

If you don’t have a copy of VB, you’ll have to make the changes to the exported
file manually. Open it in a text editor, like Notepad, and find the method you’re
interested in (Item in our example). Just after the procedure declaration, add a line
of text like the one highlighted here:

Public Function Item()
Attribute Item.VB_UserMemId = 0

 ' Other code here...

End Function

Make sure that the name of the procedure appears in the Attribute statement
and that the attribute value is set to zero. Now, just re-import as before, and VBA
will accept the procedure as the default. Perhaps in a future version of the VBA IDE,
Microsoft will include the Procedure Attributes dialog, and you’ll no longer have
to jump through these hoops.

If you’re using VBA in Access 2000, make sure you import the module using the
VBA IDE, not Access’s Import dialog. Otherwise, the attribute won’t be recognized.

 Collections of Objects 337

Creating Enumeration Methods

You create an enumeration method in much the same manner, but you must first
start by writing code for the method itself. The method must conform to a specific
interface that forwards the method call on to the underlying VBA Collection class
instance.

You may find it helpful when writing this code to turn on display of hidden class
members in the Object Browser and IntelliSense features. To do this, open the
Object Browser, right-click in its window, and select Show Hidden Members from
the pop-up menu. Hidden class members are displayed in lists using light gray text.

An enumeration method is a special function implemented by VBA’s Collection
class, called _NewEnum (note the underscore). The function is marked with a Pro-
cedure ID of –4. You need to create a wrapper function for _NewEnum. Listing 6.8
shows the function we’ve created for the Lines class. When creating enumeration
methods for your own class, you should copy this function exactly as it’s shown
here; the only change you must make is the name of the Collection variable (mcol-
Lines in our case).

➲ Listing 6.8: Enumeration Method for the Lines Class

Public Function NewEnum() As IUnknown
 ' Pass call to Collection's enumeration function
 Set NewEnum = mcolLines.[_NewEnum]
End Function

You’ll notice two unique aspects of the function. First, the return type is declared
using the COM data type IUnknown. This is the class from which all other COM
classes are derived, and it enables the function to return any type of object. Sec-
ond, the method call to _NewEnum is enclosed in square brackets. This is neces-
sary because an underscore is not a valid initial character for names in VBA. The
editor adds the brackets automatically when you use the IntelliSense features. Fig-
ure 6.5 shows an example of selecting _NewEnum from a pop-up list of methods.

You’ll only see the _NewEnum method if hidden members are visible.

Chapter 6 • Advanced Class Module Techniques338

F I G U R E 6 . 5
Selecting the hidden
_NewEnum method

The last step is to mark this as an enumeration method by setting its Procedure ID to
–4. It’s this attribute, not the name of the procedure, that enables VBA to use it with
For Each loops. In fact, the name of the VBA procedure is completely irrelevant.

Follow the steps outlined in the previous section to set the Procedure ID attribute.
That is, for VBA, export the module, add the attribute, and re-import the module
back into your VBA project. Note that if you use the VB IDE and Procedure
Attributes dialog, there is no entry in the drop-down list for enumeration. You’ll
have to type –4 in the combo box yourself. Alternatively, if you make manual
changes to the .CLS file, you should add an Attribute line to the procedure with a
value of –4, as in this example:

Public Function NewEnum() As IUnknown
Attribute NewEnum.VB_UserMemId = -4
 ' Pass call to Collection's enumeration function
 Set NewEnum = mcolLines.[_NewEnum]
End Function

You should now be able to use your custom collection class just like you would
use VBA’s built-in Collection class. If you examine the sample Lines class in the
Object Browser, you’ll see that we’ve already done this.

Procedure attributes may be discarded by VBA if you move, edit, or rename proce-
dures. For this reason, we recommend setting these attributes as the final step in
designing the procedures.

 Creating and Using Custom Events 339

While we’ve set the attributes on the Lines collection class, we have not used the
default Item method or For Each loops in our sample testing code (for the reason
described previously). If you’d like to test these functions, try editing the TestTF2
procedure in basTest to use For Each loops instead of For Next loops.

Creating and Using Custom Events
We’ve spent the bulk of this chapter (as well as Chapter 5) discussing how to create
properties and methods for your custom classes. It’s now time to discuss another
very powerful feature of VBA—custom events. Events are so powerful because
they provide a way for you to extend your classes, opening them to other develop-
ers. For example, before writing a line of text to a file using our TextFile2 class, we
could raise an event that said, conceptually, “I’m about to write this line of test to
the file. Do you want to do anything with it first?” Furthermore, events provide a
way for you to separate the data and user interface components of an application.
Data components raise events that user interface components respond to. In this
way, it’s easy to replace one user interface implementation with another because
no UI logic is contained in the data class. This section explains how to declare,
raise, and respond to custom events using three relatively new VBA keywords:
Event, RaiseEvent, and WithEvents.

Defining Custom Events
The first thing you’ll need to do is decide on what events your class will support
and declare them in the class module’s declarations section using the Event key-
word. You declare events in a manner similar to procedures, providing a name
and parameters, if any. For the purposes of demonstration, we’ve created another
version of the TextFile class, TextFile3, which declares a number of events. Here’s
the applicable code from TextFile3’s declarations section:

' Event declarations
Public Event ReadLine(ByVal Text As String)
Public Event WriteLine(Text As String, Skip As Boolean)
Public Event AfterOpen()
Public Event BeforeClose(Cancel As Boolean)

Chapter 6 • Advanced Class Module Techniques340

Note that all events are declared as Public. Even though this is the only level of
scope for class modules, we’ve included the Public keyword for clarity. You can-
not create Private events. Table 6.2 describes the purpose of each event.

Declaring events using the Event keyword is only the first step in creating events.
It only defines what events a class has, not when each is raised. For that, you need
to use the RaiseEvent keyword described in the next section.

Raising an Event
To raise an event, you use the RaiseEvent keyword at the point in your code where
you want the event to happen. While you declare an event once using the Event
keyword in a class module’s declaration section, you can use RaiseEvent as many
times as you need to in the class’s functions and subroutines. As an example, List-
ing 6.9 shows a portion of TextFile3’s FileOpen method. Note that the ReadLine
event is raised as each line of text is read, and the AfterOpen event is raised after
all lines have been read.

➲ Listing 6.9: Raising Events when a File Is Opened

' Read all lines into the Lines collection
Set Lines = New Lines
If LOF(mhFile) > 0 Then
 Do Until EOF(mhFile)
 Line Input #mhFile, strLine

T A B L E 6 . 2 : Events Supported by the TextFile3 Class

Event Description

ReadLine Raised when a line of text is read and before adding it to the Lines collection. The
Text argument contains the text and can be changed by the event listener.

WriteLine Raised before a line of text is written to a file. The Text argument contains the text
and can be changed by the event listener. If the Skip argument is set to True, the
line is skipped and not written to the file.

AfterOpen Raised after a file has been opened and all the lines have been read into the Lines
collection.

BeforeClose Raised before a file is closed. If the Cancel argument is set to True, the file is not
closed.

 Creating and Using Custom Events 341

 ' Raise ReadLine event
 RaiseEvent ReadLine(strLine)

 Me.Lines.Add strLine
 Loop
End If

' Reset the changed property of all lines
Me.Lines.Changed = False

' Fire event
RaiseEvent AfterOpen

Using RaiseEvent to trigger custom events is similar to using the Call keyword
to execute a procedure. You include the event name and any event parameters in
parentheses.

Furthermore, just like VBA procedures, unless you declare an argument using
the ByVal keyword, VBA passes the argument to the event listener by reference.
This means the listener can change its value, and your code will see the change.
That’s why it’s important to pass a variable, rather than a literal value. For instance,
the ReadLine event passed a string variable, strLine, that contains the line of text
just read. The event listener is given the opportunity to change the value before
it’s added to the Lines collection. Another example is the WriteLine event raised
in the FileSave method, a portion of which is shown in Listing 6.10.

➲ Listing 6.10: Raising an Event before Saving a Line of Text

' Write Lines collection to new file
hFile = FreeFile
Open strPath For Output Access Write As hFile
For cLine = 1 To Me.Lines.Count
 strText = Me.Lines.Item(cLine).Text

 ' Raise WriteLine event
 fSkip = False
 RaiseEvent WriteLine(strText, fSkip)

 If Not fSkip Then
 Print #hFile, strText
 End If
Next
Close hFile

Chapter 6 • Advanced Class Module Techniques342

In the case of WriteLine, we declared a Boolean variable, fSkip, which we reset
to False each time through the For Next loop. After raising the event, we check the
variable’s value, and only if it’s still False do we write the line of text to the file.

So how do you create something that “listens” to your events and responds to
them? For that, you need one more keyword, WithEvents, which is described in
the next section.

Responding to Events
The final piece of the event puzzle is creating an event procedure that can listen to
events generated by an object. Doing this is simple. All you need to do is modify a
normal object variable declaration by adding the WithEvents keyword. There is a
catch, though. You can only use WithEvents with variables declared at the mod-
ule level and only within class modules. The reason for this is that VBA uses COM
to supply your project with events, and COM requires that both event generators
and event listeners be objects, thus the need for class modules.

We’ve included a class module in the sample project called TestEvents that
establishes an event hook for the TextFile3 class. Here’s the declaration that tells
VBA to hook into TextFile3’s events:

' WithEvents declaration to establish event hook
Private WithEvents mobjFile As TextFile3

It looks just like a regular variable declaration except for the addition of the With-
Events keyword. Once you add this keyword to a declaration, the object (mobj-
File, in this case) exposes its events through the standard VBA mechanism: event
procedures. Figure 6.6 shows the Module window for TestEvents. Notice that
mobjFile is displayed in the object list, and all of its events are listed in the proce-
dure drop-down list.

F I G U R E 6 . 6
Selecting event procedures

for a custom class

 Creating and Using Custom Events 343

To respond to an event, simply select it from the list and write some code in the
event procedure that VBA generates. For example, TestEvents responds to the
ReadLine event by writing the line of text to the Immediate window. This is
shown in Listing 6.11, along with the rest of the code in the module.

Notice that, as with any other object that exposes events, the event procedure is
named using the object name, an underscore, and the event name (i.e., mobjFile_
ReadLine).

➲ Listing 6.11: Code from the TestEvents Class

Private Sub Class_Initialize()
 ' Create a new instance of TextFile3 and open a file
 Set mobjFile = New TextFile3
 mobjFile.Path = "C:\AUTOEXEC.BAT"
 mobjFile.FileOpen
End Sub

Private Sub Class_Terminate()
 ' Close the file
 If mobjFile.IsOpen Then
 mobjFile.FileClose
 End If

 ' Destroy the object pointer
 Set mobjFile = Nothing
End Sub

Private Sub mobjFile_ReadLine(ByVal Text As String)
 ' Write the text to the immediate window
 Debug.Print Text
End Sub

Of course, nothing is going to happen until a new instance of the TextFile3 class
is created. That’s what the code in TestEvents’ Initialize event does. You can see
this in Listing 6.11.

Finally, there’s one last thing to do—instantiate the TestEvents class. We accom-
plish this using a procedure in basTest, as shown in Listing 6.12.

Chapter 6 • Advanced Class Module Techniques344

➲ Listing 6.12: Instantiating the TestEvents Class

Sub TestFileEvents()
 Dim objEvents As TestEvents

 ' Create new instance--this will open a file
 Set objEvents = New TestEvents

 ' We're all done so just destroy the pointer
 Set objEvents = Nothing
End Sub

When you run the procedure, you should see the contents of AUTOEXEC.BAT
printed in the Immediate window. Why is there seemingly so little code in the
TestFileEvents procedure? Because most of the work is done in TestEvents and
TextFile3. If you step through the code, you can see this happen. Code execution
follows this path:

1. Code in TestFileEvents creates a new instance of TestEvents (objEvents).

2. Code in TestEvents Initialize event creates a new instance of TextFile3
(mobjFile), sets its Path property, and calls its FileOpen method.

3. Code in the FileOpen method reads a line of text and fires the ReadLine
event.

4. TestEvents is “listening” to this event and calls the event procedure
mobjFile_ReadLine.

5. Code in the event procedure writes the line of text (stored in the Text param-
eter) to the Immediate window.

6. Steps 3 through 5 repeat until every line of text is read, at which point con-
trol returns to TestEvents Initialize event.

7. There’s nothing left to do in the Initialize event, so control returns to Test-
FileEvents.

8. Code in TestFileEvents destroys the pointer to objEvents by setting it equal
to Nothing.

9. This triggers the Terminate event, which closes the file and destroys the
mobjFile object pointer.

10. Finally, control returns to TestFileEvents, and the procedure terminates.

 Creating and Using Custom Events 345

If this seems like a complex process, it is, but one that’s easily understood after
you study it for a while. We can represent the process graphically using the illus-
tration in Figure 6.7.

F I G U R E 6 . 7
A graphical look at how

WithEvents works

Once you’ve declared a variable using WithEvents and written code to respond
to event procedures, you must “give life” to the class by instantiating it. Our sam-
ple code does this using a variable called objEvents, which, in turn, creates and
holds a pointer to the TextFile3 class in mobjFile. The entire structure is now “live,”
and any events generated by the FileOpen method will be captured by code in
TestEvents.

Using Forms with WithEvents
If you plan on hooking up events to your user interface using forms in Visual
Basic, VBA, or Access, the process is a little simpler. That’s because form modules
are class modules and are instantiated automatically when you open the form. In
this case, you don’t need to create and instantiate an additional class in order to
respond to events. We’ve demonstrated this by creating a simple form that dis-
plays the contents of a text file (see Figure 6.8).

1. Pointer to class module

2. Pointer
to object

3. Object events trigger
procedures in class
module.

mobjFile

mobjFile_ReadLine

TestEvents Class

FileOpen method

TextFile3 Class

objEvents

basTest Module

Private WithEvents mobjFile _
 As TextFile3

Sub mobjFile_ReadLine(_
 Text As String)

End Sub

Chapter 6 • Advanced Class Module Techniques346

F I G U R E 6 . 8
A form that uses

WithEvents to display
file contents

The form’s class module takes the place of the TestEvents class in the previous
example. That means the WithEvents declaration and event procedures appear in
the form’s module. Listing 6.13 shows the code in frmEvents.

➲ Listing 6.13: Event-Handling Code in frmEvents

Option Explicit

' WithEvents declaration to establish event hook
Private WithEvents mobjFile As TextFile3

Private Sub cmdOpen_Click()
 ' Reinitialize the class instance
 Set mobjFile = New TextFile3

 ' Clear the list box
 Me.lstLines.Clear

 ' Open the file
 mobjFile.Path = Me.txtFile.Text
 mobjFile.FileOpen

 ' Destroy the pointer
 Set mobjFile = Nothing
End Sub

 Interface Classes and the Implements Keyword 347

Private Sub mobjFile_ReadLine(ByVal Text As String)
 ' Add the line to the list
 Me.lstLines.AddItem Text
End Sub

This code should look very familiar because it’s nearly identical to the code in
TestEvents. If you set a breakpoint in the cmdOpen_Click procedure and run the
form, you can step through the code and see how it works.

Custom Events Caveats
The capability to create custom events is a powerful one, but it does have its draw-
backs. The most significant (although it’s not often a problem in practice) is that a
class raising event is at the mercy of those objects responding to events, in the
sense that it must wait until those objects finish before continuing code execution.
If one of the responding objects causes execution to halt, say, by raising a dialog or
experiencing a run-time error, there is no way for the initial class to regain control.
Furthermore, there is no way for the class-generating events to know what other
objects are listening, a sometimes useful piece of information to have. Overcoming
these drawbacks requires using custom callback methods instead of events. We
explain callbacks in the next section as one use of interface inheritance and the
Implements keyword.

Interface Classes and the Implements
Keyword

In our discussion of using class modules throughout this chapter (and Chapter 5),
we’ve combined two concepts that are normally treated separately: interfaces and
implementations. An interface is simply a list of properties, methods, and events
supported by a given class. On the other hand, an implementation is the code that
makes up each of these and determines how a class actually works. VBA insulates
you from having to know the difference. When you create a class module, you cre-
ate its interface implicitly by writing code in Public procedures and by declaring
Public variables and events. In other words, you create its interface at the same
time as its implementation. C++ programmers treat these separately, creating at
least two separate source files for each class: an interface definition file (using
something called Interface Definition Language or IDL) and an implementation in

Chapter 6 • Advanced Class Module Techniques348

the form of C++ source code and header files. Why is it important to know this?
Because VBA offers you a way to do the same thing, enabling some interesting
and powerful capabilities. But instead of creating IDL and source files, you must
create two different classes.

Interface Inheritance
An interface class takes the place of an IDL file and enables interface inheritance—the
ability for one class to inherit the interface defined by another. The interface class
contains only property, method, and event declarations. It does not contain any
source code. On the other hand, an implementation class contains all the code for a
given interface. So how does the implementation class know what interface to
inherit? You tell it which interface to inherit from by using the Implements key-
word in the class module’s declaration’s section.

After inheriting an interface, you must provide an implementation for each of
the interface’s properties and methods. These appear as Private procedures in the
implementation class in a way similar to WithEvents declarations. In addition to
providing implementations for the inherited interface, you can also add your own
methods and properties to the class, thus extending the implementation. You can
also have multiple levels of inheritance, for example, with class C inheriting from
class B, which inherits from class A.

What VBA does not provide in this version is implementation inheritance. As you
can probably guess, implementation inheritance enables you to use the implemen-
tation of an inherited class as the default implementation for any class that inher-
its from it. Only if you want to define a new implementation do you need to
override the default. This powerful feature of C++ and other object-oriented lan-
guages reduces the amount of extra implementation code you need to write when
inheriting from multiple classes. Perhaps in a future version, VBA will also sup-
port this functionality.

As we explore the examples in this section, the use and usefulness of interface
inheritance should become clear.

When to Inherit
At this point, you might be asking when interface inheritance is useful, especially
if you have to go to extra trouble to implement it. To understand the answer, you

 Interface Classes and the Implements Keyword 349

need to keep in mind that an interface is like a contract. It defines the exact proper-
ties and methods a class must support (although it might define more) and thus
how a class can be communicated with and used. Therefore, anywhere you need
to enforce a communications contract between classes and you don’t control the
implementation, you can define an interface class to define the properties and
methods you expect. For example:

• You need to develop a procedure to operate on different types of tabular data
(for example, Word tables and Excel spreadsheets). You might define an inter-
face class to represent a common view of tabular data and different imple-
mentation classes that map different data types to the common interface.

• You need to develop a data manipulation component that updates an
unknown user interface with status information. You might define an inter-
face class that defines a set of status properties. Then, any user interface that
wants to be informed of status updates need only implement that interface.

We’ve chosen an example that illustrates the second scenario here, and we
describe it in the next section.

Interface Inheritance Example: Callbacks
To illustrate one use of interface inheritance, we’ve created another version of our
friend the TextFile class, this time replacing events with callback methods. You’ll
recall from the last section that custom events have the drawback of halting the
event generator while the event listener deals with an event. An alternative is cus-
tom callback methods, where one class, TextFile4 in our case, calls methods in
another class rather than simply and blindly broadcasting events.

Defining the Interface

Because we’re turning the event model described earlier on its head, we need to
define a custom interface that maps procedures to the events we created earlier in
the TextFile3 class. We’ve done this in a VBA class module named ITextFileCall-
back, shown in Listing 6.14. Notice that it contains no code, only declarations.

Traditionally, interface class names begin with a capital I.

Chapter 6 • Advanced Class Module Techniques350

➲ Listing 6.14: The ITextFileCallback Interface Class

' Called when a line of text is read
Public Function ReadLine(Text As String) As Boolean

End Function

' Called before a line of text is written
Public Function WriteLine(Text As String) As Boolean

End Function

' Called after a file is opened
Public Sub AfterOpen()

End Sub

' Called before a file is closed
Public Function BeforeClose() As Boolean

End Function

The interface is roughly equivalent to the event structure defined in TextFile3,
except the “events” are modeled as functions and subroutines. Methods in TextFile4
will call these procedures using an object passed into the class instance by another
class module. Where appropriate, we’ve declared functions using Boolean return
values to hold a success indicator. We can now create any number of implementa-
tion classes that inherit from this interface to handle different kinds of display tasks.

Creating Implementation Classes

Remember that an interface is like a contract. Similar to contracts, you can use
interface classes with any number of “clients” to provide different implementa-
tions of the interface. We’ve created two classes: one that handles output to the
Immediate window (ImmWndCallback) and one that handles output to a list box
(ListBoxCallback). The first step in each case was to establish the correct inherit-
ance using the Implements keyword.

If you examine each class module, you’ll see they both have the following line of
code in their declarations sections:

Implements ITextFileCallback

 Interface Classes and the Implements Keyword 351

This tells VBA that the class will provide an implementation for all the proper-
ties and methods defined by the ITextFileCallback interface. Furthermore, as with
the WithEvents keyword, using Implements in a class module adds an entry to the
Object drop-down list that matches the specified interface. Selecting this entry
causes the IDE to list all the interface’s properties and methods in the Procedure
drop-down list. Figure 6.9 illustrates this.

F I G U R E 6 . 9
Selecting an interface’s
properties and methods

Listing 6.15 shows the code in the ImmWndCallback class module. Notice that
every method defined by ITextFileCallback is represented. If you don’t provide at
least a procedure stub for each interface member, VBA will generate an error. The
only method that really does anything useful is ITextFileCallback_ReadLine, which
writes a line of text to the Immediate window.

➲ Listing 6.15: Code in the ImmWndCallback Class Module

Implements ITextFileCallback

Private Sub ITextFileCallback_AfterOpen()
 ' This method has no implementation
End Sub

Private Function ITextFileCallback_BeforeClose() As Boolean
 ' This method has no implementation--just return True
 ITextFileCallback_BeforeClose = True
End Function

Chapter 6 • Advanced Class Module Techniques352

Private Function ITextFileCallback_ReadLine(_
 Text As String) As Boolean

 ' Write a line to the Immediate Window
 Debug.Print Text

 ' Return success
 ITextFileCallback_ReadLine = True
End Function

Private Function ITextFileCallback_WriteLine(_
 Text As String) As Boolean

 ' This method has no implementation--just return True
 ITextFileCallback_WriteLine = True
End Function

The other implementation class, ListBoxCallback, provides an alternative imple-
mentation for the interface, adding items to a list box instead of writing text to the
Immediate window. The code for ListBoxCallback is shown in Listing 6.16. You’ll
also notice that it defines an additional property, a pointer to the list box control
used by the class to display items.

➲ Listing 6.16: Code in the ListBoxCallback Class Module

Implements ITextFileCallback

' Property that determines what list box to write to
Public TargetList As MSForms.ListBox

Private Function ITextFileCallback_ReadLine(_
 Text As String) As Boolean

 ' Add a line of text to the list
 If Not TargetList Is Nothing Then
 TargetList.AddItem Text

 ' Return success
 ITextFileCallback_ReadLine = True
 End If
End Function

 Interface Classes and the Implements Keyword 353

Private Sub ITextFileCallback_AfterOpen()
 ' This method has no implementation
End Sub

Private Function ITextFileCallback_BeforeClose() As Boolean
 ' This method has no implementation--just return True
 ITextFileCallback_BeforeClose = True
End Function

Private Function ITextFileCallback_WriteLine(_
 Text As String) As Boolean

 ' This method has no implementation--just return True
 ITextFileCallback_WriteLine = True
End Function

Using the Implementation Class

So far, we’ve shown you how to create an interface class and two implementation
classes that inherit from it. The next step is to modify the TextFile class to use the
implementation classes. In our scenario, we will replace the event code with calls
to methods of the callback classes. But, how do we tell VBA which class to use
since it could be either one? That’s where the magic of interface inheritance comes
in. Wherever you want to pass an instance of an implementation class, use a refer-
ence to the interface class instead.

In our example, the TextFile4 class implements a property called Callback,
which accepts a pointer to one of our callback classes, ImmWndCallback or List-
BoxCallback. However, the property is defined using the interface class, ITextFile-
Callback. Here’s the property declaration, defined as a Public variable:

' Callback pointer
Public Callback As ITextFileCallback

In essence, this says that the Callback property can be set to an instance of the
ITextFileCallback or any class that inherits from it. That’s the power of interface
inheritance. Now, wherever we use the TextFile4 class, we need to instantiate one
of the callback classes and set it into the Callback property. For example, Listing 6.17
shows the code from frmImplements. In addition to declaring and using an instance
of TextFile4, the code also declares and uses an instance of ListBoxCallback.

Chapter 6 • Advanced Class Module Techniques354

You can use an interface class reference anywhere you can use a regular class,
including procedure arguments and object variables.

➲ Listing 6.17. Code from frmImplements That Uses a Callback Class

Private Sub cmdOpen_Click()
 Dim objFile As TextFile4
 Dim objLBCallback As ListBoxCallback

 ' Initialize the text file class
 Set objFile = New TextFile4

 ' Initialze and set up the callback class
 Set objLBCallback = New ListBoxCallback
 Set objLBCallback.TargetList = Me.lstLines

 ' Set TextFile4's callback object
 Set objFile.Callback = objLBCallback

 ' Clear the list box
 Me.lstLines.Clear

 ' Open the file
 objFile.Path = Me.txtFile.Text
 objFile.FileOpen

 ' Destroy the pointer
 Set objFile = Nothing
End Sub

Figure 6.10 illustrates how this mechanism works.

1. Code in the form’s module creates a new instance of the TextFile4 class and
stores it in objFile.

2. Code in the form’s module then creates a new instance of the ListBoxCallback
class (that inherits from ITextFileCallback) and stores it in objLBCallback.

3. Code in the form’s module sets objFile’s Callback property to the instance of
the callback class it just created, objLBCallback.

 Interface Classes and the Implements Keyword 355

4. Code in the form’s module calls objFile’s FileOpen method, and FileOpen
calls the ReadLine method in the callback object.

5. Finally, code in the callback object’s ReadLine method adds a new item to
the form’s list box.

F I G U R E 6 . 1 0
Illustrating how our

callback mechanism works

You’ll probably find it helpful to step through the code to see the call chain as it
happens.

Don’t confuse our specific callback example with general interface inheritance
techniques. Creating multiple callback classes from a single interface class is just
one use of interface inheritance.

In summary, interface inheritance depends on creating an interface class that
defines a set of properties and methods. You then create one or more implementation

3. Form sets TextFile4’s
Callback property.

5. Callback adds items
to list box.

ListBoxCallback
Implements
ITextFileCallback

2. Pointer
to callback

1. Pointer
to object

4. Object calls procedures
in callback.

FileOpen method

Callback property

TextFile4 Class

objFile

objLBClass

Form Module

ITextFileCallback Class

ReadLine method

ListBoxCallback Class

Chapter 6 • Advanced Class Module Techniques356

classes that provide code to go along with the definitions. You can even have mul-
tiple levels of inheritance to represent increasing levels of class complexity,
although you’ll need to provide implementations at each level since VBA does not
yet support implementation inheritance.

Other Advanced Considerations
We complete this chapter with a look at some additional considerations you
should be aware of when working with custom classes in VBA. While not critical
to custom class design, all of the following issues are worth knowing about as
more of your development shifts from traditional, procedural programming to
object-oriented implementation.

Error Handling in Classes
We have not discussed error handling in class modules in this chapter or Chapter
5 primarily to keep the examples simple and because, by now, most developers
understand the basics of the On Error statement. Class modules add just a bit of
extra complexity, and so it makes sense to mention them now.

So How Is This Better Than Custom Events?
In this section, we presented the callback example as an alternative to using custom events
implemented using Event, RaiseEvent, and WithEvents. So how is this better? As you’ll
recall, the main problem with custom events is that the object generating event has no
control over the objects responding to events. Specifically, it has to wait until every event
listener is finished processing the event before code can continue executing. Furthermore,
it has no control over the order in which event listeners are processed.

With callback classes, the object calling back to all the other objects is in control. In can
choose if, when, and in what order to call back to the objects waiting for its “events.” In
truth, our example is very simple in that the TextFile4 class only makes a provision for a sin-
gle callback object. In practice, you’ll likely want to implement a collection of callback
objects and call them each in turn for each event. You can even decide not to call back to
certain objects if they take too long to process or if you’re just feeling feisty.

 Other Advanced Considerations 357

The main thing to keep in mind is that classes cannot exist on their own; they
need other code to instantiate and use them. Therefore, they should never display
error information on their own. They should always delegate this task to the code
that calls them. Trying to handle errors inside a class module and displaying a
dialog box directly also has the effect of irrevocably binding the class to a given
user interface implementation, something you should normally avoid. Of course,
if run-time errors occur, you can’t simply let them go unhandled or ignore them.
So, how do you deal with run-time errors in class modules?

Calling Err.Raise

The answer is to use the Raise method of VBA’s Err object to propagate errors to
the calling procedure. This holds true for errors generated by VBA or custom
errors you create to denote certain failure conditions. In the first case, consider the
FileOpen method in the same text file classes. It includes an error handler that
traps run-time Error 62, which indicates that VBA has reached the end of the file,
and ignores it. For all other errors, it uses the Raise method to trigger any error
handler in the calling procedure. Here’s the relevant snippet of code:

ExitProc:
 Exit Function
HandleError:
 Select Case Err.Number
 Case 62 ' Input passed EOF
 ' Just ignore this
 Case Else
 FileOpen = False
 Err.Raise Err.Number, Err.Source, Err.Description
 End Select
 Resume ExitProc

Notice how the procedure uses information about the current error (number,
source, and description) as arguments to the Raise method. This simply propa-
gates the error to the next level in the call chain. The Raise method accepts up to
five arguments for the error number, source (procedure name), description, Help
file, and help context ID. We’ve chosen not to include the help information in our
example.

If you want to test this, modify the TestTF2 procedure in basTest to pass an invalid
filename to the class’s Path property.

Chapter 6 • Advanced Class Module Techniques358

Raising Custom Errors

Custom errors are subtly different in that they are not generated by the VBA runtime
but are triggered by your procedure. As such, there is no information contained in
the Err object—you need to make it up by supplying the number, description, and
so on. As an example, consider the following code snippet that represents a possible
error condition for the text file class’s Path Property Let statement:

Property Let Path(ByVal strPath As String)
 If Len(strPath) = 0 Then
 Err.Raise vbObjectError + 12345, "TextFile2::Path (Let)", _
 "Path cannot be blank."
 End If
 If Me.IsOpen Then
 Me.FileClose
 End If
 mstrPath = strPath
End Property

In this case, the procedure passes the Raise method three pieces of data that rep-
resent a logic error: a blank path. Let’s look at each piece in turn.

The first (and only required) piece of information is the error number. It’s defined
by an expression, vbObjectError + 12345. Because other error handlers will be
using this number to decide on a course of action, it’s critical to use a number that
will be unique among all other errors the code might encounter. VBA helps you
somewhat by supplying a constant, vbObjectError, which represents a very large
number (–2,147,221,504 or hexidecimal 80040000)—one beyond the range of all
built-in VBA run-time errors. To this, you add a number that uniquely identifies
your custom error. You should also choose a large number to avoid conflicts with
other classes or components the application might use.

If you need to compute your custom error number in an error handler, just subtract
vbObjectError from the value returned by Err.Number.

The second argument to Raise is the source of the error. The example uses a string
that encodes the module name and procedure. Logic in an error handler can use this
to determine where the error occurred and possibly display this to the user.

Lastly, the example passes a description of the error as a text string. VBA returns
this information in the Description property of its Err object.

 Other Advanced Considerations 359

While we’ve included the literal string inside the procedure, it’s a better practice to
use constants or other mechanisms for text strings. This makes it easier to modify
or localize them.

Breaking on Errors in VBA

One last issue involving error handling in class modules concerns a debugging
setting in the Options dialog. Figure 6.11 shows the IDE’s Options dialog and the
various options for handling run-time errors.

F I G U R E 6 . 1 1
Error-handling options

displayed in the Options
dialog box

Figure 6.11 shows the option set to its default, Break on Unhandled Errors. This
causes VBA to display its standard run-time error dialog box (see Figure 6.12)
only when there is no other error handler in the call chain. Normally, this is the
behavior you want because it respects your error handlers (and lets you easily
spot where you might have forgotten to add one).

F I G U R E 6 . 1 2
VBA’s standard run-time

error dialog box

Chapter 6 • Advanced Class Module Techniques360

On the other hand, either of the other two settings overrides your error han-
dlers. Break on All Errors, as the text implies, causes VBA to always override your
error handlers. Likewise, Break in Class Module overrides your error handlers
only in class modules but not in regular modules. Obviously, circumventing your
error handlers in not something you’ll likely want in production applications.

Fortunately, you can check, if not readily change, these settings using the Win-
dows Registry. These settings map to two values in the HKEY_CURRENT_USER\
Software\Microsoft\VBA\6.0\Common key. Visual Basic maintains separate set-
tings for these values in the HKEY_CURRENT_USER\Software\Microsoft\VBA\
Microsoft Visual Basic key. The two values are named BreakOnAllErrors and
BreakOnServerErrors. When BreakOnAllErrors is set to 1, VBA halts on all run-
time errors. Similarly, when BreakOnServerErrors is set to 1, VBA breaks on
errors in class modules. When both values are set to 0, only unhandled errors
cause VBA to enter break mode. You can inspect these settings using the Registry
functions described in Chapter 10. And while you can also change the settings via
the Registry, the changes don’t take effect until you restart the IDE.

Circular Reference Issues
In the earlier section on constructing a class hierarchy, we showed you how to ref-
erence an instance of one class from another. While this is a powerful capability of
the language, you must also implement it carefully to avoid potentially difficult-
to-diagnose errors. Trouble arises when class instances maintain circular refer-
ences; that is, when an instance of one class holds a pointer to another, which
holds a pointer back to the first instance. Since the rules of COM dictate that class
instances cannot be destroyed until all pointers to them are released, this some-
times leads to instances that never terminate. This can lead to cleanup code never
being called and memory leakage.

This is much easier to visualize with an example. We’ve created two classes,
Ref1 and Ref2, which have a simple purpose: to maintain pointers to each other.
Using these classes, we can easily illustrate circular references. For illustrative
purposes, each of these classes also contains code to generate a unique instance
identifier and print debugging information to the Immediate window. Three pro-
cedures, TestRef1, TestRef2 and TestRef3, demonstrate three different reference
scenarios. You will likely find it helpful to step through these examples as we dis-
cuss each of the three scenarios.

 Other Advanced Considerations 361

Delayed Termination

The first test case involves class instances that terminate in a delayed fashion. This
occurs when you maintain a pointer to a class instance in your code and that class
instance, in turn, maintains a pointer to another class instance. Listing 6.18 shows
the code from TestRef1, which illustrates this case.

➲ Listing 6.18: Delayed Termination Due to Internal Pointers

Sub TestRef1()
 ' Both objects terminate at same time

 Dim objRef1 As Ref1
 Dim objRef2 As Ref2

 ' Instantiate variables
 Set objRef1 = New Ref1
 Set objRef2 = New Ref2

 ' Set a reference to one from the other
 Set objRef2.Link = objRef1

 ' Destroy the local references
 Set objRef1 = Nothing
 Set objRef2 = Nothing
End Sub

If you step through the code, you’ll see that it begins by creating an instance of
each of the two test classes, Ref1 and Ref2. Code in each class’s Initialize events
prints a message to the Immediate window. The procedure then sets up an inter-
nal pointer from the objRef2 to objRef1 by setting its Link property. This writes
another message to the Immediate window. You should now see something like
what’s illustrated in Figure 6.13.

Internally, the pointer structure looks like Figure 6.14. Code in TestRef1 main-
tains two pointers, one to each class instance, and the instance of Ref2 maintains a
pointer to the instance of Ref1.

Chapter 6 • Advanced Class Module Techniques362

F I G U R E 6 . 1 3
Ref2 is now maintaining a

pointer to Ref1.

F I G U R E 6 . 1 4
Maintaining a unidirectional

chain of pointers

If you now continue to step through code, executing the line of code that sets
objRef1 equal to Nothing, you’ll see that nothing is written to the Immediate win-
dow. In reality, the procedure has destroyed its pointer to Ref1, but since a pointer
is also maintained in objRef2, Ref1 cannot terminate. Only after executing the final
line of code does Ref1 terminate, at the same time as Ref2. While the behavior does
not appear to correspond to the code, at least both objects are destroyed.

Orphaned Objects

The second case is much more insidious because it establishes a circular reference,
preventing either object from terminating. This is extremely damaging behavior
because it leaves objects in memory with no programmatic way to terminate them.
It’s also a very difficult case to debug. Listing 6.19 shows the code in a procedure
that tests this second case, TestRef2.

objRef1

objRef2

basTest Module mobjLink

Ref1 Class

mobjLink

Ref2 Class

 Other Advanced Considerations 363

➲ Listing 6.19: Code That Creates a Circular Reference

Sub TestRef2()
 ' No objects terminate!!

 Dim objRef1 As Ref1
 Dim objRef2 As Ref2

 ' Instantiate variables
 Set objRef1 = New Ref1
 Set objRef2 = New Ref2

 ' Set a reference to one from the other
 Set objRef1.Link = objRef2
 Set objRef2.Link = objRef1

 ' Destroy the local references
 Set objRef1 = Nothing
 Set objRef2 = Nothing
End Sub

The only difference between this procedure and the previous one is a single line
of code that creates a pointer from the instance of Ref1 to the instance of Ref2. If
you could see the pointers in memory, they would look something like the illus-
tration in Figure 6.15. Note the circular reference between the class instances.

F I G U R E 6 . 1 5
A circular reference is main-

tained between the class
instances.

If you step all the way through the code in TestRef2, you’ll notice that neither of
the two objects terminate, even when you set both objRef1 and objRef2 to Noth-
ing! How can this be? It happens because of the internal pointers maintained by

objRef1

objRef2

basTest Module mobjLink

Ref1 Class

mobjLink

Ref2 Class

Chapter 6 • Advanced Class Module Techniques364

the instances themselves. Hopefully, you can see the problem here. Both objects
remain in memory, and, because the procedure has destroyed the pointers in
objRef1 and objRef2, there is no longer any way to manipulate them. They will
remain in memory until the application is terminated.

In the case of in-process COM servers, this case can lead to objects that don’t ter-
minate until the machine is rebooted!

Proper Termination

Correcting this problem requires that you pay special attention to any possible cir-
cular references created by your class hierarchy. As long as class instances don’t
point to each other, you won’t experience this problem. If you do allow circular ref-
erences (parent-child relationships are the most common case) you should take
the extra step of explicitly destroying internal pointers before destroying any exter-
nal ones.

In our example, we could accomplish this by setting the Link property to Nothing
before destroying the object pointer. Another potentially safer approach is to create
a method of each class that destroys any pointers it maintains and then calls this
method prior to termination. For example, both Ref1 and Ref2 implement the
Cleanup method shown here:

Public Sub Cleanup()
 ' Destroy all object references
 If Not mobjLink Is Nothing Then
 Set mobjLink = Nothing
 End If
End Sub

Our final demonstrative procedure, TestRef3, calls this method before setting
the object variables to Nothing. This is shown in Listing 6.20. If you step through the
code, you’ll see that both objects terminate as expected.

➲ Listing 6.20: Calling a Method to Destroy Internal Pointers

Sub TestRef3()
 ' Objects terminate normally

 Dim objRef1 As Ref1
 Dim objRef2 As Ref2

 Other Advanced Considerations 365

 ' Instantiate variables
 Set objRef1 = New Ref1
 Set objRef2 = New Ref2

 ' Set a reference to one from the other
 Set objRef1.Link = objRef2
 Set objRef2.Link = objRef1

 ' Clean up internal reference
 objRef1.Cleanup
 objRef2.Cleanup

 ' Destroy the local references
 Set objRef1 = Nothing
 Set objRef2 = Nothing
End Sub

Despite the additional effort required, taking these extra steps to ensure proper
termination will make your life easier in the long run by eliminating potential
debugging headaches and performance problems.

Shared Classes
The final topic in this section involves a new capability of VBA 6—the ability to
share class modules between VBA projects. If you’ve been creating class modules
for VBA projects, as we have, you may have been dismayed at having to duplicate
common classes among multiple VBA projects. Changes in one project necessitate
changes to all the others because there was no way to share the code. (Visual Basic
has this capability inherently because projects are made up of files on disk.)

VBA now gives you the ability to share classes between VBA projects using
project references. You can reference VBA projects the same way you reference
any other COM components. Simply open the References dialog (select the Tools �
References menu command), click the Browse button, and locate the project file
you’re interested in.

Project references are limited to the same host application. That is, you can
reference one .XLS file from another, but you can’t reference a Word VBA project
in a .DOC file from an Excel VBA project.

Chapter 6 • Advanced Class Module Techniques366

Once you’ve established a project reference, you can call any Public procedure
declared in normal code modules within the referenced project. In fact, you’ve
been able to do this since VBA 5. To share class modules, you must perform two
additional tasks.

First, you need to mark the class modules themselves as Public using the Prop-
erties window in the VBA IDE. By default, class modules are Private and, thus,
cannot be shared. You must change this setting to PublicNotCreatable so other
projects can see them. The second thing you must do is to provide a mechanism in
the referenced project to create instances of the classes.

Because VBA class modules cannot be created by procedures outside of the
project where they are defined, you must create a Public procedure in a normal
code module that does this. We’ve created the following procedure named Get-
TextFileObject in basTest:

Public Function GetTextFileObject() As TextFile2
 ' Return a new class instance
 Set GetTextFileObject = New TextFile2
End Function

All this procedure does is create a new instance of the TextFile2 class and return
it to the calling procedure.

To demonstrate how this is used, we’ve created a second VBA project in
REF.XLS that includes a reference to ADVCLASS.XLS. This second project
includes it’s own version of the test procedure TestTF2, but instead of using the
New keyword to create a new instance of the TextFile2 class, it calls GetTextFile-
Object:

Dim objFile As AdvClasses.TextFile2

' Create new instance of TextFile class
Set objFile = AdvClasses.GetTextFileObject()

Note that we’ve prefixed the class and function names with the referenced project
name. This serves to disambiguate the names should there be a naming conflict.

If you run the code in REF.XLS, you’ll see that it behaves the same way as the
code in ADVCLASS.XLS. With the ability to share classes between VBA projects,
it’s now much easier to make code modifications to common code.

 Summary 367

Summary
This chapter picked up where Chapter 5 left off, discussing a number of advanced
class module concepts and techniques. As you use more and more classes in your
applications, you should find the information in this chapter very useful.

Specifically, this chapter covered the following techniques:

• Class hierarchy design using object properties

• Using the VBA Collection class

• Creating your own collection classes

• Defining and raising custom events

• Developing interfaces classes and using the Implements keyword

• Handling error conditions in class modules

• Dealing with circular references between class instances

• Sharing class modules among VBA projects

This page intentionally left blank

c h a p t e r 7

Searching and Sorting
in VBA

� Creating a StopWatch class to measure elapsed time

� Introducing arrays

� Using the standard Quicksort algorithm

� Sorting collections

� Sorting other types of objects

� Understanding the Binary Search algorithm

Chapter 7 • Searching and Sorting in VBA370

If you’re working with data in your application, sooner or later you’ll need to
sort the data, or you’ll need to find a particular item within a group of data items.
This chapter, which is devoted to searching and sorting data, presents some tech-
niques from which you can choose.

Certainly, the topics of searching and sorting have been covered in much more
academic terms, in much greater detail, in other books. We’re not attempting to
provide a complete discussion of various sorting algorithms here. In fact, we
present only one: the common Quicksort algorithm. We do, however, show you
how to use the sorting routine and present detailed coverage of exactly how it
works. For searching, we present the Binary Search algorithm and demonstrate
how you can use it and exactly how it works. Because many readers will be using
VBA in conjunction with the Microsoft Jet database engine or some other SQL data
source, we provide tips along the way for using the database engine to do the work.

Table 7.1 lists the sample files you’ll find on the accompanying CD-ROM.

T A B L E 7 . 1 : Sample Files

Filename Description

SrchSort.xls Excel file with all sample functions

SrchSort.mdb Access 2000 file with all sample functions

BinarySearch.bas Binary Search module

BubbleSort.bas Bubblesort module

LinearSearch.bas Linear search module

QuickSort.bas Quicksort module

QuickSortable.bas Quicksort using ISortable class

QuickSortObjects.bas Quicksort using Object type

TestISortable.bas Test dhQuickSortable

TestProcs.bas Test procedures

VQuickSort.bas Visual Quicksort module

ExistingArray.cls Sample class for dhQuickSortable

FileData.cls Sample class for dhQuickSortable

 Timing Is Everything 371

Timing Is Everything
Most likely, if you’re sorting data, you care about how long it takes to perform the
sort. When deciding on the best technique to use for sorting your data, you’ll need
some help. The StopWatch class discussed in this section can help you determine
which is the best technique to use, based on the time it takes to execute. We use
this simple StopWatch class all the time and in any situation in which we need to
compare the timings of two or more activities.

Introducing the StopWatch Class
It doesn’t take much effort to measure elapsed time. VBA itself includes the Timer
function, which returns a Single value containing the number of seconds that have
elapsed since midnight. This function has three inherent problems if you intend to
use it to measure elapsed time in your applications:

• It “turns over” at midnight, so if you happen to be running a test over the
bewitching hour, your test results will be meaningless.

• It turns over every 24 hours, so if you want to run a test that lasts longer than
that, you’re out of luck.

• It isn’t terribly accurate. It can measure time only to 1/18-second accuracy
because of the particular internal timer it’s using.

FileDataObject.cls Sample class for dhQuickSortObjects

ISortable.cls Interface class for dhQuickSortable

SimpleArray.cls Sample class for dhQuickSortable

SortedCollection.cls Sorted Collection class

StopWatch.cls StopWatch class module

SrchSort.VBP VB6 project including all sample modules

T A B L E 7 . 1 : Sample Files (continued)

Filename Description

Chapter 7 • Searching and Sorting in VBA372

For these reasons (and there’s one even more crucial reason not to use Timer,
coming up in a moment), it’s probably best that you avoid the Timer function
when attempting to measure elapsed times in small increments. What’s your
alternative? The Windows API provides several ways to measure elapsed time,
the simplest of which is the GetTickCount function. This function measures the
number of milliseconds (in a long integer) that have elapsed since you started
Windows. The GetTickCount function compares favorably to the Timer function:

• It “turns over” only every 49 days or so. If you’re interested in millisecond
accuracy, you’re probably not running tasks that take that long, but it’s nice
to know it can keep on ticking and ticking!

• It has no concept of days, so there’s no issue with running tasks that last
longer than a single day.

• It’s more accurate than the Timer function. Rather than measuring in 1/18-
second increments, it measures in 1/1000-second increments. In addition,
because it doesn’t involve floating-point math to return its results (as does
the Timer function), it’s more accurate as well.

Obviously, the StopWatch class will take advantage of this API function. The
code for the class, shown in Listing 7.1, is amazingly simple. As you can see in the
listing, the class exposes two public methods: StartTimer and EndTimer. The
StartTimer method initializes the internal mlngStart variable, storing the time
value when the stopwatch was “started.” The EndTimer method returns the dif-
ference between the current tick value and the time at which the clock was
started—effectively, the amount of elapsed time, in milliseconds.

➲ Listing 7.1: The StopWatch Class (Stopwatch.cls)

Private mlngStart As Long
Private Declare Function GetTickCount Lib "kernel32" () As Long

Public Sub StartTimer()
 mlngStart = GetTickCount
End Sub

Public Function EndTimer() As Long
 EndTimer = (GetTickCount - mlngStart)
End Function

 Timing Is Everything 373

Using the StopWatch Class
To use the StopWatch class, you’ll generally write code like this:

Dim sw As StopWatch
Set sw = New StopWatch
sw.StartTimer
' Do stuff in here that you want to time
Debug.Print "That took: " sw.EndTimer & "milliseconds."

As an example, the final (and most compelling) reason to use GetTickCount as
opposed to the built-in Timer function is that the act of calling the Timer function
itself takes, in general, several times as long as calling GetTickCount. Don’t believe
it? Try the code shown in Listing 7.2, from TestProcs.bas. If you run CompareTimers
from the Immediate window, you’ll see that calling Timer takes substantially
longer (five to eight times longer, in our tests) than calling GetTickCount.

➲ Listing 7.2: Compare Timer to GetTickCount (TestProcs.bas)

Private Declare Function GetTickCount Lib "kernel32" () As Long

Public Sub CompareTimers()
 Dim lngMax As Long
 Dim sw As New StopWatch
 Dim lngI As Long
 Dim lngResult As Long

 lngMax = 100000
 sw.StartTimer
 For lngI = 1 To lngMax
 lngResult = Timer
 Next lngI
 Debug.Print "Timer: " & sw.EndTimer

 sw.StartTimer
 For lngI = 1 To lngMax
 lngResult = GetTickCount
 Next lngI
 Debug.Print "GetTickCount: " & sw.EndTimer
End Sub

Chapter 7 • Searching and Sorting in VBA374

To use the StopWatch class in any application, simply import Stopwatch.cls into
your project, and call it as shown in the examples. Whenever we make a comment
in this book about one technique being faster than another, you can bet we’ve
tried it out both ways with the stopwatch running.

Using Arrays
There are many ways to store data in VBA, but if you’re interested in sorting data,
it will often be in an array. Although many subtleties are involved in using arrays
in VBA, the next few sections outline the concepts you’ll need to understand in
order to use the techniques supplied in this chapter. If you need more detailed
information on creating and using arrays, see the VBA online help. This is a rich
topic, and we can’t discuss all the subtleties here; we’ve attempted to explain only
what you’ll need to know to follow the code examples in this chapter.

What Is an Array, Anyway?
An array is an indexed group of data treated as a single variable. You would con-
sider using an array when you need to work with a group of data items that are
related in such a way that you can use an integer to relate the items.

For example, imagine you needed to work with all your salary levels for a six-
year range, from 1992 to 1997. Because the year value is an integer, you can use
that as an index for the data. You might create an array named SalaryInfo, as
shown in Figure 7.1, declared like this:

Dim SalaryInfo(1992 To 1997) As Currency

Of course, you’re not limited to arrays containing information about salaries, or
even to arrays of any specific data type. When you declare an array, you can spec-
ify any range of values (most arrays start at either 0 or 1, but they don’t have to),
containing almost any data type. In addition, arrays can contain multiple dimen-
sions of data. To access a particular array element, you might use statements like
these:

SalaryInfo(1997) = 26500
' or
If SalaryInfo(1997) > SalaryInfo(1996) * 1.10 Then
 MsgBox "The raise from 1996 to 1997 was too great. " & _
 "Make this year’s raise smaller!"
End If

 Using Arrays 375

F I G U R E 7 . 1
An array can use any

integer value range as
its index.

Imagine that rather than storing six years of salary information, you’d like to
store salary information by quarter. That is, for each of the four quarters in the
year, you’d like information in each of the six years. You might, then, create an
array that looks like the one shown in Figure 7.2. To declare an array like this one,
you might use a statement like this:

Dim SalaryInfo(1992 To 1997, 1 To 4) As Currency

where the years range from 1992 to 1997, and for each year, the quarters range
from 1 to 4.

F I G U R E 7 . 2
Arrays can contain two or

more dimensions of
information.

Chapter 7 • Searching and Sorting in VBA376

To retrieve or set any item from the array, now you’d use an expression like this:

' Give a 15% raise in the fourth quarter, based on the third
' quarter’s salary.
SalaryInfo(1997, 4) = SalaryInfo(1997, 3) * 1.15

Take it one step further: what if you want to work with information about quar-
terly salaries of multiple employees? In that case, you might create a three-dimen-
sional array, as shown in Figure 7.3. To declare this array, you might use a
statement like this:

Dim SalaryInfo(1992 To 1997, 1 To 4, 1 To 3) As Currency

(that is, years from 1992 to 1997, quarters from 1 to 4, and employees from 1 to 3).
The following code will deduct 10 percent from Employee 3’s pay in the final
quarter of 1997:

SalaryInfo(1997, 4, 3) = SalaryInfo(1997, 4, 3) * .90

F I G U R E 7 . 3
Although it’s not a common
practice, you can use three
or more dimensions in your

arrays.

The following sections discuss some of the details of using arrays, and many of
the examples in this chapter also use arrays as part of doing their work.

 Using Arrays 377

Although using multidimensional arrays is a useful technique for modeling real-
world scenarios, be careful of the complexity you introduce into your applications
by using these sometimes difficult-to-envision data structures. In addition, arrays
in VBA aren’t sparse—that is, empty elements take up just as much memory as
elements that are filled with data. Large arrays can be real memory hogs, and you
should carefully consider how much of your array is being utilized and whether
some other data structure might be more appropriate.

Creating an Array
VBA treats an array much as it would any other variable. The same naming, scop-
ing, and lifetime rules apply. The only difference is that, with an array, you must
either specify the lower and upper bounds for the array or at least indicate that
you’ll later indicate those values.

To create an array, dimension array variables like this:

' 100 integers
Dim aintItems(1 To 100) As Integer
' 10 rows of data with 2 strings each
Dim astrNames(1 To 10, 1 To 2) As String
' Tell VBA that you’ll specify the size later:
Dim astrNames() As String

See the section “Sizing an Array” coming up in a moment for more information on
resizing an array once you’ve created it.

To indicate that a variable contains an array, we’ve used the “a” prefix on variable
names. For example, given a name like “astrNames,” you can see that it’s an array
(“a”) containing strings (“str”) called “Names.” You can pick your own naming
convention—this just happens to be how we do it.

Using Data in an Array
Once you’ve created an array, you can work with any item in the array, referring to
the item by its position within the array. For example, if the array astrItems contains

Chapter 7 • Searching and Sorting in VBA378

100 strings, you could use code like the following to inspect each of the 100 ele-
ments of the array:

Dim intI As Integer
For intI = 1 To 100
 Debug.Print astrItems(intI)
Next intI

If you wanted to place the current index value into each location in aintItems (an
array of 50 integers), you might write code like this:

Dim aintItems(1 To 50) As Integer
Dim intI As Integer
For intI = 1 To 50
 aintItems(intI) = intI
Next intI

You needn’t use a loop of any sort to work with elements of an array. For exam-
ple, the following procedure, used in the sorting code presented in the section
“Sorting Arrays” later in this chapter, swaps two array items. In this case, the
array is named varItems, and lngItem1 and lngItem2 contain the indexes of the
two items to be swapped:

Dim varTemp As Variant
varTemp = varItems(lngItem2)
varItems(lngItem2) = varItems(lngItem1)
varItems(lngItem1) = varTemp

You can also use the For Each…Next construct to loop through the elements of an
array, but this isn’t recommended. It’s slower than using the For…Next construct,
and you can’t use this construct for setting values in an array—you can use it only
to retrieve values. On the other hand, using For Each...Next means you needn’t
worry about the bounds of the array—the looping construct takes care of those
details. If you decide to use For Each...Next to loop through an array, use a variant
as the looping variable.

Sizing an Array
An array is generally a static data structure. As such, once you’ve told VBA the
size of the data structure, you won’t be able to automatically resize the array with-
out explicitly requesting the change in size.

 Using Arrays 379

VBA provides a number of ways to size an array:

• When you declare the array, you can specify its dimensions. (This is nor-
mally called a fixed-size array.)

Dim astrItems(1 To 100) As String

• When you declare the array, you can leave off the dimensions. Later, when
you want to use the array, you can use the ReDim keyword to set its size.
(This is normally called a dynamic array because you needn’t know the size
of the array when you create it.)

Dim astrItems() As String
' Later in the code (intItems contains, perhaps, 100)
ReDim astrItems(1 To intItems)

• You can create a dynamic array, along with its dimensions, when you first
declare it, using the ReDim keyword:

ReDim astrItems(1 To 100) As String

• You can resize a dynamic array at any time, using the ReDim keyword.
Unless you also specify the Preserve keyword, VBA clears the items con-
tained in the array. If you use the Preserve keyword, VBA preserves all the
existing items in the array:

Dim astrItems() As String
' Later in the code:
ReDim astrItems(1 To 100)
' Fill in the items...
' Now you find out that you need an additional 100 items:
ReDim Preserve astrItems(1 To 200)

Although you needn’t specify the lower bound of an array—rather than specifying
(1 to 100), for example, you could just use (100) as the array bound—we strongly
advise that you always do so. If you don’t specify the lower bound, you’re counting
on using the value specified (or implied) by the module’s Option Base setting. By
default, a module’s Option Base setting is 0, but you can override this by adding an
Option Base 1 statement to any module. Either way, if you don’t specify the lower
bound of an array when you set its size, VBA will use the value selected by the
Option Base statement. When you explicitly specify the lower bound, your code is
more readable, and you’re less likely to be affected by “off by one” errors.

Chapter 7 • Searching and Sorting in VBA380

It’s worth noting that you can only use ReDim Preserve and modify the dimensions
of an array; you’ll need to be especially careful with multidimensional arrays. In
that case, you can only redimension the last array dimension, and you can’t
change the number of dimensions at all. See the ReDim statement in online help
for more info, because using ReDim Preserve with multidimensioned arrays may
cause you some stress.

Using a Variant to Point to an Array
A simple way to work with an array is to “point” a variant variable at the array
and use the variant to refer to the array from then on. That is, if astrItems is an
array containing 100 strings, you can use code like the following to cause varItems
to refer to astrItems:

Dim varItems As Variant
Dim astrItems(1 To 100) As String
' Fill in the strings here.
varItems = astrItems

Once you take that step, you can use varItems as a single variable, without worry-
ing about the trailing parentheses, but you can also refer to items in the array,
using code like this:

varItems(1) = "A new string"

Alternatives to ReDim Preserve
Using ReDim Preserve does preserve the contents of your array as it’s being resized, but it’s
not a fast operation. To redimension the array, VBA must grab a chunk of memory for the
new array and then, if you’ve specified the Preserve keyword, copy over all the items in
your original array. Finally, it releases the memory used by the original array. You’d do best
to avoid ReDim Preserve if at all possible. What are the alternatives? One possibility is to
use a collection (see the section “Working with Collections” later in this chapter for more
information) to contain your data. Another is to use a dynamic data structure like a linked
list, as described in Chapter 8. Finally, you can consider redimensioning your array by add-
ing chunks of items at a time. That is, rather than redimension it every time it requires
more items, add a large number of items at a time and redimension only when you run out
of items. When you’re done adding items, you can make one final call to ReDim Preserve
to resize the array correctly.

 Using Arrays 381

This assignment happens automatically when you pass an array to a function that
expects a variant parameter. For example, the dhQuickSort procedure (in Quick-
sort.bas) is declared like this:

Sub dhQuickSort(varArray As Variant, _
 Optional lngLeft As Integer = dhcMissing, _
 Optional lngRight As Integer = dhcMissing)

To call dhQuickSort, pass it either an array or a variant that “contains” an array.
For example, any of the following methods is acceptable:

Dim varItems As Variant
varItems = Array(1, 2, 3, 4, 5)
Call dhQuickSort(varItems)
' or: ==========
Dim aintItems(1 To 5) As Integer
aintItems(1) = 1
aintItems(2) = 2
aintItems(3) = 3
aintItems(4) = 4
aintItems(5) = 5
Call dhQuickSort(aintItems)
' or: ==========
Dim aintItems(1 To 5) As Integer
Dim varItems As Variant
aintItems(1) = 1
aintItems(2) = 2
aintItems(3) = 3
aintItems(4) = 4
aintItems(5) = 5
varItems = aintItems
Call dhQuickSort(varItems)

If you call dhQuickSort, passing it an array of strings (or any other specific data
type), VBA will assign the array to the variant as it calls the procedure. Then, inside
the called procedure, you can refer to varItems as though it were the array itself.

To ensure that a variant does, in fact, contain an array, you have three choices:

Use the TypeName function Call the TypeName function. If your Variant
item contains an array, the TypeName function returns the string that ends with
“()”, like “Integer()” or “String()”, depending on the type of data in the array.

Chapter 7 • Searching and Sorting in VBA382

Use the IsArray function Call the IsArray function, passing the variant vari-
able. It will return True if the variant points to an array and False otherwise. You
might write code like this at the beginning of a routine that’s expecting an array:

If Not IsArray(varItems) Then Exit Sub

Use the VarType function Call the VarType function, passing the variant
variable. VarType will return vbArray (8192) plus a value corresponding to the
type of data in the array—vbInteger (2) through vbByte (17). For example, if
you’re allowing only an array of strings to be passed into a particular function,
you might write code like the following:

If VarType(varItems) <> vbArray + vbString Then Exit Sub

Using the Array Function
Some examples in this chapter use the Array function to place data into an array. This use-
ful function allows you to list specific values to be placed into an array, and it returns an array
containing the values you send it. For example, the following statement places an array con-
taining three integers into a variant:

Dim varItems As Variant

varItems = Array(100, 202, 315)

' Almost equivalent to:

Dim varItems(0 To 2) As Integer

varItems(0) = 100

varItems(1) = 202

varItems(2) = 315

Note the “almost” in the code comment. In the first example, the indexes used by the
items in varItems will use the Option Base statement in the module to determine the start
of the range of index values. If there’s no Option Base statement or if it’s set to 0, the
items will be numbered 0, 1, and 2. If you’ve set the Option Base statement for the mod-
ule to 1, the elements will be numbered 1, 2, and 3. The array items in the second example
will always be numbered 0, 1, and 2, no matter how you modify the Option Base state-
ment for the module. You must be aware of the Option Base setting if you use the Array
function. If you want the Array function to always start numbering at 0, you must use a
trick: you must call the Array function directly from the VBA type library, using the syntax
VBA.Array. Therefore, this code always gives you an array whose first index is 0, no matter
how Option Base has been set:

varItems = VBA.Array(100, 202, 315)

 Using Arrays 383

New Array Features

VBA 6 (used in Visual Basic 6 and Office 2000) adds some interesting new features
for array users. First of all, although you couldn’t do this in previous versions of
VBA, you can now return a typed array as the return value of a function. In previ-
ous versions, you could return an array stored in a Variant, but you couldn’t write
a function like this:

Function ReturnArray() As String()
 Dim astrValues() As String
 ReDim astrValues(1 To 100)
 ' Put some data into the array.
 astrValues(1) = "Hello"
 astrValues(2) = "There"
 ReturnArray = astrValues()
End Function

Sub TestReturnArray()
 Dim astrValues() As String
 astrValues = ReturnArray()
 Debug.Print astrValues(1)
End Sub

Now, there’s no problem returning a typed array from a function call. This takes
care of a large class of issues you’d otherwise have to deal with when returning an
array in a Variant. Most important, this handles the “is there actually an array in
there?” problem on return from calling this type of function in VBA 5.

In addition, VBA 6 makes it possible to assign an array from one location to
another with a single statement. In previous versions of VBA, you were required
to copy each element, one at a time (or to use Windows API calls to copy the
whole memory block at once, a frightening concept for most developers). As a
matter of fact, the TestReturnArray procedure in the previous code fragment took
advantage of this capability when it performed this line of code:

Dim astrValues() As String
astrValues = ReturnArray()

Whether you can copy an array from one variable to another depends on a num-
ber of issues, including the following:

• The type of array (fixed or dynamic) on the left-hand side of the assignment.
(You can never assign directly into a fixed-size array.)

Chapter 7 • Searching and Sorting in VBA384

• Whether the number of dimensions for the two arrays match.

• Whether the number of elements on both arrays match.

• The data types for the two arrays are compatible. (For example, you’ll never
be able to copy data from a string array into a numeric array.)

The following table describes the outcome of trying to make an assignment based
on the various issues.

We take advantage of the ability to assign typed arrays to other arrays in many
places throughout the book, and we (to be honest) simply take this ability for
granted. Yes, it’s new in this version, but it’s how you probably expected VBA to
work all along, so its use comes naturally in code.

Sorting Arrays
Once you’re comfortable with arrays, you’ll want to be able to sort the data they
contain. This section introduces a common sorting method, the Quicksort algo-
rithm. This algorithm, an accepted advanced sorting technique, is somewhat com-
plex, but it performs well. Once you’ve written the code, of course, you won’t
have to revisit it unless you need to modify it. If you’re not interested in how the
sort does its work, skip ahead to the “Watching Quicksort Run” section.

Left-Hand
Side

Number of
Dimensions Match?

Number of Elements
Match?

Result

Dynamic No Doesn’t matter Succeeds. Left-hand
array may ReDim to
match right-hand if
necessary.

Dynamic Yes No Succeeds. Left-hand
array may ReDim to
match right-hand if
necessary.

Dynamic No Yes Succeeds

Fixed Doesn’t matter Doesn’t matter Fails at compile time

 Sorting Arrays 385

Why this particular sorting algorithm? In choosing a sort method, you want to
minimize the number of comparisons and swaps the sort uses to complete its
goal. There are simpler sort algorithms (a statement with which you’ll
undoubtedly agree if you work through the Quicksort example step by step), but
the simpler sorts almost always require more comparisons between items and
more data movement (swapping items) in order to sort the array. More
comparisons and more swaps turn into longer execution time, so Quicksort
provides a good compromise: it’s complex but understandable, and it’s more
efficient than simpler sorts.

Quicksort isn’t optimized for data that’s already sorted. That is, if your data comes
to the Quicksort algorithm in sorted order, it will take almost as long to sort as if it
weren’t. Other (perhaps simpler) algorithms will take into account the fact that
data is already sorted and drop out sooner. If you’re often going to be sorting data
that may be in sorted order, you may want to investigate other sorting techniques.
(See the discussion in the section “Speed Considerations” later in this chapter for
more information.)

How Does Quicksort Work?
The Quicksort algorithm, generally accepted as one of the fastest sort algorithms,
uses the “divide and conquer” technique of sorting. Basically, Quicksort divides
an array into smaller and smaller partitions, two partitions at a time, such that
each left-hand partition contains values smaller than each right-hand partition.
When it runs out of partitions, it’s done.

Quicksort lends itself to recursion (the concept of a procedure calling itself,
passing new parameters), and the recursive implementation of the sort is rela-
tively simple. Given an array to sort, the algorithm boils down to these few steps:

1. Call the sort function, passing the lower and upper bounds of the segment to
be sorted.

2. If the lower bound is less than the upper bound, then:

a. Break the current array into two smaller segments, such that all items
in the left segment are less than or equal to each item in the right seg-
ment. This will involve swapping some items from one segment to the
other.

Chapter 7 • Searching and Sorting in VBA386

b. Follow the same algorithm on the smaller of the left and right segments
(and this will, most likely, break down the segment into multiple call
levels as well). Once that’s sorted, follow the same algorithm with the
larger, remaining segment.

The sort appears to break down into two major chunks: partitioning the ele-
ments and then calling the sort again recursively. You might be grumbling, at this
point, about recursive routines and how they use lots of memory. Normally, that’s
true; this version of the sorting algorithm, however, tries to be conservative about
how it uses memory. At each level, it sorts the smaller of the two chunks first. This
means it will have fewer recursive levels: the small chunk will end up containing a
single element much more quickly than the large chunk. By always working with
the smallest chunk first, this method avoids calling itself more often than it has to.
The entire dhQuickSort procedure, implementing the Quicksort algorithm, is
shown in Listing 7.3.

➲ Listing 7.3: The dhQuickSort Procedure, Implementing the
Quicksort Algorithm (Quicksort.bas)

Private Const dhcMissing = -2

Public Sub dhQuickSort(varArray As Variant, _
 Optional lngLeft As Long = dhcMissing, _
 Optional lngRight As Long = dhcMissing)

 Dim i As Long
 Dim j As Long
 Dim varTestVal As Variant
 Dim lngMid As Long

 If lngLeft = dhcMissing Then lngLeft = LBound(varArray)
 If lngRight = dhcMissing Then lngRight = UBound(varArray)

 If lngLeft < lngRight Then
 lngMid = (lngLeft + lngRight) \ 2
 varTestVal = varArray(lngMid)
 i = lngLeft
 j = lngRight
 Do
 Do While varArray(i) < varTestVal
 i = i + 1

 Sorting Arrays 387

 Loop
 Do While varArray(j) > varTestVal
 j = j - 1
 Loop
 If i <= j Then
 SwapElements varArray, i, j
 i = i + 1
 j = j - 1
 End If
 Loop Until i > j
 ' To optimize the sort, always sort the
 ' smallest segment first.
 If j <= lngMid Then
 Call dhQuickSort(varArray, lngLeft, j)
 Call dhQuickSort(varArray, i, lngRight)
 Else
 Call dhQuickSort(varArray, i, lngRight)
 Call dhQuickSort(varArray, lngLeft, j)
 End If
 End If
End Sub

Private Sub SwapElements(varItems As Variant, _
 lngItem1 As Long, lngItem2 As Long)
 Dim varTemp As Variant

 varTemp = varItems(lngItem2)
 varItems(lngItem2) = varItems(lngItem1)
 varItems(lngItem1) = varTemp
End Sub

When you have a procedure that calls itself recursively, it’s imperative that you
provide some way to terminate the process. In this case, the code can repeat only
as long as the lower bound value is less than the upper bound value. As the
dhQuickSort routine calls itself, the lower bound gets higher and higher and the
upper bound gets lower and lower. Once these values cross, the sort is done.
Therefore, the dhQuickSort procedure starts by checking for this condition:

If lngLeft < lngRight Then
 ' Sort this segment (code removed)
End If

Chapter 7 • Searching and Sorting in VBA388

If, at any call to dhQuickSort, the lower bound isn’t less than the upper bound,
the sorting stops and the procedure can return to the caller. Once the code has
made the determination that it can perform the sort, it takes the following steps:

1. The sort takes the value in the middle of the subset of the array that’s being
sorted as the “comparison” value. Its value is going to be the dividing factor
for the two chunks. There are different schools of thought on how to choose
the dividing item. This version of the sort uses the item that’s physically in the
middle of the chosen list of items:

lngMid = (lngLeft + lngRight) \ 2
varTestVal = varArray(lngMid)

2. The code first starts from the left, walking along the array until it finds an
item that isn’t less than the dividing value. This search is guaranteed to stop
at the dividing value, which certainly isn’t less than itself:

i = lngLeft
j = lngRight
' Loop removed here.
Do While varArray(i) < varTestVal
 i = i + 1
Loop

3. Next, the code starts from the right, walking backward through the array
until it finds an item that isn’t more than the dividing value. This search is
guaranteed to stop at the dividing value, which certainly isn’t more than
itself:

Do While varArray(j) > varTestVal
 j = j - 1
Loop

4. If the position from step 2 is less than or equal to the position found in step 3,
the sort swaps the elements at the two positions and then increments the
pointer for step 2 and decrements the pointer for step 3:

If i <= j Then
 Call SwapElements(varArray, i, j)
 i = i + 1
 j = j - 1
End If

 Sorting Arrays 389

5. The sort repeats steps 2 through 4 until the pointer from step 2 is greater
than the pointer from step 3 (i > j). At this point, every item to the left of the
dividing element is less than or equal to it, and everything to the right is
greater than or equal to it.

6. Choosing the smaller partition first, the sort repeats all these steps on each of
the subsets to either side of the dividing value until step 1 indicates that it’s
done:

If j <= lngMid Then
 Call dhQuickSort(varArray, lngLeft, j)
 Call dhQuickSort(varArray, i, lngRight)
Else
 Call dhQuickSort(varArray, i, lngRight)
 Call dhQuickSort(varArray, lngLeft, j)
End If

To make this technique completely clear, imagine you want to sort an array of
10 integers, positions numbered 1 through 10, as shown in Figure 7.4. The follow-
ing numbered list corresponds to the steps shown in Figures 7.5, 7.6, 7.7, and 7.8.
In the first few steps, the pertinent code will be displayed. Because there isn’t
much code but there are a lot of steps, once you’ve seen the appropriate chunk of
code, it won’t be displayed again.

Along the way, the discussion will keep track of the levels of recursion. That is, as
you call dhQuickSort from dhQuickSort, it’s important to keep track of how many
times the procedure has called itself, to make sure you understand the concept of
a recursion. In this example, level 1 is your call to dhQuickSort, and subsequent
levels represent calls dhQuickSort makes to itself, passing in different limits on the
array to be sorted.

To make the following steps easier to read, we’ve used the symbol “j^” to refer to
“the item pointed to by j.” That is, when the variable j contains the value 1, the
item it’s pointing to (in the original array) is 79, and the shortcut in the text for
that will be j^. (If you require some verbal representation for this notation, you can
say—silently, please—“j hat” where you see “j^” in the text. This verbalization
stems from a Pascal class one of us took many years ago.)

Chapter 7 • Searching and Sorting in VBA390

F I G U R E 7 . 4
The sample array, ready to

be sorted

1. Calculate the middle location (5). Then, point i at the first element in the
array and j at the final element. While i^ (the item pointed to by i) is less than
26, move i to the right. (It doesn’t move at all, because 79 isn’t less than 26.)
While j^ is greater than 26, move j to the left:

lngMid = (lngLeft + lngRight) \ 2
varTestVal = varArray(lngMid)
i = lngLeft
j = lngRight
Do
 Do While varArray(i) < varTestVal
 i = i + 1
 Loop
 Do While varArray(j) > varTestVal
 j = j - 1
 Loop

2. Because i is less than or equal to j, swap the elements pointed to by i and j.
Then move i one position to the right and j one position to the left.

 If i <= j Then
 SwapElements varArray, i, j
 i = i + 1
 j = j - 1
 End If
Loop Until i > j

3. Because i isn’t greater than j, the loop goes back to the top. While i^ is
less than 26, move i to the right. (It’s not, so it doesn’t move.) While j^ is
greater than 26, move j to the left.

4. Because i is less than or equal to j, swap the elements pointed to by i and j.
Then move i one position to the right and j one position to the left.

5. Because i isn’t greater than j, the loop goes back to the top. While i^ is less
than 26, move i to the right. While j^ is greater than 26, move j to the left.

 Sorting Arrays 391

6. Because i is less than or equal to j, swap the elements pointed to by i and j.
Then move i one position to the right and j one position to the left.

7. Because i is now greater than j (i is 5 and j is 4), drop out of the Do…Loop.
Now j is less than lngMid (the middle position), so call the entire procedure
again, working with elements 1 through j. (You’re now leaving level 1 in the
recursion and going to level 2.) Once you’ve sorted the items in positions 1
through 4, you’ll call dhQuickSort again to sort the items in positions 5 through
10 (starting in step 13).

If j <= lngMid Then
 Call dhQuickSort(varArray, lngLeft, j)
 Call dhQuickSort(varArray, i, lngRight)

F I G U R E 7 . 5
Steps 1 through 7

Chapter 7 • Searching and Sorting in VBA392

8. Starting over again: the leftmost element is 1 and the rightmost element is 4,
so set i and j to point to those items. Calculate the middle location (2). While
i^ is less than 5, move it to the right. (It doesn’t move at all, because 21 isn’t
less than 5.) While j^ is greater than 5, move j to the left.

9. Because i is less than or equal to j, swap the elements pointed to by i and j.
Then move i one position to the right and j one position to the left.

10. Because i is now greater than j (i is 2 and j is 1), drop out of the Do…Loop.
Now j is less than the middle position, so call the entire procedure again,
working with elements 1 through j. (You’re now leaving level 2 in the recur-
sion and going to level 3.) Of course, once you’ve sorted items 1 through 1
(not much to sort in that interval, is there?), you’ll come back to level 2 and
sort items 2 through 4 (starting in step 11).

If j <= lngMid Then
 Call dhQuickSort(varArray, lngLeft, j)

At this point, you’ve called dhQuickSort, passing 1 and 1 as the end points.
The outermost condition checks to see whether lngLeft is less than lngRight,
and if it isn’t, it just returns. That’s the case now, and you return to level 2.

11. Back at level 2, you now call dhQuickSort, passing i and lngRight as the end-
points. (When you call dhQuickSort, you leave level 2 and move on to level 3
again.) While i^ is less than the middle item (24), move to the right. This places
i smack on the 24. While j^ is greater than 24, move it to the left. This places j
on the 24 as well.

12. Now, because i is, in fact, less than or equal to j, swap the items i and j point
to (not much work here, because i and j point to the same value), and then
move j one position to the left and i one position to the right. (This is what
step 12 in Figure 7.6 displays.) Because i is now greater than j, it’s time to
drop out of the loop. At this point, j is less than lngMid (j is 2 and lngMid is
3), so the code calls dhQuickSort, passing lngLeft (2) and j (2). This enters
recursion level 4. Of course, as soon as you get there, dhQuickSort deter-
mines that lngLeft is not less than lngRight (it’s been passed 2 and 2 from
level 3), so it drops right back to level 3. Back in level 3, the next step is to call
dhQuickSort, passing i (4) and lngRight (4). You can probably guess that the
visit to level 4 is going to be short: because dhQuickSort receives lngLeft and
lngRight values that are the same, it’s going to immediately return to level 3.
The call to dhQuickSort, level 3, is complete, and it returns back to level 2.

 Sorting Arrays 393

But level 2 is complete as well—you’ve sorted both the left and right halves
of the first partition (1 to 4)—so it’s time to return to the right partition in
level 1. Finally, you get to the picture displayed in step 13 of Figure 7.7.

F I G U R E 7 . 6
Steps 8 through 12

13. You’re probably getting the hang of this by now! As long as i^ is less than
the middle item (30), move it to the right. It’s already pointing to a value
greater than 30 (48, in position 5), so it doesn’t move. As long as j^ is greater
than the middle item (30), move it to the left. All the items to the right of
position 7 are greater than 30, so j ends up pointing to the middle item.

14. Because i is less than or equal to j, swap the two items.

15. Move i one position to the right and j one position to the left. (They’re both at
position 6 now.)

16. As long as i^ is less than the middle item (30), move it to the right. Of course,
it’s pointing to 34, so it doesn’t move at all. As long as j^ is greater than 30,
move it to the left; this causes j to move to position 5, where it’s pointing to
the value 30. Now, because i is greater than j, it’s time to drop out of the
loop. At this point, the code calls dhQuickSort, passing lngLeft (5) and j (5)

Chapter 7 • Searching and Sorting in VBA394

(leaving level 1 and calling level 2). Of course, this visit to level 2 is swift
because dhQuickSort finds its new lngLeft and lngRight to be the same.

F I G U R E 7 . 7
Steps 13 through 16

17. Now you’ve returned to level 1, where the code calls dhQuickSort in level 2
again, passing i (6) and lngRight (10) as the parameters. Now, in level 2, with
reasonable end points, it’s time to continue. As long as i^ is less than the
middle item (48), move it to the right. As long as j^ is greater than 48, move
it to the left.

18. With i at position 7 and j at position 8, swap the items they point to.

19. Move j one more position to the left and i one more to the right. Now,
because i is greater than j, it’s time to drop out of the loop. Because j (7) is less
than the middle position (8), call dhQuickSort in level 3, passing lngLeft (6)
and j (7) as the end points.

20. It’s getting tight here: there are only two items to sort, so the middle position
is 6 (that’s (6 + 7) \ 2). While i^ is less than 34, move it to the right. (It doesn’t
move.) While j^ is greater than 34, move it to the left. At this point, both i
and j are at position 6, pointing at the 34. Because i is less than or equal to j,
swap the items to which i and j point. (Yes, it is a fruitless exercise, but that’s

 Sorting Arrays 395

what you have to do!) Then move j one position to the left and i one position
to the right.

21. Because i is now greater than j (i is 7 and j is 5), drop out of the loop. Call
dhQuickSort in level 4, passing lngLeft (6) and j (5). Of course, as soon as
you get to level 4, dhQuickSort will return, because its new lngLeft is
greater than its lngRight. Back in level 3, call dhQuickSort again, passing i
(7) and lngRight (7). Again, the visit to level 4 is awfully short because
dhQuickSort returns immediately. At this point, you’re done at level 3, so
return to level 2.

22. Back in level 2, you’ve sorted the left portion (steps 20 and 21), and now it’s
time to call dhQuickSort in level 3 with the right portion. Given the end
points 8 and 10, the middle element will be 9, with the value 79. While i^ is
less than 79, move i to the right. While j^ is greater than 79, move j to the left.
These loops terminate with a situation you’ve seen before: both i and j point
to 79, in position 9. The code swaps 79 with itself and then moves i one more
position to the right and j one more to the left.

23. Because i is greater than j, it’s time to drop out of the loop. The code calls
dhQuickSort in level 4, passing lngLeft (8) and j (8). Of course, this drops
right out, back to level 3. Then it calls dhQuickSort in level 4, passing i (10)
and lngRight (10). Again, the code returns immediately. Level 3 is done, so
it returns back to level 2. Level 2 has sorted both halves, so it returns to
level 1. Level 1 has sorted both halves, so it’s done. Finally, the entire array
has been sorted! Figure 7.8 shows the final steps in this seemingly endless
process.

The beauty of computers is that you don’t have to follow all these steps
every time you execute the sort. Once you’ve convinced yourself that the algo-
rithm will work in every case, you can use it without thought (and you’ve
probably determined by now that you don’t ever want to dig through the
Quicksort algorithm at this level of detail again). The “Using Quicksort” sec-
tion coming up in a moment shows how you can call Quicksort from your own
applications.

Chapter 7 • Searching and Sorting in VBA396

F I G U R E 7 . 8
Steps 17 through 23, and

the finished array

Watching Quicksort Run
To make it possible to watch the Quicksort algorithm at work, we’ve supplied a
visual version of the dhQuickSort routine. The VQuickSort.bas module contains
an expanded version of the dhQuickSort procedure that prints, to the Immediate
window, what it’s doing at each step. Although the mechanism of displaying the
steps isn’t pertinent to the discussion here, you’ll find running the TestSortDemo
routine instructive. Pass it no parameters to use the sample data discussed in the

 Sorting Arrays 397

previous section, or pass it the number of items you’d like sorted. For example,
calling

TestSortDemo

will return a printout demonstrating the same sort as discussed in the 23 steps in
the previous section. Calling

TestSortDemo 6

will choose six random numbers between 1 and 99 and demonstrate the Quicksort
algorithm with those numbers. Figure 7.9 shows sample output from calling
TestSortDemo.

F I G U R E 7 . 9
Call TestSortDemo to watch

Quicksort at work

Chapter 7 • Searching and Sorting in VBA398

Using Quicksort
The dhQuickSort procedure, because it calls itself recursively with smaller and
smaller segments of your array, must accept parameters containing the array, as
well as the starting and ending points. When you start the sort, however, you’ll
always want to send the entire array for sorting. To work around this, the bound-
ary parameters are optional. When it starts up, dhQuickSort checks the value of
the optional lngLeft and lngRight parameters. If either is dhcMissing (the arbi-
trary constant value, –2), the procedure knows it must use the LBound and
UBound functions to determine the array boundaries.

When passing the array to dhQuickSort, you have two options. You can either
pass an actual array or pass a variant that “contains” an array. To pass an actual
array, use code like the following:

Dim avarItems(1 To 10) As Integer
' Fill in the array here
Call dhQuickSort(avarItems())
' Now, the array has been sorted.

To use a variant instead, write code like the following:

Dim varItems as Variant
' Get values into the array. For now, just use the Array
' function, with some sample data:
varItems = Array(1, 10, 29, 37, 45)
' You could also assign an array directly to the
' variant, as in:
' varItems = avarSomeArray()
Call dhQuickSort(varItems)

In either case, on the return from dhQuickSort, the array you’ve passed in will
have been sorted, and you can work with the newly arranged data.

Using a Database Engine
There’s no doubt about it: if your data is already in a database table, you’ll want to use the
database engine to retrieve your sorted data! Rather than take on any array-handling tech-
nique, simply use a query or a SQL statement to retrieve the data in the order you need.
Assuming you have a column named LastName in a table named tblCustomers, no tech-
nique for retrieving the data in a sorted fashion will be faster than using a SQL expression:

SELECT [LastName] FROM tblCustomers ORDER BY [LastName];

 Sorting Arrays 399

Speed Considerations
Why choose such a complex sorting algorithm? Yes, it is somewhat daunting, and
it would appear, based solely on complexity, that almost any algorithm would be
better. That’s not true, however. Listing 7.4 includes a simple sort, using a stan-
dard Bubblesort algorithm. This technique is easy to understand but can be quite
slow in execution. The Bubblesort algorithm works its way through your array,
comparing one element to the next. If the items are out of order, it swaps them.
After a pass through the entire array, the largest element will have “bubbled” to
the top (hence the name). After another pass, the top two elements will have bub-
bled up. After each pass, you can sort one less item on the next pass. The sort con-
tinues until it makes no swaps on a pass or it runs out of items to bubble up.

➲ Listing 7.4: Simple Bubblesort Algorithm (Bubblesort.bas)

Sub dhBubbleSort(varItems As Variant)
 ' Standard bubblesort.

 Dim blnSorted As Boolean
 Dim lngI As Long
 Dim lngJ As Long
 Dim lngItems As Long
 Dim varTemp As Variant
 Dim lngLBound As Long

 lngItems = UBound(varItems)
 lngLBound = LBound(varItems)

 ' Set lngI one lower than the lower bound.
 lngI = lngLBound - 1
 Do While (lngI < lngItems) And Not blnSorted
 blnSorted = True

The same words of wisdom can be applied to any environment that supplies its own inter-
nal sorting. If you’ve got data in a range in Excel, it makes no sense to copy the data into
an array and then sort it. Because Excel makes sorting ranges so simple and fast, you’ll
want to take advantage of that technique before moving data into a VBA array. Make sure
you’ve investigated internal tools before using VBA to sort your data—you’ll almost always
do better with the built-in tools.

Chapter 7 • Searching and Sorting in VBA400

 lngI = lngI + 1
 For lngJ = lngLBound To lngItems - lngI
 If varItems(lngJ) > varItems(lngJ + 1) Then
 varTemp = varItems(lngJ)
 varItems(lngJ) = varItems(lngJ + 1)
 varItems(lngJ + 1) = varTemp
 blnSorted = False
 End If
 Next lngJ
 Loop
End Sub

Yes, the code is much simpler than that used by the Quicksort algorithm. How
do they compare? The TestSortTimes procedure, in TestProcs.bas, calls both rou-
tines, comparing the results. The test routine creates an array of random numbers
and calls each sort procedure. Then it creates an array of ordered numbers (that is,
an array that’s sorted already) and calls both sorting procedures. The following
table shows sample results for 2,000 items. (All times are in milliseconds, for a sin-
gle iteration of the sort, and all measurements were taken on a Pentium II 400
mHz processor, with 256 meg of memory.)

As you can see from the tests, Quicksort does much better than Bubblesort for
random numbers. On the other hand, Bubblesort takes great advantage of preor-
dered arrays and outperforms Quicksort on the sorted array.

How does array size affect the length of time it takes to sort the array? Compar-
ing results for random sets of non-sorted numbers, the following table shows the
outcome (rounded a bit to make the results clearer):

Array Order Quicksort Bubblesort

Random 130 12037

Ordered 30 10

Items Quicksort Bubblesort

500 30 800

1000 50 3200

2000 130 12000

5000 330 76000

 Sorting Arrays 401

Impressive, isn’t it? That Bubblesort algorithm simply falls apart, given more
than a few hundred items to sort. The time it takes to sort grows exponentially as
you increase the number of items to sort. The time Quicksort takes, on the other
hand, grows more or less linearly with the number of items in the array it’s sorting.

Which one should you choose? It depends, of course, on your data. If you’re
sorting ten values, it doesn’t matter which one you choose. If you’re sorting items
that are likely in sorted order before you get them, then Bubblesort makes sense.
Otherwise, you’ll probably do better using the more complex but more efficient
Quicksort. Of course, they both require the same amount of effort to call, once
they’re written, so you can choose based solely on the type of data you’re going to
be sorting.

Sorting Collections
User-defined collections add tremendous flexibility to VBA solutions. Because
collections are dynamic data structures, you can add and remove items at will
without worrying about redimensioning and preserving data. On the other hand,
they don’t lend themselves to sorting. That’s too bad, because collections provide
a simple way to store and work with large numbers of items in memory. It would
be great if you could sort them as well.

What’s wrong with collections? Unfortunately, there are a few crucial issues to
consider. The following section reviews the basics of using collections and the
problems involved in sorting them.

Working with Collections

As you add items to a collection, you must provide a value, and you often use a
unique string value (known as the key) to identify the collection item. For example,
when you open a form in Microsoft Access, under the covers Access adds the form
object to the Forms collection and uses the form’s name as its unique identifier.
Therefore, you can use either of the following techniques:

Forms(1)
' or
Forms("frmTest")

to retrieve the collection object (a reference to the form).

For Access forms, you can always retrieve the unique identifier; simply examine
the Name property of the form. For user-defined collections, however, this isn’t

Chapter 7 • Searching and Sorting in VBA402

possible. For reasons unknown, you cannot retrieve the key for a given item in a
user-created collection. This one missing piece of functionality makes it difficult, if
not impossible, to perform any sort of manipulation with collection elements.
Weird, isn’t it? You can use the key to help you find the item, but if you have an
item, you can’t find the key. Wouldn’t it be great if you could add items and their
unique keys to a collection and then iterate through the collection in sorted key
order? It would be great, but you can’t—VBA provides no way to sort the collec-
tion by key, and you can’t even retrieve the key to do it yourself.

If you really want the flexibility of a collection, combined with the random access
of an array (that is, you want the ability to find an item’s key, given its value),
you’ll want to take a look at the Dictionary object supplied by the Windows
Scripting library. Chapter 14 covers the objects provided by the Windows Scripting
library in detail.

Why does this prevent you from sorting a collection yourself? Sorting requires
moving an element from one place to another. That means copying an item into a
temporary location, removing it from the collection, and then copying it into the
new location. But you can’t do this with collection items; because you can’t
retrieve the key, any attempt to move an item will cause you to lose its unique
identifier!

This means that ordinary sorting techniques, which require you to swap ele-
ments, won’t work. We’ve provided an alternative here, and with enough creativ-
ity, you’ll probably be able to think of a few more on your own. The simplest way
to sort a collection is to sort the items as you add them to the collection (that is,
keep the collection sorted at all times). The next few sections discuss this method
in detail.

Sorting as You Insert

One possible solution to sorting a collection is simple: just maintain it sorted. That
is, as you add each item to the collection, make sure you insert it at the correct
location. Performing the insertion is simple because VBA allows you to provide a
location (or a unique string key value) before which you want to insert the item.

To make this possible, we’ve created a collection class, named SortedCollection,
that provides all the standard functionality of a collection and adds a new feature:
as you add items to the collection, code inside the class keeps an internal collec-
tion sorted. If you use this class, instead of the built-in Collection class, the data in
your collection will always be sorted.

 Sorting Arrays 403

The code in the SortedCollection class, in Listing 7.5, provides all the standard
methods and properties of a collection besides the Add method (Count, Item,
Remove). Listing 7.6 shows the Add method, which allows you to add items to a
collection, maintaining the sorted order of the collection as you add the items. The
next few paragraphs explain how this class does its work.

➲ Listing 7.5: Use the SortedCollection Class, Rather Than the Internal
Collection Class, to Maintain a Sorted Collection.
(SortedCollection.cls)

Private mcol As Collection

Private Sub Class_Initialize()
 Set mcol = New Collection
End Sub

Private Sub Class_Terminate()
 Set mcol = Nothing
End Sub

Public Function Count() As Long
 Count = mcol.Count
End Function

Public Sub Remove(Key As Variant)
 On Error GoTo HandleErrors

 mcol.Remove Key
 Exit Sub

HandleErrors:
 Err.Raise Err.Number, _
 "SortedCollection.Remove", Err.Description
End Sub

Public Function Item(Key As Variant)
 On Error GoTo HandleErrors

 Item = mcol.Item(Key)
 Exit Function

Chapter 7 • Searching and Sorting in VBA404

HandleErrors:
 Err.Raise Err.Number, _
 "SortedCollection.Item", Err.Description
End Function

Public Function Enumerate() As IUnknown
 Set Enumerate = mcol.[_NewEnum]
End Function

For more information on Collection classes, see Chapter 6. In addition to what
we’ve covered here, that chapter discusses how you can set the default member
of the class, and the enumerator function (so you can use For Each...Next with the
class’s collection).

The SortedCollection class maintains its own internal collection, mcol, which
contains the data that you add to the collection. In the Class_Initialize event proce-
dure, the class instantiates the internal collection, and in the Terminate event, it
destroys the collection. The Count, Remove, and Item methods provide “pass-
throughs” to the private collection, just like most every collection. The Enumerate
function makes it possible to use a For Each...Next loop with this collection but
requires special handling. (See Chapter 6 for more details on creating collection
classes that allow enumeration.)

➲ Listing 7.6: The Add Method Adds Items to the Internal Collection
and Keeps the Collection Sorted.

Public Sub Add(varNewItem As Variant, Optional strKey As String = "")

 On Error GoTo HandleErrors

 Dim lngI As Long
 Dim blnAdded As Boolean
 Dim blnUseKey As Boolean

 blnUseKey = (Len(strKey) > 0)

 ' On the first time through here, this loop
 ' will just do nothing at all.

 Sorting Arrays 405

 For lngI = 1 To mcol.Count
 If varNewItem < mcol.Item(lngI) Then
 If blnUseKey Then
 mcol.Add varNewItem, strKey, lngI
 Else
 mcol.Add varNewItem, , lngI
 End If
 blnAdded = True
 Exit For
 End If
 Next lngI
 ' If the item hasn't been added, either because
 ' it goes past the end of the current list of items,
 ' or because there aren't currently any items to loop
 ' through, just add the item at the end of the
 ' collection.
 If Not blnAdded Then
 If blnUseKey Then
 mcol.Add varNewItem, strKey
 Else
 mcol.Add varNewItem
 End If
 End If
 Exit Sub

HandleErrors:
 Err.Raise Err.Number, "SortedCollection.Add", Err.Description
End Sub

The Add method, shown in Listing 7.6, takes care of adding items to the sorted
collection. The first step in the procedure is to determine whether the caller has
provided a unique key value:

blnUseKey = (Len(strKey) > 0)

If so, the code later in the procedure will know to supply the key to the Add
method of the collection object.

The next chunk of the procedure attempts to find the correct location in which
to insert the new item. The code looks at each of the values in the collection, and if
the value to be added is less than the current collection item, you’ve found the
right place to insert the new item. If you supplied a unique key value, the code
calls the Add method of the collection, passing in the new item, the key, and the

Chapter 7 • Searching and Sorting in VBA406

location before which to insert. If not, it passes only the new item and the location.
Once it’s inserted the value, it sets a flag so later code can tell that the insertion has
been performed and then exits the loop.

For lngI = 1 To col.Count
 If varNewItem < col.Item(lngI) Then
 If blnUseKey Then
 col.Add varNewItem, strKey, lngI
 Else
 col.Add varNewItem, , lngI
 End If
 blnAdded = True
 Exit For
 End If
Next lngI

Once you’re past the end of the loop, there are two reasons why the loop
may have ended: either the item was inserted and the code jumped out of the
loop or the item wasn’t inserted and the loop terminated on its own. In the lat-
ter case, the blnAdded flag will be False, and the following chunk of code can
then just add the item to the collection. You should get into this situation only
if you need to add the new item to the end of the collection—that is, if the
value was greater than any existing item or if there was nothing in the collec-
tion to start with.

If Not blnAdded Then
 If blnUseKey Then
 col.Add varNewItem, strKey
 Else
 col.Add varNewItem
 End If
End If

Why the error handler? That is, what can go wrong? The most likely error is one
that would occur if you tried to add two elements with the same unique key. If
you attempted this, the function would raise error 457, “This key is already associ-
ated with an element of this collection.” The calling code would have to deal with
the error.

What’s wrong with this technique? First of all, it’s quite slow. It has to be, of
course, because it’s comparing the new item against, on average, half of the existing
items in the collection. This means that to insert 20 items into a collection, you’ll per-
form several hundred comparisons. Each of those comparisons is expensive.

 Sorting Arrays 407

Second, because the code is performing simple comparisons between values,
you can use only simple data types (strings, numbers, and so on) in the collection.
If you want to use this technique with more complex collections, you’ll need to
modify the code to support more complex comparisons. Because you’re most
likely to use this technique with simple collections, we’ve left that alteration for
your own exploration.

If you want to use the SortedCollection class in your own applications, import
the class, and you should be ready to go. You’ll need to write code to instantiate the
class and to add items to it. You might write code like that used in the test proce-
dure, TestSortedCollection, shown here:

Sub TestSortedCollection()
 ' From the TestProcs module.

 Dim sc As SortedCollection
 Dim lngI As Integer
 Dim intCount As Integer
 Dim varItem As Variant

 Set sc = New SortedCollection

 intCount = 1000
 For lngI = 1 To intCount
 sc.Add Format(Int(99 * Rnd + 1), "00")
 Next lngI

 For Each varItem In sc
 Debug.Print varItem & " ";
 Next varItem

 Set sc = Nothing
End Sub

The SortedCollection object’s ability to be iterated with a For Each loop is fragile at
best, unless you’re working in Visual Basic 6. In other VBA hosts, there’s no built-
in way to identify the function to be called when you use For Each loops. There’s a
tricky work-around, described in Chapter 6, but it’s slippery. If you find that the
For Each loop doesn’t work as advertised in the previous example, check out the
steps discussed in Chapter 6 to make this possible in VBA hosts besides VB.

Chapter 7 • Searching and Sorting in VBA408

Sorting Other Types of Data
Every example covered so far uses simple data (text or numbers). What if you
want to sort an array of user-defined types? Or sort an array of objects? How
about this common scenario: you have a user-defined type, like this:

Public Type FileInfo
 FullName As String
 Name As String
 Extension As String
End Type

and you have an array of these structures containing data about all the files in a
particular folder. You’d like to present a list of the files to your users, sorted first
by Extension, and within files with the same extension, sorted by Name. Sure, you
could take the effort to modify the dhQuickSort procedure to handle this data
structure, but then you’d have two copies of dhQuickSort—one for simple data,
and one for your array of FileInfo structures. Even if you do accomplish this task,
what happens when you want to sort an array of some type of object you’ve cre-
ated, or an array of some other user-defined type? You’ll need to modify dhQuick-
Sort again, of course.

The rest of this section delves into relatively esoteric material. If you’ve not worked
with class modules, this may be difficult going. It’s certainly worth working
through, as an intellectual exercise, but the rest of this section does count on your
understanding how to use class modules in your applications. For more informa-
tion on working with class modules, see Chapters 5 and 6.

There’s a commonly accepted solution to this problem: That is, modify the
QuickSort procedure so it doesn’t know or care what kind of data it’s being sent—
remove all data type dependencies from the procedure. Instead, create class mod-
ules, one for each type of data you need to sort, and provide a standard interface
for sorting. In this case, you could look at the dhQuickSort procedure and notice
that there are several operations that are dependent on the particular data being
sorted:

• Swapping two elements

• Comparing two elements

• Finding the upper and lower bounds of the array to be sorted

• Finding a specific element you’ll compare other elements of the array to

 Sorting Arrays 409

The answer, then, is to not pass dhQuickSort an array of variants to be sorted
(because then dhQuickSort needs to know how to compare, swap, and work with
the data in the array). Instead, you want to pass in an object reference, where the
object you pass in knows how to swap two of its own elements, how to compare
two elements, and so on. That is, you need to hide the data-specific functionality
in a class and provide methods and properties that the new QuickSort procedure
can call.

We actually did this work for the predecessor to this book (VBA Developer’s
Handbook, based on VBA 5). Take a look at how we attempted to solve this issue in
that version, why the attempt failed, and how new features in VBA 6 make this all
work better now.

The solution you’ll see here relies on the Implements keyword, new in VBA 6.
Actually, this keyword (and the associated functionality) was added to Visual Basic
5, long before VBA and Office developers had use of the keyword. So, it’s not
actually new in VBA 6—it’s just available in all VBA 6 hosts, where previously it
was only available in the Visual Basic product line. If you’re interested, all the code
in this section works fine in Visual Basic 5 but not Office 97 or any other VBA 5
host product.

We first determined the list of methods and properties that the sortable class
needs to provide. The following table lists those elements:

Element Parameters Return Value Description

SetCompareValue lngItem as Long Stores away a private
value, so that later
comparisons (for the
looping phase of the
sort) can compare to
the stored value

Compare lngItem As Long 0 if equal, –1 if
less than, 1 if
greater than

Compares the item
specified by the
incoming parameter
to the item stored
away by a call to the
SetCompareValue
method

Chapter 7 • Searching and Sorting in VBA410

If a class provides those elements, you should be able to sort the data contained
within the class. Of course, you need some way to get data into the class and some
way to retrieve the sorted data back out of the class. In addition, it’s useful for
demonstration purposes to have a way to display the data stored in the class, too.
Therefore, the example class has an Add method (so you can add data to the inter-
nal data structure), an Item method (so you can retrieve an individual item), and a
DumpItems method (to display the entire list of data at once). These aren’t required
for sorting, but they’re necessary if you actually want to use the class.

Once you’re committed to sorting this way, you could rewrite dhQuickSort so
that it looks like the code in Listing 7.7. This procedure, dhQuickSortObjects, works
just like the dhQuickSort procedure, except that this one makes the class passed to
it perform all the data manipulations.

➲ Listing 7.7: dhQuickSortObjects Extracts All the Data Manipulation
and Places It into the Object Passed In. (QuickSortObjects.bas)

' Indicate that a parameter is missing.
Private Const dhcMissing = -2

Public Sub dhQuickSortObjects(oData As Object, _
 Optional lngLeft As Long = dhcMissing, _
 Optional lngRight As Long = dhcMissing)

Element Parameters Return Value Description

Swap lngItem1 As
Long, lngItem2
As Long

 Swaps the items in
the locations specified
in the two incoming
parameters

UpperBound Long Returns the upper
bound of the internal
storage for the class
(normally an array,
but it doesn’t have
to be)

LowerBound Long Returns the lower
bound of the internal
storage for the class
(normally an array,
but it doesn’t have
to be)

 Sorting Arrays 411

 Dim i As Long
 Dim j As Long
 Dim lngMid As Long

 If lngLeft = dhcMissing Then
 lngLeft = oData.LowerBound
 End If
 If lngRight = dhcMissing Then
 lngRight = oData.UpperBound
 End If

 If lngLeft < lngRight Then
 lngMid = (lngLeft + lngRight) \ 2
 i = lngLeft
 j = lngRight

 ' Store away the value to be compared
 ' against, in the sortable object's code.
 Call oData.SetCompareValue(lngMid)
 Do
 Do While oData.Compare(i) < 0
 i = i + 1
 Loop
 Do While oData.Compare(j) > 0
 j = j - 1
 Loop
 If i <= j Then
 Call oData.Swap(i, j)
 i = i + 1
 j = j - 1
 End If
 Loop Until i > j
 ' To optimize the sort, always sort the
 ' smallest segment first.
 If j <= lngMid Then
 Call dhQuickSortObjects(oData, lngLeft, j)
 Call dhQuickSortObjects(oData, i, lngRight)
 Else
 Call dhQuickSortObjects(oData, i, lngRight)
 Call dhQuickSortObjects(oData, lngLeft, j)
 End If
 End If
End Sub

Chapter 7 • Searching and Sorting in VBA412

As you can see in Listing 7.7, the dhQuickSortObjects procedure knows nothing
about the data it’s sorting, and the oData object must handle all the data manipu-
lation. Now, you need to create a class that knows how to swap, compare, and do
everything a sortable class needs to do. Listing 7.8 shows a class (FileDataObject)
that you could pass to dhQuickSortObjects. It supplies all the necessary proce-
dures, working with an array of the FileInfo structures shown earlier.

The SetCompareValue method stores away a particular item in the array (mafi-
Items) for later comparisons. The Compare method compares the extensions of
the requested item and stored item, and if they’re different, returns the appropri-
ate value. If they’re the same, the code then looks at the filenames and compares
them. The Swap method swaps two items in the array, and the UpperBound and
LowerBound properties return the corresponding UBound and LBound values
from the array.

➲ Listing 7.8: The FileDataObject Class Knows How to Manage Its
Own Sorting Operations. (FileData.cls)

Private Type FileInfo
 FullName As String
 Name As String
 Extension As String
End Type

Private mafiItems() As FileInfo
Private mlngCount As Long
Private mfiCompare As FileInfo

Public Sub SetCompareValue(lngItem As Long)
 mfiCompare = mafiItems(lngItem)
End Sub

Public Function Compare(lngItem As Long) As Long

 ' Compare two FileInfo structures, so you can sort
 ' first by extension, and then by name.
 ' First, compare the extensions. If they're not
 ' the same, return the comparison value.
 ' If they're the same, compare the names
 ' and return the comparison value of those.

 Sorting Arrays 413

 Dim lngResult As Long

 ' Compare extensions.
 lngResult = StrComp(_
 mafiItems(lngItem).Extension, _
 mfiCompare.Extension, vbTextCompare)

 Select Case lngResult
 Case -1, 1
 Compare = lngResult
 Case 0
 ' Extensions are the same, so compare filenames.
 Compare = StrComp(_
 mafiItems(lngItem).Name, _
 mfiCompare.Name, vbTextCompare)
 End Select
End Function

Public Sub Swap(lngItem1 As Long, lngItem2 As Long)
 Dim fiTemp As FileInfo

 fiTemp = mafiItems(lngItem2)
 mafiItems(lngItem2) = mafiItems(lngItem1)
 mafiItems(lngItem1) = fiTemp
End Sub

Public Property Get LowerBound() As Long
 LowerBound = LBound(mafiItems)
End Property

Public Property Get UpperBound() As Long
 UpperBound = UBound(mafiItems)
End Property

The FileDataObject class also provides an Add method, so you can add items to
its internal array; a Count property, returning the number of items in the array;
and an Item method, to return the full name of the file at a specified location
within the array. Finally, like all the other classes you’ll see in this section, it pro-
vides a DumpItems method—by supplying this, it’s simple for you, while devel-
oping the class, to make sure things are sorting as you’d expect.

Chapter 7 • Searching and Sorting in VBA414

To test out the FileDataObject passed into dhQuickSortObjects, try out the
TestQuickSortObjects procedure, in the TestProcs module:

Sub TestQuickSortObjects()
 Dim fdo As FileDataObject
 Dim strFile As String

 Set fdo = New FileDataObject

 strFile = Dir("C:*.*")
 Do While Len(strFile) > 0
 Call fdo.Add(strFile)
 strFile = Dir
 Loop
 Call dhQuickSortObjects(fdo)
 Call fdo.DumpItems("After:")
End Sub

This procedure instantiates a new FileDataObject, fills it with filenames from the
C:\ folder (the Add method takes the filename and splits it into the name and
extension parts—see the FileDataObject class for that code), and then calls the
dhQuickSortObjects procedure, passing in the FileDataObject object as a parame-
ter. Before and after all the work is done, the procedure calls the DumpItems
method of the FileDataObject object to display the sorted and unsorted results.

As dhQuickSortObjects does its work, it calls methods of the object passed to it.
That is, when it needs to set a comparison value, it calls the SetCompareValue
method of the FileDataObject object. When it needs to compare two values, it calls
the Compare method. When it needs to swap two values, it calls the Swap method
of the passed-in object. It works great!

And so, you think you’ve got the problem licked. And so you do, for a little
while. You can merrily create objects, supplying the required methods and prop-
erties, and call dhQuickSortObjects with as many different types of objects as you
can devise. Only one (big) problem—it’s pretty darned slow. If you compare sort-
ing with dhQuickSort and dhQuickSortObjects, you’ll measure a distinct differ-
ence in sorting the same types of objects. (One easy way to do this is to create a
class that sorts a simple array and compare its performance with dhQuickSortObjects
to that of an array passed into dhQuickSort directly. There’s a big difference in
speed.)

 Sorting Arrays 415

Handling the Speed Problem

You might notice (as we did, when working on the previous version of the book,
where we got this far) that you’re passing in a variable “As Object” to dhQuick-
SortObjects. As discussed in more detail in Chapter 4, declaring objects “As Object”
forces VBA to bind objects and properties at runtime, rather than at compile time.
This late binding (as opposed to early binding, which would occur if you specified
the data type at compile time) causes this code to run much slower than it should.

To alleviate the problem, you could modify the code in dhQuickSortObjects to
accept oData not “As Object,” but “As FileDataObject.” That would, we promise,
make a difference in the speed at which this procedure can sort your FileDataObject
data. And so, feel free to make that change.

Unfortunately, now you’re right back where you started—you have a sorting
procedure that works only for a particular type of data. If you want to sort data
stored a different way, you’d need to cut and paste a new version of dhQuickSort-
Objects. At least you’ll only need to modify one thing—the data type passed in as
the first parameter. This, therefore, is not a reasonable alternative. And that’s where
we got stuck in the previous version of the book: in VBA 5, there wasn’t an alter-
native.

Implements to the Rescue

When we created the DataFileObject class and passed it to the dhQuickSortOb-
jects procedure, we created a sort of “contract” between the class and the proce-
dure. That is, unless the object passed into dhQuickSortObjects provided the
required properties and methods, the code would fail at runtime. But it’s that “fail
at runtime” thing that caused the code to run slowly—because you’re passing it in
“As Object,” VBA can’t tell at compile time whether it’s going to fail. What you
want, in order to gain back the speed you’ve lost, is for VBA to validate that object
passed in and validate it at compile time.

This is a perfect situation for using the Implements keyword. (See Chapter 6 for
an introduction to the Implements keyword.) VBA 6 allows you to specify an
interface (a contract, as it were), providing a list of all the properties and methods
any class that wants to “play along” must provide. This specification doesn’t
include any code—it’s merely a definition of the interface, the properties and
methods you need to supply in each class that implements the interface. Once
you’ve specified the interface, you can modify your procedure (dhQuickSort-
Objects) to accept an object that supplies the required properties and methods.

Chapter 7 • Searching and Sorting in VBA416

In other words, you specify an object that implements the required interface, and
the procedure can do its work, fully confident that the object passed to it supplies
all the tools it needs to do its job.

In the sample project, the ISortable class provides the definition of the interface,
containing the code shown in Listing 7.9. Note that this class doesn’t include any
code—it simply defines the properties and methods dhQuickSortObjects requires
in order to do its work.

A few things to note:

• Generally, developers name interface classes beginning with an “I”. This
indicates that the class defines the interface but doesn’t implement its func-
tionality.

• The ISortable class contains a public Enum, CompareResults. This enumer-
ated type provides the possible values for the Compare method, and all
classes based on this interface will need to use this type when providing
their Compare methods.

• Any class that implements this interface will need to supply code for all the
methods and properties defined in the interface class. The procedure might
just be an empty stub, but VBA is counting on the fact that all classes imple-
menting this interface provide all the necessary procedures. Implementing
an interface is like signing a contract that says “I’ll provide code for each and
every procedure in the contract. If I don’t, you can sue me (that is, trigger a
compile-time error).”

➲ Listing 7.9: The ISortable Class Provides the Interface Definition.
(ISortable.cls)

Public Enum CompareResults
 crEqual = 0
 crLess = -1
 crGreater = 1
 crNull = 2
End Enum

Public Sub SetCompareValue(lngItem As Long)

End Sub

 Sorting Arrays 417

Public Property Get LowerBound() As Long

End Property

Public Property Get UpperBound() As Long

End Property

Public Sub Swap(lngItem1 As Long, lngItem2 As Long)

End Sub

Public Function Compare(lngItem As Long) As CompareResults

End Function

Once you’ve defined an interface class, you can modify dhQuickSortObjects so that,
instead of accepting “oData As Object,” it accepts “oData As Isortable,” like this:

Sub dhOQuickSortObjects(oData As ISortable, _
 Optional lngLeft As Long = dhcMissing, _
 Optional lngRight As Long = dhcMissing)

Finally, you supply the classes that implement the ISortable interface. To do
this, follow these steps:

1. Add the line of code to the FileDataObject class that tells VBA it’s going to
implement the ISortable interface (adding this effectively signs the contract
between you and the ISortable interface):

Implements ISortable

2. Once you’ve added the Implements statement, VBA adds ISortable to the
Object combo box (the left-hand combo box) at the top of the code editor.
You select ISortable from the list and provide a procedure for each of its
methods and properties. If you choose all the items from the Procedure
combo box, one at a time, you’ll end up with procedures that look like this:

Private Function ISortable_Compare(lngItem As Long) _
 As CompareResults

End Function

Private Sub ISortable_SetCompareValue(lngItem As Long)

Chapter 7 • Searching and Sorting in VBA418

End Sub

Private Sub ISortable_Swap(lngItem1 As Long, lngItem2 As Long)

End Sub

Private Property Get ISortable_LowerBound() As Long

End Property

Private Property Get ISortable_UpperBound() As Long

End Property

3. Your job now is to provide the code for each of these methods and proper-
ties. Of course, your FileDataObject class already contains all the code—you
can simply move it into the appropriate ISortable procedure and fix up the
names of the return values for the functions.

Later, when you pass a FileDataObject object into dhQuickSortObjects, the sort-
ing procedure sees that it’s received an object that implements the ISortable inter-
face, and when it calls the Compare method of the object, VBA correctly calls the
ISortable_Compare method for you.

We’ve already set everything up for you in the sample project. The dhQuick-
Sortable procedure (in the QuickSortable module) accepts an object of type ISort-
able as a parameter. The sample project includes three classes: ExistingArray,
FileData, and SimpleArray, demonstrating the use of the dhQuickSortable proce-
dure. If you’re interested in sorting various types of objects and their data, you’ll
want to study each of these simple examples. In addition, the TestISortable mod-
ule contains three test procedures, one for each sample class, showing how you
might sort data in each type of class.

The Drawback

You knew there was a drawback, right? You might have guessed it: Sorting an
object’s data using the dhQuickSortable procedure will never be as fast as using
dhQuickSort. Why not? The dhQuickSort procedure has all its functionality built
right into the procedure. No method calls, no overhead, and a lot less effort
involved. As a matter of fact, the TestTimes procedure in the TestISortable mod-
ule compares sorting the same array two different ways. First, it passes the array
directly to the dhQuickSort procedure. Then, it uses the ExistingArray class

 Sorting Arrays 419

(which effectively sorts exactly the same data in a simple array but does it using
the ISortable interface). The procedure, shown in Listing 7.10, demonstrates (at
least, on our machines) that calling dhQuickSort seems to take about half as long
as calling dhQuickSortable.

➲ Listing 7.10: Compare Calling dhQuickSort and dhQuickSortable.
(TestISortable.bas)

Sub TestTimes()
 Dim sw As StopWatch

 Dim lngI As Long
 Dim varData() As Variant
 Dim intCount As Integer
 Dim oData As ExistingArray

 ' Change this value to try different
 ' sized sorting sets.
 intCount = 10000

 Set sw = New StopWatch

 ReDim varData(1 To intCount)
 For lngI = 1 To intCount
 varData(lngI) = Format(Int(99 * Rnd + 1), "00")
 Next lngI

 sw.StartTimer
 Call dhQuickSort(varData)
 Debug.Print "QuickSort: " & sw.EndTimer

 For lngI = 1 To intCount
 varData(lngI) = Format(Int(99 * Rnd + 1), "00")
 Next lngI

 sw.StartTimer
 Set oData = New ExistingArray
 oData.Data = varData
 Call dhQuickSortable(oData)
 Debug.Print "OQuickSort: " & sw.EndTimer
End Sub

Chapter 7 • Searching and Sorting in VBA420

What this proves, we guess, is that if you’re only going to sort arrays or a few
different data types, it makes sense to use dhQuickSort (and possibly make multi-
ple copies for different data types). If you need to sort lots of different data types and
want the ultimate flexibility, you might consider using the ISortable interface and
dhQuickSortable. You’ll have to try for yourself to determine which is best for you.

Searching
If you’ve got sorted data, most likely you need to be able to find any particular
item in your data set. As with sorting, searching is an entire branch of computer
science, and a full discussion is beyond our intent. On the other hand, you won’t
find as many searching algorithms as you will for sorting. Therefore, we actually
come closer here, in the coverage of a single search method, to discussing all the
possibilities. (Nothing like narrowing the margins.) In this section, you’ll learn
about the Binary Search algorithm and how you can apply it to data stored in an
array.

Why Use the Binary Search?
Imagine you’ve picked up a phone book to find the number for the local outlet of
the Vegetarian Pizza Kitchen. You could, of course, start at the first name in the
phone book, working through the listings one at a time. This might take you a
while, considering there are most likely several hundred thousand entries, and
you’ve got to work your way all the way to V.

The intelligent phone book user would, of course, look for the V entries and go
from there. Imagine for a moment that the phone book didn’t have letter dividers
at all and that you had to scan the entries on a page to know where you were in
the book. Now, how could you find the Vegetarian Pizza Kitchen in the fastest
way possible? Most likely, you’d put your finger in the middle of the book, see
that the V entries were later in the book, and discard everything before the loca-
tion of your finger. Then, taking the second half of the book, you’d check halfway
through the pages and decide whether the V entries were in the first or second
half of the remainder of the book. You might continue in this fashion, breaking the
book into smaller and smaller chunks, until you found your entry.

Considering that your phone book might contain 1,000 pages, you threw away
500 possible pages on the first attempt and 250 more on the second. Not bad for

 Searching 421

two stops! Because the formal Binary Search algorithm works just like this “finger
walking,” it should be clear to you why Binary Search is very fast for large sets of
values: on each lookup, you discard 50 percent of the possible values, until you
center in on the location you need. As a matter of fact, the Binary Search algorithm
will generally require only log2n lookups if n is the number of items to be
searched. This means that for 1,000 items, you shouldn’t have to look at more than
10 items before you’ve either found your item or convinced yourself it’s not there.
(For logarithm-challenged readers, 2 to the 10th power is 1,024, so log21,000 is just
a little less than 10.) The wonderful part of logarithmic growth is that if you dou-
ble the number of items you have to look through, you will need to, in general,
make only one more choice along the way to finding your particular item.

If you missed this point in the example, don’t miss it now: a binary search can
work only if the data it’s searching through has already been sorted. If you want
to use this technique, you’ll need to ensure that your data has been sorted, by one
means or another, before you use a binary search.

How Does Binary Search Work?
There actually is no single formal Binary Search algorithm; there are many. The
code you get depends on whom you ask. In this book, the algorithm you’ll find
works as follows:

1. Start with a sorted array and a value to be found.

2. Set upper and lower limits for the search.

3. While the lower bound is less than the upper bound:

a. Calculate the middle position of the remaining array.

b. If the value you’re seeking is greater than the middle value, adjust the
lower limit; otherwise, adjust the upper limit accordingly.

4. If the item at the lower position is the value you were searching for, return
the position index. Otherwise, return a value indicating that the item wasn’t
found.

The entire dhBinarySearch procedure, implementing the Binary Search algo-
rithm, is shown in Listing 7.11.

Chapter 7 • Searching and Sorting in VBA422

➲ Listing 7.11: Use dhBinarySearch to Find a Value in a Sorted Array.
(BinarySearch.bas)

Function dhBinarySearch(_
 varItems As Variant, varSought As Variant) As Long

 Dim lngLower As Long
 Dim lngMiddle As Long
 Dim lngUpper As Long

 lngLower = LBound(varItems)
 lngUpper = UBound(varItems)
 Do While lngLower < lngUpper
 ' Increase lower and decrease upper boundary,
 ' keeping varSought in range, if it's there at all.
 lngMiddle = (lngLower + lngUpper) \ 2
 If varSought > varItems(lngMiddle) Then
 lngLower = lngMiddle + 1
 Else
 lngUpper = lngMiddle
 End If
 Loop
 If varItems(lngLower) = varSought Then
 dhBinarySearch = lngLower
 Else
 dhBinarySearch = -1
 End If
End Function

To fully explain the binary search algorithm, the following series of steps uses
the same ten-element array that was used previously in the discussion of the
Quicksort algorithm. In this case, the examples attempt to locate a specific number
within the array. In the first example, shown in Figure 7.10, the search succeeds. In
the second, shown in Figure 7.11, the search fails.

The following set of steps works through the details of the Binary Search algo-
rithm, using the code in dhBinarySearch. In this case, the code is scanning the
array shown in step 1 of Figure 7.10, looking for the value 34.

 Searching 423

In these examples, we’ll use the same terminology as in the Quicksort example: to
indicate the value in the array at location x, we’ll use “x^”. If the value of the array
varItems at position 5 is 12 (that is, varItems(5) = 12) and the variable x contains
the value 5, then x^ is the value 12.

F I G U R E 7 . 1 0
Use Binary Search to locate

a value in the array.

1. Given the array, set the search bounds to be the upper and lower bounds of
the array:

lngLower = LBound(varItems)
lngUpper = UBound(varItems)

If lngLower is less than lngUpper (and it is), set lngMiddle to be the average
of the two:

lngMiddle = (lngLower + lngUpper) \ 2

Chapter 7 • Searching and Sorting in VBA424

Because varSought (34) is greater than lngMiddle^ (30), set lngLower to be
lngMiddle + 1 (6):

If varSought > varItems(lngMiddle) Then
 lngLower = lngMiddle + 1
Else
 lngUpper = lngMiddle
End If

2. Because lngLower (6) is still less than lngUpper (10), set lngMiddle to be the
average of the two (8). Because varSought is less than lngMiddle^ (48), set
lngUpper to be the same as lngMiddle.

3. Because lngLower (6) is still less than lngUpper (8), set lngMiddle to be the
average of the two (7). Because varSought is less than lngMiddle^ (48), set
lngUpper to be the same as lngMiddle.

4. Because lngLower (6) is still less than lngUpper (7), set lngMiddle to be the aver-
age of the two (6). Because varSought (34) isn’t greater than lngMiddle^ (34), set
lngUpper to be the same as lngMiddle.

5. Because lngLower (6) is no longer less than lngUpper (6), drop out of the
loop. Because lngLower^ is the same as varSought, return lngLower as the
return value of the function:

If varItems(lngLower) = varSought Then
 dhBinarySearch = lngLower
Else
 dhBinarySearch = -1
End If

It’s quite possible that at just this moment, you’ve determined for yourself that
you could have found the 34 in the sample array in the same amount of steps, if
not fewer, by simply starting at the beginning and scanning the elements one by
one. For small sets of data, you’re right—it’s almost always faster to just scan the
data, looking for the item you need. But this was just an example; you wouldn’t
normally bother with a binary search for 10 numbers. If you start working with
sets of values with 100 or more elements, you’ll see a marked speed difference
between a linear search and a binary search.

 Searching 425

F I G U R E 7 . 1 1
Binary Search fails for an

item not in the array.

What happens when a binary search fails? The following set of steps, corre-
sponding to the example shown in Figure 7.11, demonstrates what happens as
you search for the value 65 in an array that doesn’t contain it.

1. Given the array, set the search bounds to be the upper and lower bounds of
the array:

lngLower = LBound(varItems)
lngUpper = UBound(varItems)

If lngLower is less than lngUpper (and it is), set lngMiddle to be the average
of the two:

lngMiddle = (lngLower + lngUpper) \ 2

Because varSought (65) is greater than lngMiddle^ (30), set lngLower to be
lngMiddle + 1 (6):

If varSought > varItems(lngMiddle) Then
 lngLower = lngMiddle + 1
Else
 lngUpper = lngMiddle
End If

Chapter 7 • Searching and Sorting in VBA426

2. Because lngLower (6) is still less than lngUpper (10), set lngMiddle to be the
average of the two (8). Because varSought is greater than lngMiddle^ (48),
set lngLower to be lngMiddle + 1 (9).

3. Because lngLower (9) is still less than lngUpper (10), set lngMiddle to be the
average of the two (9). Because varSought is greater than lngMiddle^ (48),
set lngUpper to be the same as lngMiddle (9).

4. Because lngLower (9) is no longer less than lngUpper (9), drop out of the
loop. Because lngLower^ is not the item being sought, return –1, indicating
that the search failed.

Still not convinced that a binary search is better than a linear search? What if
you were to put all the numbers between 1 and 1,000 into an array and attempt to
find a value near the beginning, one near the end, one in the middle, and a value
that’s not there, using both a binary and a linear search to compare the timings?
The procedure CompareSearch, from the TestProcs.bas module, takes these steps
for you. The dhLinearSearch function (from LinearSearch.bas), shown in Listing 7.12,
provides a search that starts at the first element of an array, compares each item in
turn to the sought value, and exits as soon as it finds a match. If it doesn’t find a
match, of course, it will end up visiting each element of the array.

➲ Listing 7.12: Linear Search Provides the Slowest Possible W to Find
a Value in an Array. (LinearSearch.bas)

Function dhLinearSearch(varItems As Variant, _
 varSought As Variant) As Long

 Dim lngPos As Long
 Dim blnFound As Boolean

 blnFound = False
 For lngPos = LBound(varItems) To UBound(varItems)
 If varSought = varItems(lngPos) Then
 blnFound = True
 Exit For
 End If
 Next lngPos
 If blnFound Then
 dhLinearSearch = lngPos
 Else

 Searching 427

 dhLinearSearch = -1
 End If
End Function

To compare a linear search and a binary search, the CompareSearch procedure
fills an array with as many items as you request. (It assumes you want 1,000 if you
don’t specify a size.) It then uses dhBinarySearch to find three items in the array
and one that’s not. CompareSearch then repeats the process using the Lin-
earSearch function. In each case, the code attempts to find an item that’s 10 per-
cent of the way into the array, then one that’s 90 percent of the way, then 50
percent, and then one that’s not in the array at all. For each test, the sample runs
the search 1,000 times. The differences in speed are alarming, as you can see in
Figure 7.12. For an array of 1,000 items, to find an item that is in the middle of the
array (1,000 times) takes around 20 milliseconds using a binary search and around
670 milliseconds using a linear search—around 30 times longer using a linear
search. For 10,000 items, the discrepancy is even greater. Now, a binary search
takes 30 milliseconds, but a linear search takes around 6,700! Suddenly, you’re
looking at an operation taking 300 times as long to perform. (This comparison
doesn’t even mention the differences in time it takes to find an element near the
end of the list. The binary search takes no longer to find a value there than at the
middle of the list, but a linear search takes twice as long, of course, on average.)

Remember, for small data sets or if you cannot sort your data, using a linear
search is fine. When your array contains 100 or more items, however, you’ll want to
convert your code to use a binary search, especially if you need to locate items often.

F I G U R E 7 . 1 2
Compare a linear search to

a binary search.

Chapter 7 • Searching and Sorting in VBA428

Using Binary Search
Calling dhBinarySearch is quite simple; you pass it the array to look in and the
item to find:

lngPos = dhBinarySearch(varArray, varSought)

If the search locates varSought in varArray, it returns the position at which it found
the item. If not, it returns –1.

What If Your Data’s in a Table?
Just as with sorting, you’ll need to think hard about using these array technologies if your
data is currently stored in database table or an Excel spreadsheet. That is, you must take
into account your local application. No matter how fast your sorting code is, a database
engine can sort faster on its own. The same goes for searching: no matter how efficiently
you code your search, writing a SQL string that retrieves just the single row you need is
going to be faster than loading the data into an array and using a binary search.

Therefore, think twice before using either the searching or sorting techniques presented in
this chapter. If your data isn’t already in an array, copying it from disk for the sole purpose
of searching and sorting it may not be to your advantage. Excel, Access, and Word all sup-
ply their own tools for searching and sorting data, and you’ll want to exhaust those tech-
nologies before copying data into an array and working with it there.

On the other hand, the same warning works in reverse: if you’ve got data in an array (or
any other data structure in memory), you’ll generally not want to copy it to a table or an
Excel spreadsheet simply to search or sort it. By the time you write all your data to disk in
order to have the database engine create a recordset based on the table filled with your
data, you could have long since sorted your array and been on your way. It’s all a matter of
perspective; learn to use the correct tool for the situation.

You can also use an ADO recordset to sort your data. That is, you can create a discon-
nected recordset, adding the fields yourself and then calling the AddNew method to add
each “row” of data. When you’re done, you can sort the data using the recordset’s Sort
method. In our experience, this is by far the slowest way to sort data. You may have a dif-
ferent experience, but unless your data is already in a recordset, we’ve not found a com-
pelling reason to put it there, just for the purposes of searching or sorting.

 Searching 429

Don’t fall into the same trap we did, over and over, as we worked on this section:
before you can use dhBinarySearch, the array to be searched must be sorted.
Unless you’ve sorted the array, the Binary Search algorithm will return completely
spurious results. If you cannot sort your data, for whatever reason, then you’ll
need to use dhLinearSearch instead (called in the same fashion as dhBinary-
Search).

For example, the following code fragment (in TestProcs.bas) builds an array of
random numbers and requests the user to guess as many of the selected numbers
as possible. Once the user selects an incorrect value, the procedure displays the
number of correct selected values.

Sub SillySearch()
 Dim aintItems(1 To 100) As Integer
 Dim intI As Integer
 Dim intPos As Integer
 Dim intCount As Integer
 For intI = 1 To 100
 aintItems(intI) = Int(Rnd * 100) + 1
 Next intI
 Call dhQuickSort(aintItems)
 Do
 intI = _
 Val(InputBox("Choose a number between 1 and 100"))
 intPos = dhBinarySearch(aintItems, intI)
 If intPos > 0 Then
 intCount = intCount + 1
 End If
 Loop Until intPos < 0
 MsgBox "You guessed " & intCount & " correct values!"
End Sub

Because dhBinarySearch returns –1 to indicate that it didn’t find a match, you
won’t be able to search in arrays that have negative indexes. That is, if you must
search in an array with bounds of –10 to 10, for example, you’ll need to modify
dhBinarySearch to return a different value that indicates failure.

Chapter 7 • Searching and Sorting in VBA430

Chapter 8 provides another method for searching and sorting: using a binary tree.
If you’re interested in pursuing other techniques, visit that chapter for more
information.

Summary
We’re not trying to fool anyone here—this isn’t an academic study of various sort-
ing and searching techniques. Instead, we focused on presenting specific solutions
to sorting and searching problems, including the following:

• How to determine the relative speed of one solution over another, using the
StopWatch class

• How to create and use arrays

• How the Quicksort algorithm works and how to sort an array using the
Quicksort algorithm

• How to maintain a sorted collection

• How to use the Implements keyword to create a sort procedure that doesn’t
know what type of data it’s sorting

• How the Binary Search algorithm works and how to find an item in a sorted
array using Binary Search

• How Binary Search compares to a linear search and which is best to use in
differing circumstances

Armed with the dhQuickSort and dhBinarySearch procedures and an under-
standing of how they work and how to use them, you should be able to use the
procedures to sort and search in simple arrays. You should also be able to modify
the procedures to handle different kinds of data as well, should the need arise.

For more information on searching and sorting, see Chapter 8 and its discussion
of dynamic data structures. For more information on retrieving system informa-
tion, as you saw in the StopWatch class, see Chapter 9.

c h a p t e r 8

Creating Dynamic Data
Structures Using Class
Modules

� Using class modules to implement abstract data
structures

� Emulating a stack

� Emulating a queue

� Creating and using ordered linked lists

� Creating and using binary trees

Chapter 8 • Creating Dynamic Data Structures Using Class Modules432

Almost any application requires that you maintain some data storage in mem-
ory. As your application runs, you read and write data in some sort of data struc-
ture, and when your application shuts down, it either discards the data structure
(and its data) or writes the data to some persistent storage.

VBA provides two built-in data structures: arrays and collections. Each has its
good and bad points, and there are compelling reasons to use each of these struc-
tures. (For more information on using arrays and collections, see Chapter 7.) On
the other hand, if you’ve previously programmed in other languages or have
studied data structures in a college course, you may find the need to use abstract
data structures, such as linked lists, binary trees, stacks, and queues, as part of
your applications. Although all these structures can be implemented using arrays
or collections, neither of those constructs is well suited for linked data structures.

This chapter introduces techniques for using class modules to construct abstract
data structures. Amazingly, VBA requires very little code to create these some-
what complex structures. Once you’ve worked through the examples in this chap-
ter, you’ll be able to exploit the power of linked lists, stacks, queues, and binary
trees in your own VBA applications. Table 8.1 lists the sample files you’ll find on
the accompanying CD-ROM.

T A B L E 8 . 1 : Sample Files

Filename Description

DYNAMIC.XLS Excel file with sample modules and classes

DYNAMIC.MDB Access 2000 file with sample modules and classes

DYNAMIC.VBP VB6 project with sample modules and classes

LISTTEST.BAS Test routines for List class

QUEUETEST.BAS Test routines for Queue class

STACKTEST.BAS Test routines for Stack class

TREETEST.BAS Test routines for Tree class

LIST.CLS Linked List class

LISTITEM.CLS ListItem class

QUEUE.CLS Queue class

QUEUEITEM.CLS QueueItem class

 Dynamic versus Static Data Structures 433

Dynamic versus Static Data Structures
VBA provides a simple data structure: the array. If you know how many elements
you’re going to need to store, arrays may suit you fine. On the other hand, arrays
present some difficulties:

They are linear only. You cannot overlay any kinds of relationships
between the elements of an array without going through a lot of work.

They’re essentially fixed size. Yes, you can ReDim (Preserve) to resize
the array, but all VBA does in that case is create a new data structure large
enough for the new array and copy all the elements over, one by one. This isn’t a
reasonable thing to do often, or for large arrays.

They often use too much space. No matter how many elements you’re
going to put into the array, you must pre-declare the size. It’s just like the pre-
payment rip-off the car rental companies provide—you pay for a full tank,
regardless of whether you actually use it. The same goes for arrays: If you
dimension the array to hold 50 elements and you store only 5, you’re wasting
space for the other 45.

Because of these limitations, arrays are normally referred to as static data structures.

On the other hand, a dynamic data structure is one that can grow or shrink as
needed to contain the data you want stored. That is, you can allocate new storage
when it’s needed and discard that storage when you’re done with it.

Dynamic data structures generally consist of at least some simple data storage
(in our case, it will be a class module), along with a link to the next element in the
structure. These links are often called pointers or references. You’ll see both terms
used here.

STACK.CLS Stack class

STACKITEM.CLS StackItem class

TREE.CLS Tree class

TREEITEM.CLS TreeItem class

MAIN.FRM Start-up form for VB project

T A B L E 8 . 1 : Sample Files (continued)

Filename Description

Chapter 8 • Creating Dynamic Data Structures Using Class Modules434

The study of dynamic data structures could be a full-semester college course on
its own, so we can’t delve too deeply into it in this limited space. However, we do
introduce the basic concepts and show how you can use class modules to create
your own dynamic data structures. In addition, we suggest some ways in which
you might use these data structures in your own applications.

Simple Dynamic Structures
Linear structures are the simplest class of dynamic data structures. Each element
of structures of this type contains some information and a pointer to the next ele-
ment. The diagram in Figure 8.1 shows a simple data structure in which each element
of the structure contains a piece of data and a reference to the next item in the
structure. (This structure is normally called a linked list because it contains a list of
items that are linked together.)

F I G U R E 8 . 1
The simplest type of

dynamic data structure

What differentiates one instance of this kind of data structure from another? It’s
just the arbitrary rules about how you can add or delete nodes. For example, stacks
and queues are both types of linear linked data structures, but a stack can accept
new items only at its “top,” and a queue can accept new items only at its “bot-
tom.” With a stack, you can retrieve items only from the same place you added
them. But with a queue, you retrieve them from the other end of the structure.
This chapter discusses creating both of these simple data structures with VBA
class modules.

If you need to be able to traverse your structure in both directions, you can, of
course, include links in both directions. Although we won’t handle this additional
step in this chapter, it takes very little extra work to provide links in both directions.
You’ll find this extra pointer useful when you must traverse a list in either direction.

Recursive Dynamic Structures
You’ll normally use iterative code to loop through the elements of a simple, linear
dynamic data structure. On the other hand, many popular dynamic data structures

 How Does This Apply to VBA? 435

lend themselves to being traversed recursively. For example, programmers often
use the ordered binary tree structure for data storage and quick retrieval. In this
kind of structure, each node has one predecessor and two successors. (Normally,
you think of one successor as being the “left child” and the other as the “right
child.”) Figure 8.2 shows the simplest recursive data structure: a binary tree. The
tree data structure is well suited to recursive algorithms for adding items and tra-
versing the nodes.

F I G U R E 8 . 2
Ordered binary trees are an
example of a recursive data

structure.

The term dynamic data structures always refers to in-memory data structures. All
the techniques covered in this chapter deal only with data that you work with in the
current instance of your application and have nothing to do with storing or
retrieving that data from permanent storage. VBA provides its own techniques for
reading and writing disk files. You’ll use the data structures presented in this chapter
once you’ve retrieved the data you need to work with.

How Does This Apply to VBA?
Because VBA supports class modules and because you can create a new instance
of a class (that is, instantiate a new member of the class) at any time, you can create
class modules that emulate these abstract data structures. Each element of the
structure, because it’s just like every other element, is just another instance of the
class. (For information on getting started with class modules, see Chapter 5.)

Chapter 8 • Creating Dynamic Data Structures Using Class Modules436

You can most easily represent abstract structures in VBA using two class mod-
ules: one to represent a data type that does nothing more than point to the real
data structure, and another to represent each element of the structure. For exam-
ple, if you want to create a stack data structure (and you will later in this section),
you’ll need one class module to act as a pointer to the “top” of the stack. This is
where you can add new items to the stack. You’ll also need a different class mod-
ule for the elements in the stack. This class module will contain two pieces of data: the
information to be stored in the stack and a reference to the next item on the stack.

Retrieving a Reference to a New Item
At some point, you’ll need to retrieve a reference to a new instance of your class. If
you want to add a new item to your data structure, you’ll need a pointer to that
new item so you can get back to it later. Of course, Basic (after all, as many folks
will argue, this is still just Basic) has never supported real pointers, and dynamic
data structures require pointers, right? Luckily, not quite!

VBA allows you to instantiate a new element of a class and retrieve a reference to it:

Dim objVar As New className

or

Dim objVar as className

‘ Possibly some other code in here.

Set objVar = New className

You choose one of the two methods for instantiating a new item based on your needs.
In either case, you end up with a variable that refers to a new instance of the class.

Be wary of using the New keyword in the Dim statement. Although this makes your
code shorter, it can also cause trouble. This usage allows VBA to instantiate the new
object whenever it needs to (normally, the first time you attempt to set or retrieve a
property of the object) and, therefore, runs the new object’s Initialize event at that
time. If you want control over exactly when the new object comes into being (and
when its Initialize event procedure runs), use the New keyword with the Set state-
ment. This will instantiate the object when you’re ready to, not at some time when
you might not be expecting it. In addition, using the New keyword as part of the
Dim statement causes VBA to add extra code to your application because it must
check at runtime whether it needs to instantiate the object between each line of
code where the object is in scope. You don’t need this extra overhead.

 How Does This Apply to VBA? 437

After either of these statements, objVar contains a pointer to the new member of
the className class. Even though you can’t manipulate, view, or otherwise work
with pointer values as you can in C/C++, the Set/New combination at least gives
VBA programmers almost the same functionality that Pascal programmers have
always had, although the mechanism is a bit clumsier: You can create pointers
only to classes in VBA, while Pascal allows pointers to almost any data type.

Making an Object Variable Refer to an Existing Item
Just as you can use the Set keyword to retrieve a reference to a new object, you can
use it to retrieve a reference to an existing object. If objItem is an object variable
that refers to an existing member of a class, you can use code like this to make
objNewItem refer to the existing item:

Set objNewItem = objItem

After this statement, the pointers named objNewItem and objItem refer to the
same object.

What If a Variable Doesn’t Refer to Anything?
How can you tell if an object variable doesn’t refer to anything? When working
with dynamic data structures, you’ll find it useful to be able to discern whether a
reference has been instantiated. Pascal uses Nil, C uses Null, and VBA uses Noth-
ing to represent the condition in which an object variable doesn’t currently refer to
a real object.

If you have an object variable and you’ve not yet assigned it to point to an
object, its value is Nothing. You can test for this state using code like this:

If objItem Is Nothing Then
 ' You know that objItem isn’t currently referring to anything
End If

If you want to release the memory used by an object in memory, you must sever
all connections to that object. As long as some variable refers to an object, VBA
won’t be able to release the memory used by that object. (Think of it as a hot-air
balloon tied down with a number of ropes; until someone releases the last rope,
that balloon isn’t going anywhere.) To release the connection, set the object vari-
able to Nothing:

Set objItem = Nothing

Chapter 8 • Creating Dynamic Data Structures Using Class Modules438

Once you’ve released all references to an object, VBA can dispose of the object and
free up the memory it was using.

Emulating Data Structures with Class Modules
Before you can do any work with dynamic data structures, you need to under-
stand how to use class modules to emulate the elements of these structures. For
example, In Figure 8.1, each element of the structure contains a piece of data and a
reference to the next element. How can you create a class module that does that?

It’s easy: Create a class module named ListItem with two module-level variables:

Public Value As Variant
Public NextItem As ListItem

The first variable, Value, will contain the data for each element. The second vari-
able, NextItem, will contain a reference to the next item in the data structure. The
surprising, and somewhat confusing, issue is that you can create a variable of the
same type as the class in the definition of the class itself. It’s just this sort of self-
referential declaration that makes dynamic data structures possible in VBA.

To add an item to the list, you might write code like this in your class module:

Public Function AddItem(varValue As Variant) As ListItem
 Set NextItem = New ListItem
 NextItem.Value = varValue
 ' Set the return value for the function.
 Set AddItem = NextItem
End Sub

The first line of the procedure creates a new item in the data structure and makes
the NextItem variable in the current element refer to that new element. The sec-
ond line uses NextItem to refer to the next element and sets its Value variable to
the value passed to the current procedure, varValue. The final line sets up the
function call to return a reference to the new item that was just added to the list.

In reality, you probably wouldn’t write a data structure this way because it pro-
vides no way to find a particular item or the beginning or end of the list. In other
words, there’s something missing that makes these structures possible: a reference
to the entire structure. The next section tells you how you should actually create
such a data structure.

How about the complicated binary tree structure shown in Figure 8.2? The only dif-
ference between this structure and a linear list is that each element in this structure

 Creating a Stack 439

maintains a pointer to two other structures rather than just one. The class module
for an element (class name TreeItem) of a binary tree structure might contain these
elements:

Public Value As Variant
Public LeftChild As TreeItem
Public RightChild As TreeItem

Creating a Header Class
Although you can use a class module to emulate the elements of a dynamic data
structure, as shown in the previous section, you’ll need a different class module to
“anchor” the data structure. This class module will generally have only a single
instance per data structure and will contain pointers to the beginning, and per-
haps the end, of the data structure. In addition, this class often contains the code
necessary to add and delete items in the list.

Generally, the header class contains one or more references to objects of the type
used in building the data structure, and perhaps other information about the struc-
ture itself. For example, a hypothetical class named ListHeader, with the follow-
ing information, has a reference to the first item in a list and the last item in the list:

Private liFirst As ListItem
Private liLast As ListItem

Note that the class doesn’t contain a self-referential data element. There’s gener-
ally no reason for a list header to refer to another list header, so this example
doesn’t contain a reference to anything but the list items. In addition, the header
class only needs to contain a reference to the first item in the data structure.

How you work with the items in the data structure—adding, deleting, and
manipulating them—depends on the logical properties of the data structure you’re
creating. Now that you’ve seen the basics, it’s time to dig into some data struc-
tures that emulate stacks and queues, each of which has its own ideas about add-
ing and deleting items.

Creating a Stack
A stack is a simple logical data structure, normally implemented using a linked
list to contain its data. Of course, you could use an array to implement a stack, and

Chapter 8 • Creating Dynamic Data Structures Using Class Modules440

many programmers have done this. However, using an array forces you to worry
about the size of the stack, which a linked list structure would not. A stack allows
you to control data input and output in a very orderly fashion: New items can be
added only to the top of the stack. And, as you remove items, they too are removed
from the top. In essence, a stack data structure works like the stack of cafeteria
trays at your local eatery or like the pile of problems to solve on your desk (unless
you’re as compulsive as one of us is—we’re not telling which one—and solve your
problems in a queue-like fashion). This sort of data storage is often referred to as
LIFO (Last In, First Out)—the most recent item added to the stack is the first to be
removed.

Why Use a Stack?
Why use a stack in an application? You might want to track forms as a user opens
them and then be able to back out of the open forms in the opposite order: That is,
you may want to store form references in the stack and then, as the user clicks the
OK button on each form, bring the correct form to the top, popping the most recent
form from the stack. Or you may want to track the procedure call tree within your
application as your user runs it. That way, you could push the name of the proce-
dure as you enter the procedure. On the way out, you could pop the stack. Using
this technique, the top of the stack always contains the name of the current proce-
dure. Otherwise, this value is impossible to retrieve. (Perhaps some day VBA will
allow you to gather information about the internal call stack programmatically. At
this point, you’re left handling it yourself.) You could also build your own appli-
cation profiler. By storing the current time in the stack for each procedure as you
push it on the stack and then subtracting that from the current time as you pop the
stack, you can find out how long the code was working in each procedure.

Implementing a Stack
Figures 8.3 and 8.4 show a sample stack in memory, before and after a fifth item is
added to the stack. At each point, the top of the stack points to the top-most element.
After the new element is added, the top of the stack points at the newest element,
and that element’s link points to the item that used to be at the top of the stack.

It takes very little code to create and maintain a stack. The structure requires
two class modules: the Stack and StackItem classes.

 Creating a Stack 441

F I G U R E 8 . 3
A sample stack just before

adding a fifth item

F I G U R E 8 . 4
The same stack after add-

ing the new item

The StackItem Class
It doesn’t get much simpler than this. The StackItem class maintains a data item,
as well as a pointer to the next item in the structure, as shown in Listing 8.1.

Chapter 8 • Creating Dynamic Data Structures Using Class Modules442

➲ Listing 8.1: Code for the StackItem Class

' Keep track of the next stack item,
' and the value of this item.

Public Value As Variant
Public NextItem As StackItem

The Stack Class

The Stack class contains a single item: a pointer to the first item in the stack (the
stack top). That pointer always points to the top of the stack, and it’s at this loca-
tion that you’ll add (push) and delete (pop) items from the stack. The Stack class
module implements the two methods (Push and Pop), as well as two read-only
properties, StackTop (which returns the value of the element at the top of the stack
without popping the item) and StackEmpty (which returns a Boolean value indi-
cating the status of the stack—True if there are no items in the stack and False if
there are items).

Pushing Items onto the Stack

To add an item to the stack, you “push” it to the top of the stack. This is similar to
pushing a new cafeteria tray to the top of the tray stack. When you push the new
tray, each of the other trays moves down one position in the stack. Using linked
lists, the code must follow these steps:

1. Create the new node.

2. Place the value to be stored in the new node.

3. Make the new node point to whatever the current stack top pointer refers to.

4. Make the stack top point to this new node.

The code in Listing 8.2 shows the Push method of the Stack class. The four lines
of code correspond to the four steps listed previously.

➲ Listing 8.2: Use the Push Method to Add a New Item to the Stack

Public Sub Push(ByVal varText As Variant)
 ' Add a new item to the top of the stack.
 Dim siNewTop As StackItem

 Creating a Stack 443

 Set siNewTop = New StackItem
 siNewTop.Value = varText
 Set siNewTop.NextItem = siTop
 Set siTop = siNewTop
End Sub

Figures 8.5 and 8.6 demonstrate the steps involved in pushing an item onto a
stack. In the example case, you’re attempting to push the value 27 onto a stack that
already contains three elements.

In the figures, to save space, we’ve collapsed the Dim and As New statements into one
line. The examples use separate lines of code for each step, as we’ve recommended
earlier.

F I G U R E 8 . 5
The first three steps in

pushing an item onto a
stack

F I G U R E 8 . 6
The final step in pushing an

item onto a stack

What if the stack is empty when you try to push an item? In that case, siTop will
be Nothing when you execute the following code:

Set siNewTop.NextItem = siTop

Dim siNewTop As New StackItem
siNewTop.Value = varText

Set siNewTop.NextItem = siTop

Chapter 8 • Creating Dynamic Data Structures Using Class Modules444

The new node’s NextItem property will point to Nothing, as it should. Executing
the final line of code:

Set siTop = siNewTop

causes the top of the stack to point to this new node, which then points to Noth-
ing. It works just as it should!

If you find this final line of code confusing, look at it this way: When you assign
siTop to be siNewTop, you’re telling VBA to make siTop contain the same address
that siNewTop currently contains. In other words, you’re telling siTop to point to
whatever siNewTop currently points to. Read that a few times while looking at
Figure 8.6, and, hopefully, it will all come into focus.

Popping Items from the Stack

Popping an item from the stack removes it from the stack and makes the top
pointer refer to the new item on the top of the stack. In addition, in this implemen-
tation, the Pop method returns the value that was just popped.

The code for the Pop method, as shown in Listing 8.3, follows these steps:

1. Makes sure there’s something in the stack. (If not, Pop doesn’t do anything
and returns a null value.)

2. Sets the return value of the function to the value of the top item.

3. Makes the stack top point at whatever the first item is currently pointing to.
This effectively removes the first item in the stack.

➲ Listing 8.3: Use the Pop Method to Remove an Item from the Stack

Public Function Pop() As Variant
 If Not StackEmpty Then
 ' Get the value from the current top stack element.
 ' Then, get a reference to the new stack top.
 Pop = siTop.Value
 Set siTop = siTop.NextItem
 End If
End Function

 Creating a Stack 445

What happens to the node that used to be at the top of the stack? Once there are
no more references to an instance of a class module, VBA can remove that instance
from memory, effectively “killing” it. If you’re not convinced, add a Debug.Print
statement to the Terminate event procedure for the StackItem class. You’ll see that
VBA kills off unneeded objects as soon as there are no more references to the object.

The diagram in Figure 8.7 demonstrates the tricky step: popping an item from the
stack. The code causes the stack pointer, siTop, to refer to the item to which siTop
previously referred. That is, it links around the current top item in the stack. Once
that occurs, there’s no reference to the current top item, and VBA can “kill” the item.

F I G U R E 8 . 7
Link around the top node to
pop an item from the stack.

Is the Stack Empty?

You may need to be able to detect whether the stack is currently empty. To make
that possible, the example implementation of the Stack data structure provides a
read-only StackEmpty property. Providing the information is simple: If siTop is
currently Nothing, the stack must be empty.

Property Get StackEmpty() As Boolean
 ' Is the stack empty? It can
 ' only be empty if siTop is Nothing.
 StackEmpty = (siTop Is Nothing)
End Property

Given this property, you can write code that pops items until the stack is empty,
like this:

Do While Not stk.StackEmpty
 Debug.Print stk.Pop()
Loop

Chapter 8 • Creating Dynamic Data Structures Using Class Modules446

What’s on Top?

You may need to know what’s on the top of the stack without removing the item.
To make that possible, the example implementation of the Stack data structure
includes a read-only StackTop property that returns the value of the item to which
siTop points (or Null if siTop is Nothing):

Property Get StackTop() As Variant
 If StackEmpty Then
 StackTop = Null
 Else
 StackTop = siTop.Value
 End If
End Property

A Simple Example

Listing 8.4 shows a few examples using a stack data structure. The first example
pushes a number of text strings onto a stack and then pops the stack until it’s
empty, printing the text to the Immediate window. The second example calls a
series of procedures, each of which pushes its name onto the stack on the way in
and pops it off on the way out. The screen in Figure 8.8 shows the Immediate win-
dow after running the sample.

➲ Listing 8.4: Using the Stack Data Structure

Private stkTest As Stack

Sub TestStacks()

 Set stkTest = New Stack

 ' Push some items, and then pop them.
 stkTest.Push ""Hello"
 stkTest.Push "There"
 stkTest.Push "How"
 stkTest.Push "Are"
 stkTest.Push "You"
 Do Until stkTest.StackEmpty
 Debug.Print stkTest.Pop()
 Loop

 Creating a Stack 447

 ' Now, call a bunch of procedures.
 ' For each procedure, push the proc name
 ' at the beginning, and pop it on the way out.
 Debug.Print
 Debug.Print "Testing Procs:"
 stkTest.Push "Main"
 Debug.Print stkTest.StackTop
 Call A
 Debug.Print stkTest.Pop
End Sub

Sub A()
 stkTest.Push "A"
 Debug.Print stkTest.StackTop
 Call B
 Debug.Print stkTest.Pop
End Sub

Sub B()
 stkTest.Push "B"
 Debug.Print stkTest.StackTop
 Call C
 Debug.Print stkTest.Pop
End Sub

Sub C()
 stkTest.Push "C"
 Debug.Print stkTest.StackTop
 ' You’d probably do something in here...
 Debug.Print stkTest.Pop
End Sub

As you can see from the previous example, it’s not hard to create a procedure stack,
keeping track of the current procedure from within your code. Unfortunately, you
must take care of the details yourself. If you do implement something like this, make
sure there’s no way to exit a procedure without popping the stack, or your stack will
get awfully confused about the identity of the current procedure as you work your
way back out, popping things from the stack.

Chapter 8 • Creating Dynamic Data Structures Using Class Modules448

F I G U R E 8 . 8
The Immediate window
after the stack example

has run

Creating a Queue
A queue, like a stack, is a data structure based on the linked list concept. Instead of
allowing you to add and remove items at a single point, a queue allows you to add
items at one end and remove them at the other. In essence, this forms a First In
First Out (FIFO) data flow: The first item into the queue is also the first item out.
Of course, this is the way your to-do list ought to work—the oldest item ought to
get handled first. Unfortunately, most people handle their workflow based on the
stack data model, not based on a queue.

Why Use a Queue?
You’ll use a queue data structure in an application when you need to maintain a
list of items ordered not by their actual value but by their temporal value. For
example, you might want to allow users to select a list of reports throughout the
day and, at idle times throughout the day, print those reports. Although there are
many ways to store this information internally, a queue makes an ideal mecha-
nism. When you need to find the name of the next report to print, just pull it from
the top of the queue. When you add a new report to be printed, it goes to the end
of the queue.

 Creating a Queue 449

You can also think of a queue as a pipeline—a means of transport for information
from one place to another. You could create a global variable in your application
to refer to the queue and have various parts of the application send messages to
each other using the queue mechanism, much as Windows itself does with the
various running applications.

If you’re planning on creating an industrial-strength queue in an application to pass
information from one user to another, you’ll want to study the concepts presented
here, but also look into using MSMQ, a server-based product from Microsoft that
manages enterprise-wide queuing for you. In one sense, MSMQ works the same
way as the queues shown here do. However, in a real sense, comparing MSMQ to
the queues shown here is just as accurate as comparing a desktop computer to an
abacus. They both perform calculations, but one is far more powerful than the
other. If you need disconnected queuing and guaranteed delivery of information in
an enterprise-wide environment, you’ll want to look into MSMQ.

Implementing a Queue
The diagrams in Figures 8.9, 8.10, and 8.11 show a simple queue before and after add-
ing a new item and before and after removing an item. At each point, you can add a
new item only at the rear of the queue and can remove an item only from the front of
the queue. (Note that the front of the queue, where you delete items, is at the left of the
diagrams. The rear of the queue, where you add items, appears to the right.)

Maintaining a queue takes a bit more code than maintaining a stack, but not
much. Although the queue is handled internally as a linked list, it has some limita-
tions as to where you can add and delete items. The underlying code handles
these restrictions. The queue structure requires two class modules, one each for
the Queue and QueueItem classes.

F I G U R E 8 . 9
A simple queue just before

a fourth item is added

Chapter 8 • Creating Dynamic Data Structures Using Class Modules450

F I G U R E 8 . 1 0
The simple queue after the

fourth item is added and
before an item is removed

F I G U R E 8 . 1 1
The simple queue after an

item has been removed

The QueueItem Class

Just like the StackItem class, the QueueItem class stores just a data value and a
pointer to the next data element, as shown in Listing 8.5.

➲ Listing 8.5: Code for the QueueItem Class

' Keep track of the next queue item,
' and the text of this item.
Public NextItem As QueueItem
Public Value As Variant

The Queue Class

As with the Stack class, all the interesting code required in working with the data
structure is part of the parent class—in this case, the Queue class. It’s here you’ll
find the methods for adding and removing items in the queue, as well as a read-
only property that indicates whether the queue is currently empty. Because a
queue needs to be able to work with both the front and the rear of the queue, the
Queue class includes two pointers rather than just one, making it possible to add

 Creating a Queue 451

items at one end and to remove them from the other. These pointers are defined as
qFront and qRear, as shown here, and are module-level variables:

Private qFront As QueueItem
Private qRear As QueueItem

Adding an Item to the Queue

To add an item to a queue, you “enqueue” it. That is, you add it to the rear of the
queue. To do this, the Add method follows these steps:

1. Creates the new node.

2. Places the value to be stored in the new node.

3. If the queue is currently empty, makes the front and rear pointers refer to the
new node.

4. Otherwise, links the new node into the list of nodes in the queue. To do that,
it makes the final node (the node the “rear pointer” currently points to)
point to the new item. Then it makes the rear pointer in the queue header
object refer to the new node.

The code in Listing 8.6 shows the Add method of the Queue class.

➲ Listing 8.6: Use the Add Method to Add a New Item to a Queue

Public Sub Add(varNewItem As Variant)
 Dim qNew As QueueItem
 Set qNew = New QueueItem

 qNew.Value = varNewItem
 ' What if the queue is empty? Better point
 ' both the front and rear pointers at the
 ' new item.
 If IsEmpty Then
 Set qFront = qNew
 Set qRear = qNew
 Else
 Set qRear.NextItem = qNew
 Set qRear = qNew
 End If
End Sub

Chapter 8 • Creating Dynamic Data Structures Using Class Modules452

The diagrams in Figures 8.12 and 8.13 demonstrate the steps for adding a new
node to an existing queue.

As we did earlier, we’ve collapsed the Dim and New statements in the figures into
a single line of code in order to save space. We don’t recommend doing this in
your own code.

F I G U R E 8 . 1 2
After you create the new
node, the Add method is
ready to attach it to the

queue.

F I G U R E 8 . 1 3
To finish adding the node,

set qRear to point to the
new node.

What if the queue was empty when you tried to add an item? In that case, all
you need to do is make the head and rear of the queue point to the new node.
Afterward, the queue will look like the one in Figure 8.14.

 Creating a Queue 453

F I G U R E 8 . 1 4
After a new node is added

to an empty queue, both
the head and rear pointers

refer to the same node.

Removing Items from the Queue

Removing an item from the queue both removes the front node from the data
structure and makes the next front-most item the new front of the queue. In addi-
tion, this implementation of the queue data structure returns the value of the
removed item as the return value from the Remove method.

The code for the Remove method, as shown Listing 8.7, follows these steps:

1. Makes sure there’s something in the queue. If not, the Remove method
doesn’t do anything and returns a null value.

2. Sets the return value of the function to the value of the front queue item.

3. If there’s only one item in the queue, sets both the head and rear pointers to
Nothing. There’s nothing left in the queue.

4. If there was more than one item in the queue, sets the front pointer to refer to
the second item in the queue. This effectively kills the old first item.

➲ Listing 8.7: Use the Remove Method to Drop Items from a Queue

Public Function Remove() As Variant
 ' Remove an item from the head of the
 ' list, and return its value.
 If IsEmpty Then
 Remove = Null
 Else
 Remove = qFront.Value
 ' If there’s only one item
 ' in the queue, qFront and qRear
 ' will be pointing to the same node.
 ' Use the Is operator to test for that.

Chapter 8 • Creating Dynamic Data Structures Using Class Modules454

 If qFront Is qRear Then
 Set qFront = Nothing
 Set qRear = Nothing
 Else
 Set qFront = qFront.NextItem
 End If
 End If
End Function

How can you tell when there’s only one item in the queue? The Is operator comes
in handy here. By checking whether “qFront Is qRear”, you can find out whether
the two variables refer to the same object. If the condition is True, they do refer to the
same object, and, therefore, there’s only one item in the queue.

The diagram in Figure 8.15 demonstrates the one difficult step in removing an
item. The diagram corresponds to this line of code:

Set qFront = qFront.NextItem

By moving the front pointer to the item that the first item previously pointed to,
you eliminate the reference to the old first item, and VBA removes it from mem-
ory. After this step, the queue will contain one less item.

F I G U R E 8 . 1 5
To remove an item, move

the front pointer to the sec-
ond node in the queue.

Is the Queue Empty?

You’ll often need to be able to detect whether the queue is empty, and the example
implementation includes the read-only IsEmpty property for this reason. The

 Creating a Queue 455

queue can be empty only if both the front and rear pointers are Nothing. The code
shown here checks for this condition:

Public Property Get IsEmpty() As Boolean
 ' Return True if the queue contains
 ' no items.
 IsEmpty = ((qFront Is Nothing) And (qRear Is Nothing))
End Property

The IsEmpty property allows you to write code like this:

Do Until q.IsEmpty
 Debug.Print q.Remove()
Loop

A Simple Queue Example

The code in Listing 8.8 demonstrates the use of the queue data structure. It creates
a new queue, adds five words to the queue, and then removes the words, one at a
time. The words should come out in the same order in which they were entered.
Note that if you’d used a stack for the same exercise, the words would have come
out in the opposite order from the order in which they were entered.

➲ Listing 8.8: Using the Queue Data Structure

Sub TestQueues()
 Dim qTest As Queue

 Set qTest = New Queue
 With qTest
 .Add "Hello"
 .Add "There"
 .Add "How"
 .Add "Are"
 .Add "You"
 Do Until .IsEmpty
 Debug.Print .Remove()
 Loop
 End With
End Sub

Chapter 8 • Creating Dynamic Data Structures Using Class Modules456

Creating Ordered Linked Lists
A linked list is a simple data structure, as shown earlier in Figure 8.1, that allows
you to maintain an ordered list of items without having to know ahead of time
how many items you’ll be adding. To build this data structure, you need two class
modules: one for the list head and another for the items in the list. The example
presented here is a sorted linked list. As you enter items into the list, the code
finds the correct place to insert them and adjusts the links around the new nodes
accordingly.

The ListItem Class
The code for the ListItem class, shown here, is simple, as you can see in List-
ing 8.9. The code should look familiar—it’s parallel to the code in Listing 8.1.
(Remember, the Stack data structure is just a logical extension of the simple
linked list.)

Public Value As Variant
Public NextItem As ListItem

The class module contains storage for the value to be stored in the node, plus a
pointer to the next node. As you instantiate members of this class, you’ll set the
NextItem property to refer to the next item in the list, which depends on where in
the list you insert the new node.

The List Class
The List class includes but a single data element:

Dim liHead As ListItem

The liHead item provides a reference to the first item in the linked list. (If there’s
nothing yet in the list, liHead is Nothing.) The List class also includes three Public
methods: Add, Delete, and DebugList. The Add method adds a new node to the
list, in sorted order. The Delete method deletes a given value from the list if it’s
currently in the list. The DebugList method walks the list from one end to the
other, printing the items in the list to the Immediate window.

 Creating Ordered Linked Lists 457

Finding an Item in the List

Both the Add and Delete methods count on a Private method, Search, which takes
three parameters:

• The value to find (passed by value)

• The current list item (passed by reference)

• The previous list item (passed by reference)

The Search procedure fills in the current and previous list items (so the calling
procedure can work with both items). Both parameters are passed using ByRef, so
the procedure can modify their values. The function returns a Boolean value indi-
cating whether it actually found the requested value. The function, shown in List-
ing 8.9, follows these steps:

1. Assumes the return value is False, sets liPrevious to point to Nothing, and
sets liCurrent to point to the head of the list:

blnFound = False

Set liPrevious = Nothing
Set liCurrent = liHead

2. While not at the end of the list (while the current pointer isn’t Nothing), does
one of the following:

• If the search item is greater than the stored value, it sets the previous
pointer to refer to the current node and sets the current node to point to
the next node.

• If the search item is less than or equal to the stored value, then you’re
done, and it exits the loop.

Do Until liCurrent Is Nothing
 With liCurrent
 If varItem > .Value Then
 Set liPrevious = liCurrent
 Set liCurrent = .NextItem
 Else
 Exit Do
 End If
 End With
Loop

Chapter 8 • Creating Dynamic Data Structures Using Class Modules458

3. Establishes whether the sought value was actually found.

If Not liCurrent Is Nothing Then
 blnFound = (liCurrent.Value = varItem)
End If

4. Returns the previous and current pointers in ByRef parameters and the
found status as the return value.

➲ Listing 8.9: Use the Search Function to Find a Specific Element in
the List

Function Search(ByVal varItem As Variant, _
 ByRef liCurrent As ListItem, ByRef liPrevious As ListItem) _
 As Boolean
 Dim blnFound As Boolean

 blnFound = False

 Set liPrevious = Nothing
 Set liCurrent = liHead
 Do Until liCurrent Is Nothing
 With liCurrent
 If varItem > .Value Then
 Set liPrevious = liCurrent
 Set liCurrent = .NextItem
 Else
 Exit Do
 End If
 End With
 Loop

 ' You can't compare the value in liCurrent to the sought
 ' value unless liCurrent points to something.
 If Not liCurrent Is Nothing Then
 blnFound = (liCurrent.Value = varItem)
 End If
 Search = blnFound
End Function

Taking the most common case (searching for an item in the middle of an exist-
ing list), the diagrams in Figures 8.16, 8.17, 8.18, and 8.19 demonstrate the steps in

 Creating Ordered Linked Lists 459

the logic of the Search method. In this example, the imaginary code running is
searching for the value 7 in a list that contains the values 3, 5, and 10.

F I G U R E 8 . 1 6
Check to see if it’s time to

stop looping, based on the
current value and the value

to find.

F I G U R E 8 . 1 7
Set the previous pointer to
point to the current node.

F I G U R E 8 . 1 8
Set the current pointer to

point to the next node.

F I G U R E 8 . 1 9
It’s time to stop looping.

The item wasn’t found, so
return False.

Chapter 8 • Creating Dynamic Data Structures Using Class Modules460

What happens in the borderline cases?

What if the list is currently empty? In that case, liCurrent will be Noth-
ing at the beginning of the procedure (because you’ve made it point to the same
thing that liHead points to, which is Nothing). The function will do nothing and
will return False. After you call the function, liCurrent and liPrevious will both
be Nothing.

What if the item to be found is less than anything currently in the
list? In that case, the item should be placed before the item liHead currently
points to. As soon as the code enters the loop, it will find that liCurrent.Value is
greater than varItem and will jump out of the loop. The function will return
False because the value pointed to by liCurrent isn’t the same as the value being
sought. After the function call, liCurrent will refer to the first item in the list, and
liPrevious will be Nothing.

What if the item is greater than anything in the list? In that case, the
code will loop until liCurrent points to what the final node in the list points to
(Nothing), and liPrevious will point to the final node in the list. The function
will return False because liCurrent is Nothing.

Adding an Item to the List

Once you’ve found the right position using the Search method of the List class,
inserting an item is relatively simple. The Add method, shown in Listing 8.10,
takes the new value as a parameter, calls the Search method to find the right posi-
tion in which to insert the new value, and then inserts it. The procedure follows
these steps:

1. Creates a new node for the new item and sets its value to the value passed as
a parameter to the procedure:

Set liNew = New ListItem
liNew.Value = varValue

2. Calls the Search method, which fills in the values of liCurrent and liPrevi-
ous. Disregard the return value when adding an item, as you don’t care
whether the value was already in the list:

Call Search(varValue, liCurrent, liPrevious)

 Creating Ordered Linked Lists 461

3. If inserting an item anywhere but at the head of the list, adjusts pointers to
link in the new item:

Set liNew.NextItem = liPrevious.NextItem
Set liPrevious.NextItem = liNew

4. If inserting an item at the beginning of the list, sets the head pointer to refer
to the new node.

Set liNew.NextItem = liHead
Set liHead = liNew

➲ Listing 8.10: Use the Add Method to Add a New Item to a List

Public Sub Add(varValue As Variant)
 Dim liNew As New ListItem
 Dim liCurrent As ListItem
 Dim liPrevious As ListItem

 Set liNew = New ListItem
 liNew.Value = varValue

 ' Find where to put the new item. This function call
 ' fills in liCurrent and liPrevious.
 Call Search(varValue, liCurrent, liPrevious)

 If Not liPrevious Is Nothing Then
 Set liNew.NextItem = liPrevious.NextItem
 Set liPrevious.NextItem = liNew
 Else
 ' Inserting at the head of the list:
 ' Set the new item to point to what liHead currently
 ' points to (which might just be Nothing). Then
 ' make liHead point to the new item.
 Set liNew.NextItem = liHead
 Set liHead = liNew
 End If
End Sub

Chapter 8 • Creating Dynamic Data Structures Using Class Modules462

Inserting an item at the head of the list is easy. All you need to do is make the
new node’s NextItem pointer refer to the current head of the list and then make
the list head pointer refer to the new node. The diagrams in Figures 8.20, 8.21,
and 8.22 show how you can insert an item at the head of the list. In this example,
you’re attempting to insert a node with the value 3 into a list containing 5, 10,
and 12. Because 3 is less than any item in the list, the code will insert it at the
head of the list.

F I G U R E 8 . 2 0
After Search is called,
liPrevious is Nothing,

indicating an insertion at
the head of the list.

F I G U R E 8 . 2 1
Make the new node’s

NextItem pointer refer to
the item currently referred

to by liHead.

F I G U R E 8 . 2 2
Make the list header point

to the new node.

 Creating Ordered Linked Lists 463

Inserting an item anywhere in the list besides the head works similarly, but the
steps are a bit different. If liPrevious isn’t Nothing after the Add method calls
Search, you must make the new node’s NextItem point to what liPrevious cur-
rently points at and then make whatever liPrevious is pointing at point at liNew
instead. The diagrams in Figures 8.23, 8.24, and 8.25 illustrate an insertion in the
middle (or at the end) of the list. In this series of figures, you’re attempting to add
an item with value 7 to a list containing 5, 10, and 12.

F I G U R E 8 . 2 3
After the Add method

calls Search, liPrevious
isn’t Nothing, indicating

an insertion after the
head of the list.

F I G U R E 8 . 2 4
Make the new item point to

the item after the one
liPrevious points to.

Chapter 8 • Creating Dynamic Data Structures Using Class Modules464

F I G U R E 8 . 2 5
Make the item that

liPrevious points to point to
the new item, linking it into

the list.

Deleting an Item from the List

Again, just as with adding an item, once you’ve found the right position using the
Search method of the List class, deleting an item doesn’t take much code. The
Delete method, shown in Listing 8.11, takes the new value as a parameter; calls the
Search method to find the item to be deleted; and, if it’s there, deletes it. The pro-
cedure follows these steps:

1. Calls the Search method, which fills in the values of liCurrent and liPrevious.
If the function returns False, there’s nothing else to do.

blnFound = Search(varItem, liCurrent, liPrevious)

2. If deleting at the beginning of the list, sets the head pointer to refer to the
node pointed to by the selected node. (It links the head pointer to the current
second node in the list.)

Set liHead = liHead.NextItem

3. If deleting anywhere but at the head of the list, sets the previous item’s
pointer to refer to the node pointed to by the item to be deleted. (That is, it
links around the deleted node.)

Set liPrevious.NextItem = liCurrent.NextItem

4. When liCurrent goes out of scope, VBA destroys the node to be deleted
because no other pointer refers to that instance of the class.

 Creating Ordered Linked Lists 465

➲ Listing 8.11: Use the Delete Method to Delete an Item from a List

Public Function Delete(varItem As Variant) As Boolean
 Dim liCurrent As ListItem
 Dim liPrevious As ListItem
 Dim blnFound As Boolean

 ' Find the item. This function call
 ' fills in liCurrent and liPrevious.
 blnFound = Search(varItem, liCurrent, liPrevious)
 If blnFound Then
 If liPrevious Is Nothing Then
 ' Deleting from the head of the list.
 Set liHead = liHead.NextItem
 Else
 ' Deleting from the middle or end of the list.
 Set liPrevious.NextItem = liCurrent.NextItem
 End If
 End If
 Delete = blnFound
End Function

To delete an item from the head of the list, all you need to do is make the
header’s pointer refer to the second item in the list. The diagrams in Figures 8.26,
8.27, and 8.28 show how you can delete an item at the head of the list.

F I G U R E 8 . 2 6
If the search ends at the

head of the list, liPrevious
will be Nothing.

Chapter 8 • Creating Dynamic Data Structures Using Class Modules466

F I G U R E 8 . 2 7
To delete the first item,

make liHead point to the
second item in the list.

F I G U R E 8 . 2 8
When liCurrent goes out of

scope, VBA destroys the
deleted item.

What about deleting an item other than the first? That’s easy too: Just link
around the item to be deleted. The diagrams in Figures 8.29, 8.30, and 8.31 show
how you can delete an item that’s not the first item in the list. In this case, you’re
attempting to delete the node with value 10 from a list that contains 5, 10, and 12.

F I G U R E 8 . 2 9
The search found the node

to be deleted. (liCurrent
points to it.)

Set IiHead = IiCurrent.NextItem

 Creating Ordered Linked Lists 467

F I G U R E 8 . 3 0
Link around the node to be

deleted.

F I G U R E 8 . 3 1
When liCurrent goes out of

scope, VBA destroys the
deleted item.

Traversing the List

A list wouldn’t do you much good if you couldn’t traverse it, visiting each ele-
ment in turn. The example project includes a DebugList method of the List class.
Calling this method walks the list one item at a time, printing each value in turn to
the Immediate window:

Public Sub DebugList()
 ' Print the list to the Immediate window.
 Dim liCurrent As ListItem
 Set liCurrent = liHead
 Do Until liCurrent Is Nothing
 Debug.Print liCurrent.Value
 Set liCurrent = liCurrent.NextItem
 Loop
End Sub

Chapter 8 • Creating Dynamic Data Structures Using Class Modules468

To do its work, the code in DebugList first sets a pointer to the head of the list.
Then, as long as that pointer isn’t Nothing, the code prints out the current value
and sets the current node pointer to refer to the next item in the list.

Testing It Out

The ListTest module includes a simple test procedure that exercises the methods
in the List class. When you run this procedure, shown in Listing 8.12, the code will
add the 10 items to the list, display the list, delete a few items (including the first
and last item), and then print the list again.

➲ Listing 8.12: Sample Code Demonstrating the Ordered Linked List

Sub TestLists()
 Dim liTest As List
 Set liTest = New List
 With liTest
 .Add 5
 .Add 1
 .Add 6
 .Add 4
 .Add 9
 .Add 8
 .Add 7
 .Add 10
 .Add 2
 .Add 3
 Call .DebugList
 Debug.Print "====="
 .Delete 1
 .Delete 10
 .Delete 3
 .Delete 4
 Call .DebugList
 End With
End Sub

 Creating Binary Trees 469

Why Use a Linked List?

That’s a good question, because the native VBA Collection object provides much
of the same functionality as a linked list, without the effort. Internally, collections
are stored as a complex linked list, with links in both directions (instead of only
one). The data structure also includes pointers that make it possible to traverse the
collection as though it were a binary tree. This way, VBA can traverse the collec-
tion forward and backward, and it can find items quickly. (Binary trees provide
very quick random access to elements in the data structure.)

It’s just this flexibility that makes the overhead involved in using VBA’s collec-
tions onerous. You may find that you need to create a sorted list, but working with
collections is just too slow, and maintaining collections in a sorted order is quite
difficult. In these cases, you may find it more worthwhile to use a linked list, as
demonstrated in the preceding example, instead.

Creating Binary Trees
A simple binary tree, as shown earlier in Figure 8.2, is the most complex data
structure discussed in this chapter. This type of binary tree is made up of nodes
that contain a piece of information and pointers to left and right child nodes. In
many cases, you’ll use binary trees to store data in a sorted manner: As you add a
value, you’ll look at each existing node. If the new value is smaller than the exist-
ing value, look in the left child tree; if it’s greater, look in the right child tree.
Because the process at this point is the same no matter which node you’re cur-
rently at, many programmers use recursive algorithms to work with binary trees.

Why use a binary tree? Besides the fact that finding items in a binary tree is
faster than performing a linear search through a list or an array, if you insert the
items in an ordered fashion, you not only get efficient storage, but you also get
sorting for free—it’s like finding a prize in the bottom of your cereal box! Who
could ask for more?

Traversing Binary Trees
Once you’ve created a binary tree, you can use one of three standard methods for
traversing the tree. All three of the following examples use the tree illustrated in
Figure 8.32. In that figure, the nodes contain letters, but their ordering here
doesn’t mean anything. They’re just labeled to make it easy to refer to them.

Chapter 8 • Creating Dynamic Data Structures Using Class Modules470

F I G U R E 8 . 3 2
Use this binary tree to

demonstrate tree traversal.

Inorder Traversal

To traverse a tree using inorder traversal, you visit each node; but, as you visit
each node, you must first visit the left subtree, then the root node, and then the
right subtree, in that order. When visiting the subtrees, you take the same steps. If
you listed the value each time you visited a root node in the tree shown in Figure
8.32, you’d list the nodes in the following order:

a b c d e f g h i j k

Preorder Traversal

Using preorder traversal, you first visit the root node, then the left subtree, and
then the right subtree. Using this method, you’ll always print out the root value
and then the values of the left and right children. Using the example shown in Fig-
ure 8.32, you’d print the nodes in this order:

f b a d c e i h g k j

Postorder Traversal

Using postorder traversal, you visit the left subtree; then the right subtree; and,
finally, the root node. Using the example shown in Figure 8.32, you’d visit the
nodes in this order:

a c e d b g h j k i f

What’s This Good For?
Binary trees have many analogs in the real world. For example, a binary tree can
represent a pedigree tree for a purebred cat. Each node represents a cat, with the

 Creating Binary Trees 471

left and right links to the cat’s two parents. If a parent is unknown, the link will
point to Nothing. The diagram in Figure 8.33 shows a parentage tree for a hypo-
thetical purebred cat.

F I G U R E 8 . 3 3
A binary tree can represent

parentage (two parents
per node)

A binary tree can also represent an algebraic expression. If you place algebraic
identifiers (constants and variables) in terminal nodes and operators in the inte-
rior nodes, you can represent any algebraic expression in a tree. This makes it pos-
sible to write expression evaluators: By parsing the expression, placing the various
expressions correctly in the tree, and then traversing the tree in the correct order,
you can write a simple expression evaluator. The diagram in Figure 8.34 shows
how you might represent a simple algebraic expression in a binary tree.

F I G U R E 8 . 3 4
A binary tree can represent

an algebraic expression.

Chapter 8 • Creating Dynamic Data Structures Using Class Modules472

Depending on how you traverse the tree, you could visit the nodes in any of the
following manners:

• Inorder traversal:

(a – (b/c) + (d * e))

• Preorder traversal (the order that might be used by a functional calculator):

Add(Subtract(a, Divide(b, c)), Multiply(d, e))

• Postorder traversal (the order used by “reverse Polish” notation calculators
that use a stack for their calculations):

Push a
Push b
Push c
Divide
Subtract
Push d
Push e
Multiply
Add

Implementing a Binary Tree
The following sections discuss in some detail how the code that implements the
binary Tree class operates. You’ll find the code for this section in Tree.cls, Tree-
Item.cls, and TreeTest.bas.

The TreeItem Class

As with the structure items in the previous sections, the TreeItem class is simple. It
includes just the three necessary data items: the value to be stored at the current
node, the pointer to the left child node, and the pointer to the right child node, as
shown here:

Public Value As Variant
Public LeftChild As TreeItem
Public RightChild As TreeItem

Of course, there’s nothing stopping you from storing more information in the
TreeItem class. For example, you may need to write a program that can parse a
text file, create a binary tree containing all the distinct words in the file, and store
each word in its own node, along with a list of all the page numbers on which that

 Adding a New Item 473

word occurred. In this case, you might want to store a pointer to a linked list in the
TreeItem class, along with the text item. That linked list could store the list of all
the page numbers on which the word was found. (See what fun you can have with
complex data structures. Just have a few cups of strong coffee first!)

The Tree Class
As with the previous data structures, the base Tree class stores the bulk of the
code required to make the data structure work. The class contains but a single
data item:

Private tiHead As TreeItem

As with the other data structures, tiHead is an anchor for the entire data structure.
It points to the first item in the binary tree. From there, the items point to other
items.

In addition, the Tree class module contains two module-level variables:

' These private variables are used when
' adding new nodes.
Private mblnAddDupes As Boolean
Private mvarItemToAdd As Variant

The method that adds items to the binary tree uses these module-level variables. If
they weren’t module-level, the code would have to pass them as parameters to the
appropriate methods. What’s wrong with that? Because the Add method is recur-
sive, the procedure might call itself many times. Each call takes up memory that
isn’t released until the entire procedure has completed. If your tree is very deep,
you could eat up a large chunk of stack space adding a new item. To avoid that
issue, the Tree class doesn’t pass these values as parameters; it just makes them
available to all the procedures in the Tree class, no matter where they’re called.

Adding a New Item
When adding items to a binary tree, you may or may not want to add an item if its
value already appears in the data structure. To make it easy to distinguish between
those two cases, the Tree class contains two separate methods: Add and AddUnique,
shown in Listing 8.13. Each of the methods ends up calling the AddNode proce-
dure, shown in Listing 8.14.

Chapter 8 • Creating Dynamic Data Structures Using Class Modules474

➲ Listing 8.13: The Tree Class Provides Two Ways to Add New Items

Public Sub Add(varNewItem As Variant)
 ' Add a new node, allowing duplicates.
 ' Use module variables to place as little as
 ' possible on the stack in recursive procedure calls.
 mblnAddDupes = True
 mvarItemToAdd = varNewItem
 Call AddNode(tiHead)
End Sub

Public Sub AddUnique(varNewItem As Variant)
 ' Add a new node, skipping duplicate values.
 ' Use module variables to place as little as
 ' possible on the stack in recursive procedure calls.
 mblnAddDupes = False
 mvarItemToAdd = varNewItem
 Call AddNode(tiHead)
End Sub

The recursive AddNode procedure adds a new node to the binary tree pointed
to by the TreeItem pointer it receives as a parameter. Once you get past the recur-
sive nature of the procedure, the code is reasonably easy to understand:

• If the TreeItem pointer, ti, is Nothing, it sets the pointer to a new TreeItem
and places the value into that new node:

If ti Is Nothing Then
 Set ti = New TreeItem
 ti.Value = mvarItemToAdd

• If the pointer isn’t Nothing, then:

• If the new value is less than the value in ti, the code calls AddNode
with the left child pointer of the current node:

If mvarItemToAdd < ti.Value Then
 Set ti.LeftChild = AddNode(ti.LeftChild)

• If the new value is greater than the value in ti, the code calls AddNode
with the right child pointer of the current node:

ElseIf mvarItemToAdd > ti.Value Then
 Set ti.RightChild = AddNode(ti.RightChild)

 Adding a New Item 475

• If the new value is equal to the current value, then, if you’ve instructed
the code to add duplicates, the code arbitrarily calls AddNode with the
right child pointer. (You could use the left instead, if you wanted.) If
you don’t want to add duplicates, the procedure just returns.

Else
 ' You're adding a node that already exists.
 ' You could add it to the left or to the right,
 ' but this code arbitrarily adds it to the right.
 If mblnAddDupes Then
 Set ti.RightChild = AddNode(ti.RightChild)
 End If
End If

• Sooner or later, after calling AddNode for each successive child node,
the code will find a pointer that is Nothing, at which point it takes the
action in the first step. Because nothing follows the recursive call to
AddNode in the procedure, after each successive layer has finished
processing, the code just works its way back up the list of calls.

➲ Listing 8.14: The Recursive AddNode Procedure Adds a New Node
to the Tree

Private Function AddNode(ti As TreeItem) As TreeItem
 ' Add a node to the tree pointed to by ti.
 ' Module variables used:
 ' mvarItemToAdd: the value to add to the tree.
 ' mblnAddDupes: Boolean indicating whether to add items
 ' that already exist or to skip them.
 If ti Is Nothing Then
 Set ti = New TreeItem
 ti.Value = mvarItemToAdd
 Else
 If mvarItemToAdd < ti.Value Then
 Set ti.LeftChild = AddNode(ti.LeftChild)
 ElseIf mvarItemToAdd > ti.Value Then
 Set ti.RightChild = AddNode(ti.RightChild)
 Else
 ' You're adding a node that already exists.
 ' You could add it to the left or to the right,
 ' but this code arbitrarily adds it to the right.

Chapter 8 • Creating Dynamic Data Structures Using Class Modules476

 If mblnAddDupes Then
 Set ti.RightChild = AddNode(ti.RightChild)
 End If
 End If
 End If
 Set AddNode = ti
End Function

Adding a New Node: Walking the Code
Suppose you were to try adding a new node to the tree shown in Figure 8.35 with
the value “m”. Table 8.2 outlines the process involved in getting the node added.
(This discussion assumes that the class module’s tiHead member points to the tree
shown in Figure 8.35.) For each step, the table includes, in column 1, the recursion
level—that is, the number of times the procedure has called itself.

F I G U R E 8 . 3 5
Revisiting the alphabetic
tree, attempting to add a

new node

T A B L E 8 . 2 : Recursive Steps to Add “m” to the Sample Tree

Level Action

0 You call the Add method, passing the value “m”.

0 The Add method sets mblnAddDupes to True and sets varNewItem to the value “m”. It
then calls the AddNode method, passing the pointer to the first item in the tree (a node
with the value “f”, in this case). [Call to Level 1]

 Traversing the Tree 477

Traversing the Tree
As mentioned earlier in this discussion, there are three standard methods for tra-
versing a tree: inorder, preorder, and postorder. Because of the recursive nature of
these actions, the code for each is simple; it is shown in Listing 8.15. The class pro-
vides three Public methods (WalkInOrder, WalkPreOrder, WalkPostOrder). Each
of these calls a Private procedure, passing a pointer to the head of the tree as the
only argument. From then on, each of the Private procedures follows the pre-
scribed order in visiting nodes in the tree.

1 AddNode checks to see whether ti is Nothing. It’s not. (It points to the node containing “f”.)

1 Because “m” is greater then “f”, AddNode calls itself, passing the right child pointer of the
node ti currently points to. (That is, it passes a pointer to the node containing “i”.) [Call to
Level 2]

2 AddNode checks to see whether ti is Nothing. It’s not. (It points to the node containing “i”.)

2 Because “m” is greater then “i”, AddNode calls itself, passing the right child pointer of the
node ti currently points to. (That is, it passes a pointer to the node containing “k”.) [Call to
Level 3]

3 AddNode checks to see whether ti is Nothing. It’s not. (It points to the node containing “k”.)

3 Because “m” is greater then “k”, AddNode calls itself, passing the right child pointer of
the node ti currently points to (that is, the right child pointer of the node containing “k”,
which is Nothing). [Call to Level 4]

4 AddNode checks to see whether ti is Nothing. It is, so it creates a new node, sets the
pointer passed to it (the right child of the node containing “k”) to point to the new node,
and returns.

4 There’s nothing else to do, so the code returns. [Return to Level 3]

3 There’s nothing else to do, so the code returns. [Return to Level 2]

2 There’s nothing else to do, so the code returns. [Return to Level 1]

1 The code returns back to the original caller.

T A B L E 8 . 2 : Recursive Steps to Add “m” to the Sample Tree (continued)

Level Action

Chapter 8 • Creating Dynamic Data Structures Using Class Modules478

Of course, in your own applications, you’ll want to do something with each
node besides print its value to the Immediate window. In that case, modify the
three Private procedures to do what you need done with each node of your tree.

➲ Listing 8.15: Because of Recursion, the Code to Traverse the Tree Is
Simple

Public Sub WalkInOrder()
 Call InOrder(tiHead)
End Sub

Public Sub WalkPreOrder()
 Call PreOrder(tiHead)
End Sub

Public Sub WalkPostOrder()
 Call PostOrder(tiHead)
End Sub

Private Sub InOrder(ti As TreeItem)
 If Not ti Is Nothing Then
 Call InOrder(ti.LeftChild)
 Debug.Print ti.Value; " ";
 Call InOrder(ti.RightChild)
 End If
End Sub

Private Sub PreOrder(ti As TreeItem)
 If Not ti Is Nothing Then
 Debug.Print ti.Value; " ";
 Call PreOrder(ti.LeftChild)
 Call PreOrder(ti.RightChild)
 End If
End Sub

Private Sub PostOrder(ti As TreeItem)
 If Not ti Is Nothing Then
 Call PostOrder(ti.LeftChild)
 Call PostOrder(ti.RightChild)
 Debug.Print ti.Value; " ";
 End If
End Sub

 Traversing a Tree: Walking the Code 479

Traversing a Tree: Walking the Code
In order to understand tree traversal, assume you’d like to perform a postorder
traversal of the tree shown in Figure 8.36. Although this example doesn’t include
many nodes, the steps are the same no matter the size of the tree.

F I G U R E 8 . 3 6
Use this small example for
the tree traversal example

To visit each node in the tree using the postorder traversal, follow the steps
listed in Table 8.3. (You’ll want to keep a firm finger on the diagram as you work
your way through these steps.)

T A B L E 8 . 3 : Recursive Steps to Perform a Postorder Traversal

Level Action

0 Call the WalkPostOrder method of the Tree class.

1 The code in WalkPostOrder calls the PostOrder procedure, passing tiHead as a
parameter. [Call to Level 2]

2 PostOrder checks to see whether ti (its parameter) is Nothing. It’s not (it’s a reference
to the node that contains “b”), so it can continue.

2 PostOrder calls itself, passing the left child pointer of the node ti points to. (That is, it
passes a pointer to the node containing “a”.) [Call to Level 3]

3 PostOrder checks to see whether ti (its parameter) is Nothing. It’s not (it’s a reference
to the node that contains “a”), so it can continue.

3 PostOrder calls itself, passing the left child pointer of the node ti points to. (That is, it
passes a pointer that is Nothing.) [Call to Level 4]

4 PostOrder checks to see whether ti (its parameter) is Nothing. It is, so it can’t do
anything and just returns. [Return to Level 3]

3 PostOrder calls itself, passing the right child pointer of the node ti points to. (That is, it
passes a pointer that is Nothing.) [Call to Level 4]

Chapter 8 • Creating Dynamic Data Structures Using Class Modules480

4 PostOrder checks to see whether ti (its parameter) is Nothing. It is, so it can’t do
anything and just returns. [Return to Level 3]

3 PostOrder prints its value (“a”) and then returns. [Return to Level 2]

2 PostOrder calls itself, passing the right child pointer of the node ti points to. (That is, it
passes a pointer to the node containing “d”.) [Call to Level 3]

3 PostOrder checks to see whether ti (its parameter) is Nothing. It’s not (it’s a reference
to the node that contains “d”), so it can continue.

3 PostOrder calls itself, passing the left child pointer of the node ti points to. (That is, it
passes a pointer to the node containing “c”.) [Call to Level 4]

4 PostOrder checks to see whether ti (its parameter) is Nothing. It’s not (it’s a reference
to the node that contains “c”), so it can continue.

4 PostOrder calls itself, passing the left child pointer of the node ti points to. (That is, it
passes a pointer that’s Nothing.) [Call to Level 5]

5 PostOrder checks to see whether ti (its parameter) is Nothing. It is, so it can’t do
anything and just returns. [Return to Level 4]

4 PostOrder calls itself, passing the right child pointer of the node ti points to. (That is, it
passes a pointer that’s Nothing.) [Call to Level 5]

5 PostOrder checks to see whether ti (its parameter) is Nothing. It is, so it can’t do
anything and just returns. [Return to Level 4]

4 PostOrder prints its value (“c”) and then returns. [Return to Level 3]

3 PostOrder calls itself, passing the right child pointer of the node ti points to. (That is, it
passes a pointer to the node containing “e”.) [Call to Level 4]

4 PostOrder checks to see whether ti (its parameter) is Nothing. It’s not (it’s a reference
to the node that contains “e”), so it can continue.

4 PostOrder calls itself, passing the left child pointer of the node ti points to. (That is, it
passes a pointer that’s Nothing.) [Call to Level 5]

5 PostOrder checks to see whether ti (its parameter) is Nothing. It is, so it can’t do
anything and just returns. [Return to Level 4]

4 PostOrder calls itself, passing the right child pointer of the node ti points to. (That is, it
passes a pointer that’s Nothing.) [Call to Level 5]

5 PostOrder checks to see whether ti (its parameter) is Nothing. It is, so it can’t do
anything and just returns. [Return to Level 4]

T A B L E 8 . 3 : Recursive Steps to Perform a Postorder Traversal (continued)

Level Action

 The Sample Project 481

Optimizing the Traversals
If you worked your way through the many steps it took to traverse the simple
tree, you can imagine how much work it takes to perform the operation on a large
tree. You could optimize the code a bit by checking to see whether the child node
is Nothing before you recursively call the procedure. That is, you could modify
InOrder like this:

Private Sub InOrder(ti As TreeItem)
 If Not ti Is Nothing Then
 If Not ti.LeftChild Is Nothing Then
 Call InOrder(ti.LeftChild)
 End If
 Debug.Print ti.Value; " ";
 If Not ti.RightChild Is Nothing Then
 Call InOrder(ti.RightChild)
 End If
 End If
End Sub

This code would execute a tiny bit faster than the original InOrder tree-traversal
procedure (one less procedure call for both children of all the bottom-level nodes),
but it’s a little harder to read.

The Sample Project
The code in the sample module performs some simple tree manipulations: It adds
nodes, walks the tree in all the traversal orders, and deletes some nodes using the
TreeDelete method (not covered in this book, but the code is there in the Tree class
for you to use). Try the TestTrees procedure in the TreeTest module to see how

4 PostOrder prints its value (“e”) and then returns. [Return to Level 3]

3 PostOrder prints its value (“d”) and then returns. [Return to Level 2]

2 PostOrder prints its value (“b”) and then returns to WalkPostOrder. [Return to Level 1,
and exit]

T A B L E 8 . 3 : Recursive Steps to Perform a Postorder Traversal (continued)

Level Action

Chapter 8 • Creating Dynamic Data Structures Using Class Modules482

you might use a binary tree in your applications. The first few tests correspond to
the tree shown in Figure 8.32 earlier in this chapter, and you can use the code in the
project to test your understanding of the different traversal orders.

What Didn’t We Cover?
We actually omitted more about binary trees than we covered here. Binary trees
usually fill multiple chapters in textbooks for courses in standard data structures.
Consider the following:

• Deleting nodes from binary trees is a science unto itself. The sample project
includes code to delete nodes from a tree, but it’s just one of many solutions,
and possibly not the most efficient one.

• Balancing trees is crucial if you want optimized performance. For example,
if you add previously sorted data to a tree, you end up with a degenerate
tree—all the nodes are linked as the right child of the parent. In other words,
you end up with a linked list. Searching through linked lists isn’t particu-
larly efficient, and you lose the benefit of using a binary tree. Courses in data
structures normally cover various methods you can use to keep your trees
balanced (that is, with the left and right subtrees having approximately the
same depth).

• In a course on data structures, you’ll normally find a number of variants
on binary trees (B-trees, for example) that also take into account data
stored on disk.

If you’re interested in finding out more about these variants on binary trees,
find a good textbook that focuses on data structures. Of course, most such text-
books are written for Pascal programmers (most universities use Pascal as a teach-
ing language), so you’ll need to do some conversion. However, it’s not hard once
you’ve got the hang of it.

 Summary 483

Summary
In this chapter, we’ve taken a stab at revisiting Computer Science 201: Data Struc-
tures or a similar university course you might have taken once. Of course, in this
limited space, we can do little more than provide a “proof of concept”—the tech-
nique of using self-referential, abstract data structures in VBA works, and it works
well. Because of the availability of class modules, you can use the techniques pro-
vided here to create hybrid data structures that you just couldn’t manage with
VBA’s arrays and collections. Linked lists of binary trees, collections of linked
lists, linked lists of linked lists—all these, and more, are possible, but we suggest
drawing pictures on paper first!

Note that all the ideas presented in this chapter rely on data in memory. That is,
there’s no concept of persistent storage when working with these data structures.
If you want to store information contained in one of these abstract structures from
one session to the next, you’ll need to design some storage mechanism, whether it
be in the Registry, an INI file, or a database table. In addition, if you run out of
memory, you’ll receive a run-time error when you attempt to use the New key-
word. Obviously, this shouldn’t happen. In production code, you’d want to add
error handling to make sure your application didn’t die under low-memory con-
ditions.

This chapter presented a number of topics to keep in mind when working with
data in memory, including:

• Using class modules to represent elements of linked data structures

• Building stacks, queues, ordered linked lists, and binary trees using class
modules

• Using recursion to work with and traverse binary trees

This page intentionally left blank

c h a p t e r

9

Retrieving and Setting
System Information

�

Using the API to gather system information

�

Controlling Windows accessibility functions

�

Setting and retrieving keyboard, mouse, and screen
information

�

Investigating power management and status
information

�

Working with system colors

�

Retrieving operating system and computer
information

Chapter 9

•

Retrieving and Setting System Information

486

I

f you want to write professional applications, you’ll need to be able to main-
tain some level of control over your users’ environments. You may want to tem-
porarily turn off the mouse cursor or modify the Windows accessibility features.
You may need to position one window at a particular location within another,
requiring you to know the width of the window border. Or, in an attempt to posi-
tion a window, you may need to know exactly how tall the caption bar is or how
wide the vertical scrollbar is. Perhaps you want to control the state of the CapsLock
or NumLock key. Perhaps you need to allow users to modify their system colors
from within your application.

The goal of this chapter is to provide you with simple, easily callable classes with
appropriate properties and methods, which wrap up much of the Windows API
functionality dealing with system information. In particular, you’ll find classes that
supply functionality pertaining to the mouse, keyboard, accessibility functions, sys-
tem memory, power status, window metrics, border metrics, system colors, and
computer and operating system information. Once you’ve imported the relevant
classes into your own applications, you’ll be able to determine, and often set, many
system parameters that control the way Windows and your applications function.
(For more information on writing and using class modules, see Chapter 5.)

Of course, no chapter like this could be considered absolutely complete—no
matter how much information you find here, there’s always something we had to
leave out. You can obtain much more information by digging into the dark cor-
ners of the Windows API. There’s plenty here to get you started, however, and the
techniques we’ve used to wrap the API functionality should give you ideas for
extending the tools provided here, should the need arise.

If you find this information interesting or would like to extend the classes provided
here, there’s one tool you must have: Microsoft’s MSDN CD subscription. This
quarterly CD provided almost all the information we used to create the tools in this
chapter and is well worth the small expense. This information is also available online
at

http://msdn.microsoft.com

under the Platform SDK section. Contact
Microsoft for more information about ordering this extremely useful tool, with one
caveat: The CD is geared toward C/C++ programmers, and to make the best use of
it, you’ll need some way to convert the information into a format you can use. Your
best bet is to combine the information on the MSDN CD with Daniel Appleman’s
formidable best-seller,

Visual Basic Programmer’s Guide to the Win32 API

 (published
by SAMS). This book provides VBA-centric coverage of most of the Win32 API.

Combined with the MSDN CD, you’ll have all the information you need.

 VBA and System Information

487

Table 9.1 lists the sample files you’ll find on the CD-ROM that accompanies
this book.

The figures in this chapter may look slightly different from what you see on your
own screen. Because the various Control Panel applets are different in each of the
four operating systems we must cover in this book, we can't print all the various
dialog boxes for all the operating systems. What you see here should, however, be

easy to equate to what you see on your own computer.

VBA and System Information

VBA provides almost no native support for operations involving system informa-
tion; because Windows itself provides easy-to-call API functions for determining
and controlling the environment, VBA doesn’t have to duplicate that functionality.

T A B L E 9 . 1 :

Sample Files

Filename Description

SYSTEMINFO.XLS Excel 2000 workbook containing all the sample classes

SYSTEMINFO.MDB Access 2000 databases containing all the sample classes

SYSTEMINFO.VBP VB project containing all the sample classes

SYSINFOTEST.BAS Test procedures

ACCESSIBILITY.CLS Accessibility class module

FONT.CLS Font information for the NonClientMetrics class

KEYBOARD.CLS Keyboard class module

MEMORYSTATUS.CLS Memory status class module

MOUSE.CLS Mouse class module

NONCLIENTMETRICS.CLS Non-client metrics class module

POWERSTATUS.CLS Power status class module

SCREENINFO.CLS ScreenInfo class module

SYSTEMCOLORS.CLS System colors class module

SYSTEMINFO.CLS Operating system and computer class module

Chapter 9

•

Retrieving and Setting System Information

488

Of course, some of the API functions are tricky to call, and information you need is
scattered throughout the Windows API. In addition, the Windows API provides so
many functions for working with system information, and their functionalities over-
lap so much, that it’s difficult to know which one to use in any given circumstance.

To make it simpler to call the selected API functions, we’ve created a series of
class modules that wrap up their functionality. Why class modules? That is, what
do you gain by having this functionality wrapped up in a class as opposed to a
standard module? Unlike other situations in which you use class modules, in this
case you don’t care about the multiple instancing. (You’ll never need more than
one instance of the Keyboard class in your application, for example.) What you do
gain is the ability to treat disparate function calls as simple properties. For example,
to retrieve information about a particular setting, you’ll often use the GetSystem-
Metrics API function. To change the same information, you need to use the System-
ParametersInfo function. Rather than provide two separate functions for you, one
to get and one to change the value, we’ve provided a single property, with its Let
and Get Property procedures. This way, from your application, you can write sim-
ple code like this to retrieve a value, change it, and then set it back at a later time:

Dim lngBorderColor As Long
Dim sc As SystemColors

Set sc = New SystemColors

' Store away the original color.
lngBorderColor = sc.ActiveBorder
sc.ActiveBorder = 255
' Do work in here...
' Now reset the color and release the object.
sc.ActiveBorder = lngBorderColor

Set sc = Nothing

In addition, class modules provide another benefit: Because class modules trig-
ger their Initialize event when you create a new instance of the class, the class can
call an API function that initializes a data structure. Several of the system informa-
tion functions require you to pass a single data structure, with many elements. For
these functions, the corresponding class can call the function in its Initialize event,
retrieve all the information at once, and return the various pieces of information to
you as properties of the class. For more information, see the section “Creating the
MemoryStatus Class” later in this chapter.

 VBA and System Information

489

Each of the classes provided in this chapter is self-contained. If you’re inter-
ested only in controlling the keyboard, you’ll need to import only the single
KEYBOARD.CLS module. If you need more information, import the classes you
need. The bulk of this chapter, organized to match the class modules themselves,
describes in detail each of the properties and methods of the classes. In each case,
you can either dig into or skip over the details of how the class works. If you just
need the functionality and don’t care about the details, skip over the description
of the API calls and their usage. If, on the other hand, you want to understand
exactly how these classes work or want to expand their functionality, all the infor-
mation you need is here.

Windows Versionitis

Each new version of Windows has introduced more version-specific properties that may be
valid for only one or more versions of the operating system. Some Windows 2000–specific
properties may not be available under Windows 98 or Windows NT. For example, only
Windows 2000 allows you to retrieve or set the new menu fade animation by passing
SPI_GETMENUFADE or SPI_SETMENUFADE to the SystemParametersInfo API function,
whereas support for multiple monitors works in both Windows 98 and Windows 2000.

Typically, if you attempt to set a system property that is invalid for the operating system
you are running, the API call will fail with an error code, and generally nothing worse (like
a GP fault, for example) will happen. However, it’s a good practice to avoid making such
calls in the first place.

For this reason, we have added code to the Initialize event of most of the classes in this
chapter in which the class determines the operating system version. Later, in various meth-
ods and properties in the class, the code uses this information to raise a runtime error if
you attempt to set an invalid property for your operating system. Each class that works this
way provides a RaiseErrors property that you can set. By default, this property is set to
True. If you want the classes to silently fail for calls that are invalid for the operating sys-
tem, you can set this property to False. Also, because all the classes may raise errors, it is
imperative that you include error-handling code in any procedure that contains calls to one
of the classes in this chapter.

Chapter 9

•

Retrieving and Setting System Information

490

If you find yourself importing multiple classes, you may want to “factor out” the
repeated API and constant declarations. Although there aren’t a great many repeated
declarations from module to module, there’s no point adding extra heft to your
applications. Once you’ve imported all the classes you’ll need, you can copy the
shared declarations to a standard module, remove the “Private” keyword, and use
the new shared declarations for your API calls. Don’t forget that you’ll also need to

move the necessary data structures and constants to a shared location.

You may see references to “Windows 9

x

” in this chapter. Don’t worry, it’s not a
release that you missed: We’ve used the expression to collectively refer to both

Windows 95 and Windows 98.

The API Functions

Although you’ll find well over a hundred properties and methods covered in this
chapter, we actually used only a few API calls. These API calls generally fall into
one of three classes of functions:

•

Functions that return a single value. GetComputerName, for example, returns
only the name of the current computer, and GetCaretBlinkTime simply
returns the number of milliseconds between “blinks” of the text-insert caret.

•

Functions that allow you to specify one of any number of parameter values
and return different pieces of information depending on the “question” you
asked. GetSystemMetrics and SystemParametersInfo fall into this category.
These functions allow you to choose an item of interest from a documented
list of items, and each returns a single piece of information based on the
value you supplied.

•

Functions that allow you to pass in a single data structure, which the func-
tion fills in with various pieces of information: GlobalMemoryStatus, Get-
SystemInfo, and GetSystemPowerStatus all fall into this category. Normally,
for this type of function, the wrapper class calls the function in response to
each Property Get procedure, and the property returns just the element of
the structure you require.

 The API Functions

491

The next few sections discuss how you use the second and third types of func-
tion (calling the first type is so simple it requires no extra explanation) and dem-
onstrate their usage by presenting examples from this chapter’s class modules.

Using the GetSystemMetrics Function

The GetSystemMetrics function can return one of 80 or so values, depending on
which you request. In each case, you pass it a single constant value, and it returns
the piece of information you need.

You shouldn’t need to worry about specific constants and their values if you’re
using the classes provided in this chapter. If you’re interested, however, your best
reference information for GetSystemMetrics (and its partner, SystemParametersInfo)

is the MSDN CD.

To find the number of mouse buttons, for example, you might use a call like this:

lngMouseButtons = GetSystemMetrics(SM_CMOUSEBUTTONS)

and to find out whether there’s a mouse with a wheel installed, you could use

fWheelMouse = GetSystemMetrics(SM_MOUSEWHEELPRESENT)

Of course, you don’t have to use either of these. You can retrieve both pieces of
information using the Mouse class we’ve provided:

Dim oMouse As Mouse
Set oMouse = New Mouse
lngMouseButtons = oMouse.Buttons

fWheelMouse = oMouse.WheelPresent

If you see references to “mouse wheels” throughout this chapter, don’t go out
looking for information on rodent transportation. This term refers to Microsoft’s

input device with two mouse buttons and a rubberized wheel between the buttons.

You’ll find calls to GetSystemMetrics scattered throughout the classes provided
with this chapter. When we gathered information for this chapter, it made more
sense to group the classes based on the functionality of the information than on its
source, so you’ll find calls to GetSystemMetrics, and other general-purpose API
calls, throughout the various classes.

Chapter 9

•

Retrieving and Setting System Information

492

In addition to API calls, you’ll find the declarations for the functions and the
constants they use. For example, you’ll find this block of code in the declarations
area of MOUSE.CLS:

Private Const SM_CXCURSOR = 13
Private Const SM_CYCURSOR = 14
Private Const SM_MOUSEPRESENT = 19
Private Const SM_SWAPBUTTON = 23
Private Const SM_CXDOUBLECLK = 36
Private Const SM_CYDOUBLECLK = 37
Private Const SM_CMOUSEBUTTONS = 43
Private Const SM_CXDRAG = 68
Private Const SM_CYDRAG = 69
Private Const SM_MOUSEWHEELPRESENT = 75
Private Declare Function GetSystemMetrics Lib "user32" _

 (ByVal nIndex As Long) As Long

This set of declarations declares the API function and provides the necessary con-
stant values needed by the class. (All the constants beginning with “SM_” will be
used by GetSystemMetrics.)

Using the SystemParametersInfo Function

Calling the SystemParametersInfo function is more complex than calling GetSystem-
Metrics. Because SystemParametersInfo allows you to either set or retrieve infor-
mation concerning your system’s hardware and configuration, depending on the
constant you send it, it must provide methods for both returning information and
returning status (success or failure) information.

To make this possible, SystemParametersInfo requires four parameters:

•

A constant representing the information to be set or retrieved, beginning
with SPI_.

•

A long integer, passed by value, sending information to SystemParameters-
Info. Normally, this is where you place information to be used by System-
ParametersInfo when it’s setting values for you.

•

A long integer, passed by reference. This long integer can be the address of a
variable or data structure, and it’s through this parameter (declared “As Any”
in your VBA code) that SystemParametersInfo can send information back to
your functions.

 The API Functions

493

•

A long integer, passed by value, which tells SystemParametersInfo how you
want it to broadcast information about the changes you’ve asked it to make.
You can have your change made only for this session, or, if you want to
make the change persistent, you can tell SystemParametersInfo to write the
change to the Registry. In addition, if you write the change to the Registry,
you can also instruct SystemParametersInfo to inform all other running
Windows applications that you’ve made the change.

Of course, you needn’t be concerned with all this information if you’re just
going to use the classes as we’ve provided them. If you want to add to the classes
or modify the existing functionality, though, you’ll need to be aware of how Sys-
temParametersInfo uses each of these parameters.

In the sample classes, we opted for the “save and tell all” option when calling Sys-
temParametersInfo; if you make any change, the code will write the change to the
Registry and broadcast a message to all other running applications as well. If you
want to change this behavior, change the value of the SPIF_TELLALL constant in
each module. Set the constant to 0 to do nothing, or set it to be one or more of
SPIF_UPDATEINIFILE and SPIF_SENDWININICHANGE, combined with the Or opera-

tor. The classes currently use the two constants combined.

For example, to get and set the number of screen lines to scroll when you scroll
your mouse wheel (if you have a mouse wheel, of course), you can use System-
ParametersInfo with its SPI_GETWHEELSCROLLLINES and SPI_SETWHEEL-
SCROLLLINES constants. The WheelScrollLines property of the Mouse class
(MOUSE.CLS) uses the Property Let and Get procedures, as shown in Listing 9.1.

In this example, the Property Let procedure is simple—it calls SystemParame-
tersInfo, passing the SPI_SETWHEELSCROLLLINES constant, a value indicating
the requested scroll lines, a 0 placeholder for the third parameter, and the SPIF_
TELLALL constant indicating that the function call should save the information
and update any running application. The Property Get procedure, however, is a
bit more complex. In this case, you must first declare a variable to hold the returned
value; call SystemParametersInfo, passing that variable as the third parameter;
and return the filled-in value of the variable as the Property Get return value. (In
each procedure, the mlngWindows and mlngNT module-level variables make
sure that you don’t attempt to run the procedure if you’re on the wrong operating
system. The ability to set and retrieve the mouse scroll lines is only available with

Chapter 9

•

Retrieving and Setting System Information

494

Windows 98 or Windows 2000, not Windows 95 or Windows NT, so you want to
make sure to just back out of the procedure if the current operating system doesn’t
support the feature.)

➲

Listing 9.1: Use SystemParametersInfo to Get and Set System
Information

Public Property Get WheelScrollLines() As Long
 Dim lngValue As Long
 If mlngWINDOWS >= 410& Or mlngNT >= 4& Then
 Call SystemParametersInfo(_
 SPI_GETWHEELSCROLLLINES, 0, lngValue, 0)
 WheelScrollLines = lngValue
 End If
End Property

Public Property Let WheelScrollLines(Value As Long)
 ' Set to 0 to disable wheel scrolling.
 ' Set to -1 to cause a scroll to act
 ' like a click in the PageUp or PageDown regions of the
 ' scroll bar.
 If mlngWINDOWS >= 410& Or mlngNT >= 4& Then
 Call SystemParametersInfo(_
 SPI_SETWHEELSCROLLLINES, Value, 0, SPIF_TELLALL)
 End If

End Property

In some cases, the Property Let and Get pairings require one call to GetSystem-
Metrics (to get the value) and one to SystemParametersInfo (to set the value). This
is, of course, the sort of thing that makes the class module wrappers so conve-
nient; you don’t have to dig through the reference manuals to find that it requires
two separate function calls to get your work done. For example, Windows allows
you to control the width (and height) of the rectangle bordering the mouse posi-
tion that determines whether the next click constitutes a double-click. To get
this value, you call GetSystemMetrics. To set the value, however, you must
call SystemParametersInfo. Listing 9.2 shows the code used by the DoubleClickX
property of the Mouse class, which calls both functions.

 The API Functions

495

➲

Listing 9.2: Some Properties Require Both GetSystemMetrics and
SystemParametersInfo

Public Property Get DoubleClickX() As Long
 ' Width, in pixels, of the rectangle enclosing the
 ' location of the first mouse click in a double-click sequence.
 ' Second click must occur within the boundaries
 ' of this rectangle.
 DoubleClickX = GetSystemMetrics(SM_CXDOUBLECLK)
End Property

Public Property Let DoubleClickX(Width As Long)
 Call SystemParametersInfo(_
 SPI_SETDOUBLECLKWIDTH, Width, 0, SPIF_TELLALL)

End Property

The third parameter in a call to SystemParametersInfo might also need to be a
user-defined type. If it is, SystemParametersInfo will fill in the data type with the
appropriate information on return. For example, the MinAnimation property of
the ScreenInfo class (SCREENINFO.CLS) indicates whether Windows should dis-
play animation as it’s minimizing windows. The code for the associated Property
Get procedure is shown in Listing 9.3. This call to the SystemParametersInfo func-
tion requires you to send a variable of the ANIMATIONINFO data type, with its
lngSize member filled in with the size of the structure. SystemParametersInfo
either fills in the lngMinAnimate member of the structure with the current anima-
tion setting (in the Property Get procedure) or gets the value from this member
and applies it (in the Property Let procedure). In either case, you need to use the
Len function to find the length of the data structure and place that value in the
lngSize member of the structure before calling SystemParametersInfo. The class
modules in this chapter use this technique several times, calling SystemParameters-
Info with various data types.

➲

Listing 9.3: Use SystemParametersInfo with a User-Defined Type

Private Type ANIMATIONINFO
 cbSize As Long
 iMinAnimate As Long
End Type

Chapter 9

•

Retrieving and Setting System Information

496

Public Property Get MinAnimation() As Boolean
 ' Sets or returns the state of minimize animation.
 Dim ai As ANIMATIONINFO

 ai.cbSize = Len(ai)
 Call SystemParametersInfo(_
 SPI_GETANIMATION, ai.cbSize, ai, 0)
 MinAnimation = ai.iMinAnimate

End Property

Functions That Require Data Structures

Several API functions used in this chapter require you to send them a user-defined
type, and they supply values to fill the elements of the structure. Depending on
the circumstances, the wrapper class may call the function in either of two ways,
in terms of information retrieval:

•

It may call the function once, in the Initialize event of the class. If the infor-
mation is relatively static, this makes sense. There’s no point in calling the
function each time you need to retrieve information from the function. (This
is how the operating system version information is retrieved in all the classes
in this chapter, except in the SystemInfo class, which provides individual
properties to retrieve this information.)

•

It may set up the function call in the Initialize event of the class but call the
function each time you request information from the class. This technique is
useful for situations in which the data changes rapidly; the MemoryStatus
class uses this technique because memory information is so volatile.

All the API functions in this chapter that pass information in this manner provide
information that’s read-only. Therefore, there are no issues involved in saving infor-
mation back to the API.

For example, the GetVersionEx API call requires you to supply it a data struc-
ture of type OSVERSIONINFO. (If you’re running in Windows 2000, you can pass
a data structure of type OSVERSIONINFOEX to get even more information. The
SystemInfo class takes advantage of this new data structure. If you look carefully
at the definitions of the two classes, you’ll see that OSVERSIONINFOEX simply
adds a few more items onto the same items already provided by the OSVERSION-
INFO structure.) Listing 9.4 shows the necessary declarations, and the class Initial-
ize event procedure, from the SystemInfo class (SYSTEMINFO.CLS). The event

 The API Functions

497

procedure first fills in the dwOSVersionInfoSize element of the structure with the
length of the structure itself (many API calls require this step), and then it passes
the structure to the GetVersionEx function. This function fills in the various mem-
bers of the

osvi

 variable, and other properties of the class use these members in
order to supply their information. For example, the OSMajorVersion property,
also shown in Listing 9.4, uses the dwMajorVersion member of the OSVERSION-
INFO structure to do its work.

➲

Listing 9.4: Use the GetVersionEx API Function (Code Gathered
from the SystemInfo Class Module)

Private Type OSVERSIONINFOEX
 dwOSVersionInfoSize As Long
 dwMajorVersion As Long
 dwMinorVersion As Long
 dwBuildNumber As Long
 dwPlatformId As Long
 szCSDVersion As String * 128
 wServicePackMajor As Integer
 wServicePackMinor As Integer
 wSuiteMask As Integer
 wProductType As Byte
 wReserved As Byte
End Type

Private Type OSVERSIONINFO
 dwOSVersionInfoSize As Long
 dwMajorVersion As Long
 dwMinorVersion As Long
 dwBuildNumber As Long
 dwPlatformId As Long
 szCSDVersion As String * 128
End Type

Private osvi As OSVERSIONINFOEX

Private Declare Function GetVersionEx Lib "kernel32" _
 Alias "GetVersionExA" _
 (lpVersionInformation As Any) As Long

Chapter 9

•

Retrieving and Setting System Information

498

Private Sub Class_Initialize()
 Dim osviTmp As OSVERSIONINFO

 ' Set the flag to true so that an error is raised
 ' if a non-applicable property is used for a particular
 ' operating system.
 RaiseErrors = True

 ' First try with OSVersionInfoEx
 osvi.dwOSVersionInfoSize = Len(osvi)
 mblnVersionInfoEx = CBool(GetVersionEx(osvi))
 If Not mblnVersionInfoEx Then
 ' If it failed, then you aren't running Win2000
 ' so try with OSVersionInfo.
 ' Changing the Size member tells the OS
 ' which UDT you want the info for.
 osvi.dwOSVersionInfoSize = Len(osviTmp)
 Call GetVersionEx(osvi)
 End If
 ' Get the other information as well
 Call GetSystemInfo(si)
End Sub

Public Property Get OSMajorVersion() As Long
 ' Retrieve the major version number of the operating system.
 ' For example, for Windows NT version 3.51, the major version
 ' number is 3; and for Windows NT version 4.0, the major version
 ' number is 4.
 OSMajorVersion = osvi.dwMajorVersion

End Property

Because the information retrieved by the GetVersionEx API function isn’t likely
to change as your application runs, there’s no reason to call the function more
than once during the lifetime of your class. The properties of the MemoryStatus
class, however, return data that changes constantly. Therefore, it makes sense to
call the GlobalMemoryStatus (or GlobalMemoryStatusEx, under Windows 2000)
API function each time you access any property of the MemoryStatus class. This
ensures that the property values are always up to date. The code in Listing 9.5 has
been excerpted from the MemoryStatus class (MEMORYSTATUS.CLS). This list-
ing shows the type and API declarations, as well as the Initialize event procedure
of the class and one of the property procedures. The Initialize event procedure of

 The API Functions

499

the class fills in the dwLength member of the structure, and this information never
changes. The TotalPhysical property then calls the GlobalMemoryStatus API
function, passing in the structure, and returns the dwTotalPhys (ullTotalPhys
under Windows 2000) member of the structure as its return value.

Although it’s unusual, the code in Listing 9.5 uses the Currency data type to hold
very long integers (that is, 64-bit values). Code here and throughout this chapter
will use this technique. Because VBA provides no support for 64-bit integers, you

must “fake it” using a Currency value. More on this later in the chapter.

➲

Listing 9.5: Excerpts from the MemoryStatus Class Module

Private Type MEMORYSTATUS
 dwLength As Long
 dwMemoryLoad As Long
 dwTotalPhys As Long
 dwAvailPhys As Long
 dwTotalPageFile As Long
 dwAvailPageFile As Long
 dwTotalVirtual As Long
 dwAvailVirtual As Long
End Type
Private ms As MEMORYSTATUS

Private Type MEMORYSTATUSEX
 dwLength As Long
 dwMemoryLoad As Long
 ullTotalPhys As Currency
 ullAvailPhys As Currency
 ullTotalPageFile As Currency
 ullAvailPageFile As Currency
 ullTotalVirtual As Currency
 ullAvailVirtual As Currency
 ullAvailExtendedVirtual As Currency
End Type
Private msEx As MEMORYSTATUSEX

Private Declare Sub GlobalMemoryStatus _
 Lib "kernel32" _
 (lpBuffer As MEMORYSTATUS)

Chapter 9

•

Retrieving and Setting System Information

500

Private Declare Sub GlobalMemoryStatusEx _
 Lib "kernel32" _
 (lpBuffer As MEMORYSTATUSEX)

Private Sub Class_Initialize()
 Const VER_PLATFORM_WIN32_NT = 2

 ' Set the flag to true so that an error is raised
 ' if a non-applicable property is used for a particular
 ' operating system
 RaiseErrors = True

 ' First, confirm whether the OS is Win2000.
 osvi.dwOSVersionInfoSize = Len(osvi)
 If CBool(GetVersionEx(osvi)) Then
 With osvi
 mblnIsWin2000 = _
 (.dwPlatformId = VER_PLATFORM_WIN32_NT _
 And .dwMajorVersion = 5)
 End With
 End If

 ' ms and msEx are declared at the module level.
 If mblnIsWin2000 Then
 ' On Win2000, the recommended
 ' extended version of the function
 ' will be called.
 msEx.dwLength = Len(msEx)
 Else
 ' Other platforms use the original version.
 ms.dwLength = Len(ms)
 End If
End Sub

Public Property Get TotalPhysical() As Long
 ' Indicates the total number of bytes of physical memory.
 If mblnIsWin2000 Then
 Call GlobalMemoryStatusEx(msEx)
 TotalPhysical = CurrencyToLong(msEx.ullTotalPhys)
 Else
 Call GlobalMemoryStatus(ms)
 TotalPhysical = ms.dwTotalPhys
 End If

End Property

 Computer and Operating System Information

501

The remainder of the chapter provides details on each of the nine system infor-
mation classes we’ve created. In each case, you’ll find a table listing all the proper-
ties and methods of the class. If creating the class provided an unusual challenge
(aside from the issues already discussed in the chapter), the sections will also
include a description of the coding techniques used by the specific class.

To make it easier for you to experiment with the various classes presented in this
chapter, we’ve created public automatically instantiated variables, one per class, in
SysInfoTest.bas. Although we don’t recommend defining variables this way in real
applications, in this test case, you can simply open the Immediate window and
start using one of the variables declared in this module. When you first use the

variable, VBA will instantiate the associated object for you.

Computer and Operating System
Information

The first class in this chapter provides information on and, in a few cases, allows
you to set information about, your computer and the operating system. As you
will see, all the classes in this chapter contain code to retrieve the operating system
version, code that really belongs in the SystemInfo class (and it does). But in order
to allow for portability and reduce class dependencies, only relevant sections of
code from SystemInfo class were copied.

Of course, most of the properties of the SystemInfo class (SYSTEMINFO.CLS)
must be read-only. Only the Beep, ComputerName, RaiseErrors, ScreenSaverAc-
tive, and ScreenSaverTimeout properties allow you to specify a value; the rest
simply return information about your environment. Table 9.2 lists all the proper-
ties of the SystemInfo class.

Run the TestSystemInfo procedure, in the SysInfoTest module, to see almost all the
properties of the SystemInfo object.

Not all of these properties are available on every operating system. For the most
detailed information, look at the source code available in the SystemInfo class.

Chapter 9 • Retrieving and Setting System Information502

T A B L E 9 . 2 : Properties of the SystemInfo Class

Property Data Type Description

ActiveProcessorMask Long Specifies a mask representing the set of processors
configured into the system

AllocationGranularity Long Specifies the granularity with which virtual memory is
allocated

Beep Boolean (Read/write) Turns the system warning beep on or off

BootMethod Long Retrieves the boot method. Possible values: 0 (normal
boot), 1 (fail-safe boot), 2 (fail-safe boot with
network)

ComputerName String (Read/write) Sets or retrieves the name of the
computer

IsDBCS Boolean Returns True if the operating system is working with
DBCS characters

IsIMMEnabled Boolean Returns True if the operating system is ready to use a
Unicode-based Input Method Manager/Input Method
Editor (IME) on a Unicode application

IsRemoteSession Boolean Returns True if the calling application is associated
with a Terminal Services client session

IsSuiteInstalled Boolean Returns True if a specific product suite (BackOffice
components, Windows 2000 Datacenter or
Advanced Servers, Small Business Server, or Terminal
Services) is available on the system

IsWin2000 Boolean Returns True if the operating system is Windows 2000

IsWin95 Boolean Returns True if the operating system is Windows 95

IsWin98 Boolean Returns True if the operating system is Windows 98

IsWinNT Boolean Returns True if the operating system is Windows NT

MaxAppAddress Long Pointer to the highest memory address accessible to
applications and Dynamic Link Libraries (DLLs)

MidEastEnabled Boolean Returns True if the system is enabled for Hebrew/
Arabic languages

MinAppAddress Long Pointer to the lowest memory address accessible to
applications and DLLs

NetworkPresent Boolean Returns True if a network is present

 Computer and Operating System Information 503

NumberOfProcessors Long Specifies the number of processors in the system

OSBuild Long Retrieves the build number of the operating system

OSExtraInfo String Retrieves extra operating system information, like
“Service Pack 3”

OSMajorVersion Long Retrieves the major version number of the operating
system. For example, for Windows NT version 3.51,
the major version number is 3; for Windows NT
version 4.0, the major version number is 4.

OSMinorVersion Long Retrieves the minor version number of the operating
system. For example, for Windows NT version 3.51,
the minor version number is 51; for Windows NT
version 4.0, the minor version number is 0.

OSVersion String Retrieves a string containing most of the relevant
operating system version information. For example, for
a machine with Windows 2000 Professional installed,
the string returned can be “Microsoft Windows 2000
Professional version 5.0 (Build 2128).”

PageSize Long Specifies the page size and the granularity of page
protection and commitment

ProcessorArchitecture Integer Specifies the system’s processor architecture

ProcessorLevel Integer Windows 95: not used. Windows NT: specifies the
system’s architecture-dependent processor level

ProcessorRevision Integer Windows 95: not used. Windows NT: specifies an
architecture-dependent processor revision

ProcessorType Long Windows 95: specifies the type of processor in the
system. WindowsNT: uses ProcessorArchitecture,
ProcessorLevel, and ProcessorRevision values

ProductType String Returns additional information about the operating
system. For example, for Windows 2000 Professional,
the ProductType is “Professional,” and for Windows
2000 Server, the ProductType is “Server.”

RaiseErrors Boolean (Read/write) Indicates whether the class should raise a
runtime error if you attempt to call a property that is
not valid for the current operating system. The
default value is True.

T A B L E 9 . 2 : Properties of the SystemInfo Class (continued)

Property Data Type Description

Chapter 9 • Retrieving and Setting System Information504

ScreenSaverActive Boolean (Read/write) Sets or retrieves the state of the screen
saver

ScreenSaverRunning Boolean Returns True if a screen saver is currently active on
the desktop

ScreenSaverTimeout Long (Read/write) Sets or retrieves the screen saver timeout
value in seconds

Secure Boolean Returns True if security is present

ServicePackMajorVersion Integer Returns the major version number of the latest
Service Pack installed on the system

ServicePackMinorVersion Integer Returns the minor version number of the latest
Service Pack installed on the system

ShowSounds Boolean Returns True if the user requires an application to
present information visually in situations where it
would otherwise present the information only in
audible form

SlowMachine Boolean Returns True if the computer has a low-end processor
(definition of low-end is somewhat unclear)

SpecialFolderLocation String Location of one of the many special Windows folders.
See Table 9.7 for more information.

SystemDirectory String Retrieves the system directory. The value does not
end with a trailing backslash (\).

TempPath String Retrieves the temporary path. The GetTempPath
function gets the temporary file path from one of the
following locations: the path specified by the TMP
environment variable; the path specified by the
TEMP environment variable, if TMP is not defined;
the current directory, if both TMP and TEMP are not
defined. Path always ends with a backslash (\).

UserName String Retrieves the name of the logged-in user

WIN32_IE Long Returns a specific long value that’s dependent on the
installed version of Internet Explorer. Possible values:
3 (IE 3.0); 4 (IE 4.0, 4.01, 4.01 Service Pack 1, 4.02
Service Pack 2); 5 (Internet Explorer 5)

T A B L E 9 . 2 : Properties of the SystemInfo Class (continued)

Property Data Type Description

 Computer and Operating System Information 505

The properties of the SystemInfo class can be broken down into five basic cate-
gories, as shown in Table 9.3. The next section of this chapter provides more infor-
mation on these categories

WIN32_WINDOWS Long Return value indicates whether Windows 98 or
Windows 95 is installed. Possible values: 410
(Windows 98); 4 (Windows 95)

WIN32_WINNT Long Return value indicates whether Windows NT or
Windows 2000 is installed. Possible values: 4
(Windows NT); 5 (Windows 2000)

WindowsDirectory String Retrieves the Windows directory. The value does not
end with a trailing backslash (\).

WindowsExtension Boolean (Win95 only) Indicates whether the Windows
extension, Windows Plus!, is installed

WINVER Long Returns the major build of the operating system.
Possible values: 4 (Windows 95 or Windows NT); 5
(Windows 2000 or Windows 98)

T A B L E 9 . 3 : Categories of SystemInfo Class Properties

Category Properties

Computer/User ComputerName, UserName

Paths SpecialFolderLocation, SystemDirectory, TempPath, WindowsDirectory

Processor Info ActiveProcessorMask, AllocationGranularity, MaxAppAddress,
MinAppAddress, NumberOfProcessors, PageSize, ProcessorArchitecture,
ProcessorLevel, ProcessorRevision, ProcessorType

Version IsWin2000, IsWin95, IsWin98, IsWinNT, OSBuild, OSExtraInfo,
OSMajorVersion, OSMinorVersion, OSVersion, ProductType,
ServicePackMajorVersion, ServicePackMinorVersion, WIN32_IE,
WIN32_WINDOWS, WIN32_WINNT, WINVER

Miscellaneous Beep, BootMethod, IsDBCS, IsIMMEnabled, IsRemoteSession,
IsSuiteInstalled, MidEastEnabled, NetworkPresent, RaiseErrors,
ScreenSaverActive, ScreenSaverRunning, ScreenSaverTimeout, Secure,
SlowMachine, ShowSounds, WindowsExtension

T A B L E 9 . 2 : Properties of the SystemInfo Class (continued)

Property Data Type Description

Chapter 9 • Retrieving and Setting System Information506

Using the SystemInfo Class
This section describes each of the categories of properties in the SystemInfo class,
explaining both how to use them and how they were implemented.

Computer and User Information

The two properties ComputerName and UserName provide information about
the network name for the computer and the logged-in user’s name. Both proper-
ties return strings, and the ComputerName property also allows you to set the
name of the computer. For example, you might write code like this to use the
properties:

Dim si As SystemInfo
Set si = New SystemInfo
Dim strOut As String
strOut = si.UserName & " is logged into " & si.ComputerName
MsgBox strOut
si.ComputerName = "CompuLand"

As you’ll see mentioned later, changing the ComputerName property modifies
only the setting in the Registry, until you reboot. At that point, Windows loads the
value from the Registry and makes it the current computer name.

Under Windows 9x, retrieving and setting these properties is simple. The Win-
dows API provides the GetComputerName and GetUserName functions. In both
cases, you pass in a buffer to contain the name and a long integer variable contain-
ing the length of the buffer. Windows fills in the buffer and places the length of
the string it returned into the long integer variable. If the function returns a non-
zero value, the code can use the Left function to retrieve as many characters from
the buffer as Windows said it filled in.

Under Windows 2000, there are several different types of Computer and User
names, all of which are listed in Tables 9.4 and 9.5. The ComputerName and User-
Name properties accept optional arguments and then call GetComputerNameEx
(or SetComputerNameEx) and GetUserNameEx API functions respectively, which
allow you to refer to one of the listed name types. (These extended user and com-
puter names are available only if you’re logged into a Windows 2000 server from
a Windows 2000 workstation.)

 Computer and Operating System Information 507

The UserName property will raise errors if you pass it an invalid name format
because it doesn’t check the server type before making the request for the name.
If you don’t want to see those errors, make sure you set the RaiseErrors property
of the SystemInfo class to be False before using the property.

Try out the TestNames procedure in the SysInfoTest module to try out the various
computer and username options. Note that most will return no value, unless you’re
attached to a Windows 2000 server.

T A B L E 9 . 4 : Available Computer Name Formats for Windows 2000

Name Format Description

ComputerNameNetBIOS Represents the NetBIOS name of the local computer or
the cluster associated with the local computer. This
name type is read-only and cannot be changed by
assigning a new value to ComputerName. (Doesn’t
require Windows 2000 server.)

ComputerNameDnsHostname Represents the DNS name of the local computer or the
cluster associated with the local computer. This name
type is read-only and cannot be changed by assigning a
new value to ComputerName.

ComputerNameDnsDomain Represents the name of the DNS domain assigned to the
local computer or the cluster associated with the local
computer. This name type is read-only and cannot be
changed by assigning a new value to ComputerName.

ComputerNameDnsFullyQualified Represents the fully qualified DNS name that uniquely
identifies the local computer or the cluster associated
with the local computer.
This name is a combination of the DNS host
name and the DNS domain name, using the
form HostName.DomainName (for example,
compuland.mydomain.com). This name type is
read-only and cannot be changed by assigning a
new value to ComputerName.

ComputerNamePhysicalNetbios (Default) Represents the NetBIOS name of the local
computer. On a cluster, this is the NetBIOS name of the
local node on the cluster. The returned name is the
same as the return value of GetComputerName on
Windows 9x.

Chapter 9 • Retrieving and Setting System Information508

ComputerNamePhysicalDnsHostname Represents the DNS host name of the local computer.
On a cluster, this is the DNS host name of the local node
on the cluster.

ComputerNamePhysicalDnsDomain Represents the name of the DNS domain assigned to
the local computer. On a cluster, this is the DNS domain
of the local node on the cluster.

ComputerNamePhysicalDnsFullyQualified Represents the fully qualified DNS name that uniquely
identifies the computer. On a cluster, this is the fully
qualified DNS name of the local node on the cluster. The
fully qualified DNS name is a combination of the DNS
host name and the DNS domain name, using the form
HostName.DomainName (for example,
compuland.mydomain.com). This name type is read-
only and cannot be changed by assigning a new value
to ComputerName.

T A B L E 9 . 5 : Available Username Formats for Windows 2000

Name Format Description

NameUnknown (Default) Represents an Unknown name type. The returned name is the
same as the return value of GetUserName on Windows 9x. (Doesn’t
require Windows 2000 server.)

 Represents a fully qualified distinguished name (for example,
CN=John Smith,OU=Users,DC=Engineering,DC=Microsoft,DC=Com)

NameSamCompatible Represents the Windows NT 4 account name (for example,
Engineering\JSmith). The domain-only version includes trailing
backslashes (\\). (Doesn’t require Windows 2000 server.)

NameDisplay Returns a "friendly" display name (for example, John Smith)

NameUniqueId Returns a GUID string that represents the name

NameCanonical Returns a complete canonical name (for example,
engineering.microsoft.com/software/someone). The domain-only version
includes a trailing forward slash (/).

NameUserPrincipal Represents the User principal name (for example,
someone@engineering.microsoft.com)

T A B L E 9 . 4 : Available Computer Name Formats for Windows 2000 (continued)

Name Format Description

 Computer and Operating System Information 509

Listing 9.6 shows the code for retrieving the ComputerName and UserName
properties.

➲ Listing 9.6: Code for the ComputerName and UserName Properties

Public Property Get ComputerName(_
 Optional NameFormat As ComputerNameFormat = cnfComputerNameNetBIOS) _
 As String

 Dim strBuffer As String
 Dim lngLen As Long

 If IsWin2000 Then
 If NameFormat <> cnfComputerNameNetBIOS Then
 ' If a particular NameFormat is requested and the
 ' OS is Windows 2000, then use the Extended
 ' version of the API function.

 ' To determine the required buffer size for the
 ' particular value of NameFormat, pass vbNullString
 ' for strBuffer. When the function returns, lngLen will
 ' contain the length of the required buffer.
 Call GetComputerNameEx(NameFormat, vbNullString, lngLen)
 strBuffer = String$(lngLen + 1, vbNullChar)
 If CBool(GetComputerNameEx(_
 NameFormat, strBuffer, lngLen)) Then
 ComputerName = Left$(strBuffer, lngLen)
 End If
 Else
 ' Specified NameFormat is cnfComputerNameNetBios
 ' in which case, use GetComputerName API
 strBuffer = String$(dhcMaxComputerName + 1, vbNullChar)

NameCanonicalEx Same as NameCanonical except that the right-most forward slash (/) is
replaced with a newline character (vbCrLf), even in a domain-only case
(for example, engineering.microsoft.com/software\nsomeone)

NameServicePrincipal Represents the generalized service principal name (for example, www/
www.microsoft.com@microsoft.com)

T A B L E 9 . 5 : Available Username Formats for Windows 2000 (continued)

Name Format Description

Chapter 9 • Retrieving and Setting System Information510

 lngLen = Len(strBuffer)
 If CBool(GetComputerName(strBuffer, lngLen)) Then
 ' If successful, return the buffer
 ComputerName = Left$(strBuffer, lngLen)
 End If
 End If
 Else
 ' The OS is not Win2000
 ' Only cnfComputerNameNetBios is valid for NameFormat
 If NameFormat = cnfComputerNameNetBIOS Then
 strBuffer = String$(dhcMaxComputerName + 1, vbNullChar)
 lngLen = Len(strBuffer)
 If CBool(GetComputerName(strBuffer, lngLen)) Then
 ' If successful, return the buffer
 ComputerName = Left$(strBuffer, lngLen)
 End If
 Else
 If RaiseErrors Then
 Call HandleErrors(ERR_INVALID_OS)
 End If
 End If
 End If
End Property

Public Property Get UserName(_
 Optional ExtendedFormat As ExtendedNameFormat = enfNameUnknown) _
 As String

 Dim lngLen As Long
 Dim strBuffer As String
 Dim lngRet As Long

 Const dhcMaxUserName = 255

 ' Initialize the buffer strings
 strBuffer = String$(dhcMaxUserName, vbNullChar)
 lngLen = dhcMaxUserName
 If IsWin2000 Then
 If ExtendedFormat <> enfNameUnknown Then
 ' If a particular ExtendedFormat is requested and the

 Computer and Operating System Information 511

 ' OS is Windows 2000, then use the Extended version
 ' of the API function.
 lngRet = GetUserNameEx(ExtendedFormat, strBuffer, lngLen)
 ' Even if lngRet and Err.LastDLLError indicate that
 ' the call to GetUserNameEx was successful,
 ' strBuffer and lngLen may not get modified, in which case
 ' strBuffer will still contain only vbNullChars. To make
 ' sure that a valid string was returned in strBuffer,
 ' check lngRet and the length of strBuffer
 ' after trimming to the first instance of vbNullChar
 If lngRet And Len(dhTrimNull(strBuffer)) > 0 Then
 ' If successful, return the username
 UserName = Left$(strBuffer, lngLen - 1)
 Else
 If RaiseErrors Then
 With Err
 .Raise .LastDllError, _
 "SystemInfo.UserName", APIErr(.LastDllError)
 End With
 End If
 End If
 Else
 ' Specified ExtendedFormat was enfNameUnknown
 ' use GetUserName instead
 If CBool(GetUserName(strBuffer, lngLen)) Then
 UserName = Left$(strBuffer, lngLen - 1)
 End If
 End If
 Else
 ' OS is not Win2000
 ' In this case, only enfNameUnknown is valid
 If ExtendedFormat = enfNameUnknown Then
 ' use GetUserName API function
 If CBool(GetUserName(strBuffer, lngLen)) Then
 UserName = Left$(strBuffer, lngLen - 1)
 End If
 Else
 If RaiseErrors Then
 Call HandleErrors(ERR_INVALID_OS)
 End If
 End If
 End If
End Property

Chapter 9 • Retrieving and Setting System Information512

The code to set the computer name, although quite simple for Windows 9x and
NT, requires special considerations for Windows 2000. Only certain NameFor-
mats are allowed, and even those allowed enforce restrictions on the length of the
new name. For example, in the case of ComputerNamePhysicalDnsHostname, if
the new name is longer than the maximum allowed length of 15 characters, the
API function will truncate the name. Rather than let this happen unexpectedly,
the ComputerName property will raise a runtime error if you attempt to pass it a
name longer than 15 characters.

Public Property Let ComputerName(_
 Optional NameFormat As ComputerNameFormat = cnfComputerNameNetBIOS, _
 Name As String)

 If NameFormat <> cnfComputerNameNetBIOS And IsWin2000 Then
 Select Case NameFormat
 Case cnfComputerNamePhysicalNetbios
 If Len(Name) > dhcMaxComputerName Then
 With Err
 .Raise ERR_INVALID_NAME, _
 "SystemInfo.ComputerNameEx", _
 "Name cannot exceed " & _
 dhcMaxComputerName & " characters."
 End With
 End If
 Case cnfComputerNamePhysicalDnsHostname
 If Len(Name) > dhcMaxComputerName Then
 Call HandleErrors(ERR_NAME_TOO_LONG, _
 "NetBIOS name is longer than " & _
 dhcMaxComputerName & " characters.")
 End If
 Case cnfComputerNamePhysicalDnsDomain
 ' It's here just so that we can escape the Else clause.
 Case Else
 ' For Public Property Let, only the above three
 ' values are acceptable.
 Err.Raise 5
 End Select
 Call SetComputerNameEx(NameFormat, Name)
 Else
 ' Either the OS is not Win2000 or NameFormat
 ' is 0 or cnfComputerNameNetBIOS, so use the
 ' normal API functions

 Computer and Operating System Information 513

 If NameFormat = cnfComputerNameNetBIOS Then
 Call SetComputerName(Name)
 Else
 If RaiseErrors Then
 Call HandleErrors(ERR_INVALID_OS)
 End If
 End If
 End If
End Property

The SetComputerName API call only writes the new computer name to the Registry.
It doesn’t (and it really can’t) change the name of the computer as it’s currently used
on the network. The next time you restart the computer, it will use the new name.

Path Information

The SpecialFolderLocation, SystemDirectory, TempPath, and WindowsDirectory
properties retrieve information about where you can expect to find files on your
computer. In each case, Windows provides a single function to call in order to
retrieve the information, and in each case the code is almost identical. For example,
Listing 9.7 includes the code for the WindowsDirectory property. You should be
familiar with this code if you’ve ever done any work with the Windows API that
involves strings. In the WindowsDirectory property procedure, the code first cre-
ates a buffer to hold the output string and makes sure it’s large enough for the larg-
est expected result, using the String function. Then it calls the GetWindowsDirectory
API function, passing the buffer and the length of the buffer. GetWindows-
Directory attempts to place the path into the buffer and returns the length of the
string it placed into the buffer. If the buffer wasn’t large enough, the function
returns the length it would need to place into the buffer. If the function returns a
value larger than the length passed into it, the property procedure resizes the
buffer and tries again. This time, the string is guaranteed to fit.

➲ Listing 9.7: Code for the WindowsDirectory Property

Public Property Get WindowsDirectory() As String
 ' Retrieve the Windows directory.
 Dim strBuffer As String
 Dim lngLen As Long

Chapter 9 • Retrieving and Setting System Information514

 strBuffer = Space(dhcMaxPath)
 lngLen = dhcMaxPath
 lngLen = GetWindowsDirectory(strBuffer, lngLen)
 ' If the path is longer than dhcMaxPath, then
 ' lngLen contains the correct length. Resize the
 ' buffer and try again.
 If lngLen > dhcMaxPath Then
 strBuffer = Space(lngLen)
 lngLen = GetWindowsDirectory(strBuffer, lngLen)
 End If
 WindowsDirectory = Left$(strBuffer, lngLen)
End Property

The functions used in the SystemDirectory, TempPath, and WindowsDirectory
properties provide a perfect example of the non-uniformity of Windows API
functions. For example, GetWindowsDirectory and GetSystemDirectory accept
first a string and then its length. GetTempPath takes its parameters in the opposite
order. In addition, GetTempPath returns a path that always ends with a trailing
backslash, yet both the others return paths without the trailing backslash.

The SpecialFolderLocation property returns the path to any one of several spe-
cial folders on a user’s machine. There are a number of commonly used folders
that have specific purposes under Windows, each of which is marked as special.
These folders include standard virtual folders, such as Network Neighborhood and
My Documents, along with standard file system folders, for example, System
and Program Files. For such folders, Windows provides a standard, reliable way
of retrieving the names and locations (which can vary on a per machine basis) by
specifying one of the several defined CSIDL values.

Each special folder has a unique identification value (called a CSIDL value)
assigned to it. For example, the Program Files file system folder has a CSIDL of
CSIDL_PROGRAM_FILES, and the Network Neighborhood virtual folder has a
CSIDL of CSIDL_NETWORK. The SpecialFolderLocation property accepts a pre-
defined constant value and, provided that the requested folder is valid under the
current operating system, attempts to return the location of the associated special
folder.

Most of the shell features are encapsulated in three core DLLs: Comctl32.dll,
Shell32.dll, and Shlwapi.dll. Because each version of Internet Explorer and the

 Computer and Operating System Information 515

operating system updates these dlls, some of these CSIDLs may not be available
on your particular system. Table 9.6 lists the different DLL versions and how they
were distributed, and Table 9.7 lists currently available CSIDLs. If a particular
CSIDL value is affected by one of these versions, it’s noted in Table 9.7.

The SHGetSpecialFolderLocation API used in the SpecialFolderLocation property,
although fully functional in Windows 2000, has been superseded by the
ShGetFolderLocation API function, introduced in Windows 2000. If you wish to
use the newer ShGetFolderLocation API in earlier systems, you can include a
redistributable DLL, ShFolder.dll, with your applications. However, because
distributing controls and DLLs with a VBA application may not be completely
seamless, we have opted to use the older SHGetSpecialFolderLocation API
function in the SystemInfo class—that way, you needn’t distribute the ShFolder.dll
with your applications. If you are interested in using this newer API function, your
best bet is to search the Microsoft Knowledge Base for the details.

T A B L E 9 . 6 : Version and Distribution Methods for Comctl32.dll, Shell32.dll, and
Shlwapi.dll

Version DLL Distribution Platform

4.00 All Windows 95/Windows NT 4

4.70 All Internet Explorer 3.x

4.71 All Internet Explorer 4 (see Note 1)

4.72 All Internet Explorer 4.01 and Windows 98 (see Note 1)

5.00 Shlwapi.dll Internet Explorer 5 (see Note 2)

5.00 Shell32.dll Windows 2000 (see Note 2)

5.80 Comctl32.dll Internet Explorer 5 (see Note 2)

5.81 Comctl32.dll Windows 2000 (see Note 2)

Note 1: All systems with Internet Explorer 4 or 4.01 will have the associated version of Comctl32.dll and Shlwapi.dll (4.71 or 4.72,
respectively). However, for systems prior to Windows 98, Internet Explorer 4 and 4.01 can be installed with or without the integrated shell.
If they are installed with the integrated shell, the associated version of Shell32.dll will be installed. If they are installed without the
integrated shell, Shell32.dll is not updated. In other words, the presence of version 4.71 or 4.72 of Comctl32.dll or Shlwapi.dll on a system
does not guarantee that Shell32.dll has the same version number. All Windows 98 systems have version 4.72 of Shell32.dll.

Note 2: Version 5.80 of Comctl32.dll and version 5 of Shlwapi.dll are distributed with Internet Explorer 5. They will be found on all systems
on which Internet Explorer 5 is installed, except Windows 2000. Internet Explorer 5 does not update the shell, so version 5 of Shell32.dll
will not be found on Windows NT, Windows 95, or Windows 98 systems. Version 5 of Shell32.dll will be distributed with Windows 2000,
along with version 5 of Shlwapi.dll and version 5.81 of Comctl32.dll.

Chapter 9 • Retrieving and Setting System Information516

T A B L E 9 . 7 : CSIDL Values for the SpecialFolderLocation Property (siCSIDL_VALUES
Enumeration Data Type)

CSIDL Value Version Description

CSIDL_FLAG_CREATE 5 If a special folder does not exist, this CSIDL can
be combined with one of the other CSIDLs
(using the Or operator or a “+” sign) to force
the folder to be created.

CSIDL_ADMINTOOLS 5 File system directory that is used to store
administrative tools for an individual user. The
Microsoft Management Console will save
customized consoles to this directory and will
roam with the user.

CSIDL_ALTSTARTUP File system directory that corresponds to the
user's
nonlocalized Startup program group

CSIDL_APPDATA 4.71 File system directory that serves as a common
repository for application-specific data. A typical
path is C:\Documents and
Settings\username\Application Data. This CSIDL
is supported by the redistributable ShFolder.dll
for systems that do not have the Internet
Explorer 4 integrated shell installed.

CSIDL_BITBUCKET Virtual folder containing the objects in the user's
Recycle Bin

CSIDL_COMMON_ADMINTOOLS 5 File system directory containing administrative
tools for all users of the computer

CSIDL_COMMON_ALTSTARTUP File system directory that corresponds to the
nonlocalized Startup program group for all
users. Valid only for Windows NT systems

CSIDL_COMMON_APPDATA 5 Application data for all users. A typical path is
C:\Documents and Settings\All
Users\Application Data.

CSIDL_COMMON_DESKTOPDIRECTORY File system directory that contains files and
folders that appear on the desktop for all users.
A typical path is C:\Documents and Settings\All
Users\Desktop.
Valid only for Windows NT systems

 Computer and Operating System Information 517

CSIDL_COMMON_DOCUMENTS File system directory that contains documents
that are common to all users. A typical path is
C:\Documents and Settings\All Users\Documents.
Valid for Windows NT systems and Windows 95
and Windows 98 systems with Shfolder.dll
installed

CSIDL_COMMON_FAVORITES File system directory that serves as a common
repository for all users' favorite items. Valid only
for Windows NT systems

CSIDL_COMMON_PROGRAMS File system directory that contains the directories
for the common program groups that appear on
the Start menu for all users. A typical path is
C:\Documents and Settings\All Users\Start
Menu\Programs. Valid only for Windows NT
systems

CSIDL_COMMON_STARTMENU File system directory that contains the programs
and folders that appear on the Start menu for all
users. A typical path is C:\Documents and
Settings\All Users\Start Menu. Valid only for
Windows NT systems

CSIDL_COMMON_STARTUP File system directory that contains the programs
that appear in the Startup folder for all users. A
typical path is C:\Documents and Settings\All
Users\Start Menu\Programs\Startup. Valid only
for Windows NT systems

CSIDL_COMMON_TEMPLATES File system directory that contains the templates
that are available to all users. A typical path is
C:\Documents and Settings\All Users\Templates.
Valid only for Windows NT systems

CSIDL_CONTROLS Virtual folder containing icons for the Control
Panel applications

CSIDL_COOKIES File system directory that serves as a common
repository for Internet cookies. A typical path is
C:\Documents and Settings\username\Cookies.

CSIDL_DESKTOP Windows Desktop–virtual folder that is the root
of the namespace

T A B L E 9 . 7 : CSIDL Values for the SpecialFolderLocation Property (siCSIDL_VALUES
Enumeration Data Type) (continued)

CSIDL Value Version Description

Chapter 9 • Retrieving and Setting System Information518

CSIDL_DESKTOPDIRECTORY File system directory used to physically store file
objects on the desktop (not to be confused with
the desktop folder itself). A typical path is
C:\Documents and Settings\username\Desktop.

CSIDL_DRIVES My Computer–virtual folder containing
everything on the local computer: storage
devices, printers, and Control Panel. The folder
may also contain mapped network drives.

CSIDL_FAVORITES File system directory that serves as a common
repository for the user's favorite items. A typical
path is C:\Documents and
Settings\username\Favorites.

CSIDL_FONTS Virtual folder containing fonts. A typical path is
C:\WINNT\Fonts.

CSIDL_HISTORY File system directory that serves as a common
repository for Internet history items.

CSIDL_INTERNET Virtual folder representing the Internet

CSIDL_INTERNET_CACHE File system directory that serves as a common
repository for temporary Internet files. A typical
path is C:\Documents and
Settings\username\Temporary Internet Files.

CSIDL_LOCAL_APPDATA 5 File system directory that serves as a data
repository for local (non-roaming) applications.
A typical path is C:\Documents and
Settings\username\Local Settings\Application
Data.

CSIDL_MYPICTURES 5 My Pictures folder. A typical path is
C:\Documents and Settings\username\My
Documents\My Pictures.

CSIDL_NETHOOD A file system folder containing the link objects
that may exist in the My Network Places virtual
folder. It is not the same as CSIDL_NETWORK,
which represents the network namespace root.
A typical path is C:\Documents and
Settings\username\NetHood.

T A B L E 9 . 7 : CSIDL Values for the SpecialFolderLocation Property (siCSIDL_VALUES
Enumeration Data Type) (continued)

CSIDL Value Version Description

 Computer and Operating System Information 519

CSIDL_NETWORK Network Neighborhood–virtual folder
representing the root of the network
namespace hierarchy.

CSIDL_PERSONAL File system directory that serves as a common
repository for documents. A typical path is
C:\Documents and Settings\username\My
Documents.

CSIDL_PRINTERS Virtual folder containing installed printers

CSIDL_PRINTHOOD File system directory that contains the link
objects that may exist in the Printers virtual
folder. A typical path is C:\Documents and
Settings\username\PrintHood.

CSIDL_PROFILE 5 User's profile folder

CSIDL_PROGRAM_FILES 5 Program Files folder. A typical path is
C:\Program Files.

CSIDL_PROGRAM_FILES_COMMON 5 A folder for components that are shared across
applications. A typical path is C:\Program
Files\Common. Valid only for Windows NT and
Windows 2000 systems.

CSIDL_PROGRAMS File system directory that contains the user's
program groups (which are also file system
directories). A typical path is C:\Documents and
Settings\username\Start Menu\Programs.

CSIDL_RECENT File system directory that contains the user's
most recently used documents. A typical path is
C:\Documents and Settings\username\Recent.

CSIDL_SENDTO File system directory that contains Send To
menu items. A typical path is C:\Documents and
Settings\username\SendTo.

CSIDL_STARTMENU File system directory containing Start menu
items. A typical path is C:\Documents and
Settings\username\Start Menu.

CSIDL_STARTUP File system directory that corresponds to the
user's Startup program group. The system starts
these programs whenever any user logs onto
Windows NT or
starts Windows 95. A typical path is
C:\Documents and Settings\username\Start
Menu\Programs\Startup.

T A B L E 9 . 7 : CSIDL Values for the SpecialFolderLocation Property (siCSIDL_VALUES
Enumeration Data Type) (continued)

CSIDL Value Version Description

Chapter 9 • Retrieving and Setting System Information520

Processor Information

To retrieve processor information, the SystemInfo class uses the GetSystemInfo
API function. This function fills a SYSTEM_INFO data structure with data. (See
the class module for the gory details.) The Initialize event procedure of the System-
Info class calls the API function, and the various properties retrieve information
from the elements of the SYSTEM_INFO structure.

Although the processor information returned by the GetSystemInfo API function
isn’t necessary for every application, it can be useful. The next few sections provide
the details necessary to interpret the information provided by these properties.

NumberOfProcessors

Specifies the number of processors in the system.

ActiveProcessorMask

Specifies a mask value representing the processors in the system. The bit or bits set
in the mask indicate the active processor (bit 0 is processor 0; bit 31 is processor 31).
This value will be 1 for most computers.

PageSize

Specifies the page size and the granularity of page protection and commitment.
This isn’t generally of much interest to VBA programmers.

AllocationGranularity

Specifies the granularity with which virtual memory is allocated. This value was
hard-coded as 64K in the past; because the Windows environment expands to

CSIDL_SYSTEM 5 System folder. A typical path is
\WINNT\SYSTEM32.

CSIDL_TEMPLATES File system directory that serves as a common
repository for document templates.

CSIDL_WINDOWS Windows directory or SYSROOT. This
corresponds to the %windir% or
%SYSTEMROOT% environment variables. A
typical path is C:\WINNT.

T A B L E 9 . 7 : CSIDL Values for the SpecialFolderLocation Property (siCSIDL_VALUES
Enumeration Data Type) (continued)

CSIDL Value Version Description

 Computer and Operating System Information 521

different hardware platforms, other values may be necessary. Again, this value
isn’t of much interest to VBA programmers.

MinimumApplicationAddress, MaximumApplicationAddress

Pointers to the lowest and highest memory addresses accessible to applications
and Dynamic Link Libraries. Not generally needed for VBA programmers unless
they’re making serious use of the Windows API functions that care about these
addresses.

ProcessorType

Not relevant to Windows NT, which uses the ProcessorArchitecture, Processor-
Level, and ProcessorRevision properties to provide information about the pro-
cessor. This property provides the only means in Windows 95 to gather such
information. The value will be one of the items in the following list:

ProcessorArchitecture

Specifies the system’s processor architecture. For Windows 95, this value will
always be 0 (Intel). Otherwise, the value can be any from the following list (from
the ProcessorType enum in the SystemInfo class):

Value Processor

386 Intel 386

486 Intel 486

586 Intel Pentium

4000 MIPS R4000 (NT only)

21064 Alpha 21064 (NT only)

Constant Value Processor

PROCESSOR_ARCHITECTURE_INTEL 0 Intel

PROCESSOR_ARCHITECTURE_MIPS 1 MIPS

PROCESSOR_ARCHITECTURE_ALPHA 2 Alpha

PROCESSOR_ARCHITECTURE_PPC 3 PPC

PROCESSOR_ARCHITECTURE_UNKNOWN –1 Unknown

Chapter 9 • Retrieving and Setting System Information522

ProcessorLevel

Not used in Windows 9x, but in Windows NT/2000 it returns the system’s archi-
tecture-dependent processor level. The values can be any of the items in the first
column of the following list. Use the ProcessorArchitecture value in the second col-
umn to determine the actual processor level.

ProcessorRevision

Not used in Windows 95, but in Windows NT this property specifies an architec-
ture-dependent processor revision.

Version Information

The properties in this area mostly use the GetVersionEx API function to fill in a
structure with information about the operating system. In the Initialize event proce-
dure for the SystemInfo class, the code calls GetVersionEx, passing it OSVERSION-
INFO structure for Windows 9x and Windows NT, or OSVERSIONINFOEX

Value Processor Architecture Description

3 0 Intel 80386

4 0 Intel 80486

5 0 Intel Pentium

6 0 Intel Pentium Pro

4 1 MIPS R4000

21064 2 Alpha 21064

21066 2 Alpha 21066

21164 2 Alpha 21164

1 3 PPC 601

3 3 PPC 603

4 3 PPC 604

6 3 PPC 603+

9 3 PPC 604+

20 3 PPC 620

 Computer and Operating System Information 523

structure for Windows 2000. All the various properties need do is retrieve infor-
mation from a module-level variable.

If you have ever looked at the C/Visual C++ header files that ship with
Microsoft Visual Studio or Platform SDK, you might have noticed syntax similar
to the lines of code in Listing 9.8.

➲ Listing 9.8: Code from WinUser.h C++ Header File

#if(WINVER >= 0x0400)
#define SPI_GETSERIALKEYS 62
#define SPI_SETSERIALKEYS 63
#endif /* WINVER >= 0x0400 */
#define SPI_GETSOUNDSENTRY 64
#define SPI_SETSOUNDSENTRY 65
#if(_WIN32_WINNT >= 0x0400)
#define SPI_GETSNAPTODEFBUTTON 95
#define SPI_SETSNAPTODEFBUTTON 96
#endif /* _WIN32_WINNT >= 0x0400 */
#if (_WIN32_WINNT >= 0x0400) || (_WIN32_WINDOWS > 0x0400)
#define SPI_GETMENUSHOWDELAY 106
#define SPI_SETMENUSHOWDELAY 107
#endif

The #if and #endif are preprocessor directives that, when used together, control
compilation of portions of source code. If the expression after #if has a nonzero
value, the line group immediately following the #if directive is retained and used
during the generation of the executable file. Visual C++ programmers use this
technique to reuse the same code base for multiple platforms and options. VBA
also allows you to specify conditional compilation in similar type by using the
#Const and #If-#Else-#End If constructs.

Instead of using conditional compilation, most classes in this chapter perform
runtime checks of the operating system version and raise an error (unless you
specify otherwise by setting the RaiseErrors property to be False) to alert the
developer that the specified option is not valid for the current operating system,
as shown in Listing 9.9.

Chapter 9 • Retrieving and Setting System Information524

➲ Listing 9.9: Performing Runtime Version Checks and Handling
Errors

' code removed...
If mlngWINVER >= 5& Then
 IsSystemResumeAuto = CBool(IsSystemResumeAutomatic)
Else
 Call HandleErrors(ERR_INVALID_OS)
End If
' code removed...

Private Sub HandleErrors(_
 lngErrCode As Long, _
 Optional strErrMsg As String)
 ' Centralized error handler to raise
 ' the errors to the client
 With Err
 If RaiseErrors Then
 If Len(strErrMsg) > 0 Then
 .Raise .Number, "PowerStatus", .Description, _
 .HelpFile, .HelpContext
 Else
 .Raise lngErrCode, "SystemInfo", ERR_STRING
 End If
 End If
 End With
End Sub

The local variables mlngWINVER, mblnIsWin95, mblnIsWin2000, and so on,
used in other classes, are quite similar to their corresponding public properties in
the SystemInfo class. For example, the WINVER property of the SystemInfo class
is defined in Listing 9.10.

We could have set up all these classes so that they required you to include both
the SystemInfo class and the class you were interested in so you could use the
classes in your own projects. Instead, we made sure that each class is independent.
That's why you'll find some redundant code if you look at the classes as a whole.
All the version-checking code in the classes besides SystemInfo is quite similar to
the version-checking code you'll find in the SystemInfo class.

 Computer and Operating System Information 525

➲ Listing 9.10: WINVER Property Definition from SystemInfo Class

Public Property Get WINVER() As Long
 ' Equivalent to SDK's WINVER environment variable

 If IsWin95 Or IsWinNT Then
 WINVER = 4&
 End If
 If IsWin98 Or IsWin2000 Then
 WINVER = 5&
 End If
End Property

The corresponding mlngWINVER local variable in the ScreenInfo class gets its
value from code that’s run in the Initialize event of the class, as shown in Listing 9.11.

➲ Listing 9.11: Retrieving Version Information in the Initialize Event
of the ScreenInfo Class

Private Sub Class_Initialize()
 Dim blnIsWinNT As Boolean
 Dim blnIsWin95 As Boolean
 Dim blnIsWin98 As Boolean

 Const VER_PLATFORM_WIN32_WINDOWS = 1
 Const VER_PLATFORM_WIN32_NT = 2

 ' Set the flag to true so that an error is raised
 ' if a non-applicable property is used for a particular
 ' operating system
 RaiseErrors = True

 ' First find out the version of the OS
 osvi.dwOSVersionInfoSize = Len(osvi)
 If CBool(GetVersionEx(osvi)) Then
 With osvi
 mblnIsWin2000 = _
 (.dwPlatformId = VER_PLATFORM_WIN32_NT And _
 .dwMajorVersion = 5)
 blnIsWin98 = (.dwMajorVersion > 4 And _

Chapter 9 • Retrieving and Setting System Information526

 (.dwPlatformId = VER_PLATFORM_WIN32_WINDOWS And _
 .dwMinorVersion > 0))

 blnIsWinNT = _
 (.dwPlatformId = VER_PLATFORM_WIN32_NT And _
 .dwMajorVersion <= 4)
 blnIsWin95 = _
 (.dwPlatformId = VER_PLATFORM_WIN32_WINDOWS And _
 .dwMinorVersion = 0)

 If blnIsWin95 Or blnIsWinNT Then
 mlngWINVER = 4&
 ElseIf blnIsWin98 Or mblnIsWin2000 Then
 mlngWINVER = 5&
 End If
 End With
 End If

End Sub

Handling Internet Explorer

The only version property in the SystemInfo class that does not get its value from
the OSVERSIONINFO structure is the WIN32_IE property, which returns a value
based on the version of Internet Explorer’s ShDocVW.dll file installed on the sys-
tem. As you may have noticed, each new version of Internet Explorer also updates
several core operating system files in an effort to introduce more features. For
example, some features that were introduced in Windows 98 may also be present
under Windows 95 if you've installed Internet Explorer 5. Table 9.8 lists all the
released versions of Internet Explorer (at the time this book was written) and the
corresponding return value of the WIN32_IE property.

T A B L E 9 . 8 : Microsoft Internet Explorer Released Versions

Version Product WIN32_IE

4.70.1155 Internet Explorer 3 3

4.70.1158 Internet Explorer 3 (OSR2) 3

4.70.1215 Internet Explorer 3.01 3

 Computer and Operating System Information 527

This version information is derived from the ShDocVW.dll file, which is installed
by Internet Explorer. Because the version information is stored in the file itself, the
SystemInfo class uses the GetFileVersionInfo and VerQueryValue API functions,
which retrieve information about disk files. If you are curious about the code, you
can take a look at the GetFileVersion procedure in the SystemInfo class.

Windows Accessibility
The Win32 API includes a number of features that make it easier for persons with
disabilities to use their computers. These features are extensions to the operating
system, and they affect the behavior of the system, no matter which application is
currently running.

To make it easy for you to work with these settings from within your applica-
tions, we’ve created a single class module, Accessibility (ACCESSIBILITY.CLS),
that provides six groups of properties representing the six areas of functionality.
Table 9.9 describes the six areas of functionality, with pointers to Tables 9.10
through 9.16, which describe each of the properties in greater detail and provide
references to the figures displaying the appropriate dialog boxes. In addition,
because almost all these properties are available through the Windows Control
Panel, Figures 9.1 through 9.11 show how users can set the same properties directly.
The figures are presented in the order in which you’ll come across them as you

4.70.1300 Internet Explorer 3.02 3

4.71.1008.3 Internet Explorer 4 PP2 4

4.71.1712.5 Internet Explorer 4 4

4.72.2106.7 Internet Explorer 4.01 4

4.72.3110.3 Internet Explorer 4.01 Service Pack 1 4

4.72.3612.1707 Internet Explorer 4.01 SP2 4

5.00.0518.5 Internet Explorer 5 Developer Preview (Beta 1) 5

5.00.0910.1308 Internet Explorer 5 Beta (Beta 2) 5

5.00.2014.213 Internet Explorer 5 5

T A B L E 9 . 8 : Microsoft Internet Explorer Released Versions

Version Product WIN32_IE

Chapter 9 • Retrieving and Setting System Information528

work through the accessibility dialogs. Each figure contains labels pointing to con-
trols on the dialog box. The text for each label indicates either the corresponding
property in the Accessibility class or the figure that corresponds to the dialog box
you’ll see if you click the button.

In Figure 9.11, the prefix “xx” acts as a placeholder for any one of “sk,” “mk,”
and so on, prefixes for the various groups of properties.

When writing this book, we were using a beta version of Windows 2000 and were
unable to get the Control Panel applet concerning the high contrast settings to
work at all. Therefore, we are unable to provide the appropriate figure here. You
may find, in your operating system, that this feature is working. Or it may be
pulled completely. We have no way of knowing. We’ve provided the code and its
description in this chapter’s samples, hoping that the feature will survive last-
minute cuts in the product.

T A B L E 9 . 9 : Win32 Accessibility Features

Feature Description

AccessTimeout Enables a user to specify a timeout interval after which system-wide accessibility
features are automatically turned off. The AccessTimeout feature is intended
for computers that are shared by several users with different preferences. Each
individual can use hot keys or the Control Panel to enable preferred features.
After a user leaves, the enabled features will be automatically disabled by the
timeout. The accessibility features affected by the timeout are FilterKeys,
MouseKeys, StickyKeys, and ToggleKeys. AccessTimeout properties in the
Accessibility class are described in Table 9.10.

FilterKeys Enables control of keyboard properties, such as the amount of time before a
keystroke is accepted as input and the amount of time before a keystroke
begins to repeat. FilterKeys properties in the Accessibility class are described in
Table 9.11.

MouseKeys Enables the user to control the mouse pointer using the numeric keypad.
MouseKeys properties in the Accessibility class are described in Table 9.13.

StickyKeys Enables the user to type key combinations, such as Ctrl+Alt+Del, in sequence
rather than at the same time. StickyKeys properties in the Accessibility class are
described in Table 9.14.

 Computer and Operating System Information 529

SoundSentry Displays a visual signal when a sound is generated by a Windows-based
application or an MS-DOS application running in a window. SoundSentry
properties in the Accessibility class are described in Table 9.15.

ToggleKeys Provides sound feedback when the user turns on or off the CapsLock,
ScrollLock, or NumLock key. ToggleKeys properties in the Accessibility class are
described in Table 9.16.

T A B L E 9 . 1 0 : AccessTimeOut Properties Provided by the Accessibility Class

Property Description Figure

atActive If True, a timeout has been set. Unless set, the
Timeout value will have no effect.

9.11

atAvailable If True, you can set a timeout period (read-only). N/A

atFeedback If True, a sound effect is played when the timeout
period elapses.

9.11

atTimeOutMilliseconds The number of milliseconds of idle time before
Accessibility turns off. Only 5, 10, 15, 20, 25, and 30
minutes (each value multiplied by 60,000 to convert
to milliseconds) are allowed.

9.11

T A B L E 9 . 1 1 : FilterKeys Properties Provided by the Accessibility Class

Property Description Figure

fkActive If True, the FilterKeys features are on. 9.1

fkAvailable If True, the FilterKeys features are available (read-only). N/A

fkBounceMSec Specifies the amount of time, in milliseconds, that must
elapse after a key is released before the computer will
accept a subsequent press of the same key. If you set
fkBounceMSec, you must set fkDelayMSec to 0, or you can’t
set the value. They can both be 0, but they can’t both be
nonzero. Valid values are 500, 700, 1000, 1500, and 2000.

9.4

fkClickOn If True, the computer makes a click sound when a key is
pressed or accepted.

9.3

T A B L E 9 . 9 : Win32 Accessibility Features (continued)

Feature Description

Chapter 9 • Retrieving and Setting System Information530

fkDelayMSec Specifies the length of time, in milliseconds, the user must
hold down a key before it begins to repeat. If you set
fkDelayMSec, you must set fkBounceMSec to 0, or you can’t
set the value. They can both be 0, but they can’t both be
nonzero. Valid values are 300, 700, 1000, 1500, and 2000.

9.5

fkHotkeyActive If True, the user can turn the FilterKeys feature on and off by
holding down the Shift key for eight seconds.

9.3

fkHotKeyConfirm (Win95, Win98, Windows 2000 only) If True, a confirmation
dialog box appears when the FilterKeys features are
activated with the hot key.

9.11

fkHotKeySound If True, the computer plays a sound when the user turns the
FilterKeys feature on or off with the hot key.

9.11

fkIndicator (Win95, Win98, Windows 2000 only) If True, visual indicator
is displayed when the FilterKeys features are on.

9.3

fkRepeatMSec Specifies the length of time, in milliseconds, between
repetitions of the keystroke. Valid values are 300, 500, 700,
1000, 1500, and 2000.

9.5

fkWaitMSec Specifies the length of time, in milliseconds, the user must
hold down a key before it is accepted by the computer. The
only acceptable values are 0, 300, 500, 700, 1000, 1400,
and 2000. All others will be rounded to the next larger value
within the range. (Values larger than 2000 are cut back to
1000, the default.)

9.5

T A B L E 9 . 1 2 : HighContrast Properties Provided by the Accessibility Class (No Figure
Available)

Property Description Figure

hcAvailable If True, the High Contrast feature is available. N/A

hcConfirmHotKey A confirmation dialog appears when the high contrast
feature is activated by using the hot key.

N/A

hcHighContrastOn If True, the high contrast feature is on. N/A

hcHotKeyActive If True, the user can turn the high contrast feature on
and off by simultaneously pressing the left ALT, left
SHIFT, and PRINT SCREEN keys.

N/A

T A B L E 9 . 1 1 : FilterKeys Properties Provided by the Accessibility Class (continued)

Property Description Figure

 Computer and Operating System Information 531

hcHotKeyAvailable (Read Only) If True, the hot key associated with the high
contrast feature can be enabled.

N/A

hcHotKeySound If True, a siren is played when the user turns the high
contrast feature on or off by using the hot key.

N/A

T A B L E 9 . 1 3 : MouseKeys Properties Provided by the Accessibility Class

Property Description Figure

mkActive If True, the MouseKeys feature is active. 9.9

mkAvailable If True, the MouseKeys feature is available (read-only). N/A

mkConfirmHotKey (Windows 95/98, Windows 2000) If True, a confirmation
dialog box appears when the MouseKeys feature is
activated by using the hot key.

9.11

mkCtrlSpeed Specifies the multiplier to apply to the mouse cursor
speed when the user holds down the Ctrl key while
using the arrow keys to move the cursor. Documented
by Microsoft as not working in NT, but it appears to
work fine in NT 4.

9.10

mkHotKeyActive Sets or retrieves whether the user can turn the
MouseKeys feature on and off using the hot key: Alt
(left-hand key) + Shift (left-hand key) + NumLock

9.10

mkHotKeySound If True, the system plays a sound when the user turns
the MouseKeys feature on or off with the hot key.

9.11

mkIndicator (Windows 95/98, Windows 2000) If True, a visual
indicator is displayed when the MouseKeys feature is on.

9.10

mkLeftButtonDown (Windows 98, Windows 2000) The left button is in the
down state.

N/A

mkLeftButtonSel (Windows 98, Windows 2000) The user has selected the
left button for mouse-button actions.

N/A

mkMaxSpeed Specifies the maximum speed the mouse cursor attains
when an arrow key is held down

9.10

T A B L E 9 . 1 2 : HighContrast Properties Provided by the Accessibility Class (No Figure
Available) (continued)

Property Description Figure

Chapter 9 • Retrieving and Setting System Information532

mkModifiers (Windows 95/98, Windows 2000) The CTRL key
increases cursor speed by the value specified by the
iCtrlSpeed member, and the SHIFT key causes the cursor
to delay briefly after moving a single pixel, allowing fine
positioning of the cursor.

9.10

mkMouseKeysOn If True, the MouseKeys feature is on. N/A

mkMouseMode (Windows 98, Windows 2000) If True, the system is
processing numeric keypad input as mouse commands.

9.10

mkReplaceNumbers (Windows 95/98, Windows 2000) If True, the numeric
keypad moves the mouse when the NUM LOCK key is on.

9.10

mkRightButtonDown (Windows 98, Windows 2000) The left button is in the
down state.

N/A

mkRightButtonSel (Windows 98, Windows 2000) If True, the user has
selected the right button for mouse-button actions.

N/A

mkTimeToMaxSpeed Specifies the length of time, in milliseconds, it takes for
the mouse cursor to reach maximum speed when an
arrow key is held down. Must be a value between 1000
and 5000, in milliseconds. Acceptable values are in 500-
millisecond intervals (5000, 4500, etc.). Others in the
range are rounded off. Values outside the range cause
the call to SystemParameters Info to fail.

9.10

T A B L E 9 . 1 4 : StickyKeys Properties Supplied by the Accessibility Class

Property Description Figure

skActive If True, the StickyKeys feature is active. 9.1

skAudibleFeedback If True, the system plays a sound when the user sets keys
using the StickyKeys feature.

9.2

skAvailable If True, the StickyKeys feature is available (read-only). N/A

skConfirmHotKey (Windows 95/98, Windows 2000) If True, a confirmation
dialog appears when the StickyKeys feature is activated by
using the hot key.

9.2

skHotKeyActive If True, the user can turn the StickyKeys feature on and off
by pressing the Shift key five times.

9.2

T A B L E 9 . 1 3 : MouseKeys Properties Provided by the Accessibility Class

Property Description Figure

 Computer and Operating System Information 533

skHotKeySound If True, the system plays a sound when the user toggles
the StickyKeys feature with the hot key.

9.11

skIndicator (Windows 95/98, Windows 2000) If True, a visual
indicator is displayed when the StickyKeys feature is on.

9.2

skLeftAltLatched (Windows 98, Windows 2000) (read-only) True if the left
ALT key is latched.

N/A

skLeftAltLocked (Windows 98, Windows 2000) (read-only) True if the left
ALT key is locked.

N/A

skLeftCtlLatched (Windows 98, Windows 2000) (read-only) True if the left
CTL key is latched.

N/A

skLeftCtlLocked (Windows 98, Windows 2000) (read-only) True if the left
CTL key is locked.

N/A

skLeftShiftLatched (Windows 98, Windows 2000) (read-only) True if the left
SHIFT key is latched.

N/A

skLeftShiftLocked (Windows 98, Windows 2000) (read-only) True if the left
SHIFT key is locked.

N/A

skLeftWinLatched (Windows 98, Windows 2000) True if the left WIN key is
latched.

N/A

skLeftWinLocked (Windows 98, Windows 2000) True if the left WIN key is
locked.

N/A

skRightAltLatched (Windows 98, Windows 2000) (read-only) True if the right
ALT key is latched.

N/A

skRightAltLocked (Windows 98, Windows 2000) (read-only) True if the right
ALT key is locked.

N/A

skRightCtlLatched (Windows 98, Windows 2000) (read-only) True if the right
CTL key is latched.

N/A

skRightCtlLocked (Windows 98, Windows 2000) (read-only) True if the right
CTL key is locked.

N/A

skRightShiftLatched (Windows 98, Windows 2000) (read-only) True if the right
SHIFT key is latched.

N/A

skRightShiftLocked (Windows 98, Windows 2000) (read-only) True if the right
SHIFT key is locked.

N/A

T A B L E 9 . 1 4 : StickyKeys Properties Supplied by the Accessibility Class (continued)

Property Description Figure

Chapter 9 • Retrieving and Setting System Information534

skRightWinLatched (Windows 98, Windows 2000) True if the right WIN key is
latched.

N/A

skRightWinLocked (Windows 98, Windows 2000) True if the right WIN key is
locked.

N/A

skTriState If True, pressing a modifier key twice in a row locks down
the key until the user presses it a third time.

9.2

skTwoKeysOff If True, releasing a modifier key that has been pressed in
combination with any other key turns off the StickyKeys
feature.

9.2

T A B L E 9 . 1 5 : SoundSentry Properties Supplied by the Accessibility Class

Property Description Figure

ssActive If True, the SoundSentry feature is active. 9.7

ssAvailable If True, the SoundSentry feature is available (read-only). N/A

ssFSGraphicEffect (Windows 95, Windows 98) Specifies the visual signal
to present when a graphics-mode application
generates a sound while running in a full-screen virtual
machine. This member can be one of the following
values: 3 (no visual signal); 0 (flash the entire display).

N/A

ssFSGraphicEffectColor (Windows 95, Windows 98) Specifies the RGB value of
the color to be used when displaying the visual signal
shown when a full-screen, graphics-mode application
generates a sound.

N/A

ssFSGraphicEffectMSec (Windows 95, Windows 98) Specifies the duration, in
milliseconds, of the visual signal that is displayed when
a full-screen, graphics-mode application generates a
sound.

N/A

ssFSTextEffect (Windows 95, Windows 98) If True, a visual signal
appears when a text-mode application generates a
sound while running in a full-screen virtual machine.
Can be one of the following values: 0 (no visual
indication is used), 1 (flash characters in the corner of
the screen), 2 (flash the screen border [overscan area]),
3 (flash the entire display).

9.8

T A B L E 9 . 1 4 : StickyKeys Properties Supplied by the Accessibility Class (continued)

Property Description Figure

 Computer and Operating System Information 535

ssFSTextEffectColorBits (Windows 95, Windows 98) Specifies the RGB value of
the color to be used when displaying the visual signal
shown when a full-screen, text-mode application
generates a sound.

N/A

ssFSTextEffectMSec (Windows 95, Windows 98) Specifies the duration, in
milliseconds, of the visual signal that is displayed when
a full-screen, text-mode application generates a sound.

N/A

ssWindowsEffect If True, visual signal appears when a graphics-mode
application generates a sound while running in a full-
screen virtual machine. Can be one of the following
values: 0 (no visual indication is used), 1 (flash characters
in the corner of the screen), 2 (Flash the screen border
[overscan area]), 3 (flash the entire display).

9.8

ssWindowsEffectMSec (Windows 95, Windows 98) Specifies the duration, in
milliseconds, of the visual signal that is displayed when
a Win32-based application (or an application running
in a window) generates a sound.

N/A

T A B L E 9 . 1 6 : ToggleKeys Properties Supplied by the Accessibility Class

Property Description Figure

tkActive If True, the ToggleKeys feature is active. 9.1

tkAvailable If True, the ToggleKeys feature is available (read-only). N/A

tkHotKeyActive If True, the user can turn the ToggleKeys feature on and off
by holding the NumLock key for 5 seconds.

9.6

tkHotKeyConfirm (Windows 95/98, Windows 2000) If True, a confirmation
dialog appears when the ToggleKeys feature is activated
with the hot key.

9.11

tkHotKeySound If True, the system plays a sound when the user toggles the
ToggleKeys feature with the hot key.

9.11

T A B L E 9 . 1 5 : SoundSentry Properties Supplied by the Accessibility Class (continued)

Property Description Figure

Chapter 9 • Retrieving and Setting System Information536

F I G U R E 9 . 1
Accessibility Properties
(Keyboard) dialog box

F I G U R E 9 . 2
Settings for the StickyKeys

dialog box

Figure 9.7 Figure 9.9 Figure 9.11

Figure 9.2

Figure 9.3

Figure 9.6

skActive

fkActive

tkActive

skHotKeyActive

skTwoKeysOff

skAudibleFeedback
skIndicator

skTriState

 Computer and Operating System Information 537

F I G U R E 9 . 3
Settings for the FilterKeys

dialog box

F I G U R E 9 . 4
Advanced settings for the
FilterKeys (Bounce) dialog

box

Figure 9.4

Figure 9.5

fkHotKeyActive

fkBounceMSec

fkDelayMSec

fkClickOn

fkIndicator

(if nonzero)

(if nonzero)

 fkBounceMSec

Chapter 9 • Retrieving and Setting System Information538

F I G U R E 9 . 5
Advanced settings for the

FilterKeys (Delay)
dialog box

F I G U R E 9 . 6
Settings for the ToggleKeys

dialog box

 fkDelayMSec

fkDelayMSec = 0,
fkRepeatMSec = 0

 fkRepeatMSec

 fkWaitMSec

 tkHotKeyActive

 Computer and Operating System Information 539

F I G U R E 9 . 7
Accessibility Properties

(Sound) dialog box

F I G U R E 9 . 8
Settings for the

SoundSentry dialog box

 Figure 9.8
ssActive

shActive

ssWindowsEffect

ssFSTextEffect

Chapter 9 • Retrieving and Setting System Information540

F I G U R E 9 . 9
Accessibility Properties

(Mouse) dialog box

F I G U R E 9 . 1 0
Settings for the MouseKeys

dialog box

mkActive Figure 9.10

mkMaxSpeed

mkHotkeyActive

mkCtrlSpeed

mkReplaceNumbers

mkTimeToMaxSpeed

mkIndicator

 Computer and Operating System Information 541

F I G U R E 9 . 1 1
Accessibility Properties

(General) dialog box

Using the Accessibility Class
As with any other class module, you’ll need to create a new instance of the Acces-
sibility class before you can use its properties. To do so, you create a variable that
will refer to the new instance and work with that variable directly, like this:

Dim oAccess As Accessibility
' and then, later in your code:
Set oAccess = New Accessibility

Once you’ve created the object, use it as you would any other object, setting and
retrieving its properties. For example, the following fragment enables the Sticky-
Keys functionality, enables the hot key, and turns on the sound effect when users
use the feature:

Dim oAccess As Accessibility
Set oAccess = New Accessibility
With oAccess
 ' No point working with this feature if it’s not
 ' available on this computer.

atActive

atTimeOutMilliseconds

xxHotKeyConfirm

 xxHotKeySound,
atFeedBack

Chapter 9 • Retrieving and Setting System Information542

 If .skAvailable Then
 .skActive = True
 .skHotKeyActive = True
 .skAudibleFeedback = True
 End If
End With

Some of the Accessibility class properties are interrelated, so read the descriptions
carefully. For example, you cannot set both the fkBounceMSec and fkDelayMSec
properties to nonzero values. If you try to set them both, Windows disregards your
changes.

If you receive error 91, “Object variable or With block variable not set,” it’s almost
guaranteed that you’ve declared an object variable but haven’t instantiated it yet.
You must use the New keyword to create an object; otherwise, you’re just
creating a variable that can refer to the object. Make sure you either use New
when you declare the object or use the Set keyword to point the variable you
created to a new instance of the object. (See Chapter 5 for more information on
creating and using object variables.)

To try out all the properties of the Accessibility class, run the TestAccessibility
procedure in the SysInfoTest module.

Creating the Accessibility Class
Each area in the Accessibility class (AccessTimeOut, FilterKeys, and so on) uses a
particular user-defined type to retrieve and set its information. To retrieve the
information, you call SystemParametersInfo with a flag indicating you want to
retrieve the information and a data structure in which to place the information. To
send the information back to Windows, you repeat the operation, using a flag
indicating you want to send information back.

Each group of properties has its own module-level variable and its own procedure
(named xxReset) that retrieves a data structure full of information. For example, List-
ing 9.12 shows the fkReset subroutine, which fills in the module-level fk variable
with all the current FilterKeys settings.

 Computer and Operating System Information 543

➲ Listing 9.12: Use fkReset to Retrieve Current FilterKeys Settings

Private Sub fkReset()
 ' Retrieve current values.
 fk.lngSize = Len(fk)
 Call SystemParametersInfo(SPI_GETFILTERKEYS, _
 fk.lngSize, fk, 0)
End Sub

The Accessibility class uses a similar technique to save changed values back to
Windows, the xxApply set of procedures. Each function in this series returns a
Boolean value indicating the success or failure of the procedure. Although the
properties in Accessibility do not use the return value, you could easily modify
the class so that it handles errors when you set the various parameters. Listing
9.13 shows the fkApply function, similar to the functions used by all the Accessi-
bility class groups.

➲ Listing 9.13: Use fkApply to Set the New FilterKeys Settings

Private Function fkApply() As Boolean
 fkApply = CBool(SystemParametersInfo(SPI_SETFILTERKEYS, _
 fk.lngSize, fk, SPIF_TELLALL))
End Function

What’s in those user-defined structures? In general, you’ll find two kinds of
information there: quantitative values (such as the number of milliseconds to wait
before repeating a key) and long integer flag values, containing a series of bits
indicating Boolean values. In addition, each structure begins with a long integer
containing the size of the structure. For example, the simplest structure, ACCESS-
TIMEOUT, looks like this:

Private Type ACCESSTIMEOUT
 lngSize As Long
 lngFlags As Long
 lngTimeOutSecs As Long
End Type

In this case, code must supply the lngSize value before calling SystemParameters-
Info so the function knows how many bytes it has to work with. The lngTimeOut-
Secs member indicates how many milliseconds Windows waits before turning off
Accessibility functions. (See the atTimeOutMillisecs Let and Get Property procedures

Chapter 9 • Retrieving and Setting System Information544

in ACCESSIBILITY.CLS.) The lngFlags member groups a number of Boolean val-
ues (up to 32) into the single long integer value. In the case of the ACCESSTIME-
OUT structure, there are only three possible values: ATF_AVAILABLE, ATF_
TIMEOUTON, and ATF_ONOFFFEEDBACK, all defined in ACCESSIBILITY
.CLS. Other structures use a different set of flags, and it’s up to the programmer to
know which flag coincides with which property of the feature. (This is why the
class module makes this so much easier than working with SystemParametersInfo
directly—you don’t need to dig into each flag individually.)

To work with these Boolean flags, the Accessibility class includes two private
procedures, IsBitSet and SetBit (shown in Listing 9.14), that handle the bits for
you. To check whether a particular bit flag is set, property procedures can call
IsBitSet, providing the flag value and particular bit to check. For example, the fol-
lowing procedure checks whether the FilterKeys click is enabled:

Public Property Get fkClickOn() As Boolean
 Call fkReset
 fkClickOn = IsBitSet(fk.lngFlags, FKF_CLICKON)
End Property

To use this property, you might include code like this in your own application:

Dim oAccess As Accessibility
Set oAccess = New Accessibility
If oAccess.fkClickOn Then
 ' You know the click is on.
End If

To set or clear a particular feature, property procedures can call SetBit, indicat-
ing the current flag’s value, the particular feature to work with, and the new
value. For example, the following procedure controls whether the FilterKeys click
is enabled:

Public Property Let fkClickOn(Value As Boolean)
 Call SetBit(fk.lngFlags, FKF_CLICKON, Value)
 Call fkApply
End Property

To set this property, you might use code like this:

Dim oAccess As Accessibility
Set oAccess = New Accessibility
' Force the sound to be on when FilterKeys is active.
oAccess.fkClickOn = True

 Keyboard Information 545

➲ Listing 9.14: Retrieve, Set, and Clear Bits Using These Procedures

Private Function IsBitSet(lngFlags As Long, lngValue As Long) _
 As Boolean
 ' Use logical AND to see if a particular bit within
 ' a long integer is set.
 IsBitSet = CBool((lngFlags And lngValue) = lngValue)
End Function

Private Sub SetBit(lngFlags As Long, lngValue As Long, _
 fSet As Boolean)
 ' Use logical OR to set a particular bit.
 ' Use logical AND NOT to turn off a particular bit.
 If fSet Then
 lngFlags = lngFlags Or lngValue
 Else
 lngFlags = lngFlags And Not lngValue
 End If
End Sub

As you can see from Tables 9.10 through 9.16, which list information about the
various properties, some of the numeric properties (especially those related to Fil-
terKeys) allow only specific numeric values. These values aren’t documented, nor
is the behavior when you supply a value that’s out of range. Test your application
carefully if you attempt to set these values, and make sure you understand the
ramifications of changing these numeric values. For example, setting the fkDelay-
MSec property to 15 may seem like a good idea, but when you next retrieve the
setting, the value will certainly not be the value you think you set—Windows will
have set it to 0 instead.

Keyboard Information
The Keyboard class (KEYBOARD.CLS) allows you to set and retrieve information
about the keyboard hardware. Obviously, many of the properties are read-only, but
several allow you to control the settings used by the keyboard. Table 9.17 lists and
describes all the properties of the Keyboard class. Figure 9.12 shows the properties
supplied by the Keyboard class that have equivalents in the Windows user interface.

Chapter 9 • Retrieving and Setting System Information546

Using the Keyboard Class
The following brief sections demonstrate how to use each of the Keyboard class
properties. In general, to use the Keyboard class, create a new instance of the class,
and then set or retrieve its available properties. For example, to work with the cur-
rent keyboard delay setting, you might use code like this:

Dim kb As Keyboard
Set kb = New Keyboard
If kb.Delay < 3 Then
 kb.Delay = kb.Delay + 1
End If
Set kb = Nothing

T A B L E 9 . 1 7 : Properties Supplied by the Keyboard Class

Property Read/
Write?

Description

CapsLock Yes Returns or sets the CapsLock toggle

CaretBlinkTime Yes Sets or retrieves the number of milliseconds between blinks of
the caret. Allowable values: 200 to 1200 (in multiples of 100)

CaretOn No Shows or hides the caret. Most apps control the caret
themselves, and this call will have little or no effect except
in limited circumstances.

Delay Yes Sets the keyboard repeat-delay setting. Only values 0
through 3 are acceptable.

FunctionKeys No Determines the number of function keys on the keyboard.
The return value can be any of the values in Table 9.18.

KeyboardType No Determines the type of keyboard on the system. The return
value can be any of the values in Table 9.19.

NumLock Yes Returns or sets the NumLock toggle

ScrollLock Yes Returns or sets the ScrollLock toggle

Speed Yes Sets the keyboard repeat-speed setting. Only values 0
through 31 are acceptable.

 Keyboard Information 547

F I G U R E 9 . 1 2
Control Panel interface for

properties of a Keyboard
object

CapsLock, NumLock, and ScrollLock

Use the CapsLock property to set or retrieve the state of the CapsLock keyboard
toggle. It accepts and returns a Boolean parameter, so you might use code like this
to retrieve the current state of the toggle, set the CapsLock toggle on, do some
work, and then reset the toggle to its original state:

Dim blnOldState As Boolean
Dim kb As Keyboard
Set kb = New Keyboard
blnOldState = kb.CapsLock
kb.CapsLock = True
' Do work with CapsLock on.
kb.Capslock = blnOldState

Use the NumLock and ScrollLock properties just as you do the CapsLock
property.

Delay

Speed

CaretBlinkTime

Chapter 9 • Retrieving and Setting System Information548

CaretBlinkTime

The CaretBlinkTime property allows you to control the number of milliseconds
between the “blinks” of the text input caret. To make the caret blink more slowly,
you could use code like this:

Dim kb As Keyboard
Set kb = New Keyboard
' Slow down the caret blink rate one "notch"
If kb.CaretBlinkTime < 1200 Then
 kb.CaretBlinkTime = kb.CaretBlinkTime + 100
End If
Set kb = Nothing

CaretOn

Use the CaretOn property to show or hide the text-input caret. Most applications
control this setting themselves, so you can’t count on a global effect when you
change this property, nor would you want to, for the most part. To retrieve the
current state of the caret and hide it, you might use code like this:

Dim kb As Keyboard
Set kb = New Keyboard
' Hide the text caret.
kb.CaretOn = False
Set kb = Nothing

The effect of hiding the caret is cumulative. If your application hides the caret five
times in a row, it must also unhide the caret five times before the caret reappears.
Of course, because most VBA host applications control the caret themselves, you
won’t get much use from this property. Test carefully when using CaretOn; it may
work for you, but it may not.

Delay

Use the Delay property to control the amount of time the keyboard waits, while
you’re pressing a particular key, before starting the autorepeat action. (See the sec-
tion “Speed,” coming up in a moment, for information on controlling the speed at
which the key autorepeats.) You can set this property to any value between 0 and 3,

 Keyboard Information 549

inclusive. The following code sets the keyboard delay to its smallest possible
value:

Dim kb As Keyboard
Set kb = New Keyboard
kb.Delay = 0
Set kb = Nothing

FunctionKeys

The FunctionKeys property simply returns the number of function keys on the
installed keyboard. It returns one of the (admittedly ambiguous, but we didn't
define these) values in Table 9.18:

Dim kb As Keyboard
Set kb = New Keyboard
Select Case kb.FunctionKeys
 Case 1,3,5
 ' Only 10 function keys. You need more for your
 ' application.
 MsgBox "You don’t have enough function keys!"
End Select
Set kb = Nothing

T A B L E 9 . 1 8 : Possible Values for the FunctionKeys Property

Return Value Number of Function Keys

1 10

2 12 (sometimes 18)

3 10

4 12

5 10

6 24

7 Hardware-dependent and specified by the OEM

Chapter 9 • Retrieving and Setting System Information550

KeyboardType

The KeyboardType property returns the specific type of keyboard that’s currently
installed, as one of the values listed in Table 9.19. If your application requires a
101- or 102-key keyboard, you might include code like this:

Dim kb As Keyboard
Set kb = New Keyboard
If kb.KeyBoardType <> 4 Then
 MsgBox "This application works only with the new keyboard."
End If

Speed

Use the Speed property to set the rate at which characters repeat while you’re
holding down a key. (See the section “Delay” above for information on controlling
the waiting period before the repeat.) Windows allows values between 0 and 31
for this property:

Dim kb As Keyboard
Set kb = New Keyboard
' Set the fastest repeat rate.
kb.Speed = 31
Set kb = Nothing

T A B L E 9 . 1 9 : Possible Values for the KeyboardType Property

Return Value Keyboard Type

1 IBM PC/XT or compatible (83-key) keyboard

2 Olivetti “ICO” (102-key) keyboard

3 IBM PC/AT (84-key) or similar keyboard

4 IBM enhanced (101- or 102-key) keyboard

5 Nokia 1050 and similar keyboards

6 Nokia 9140 and similar keyboards

7 Japanese keyboard

 Keyboard Information 551

Creating the Keyboard Class
Except for the key-state toggling properties (CapsLock, NumLock, and ScrollLock),
creating the Keyboard class was simple. Each other property corresponds either to
a single function call or to the conglomerate SystemParametersInfo function. For
example, to retrieve the keyboard type, the class calls the GetKeyboardType API
function. To modify the caret blink rate, the code calls the GetCaretBlinkTime and
SetCaretBlinkTime API functions.

The CapsLock, NumLock, and ScrollLock properties each use the same Win-
dows API function, GetKeyState, to check the state of the specific key. To use the
function, you must pass it a specific virtual key code. Windows assigns every phys-
ical key a mapping so that Windows can run on machines with keyboards that dif-
fer slightly from the standard PC keyboard; these mappings are called virtual key
codes. Windows supports a maximum of 256 such mappings. Windows uses the
value 20 for the CapsLock key, 144 for the NumLock key, and 145 for the Scroll-
Lock key. VBA provides constants representing these (and most other) virtual key
codes: vbKeyCapital for the CapsLock key, vbKeyNumLock for the NumLock
key, and vbKeyScrollLock for the ScrollLock key. (Actually, not all VBA hosts
define the vbKeyScrollLock constant, so we’ve included a declaration for this
value in KEYBOARD.CLS.) Therefore, the following fragment will return the cur-
rent state of the CapsLock key:

lngState = GetKeyState(vbKeyCapital)

GetKeyState returns an integer containing 1 in its lowest bit if the key is toggled
on or 0 in the lowest bit if the key is toggled off. (GetKeyState returns the highest
bit set if the key is currently being held down, but the key being held down adds
no information as to whether the key is currently toggled on or off.) The property
procedures then convert these values to True or False, looking at just the lowest
bit by using the logical And operator:

Public Property Get Capslock() As Boolean
 ' Return or set the Capslock toggle.
 Capslock = CBool(GetKeyState(vbKeyCapital) And 1)
End Property

Setting the CapsLock, NumLock, and ScrollLock states on the keyboard requires dif-
ferent techniques, depending on the operating system. Windows 95 and 98 require
one technique, and Windows NT and 2000 require another.

For Windows 95 and 98, the CapsLock, NumLock, and ScrollLock Property Let pro-
cedures each call the same subroutine, SetKeyState, to do their work. SetKeyState

Chapter 9 • Retrieving and Setting System Information552

uses the API functions GetKeyboardState and SetKeyboardState; each of these
functions uses a 256-byte buffer in which to retrieve or set the full set of 256 key
settings. Each virtual key code maps to one element in this array of values. Once
you’ve used GetKeyboardState to retrieve the bufferful of settings, you can mod-
ify the specific key setting you care about and then store the settings back using
SetKeyboardState. (To toggle the key on, you need to set the lowest-order bit in
the byte. To toggle it off, you must clear that same bit. The SetKeyState procedure
uses the Or and And Not operators to set that bit correctly.) This will change just
the keys you’ve modified. This method allows you to change the state of the
CapsLock, NumLock, or ScrollLock key. Listing 9.15 shows the SetKeyState
procedure.

➲ Listing 9.15: The SetKeyState Procedure Allows You to Alter the
State of a Particular Key

Private Sub SetKeyState(intKey As Integer, fTurnOn As Boolean)
 ' Retrieve the keyboard state, set the particular
 ' key in which you're interested, and then set
 ' the entire keyboard state back the way it
 ' was, with the one key altered.
 Dim abytBuffer(0 To 255) As Byte
 GetKeyboardState abytBuffer(0)
 If fTurnOn Then
 abytBuffer(intKey) = abytBuffer(intKey) Or 1
 Else
 abytBuffer(intKey) = abytBuffer(intKey) And Not 1
 End If
 SetKeyboardState abytBuffer(0)
End Sub

The only parameter the GetKeyboardState and SetKeyboardState API functions
expect to receive is the address of a 256-byte memory block. In VBA, you emulate
this block using a 256-element byte array. To pass an array to an API call, you
normally pass the first element of the array. Because VBA stores arrays
contiguously in memory, the API function can take the address of the first element
of the array and find the rest of the elements. Procedures such as SetKeyState
depend on this behavior when passing an array to an API call that doesn’t understand
anything about VBA arrays.

 Memory Status 553

When called from Windows NT or Windows 2000, the property procedures
must emulate keystrokes—that is, they must convince Windows that the user
pressed the appropriate key. To do that, the procedures call the keybd_event API
function twice (once to press the key, again to release the key), passing in the key
to be pressed and information on whether to press or release the key. For example,
the full Numlock Property Let procedure looks like this:

Public Property Let Numlock(Value As Boolean)
 ' Return or set the Numlock toggle.

 If mblnIsWinNT Then
 ' Under NT/2000, you must send keystrokes
 ' through the keyboard buffer to toggle
 ' NumLock.

 ' Simulate Key Press
 keybd_event vbKeyNumlock, 0, _
 KEYEVENTF_EXTENDEDKEY, 0
 ' Simulate Key Release
 keybd_event vbKeyNumlock, 0, _
 KEYEVENTF_EXTENDEDKEY Or KEYEVENTF_KEYUP, 0
 Else
 ' Under Win95/98, simply set the value in the keyboard.
 Call SetKeyState(vbKeyNumlock, Value)
 End If
End Property

Memory Status
The MemoryStatus class (MEMORYSTATUS.CLS) is simple, with just a few prop-
erties, most of them read-only (except RaiseErrors, of course). The properties,
listed in Table 9.20, allow you to peek at the current memory situation in the com-
puter that’s running your application.

Chapter 9 • Retrieving and Setting System Information554

There are no properties in the MemoryStatus class dealing with available
resources, as there might have been in a class written for a 16-bit operating
system. The Win32 API does not contain any tools to retrieve information about
available resources because this isn’t supposed to be an issue in 32-bit Windows.
(Anyone who’s used Windows 9x extensively knows this isn’t the case, but under
Windows NT/2000, you certainly won’t be worrying about resource usage.)

Using the MemoryStatus Class
To use the MemoryStatus class, first declare a new instance of the class, and then
retrieve any of its properties. For example, the most interesting property of the
MemoryStatus class is the MemoryLoad property, which tells you the approximate

T A B L E 9 . 2 0 : Properties for the MemoryStatus Class

Property Description

AvailableExtendedVirtual Indicates the number of bytes of unreserved and uncommitted memory
in the VLM portion of the virtual address space (Windows 2000 only)

AvailablePageFile Indicates the number of bytes available in the paging file

AvailablePhysical Indicates the number of bytes of physical memory available

AvailableVirtual Indicates the number of bytes of unreserved and uncommitted memory
in the user mode portion of the virtual address space of the calling
process

MemoryLoad Number between 0–100 that gives a general idea of current memory
utilization, in which 0 indicates no memory use and 100 indicates full
memory use

RaiseErrors (Read/write) Indicates whether the class should raise a runtime error if
you attempt to call a property that is not valid for the current operating
system. The default value is True.

TotalPhysical Indicates the total number of bytes of physical memory

TotalPageFile Indicates the total number of bytes that can be stored in the paging file,
not the size of the paging file on disk

TotalVirtual Indicates the total number of bytes that can be described in the user
mode portion of the virtual address space of the calling process

 Memory Status 555

current memory utilization. To retrieve the value of this property, you write code
like this:

Dim oms As MemoryStatus
Set oms = New MemoryStatus
Debug.Print "The current memory load is: " & oms.MemoryLoad
Set oms = Nothing

Use the same technique with any or all of the MemoryStatus class properties.

Try out the TestMemoryStatus procedure in the SysInfoTest module to see all the
properties’ values on your machine.

Creating the MemoryStatus Class
The MemoryStatus class is one of the classes that’s centered on a single user-
defined data structure, the MEMORYSTATUS structure.

Private Type MEMORYSTATUS
 dwLength As Long
 dwMemoryLoad As Long
 dwTotalPhys As Long
 dwAvailPhys As Long
 dwTotalPageFile As Long
 dwAvailPageFile As Long
 dwTotalVirtual As Long
 dwAvailVirtual As Long
End Type

To gather information about the current memory situation, call the GlobalMemory-
Status API function, passing a MEMORYSTATUS variable.

On computers with more than four gigabytes of memory (not that many computers
contain that kind of memory), the MEMORYSTATUS structure can return incorrect
information—it will report the real amount of memory MOD 4 (that is, if you have
six gigabytes of memory, you'll only see two). Windows 2000 introduces an
extended version of this structure (MemoryStatusEx) and a related extended API
function (GlobalMemoryStatusEx). The code in the MemoryStatus class uses the
new function if it determines that the code is running on a Windows 2000
installation.

Chapter 9 • Retrieving and Setting System Information556

The extended structure, MEMORYSTATUSEX, introduces one additional mem-
ber, containing information about the available extended virtual memory, along
with the data type changes to all other members that contain information about
actual memory size:

Private Type MEMORYSTATUSEX
 dwLength As Long
 dwMemoryLoad As Long
 ullTotalPhys As Currency
 ullAvailPhys As Currency
 ullTotalPageFile As Currency
 ullAvailPageFile As Currency
 ullTotalVirtual As Currency
 ullAvailVirtual As Currency
 ullAvailExtendedVirtual As Currency
End Type

You may find this definition strange: Why are we defining the data type of these
variables as Currency when we will be passing this structure to the Windows API?
They certainly aren't maintaining currency values!

As it turns out, the VBA Currency data type is a 64-bit integer, which is what
this API function expects to find in the MEMORYSTATUSEX data structure. In
VBA, the Currency data type is the only native 64-bit numeric data type. (Inter-
nally, the Currency data type contains a 64-bit integer; when you display or work
with a Currency value, VBA divides the internal representation by 10,000 to come
up with the value you see in your code.) To get the real value from the Currency
variable, you need to multiply whatever value the variable holds by 10,000.

Because all the properties of the MemoryStatus class need to call either Global-
MemoryStatus or GlobalMemoryStatusEx with the appropriate data structure, the
Initialize event procedure fills in the size of the structures after determining the
operating system version, so that the properties don’t all need to take this extra step:

Private Sub Class_Initialize()
 Const VER_PLATFORM_WIN32_NT = 2

 ' Set the flag to true so that an error is raised
 ' if a non-applicable property is used for a particular
 ' operating system
 RaiseErrors = True

 ' First, confirm whether the OS is Win2000.
 osvi.dwOSVersionInfoSize = Len(osvi)

 Memory Status 557

 If CBool(GetVersionEx(osvi)) Then
 With osvi
 mblnIsWin2000 = _
 (.dwPlatformId = VER_PLATFORM_WIN32_NT _
 And .dwMajorVersion = 5)
 End With
 End If

 ' ms and msEx are declared at the module level.
 If mblnIsWin2000 Then
 ' On Win2000, the recommended
 ' extended version of the function
 ' will be called.
 msEx.dwLength = Len(msEx)
 Else
 ' Other platforms use the original version.
 ms.dwLength = Len(ms)
 End If
End Sub

Once that task has been taken care of, retrieving any property requires only that
the class call the GlobalMemoryStatus function to refresh the data structure’s val-
ues. For example, the TotalPageFile property looks like this:

Property Get TotalPageFile() As Long
 ' Indicates the total number of bytes that can be stored
 ' in the paging file, not the size of the paging file on disk.
 If mblnIsWin2000 Then
 Call GlobalMemoryStatusEx(msEx)
 TotalPageFile = CurrencyToLong(msEx.ullTotalPageFile)
 Else
 Call GlobalMemoryStatus(ms)
 TotalPageFile = ms.dwTotalPageFile
 End If
End Property

Private Function CurrencyToLong(curValue As Currency) As Long
 ' Converts a 64-bit Currency value to a Long value
 '
 CurrencyToLong = curValue * 10000
End Function

All the Property Get procedures in the MemoryStatus class work exactly the
same way.

Chapter 9 • Retrieving and Setting System Information558

Mouse Information
The Mouse class (MOUSE.CLS) contains information pertinent to (what else?) the
mouse and its activities on the screen. Table 9.21 lists all the properties of the class,
along with their data types and descriptions.

T A B L E 9 . 2 1 : Properties of the Mouse Class

Property Read/
Write?

Data
Type

Description

ActiveWindowTracking Yes Boolean Enables or disables active window
tracking (The window is automatically
activated when the mouse is on it. This,
however, does not bring the window
to the foreground or on top of other
windows.) (Windows 2000 only)

ActiveWindowTrackingTimeOut Yes Long Retrieves or sets the active window
tracking delay, in milliseconds
(Windows 2000 only)

Buttons No Long Retrieves the number of mouse buttons

CaretWidth Yes Long Sets or retrieves the caret width in edit
controls (Windows 2000 only)

CursorOn Write-only Boolean Shows or hides the mouse cursor

CursorShadow Yes Boolean Sets or removes the shadow around
the mouse cursor (Windows 2000
only)

CursorX No Long Retrieves the width, in pixels, of a
cursor

CursorY No Long Retrieves the height, in pixels, of a
cursor

DoubleClickTime No
(write-only)

Long Number of milliseconds between clicks,
indicating to Windows that you’ve
double-clicked. Normal value is around
450–500. To read double-click time,
look in HKEY_CURRENT_USER\Control
Panel\Mouse\DoubleClickSpeed.

 Mouse Information 559

DoubleClickX Yes Long Width, in pixels, around the location of
the first click in a double-click
sequence. Second click must occur
within the boundaries of this rectangle.

DoubleClickY Yes Long Height, in pixels, around the location of
the first click in a double-click
sequence. Second click must occur
within the boundaries of this rectangle.

DragX Yes Long Width, in pixels, of a rectangle
centered on a drag point to allow for
limited movement of the mouse before
the drag begins.

DragY Yes Long Height, in pixels, of a rectangle
centered on a drag point to allow for
limited movement of the mouse before
the drag begins.

HoverDelay Yes Long Retrieves or sets the time, in
milliseconds, for which the mouse
pointer has to stay in the hover
rectangle for a Hover event to occur.
Available under Windows 98, Windows
NT, and Windows 2000

HoverX Yes Long Retrieves or sets the width, in pixels, of
the rectangle within which the mouse
pointer has to stay for a Hover event to
occur. Available under Windows 98,
Windows NT, and Windows 2000

HoverY Yes Long Retrieves or sets the height, in pixels, of
the rectangle within which the mouse
pointer has to stay for a Hover event to
occur. Available under Windows 98,
Windows NT, and Windows 2000

MenuDelay Yes Long Sets or retrieves the time, in
milliseconds, that the system waits
before displaying a shortcut menu
when the mouse cursor is over a
submenu item.

T A B L E 9 . 2 1 : Properties of the Mouse Class (continued)

Property Read/
Write?

Data
Type

Description

Chapter 9 • Retrieving and Setting System Information560

Even though the wheeled mouse functions properly in Windows 95, there’s no
support in that older operating system for determining whether the wheeled
mouse is present or for controlling the number of lines to scroll when you move
the wheel. Therefore, the WheelPresent and WheelScrollLines properties work
properly only with Windows NT 4.x, Windows 98, and Windows 2000. On the
other hand, Windows NT and Windows 2000 just don’t support the MouseTrails
property, which Windows 95 and Windows 98 do support.

MouseButtonSwap Yes Boolean Sets or retrieves the swapped mouse
button state. (Button1 is on the right.)

MousePresent No Boolean Returns True if a mouse is installed

MouseSpeed,
MouseThreshold1,
MouseThreshold2

Yes Long MouseSpeed, combined
with MouseThreshold1 and
MouseThreshold2, creates the
real mouse speed.

MouseTrails Yes Long (Windows 95 and Windows 98 only)
Controls mouse trails. If the value is
greater than 1, MouseTrails is on, and the
higher the value, the more trails you get.

SnapToDefault Yes Boolean Determines whether the snap-to-
default-button feature is enabled. If
enabled, the mouse cursor
automatically moves to the default
button, such as “OK” or “Apply,” of a
dialog box. Available under Windows
98, Windows NT, and Windows 2000

TrackedWindowToTop Yes Boolean If True, then the windows activated
through active window tracking will be
brought to the top.

WheelPresent No Boolean Returns True if a wheel with a mouse is
present. Available under Windows 98,
Windows NT, and Windows 2000

WheelScrollLines Yes Boolean Determines the number of lines
scrolled with each movement of the
mouse wheel. Available under
Windows 98, Windows NT, and
Windows 2000

T A B L E 9 . 2 1 : Properties of the Mouse Class (continued)

Property Read/
Write?

Data
Type

Description

 Mouse Information 561

Using the Mouse Class
The mouse class consists of three types of properties:

Read-only properties The Buttons property returns the number of buttons
on the mouse, and the WheelPresent property returns whether the mouse includes
a middle wheel. To use these (and other read-only) properties, simply retrieve
the return value. For example, to use the MousePresent property, you might
write code like this:

Dim oMouse As Mouse
Set oMouse = New Mouse
If Not oMouse.MousePresent Then
 MsgBox "You must have a mouse to use this application."
End If

Write-only properties Actually, there’s but one of these misbegotten, poorly
conceived properties: the DoubleClickTime property. To retrieve this value,
you’ll need to inspect the HKEY_CURRENT_USER\Control Panel\Mouse\
DoubleClickSpeed Registry entry. We could have added the appropriate code
to this class, but to do so would have involved borrowing code from Chapter 10.
If you need to both set and retrieve this value, you may want to import the nec-
essary classes from that chapter and retrieve the Registry setting in a Property
Get procedure. In addition, the CursorOn property only allows you to set its
value. That is, you can tell Windows to show the mouse cursor or to hide it. But
there's no corresponding property to determine if the cursor is visible or not.
When you tell Windows to display the cursor, it increments an internal counter.
As long as that counter's value is greater than or equal to 0, the cursor is visible.
When you tell Windows to hide the cursor, it decrements the value. When it
becomes –1, Windows hides the cursor until you increment the counter (by call-
ing the ShowCursor API function with a True value) so that it's greater than or
equal to 0 again.

Read/write properties Properties such as MouseButtonSwap and SnapToDe-
fault are read/write properties that accept and return Boolean values. Others, such
as MouseSpeed, DragX, and MouseTrails, all accept and return long integers. In all
these cases, you use the properties the same way you use properties of any object.
For example, to cause the mouse to swap its buttons (the right-hand button
becomes the main button, popular among left-handed users), use code like this:

Dim oMouse As Mouse
Set oMouse = New Mouse
oMouse.MouseButtonSwap = True

Chapter 9 • Retrieving and Setting System Information562

The MouseSpeed and Related Properties

The only group of properties that requires any special explanation is the set
of three properties: MouseSpeed, MouseThreshold1, and MouseThreshold2.
These three work together to control how quickly the mouse cursor moves across
the screen as you move the mouse physically. The MouseSpeed parameter can
take on values between 0 and 2, representing the speed of the mouse cursor rela-
tive to the distance you’ve moved the mouse. The MouseThreshold (1 and 2)
properties can take on values between 0 and 12. The following paragraphs explain
how these three properties are related.

As you may have noticed, the more quickly you move the mouse, the farther the
mouse cursor moves on the screen. This means you don’t have to lift the mouse
and reposition it as often as you might otherwise have to. Windows uses three val-
ues to calculate the distance it will move the mouse cursor every time you move
the mouse, based on two tests.

At measured time intervals, as you move the mouse, Windows polls the posi-
tion of the mouse and the speed at which you’re moving it. If, during one interval,
the distance along either the x or y axis is greater than the first mouse threshold
value (MouseThreshold1) and the mouse speed (MouseSpeed) is not 0, Windows
doubles the distance. If the distance along either the x or y axis is greater than the
second mouse threshold value and the mouse speed is 2, the operating system
doubles the distance that resulted from applying the first threshold test. It is thus
possible for the operating system to multiply relatively specified mouse motion
along the x or y axis by up to four times.

If you use the Mouse Control Panel applet, you’ll see only a single linear slider
control to manage the mouse speed. Windows takes the seven possible settings on
the slider and converts them into preset values for the three properties. Table 9.22
lists these preset triplets of values, starting with the slowest and ending with the
fastest setting. Figure 9.13 shows the Mouse Control Panel applet, with the first,
middle, and last MouseSpeed triplets pointed out.

T A B L E 9 . 2 2 : Preset Values for the Three Mouse Parameters

Speed Threshold1 Threshold2

0 0 0

1 10 0

1 7 0

 Mouse Information 563

F I G U R E 9 . 1 3
Mouse Control Panel

applet, showing Mous-
eSpeed triplets

Therefore, the MouseSpeed parameter controls the general speed of the mouse.
As you move the mouse, if the MouseSpeed parameter is greater than 0 and the
mouse is moved more physical units than the value specified in Threshold1, Win-
dows doubles the distance, and the cursor moves farther. If the MouseSpeed is 2
and the distance moved was also greater than the value in the MouseThreshold2

1 4 0

2 4 12

2 4 9

2 4 6

T A B L E 9 . 2 2 : Preset Values for the Three Mouse Parameters (continued)

Speed Threshold1 Threshold2

 MouseSpeed, etc. (0, 0, 0) (2, 4, 6)

 SnapToDefault

 (1, 4, 0)

Chapter 9 • Retrieving and Setting System Information564

parameter, Windows again doubles the distance. You can see that it makes no
sense to have both the MouseSpeed parameter set to 1 and the Threshold2 param-
eter set to anything except 0—Windows will never even look at the Threshold2
value in that case.

If you intend to set these values, here are some general rules to help you:

• If the MouseSpeed parameter is set to 0, Windows never looks at the Thresh-
old values, and they should both be set to 0.

• If the MouseSpeed parameter is set to 1, Windows never looks at the
Threshold2 parameter, and it should be set to 0.

• If MouseSpeed is set to 1, then the smaller Threshold1 is, the faster the
mouse will move. This is why the Threshold1 values in Table 9.22 decrease
from top to bottom while MouseSpeed stays at 1.

• If MouseSpeed is set to 2, then the value of MouseThreshold2 becomes sig-
nificant, but it should never be less than the MouseThreshold1 value.
MouseThreshold2 is used only if the mouse has moved farther than the
value in MouseThreshold1, so having a value that’s smaller than the
MouseThreshold1 value won’t add any speed.

Therefore, if your MouseSpeed, MouseThreshold1, and MouseThreshold2 val-
ues are (0, 0, 0), there’s no acceleration as you move the mouse. As long as the first
value is 0, Windows never even looks at the next two.

If the values are (1, 10, 0), and

• You move the mouse 8 units, the cursor moves 8 units

• You move the mouse 11 units, you’ve crossed the threshold, and Windows
doubles the cursor movement to 22 units

If the values are (2, 4, 6), and

• You move the mouse 3 units, the cursor moves 3 units

• You move the mouse 5 units, you’ve crossed the first threshold, and Win-
dows doubles the movement to 10 units for the cursor

• You move the mouse 7 units, you’ve crossed both thresholds, so Windows
doubles the distance twice, moving the cursor 28 units.

 Non-Client Metrics 565

As you can see, it’s important to understand the relationship between the move-
ment of the mouse and the MouseSpeed, MouseThreshold1, and MouseThreshold2
parameters in controlling the speed and acceleration of the mouse cursor.

Non-Client Metrics
Non-client metrics are the settings for the width, height, and fonts of items on a
window’s border. Setting the properties of a NonClientMetrics object (NONCLI-
ENTMETRICS.CLS) affects the entire Windows display and allows you to control
display attributes such as the size of the buttons on a window’s caption bar and
the font used by the MsgBox function.

The properties supplied by the NonClientMetrics class break down into two cat-
egories: simple properties and font properties. The simple properties, described in
Table 9.23, allow you to control the size of various border settings, such as the but-
tons that appear on windows’ caption bars. The font properties, listed in Table
9.24, allow you to change various font settings for the five Font objects. Finally,
each of these Font objects supports the properties shown in Table 9.25.

T A B L E 9 . 2 3 : Simple Properties Supplied by the NonClientMetrics Class

Property Description

BorderWidth Sets or retrieves the standard window-sizing border width

ScrollWidth Sets or retrieves the width of buttons on scrollbars (or height, for
horizontal scrollbars). Also returns the width of vertical scrollbars.
Changing this value affects the dimensions of the scrollbars as well.

ScrollHeight Sets or retrieves the height of buttons on scrollbars (or width, for
horizontal scrollbars). Also returns the height of horizontal scrollbars

CaptionWidth Sets or retrieves the width of caption bar buttons

CaptionHeight Sets or retrieves the height of caption bar buttons

SmallCaptionButtonWidth Sets or retrieves the width of small caption bar buttons

SmallCaptionButtonHeight Sets or retrieves the height of small caption bar buttons

MenuWidth Sets or retrieves the width of menu bar buttons

MenuHeight Sets or retrieves the height of menu bar buttons

Chapter 9 • Retrieving and Setting System Information566

Caption Retrieves the height, in pixels, of a normal caption bar

SmallCaption Retrieves the height, in pixels, of a small caption bar

FixedBorderX Retrieves the width, in pixels, of the frame around the perimeter of a
window that has a caption but is not sizable

FixedBorderY Retrieves the height, in pixels, of the frame around the perimeter of
a window that has a caption but is not sizable

T A B L E 9 . 2 4 : Font Object Properties Supplied by the NonClientMetrics Class

Property Description

CaptionFont Retrieves the caption bar Font object

SmallCaptionFont Retrieves the small caption bar Font object

MenuFont Retrieves the menu Font object

StatusFont Retrieves the status bar Font object

MessageFont Retrieves the message box Font object

T A B L E 9 . 2 5 : Properties Supplied by the Font Class

Property Type Value

Size Long Point size for the font. Normally 8–127, but depends on
the FaceName

Weight Long Integer between 100–900, where 100 is very light and
900 is very heavy. Normal is 400 and bold is 700.

Italic Boolean True or False

StrikeOut Boolean True or False

Underline Boolean True or False

FaceName String String containing font face name

T A B L E 9 . 2 3 : Simple Properties Supplied by the NonClientMetrics Class (continued)

Property Description

 Non-Client Metrics 567

Using the NonClientMetrics Class
Using the simple properties in the NonClientMetrics class is just like using prop-
erties in any other class. First, you create a new instance of the object, and then
you set and retrieve its properties. For example, to add five pixels to the width of
the scrollbars, you could use code like this:

Dim ncm As NonClientMetrics
Set ncm = New NonClientMetrics
ncm.ScrollWidth = ncm.ScrollWidth + 5
Set ncm = Nothing

To test out most of the simple properties, the code in Listing 9.16 (from the Sys-
InfoText module) exercises most of the simple NonClientMetrics properties. Fig-
ure 9.14 shows a simple window before the code is called, and Figure 9.15 shows
the same window after the code has done its work. As you can see, the NonClient-
Metrics class provides properties to control most of the visual aspects of the win-
dow border.

F I G U R E 9 . 1 4
A simple window before

FixNCM is called

F I G U R E 9 . 1 5
The same window after

FixNCM is called

Chapter 9 • Retrieving and Setting System Information568

➲ Listing 9.16: Modify Most of the Simple NonClientMetrics
Properties

Sub FixNCM(Optional Bigger As Boolean = True)
 Dim ncm As NonClientMetrics
 Dim dblFactor As Double

 Set ncm = New NonClientMetrics
 If Bigger Then
 dblFactor = 2
 Else
 dblFactor = 0.5
 End If
 ncm.BorderWidth = ncm.BorderWidth * dblFactor
 ncm.CaptionHeight = ncm.CaptionHeight * dblFactor
 ncm.CaptionWidth = ncm.CaptionWidth * dblFactor
 ncm.MenuButtonHeight = ncm.MenuButtonHeight * dblFactor
 ncm.MenuButtonWidth = ncm.MenuButtonWidth * dblFactor
 ncm.ScrollHeight = ncm.ScrollHeight * dblFactor
 ncm.ScrollWidth = ncm.ScrollWidth * dblFactor
 Set ncm = Nothing
End Sub

Setting all these properties is a slow process. If you intend to change multiple
NonClientMetrics properties often, consider removing the calls to SaveSettings in
each property’s code and explicitly calling the SaveSettings method yourself once
you’ve made all the changes. That way, Windows won’t attempt to change all the
settings individually, and your code will run faster. To make these properties work
like all simple properties, we wrote the code so that each Property Let procedure
saves its changes. You’re welcome to change this behavior if you like.

Using the NonClientMetrics Font Properties

In addition to its simple properties, the NonClientMetrics class provides five font
properties. Each of these properties is a reference to a separate object, a Font object
(FONT.CLS). Each Font object provides a set of properties describing a font used
by a NonClientMetrics object, such as the font of the caption bar or the font used by
the menus. In addition, the NonClientMetrics object maintains the font used by

 Non-Client Metrics 569

the form popped up by the MsgBox function. That’s right: From your own appli-
cations, you can control the font used by the standard MsgBox function.

To use the font properties, treat them as objects contained within the NonClient-
Metrics object. For example, to retrieve the name of the font used by the MsgBox
form, you could write code like this:

Dim ncm As NonClientMetrics
Set ncm = New NonClientMetrics
Debug.Print ncm.MessageFont.FaceName
Set ncm = Nothing

The real difference between using the simple properties and using the Font
object properties is that changes to the fonts aren’t saved until you explicitly call
the SaveSettings method of the NonClientMetrics object. That is, once you’ve
made all the font changes you need to make, you must use code like this:

Call ncm.SaveSettings

to cause the object to save all the new settings. You needn’t call this method at all
if you’re only retrieving values or if you’re working only with the simple proper-
ties. If you want to modify font values, however, your changes won’t take effect
until you call this method.

If you want to work extensively with the Font object, you could use the With
statement, treating it like the real object it is. For example, the code in Listing 9.17
(from the SysInfoTest module) retrieves the current MsgBox font settings, modi-
fies them, pops up a test message box, and then resets the values.

➲ Listing 9.17: Sample Procedure That Modifies the MessageFont
Object

Sub FixMsgBox()
 Dim ncm As NonClientMetrics
 Dim strOldFont As String
 Dim sglOldSize As Single

 Set ncm = New NonClientMetrics
 With ncm
 With .MessageFont
 strOldFont = .FaceName
 sglOldSize = .Size
 .FaceName = "Verdana"
 .Size = 24

Chapter 9 • Retrieving and Setting System Information570

 End With
 Call .SaveSettings
 MsgBox "This is a test"
 With .MessageFont
 .FaceName = strOldFont
 .Size = sglOldSize
 End With
 Call .SaveSettings
 MsgBox "This is a test"
 End With
End Sub

As another example, the code in the following fragment sets the standard menu
font to be two point sizes larger than it was originally and causes the font to be
italic:

Dim ncm As NonClientMetrics
Set ncm = New NonClientMetrics
With ncm.MenuFont
 .Size = .Size + 2
 .Italic = True
End With
Call ncm.SaveSettings

Some programs, including all of Microsoft’s Office suite, eschew standard menus,
instead using menus of their own creation. Changes you make to standard Windows
menus using the classes provided here will have no effect in these applications.

Creating the NonClientMetrics Class
Although its read-only properties (Caption, SmallCaption, FixedBorderX, and
FixedBorderY) rely on the GetSystemMetrics function to retrieve their values, like
several other classes in this chapter, the NonClientMetrics class is centered around a
single data structure, the typNonClientMetrics structure:

Private Type typNonClientMetrics
 cbSize As Long
 lngBorderWidth As Long
 lngScrollWidth As Long

 Non-Client Metrics 571

 lngScrollHeight As Long
 lngCaptionWidth As Long
 lngCaptionHeight As Long
 lfCaptionFont As LogFont
 lngSMCaptionWidth As Long
 lngSMCaptionHeight As Long
 lfSMCaptionFont As LogFont
 lngMenuWidth As Long
 lngMenuHeight As Long
 lfMenuFont As LogFont
 lfStatusFont As LogFont
 lfMessageFont As LogFont
End Type

In the Initialize event procedure for the class, the code calls the SystemParame-
tersInfo function, passing a typNonClientMetrics structure to be filled in. From
then on, all the properties use the settings in this structure for retrieving and set-
ting properties.

The problem, as you can see, is that several members of this structure aren’t sim-
ple variables; each is itself another data structure, the LogFont structure:

Const LF_FACESIZE = 32
Private Type LogFont
 lfHeight As Long
 lfWidth As Long
 lfEscapement As Long
 lfOrientation As Long
 lfWeight As Long
 lfItalic As Byte
 lfUnderline As Byte
 lfStrikeOut As Byte
 lfCharSet As Byte
 lfOutPrecision As Byte
 lfClipPrecision As Byte
 lfQuality As Byte
 lfPitchAndFamily As Byte
 lfFaceName(0 To LF_FACESIZE - 1) As Byte
End Type

Clearly, there is more information here than is necessary for the fonts used by the
NonClientMetrics object. The question, then, was how to expose all the informa-
tion you need in order to use the object but not end up with an overload of similar,
but differently named, properties.

Chapter 9 • Retrieving and Setting System Information572

The answer, in this case, was to create a simple Font class with the properties
shown earlier in Table 9.25. This way, the NonClientMetrics class can create five
instances of the class to maintain the font information it needs for each of its five font
properties, and you can access those properties using objects within your NonClient-
Metrics object. In addition, the Font class can expose just the properties that make
sense for this situation, not every portion of the LogFont data structure.

To use the Font class, the NonClientMetrics class needs to take three distinct steps:

1. Declare the Font objects. In the declarations section of the module, the code
includes the following declarations:

Private oCaptionFont As Font
Private oSMCaptionFont As Font
Private oMenuFont As Font
Private oStatusFont As Font
Private oMessageFont As Font

2. Copy the data into the Font objects. In the Initialize event procedure, the
class needs to copy the data from each LogFont structure to each separate Font
object. The NonClientMetrics class contains a private procedure, SetFontInfo,
which copies all the necessary data:

Private Sub Class_Initialize()
 Dim lngLen As Long

 lngLen = Len(ncm)
 ncm.cbSize = lngLen
 Call SystemParametersInfo(SPI_GETNONCLIENTMETRICS, _
 lngLen, ncm, 0)

 Set oCaptionFont = New Font
 Set oSMCaptionFont = New Font
 Set oMenuFont = New Font
 Set oStatusFont = New Font
 Set oMessageFont = New Font

 Call SetFontInfo(ncm.lfCaptionFont, oCaptionFont)
 Call SetFontInfo(ncm.lfMenuFont, oMenuFont)
 Call SetFontInfo(ncm.lfMessageFont, oMessageFont)
 Call SetFontInfo(ncm.lfSMCaptionFont, oSMCaptionFont)
 Call SetFontInfo(ncm.lfStatusFont, oStatusFont)
End Sub

 Non-Client Metrics 573

3. Copy the data back from the Font objects. In the SaveSettings method of
the class, the code must perform the reverse of the set of steps in the Initial-
ize event procedure. Here, it must retrieve all the font information from the
various Font objects, filling in the appropriate LogFont structures in the typ-
NonClientMetrics structure. It uses the private GetFontInfo procedure to
move the data back from the Font objects. Finally, it calls the SystemParameters-
Info function to send the information back to Windows:

Public Sub SaveSettings()
 ' Save all changed settings.
 Dim lngLen As Long
 lngLen = Len(ncm)
 ncm.cbSize = lngLen
 ' Need to copy all the font values back into the
 ' LogFont structures.
 Call GetFontInfo(ncm.lfCaptionFont, oCaptionFont)
 Call GetFontInfo(ncm.lfMenuFont, oMenuFont)
 Call GetFontInfo(ncm.lfMessageFont, oMessageFont)
 Call GetFontInfo(ncm.lfSMCaptionFont, oSMCaptionFont)
 Call GetFontInfo(ncm.lfStatusFont, oStatusFont)
 ' Now save all the settings back to Windows.
 Call SystemParametersInfo(SPI_SETNONCLIENTMETRICS, _
 lngLen, ncm, SPIF_TELLALL)
End Sub

The SetFontInfo and GetFontInfo procedures are both simple, moving data from
one data structure into an equivalent object and back. There are two interesting
challenges along the way, however:

• Working with the array of bytes that contains the face name in the LogFont
structure

• Converting the font size to and from the familiar point size, since that’s not
the way the LogFont structure stores it

The next two sections deal with these issues.

Working with the Face Name

In order to support international versions, VBA stores all its strings internally
using the Unicode character mapping. In Unicode, each visible character takes up
two bytes of internal storage. Because Windows 95 and Windows 98 do not sup-
port Unicode and support only the ANSI character mapping (with one byte for

Chapter 9 • Retrieving and Setting System Information574

each character), VBA must convert strings it sends to and from the Windows API
into ANSI. This happens regardless of which operating system the application is
running under, although Windows NT and Windows 2000 do completely support
Unicode.

The problem in working with the font name in the NonClientMetrics class is
that the LogFont structure retrieves the font name (also referred to as its face name)
into an ANSI string, which you must convert to Unicode before manipulating the
font name within VBA. Luckily, VBA provides the StrConv function, which allows
you to convert strings to and from Unicode. The NonClientMetrics class uses this
function to perform the conversion. (See Chapter 1 for more information on work-
ing with strings and byte arrays.)

The font name member of the LogFont structure is declared like this:

lfFaceName(0 To LF_FACESIZE - 1) As Byte

where FACESIZE is a constant with a value of 32. Why isn’t lfFaceName simply
declared as a 32-byte string? The problem is that if you tell VBA that a variable
contains a string, it assumes that that string is stored in Unicode and processes it
as though it contained two bytes per character. Declaring the value as an array of
bytes keeps VBA from mangling the string. Figure 9.16 shows the Immediate win-
dow displaying both the raw ANSI and converted Unicode versions of the value
in the lfFaceName field of a LogFont structure.

F I G U R E 9 . 1 6
ANSI and Unicode repre-

sentations of the ANSI
FaceName element

The problem, then, is getting the array of bytes in and out of a Unicode string.
Getting it into a string is simple: Because the StrConv function can take a byte
array as its input, you can use it to move the byte array, converted to Unicode,
directly into a string. The SetFontInfo procedure in the NonClientMetrics class
does just this:

With oFont
 ' Code removed...
 .FaceName = dhTrimNull(StrConv(lf.lfFaceName, vbUnicode))
End With

 Non-Client Metrics 575

One final issue in this conversion is the removal of extra “junk” after the name of
the font. The dhTrimNull function (borrowed from Chapter 1 of this book) looks
for the first null character (vbNullChar) in a string and truncates the string at that
point. Because the Windows API returns strings with an embedded Null indicat-
ing the end of the string, dhTrimNull is a useful tool whenever you’re moving
strings from a Windows API function call into VBA.

The tricky issue is getting the string back into the byte array in the LogFont
structure in order to send the information back to Windows. Although you can
assign a variant directly into a dynamic byte array, you cannot do the same with a
fixed-size array, which is exactly what LogFont contains. Therefore, to get the text
back into that array, the SetFaceName procedure in NonClientMetrics must traverse
the input string, byte by byte, once it’s converted the string back to ANSI.

Listing 9.18 shows the entire SetFaceName procedure. This procedure starts out
by converting the Unicode string containing the new face name back into ANSI,
using the StrConv function. StrConv places its return value into a dynamic byte
array. (The byte array makes it fast and simple to traverse the string one byte at a
time later on.)

abytTemp = StrConv(strValue, vbFromUnicode)

Then the code places the length of the string into the intLen variable. Because the
array filled in by the StrConv function is zero-based, the number of items in the array
is 1 greater than its UBound:

intLen = UBound(abytTemp) + 1

The LogFont fixed-sized array can hold only LF_FACESIZE – 1 characters, so the
code next checks to make sure it’s not going to try to write more characters than
that to the structure:

If intLen > LF_FACESIZE - 1 Then
 intLen = LF_FACESIZE - 1
End If

Finally, it’s time to write the bytes into the structure, using a simple loop:

For intI = 0 To intLen - 1
 lf.lfFaceName(intI) = abytTemp(intI)
Next intI

As the final step, the code inserts a null value (0) into the final position in the
string. The Windows API expects to find this value as the string delimiter, and
bypassing this step can cause trouble for your API calls. (Normally, when you

Chapter 9 • Retrieving and Setting System Information576

pass a string to the API, you needn’t worry about this—it’s only because we’ve
copied the string in, one byte at a time, that it’s an issue at all.)

➲ Listing 9.18: Moving a Unicode String Back into an ANSI Byte Array
Takes a Few Steps.

Private Sub SetFaceName(lf As LogFont, strValue As String)
 ' Given a string, get it back into the ANSI byte array
 ' contained within a LOGFONT structure.
 Dim intLen As String
 Dim intI As Integer
 Dim varName As Variant
 Dim abytTemp() As Byte
 abytTemp = StrConv(strValue, vbFromUnicode)
 intLen = UBound(abytTemp) + 1
 ' Make sure the string isn’t too long.
 If intLen > LF_FACESIZE - 1 Then
 intLen = LF_FACESIZE - 1
 End If
 For intI = 0 To intLen - 1
 lf.lfFaceName(intI) = abytTemp(intI)
 Next intI
 lf.lfFaceName(intI) = 0
End Sub

Although it’s a bit more work to get the Unicode string back into the ANSI
buffer than it was to get the ANSI buffer into a Unicode string, once you’ve got the
code worked out, you needn’t worry about it in the future. The NonClientMetrics
class uses this code whenever you work with any of the Font objects, and should
you need to use this functionality in any of your own classes (Windows uses the
LogFont structure in many situations), you can lift the code from this class.

Working with Point Sizes

The LogFont structure maintains information about the font’s height and width in
pixels rather than its point size. It’s the font’s point size that you see when you
choose a font in any Windows application, however. Therefore, to make the Font
object’s Size property work as you’d expect, the NonClientMetrics class must con-
vert the font height into a standard point size.

 Power Status 577

When Windows provides the font width and height in the LogFont structure, it
fills in 0 for the lfWidth member and a negative value for the lfHeight member.
The negative value indicates internally that Windows should provide the closest
match for the character height requested. The code in NonClientMetrics must,
therefore, convert to and from that negative value in the lfHeight member of the
LogFont structure.

When converting from the LogFont structure into points, the formula to use is

points = -Int(lngHeight * 72 / lngLogPixelsY)

where lngLogPixelsY is the number of pixels per logical inch on the screen. Because
there are 72 points per logical inch, this calculation converts from pixels (the value
in the LogFont structure) to points.

Where does the value for lngLogPixelsY come from? Windows itself provides
this information, using the GetDeviceCaps API function. If you’re interested,
check out the code in the CalcSize procedure in the NonClientMetrics class. This
value returns, for the specific screen driver, the number of screen pixels there are
per logical inch of screen real estate. (The driver itself converts from logical inches
to real inches, but that isn’t part of this story.)

Converting back from points to pixels when saving a new font size is no more
difficult. The formula for this conversion is

pixels = -Int(lngHeight * lngLogPixelsY / 72)

The CalcSize procedure in NonClientMetrics takes care of both translations for you.
It’s called whenever you move font information to or from a LogFont structure.

Power Status
To help applications take advantage of the power management features of portable
(or desktop) computers that support these features, Windows 95, Windows 98, and
Windows 2000 supply two API functions, GetSystemPowerStatus and SetSystem-
PowerState, that provide information about, and control over, the status of your
computer’s power. The PowerStatus class (POWERSTATUS.CLS) provides prop-
erties and methods you can use to investigate the computer’s use of power and
even to suspend the computer if it supports that functionality.

Chapter 9 • Retrieving and Setting System Information578

Unfortunately, power management features don’t work in standard Windows NT 4
(and many unhappy Windows NT 4 users will attest to this). None of the features
in the PowerStatus class will work under the current version of Windows NT unless
you have installed software from other vendors that adds this functionality. Set
the RaiseErrors property of the PowerStatus object to False if you don’t want the
properties to raise an error but to simply fail silently.

Table 9.26 lists all the properties of the PowerStatus class. They’re all read-only,
as you’d expect. Many of the properties return numeric values grouped as enu-
merations. (See Table 9.28 for a list of the enumerated values.)

In addition to the properties defined in Table 9.26, the PowerStatus class
includes a few methods as defined in Table 9.27.

T A B L E 9 . 2 6 : PowerStatus Class Properties

Property Data Type Description

ACLineStatus pwrACLineStatus AC power status. One of the following: 0
(offline, using batteries), 1 (online, plugged in), 2
(backup power), 255 (unknown)

BatteryCharging Boolean True or False

BatteryLifePercent Byte Percentage of battery charge remaining from 0–
100; 255 if unknown

BatteryLifeTime Long Number of seconds of battery life remaining; –1
if unknown

BatteryFullLifeTime Long Number of seconds of battery life available when
the battery is at full charge; –1 if unknown. This
estimate is based on the BatteryLifeTime and
BatteryLifePercent fields.

BatteryState pwrBatteryFlag Battery charge status. Any combination of one or
more of the following: 1 (high), 2 (low), 4
(critical), 128 (no system battery), 255 (unknown)

DrivePowerState Boolean Returns True if the drive is fully turned on

IsSystemResumeAuto Boolean Returns True if the system was restored to the
working state automatically and the user is not
active

 Power Status 579

Table 9.28 defines all the enumeration data types the PowerStatus class uses.

T A B L E 9 . 2 7 : PowerStatus Class Methods

Method Description

CancelWakeupRequest Cancels a wake-up request issued by a previous call to RequestWakeUp.
Returns False if the device does not support wake-up, the system is
entering the sleeping state, or wake-up could not be enabled. The wake-
up functionality may not be turned off immediately.

RequestWakeup Issues a wake-up request to the specified device. Returns False if the
device does not support wake-up, the system is entering the sleeping
state, or wake-up could not be enabled.

RemainAwake Enables the calling applications to inform the system that it is in use,
thereby preventing the system from entering the sleeping power state
while the application is running. Pass in a value from the
pwrExecutionState enumeration.

Suspend Attempts to use the computer’s built-in power management to suspend
the computer (not all computers support this functionality). If power has
been suspended and subsequently restored, the return value is nonzero.

WakeUpLatency Specifies roughly how quickly the computer should enter the working
state. (Pass in a value from the pwrLatencyTime enumeration.)

T A B L E 9 . 2 8 : PowerStatus Class Enumeration Data Types

Enumeration Constant Description

pwrACLineStatus AC_LINE_OFFLINE Offline mode, connected

 AC_LINE_ONLINE Online mode, disconnected

 AC_LINE_BACKUP_POWER Using Backup power

 AC_LINE_UNKNOWN Unknown line status

pwrBatteryFlag BATTERY_FLAG_HIGH Battery charge status is High.

 BATTERY_FLAG_LOW Battery charge status is Low.

 BATTERY_FLAG_CRITICAL Battery charge status is Critical.

 BATTERY_FLAG_CHARGING Battery is currently charging.

 BATTERY_FLAG_NO_BATTERY No system battery

 BATTERY_FLAG_UNKNOWN Unknown battery status

Chapter 9 • Retrieving and Setting System Information580

Using the PowerStatus Class
The PowerStatus class consists of a few read-only properties, so it’s simple to use.
The following short sections demonstrate using each of the properties.

None of the following fragments will function correctly under standard Windows
NT 4.x because it doesn’t support power management functionality. However, if
you’re using a specialized version of Windows NT, modified by your computer
manufacturer, these functions may work.

pwrExecutionState ES_SYSTEM_REQUIRED Informs the system that the
application is performing some
operation that is not normally
detected as activity by the system

 ES_DISPLAY_REQUIRED Informs the system that the
application is performing some
operation that is not normally
detected as display activity by the
system

 ES_USER_PRESENT Indicates that a user is present, in
which case the system will use the
power management policies set up by
the user. Otherwise, the system will
return to the sleeping state as soon as
possible.

 ES_CONTINUOUS Tells the system to use the state being
set until the next call that uses
ES_CONTINUOUS with one of the
other state flags cleared

pwrLatencyTime LT_DONT_CARE Any latency (default).

 LT_LOWEST_LATENCY Advanced Power Management is
suspended, and it takes the least
amount of time (when compared to
working state) for the computer to
wake up.

T A B L E 9 . 2 8 : PowerStatus Class Enumeration Data Types (continued)

Enumeration Constant Description

 Power Status 581

The ACLineStatus Property

The ACLineStatus property indicates whether the power connection is online or
offline. The property returns one of the flags pwrACLineOffline, pwrACLine-
Online, pwrACLineBackupPower, or pwrACLineUnknown. For example, you
could write code like the following to display the AC power status:

Dim ps As PowerStatus
Set ps = New PowerStatus
Dim strOut As String
Select Case ps.ACLineStatus
 Case AC_LINE_OFFLINE
 strOut = "Batteries"
 Case AC_LINE_ONLINE
 strOut = "Plugged in"
 Case AC_LINE_BACKUP_POWER
 strOut = "Using backup power"
 Case AC_LINE_UNKNOWN
 strOut = "Unknown"
End Select

The BatteryState Property

The BatteryState property returns information about the charge state of the com-
puter’s battery. It returns one of the flags BATTERY_FLAG_HIGH, BATTERY_
FLAG_LOW, BATTERY_FLAG_CRITICAL, BATTERY_FLAG_NO_BATTERY, or
BATTERY_FLAG_UNKNOWN, all of which are contained within the pwr-
BatteryFlag enumeration data type. You could write code like this to display the
battery-charging status:

Dim ps As PowerStatus
Set ps = New PowerStatus
Dim strOut As String
Select Case ps.BatteryState
 Case BATTERY_FLAG_HIGH
 strOut = "Full charge"
 Case BATTERY_FLAG_LOW
 strOut = "Low charge"
 Case BATTERY_FLAG_CRITICAL
 strOut = "Critical"

Chapter 9 • Retrieving and Setting System Information582

 Case BATTERY_FLAG_NO_BATTERY
 strOut = "No battery"
 Case BATTERY_FLAG_UNKNOWN
 strOut = "Unknown"
End Select

The BatteryCharging Property

The BatteryCharging property simply returns a Boolean True or False, indicating
the current charging state of the battery. If the state is unknown, the property
returns False.

The BatteryLifePercent, BatteryLifeTime, and
BatteryFullLifetime Properties

These three properties work together to provide information about how long the
battery will provide power. The BatteryLifeTime property returns the number of
remaining seconds the battery has, and the BatteryFullLifeTime property returns
the total number of seconds the battery should last if fully charged. The Battery-
LifePercent property returns the percentage of lifetime remaining, as an integer
between 0 and 100. Both the BatteryLifeTime and BatteryFullLifeTime properties
return the prwBatteryLifeUnknown constant if their status is unknown. The Bat-
teryLifePercent property returns the pwrBatteryPercentageUnknown constant if
its value is unknown.

The DrivePowerState Property

The DrivePowerState property allows you to find out whether the specific drive is
fully spun up or not. The return value is True if the drive is fully on or False if the
drive is in sleep mode. Ideally, if the hard drive is powered down, you should
defer accessing it.

The IsSystemResumeAuto Property

This property will return True if the system was restored to the working state
automatically and the user is not active at call time.

 Screen and Window Information 583

The Suspend Method

Call the Suspend method of the PowerStatus class to suspend the computer, if it
supports the functionality. The method returns 0 if it fails, so you can check the
return value to see whether the computer was actually suspended.

The RemainAwake Method

The RemainAwake method lets the operating system know that the system is
being currently used, in which case the system will be prevented from entering
sleep mode. There are four different types of working states that you can pass to
this method, each described in Table 9.28.

The WakeUpLatency Method

This method tells the operating system how quickly the computer should recover
from sleep mode. There are five possible sleep states, out of which only two can be
used from code, as listed in Table 9.28. The LT_LOWEST_LATENCY constant is
the only valid latency value you can pass to this function (the other choice,
LT_DONT_CARE, being the default). As the constant’s name indicates, this is the
quickest amount of time in which the system can recover from a sleep state; in
other words, it’s the lowest possible latency period.

To see some of the PowerStatus methods and properties in action, try out the
TestPowerStatus procedure in the SysInfoTest module. This procedure attempts to
suspend your computer, so make sure you save all your work before trying it (you
never know how stable Suspend really is, right?).

Screen and Window Information
Windows provides a great deal of information about the screen and the objects
displayed on the screen, such as icons and windows. The NonClientMetrics class
includes information about the window borders, but the ScreenInfo class contains
properties and methods that work with the screen and icons.

Although the ScreenInfo class (SCREENINFO.CLS) exposes a large number
of properties, they’re all quite simple. Each read-only property (see Table 9.29)

Chapter 9 • Retrieving and Setting System Information584

provides a single piece of information about the screen, such as the width or
height of the screen or the minimum height or width of a window. Table 9.30
includes a list of read/write properties supplied by the ScreenInfo object, includ-
ing the data type to specify for each property. Many of these properties allow you
to enable or disable new interface features introduced in Windows 98 and Win-
dows 2000, such as the Menu Fade effect and Hot Tracking. The ScreenInfo class,
like other classes in this chapter, tracks applicable properties internally by retriev-
ing operating system versions, so include error handling code in your procedures,
and double-check these tables to find out if the property that interests you is valid
for your operating system. (Make sure you set the RaiseErrors property of the Screen-
Info object to be False, if you don't want to trap errors because of incorrect operating
system calls.) Table 9.29 lists the read-only ScreenInfo class properties. Table 9.30 lists
the read/write properties, and Table 9.31 lists the methods of the class.

T A B L E 9 . 2 9 : ScreenInfo Class Read-Only Properties

Property Description

Border3DX Width, in pixels, of a Window border

Border3DY Height, in pixels, of a Window border

CaptionBarButtonX Width, in pixels, of a button in a window's caption or title bar

CaptionBarButtonY Height, in pixels, of a button in a window's caption or title bar

CaptionButtonX Width, in pixels, of small caption buttons

CaptionButtonY Height, in pixels, of small caption buttons

CaptionHeight Height, in pixels, of a normal caption bar

FixedBorderX Width, in pixels, of the frame around the perimeter of a window that has a
caption but is not sizable

FixedBorderY Height, in pixels, of the frame around the perimeter of a window that has a
caption but is not sizable

FullScreenX Width of the inside area of a full-screen window. Use GetWorkArea to get
the portion of the screen not obscured by docked trays.

FullScreenY Height of the inside area of a full-screen window. Use GetWorkArea to get
the portion of the screen not obscured by docked trays.

HorizontalScrollX Width, in pixels, of the arrow bitmap on a horizontal scroll bar

HorizontalScrollY Height, in pixels, of a horizontal scroll bar

 Screen and Window Information 585

IconSizeX Default width, in pixels, for an icon

IconSizeY Default height, in pixels, for an icon

IconSpacingX Width, in pixels, of grid cells for items in Large Icon view

IconSpacingY Height, in pixels, of grid cells for items in Large Icon view

KanjiWindow For DBCS versions of Windows, height in pixels of the Kanji window

MaximizedX Width, in pixels, of a maximized top-level window

MaximizedY Height, in pixels, of a maximized top-level window

MaxTrackX Default maximum width, in pixels, of a window that has a caption and
sizing borders

MaxTrackY Default maximum height, in pixels, of a window that has a caption and
sizing borders

MenuBarButtonsX Width, in pixels, of menu bar buttons, such as the child window Close
button

MenuBarButtonsY Height, in pixels, of menu bar buttons, such as the child window Close
button

MenuCheckX Width, in pixels, of the default menu check-mark bitmap

MenuCheckY Height, in pixels, of the default menu check-mark bitmap

MenuHeight Height, in pixels, of a normal single-line menu

MinimizedX Width, in pixels, of a normal minimized window

MinimizedY Height, in pixels, of a normal minimized window

MinimumX Minimum width, in pixels, of a window

MinimumY Minimum height, in pixels, of a window

MinSpacingX Width, in pixels, of a grid cell for minimized windows

MinSpacingY Height, in pixels, of a grid cell for minimized windows

MinTrackX Minimum tracking width, in pixels, of a window

MinTrackY Minimum tracking height, in pixels, of a window

MonitorCount Number of display monitors on the desktop under Windows 98 and
Windows 2000

T A B L E 9 . 2 9 : ScreenInfo Class Read-Only Properties (continued)

Property Description

Chapter 9 • Retrieving and Setting System Information586

PenWindows True if Microsoft Windows for Pen computing extensions are installed

SameDisplayFormat True if all the display monitors have the same color format under Windows
2000 and Windows 98. Note that two displays can have the same bit depth
but different color formats. For example, the red, green, and blue pixels
can be encoded with different numbers of bits, or those bits can be located
in different places in a pixel's color value.

ScreenX Width of the screen, in pixels

ScreenY Height of the screen, in pixels

SizingBorderX Width of the horizontal border, in pixels, around the perimeter of a
window that can be resized

SizingBorderY Height of the vertical border, in pixels, around the perimeter of a window
that can be resized

SmallCaption Height, in pixels, of a small caption bar

SmallIconX Recommended width for a small icon

SmallIconY Recommended height for a small icon

ThumbX Width, in pixels, of the thumb box in a horizontal scroll bar

ThumbY Height, in pixels, of the thumb box in a vertical scroll bar

VerticalScrollX Width, in pixels, of a vertical scroll bar

VerticalScrollY Height, in pixels, of the arrow bitmap on a vertical scroll bar

VirtualScreenHeight Height, in pixels, of the virtual screen under Windows 98 and Windows
2000. The virtual screen is the bounding rectangle of all display monitors.

VirtualScreenWidth Width, in pixels, of the virtual screen under Windows 98 and Windows 2000

VirtualScreenX Coordinates for the left side of the virtual screen under Windows 98 and
Windows 2000

VirtualScreenY Coordinates for the top of the virtual screen under Windows 98 and
Windows 2000

WindowBorderX Width, in pixels, of a window border

WindowBorderY Height, in pixels, of a window border

T A B L E 9 . 2 9 : ScreenInfo Class Read-Only Properties (continued)

Property Description

 Screen and Window Information 587

T A B L E 9 . 3 0 : ScreenInfo Class Read/Write Properties

Property Data Type Description

BorderMultiplier Long The multiplier factor that determines the width of
a window’s sizing border

ComboBoxAnimation Boolean Sets/returns True if the slide-open effect for
combo boxes is enabled

DesktopWallpaper String Returns the path of the desktop wallpaper on
Windows 2000 (does not work with JPG/GIF files);
sets the wallpaper for all other operating systems.
Supply a string containing a filename, or “(None)”
to display no wallpaper. To get the wallpaper
value, look in the Registry’s
HKEY_CURRENT_USER\Control
Panel\Desktop\WallPaper key.

DragFullWindows Boolean Determines whether dragging of full windows is
enabled. If True, Windows displays the entire
window contents as you move the window. If
False, it displays only a border.

FontSmoothing Boolean Indicates whether the font-smoothing feature is
enabled

ForegroundFlashCount Long Sets or returns the number of times Windows will
flash the taskbar button when rejecting a
foreground switch request under Windows 2000
and Windows 98

ForegroundLockTimeOut Long Sets or returns the amount of time following user
input, in milliseconds, during which the system
will not allow applications to force themselves into
the foreground under Windows 2000 and
Windows 98

GradientCaptions Boolean Enables or disables the gradient effect for window
title bars under Windows 2000 and Windows 98

GridGranularity Long Granularity value of the desktop sizing grid. This
granularity establishes how much control you
have over the size of windows; the larger this
setting, the fewer options you have.

HotTracking Boolean Enables or disables hot tracking of user-interface
elements, such as menu names on menu bars,
under Windows 2000 and Windows 98. Hot
tracking means that when the cursor moves over
an item, it is highlighted but not selected.

Chapter 9 • Retrieving and Setting System Information588

IconFontName String Font name for icons

IconFontSize Long Icon font size

IconHorizontalSpacing Long Width of an icon cell

IconTitleWrap Boolean Turns icon-title wrapping on or off

IconVerticalSpacing Long Height of an icon cell

ListboxSmoothScrolling Boolean Enables or disables smooth-scrolling effect for list
boxes under Windows 98 and Windows 2000

MenuAnimation Boolean Enables or disables menu animation under
Windows 98 and Windows 2000

MenuFade Boolean Enables or disables menu fade animation under
Windows 2000

MenuKeysAlwaysUnderlined Boolean Enables or disables the underlining of menu access
keys under Windows 98 and Windows 2000

MenuDropAlignment Boolean Alignment of pop-up menus. Specify True for right
alignment and False for left alignment (the normal
state).

MinAnimation Boolean Determines the state of minimize animation. If
False, Windows doesn’t display animation as you
minimize a window. Setting this property to False
makes Windows appear to run faster.

SelectionFade Boolean Enables or disables the selection fade effect under
Windows 2000. The selection fade effect causes the
menu item selected by the user to remain on the
screen briefly while fading out after the menu is
dismissed.

TooltipAnimation Boolean Enables or disables ToolTip animation under
Windows 2000

TooltipFade Boolean Sets or returns ToolTip animation under Windows
2000 that is being currently used. True specifies
fade effect; False specifies a slide effect.

UIEffects Boolean Enables or disables all UI effects en masse under
Windows 2000.

T A B L E 9 . 3 0 : ScreenInfo Class Read/Write Properties (continued)

Property Data Type Description

 Screen and Window Information 589

Using the ScreenInfo Class
The ScreenInfo class exposes many properties, all useful in particular circum-
stances, but all very specific. If you’re not using a Japanese version of Windows,
for example, you’ll never have a need for the KanjiWindow property. On the other
hand, you may often need the ScreenX and ScreenY properties. We can’t begin to
suggest reasons you’d need all these properties; we’ve simply provided them
here, as properties of a ScreenInfo object, because Windows makes them available.
Experiment with the read/write properties to see their effect on your environ-
ment before unleashing them in your applications.

As with other objects, working with these properties requires only creating an
instance of the ScreenInfo object:

Dim oScreen As ScreenInfo
Set oScreen = New ScreenInfo
oScreen.MinAnimation = False
oScreen.IconFontName = "Tahoma"
If oScreen.ScreenX > 1024 Then
 MsgBox "You have a very large amount of screen real estate!"
End If

Working with the methods of the ScreenInfo object requires a bit more informa-
tion. The GetWorkArea and SetWorkArea methods allow you to control the area
that Windows thinks is available for maximized windows. You can retrieve the
coordinates of this region, and you can modify them as well.

To retrieve the coordinates of the work area, you must pass four long integer
variables to the GetWorkArea method. It fills in the value of the four long integers
for you. To set the new work area, call SetWorkArea, passing one or more of the

T A B L E 9 . 3 1 : ScreenInfo Class Methods

Method Description

GetWorkarea Gets the size of the work area. The work area is the portion of the screen not
obscured by the taskbar.

SetDeskPattern Sets the current desktop pattern by causing Windows to read the Pattern
setting from the WIN.INI file. To get a desktop pattern, look in
HKCU\Control Panel\Desktop\Pattern.

SetWorkArea Sets the size of the work area. The work area is the portion of the screen not
obscured by the taskbar.

Chapter 9 • Retrieving and Setting System Information590

four coordinates. If you omit a coordinate when you call SetWorkArea, the code
will use the current setting for that coordinate. This way, you can modify one or
more of the coordinates without having to pass them all in. Once you’ve called the
following code fragment, maximizing a window will leave empty space at the bot-
tom because you’ve changed what Windows thinks is its work area for maxi-
mized windows:

Dim lngLeft As Long
Dim lngTop As Long
Dim lngRight As Long
Dim lngBottom As Long
Dim oScreen As ScreenInfo
Set oScreen = New ScreenInfo
' Get the current work area:
Call oScreen.GetWorkArea(lngLeft, lngTop, lngRight, lngBottom)
' Move the bottom up by 10%:
lngBottom = Int(.90 * lngBottom)
Call oScreen.SetWorkArea(Bottom:=lngBottom)

Creating the ScreenInfo Class
Like several other classes, most of the properties in the ScreenInfo class get their
values from either the GetSystemMetrics or the SystemParametersInfo function.
The only properties that required any extra code were the IconFontName and
IconFontSize properties. Because both of these properties get their values from a
LogFont structure, the ScreenInfo class faces the same obstacles that the Non-
ClientMetrics class faced. The problems were solved with similar code. (See the
“Working with the Face Name” and “Working with Point Sizes” sections earlier in
this chapter for more information.)

To try out the properties of the ScreenInfo class, run the TestScreen procedure in
the SysInfoTest module.

 System Colors 591

System Colors
Windows provides a set of system colors, which it uses when displaying any win-
dow. Any application can override the system colors, of course, but the colors are
there for Windows’, and your, use. Table 9.32 lists the properties of the System-
Colors class (SYSTEMCOLORS.CLS), all read/write, that you can use to retrieve
and set the Windows system colors.

T A B L E 9 . 3 2 : Properties of the SystemColors Class

Property Description

ActiveBorder Border of active window system color

ActiveCaption Caption of active window system color. Specifies the left-side color
in the color gradient of an active window's title bar under Windows
98 and Windows 2000

ActiveGradientColor Right-side color in the color gradient of an active window's title bar
under Windows 2000 and Windows 98

AppWorkspace Background of MDI desktop system color

Background Windows desktop system color

ButtonFace Button system color

ButtonHighlight 3-D highlight of button system color

ButtonShadow 3-D shading of button system color

ButtonText Button text system color

CaptionText Text in window caption system color

DarkShadow3D 3-D dark shadow system color

GrayText Gray text system color

Highlight Selected item background system color

HighlightText Selected item text system color

HotTrackItem Color for a hot-tracked item under Windows 2000 and Windows 98

InactiveBorder Border of inactive window system color

InactiveCaption Caption of inactive window system color

InactiveCaptionText Text of inactive window system color

Chapter 9 • Retrieving and Setting System Information592

Using the SystemColors Class
To use the SystemColors class, just as with the other classes in this chapter, first
create a new instance of the class, and then work with its properties. For example,
to change the background color of buttons, you could use code like this:

Dim sc As SystemColors
Set sc = New SystemColors
Dim lngColor As Long
lngColor = sc.ButtonFace
' Set the button background to be red.
sc.ButtonFace = 255
' Later, put the color back:
sc.ButtonFace = lngColor

By the way, should you try this experiment, you may be surprised; changing the
ButtonFace property also changes the color of many other objects in Windows,
including scrollbars and menu bars. Unfortunately, there’s no support in the API
for controlling the Windows color scheme, so you’ll need to work with each color
separately. It’s also unfortunate that we could find no documentation on the inter-
relations between various screen artifacts and the system colors—you’ll find that
changing one of the properties of the SystemColors object may, in fact, change the

InactiveGradientColor Right-side color in the color gradient of an inactive window's title
bar under Windows 2000 and Windows 98

Light3D Light color for 3-D shaded objects

Menu Menu system color

MenuText Menu text system color

ScrollBar Scrollbar system color

TooltipBackground Tooltip background system color

TooltipText Tooltip text system color

Window Window background system color

WindowFrame Window frame system color

WindowText Window text system color

T A B L E 9 . 3 2 : Properties of the SystemColors Class (continued)

Property Description

 System Colors 593

color of a seemingly unrelated object. Experiment carefully when using these
properties in applications.

Using System Colors in Your User Interface

If you intend to assign the system color values to elements of your application’s
user interface, don’t assign the value you retrieved from properties of the System-
Colors object. Although you can do this if you like, it will defeat your purpose. If a
user changes the system colors, you want your interface to automatically alter
itself to match the new colors. If you hard-code a value you retrieve at design
time, your interface cannot magically alter itself.

If, instead, you choose a value from Table 9.33, your user interface will always
match the settings chosen in the Windows color scheme. Use the values in the first
column in your VBA code and the values in the second column in property sheets.

T A B L E 9 . 3 3 : System Color Constants for Use in the User Interface

VBA Constant Value for Property
Sheet

Description

vbScrollBars &H80000000 Scrollbar color

vbDesktop &H80000001 Desktop color

vbActiveTitleBar &H80000002 Color of the title bar for the active window

vbInactiveTitleBar &H80000003 Color of the title bar for the inactive window

vbMenuBar &H80000004 Menu background color

vbWindowBackground &H80000005 Window background color

vbWindowFrame &H80000006 Window frame color

vbMenuText &H80000007 Color of text on menus

vbWindowText &H80000008 Color of text in windows

vbTitleBarText &H80000009 Color of text in caption, size box, and scroll
arrow

vbActiveBorder &H8000000A Border color of active window

vbInactiveBorder &H8000000B Border color of inactive window

vbApplicationWorkspace &H8000000C Background color of multiple document
interface (MDI) applications

Chapter 9 • Retrieving and Setting System Information594

Creating the SystemColors Class
The SystemColors class was one of the simplest in this chapter to create. It relies
on only two API functions: GetSysColor and SetSysColors. GetSysColor retrieves
a single system color, given a constant representing the item to be retrieved. For
example, the following excerpt from the SystemColors class retrieves the back-
ground color for ToolTips:

Public Property Get TooltipBackground() As Long
 ' ToolTip background color system color.
 TooltipBackground = GetSysColor(COLOR_INFOBK)
End Property

Setting a system color requires a tiny bit more effort because the SetSysColors
function is capable of setting multiple colors at once. The code in Listing 9.13 sets
the background color for ToolTips, using the SystemColors’ SetColor procedure.

vbHighlight &H8000000D Background color of items selected in a
control

vbHighlightText &H8000000E Text color of items selected in a control

vbButtonFace &H8000000F Color of shading on the face of command
buttons

vbButtonShadow &H80000010 Color of shading on the edge of command
buttons

vbGrayText &H80000011 Grayed (disabled) text

vbButtonText &H80000012 Text color on push buttons

vbInactiveCaptionText &H80000013 Color of text in an inactive caption

vb3DHighlight &H80000014 Highlight color for 3-D display elements

vb3DDKShadow &H80000015 Darkest shadow color for 3-D display elements

vb3DLight &H80000016 Second-lightest 3-D color after vb3DHighlight

vbInfoText &H80000017 Color of text in ToolTips

vbInfoBackground &H80000018 Background color of ToolTips

T A B L E 9 . 3 3 : System Color Constants for Use in the User Interface (continued)

VBA Constant Value for Property
Sheet

Description

 System Colors 595

This procedure calls the SetSysColors API procedure, which allows you to send as
many colors as you like. SetColor is sending only a single color, but it could work
with a group of colors at a time. In this case, it passes 1 as the first parameter, indi-
cating that it’s supplying only a single color. The second parameter indicates
which color it’s sending (COLOR_INFOBK, a predefined constant, indicates that
this color is the background for ToolTips), and the third supplies the new color.

➲ Listing 9.13: Setting a System Color Calls the SetColor Procedure

Public Property Let TooltipBackground(Value As Long)
 ' ToolTip background color system color.
 Call SetColor(COLOR_INFOBK, Value)
End Property
Private Sub SetColor(lngID As Long, lngValue As Long)
 Call SetSysColors(1, lngID, lngValue)
End Sub

You may find that you’d rather have the SystemColors class allow you to set a
number of new colors before sending the information to Windows. This will make
the update faster because Windows won’t try to repaint the screen after each color
change. To do this, you’ll need to create an array of colors, one for each constant in
the SystemColors class module. Then, in each Property Let, modify the value in the
appropriate row of the array rather than calling SetColor. Finally, you’ll need to
add a new method of the class that you’ll call when you’re ready to update all the
colors. This method will call SetSysColors, passing the number of items in the array
(29, if you use the colors in the class module), an array containing the numbers 0
through 28, and an array containing all the new colors. That will cause Windows
to set all 29 colors at once. One more tip: Make sure you initialize the color array
with all the current colors in the Initialize event of the class. Otherwise, when you
set the new colors, all the colors you haven’t modified will contain 0 (black) and your
Windows environment will become very difficult to use. The sample project includes a
class that works this way—the SystemColorsFast class.

Chapter 9 • Retrieving and Setting System Information596

Summary
This chapter has presented, through a series of nine class modules, a demonstra-
tion of some of the system and device information that’s available as part of the
Windows API. By exposing the various bits of information as properties of the classes
and grouping the wildly jumbled API calls into logical units, we’ve attempted to
make this large body of information more useful to you as a solution developer.

On the other hand, this chapter just barely skimmed the surface of the system
information available from the Win32 API. Although the chapter may seem fairly
exhaustive, this is not the case. There are many more corners of the API to be poked
at. For example, the GetDeviceCaps and DeviceCapabilities functions offer a trea-
sure trove of information about devices such as the installed video and printer driv-
ers. The properties discussed in this chapter should go a long way toward getting
you the information you need for your solutions. In addition, should you need to
add more information gathered from the API, the class modules provided in this
chapter should be a good start for your own coding.

In particular, this chapter provided class modules dealing with the following
areas of the Win32 API:

• Accessibility features

• Keyboard

• Memory status

• Mouse

• Non-client metrics

• Power status

• Screen and window information

• System colors

• Operating system and computer information

Other chapters in this book discuss additional issues that are pertinent to the
discussion in this chapter. For example, for information on working with disks
and files and gathering information about these objects, see Chapter 12. For infor-
mation on working with the System Registry, see Chapter 10.

c h a p t e r

10

Managing Windows Registry
Data

�

Understanding the Windows Registry

�

Exploring the Registry API

�

Writing functions to read and write Registry entries

�

Wrapping Registry functions in class modules

Chapter 10

•

Managing Windows Registry Data

598

T

he Registry is at the heart of 32-bit Windows. It is a hierarchical database that
contains configuration information for Windows applications, as well as for Win-
dows itself. Windows 9

x

 and Windows NT simply cannot function without the
information stored in their Registries. Being able to view and edit information
contained in the Registry is an essential ability for serious developers.

This chapter looks at how the Registry works and how you can interact with it.
We begin with an explanation of its structure and how to use the graphical Registry
Editor application to view and change information stored there. We then examine
the Registry API, a subset of the Windows API that includes functions for manip-
ulating Registry information. Finally, you’ll see how to encapsulate these func-
tions in VBA class modules, making adding Registry support to your applications
as simple as including a few module files. Table 10.1 lists the sample files included
on the CD-ROM.

T A B L E 1 0 . 1 :

Sample Files

Filename Description

REGISTRY.XLS Excel file with class modules and a test procedure

REGISTRY.MDB Access 2000 database with class modules and a test procedure

REGISTRY.VBP Visual Basic project containing sample code

REGTEST.BAS Text file with sample functions

SAMPREG.BAS Sample Registry procedures from examples in this chapter

SIMPREG.BAS Simple registry wrapper functions

KEY.CLS Example class module as text

KEYS.CLS Example class module as text

VALUE.CLS Example class module as text

VALUES.CLS Example class module as text

MAIN.FRM Start-up form for the Visual Basic project

WIN32REG.CLS Example class module as text

 Registry Structure

599

Registry Structure

If you’re a longtime Windows developer and/or user, it should come as no shock
that the Registry evolved as a way to organize application information that was
once stored in a multitude of INI files. While INI files offered many advantages
(for example, as text files, you could edit them using a simple tool like Notepad),
as more Windows applications were developed, it became hard to keep track of all
the associated configuration information. Furthermore, it was difficult to store
some types of information, such as binary data, in text files.

Microsoft created the Registry as a hierarchically structured database and cre-
ated a special API to deal with it. Initially (in Windows 3.

x

) it was used to store
information related to OLE. In Windows NT, and then Windows 95, it was expanded
to store other configuration information, and application developers were encour-
aged to move away from INI files and keep their program information in the Registry.

Today, information in the Registry is actually stored in two separate files (USER
.DAT and SYSTEM.DAT in the Windows directory). Additionally, part of the Reg-
istry is not stored at all but instead is generated based on a computer’s hardware
configuration. However, applications that use the information need not be aware of
this since they all interact with the Registry using a standard set of API functions.

The two primary items of interest in the Registry are keys and values. You use

keys,

 sometimes referred to as

folders,

 to organize Registry information in a hierar-
chical structure, much the way directories organize files in the file system. Like a
directory, a key can have multiple subkeys, which themselves can have subkeys,
and so forth. On the other hand,

values

 are the actual data stored within each key.
In our file system analogy, values represent individual files. However, unlike a
directory, a key can have a value directly associated with it (called its

default

value), as well as other values that it contains. This structure is illustrated graphi-
cally in Figure 10.1, which shows the Windows Registry Editor application. You
can launch this application by running REGEDIT.EXE.

As you can see in Figure 10.1, at the Registry’s root are keys that contain distinct
categories of information. In Registry nomenclature, these are referred to as

hives.

Of particular interest are HKEY_CURRENT_USER, which contains settings and
preferences for the current user, and HKEY_LOCAL_MACHINE, which contains
configuration information that applies to the computer itself. HKEY_ CLASSES_
ROOT exists for backward compatibility with the Windows 3.1 Registry and 16-
bit Registry functions, and contains information on installed software and file
associations. HKEY_USERS contains configuration options for all users who have

Chapter 10

•

Managing Windows Registry Data

600

accounts on the computer. In fact, HKEY_CURRENT_USER is a virtual hive and
is actually a subkey of HKEY_USERS.

F I G U R E 1 0 . 1

REGEDIT, the Windows
Registry editor

Figure 10.1 shows the HKEY_CURRENT_USER hive expanded to reveal its sub-
keys. In the right-hand pane, you can see the values associated with the Desktop
key. Each value has a unique name, except for the default value (shown at the top
of the value list), which has no name. The icon to the left of each value indicates its
data type. The Windows 3.1 Registry supported only string values. The Win32
registry supports a variety of data types, each of which is described in Table 10.2.
(The Constant column lists VBA constants that we’ve defined in the sample code.)
However, the most common data types are String and DWORD (Long Integer).

T A B L E 1 0 . 2 :

Data Types Supported by Windows 95 and Windows NT Registries

Data Type Constant Value Description

String dhcRegSz 1 A variable length, null-terminated text string.

DWORD dhcRegDword 4 A 32-bit long integer.

Binary dhcRegBinary 3 Binary data. Microsoft recommends limiting each
value to 1MB or less.

 VBA Registry Functions

601

Referring to Registry Keys and Values

Since this chapter discusses individual Registry keys and values, it makes sense to
present a format for describing them. In this book (and in most other sources of
documentation on the Registry), individual keys are described by their relation-
ship to one of the root hives, using syntax reminiscent of that used by the file sys-
tem. Specifically, the backslash (\) denotes the key-subkey relationship.
Therefore, you would express the Desktop key shown in Figure 10.1 as HKEY_
CURRENT_USER\Control Panel\Desktop. Similarly, you would express the
Wallpaper value as HKEY_CURRENT_USER\Control Panel\Desktop\Wallpa-
per. Since it may not be immediately clear from a given example whether the
right-most string represents a key or a value, we have tried to make our examples
as clear as possible.

VBA Registry Functions

If your needs are simple, VBA provides several built-in functions you can use to
read and write Registry values. Microsoft made these functions available as part

Multiple strings dhcRegMultiSz 7 An array of strings terminated by two null characters.

Unexpanded dhcRegExpandSz 2 A null-terminated string that contains unexpanded
references to environment variables, for example,
“%PATH%”.

Little-endian
DWORD

dhcRegDwordLitt
leEndian

4 A 32-bit number in little-endian format (same as
dhcRegDword). In little-endian format, the most
significant byte of a word is the high-order byte.
This is the most common format for computers
running Windows NT and Windows 95.

Big-endian
DWORD

dhcRegDwordBi
gEndian

5 A 32-bit number in big-endian format. In big-
endian format, the most significant byte of a word
is the low-order byte.

Symbolic link dhcRegLink 6 A Unicode symbolic link.

Resource list dhcResourceList 8 A device driver resource list.

None dhcRegNone 0 No defined type.

T A B L E 1 0 . 2 :

Data Types Supported by Windows 95 and Windows NT Registries

(continued)

Data Type Constant Value Description

Chapter 10

•

Managing Windows Registry Data

602

of VBA so application developers would have an easy way to store configuration
options without having to resort to the Windows API. The major drawback of
these functions, though, is that they let you work only with keys and values below
a given key, namely, HKEY_CURRENT_USER\Software\Microsoft\VB and
VBA Program Settings. If you need more flexibility or want to read values from
another part of the Registry, you’ll need the API functions discussed in the section
“Working with Registry Values” later in this chapter. Table 10.3 lists the four VBA
Registry functions.

Each of the Registry functions accepts an argument (app) corresponding to an
application name. In the Registry itself, this name refers to a subkey immediately
beneath HKEY_CURRENT_USER\Software\VB and VBA Program Settings. The
idea is that developers will group all the configuration settings for a single appli-
cation under one subkey. The second argument (subkey) is the name of another
subkey beneath the application key. The screen in Figure 10.2 shows REGEDIT
open to a subkey called MyCoolApp\Windows. In this example, you would pass
“MyCoolApp” as the first argument to the functions and “Windows” as the second.

The other arguments vary depending on the function being called. For those
that call for a value argument, you pass the name of one of the values beneath the
specified subkey. In our example, there is one value, “Main”. GetSetting lets you
pass a default value as an optional fourth argument. If the value name passed as
the third argument is not found, GetSetting returns the default. Finally, SaveSetting
requires you to pass the setting you want to save as its fourth argument.

T A B L E 1 0 . 3 :

VBA Functions for Manipulating the Windows Registry

Function Arguments Description

GetSetting App, subkey, value[, default] Retrieves a single value from a given
Registry key.

GetAllSettings App, subkey Retrieves all the values for a given key as an
array.

SaveSetting App, subkey, value, Saves or creates a Registry value for a given
key setting.

DeleteSetting app, subkey[, value] Deletes a Registry key or a value from a
given key.

 VBA Registry Functions

603

F I G U R E 1 0 . 2

The Registry Editor displays
a VB program setting.

To see how these functions work, open the Immediate window, type the follow-
ing code snippet, and press Enter:

SaveSetting "MyCoolApp", "Windows", "Main", "10,34,140,396"

This makes an entry like the one shown in Figure 10.2. To retrieve the value, just
enter

?GetSetting("MyCoolApp", "Windows", "Main")

VBA should respond by printing the string “10,34,140,396” to the Immediate window.

You can delete either the Main value or the entire Windows subkey easily by
calling DeleteSetting. Using GetAllSettings is a bit trickier, however, because it
returns an array of values as a Variant. To demonstrate this function, first add
another string value or two to the Windows subkey, by using either SaveSetting
or REGEDIT. Then create the procedure shown in Listing 10.1. The GetAllSettings
function supports only string values. (Not surprisingly, this is the only type sup-
ported by SaveSetting.)

If you create values of another type using REGEDIT and subsequently try to read

them using GetAllSettings, VBA raises Error 5, “Invalid procedure call or argument.”

Chapter 10

•

Managing Windows Registry Data

604

➲

Listing 10.1: Print All the Values for a Given Subkey

Sub dhPrintValues(strApp As String, strKey As String)
 Dim varValues As Variant
 Dim cValue As Long

 varValues = GetAllSettings(strApp, strKey)
 For cValue = LBound(varValues, 1) To UBound(varValues, 1)
 Debug.Print varValues(cValue, 0), varValues(cValue, 1)
 Next

End Sub

PrintValues works by declaring a Variant variable to hold the results of GetAll-
Settings. A counter variable, cValues, is used to iterate through all the values con-
tained in the results. Run PrintValues from the Immediate window to see it in
action.

Windows Registry Functions

The Windows API implements 25 functions for manipulating the Registry. Of
those, only a handful are used very often, and these are geared primarily toward
creating, opening, and deleting keys and setting and deleting values. Table 10.4
lists the functions we’ll be using in our examples. You’ll find all the functions in
ADVAPI32.DLL. The examples in the section are contained in the basRegistryTest
module in REGISTRY.XLS.

T A B L E 1 0 . 4 :

Windows Registry Functions Used in the Examples

Function Description

RegCloseKey Closes an open key.

RegCreateKeyEx Creates a new key or opens an existing key.

RegDeleteKey Deletes an existing key along with its values and, under Windows 9

x

, all its
subkeys. Under Windows NT or Windows 2000, you must manually delete
the subkeys.

RegDeleteValue Deletes a value from a key.

RegEnumKeyEx Lists all the subkeys for a given key.

RegEnumValue Lists all the values for a given key.

 Windows Registry Functions

605

Like other elements of Windows, Registry keys are managed using handles,
unique 32-bit integers. Before you manipulate a key or its values, you must open
it, using RegCreateKeyEx or RegOpenKeyEx. You pass a pointer to a long integer
that these functions fill in with the key’s handle. You can then use the handle as an
input to other Registry functions. Top-level keys have fixed handle values that
you can use to open subordinate keys using RegOpenKeyEx. All Registry func-
tions will return either a 0, representing successful completion, or an error code.

Opening, Closing, and Creating Keys

The most basic task in working with the Registry is examining keys and subkeys.
This section explains how to use the functions to open and close existing keys, as
well as how to create new keys.

The RegOpenKeyEx Function

The declaration for the RegOpenKeyEx function is

Declare Function RegOpenKeyEx _
 Lib "advapi32.dll" Alias "RegOpenKeyExA" _
 (ByVal hKey As Long, ByVal lpSubKey As String, _
 ByVal ulOptions As Long, ByVal samDesired As Long, _

 phkResult As Long) As Long

The function’s first argument is a handle to an existing key. This can be either
one of the predefined values representing a root hive or the handle of a key you’ve
previously opened yourself. The second argument is the name of the subkey you
wish to open. To specify an immediate subkey, just pass the subkey’s name. You
can also open a subkey several levels below the current key by passing the relative
path of the subkey using the syntax described earlier in this chapter. For example,
to open the HKEY_CURRENT_USER\Control Panel\Desktop key, you would
supply the predefined handle for HKEY_CURRENT_USER and the string “Control
Panel\Desktop” as the second argument to RegOpenKeyEx.

RegOpenKeyEx Opens a key for reading and/or writing values.

RegSetValueEx Sets the contents of a given value.

RegQueryValueEx Reads the contents of a given value.

T A B L E 1 0 . 4 :

Windows Registry Functions Used in the Examples

(continued)

Function Description

Chapter 10

•

Managing Windows Registry Data

606

RegOpenKeyEx’s third and fourth arguments control how the function treats
the key you’re trying to open. The ulOptions argument is currently being reserved
for future use and must be 0. On the other hand, the samDesired argument defines
your desired security access and is a bit-masked value consisting of a number of
constants. The constants are listed in Table 10.5; spend a moment reviewing them.
Many of the other Registry functions have a security argument. By passing one of
these values, you are, in effect, telling the Registry what you intend to do with the
key once you’ve opened it.

T A B L E 1 0 . 5 :

Security Bit Masks for Registry Functions

Constant Value (Hex) Value (Decimal) Description

dhcReadControl &H20000 131072 Bit mask for read permission

dhcKeyCreateLink &H20 32 Permission to create a symbolic link

dhcKeyCreateSubKey &H4 4 Permission to create subkeys

dhcKeyEnumerate &H8 8 Permission to enumerate subkeys

dhcKeyExecute &H20019 131097 Permission for read access (same as
dhcKeyRead)

dhcKeyNotify &H10 16 Permission for change notification

dhcKeyQueryValue &H1 1 Permission to read subkey data

dhcKeySetValue &H2 2 Permission to write subkey data

dhcKeyRead &H20019 131097 Combination of dhcReadControl,
dhcKeyQueryValue,
dhcKey-EnumerateSubKeys, and
dhcKeyNotify

dhcKeyWrite &H20006 131078 Combination of dhcReadControl,
dhcKeySetValue, and
dhcKeyCreateSubKey

dhcKeyAllAccess &H2003F 131135 Combination of dhcReadControl,
dhcKeyQueryValue,
dhcKey-EnumerateSubKeys,
dhcKeyNotify,
dhcKeyCreateSubKey,
dhcKeyCreateLink, and
dhcKeySetValue

 Windows Registry Functions

607

Finally, the phkResult argument is a pointer to a long integer that RegOpen-
KeyEx will fill in with a handle to the opened key. You should declare a Long vari-
able and pass it to RegOpenKeyEx. If the function returns a 0 (for success), the
hKey variable will hold a valid subkey handle and can be used with other func-
tions. Listing 10.2, shown a little later in this chapter, illustrates how to open the
HKEY_CURRENT_USER\Control Panel\Desktop key.

The RegCloseKey Function

After opening a key using RegOpenKeyEx or RegCreateKeyEx (explained in the
next section), you must close it using RegCloseKey. Leaving a key open consumes
memory, and you may, under rare conditions, corrupt your Registry. RegClose-
Key accepts a single argument, the handle to an open key, and returns 0 if the key
was successfully closed.

The RegCreateKeyEx Function

As its name implies, RegCreateKeyEx creates a new Registry key. However, not so
obvious is that you can also use it to open an existing key. If you specify an exist-
ing key, RegCreateKeyEx opens it; otherwise, the function creates it. This behav-
ior differs from that of RegOpenKeyEx, which returns an error code if the key
does not exist.

RegCreateKeyEx is similar to RegOpenKeyEx, but it takes a few extra argu-
ments. Its declaration is shown here:

Private Declare Function RegCreateKeyEx _
 Lib "advapi32.dll" Alias "RegCreateKeyExA" _
 (ByVal hKey As Long, ByVal lpSubKey As String, _
 ByVal ulReserved As Long, ByVal lpClass As String, _
 ByVal dwOptions As Long, ByVal samDesired As Long, _
 lpSecurityAttributes As Any, phkResult As Long, _

 lpdwDisposition As Long) As Long

You should recognize the hKey, lpSubkey, samDesired, and phkResult argu-
ments—they’re the same as those in RegOpenKeyEx. ulReserved is an unused
argument and must be 0. The lpClass argument lets you specify a class descriptor
for the key. This information is available to the RegEnumKeyEx function, which is
explained in the section “The RegEnumKeyEx Function” later in this chapter.

The dwOptions argument controls what type of key is created. The most common
settings for this argument are 0 (dhcRegOptionNonVolatile) and 1 (dhcReg-
OptionVolatile). Setting this argument to 1 creates a volatile Registry key. Volatile

Chapter 10

•

Managing Windows Registry Data

608

keys are not saved when you shut down your computer and are useful for storing
temporary options that are valid only for the current session.

The lpSecurityAttributes argument is a pointer to a SECURITY_ATTRIBUTES
structure. This structure defines the Windows NT security attributes you want
placed on the new key. Windows 9

x

 does not support operating system security
attributes, so this argument is ignored. You’ll notice that we’ve used the Any data
type in the declaration. Under Windows NT or Windows 2000, if you pass a null
pointer (represented by the value 0&), NT applies the default security attributes.
That’s what we’ve done in our examples.

If you plan to run these examples under Windows NT or Windows 2000 and don’t
want the default security attributes applied to the new key, pass a pointer to a
SECURITY_ATTRIBUTES structure with valid values. You’ll find this structure

declared in the sample code module.

Finally, the lpdwDisposition argument is a pointer to a Long Integer variable
that you pass to the function. When the function returns, the variable will be set
either to 1, meaning the key did not previously exist and was created; or to 2,
meaning the key was already there and was just opened.

Listing 10.2 shows the dhCreateNewKey procedure, which demonstrates how
to create a new Registry key beneath the Desktop key, shown in Figure 10.1. After
opening the Desktop key using RegOpenKeyEx, the procedure calls RegCre-
ateKeyEx, passing the Desktop key’s handle (hKeyDesktop) and the name of a
new key (New Key).

➲

Listing 10.2: Open the Desktop Key and Create a New Subkey

Sub dhCreateNewKey()
 Dim hKeyDesktop As Long
 Dim hKeyNew As Long
 Dim lngResult As Long
 Dim lngDisposition As Long

 ' Open the KHEY_CURRENT_USER\Control Panel\Desktop key

 lngResult = RegOpenKeyEx(dhcHKeyCurrentUser, _
 "Control Panel\Desktop", 0&, dhcKeyAllAccess, hKeyDesktop)

 Windows Registry Functions

609

 ' Make sure the call succeeded
 If lngResult = dhcSuccess Then

 ' Create the new subkey
 lngDisposition = 0&

 lngResult = RegCreateKeyEx(hKeyDesktop, _
 "New Key", 0&, "", dhcRegOptionNonVolatile, _
 dhcKeyAllAccess, 0&, hKeyNew, lngDisposition)

 ' If successful, we’re done--close the key
 If lngResult = dhcSuccess Then
 lngResult = RegCloseKey(hKeyNew)
 End If

 ' Close the Desktop key

 lngResult = RegCloseKey(hKeyDesktop)

 End If

End Sub

Working with Registry Values

Registry values have come along way since the days of Windows 3.1. In the Win-
dows 3.1 Registry, you were limited to a single value per key, and that value had
to contain string data. Now you can have an unlimited number of values in each
key, and you can choose from a wide variety of data types. The following sections
discuss how to read, create, and write Registry values.

The RegQueryValueEx Function

Unlike keys, values do not use handles, and you don’t need to open them before
you can use them. Once you have a key handle, you can read, write, create, or
delete any value it contains. RegQueryValueEx is the Registry function used to
read an existing value’s data. Its declaration is shown here:

Private Declare Function RegQueryValueEx _
 Lib "advapi32.dll" Alias "RegQueryValueExA" _
 (ByVal hKey As Long, ByVal lpValueName As String, _
 ByVal dwReserved As Long, lpType As Long, _

 lpData As Any, lpcbData As Long) As Long

Chapter 10

•

Managing Windows Registry Data

610

You’ll notice that the function’s first argument is a key handle. You pass the
handle of a valid, open key. The second argument is the name of the value you
want to query. The third argument is another reserved argument and must be 0.

If you want to access data stored in the default value for a key (all values migrated
from the Windows 3.1 Registry will be stored this way), pass an empty string as

the name of the value.

The last three arguments retrieve the actual data stored in the value. Since the
Registry can store various types of data, you must tell RegQueryValueEx the data
type being read, using the lpType argument. You should pass one of the constants
listed in Table 10.2 earlier in this chapter.

Finally, lpData and lpcbData specify a buffer you must create to hold the Regis-
try data. lpData is defined as type Any in the function declaration. Depending on
the type of data being read, you must pass a String or Long variable, or an array of
Bytes (for binary data). Additionally, you must pass the size of the buffer in the
lpcbData argument.

Always use caution when passing an argument to an API function declared as
Any. If you pass a data type that the API function does not expect, or fail to pass
the correct size, the result is almost always an Invalid Page Fault (IPF). Remember
to save your work before calling any API functions, especially those that use the

Any data type.

Listing 10.3 shows a simple example of reading the Wallpaper value of the
Desktop key. Wallpaper is a string that specifies the current desktop wallpaper
bitmap. Pay special attention to the code that allocates the string buffer. The Space
function creates a string buffer 255 bytes in size, and the cb variable is set to this
length. After the procedure calls RegQueryValueEx, cb will contain the number of
bytes written to the buffer.

Note also the ByVal keyword used in the call to RegQueryValueEx. This is nec-
essary to coerce the VBA String variable into the null-terminated string expected
by the API function. Normally, ByVal appears in the declaration of an API func-
tion, but we’ve left it out because we’re using the Any data type. If you leave out
ByVal in the function call, you will generate an IPF.

 Windows Registry Functions

611

➲

Listing 10.3: Read the Current Windows Wallpaper Setting

Sub dhReadWallpaper()
 Dim hKeyDesktop As Long
 Dim lngResult As Long
 Dim strBuffer As String
 Dim cb As Long

 ' Open the KHEY_CURRENT_USER\Control Panel\Desktop key

 lngResult = RegOpenKeyEx(dhcHKeyCurrentUser, _
 "Control Panel\Desktop", 0&, dhcKeyAllAccess, hKeyDesktop)

 ' Make sure the call succeeded
 If lngResult = dhcSuccess Then

 ' Create the buffer
 strBuffer = Space(255)
 cb = Len(strBuffer)

 ' Read the wallpaper value

 lngResult = RegQueryValueEx(hKeyDesktop, "Wallpaper", _
 0&, dhcRegSz, ByVal strBuffer, cb)

 Check return value
 If lngResult = dhcSuccess Then

 ' Display the current value
 MsgBox Left(strBuffer, cb), vbInformation, _
 "Current Wallpaper"
 End If

 ' Close the Desktop key

 lngResult = RegCloseKey(hKeyDesktop)

 End If

End Sub

Our dhReadWallpaper procedure is coded to deal with string data. For examples
of how to handle other data types, see the section “The Value Property” later in
this chapter.

Chapter 10

•

Managing Windows Registry Data612

The RegSetValueEx Function

You write a value to the Registry in much the same manner as you read a value. In
fact, the declaration for RegSetValueEx is nearly identical to RegQueryValueEx:

Private Declare Function RegSetValueEx _
 Lib "advapi32.dll" Alias "RegSetValueExA" _
 (ByVal hKey As Long, ByVal lpValueName As String, _
 ByVal dwReserved As Long, ByVal dwType As Long, _
 lpData As Any, ByVal cbData As Long) As Long

The only difference, besides the function name, is that instead of passing an empty
buffer to the function, you pass data in the lpData argument. You can see this in
the dhWriteWallpaper procedure shown in Listing 10.4. It accepts the path to a file
as its sole argument and writes this string to the Wallpaper value in the Desktop key.

➲ Listing 10.4: Use the dhWriteWallpaper Procedure to Change the
Wallpaper Registry Setting

Sub dhWriteWallpaper(strFile As String)
 Dim hKeyDesktop As Long
 Dim lngResult As Long

 ' Open the KHEY_CURRENT_USER\Control Panel\Desktop key
 lngResult = RegOpenKeyEx(dhcHKeyCurrentUser, _
 "Control Panel\Desktop", 0&, dhcKeyAllAccess, hKeyDesktop)

 ' Make sure the call succeeded
 If lngResult = dhcSuccess Then

 ' Save the wallpaper value
 lngResult = RegSetValueEx(hKeyDesktop, "Wallpaper", _
 0&, dhcRegSz, ByVal strFile, Len(strFile))

 ' Check return value
 If lngResult = dhcSuccess Then

 ' Display the success message
 MsgBox "Wallpaper changed to " & strFile, _
 vbInformation, "Wallpaper Changed"
 Else
 ' Display failure message

 Windows Registry Functions 613

 MsgBox "Could not saved wallpaper.", _
 vbExclamation, "Wallpaper Not Changed"
 End If

 ' Close the Desktop key
 lngResult = RegCloseKey(hKeyDesktop)
 End If
End Sub

Changing the Wallpaper Registry setting does not actually change the Windows
wallpaper until you restart your computer. That’s because Windows does not monitor
this value for changes.

Changes made to the Registry are asynchronous. That is, calling RegSetValueEx
does not write the change immediately. Instead, the setting is cached and written
later. This is similar to so-called “lazy writes” implemented by the file system. If
you are concerned about the delay, you can call the RegFlushKey function, which
flushes the Registry cache immediately. Its very simple declaration is shown here:

Declare Function RegFlushKey Lib "advapi32.dll" _
 (ByVal hKey As Long) As Long

Enumerating Keys and Values
The functions described thus far in this chapter are great as long as you know
what keys and values you want to manipulate. But what if you don’t? What if you
want to create an application that lists subkeys or values for an arbitrary Registry
key? Fortunately, there are Registry functions that let you do this, as discussed in
the next two sections.

The RegEnumKeyEx Function

RegEnumKeyEx (and its counterpart, RegEnumValuesEx) enumerates the sub-
keys (and values) of a given key. RegEnumKeyEx’s declaration is shown here:

Declare Function RegEnumKeyEx _
 Lib "advapi32.dll" Alias "RegEnumKeyExA" _
 (ByVal hKey As Long, ByVal dwIndex As Long, _
 ByVal lpName As String, lpcbName As Long, _
 lpReserved As Long, ByVal lpClass As String, _
 lpcbClass As Long, lpftLastWriteTime As Any) As Long

Chapter 10 • Managing Windows Registry Data614

You pass RegEnumKeyEx a key handle and the numeric index of the subkey
you want information on. Index values run from 0 to one less than the number of
subkeys. You also pass buffers to hold the subkey’s name and class, as well as a
pointer to a FILETIME structure to hold the date and time when the key was last
updated. If the specified subkey exists, RegEnumKeyEx populates the buffers and
returns a 0, indicating success. If the dwIndex argument lies outside the valid
range for existing subkeys, RegEnumKeyEx returns a nonzero result.

Using this information and a simple Do loop, you can write code to list all the
subkeys of any existing Registry key. That’s what we’ve done with the dhListSub-
keys procedure shown in Listing 10.5.

➲ Listing 10.5: Use RegEnumKeysEx to List a Key’s Subkeys

Sub dhListSubkeys(hKeyRoot As Long, strSubkey As String)
 Dim hSubkey As Long
 Dim cEnum As Long
 Dim hKey As Long
 Dim lngResult As Long
 Dim strNameBuff As String
 Dim cbNameBuff As Long
 Dim strClassBuff As String
 Dim cbClassBuff As Long
 Dim typFileTime As FILETIME

 ' Open the key passed in
 lngResult = RegOpenKeyEx(hKeyRoot, strSubkey, _
 0&, dhcKeyAllAccess, hSubkey)

 ' Make sure the call succeeded
 If lngResult = dhcSuccess Then

 ' Loop through all subkeys
 Do
 ' Set up buffers
 strNameBuff = Space$(255)
 cbNameBuff = Len(strNameBuff)
 strClassBuff = Space$(255)
 cbClassBuff = Len(strClassBuff)

 ' Call RegEnumKeyEx

 Windows Registry Functions 615

 lngResult = RegEnumKeyEx(hSubkey, cEnum, _
 strNameBuff, cbNameBuff, 0&, _
 strClassBuff, cbClassBuff, typFileTime)

 ' If successful, print subkey name
 If lngResult = dhcSuccess Then
 Debug.Print Left(strNameBuff, cbNameBuff)
 End If

 ' Increment subkey index
 cEnum = cEnum + 1
 Loop Until lngResult <> 0

 ' Close the subkey
 lngResult = RegCloseKey(hSubkey)
 End If
End Sub

The RegEnumValue Function

RegEnumValue works in a similar fashion. As you can see from the following decla-
ration, it, too, accepts a key handle and an index number as its first two arguments:

Declare Function RegEnumValue _
 Lib "advapi32.dll" Alias "RegEnumValueA" _
 (ByVal hKey As Long, ByVal dwIndex As Long, _
 ByVal lpValueName As String, lpcbValueName As Long, _
 lpReserved As Long, lpType As Long, _
 lpData As Any, lpcbData As Any) As Long

In addition, you pass a buffer to hold the value’s name. What’s interesting about
RegEnumValue is that you can also pass a data buffer. This allows you to deter-
mine the value’s name and the data it contains at the same time. The only draw-
back is that the method to retrieve a value’s data differs depending on its type. To
account for any type that may be present, you must pass a pointer to a Byte array
as the lpData argument and then interpret the array’s contents after the call to
RegEnumValue returns.

RegEnumValue does not return the default value for a key. It is assumed that this
value (which has an empty string for a name) always exists.

Chapter 10 • Managing Windows Registry Data616

dhListValues, shown in Listing 10.6, enumerates the values associated with a
given key. The screen in Figure 10.3 illustrates how to call the procedure from the
Immediate window, as well as a possible result. The numbers shown indicate the
data type stored in the value.

You can see a list of subkeys by calling the dhListSubkeys procedure with the same
set of arguments.

F I G U R E 1 0 . 3
What happens when you

call dhListValues from the
Immediate window

➲ Listing 10.6: Enumerating Registry Key Values

Sub dhListValues(hKeyRoot As Long, strSubkey As String)
 Dim hSubkey As Long
 Dim cEnum As Long
 Dim lngResult As Long
 Dim strNameBuff As String
 Dim cbNameBuff As Long
 Dim lngType As Long
 Dim abytData(1 To 2048) As Byte
 Dim cbData As Long

 Open the key passed in
 lngResult = RegOpenKeyEx(hKeyRoot, strSubkey, _
 0&, dhcKeyAllAccess, hSubkey)

 ' Make sure the call succeeded
 If lngResult = dhcSuccess Then

 An Object Model for the Registry 617

 ' Print header
 Debug.Print "Type", "Name"
 Debug.Print "----", "----"
 ' Loop through all values
 Do
 ' Set up buffers
 strNameBuff = Space$(255)
 cbNameBuff = Len(strNameBuff)
 Erase abytData
 cbData = UBound(abytData)

 ' Call RegEnumValue
 lngResult = RegEnumValue(hSubkey, cEnum, _
 strNameBuff, cbNameBuff, 0&, _
 lngType, abytData(1), cbData)

 ' Print value name to Immediate window
 If lngResult = dhcSuccess Then
 Debug.Print lngType, Left(strNameBuff, _
 cbNameBuff)

 End If

 ' Increment value index
 cEnum = cEnum + 1
 Loop Until lngResult <> 0

 ' Close the key
 lngResult = RegCloseKey(hSubkey)
 End If
End Sub

An Object Model for the Registry
While Registry functions are interesting and useful in their own right, if you are
planning on doing any serious Registry manipulation, a function call-based inter-
face can get very cumbersome. The answer (which you should already know if
you’ve read the preceding chapters) is to create an object-based interface using
VBA class modules. Fortunately for you, we’ve already done most of the work.

Chapter 10 • Managing Windows Registry Data618

The remainder of this chapter explains how our Registry object model is con-
structed, how it works, and how you can use it in your applications.

An Overview
The object model for our Registry components is extremely simple. It consists of
only three base classes: Win32Registry, Key, and Value. Two collection classes
supplement these classes. The reason it’s so simple is because of the hierarchical
nature of the Registry. Since a key can contain a number of values, as well as other
keys, we can reuse each class over and over. The diagram in Figure 10.4 illustrates
the object model for keys and values.

To implement this model using VBA, we need four class modules to represent the
objects and collections and a fifth class module to give us a root for the Registry.
Table 10.6 lists the class names and their properties and methods. The table also lists
the CLS files that define the classes, which we’ve provided on the CD-ROM.

Not Another Object Model!
As you’ve no doubt noticed, we’re quite fond of promoting the benefits of a well-
designed object model implemented using VBA class modules. We also know that some-
times all you need is just a small fraction of the functionality they provide. That’s why
we’ve implemented the Registry object model to be modular. In total, there are five class
modules that implement the full-featured object model. But it takes just one,
WIN32REG.CLS, to get basic read/write functionality.

If all you need to do is read and write Registry values, just import the class module and
look for the conditional compilation statement near the end of the declarations section. By
changing the following expression:

#If True Then

to

#If False Then

you don’t need to include any other class modules in your project. Just instantiate the
Win32Registry class and call its ReadValue and WriteValue methods.

 An Object Model for the Registry 619

F I G U R E 1 0 . 4
Object model for the Win-

dows Registry

T A B L E 1 0 . 6 : Registry Classes, Properties, and Methods

Class Filename Properties Methods

Win32Registry WIN32REG.CLS KeyUser
KeyMachine
KeyUsers
KeyClasses

ReadValue
WriteValue

Key KEY.CLS Name
Handle
Parent
FullPath
Values
Subkeys

OpenKey
OpenSubKey
SubKeyExists
DeleteSubkeys

Keys KEYS.CLS Count
Parent

Add
Item
Remove
Refresh

Value VALUE.CLS Name
DataType
Value
Parent
FullPath

None

Values VALUES.CLS Count
Parent

Add
Item
Remove
Refresh

Chapter 10 • Managing Windows Registry Data620

Some of the properties and methods shown in the table are worth describing in
more detail:

• The root class, Win32Registry, has properties that provide instant pointers
to the four most commonly used Registry hives: HKEY_CURRENT_USER,
HKEY_LOCAL_MACHINE, HKEY_USERS, and HKEY_CLASSES_ROOT.

• Key objects have a Handle property that is set to the handle returned by the
Registry functions when the key is opened. Since all Registry functions
depend on handles to keys, creating a Handle property for the Key object
makes a lot of sense.

• Key objects have an OpenSubKey method that returns a reference to a
descendant key. Unlike the SubKeys collection, which contains one key for
each subkey exactly one level below the current key, OpenSubKey lets you
open a subkey that is several levels deep by using a qualified relative path
(for example, Control Panel\Desktop\WindowMetrics).

• The Keys and Values collection classes both have a Refresh method. Refresh
resets each class’ internal Collection object and repopulates it with Key and
Value objects representing the subkeys and values of the current key. Open-
SubKey calls the Refresh methods of each class. You can also call this your-
self to update the collections with the most recent contents.

• All objects have a Parent property. In each case, this refers to a Key object
that represents a given object’s parent key.

Implementing the Classes
This section highlights certain interesting characteristics and procedures of the
sample code in our class modules.

Registry constants are implemented as enumerated types declared in the Win32-
Registry class.

ReadValue and WriteValue Methods

Because sometimes all you want to do is read or write a particular subkey’s value,
we’ve implemented two methods that do this directly: ReadValue and WriteValue.
Both take four arguments, the first of which is a constant representing the hive key

 An Object Model for the Registry 621

you want to work with. The next two arguments are the names of a subkey and
value, respectively. The fourth argument differs, depending on which method
you call. ReadValue accepts an optional long integer that it will fill in with the
data type of the value read. WriteValue accepts the actual data you want written,
as a variant.

The following code snippet shows how you might use these methods to write a
new value to the Registry and then read it back again:

Dim objReg As Win32Registry

Set objReg = New Win32Registry
objReg.WriteValue HKeyCurrentUser, "Control Panel", "Custom", 1024
Debug.Print objReg.ReadValue(HKeyCurrentUser, "Control Panel", _
 "Custom")

The subkey name should always be in the form of a relative path to the hive key
with no leading or trailing backslashes.

The Add Methods

The Add method defined in the Keys class module (shown in Listing 10.7) accepts
a key name and calls the RegCreateKeyEx Registry function. RegCreateKeyEx will
either create a new, or open an existing, subkey of a given key, specified by a key
handle. We get the handle from the parent key’s Handle property. If the function
executes successfully, the Add method creates a new Key instance, sets its prop-
erty values (including Parent), and adds it to the Private mcolKeys collection.

➲ Listing 10.7: Add Method of the Keys Class

Public Function Add(ByVal Name As String) As Key
 Dim objKey As New Key
 Dim lngRet As Long
 Dim lngDisp As Long
 Dim hKey As Long

 ' Call RegCreateKey--for existing keys this will
 ' open them; for nonexistent keys this will
 ' create them

Chapter 10 • Managing Windows Registry Data622

 lngRet = RegCreateKeyEx(hKey:=mobjParent.Handle,
 lpSubKey:=Name, ulReserved:=0&, _
 lpClass:="", dwOptions:=RegOptionNonVolatile, _
 samDesired:=KeyAllAccess, _
 lpSecurityAttributes:=ByVal 0&, phkResult:=hKey, _
 lpdwDisposition:=lngDisp)

 ' If successful, add key to the collection and
 ' set the return value to point to it
 If lngRet = Success Then
 objKey.Name = Name
 objKey.Handle = hKey

 ' Add item for default value
 objKey.Values.Add "", RegSz

 Set objKey.Parent = mobjParent
 mcolKeys.Add objKey, objKey.Name
 Set Add = objKey
 End If
End Function

You must manually add a member to the Values collection for the key’s default
value because it always exists and does not show up when you use the Refresh
method (and because RegEnumValue doesn’t return a value representing the
key’s default value).

The Add method of the Values class (Listing 10.8) works similarly, except that it
does not call a Registry function. Instead, it just adds a new Value object to the
mcolValues collection of the class. Note that it accepts an optional argument that
can contain the new Value object’s value. If you supply this argument, the Add
method sets the Value property after creating a new object instance. Using optional
arguments allows for greater coding flexibility. You can either set all the property
values as part of the Add method or set them individually after adding the object
to the collection. In both cases, the Add method returns a pointer to the newly
added object. This makes it very easy to set additional property values by captur-
ing the pointer in an object variable. An alternative to passing arguments and
returning an object reference is to pass an entire object to the Add method. See the
sidebar “Passing Objects to the Add Method” for more details on this approach.

 An Object Model for the Registry 623

➲ Listing 10.8: Add Method of the Values Class

Public Function Add(ByVal Name As String, _
 ByVal DataType As Variant, _
 Optional ByVal Value As Variant) As Value

 ' Create new Value instance
 Dim objValue As New Value

 ' Set the new Value’s Parent property
 ' to point to the collection’s Parent
 Set objValue.Parent = mobjParent

 ' Set the requisite property values
 objValue.Name = Name
 objValue.DataType = DataType

 ' If optional argument was supplied,
 ' set the Value property value
 If Not IsMissing(Value) Then
 objValue.Value = Value
 End If

 ' Add new instance to the collection,
 ' using its Name as the unique key
 mcolValues.Add objValue, objValue.Name

 ' Set the return value to reference the
 ' new object
 Set Add = objValue
End Function

The Value Property

Our Value class implements a Value property that represents the contents of an
individual Registry value. There are two interesting characteristics of this prop-
erty. First, since the contents of a Registry value can be different data types, we
must treat this property as a variant. In our object model, it will be one of three
types: String, Long Integer, or an array of Bytes (for binary values). Second, we
never cache the value in our class. That is, when the Value property is used by

Chapter 10 • Managing Windows Registry Data624

another procedure, we read from or write to the Registry directly. Therefore, any
changes to a Value object’s Value property are immediately saved to the Registry.

Passing Objects to the Add Method
An alternative to the approach used for the Add methods in our example is to pass an
object reference to the Add method instead of simple values. You should consider this
method if you would otherwise have to pass a large number of parameters or if your
object model does not support the idea of independent objects. For instance, the Jet DAO
model allows you to create new tables in an Access database using TableDef and Field
objects. (Jet is the database engine that manages Microsoft Access databases.) For
instance, to create a new field in a table, you first create a new instance of a Field object.
You then set a variety of property values and add it to the table’s Fields collection using the
Append method. For example:

Dim tdf As TableDef

Dim fld As Field

' Get a pointer to a TableDef

Set tdf = db.TableDefs("SomeTable")

' Create the new Field object by calling CreateField

Set fld = tdf.CreateField("NewField")

' Set some property values

fld.Type = dbText

fld.Size = 20

' Append it to the existing Fields collection

tdf.Fields.Append fld

Append is Jet’s equivalent to the Add method. Again, note that it is an object reference,
not a scalar value, that is passed to the method. This makes sense because a Field object
isn’t useful until several property values have been set and it has been added to the exist-
ing fields.

On the other hand, the approach we used is similar to the way Excel’s object model works.
For example, to add a new Worksheet object to the workbook, you call the Worksheets
collection’s Add method. You can call it without arguments to add a default worksheet to
the workbook or specify optional arguments to dictate position or sheet type. Add also
returns a reference to the newly added Worksheet object that you can capture in an object
variable (to facilitate setting additional property values) or ignore.

 An Object Model for the Registry 625

Listing 10.9 shows the Property Get procedure for the Value property. We use a
Select Case statement to determine the type of data contained in the Registry
value and then call RegQueryValueEx to retrieve it. The function call differs (spe-
cifically, the lpData argument) depending on the type of data being requested.

➲ Listing 10.9: Implement the Value Property of the Value Class

Property Get Value() As Variant
 Dim strBuffer As String
 Dim lngBuffer As Long
 Dim lngRet As Long
 Dim abytData() As Byte
 Dim cb As Long

 ' To return a value we need to figure out
 ' what datatype the value is and then call
 ' RegQueryValueEx using an appropriate lpData
 ' argument
 Select Case mlngDataType

 ' String
 Case RegSz

 ' Create a string buffer and set the
 ' size variable to pass
 strBuffer = Space(RegMaxDataSize)
 cb = Len(strBuffer)

 ' Call RegQueryValueEx passing
 ' address of string buffer
 lngRet = RegQueryValueEx(_
 mobjParent.Handle, mstrName, 0&, _
 mlngDataType, ByVal strBuffer, cb)

 ' If successful, return portion of
 ' buffer filled in by the function
 If lngRet = Success Then
 Value = Left(strBuffer, cb - 1)
 End If

 ' Long Integer
 Case RegDWord

Chapter 10 • Managing Windows Registry Data626

 ' Set size argument to size of Long
 cb = Len(lngBuffer)

 ' Call RegQueryValueEx passing
 ' address to Long Integer variable
 lngRet = RegQueryValueEx(_
 mobjParent.Handle, mstrName, 0&, _
 mlngDataType, lngBuffer, cb)

 ' If successful, return value
 If lngRet = Success Then
 Value = lngBuffer
 End If

 ' Binary
 Case RegBinary

 ' Create an array of bytes
 ReDim abytData(1 To RegMaxDataSize)
 cb = UBound(abytData)

 ' Call RegQueryValueEx passing
 ' address of first array element
 lngRet = RegQueryValueEx(_
 mobjParent.Handle, mstrName, 0&, _
 mlngDataType, abytData(1), cb)

 ' If successful, resize array and
 ' return a pointer to it
 If lngRet = Success And cb > 0 Then
 ReDim Preserve abytData(1 To cb)
 Value = abytData
 End If
 End Select
End Property

Determining the Full Path of Keys and Values

Occasionally, you’ll want to know what the full path of a particular Registry key
or value is. The Name property will give you the name or relative path, but what
about the full path, starting at the root? As it turns out, this is easy to compute,

 An Object Model for the Registry 627

given the Parent properties of the class. By using the Parent property to work
backward up the Registry hierarchy, you can build a full path by looking at the
Name properties of all the interceding objects.

Listing 10.10 shows the FullPath property of the Key class. (The Value class uses
almost identical code.) Notice that we first set a pointer to the key’s immediate
parent and then use a Do loop to build the path string. Each time through the
loop, we reset the objParent pointer to the current object’s parent. Eventually, we
reach the top of the hierarchy, and objParent becomes Nothing. This causes our
loop to terminate, at which point we append the original key’s name and return
the result.

➲ Listing 10.10: Use the Parents of a Key to Generate Its Full Path

Property Get FullPath() As String
 Dim objParent As Key
 Dim strTemp As String

 ' Set starting point
 Set objParent = mobjParent

 ' Loop until objParent is Nothing (at the root)
 Do Until objParent Is Nothing
 strTemp = objParent.Name & "\" & strTemp
 Set objParent = objParent.Parent
 Loop

 ' Add this key’s name
 strTemp = strTemp & mstrName

 ' Set return value
 FullPath = strTemp
End Property

Removing Registry Keys

The Remove method of the Keys class is worth mentioning because it uses recur-
sive method calls to delete all the subkeys beneath the key being removed. This is
necessary under Windows NT or Windows 2000 because the RegDeleteKey func-
tion will fail if the key being deleted has subkeys. (It works perfectly well under
Windows 9x, however.) Listing 10.11 shows the code for the Remove method.

Chapter 10 • Managing Windows Registry Data628

➲ Listing 10.11: Remove Method of the Keys Class

Public Sub Remove(ByVal ID As Variant)
 Dim lngRet As Long
 Dim objSubKey As Key
 Dim lngSubKeys As Long
 Dim cSubKeys As Long

 ' This code removes all of the current key’s
 ' subkeys by calling the Remove method recursively
 ' First refresh the subkeys
 mcolKeys(ID).SubKeys.Refresh

 ' Get a count (because the property will change)
 lngSubKeys = mcolKeys(ID).SubKeys.Count

 ' Loop through all the subkeys
 For cSubKeys = lngSubKeys To 1 Step -1
 ' Call Remove recursively
 mcolKeys(ID).SubKeys.Remove cSubKeys
 Next

 ' Call RegDeleteKey to delete the subkey
 lngRet = RegDeleteKey(mobjParent.Handle, _
 mcolKeys(ID).Name)
 ' If successful then remove it from the collection
 If lngRet = Success Then
 mcolKeys.Remove ID
 End If

End Sub

Note that the method first calls the Refresh method of the key’s SubKeys collection.
This is necessary to ensure that we get all the subkeys. The method then stores a count
of the subkeys and loops backward from the total number to 1. You must loop back-
ward because the number of items in the collection changes inside the loop.

You’ll probably want to be able to check whether you were, in fact, running under
Windows NT, since deleting a large number of subkeys can be time consuming.
Chapter 9 describes code that will tell you the current operating system. It should
be a simple matter to integrate it into this Keys class module.

 An Object Model for the Registry 629

Using the Registry Objects
Now that we’ve explained the highlights of our Registry classes, this section
shows you how to use them. All the code in this section can be found in the
TestRegClasses procedure that we’ve included in a global module in REGIS-
TRY.XLS (and independently as TESTREG.BAS). To really see what’s going on,
place a breakpoint on the first line of code in the procedure and step through the
code as it executes.

Opening a Subkey

To use the Registry classes, you must first instantiate it. This automatically opens
the four common hive keys and provides you with pointers to them. It’s then easy
to open a subkey by calling the OpenSubkey method of whichever hive you’re
interested in. OpenSubKey accepts a relative path to the subkey (without leading
or trailing backslashes) and returns a Key object reference if the call is successful.
Listing 10.12 shows an example that opens the HKEY_CURRENT_USER\Control
Panel\Desktop key. Note the use of the Key’s FullPath property to print the full
path of the newly opened key.

➲ Listing 10.12: Open HKEY_CURRENT_USER\Control Panel\Desktop

Dim objRegistry As Win32Registry
Dim objKey As Key
' Open the registry
Set objRegistry = New Win32Registry

' Open the Control Panel\Desktop subkey
Set objKey = objRegistry.KeyUser.OpenSubKey(_
 "Control Panel\Desktop")

' Print the key's full path
Debug.Print "Opened: " & objKey.FullPath

Listing Subkeys and Values

OpenSubKey also calls the Refresh methods of the key’s SubKeys and Values col-
lections. You can then manipulate any of these using the appropriate collection
reference. For example, Listing 10.13 shows how you would print the names and
handles of any subordinate keys, and the names and contents of any values.

Chapter 10 • Managing Windows Registry Data630

➲ Listing 10.13: List a Key’s Subkeys and Values

Dim objSubKey As Key
Dim objValue As Value
Dim cObject As Long

' List any subkeys
Debug.Print "Subkeys:"
For cObject = 1 To objKey.SubKeys.Count
 Set objSubKey = objKey.SubKeys.Item(cObject)
 Debug.Print objSubKey.Name, objSubKey.Handle
Next
' List any values
Debug.Print "Values:"
For cObject = 1 To objKey.Values.Count
 Set objValue = objKey.Values.Item(cObject)
 Debug.Print objValue.Name, objValue.Value
Next

Creating New Keys and Values

To create new subkeys and values, just add new objects to the SubKeys and Val-
ues collections. Listing 10.14 demonstrates how to add a new subkey called “Custom-
Options”. We first use the SubKeyExists method to determine whether the key
already exists. If it does, we use the Remove method of the SubKeys collection to
delete it.

➲ Listing 10.14: Add a New Subkey and Values

' Check to see whether it exists, and if so, delete it
If objKey.SubKeyExists("CustomOptions") Then
 objKey.SubKeys.Remove "CustomOptions"
End If

' Add a new subkey beneath ...\Desktop
Set objNewKey = objKey.SubKeys.Add("CustomOptions")
Debug.Print "Added: " & objNewKey.FullPath

' Set the default value
objNewKey.Values.Item("").Value = "Default"

 An Object Model for the Registry 631

' Add a string value
Set objNewValue = objNewKey.Values. _
 Add("SomeString", rc.RegSz)
objNewValue.Value = "This is great fun!"
Debug.Print "Added: " & objNewValue.FullPath

' Add a DWORD (long) value
Set objNewValue = objNewKey.Values. _
 Add("SomeDWORD", rc.RegDWord)
objNewValue.Value = 1024
Debug.Print "Added: " & objNewValue.FullPath

' Add a binary value
Set objNewValue = objNewKey.Values. _
 Add("SomeBinary", rc.RegBinary)
objNewValue.Value = Array(0, 1, 2, 4, 8, 16, 32, 64, 128)
Debug.Print "Added: " & objNewValue.FullPath

After the procedure adds the new subkey, it adds some new values to it. It starts
with the default value, which was added to the Values collection when the subkey
was created. It then creates a new string, DWORD, and binary values. Note that
the binary value is created using an array of integers between 0 and 255. The
screen in Figure 10.5 shows the new subkey and values displayed in REGEDIT.

F I G U R E 1 0 . 5
Viewing the newly added

information

Chapter 10 • Managing Windows Registry Data632

Summary
If you’re a serious developer, you’ll have to delve into the Registry sooner or later.
Although you can use the Windows Registry Editor application, it is not practical
to force your users to do this. In this chapter, we’ve looked at two ways to pro-
grammatically manipulate the contents of the Registry, including built-in VBA
functions, as well as a number of API functions. Specifically, we discussed the fol-
lowing topics:

• Understanding the structure of the Windows Registry

• Using the VBA functions GetSetting, GetAllSettings, DeleteSetting, and
SaveSetting

• Manipulating keys using the API functions RegOpenKeyEx, RegCre-
ateKeyEx, and RegCloseKey

• Manipulating values using the API functions RegQueryValueEx and Reg-
SetValueEx

• Enumerating keys and values using the API functions RegEnumKeyEx and
RegEnumValue

• Building an object model for the Registry using VBA class modules

You should now be able to tackle just about any Registry problem.

c h a p t e r 11

The Windows Networking API

� Using common network dialogs

� Connecting to and disconnecting from shared
network resources

� Retrieving network information

� Enumerating network resources

� Using the LAN Manager API

Chapter 11 • The Windows Networking API634

VBA does not directly expose many of the networking capabilities of Win-
dows 95 and 98 or Windows NT and Windows 2000. Although it does allow you
to make use of objects, such as mapped drives and network paths, once they exist,
the ability to find, connect to, disconnect from, or enumerate these objects is not
available in VBA. However, all of these actions are available through the Win-
dows API. In this chapter, we cover many of the most useful functions in the
WNet and LAN Manager APIs to help you make your applications more “net-
work aware.”

Why cover both WNet and LAN Manager API calls? In general, the WNet API calls
are simpler to use and solve most of your networking needs. The LAN Manager
API functions are more general purpose, require a bit more work to use, and can
be a bit intimidating, with over 100 different functions to choose from. In this
chapter, we provide an overview of both sets of networking API functions, with
the emphasis on WNet functions—the ones most people need. In addition, several
of the LAN Manager API functions are not available from Windows 95/98, but
only from Windows NT/2000, so their use is limited by that distinction, as well. We
include samples of functions that are supported under Windows 95 and 98, and
ones that are not.

In this chapter (and throughout the book) we’ll use Windows 95/98 to refer to
behaviors that apply to both Windows 95 and Windows 98. We’ll use Windows
NT/2000 to refer to both Windows NT 4 and higher, and Windows 2000. Where
behaviors are specific to Windows NT 3.51, we’ll mention that version separately.

Table 11.1 lists the sample files you’ll find on the CD-ROM.

T A B L E 1 1 . 1 : Sample Files

Filename Description

NETWORK.XLS Excel 2000 file with sample functions

NETWORK.MDB Access 2000 database with sample functions

NETWORK.BAS Text file with sample functions

NETRESOURCEINFO.CLS A helper class used by some of the functions in
NETWORK.BAS

 Basic Network Functionality 635

Many of the API calls in this chapter count on NetBIOS for their functionality. In all
versions of Windows before Windows 2000, you could be guaranteed that the
user had NetBIOS installed. In Windows 2000, although it’s not the default config-
uration, it’s possible that users can opt not to install NetBIOS. In that case, many of
the functions in this chapter will fail. If you’re using code from this chapter in your
own applications, you’ll need to make it clear to users, as part of your installation
instructions, that they must have NetBIOS installed.

Basic Network Functionality
This section examines the basic network functions you might want to use in your
applications, such as:

• Connecting to network resources with standard dialogs

• Disconnecting from network resources with standard dialogs

• Connecting to network resources via code

• Disconnecting from network resources via code

• Retrieving information about network resources

Using Common Network Dialogs
The easiest way, and the one users will find most familiar, to add network aware-
ness to your applications is to use the dialogs the operating system provides that
allow you to connect to and disconnect from network resources.

TESTPROCEDURES.BAS Test procedures

NETWORK.VBP VB project file with sample functions

MAIN.FRM Start-up form for the VB project

T A B L E 1 1 . 1 : Sample Files

Filename Description

Chapter 11 • The Windows Networking API636

Connecting to a Network Resource with a Dialog

Figure 11.1 shows an example of the Windows NT 4 Network Connection dialog.
However, be aware that network connection dialog boxes vary between operating
systems. Although Windows NT 3.51 and 4 use similar dialog boxes, the dialog
box Windows 95/98 uses is very different. It requires you to type in a UNC path,
and it provides an MRU (Most Recently Used) list of connections made previ-
ously, but there are none of the browse capabilities you find in Windows NT. The
corresponding dialog box in Windows 2000 makes things even easier for you—
you can browse, or not, to find the path you need. The more limited Windows 95/98
dialog is shown in Figure 11.2.

F I G U R E 1 1 . 1
Connecting to network

resources with the Win-
dows NT 4 Map Network

Drive connection dialog

F I G U R E 1 1 . 2
Connecting to network

resources with the Win-
dows 95/98 Map Network

Drive connection dialog

You’ll use the following declaration to invoke the dialog:

Private Declare Function WNetConnectionDialog Lib "mpr.dll" _
 (ByVal hwnd As Long, ByVal dwType As Long) As Long

 Basic Network Functionality 637

The only information you need to pass to the dialog is the window handle that will
be the parent of the dialog (or specify 0 to use the Windows screen as the parent,
effectively specifying no parent window) and the type of resources to display. Con-
stants representing the common values used by the dialog are shown in Table 11.2.

In general, we’ve found it easier not to call the networking API functions directly,
because it’s important to make sure all the parameters are set up properly. We’ve
provided wrapper functions for each API function to ensure that each function is
called correctly. Most of the API calls return an error code that tells you whether
the call succeeded; in some cases, the wrapper functions will do the same, and in
other cases, they will use the return value internally.

Listing 11.1 demonstrates a function you can use to call the WNetConnection-
Dialog API.

➲ Listing 11.1: Wrapper Function to Call the Network Connection
Dialog

Public Function dhConnectDlg(_
 Optional ByVal hWnd As Long = 0) As dhcNetworkErrors
 ' Display the dialog to connect to network resources
 Dim lngReturn As dhcNetworkErrors

T A B L E 1 1 . 2 : Commonly Used Constants for the Network Dialogs

Constant Value Meaning

dhcNoError 0& Function call was successful.

dhcDlgCancelled –1& User cancelled the dialog.

dhcErrorExtendedError 1208& An extended error occurred.

dhcErrorInvalidPassword 86& Given password is invalid.

dhcErrorNoNetwork 1222& No network was detected.

dhcErrorNotEnoughMemory 8& There is not enough memory to display the dialog.

dhcResourceTypeDisk 1& Use a resource of “disk” type.

dhcResourceTypePrint 2& Use a resource of “print” type.

Chapter 11 • The Windows Networking API638

 Dim lngExtendedError As Long

 ' Call the net connection dialog
 lngReturn = WNetConnectionDialog(hWnd, dhcResourceTypeDisk)

 ' If the call failed, get error information
 If lngReturn <> dhcNoError Then
 lngExtendedError = dhGetLastNetworkError(True)
 ' If there was an extended error,
 ' return it instead of the standard error
 If lngExtendedError = dhcNoError Then
 dhConnectDlg = lngReturn
 Else
 dhConnectDlg = lngExtendedError
 End If
 End If
End Function

Under Windows NT/2000, you can pass only the dhcResourceTypeDisk flag to
WNetConnectionDialog, but under Windows 95/98, you can pass the dhcRe-
sourceTypePrint flag as well, which allows you to connect to network printers.

Retrieving Extended Network Error Information

One interesting thing to note about the code in Listing 11.1 is the extra work
dhConnectDlg does to decide which error code to return:

If lngExtendedError = dhcNoError Then
 dhConnectDlg = lngReturn
Else
 dhConnectDlg = lngExtendedError
End If

The main reason for this extra work is historical: The WNetConnectionDialog
function, which has been around for quite some time, returns the same basic error
values that its 16-bit version did: 0 for success, –1 for cancellation, and a few spe-
cific error values. Rather than change the return values for this function, which
would break compatibility with converted applications, Microsoft chose to use the
extended error capability provided by the WNetGetLastError function in order to
return detailed information. Other network API functions use it as well, but the
WNetDisconnectDialog function uses it extensively because it doesn’t return
much error information on its own.

 Basic Network Functionality 639

The dhConnectDlg function, as well as several other functions in this chapter,
calls the dhGetLastNetworkError function to retrieve extended error information.
Many of the WNet API functions may return dhcErrorExtendedError, which
requires you to call the WNetGetLastError API immediately to retrieve more
detailed error information. We’ve provided dhGetLastNetworkError as a wrap-
per around the WNetGetLastError API function; this wrapper returns the extended
error number and, optionally, if more information is available, displays a message
box providing that information. The code for dhGetLastNetworkError is shown in
Listing 11.2.

➲ Listing 11.2: Get Information about the Last Network Error That
Occurred

Public Function dhGetLastNetworkError(_
 Optional fDisplayError As Boolean = False) As dhcNetworkErrors
 ' Get error information from the last network operation

 Dim lngReturn As dhcNetworkErrors
 Dim lngError As Long
 Dim strError As String
 Dim lngErrorLen As Long
 Dim strProvider As String
 Dim lngProviderLen As Long

 ' Set up buffers for the error info (they should be
 ' at least 256 characters but it does not hurt to
 ' make them longer).
 strError = String$(256, vbNullChar)
 strProvider = String$(256, vbNullChar)
 lngErrorLen = Len(strError)
 lngProviderLen = Len(strProvider)

 ' Try to get the last error
 lngReturn = WNetGetLastError(lngError, strError, _
 lngErrorLen, strProvider, lngProviderLen)

 If lngReturn = dhcNoError Then
 dhGetLastNetworkError = lngError
 ' If there was extended error info and the calling
 ' procedure wanted it to be displayed here,
 ' then display it.

Chapter 11 • The Windows Networking API640

 If fDisplayError And (lngError <> dhcNoError) Then
 strError = dhTrimNull(strError)
 strProvider = dhTrimNull(strProvider)
 MsgBox "Error " & lngError & ": " & strError, _
 vbInformation, strProvider
 End If
 End If
End Function

The most important thing to note about the WNetGetLastError API call is that it
returns only the most recent error value. You must call dhGetLastNetworkError
immediately after you call a function that might have returned an error. If the user
performs any network operation, either manually or through some other applica-
tion, before you call the dhGetLastNetworkError function, the information about
your program’s error will be lost.

Disconnecting from a Network Resource with a Dialog

As part of your application, you may need to provide a method for users to break
a network connection. This functionality is provided by the WNetDisconnect-
Dialog API function, and its declaration is almost identical to that for WNet-
ConnectionDialog:

Private Declare Function WNetDisconnectDialog Lib "mpr.dll" _
 (ByVal hwnd As Long, ByVal dwType As Long) As Long

This function brings up the dialog shown in Figure 11.3. To call it, you can use the
wrapper function dhDisconnectDlg, shown in Listing 11.3.

F I G U R E 1 1 . 3
Disconnecting from net-
work resources with the
Windows NT Disconnect

Network Drive dialog box

 Basic Network Functionality 641

➲ Listing 11.3: Disconnecting from Network Resources

Public Function dhDisconnectDlg(Optional ByVal hWnd As Long = 0) _
 As dhcNetworkErrors
 ' Display the dialog to disconnect from network resources

 Dim lngReturn As dhcNetworkErrors
 Dim lngExtendedError As Long

 ' Call the net disconnect dialog
 lngReturn = WNetDisconnectDialog(hWnd, dhcResourceTypeDisk)

 ' If the call failed, get error information
 If lngReturn <> dhcNoError Then
 lngExtendedError = dhGetLastNetworkError(True)
 ' If there was an extended error, return it instead
 ' of the standard error
 If lngExtendedError = dhcNoError Then
 dhDisconnectDlg = lngReturn
 Else
 dhDisconnectDlg = lngExtendedError
 End If
 End If
End Function

As with dhConnectDlg, the return value will usually be either dhcNoError, if
the dialog disconnected something, or dhcDialogCancelled, if the user cancelled the
dialog. It may also be one of the values listed earlier in Table 11.2.

Other Dialogs You Can Use

In addition to the dialogs displayed by the dhConnectDlg and dhDisconnectDlg
functions, you can use the standard Windows File Open dialog, discussed in
Chapter 12, which contains a convenient Network button that allows the user to
connect to a network resource. This dialog is also familiar to most users and is
easy to add to your application. When you wish to connect to a network resource,
you often also want to select a file once you’re connected, so this may be the easi-
est way to add network awareness to your application.

Chapter 11 • The Windows Networking API642

There are several advantages to using the dialogs the operating system provides:

• They are easy to call and integrate into your applications.

• Their look and feel will be familiar to the user.

• All the work of doing the actual network connections and disconnects is
handled by the dialogs themselves.

Of course, there are also some disadvantages:

• When the function call succeeds, you have no easy way of knowing what
resources the user connected to.

• There is no way to customize the interface of the dialogs to help them fit into
your applications.

• You cannot control the way a connection is made. (For example, you cannot
specify whether this connection should persist if the user reboots the machine.)

Because of these problems, many applications that need to add networking
capabilities also need to do the work themselves rather than let these dialogs do
the work for them. The following section provides information on bypassing the
standard dialog boxes.

Handling Network Resources Yourself
Sometimes, you’ll want your application to handle all the details of connecting to
and disconnecting from network resources. This section covers many of these
basic functions.

Connecting to a Network Resource

There are two Win32 API functions that let you connect to a network resource: WNe-
tAddConnection and WNetAddConnection2. The first API call maintains compatibil-
ity with the older 16-bit API and is simpler to call, but it isn’t as flexible and doesn’t
return as much information as the newer version. We present both functions here, but
you’ll normally want to use WNetAddConnection2 in your applications.

The declarations and types for these functions are shown here:

Public Type NETRESOURCE
 dwScope As dhcResourceScope
 dwType As dhcResourceType
 dwDisplayType As dhcResourceDisplayType
 dwUsage As dhcResourceUsage

 Basic Network Functionality 643

 ' Pointers to strings
 lpLocalName As Long
 lpRemoteName As Long
 lpComment As Long
 lpProvider As Long

 ' Buffer that contains string data
 abyt(dhcMaxPath * 4) As Byte

 ' Actual location of the final strings
 strLocalName As String
 strRemoteName As String
 strComment As String
 strProvider As String
End Type

Private Declare Function WNetAddConnection Lib "mpr.dll" Alias _
 "WNetAddConnectionA" (ByVal strNetPath As String, _
 ByVal strPassword As String, ByVal strLocalName As String) _
 As Long

Private Declare Function WNetAddConnection2 Lib "mpr.dll" Alias _
 "WNetAddConnection2A" (lpNetResource As NETRESOURCE, _
 ByVal strPassword As String, ByVal strUserName As String, _
 ByVal lngFlags As Long) As Long

To call WNetAddConnection, you need only pass in the following parameters:

• Path to which you wish to connect

• Password (if there is one) or a zero-length string

• Local name to which you wish to map this new resource

You can use the dhAddConnection1 function, shown in Listing 11.4, to call WNet-
AddConnection.

➲ Listing 11.4: Connect Resources with WNetAddConnection

Function dhAddConnection1(_
 strNetPath As String, strPwd As String, _
 strLocalName As String) As dhcNetworkErrors
 ' Adds a network connection

Chapter 11 • The Windows Networking API644

 dhAddConnection1 = WNetAddConnection(strNetPath, _
 strPwd, strLocalName)
End Function

You can call dhAddConnection1 as follows:

lngReturn = dhAddConnection1("\\middlemarch\setup", _
 "password","J:")

This connects the local J drive to the specified network share using a password of
“password”. If you are using an NT domain security model for your network, the
function will create a connection with the permissions of the currently logged-in user.

Table 11.3 lists the various constants returned from, and sent to, both the WNe-
tAddConnection and WNetAddConnection2 functions.

T A B L E 1 1 . 3 : Commonly Used Constants for WNetAddConnection and
WNetAddConnection2

Constant Value Meaning

dhcNoError 0& Function call was successful.

dhcErrorAccessDenied 5& Insufficient permissions to the specified
resource.

dhcErrorAlreadyAssigned 85& Given local name is already assigned to
another resource.

dhcErrorBadDevType 66& Device type and resource type do not match.

dhcErrorBadDevice 1200& Device is invalid.

dhcErrorBadNetName 67& Remote resource is invalid or cannot be found.

dhcErrorBadProfile 1206& User profile is in an incorrect format.

dhcErrorCannotOpenProfile 1205& User profile cannot be accessed to update
persistent information.

dhcErrorDeviceAlreadyRemembered 1202& An entry for the specified local name is already
in the user profile.

dhcErrorExtendedError 1208& An extended error has occurred.

dhcErrorInvalidPassword 86& Given password is invalid.

dhcErrorNoNetOrBadPath 1203& Specified remote resource could not be found
or the name is invalid.

dhcErrorNoNetwork 1222& No network was detected.

 Basic Network Functionality 645

In many cases, WNetAddConnection is simply not flexible enough. You may
need to connect with the username and password of another user (perhaps one
with different permissions). You may want to control whether this connection will
be persistent if the user reboots the machine, or you may want to specify the net-
work provider when there are multiple networks. If you require these options,
you need to use WNetAddConnection2, and you can do so using the dhAdd-
Connection2 wrapper, shown in Listing 11.5.

➲ Listing 11.5: Connect Resources with WNetAddConnection2

Public Function dhAddConnection2(_
 strNetPath As String, strLocalName As String, _
 strUserName As String, strPwd As String, _
 Optional lngConnectType As _
 dhcConnectType = dhcConnectUpdateProfile, _
 Optional fIsDiskResource As Boolean = True) As dhcNetworkErrors
 ' Adds a network connection

 Dim usrNetResource As NETRESOURCE

 With usrNetResource
 If fIsDiskResource Then
 .dwType = dhcResourceTypeDisk
 Else
 .dwType = dhcResourceTypePrint

dhcResourceTypeAny 0& Use a resource of any type.

dhcResourceTypeDisk 1& Use a resource of “disk” type.

dhcResourceTypePrint 2& Use a resource of “print” type.

dhcMaxPath 260 Maximum number of characters allowed in a
path for the remote name.

dhcConnectUpdateProfile 1& Update the user profile to retain this
connection after the user reboots.

dhcConnectDontUpdateProfile 0& Don’t update the user profile.

T A B L E 1 1 . 3 : Commonly Used Constants for WNetAddConnection and
WNetAddConnection2 (continued)

Constant Value Meaning

Chapter 11 • The Windows Networking API646

 End If
 ' Convert the text into ANSI format.
 .strLocalName = StrConv(strLocalName, vbFromUnicode)
 .strRemoteName = StrConv(strNetPath, vbFromUnicode)

 ' Get the pointers to the text strings.
 ' Pass a null pointer (0&) for the
 ' provider.
 .lpLocalName = StrPtr(.strLocalName)
 .lpRemoteName = StrPtr(.strRemoteName)
 .lpProvider = 0&
 End With
 dhAddConnection2 = WNetAddConnection2(usrNetResource, _
 strPwd, strUserName, CLng(lngConnectType))
End Function

The function takes the following parameters:

The function fills in the members of the NETRESOURCE structure and then
calls WNetAddConnection2 for you. Here is an example of calling
dhAddConnection2:

lngReturn = dhAddConnection2(_
 "\\middlemarch\setup", "K:", "Sam", "", False)

Parameter Description

strNetPath UNC path to which to connect.

strLocalName Local name for the resource (such as K:).

strUserName User whose permissions should be used for
logging in.

strPwd Password for the user given by strUserName.

lngConnectType Indicates whether to retain this connection after
the user reboots. (Optional; default is
dhcConnectUpdateProfile.)

fIsDiskResource Indicates whether this is a disk resource. True
indicates a disk resource; False indicates a print
resource. (Optional; default is True.)

 Basic Network Functionality 647

This call will connect the K drive to the specified resource with the permissions of
the user named Sam (who has no password). When the user reboots, this connec-
tion will not be reestablished.

Disconnecting from a Network Resource
Just as there are two ways to add a network resource, there are two API functions
for disconnecting them: WNetCancelConnection and WNetCancelConnection2.
The only added feature of the second function is that you can choose whether to
update the user’s profile with the information that you have disconnected the

ANSI and Unicode, Again
Sprinkled throughout this book, you’ll find references to ANSI and Unicode character sets,
and converting between the two. The WNet and LAN Manager API functions really bring
this all to the forefront. That is, you can’t really work with this set of API functions without
running head-on into ANSI versus Unicode issues.

First of all, VBA uses Unicode internally for all its strings. If you are calling an API function
that requires ANSI strings, you’ll need to convert the strings into ANSI before calling the
function. If your API call passes parameters “As String”, this isn’t an issue—this conversion
happens for you. On the other hand, if you’re passing strings as part of a user-defined
type, VBA doesn’t do the conversion for you, and you’ll need to call the StrConv function,
using the vbFromUnicode option. (Listing 11.5 shows this type of code.)

Because of this ANSI/Unicode duality, VBA attempts to help out when you’re calling API
functions. That is, VBA assumes that all API function calls require ANSI strings, so any
parameter you send will always be converted to ANSI on the way out, and then converted
back to Unicode on the return. This works great for API functions that pass strings to func-
tions that expect to receive ANSI strings. What about functions that expect to receive Uni-
code strings? Later in the chapter, when we’re working with LAN Manager API functions,
you’ll need to pass Unicode strings to the functions. Therefore, you cannot use “As
String” to define the parameters in the declaration. Instead, you must use “As Long” and
pass the address of the string. By tricking VBA this way, you can pass the address of the
string, no conversion takes place, and the API call gets the correct value. You can accom-
plish this goal using the undocumented StrPtr function—this function takes in a string as a
parameter, and returns the address the string occupies in memory. You’ll see this tech-
nique used all over this chapter.

Chapter 11 • The Windows Networking API648

resource. (If you do not update the user’s profile, the resource will be back the
next time the user logs in.) The declarations for these functions are shown here:

Private Declare Function WNetCancelConnection Lib _
 "mpr.dll" Alias "WNetCancelConnectionA" _
 (ByVal lpszName As String, ByVal fForce As Long) As Long

Private Declare Function WNetCancelConnection2 Lib _
 "mpr.dll" Alias "WNetCancelConnection2A" _
 (ByVal lpName As String, ByVal dwFlags As Long, _
 ByVal fForce As Long) As Long

The common constants that can be used with these functions are shown in Table 11.4.

To call WNetCancelConnection, you can use the dhCancelConnection1 wrapper
function, shown in Listing 11.6. Pass this function the name of the resource to dis-
connect from and an optional Boolean value (its default is False), indicating whether
you want to force the disconnect even if files are open or devices are in use.

T A B L E 1 1 . 4 : Commonly Used Constants for WNetCancelConnection and
WNetCancelConnection2

Constant Value Meaning

dhcNoError 0& Function call was successful.

dhcErrorBadProfile 1206& User profile is in an incorrect format.

dhcErrorCannotOpenProfile 1205& User profile cannot be accessed to update
persistent information.

dhcErrorDeviceInUse 2404& Device is currently in use and the Force
parameter was not set to True.

dhcErrorExtendedError 1208& An extended error has occurred.

dhcErrorNotConnected 2205& Given resource is not currently connected.

dhcErrorOpenFiles 2401& Device is currently in use and files on it are
open, and the Force parameter was not set to
True.

dhcConnectUpdateProfile 1& Update the user profile to reflect that this
resource was disconnected.

dhcConnectDontUpdateProfile 0& Don’t update the user profile.

 Basic Network Functionality 649

➲ Listing 11.6: Disconnect from Resources with
WNetCancelConnection

Public Function dhCancelConnection1(strLocalName As String, _
 Optional fForceDisconnect As Boolean = False) as Long
 ' Cancels a network connection
 dhCancelConnection1 = WNetCancelConnection(_
 strLocalName, Abs(fForceDisconnect))
End Function

The dhCancelConnection1 function uses the Abs (absolute value) function when
passing the Boolean parameter fForceDisconnect. Many API calls specify that they
accept a Boolean parameter, but C++ defines True as 1, while VBA defines True as
–1. In most cases, the API calls check for any value that’s not False (that is,
anything except 0), so this difference isn’t relevant. However, there are exceptions,
for example, when a DLL is checking specifically for a True (1) value, in which case,
passing a VBA Boolean True (–1) will fail. By the way, this isn’t an issue when a DLL
passes a value back to your program: If you define a variable as a Boolean and a
DLL passes a 1 into that variable, VBA correctly treats the value as True.

Calling WNetCancelConnection2 using the dhCancelConnection2 function
(shown in Listing 11.7) is similar. This function adds one more flag, in which you
can specify whether you’d like the user’s profile to be updated.

➲ Listing 11.7: Disconnect from Resources with
WNetCancelConnection2

Public Function dhCancelConnection2(strLocalName As String, _
 Optional fForceDisconnect As Boolean = False, _
 Optional lngConnectType As _
 dhcConnectType = dhcConnectUpdateProfile) As dhcNetworkErrors
 ' Cancels a network connection
 Dim lngFlags As Long

 lngFlags = lngConnectType
 dhCancelConnection2 = _
 WNetCancelConnection2(strLocalName, _
 lngFlags, Abs(fForceDisconnect))
End Function

Chapter 11 • The Windows Networking API650

Your users will most likely be somewhat frustrated and confused if you disconnect
network resources that they’re currently using. Because of this, you should always
call dhCancelConnection1 and dhCancelConnection2 with the fForceDisconnect
parameter set to False. If the return value is dhcErrorOpenFiles or dhcErrorDeviceI-
nUse, you can warn the user that there are open files and that there is a risk of los-
ing unsaved data in these files. If the user confirms wanting to disconnect the
connection, you can try to cancel it again, this time setting fForceDisconnect to True.

Retrieving Information about Network Resources
As part of your networked application, you may need to know the UNC path of a
specific mapped network drive or the name of the currently logged-in user, or
perhaps you need to get (or even change) the name of the computer. This section
discusses these topics.

Chapter 9 included methods similar to the dhGetUserName, dhGetComputerName,
and dhSetComputerName functions. Because you’re likely to use these functions
when working with other networking functionality, it seemed worthwhile to
repeat their use, in slightly different format, in this chapter.

Getting a UNC Path from a Mapped Network Drive

Imagine this common scenario: In the current session, your application’s user has
modified a file on a mapped network drive. The next time the user logs in, the
drive mapping has changed, and your application can no longer find the same
file. How do you work around this problem? Rather than store information about
the mapped drive, you convert the drive mapping into a UNC path (including the
server and drive name), using the WNetGetConnection API call. This function
takes a local path as its input parameter, and it attempts to return a UNC path. (Of
course, it may fail because there may not be a corresponding remote path if you’ve
specified an incorrect local path.)

The declaration for WNetGetConnection looks like this:

Private Declare Function WNetGetConnection Lib "mpr.dll" _
 Alias "WNetGetConnectionA" (ByVal strLocalName As String, _
 ByVal strRemoteName As String, lngRemoteNameLen As Long) As Long

 Basic Network Functionality 651

This function accepts the local name, a buffer to contain the UNC path, and the
length of the buffer. On return, it will have filled in the buffer with the UNC path
(if it succeeded). The return value will be dhcNoError on success, or one of the
standard error codes on failure. The most common constants associated with this
function are listed in Table 11.5.

To call WNetGetConnection, you can use the dhGetRemoteName wrapper
function, which takes the local name and returns the UNC path (or a zero-length
string if it fails). The code for this function is shown in Listing 11.8.

➲ Listing 11.8: Get a UNC Path from a Mapped Network Drive

Public Function dhGetRemoteName(strLocalName As String) As String
 ' Given a mapped network resource, returns the UNC path

 Dim lngRemoteNameLen As Long
 Dim strRemoteName As String
 Dim lngReturn As dhcNetworkErrors

T A B L E 1 1 . 5 : Commonly Used Constants for WNetGetConnection

Constant Value Meaning

dhcNoError 0& Function call was successful.

dhcErrorBadDevice 1200& Local name is invalid.

dhcErrorNotConnected 2205& Given resource is not currently connected.

dhcErrorMoreData 234& Buffer is too small. (The buffer length
parameter will contain the length that is
needed when the function returns this error.)

dhcErrorExtendedError 1208& An extended error has occurred.

dhcErrorConnectionUnavailable 1201& Device is not currently connected, but it is a
persistent connection.

dhcErrorNoNetwork 1222& No network is present.

dhcErrorNoNetOrBadPath 1203& Specified remote resource could not be found
or the name is invalid.

Chapter 11 • The Windows Networking API652

 Do
 ' Set up the buffer
 strRemoteName = String$(lngRemoteNameLen, vbNullChar)

 lngReturn = WNetGetConnection(_
 strLocalName, strRemoteName, lngRemoteNameLen)

 ' Continue looping until the call succeeds or the error is
 ' anything besides "there's more data"
 Loop Until lngReturn <> dhcErrorMoreData

 If lngReturn = dhcNoError Then
 dhGetRemoteName = dhTrimNull(strRemoteName)
 End If
End Function

The Do…Loop structure in dhGetRemoteName uses an interesting, and some-
what common, technique to fill the output buffer. Initially, the value of lngRemote-
NameLen is 0, and the first pass through the loop sets strRemoteName to contain
0 characters, using the String function:

Do
 ' Set up the buffer
 strRemoteName = String$(lngRemoteNameLen, vbNullChar)
 ' Code removed here...
Loop

When you call WNetGetConnection with a buffer that’s too small for its returned
data, the function fills its lngRemoteNameLen parameter with the length of the
buffer it needs and returns dhcErrorMoreData:

Do
 ' Code removed here...
 lngReturn = WNetGetConnection(_
 strLocalName, strRemoteName, lngRemoteNameLen)
 ' Continue looping until the call succeeds or the error is
 ' anything besides "there's more data"
Loop Until lngReturn <> dhcErrorMoreData

The second time through the loop, the code sets strRemoteName to contain enough
space for the return value, so WNetGetConnection will correctly fill the buffer and
return a value other than dhcErrorMoreData.

 Basic Network Functionality 653

The following code fragment provides an example of using dhGetRemoteName
to replace a mapped network drive with a UNC path when one exists:

' Convert from "T:\SAMPLE.TXT" to
' \\GATEWAY\JAZ\SAMPLE.TXT", assuming that
' T:\ is mapped to \\GATEWAY\JAZ.
If Mid$(strFilePath, 2, 1) = ":" Then
 strRemote = dhGetRemoteName(Left$(strFilePath, 2))
 If Len(strRemote) > 0 Then
 strFilePath = strRemote & Mid$(strFilePath, 3)
 End If
End If

Rather than use WNetGetConnection, as dhGetRemoteName does, you can use
another API function Windows provides that will do the work of putting the path
together for you; it even splits up the server and share portions of the UNC path (the
connection information) automatically from the rest of the path. This API function,
WNetGetUniversalName, is covered in the section “Retrieving Universal Name
Information” later in this chapter.

Retrieving the Name of the Currently Logged-In User

You may have applications in which you wish to integrate network security by
changing the application’s interface or actions based on the currently logged-in
user. Whether you’re doing this to add security, maintain user preferences and set-
tings, or track usage, knowing who is using the application can be valuable. You can
retrieve this information using the WNetGetUser API call, declared like this:

Private Declare Function WNetGetUser Lib "mpr" Alias _
 "WNetGetUserA" (ByVal strName As String, _
 ByVal strUserName As String, lngLength As Long) As Long

This function actually has two uses, depending on what you pass into the first
parameter. If you pass an empty string in the strName parameter, the strUser-
Name buffer will contain the name of the currently logged-in user. If you specify a
resource, such as a mapped drive, the buffer will contain the username (or Win-
dows NT domain and username) that was specified when the connection was cre-
ated. This function can be called both ways with the dhGetUserName function,
which takes an optional parameter that is passed in as the strName parameter to
WNetGetUser. Listing 11.9 contains the code for dhGetUserName, which is simi-
lar to the code in the dhGetRemoteName function. Table 11.6 lists the constants
that WnetGetUser most commonly returns.

Chapter 11 • The Windows Networking API654

➲ Listing 11.9: Use WNetGetUser to Identify the Currently Logged-In
User

Public Function dhGetUserName(_
 Optional strLocalName As String = vbNullString) As String
 ' Retrieve the current network user name

 Dim lngUserNameLen As Long
 Dim strUserName As String
 Dim lngReturn As dhcNetworkErrors

 Do
 ' Set up the buffer
 strUserName = String$(lngUserNameLen, vbNullChar)

 lngReturn = WNetGetUser(_
 strLocalName, strUserName, lngUserNameLen)

 ' Continue looping until the call succeeds or the error is not
 Loop Until lngReturn <> dhcErrorMoreData

 If lngReturn = dhcNoError Then
 dhGetUserName = dhTrimNull(strUserName)
 End If
End Function

T A B L E 1 1 . 6 : Commonly Used Constants for WNetGetUser

Constant Value Meaning

dhcNoError 0& Function call was successful.

dhcErrorNotConnected 2205& Given resource is not currently connected.

dhcErrorMoreData 234& Buffer is too small. (The buffer length parameter will
contain the length that is needed when the function
returns this error.)

dhcErrorExtendedError 1208& An extended error has occurred.

dhcErrorNoNetwork 1222& No network is present.

dhcErrorNoNetOrBadPath 1203& Specified remote resource could not be found or the
name is invalid.

 Basic Network Functionality 655

Getting (and Setting) the Computer Name

In an application that is network aware, you might want to be able to obtain the
name of the workstation on which the application is running. The Registry con-
tains this information, and the value is initialized when you log in to Windows.
Although you could simply read this information from the Registry, when you
change this value (through the Network Properties dialog or the Windows API, or
by using REGEDIT.EXE), the computer’s “knowledge” of its name does not change
until the computer is rebooted. Therefore, the value in the Registry may not be the
actual name of the computer.

The Win32 API provides two functions—GetComputerName and SetComputer-
Name—to get and retrieve the information. Their declarations are shown here:

Private Declare Function GetComputerName Lib "kernel32" _
 Alias "GetComputerNameA" (ByVal strBuffer As String, _
 lngSize As Long) As Long

Private Declare Function SetComputerName Lib "kernel32" _
 Alias "SetComputerNameA" (ByVal strComputerName As String) _
 As Long

GetComputerName takes a buffer and the buffer’s size as parameters; it fills in the
buffer with the computer name and returns a nonzero value when successful. Set-
ComputerName takes the new computer name and sets it. (The name will not
actually change until you reboot the machine.) You can call the API functions with the
dhGetComputerName and dhSetComputerName wrappers, shown in Listing 11.10.

➲ Listing 11.10: Get and Set the Computer Name

Public Function dhGetComputerName() As String
 ' Return the workstation's computer name

 Dim lngReturn As Long
 Dim lngBufferSize As Long
 Dim strBuffer As String

 ' Make the buffer big enough for the name plus a vbNullChar
 lngBufferSize = dhcMaxComputernameLength + 1
 strBuffer = String$(lngBufferSize, vbNullChar)

 lngReturn = GetComputerName(strBuffer, lngBufferSize)

Chapter 11 • The Windows Networking API656

 ' lngReturn will be True on success
 If CBool(lngReturn) Then
 dhGetComputerName = Left(strBuffer, lngBufferSize)
 End If
End Function

Public Function dhSetComputerName(strComputerName) As Boolean
 ' Sets the workstation's computer name

 Dim lngReturn As Long

 lngReturn = SetComputerName(strComputerName)

 ' lngReturn will be non-zero on success
 dhSetComputerName = CBool(lngReturn)
End Function

We’ve used the simplest code possible in this chapter. For more advanced versions
of these functions using the GetComputerNameEx and SetComputerNameEx API
functions, see the SystemInfo class in Chapter 9.

Advanced Networking Functionality
The basic network functions discussed in the first part of this chapter can handle
most of your networking requirements. However, sometimes you need more than
just the basics. This section covers some of the advanced networking features you
can add to your VBA applications, such as:

• Retrieving more information about remote resources than WNetGetConnection
can provide

• Enumerating connected network resources

• Enumerating available network shares

• Enumerating computers on the network

• Using the LAN Manager API

 Advanced Networking Functionality 657

Retrieving Universal Name Information
The WNetGetUniversalName function can return either a UNC version of a par-
ticular remote path (for example, \\GATEWAY\JAZ\Updates when you pass it
T:\Updates, when drive T is mapped to \\GATEWAY\JAZ), or a structure filled
with information about the mapping, including the various portions of the string
\\GATEWAY\JAZ\Updates, to keep you from having to parse the string your-
self. However, calling the function presents some interesting challenges that are
also applicable to other API function calls. This section discusses using the WNet-
GetUniversalName function and some of the difficulties involved in calling it
from VBA. This discussion also serves as an introduction to the next section,
“Enumerating Network Resources,” which addresses the issues involved in per-
forming network enumerations, where many of the same problems arise. Luckily,
all of these problems can be solved, and the functions can be called successfully
from VBA.

Introduction to the Buffer Problem

In theory, all the WNet functions should be as easy to call as the ones you have
seen so far. However, in practice, Microsoft has made calling some of the WNet
functions from VBA more difficult. The problem is that some of these functions
use data structures containing addresses to strings, not the strings themselves, mak-
ing it tricky to send and retrieve information from these API calls. For example,
here is the declaration for the WNetGetUniversalName API:

Private Declare Function WNetGetUniversalName Lib "mpr" _
 Alias "WNetGetUniversalNameA" (ByVal strLocalPath As String, _
 ByVal lngInfoLevel As Long, lpBuffer As Any, _
 lngBufferSize As Long) As Long

At first glance, the lpBuffer and lngBufferSize parameters look the same as they
did in other functions, such as WNetGetUser. However, this time, the buffer will
contain a variable of one of the following user-defined types. However, these
aren’t the actual data types you’ll find in the code—we’ll discuss those in the next
section. These represent the data types you might create if you were to begin doing
the work here on your own:

Public Type UNIVERSAL_NAME_INFO
 lpUniversalName As String
End Type

Chapter 11 • The Windows Networking API658

Public Type REMOTE_NAME_INFO
 lpUniversalName As String
 lpConnectionName As String
 lpRemainingPath As String
End Type

The problem here is that the API function call allocates space for the strings used
by these data structures in the buffer immediately following the structure in memory.
But the strings inside these user-defined types aren’t strings at all: Instead, they’re
actually pointers to buffers containing the text the function has retrieved.

It all boils down to this: If you call the function properly, you know that all the
information is inside the buffer. However, without being able to decipher where
the pointers in the REMOTE_NAME_INFO structure are pointing, you have no
clean way to extract the information. You cannot even parse the three strings man-
ually, because you can’t assume their order within the buffer.

How to Solve the Buffer Problem

You can use a few tricks to solve the buffer problem. The first trick is to use the fol-
lowing two user-defined types instead of the ones given previously:

Public Type UNIVERSAL_NAME_INFO
 ' pointer to the string
 lpUniversalName As Long

 ' Add an extra buffer to the end which
 ' will be used to store the string
 abyt(dhcMaxPath) As Byte

 ' the actual location of the final string
 strUniversalName As String
End Type

Public Type REMOTE_NAME_INFO
 ' Pointers to strings
 lpUniversalName As Long
 lpConnectionName As Long
 lpRemainingPath As Long

 ' Add an extra buffer to the end which
 ' will be used to store the strings
 abyt(dhcMaxPath * 3) As Byte

 Advanced Networking Functionality 659

 ' the actual location of the final strings
 strUniversalName As String
 strConnectionName As String
 strRemainingPath As String
End Type

With those structures defined, you can “lie” about the buffer size so that the API
function only sees the amount of memory that you’ve specified. That is, specify a
size for the API function so that you don’t include those last few strings (which are
really there for your convenience, and the function has no need to know they’re
there), taking advantage of the fact that the API will not touch memory beyond
what you tell it is valid. The heart of the function you use to work with Wnet-
GetUniversalName might look like this code from dhGetRemoteInfo:

Dim lngReturn As dhcNetworkErrors
Dim lngBufferSize As Long

' Don't include the last three string pointers in the buffer size
' Each pointer takes up four bytes.
lngBufferSize = Len(usrRemoteNameInfo) - 12
lngReturn = WNetGetUniversalName(_
 strLocalPath, dhcRemoteNameInfoLevel, _
 usrRemoteNameInfo, lngBufferSize)

Notice that the code subtracts 12 from what it tells the API to use for the buffer
size (that is, it removes the size of three long integers, which matches the three
long pointers to strings in the structure).

Once you have made this call, you will have three empty strings and three
pointers to ANSI strings (because you’ve called the ANSI version of the function,
WnetOpenEnumA), as well as a byte array that happens to contain the data to be
placed into those strings. So how do you turn these pointers into real strings that
VBA can use? The dhStrFromAnsiPtr function does the work for you—it uses the
lstrlen API function to find out how long the string is (lstrlen takes a pointer to a
null-terminated string and tells you how many characters it contains), and the
lstrcpyn API function to move the specified number of characters:

Private Declare Function lstrlen Lib "kernel32" _
 Alias "lstrlenA" (ByVal lpString As Long) As Long

Private Function dhStrFromANSIPtr(lngPtr As Long) As String
 ' Takes a long pointer to an ANSI string and returns
 ' the actual string

Chapter 11 • The Windows Networking API660

 Dim strTemp As String
 Dim lngLen As Long

 lngLen = lstrlen(lngPtr)
 strTemp = String$(lngLen, vbNullChar)
 If lstrcpyn(StrPtr(strTemp), lngPtr, lngLen + 1) <> 0 Then
 dhStrFromANSIPtr = dhTrimNull(StrConv(strTemp, vbUnicode))
 End If
End Function

The Unicode version of this function, which we’ll use later when discussing sev-
eral of the LAN Manager API functions under Windows NT/2000, is shown here.
You will notice that the ANSI and Unicode versions are quite similar.

Private Declare Function lstrlenW Lib "kernel32" _
 (ByVal lpString As Long) As Long

Private Function dhStrFromPtr(lngPtr As Long) As String
 ' Takes a long pointer to a Unicode string and returns
 ' the actual string

 Dim strTemp As String
 Dim lngLen As Long

 lngLen = lstrlenW(lngPtr)
 strTemp = String$(lngLen, vbNullChar)
 If lstrcpynW(StrPtr(strTemp), lngPtr, lngLen + 1) <> 0 Then
 dhStrFromPtr = dhTrimNull(strTemp)
 End If
End Function

Using VarPtr, ObjPtr, and StrPtr
VBA 5 and 6 both contain three useful undocumented functions: VarPtr, StrPtr, and
ObjPtr. VarPtr returns the address of the variable passed to it (otherwise referred to as a pointer
to the variable). StrPtr returns a pointer to a string variable, and ObjPtr returns a pointer to
an object variable. There are many situations, especially in API calls, in which these func-
tions can be useful.

 Advanced Networking Functionality 661

Listing 11.11 shows two functions using the WNetGetUniversalName API func-
tion. The first function, dhGetRemoteInfo, allows you to pass in a local path and an
empty REMOTE_NAME_INFO structure to retrieve information about the path.
The function fills in the REMOTE_NAME_INFO structure with parsed information
about the local path you supplied. The second, dhGetUniversalInfo, is a simpler
function that takes a local path and an empty UNIVERSAL_NAME_INFO struc-
ture, and returns only the universal name associated with the path.

➲ Listing 11.11: Calling WNetGetUniversalName in Two Ways

Public Function dhGetRemoteInfo(strLocalPath As String, _
 usrRemoteNameInfo As REMOTE_NAME_INFO) As dhcNetworkErrors

 Dim lngReturn As dhcNetworkErrors
 Dim lngBufferSize As Long

 ' Don't include the last three string pointers in the buffer size.
 lngBufferSize = Len(usrRemoteNameInfo) - 12
 lngReturn = WNetGetUniversalName(strLocalPath, _
 dhcRemoteNameInfoLevel, usrRemoteNameInfo, lngBufferSize)

 If lngReturn = dhcNoError Then
 ' If the call succeeded, fill the strings in the
 ' REMOTE_NAME_INFO structure.
 With usrRemoteNameInfo
 .strUniversalName = dhStrFromAnsiPtr(.lpUniversalName)
 .strConnectionName = dhStrFromAnsiPtr(.lpConnectionName)
 .strRemainingPath = dhStrFromAnsiPtr(.lpRemainingPath)
 End With
 End If

However, be careful! Because these functions are undocumented, they are not supported
parts of the VBA function library. As such, they may not exist in future versions of VBA.
Particularly looking toward the future with COM+ and moveable memory, these functions
may have problems in future versions. However, given the huge dependency that VB,
Access, and other Office wizards have on these methods (not to mention code written by
users and developers!), if they do take them away, Microsoft will have to provide some
other way to accomplish the same tasks.

Chapter 11 • The Windows Networking API662

 dhGetRemoteInfo = lngReturn
End Function

Public Function dhGetUniversalInfo(strLocalPath As String, _
 usrUniversalNameInfo As UNIVERSAL_NAME_INFO) As dhcNetworkErrors

 Dim lngReturn As dhcNetworkErrors
 Dim lngBufferSize As Long

 ' Don't include the last string pointer in the buffer size.
 lngBufferSize = Len(usrUniversalNameInfo) - 4
 lngReturn = WNetGetUniversalName(strLocalPath, _
 dhcUniversalNameInfoLevel, usrUniversalNameInfo, lngBufferSize)

 If lngReturn = dhcNoError Then
 ' If the call succeeded, fill the string in the
 ' UNIVERSAL_NAME_INFO structure.
 With usrUniversalNameInfo
 .strUniversalName = dhStrFromAnsiPtr(.lpUniversalName)
 End With
 End If

 dhGetUniversalInfo = lngReturn
End Function

The information provided in this section concerning the dhStrFromAnsiPtr function
will also be important in the discussion of network enumerations in the next
section of this chapter. The functions used in the next section use buffers in
exactly the same way that WNetGetUniversalName does.

For example, to call these two functions, you might write code like this (from
the TestProcedures module):

Sub TestUniversal(strPath As String)
 Dim uni As UNIVERSAL_NAME_INFO
 Dim rni As REMOTE_NAME_INFO

 If dhGetUniversalInfo(strPath, uni) = dhcNoError Then
 Debug.Print "Universal Name : " & uni.strUniversalName
 End If

 Advanced Networking Functionality 663

 If dhGetRemoteInfo(strPath, rni) = dhcNoError Then
 Debug.Print "Connection Path: " & rni.strConnectionName
 Debug.Print "Remaining Path : " & rni.strRemainingPath
 Debug.Print "Universal Name : " & rni.strUniversalName
 End If
End Sub

For a path like T:\Updates, where you’ve mapped drive T to \\GATEWAY\JAZ,
the results should look like this:

Universal Name : \\GATEWAY\jaz\Updates
Connection Path: \\GATEWAY\jaz
Remaining Path : \Updates
Universal Name : \\GATEWAY\jaz\Updates

You can see that both functions return the UNC name, and the dhGetRemoteInfo
function can save you from having to parse the full UNC path name yourself.

Enumerating Network Resources
The discussions earlier in this chapter on connecting to, disconnecting from, and
getting information about network resources assumed that either you or your
users know what devices are available. Other than dhConnectDlg, we have pre-
sented no interface that gives you a choice of available network devices. What if
you want to provide your own interface, allowing users to select network devices?
You’ll need to use some sort of enumeration technique, asking the Windows API
to provide you with a list of available devices.

Enumerating network devices is a three-step process:

1. Retrieve an enumeration handle, given the starting point for your enumeration.

2. Given the enumeration handle, work through all the contained resources,
performing whatever action you need with each resource. Usually, you’ll
just want to retrieve each device’s name to place into a list of your own.

3. Close the enumeration handle once you’re done with it.

The Windows API provides three functions that handle the three steps of net-
work enumerations: WNetOpenEnum, WNetEnumResource, and WNetCloseE-
num. You’ll need to call all three in order to retrieve a list of devices. Think of an
enumeration handle as a conduit through which the API returns information about
devices. Before you can retrieve a list of devices, you must retrieve an enumera-
tion handle from Windows. To do that, you call WNetOpenEnum, passing several

Chapter 11 • The Windows Networking API664

flags about the type of resources you wish to enumerate, and it supplies an enu-
meration handle. You’ll use this handle to retrieve your list of devices, and you
enumerate the resources using the WNetEnumResource function. You call this
function repeatedly—it fills in a NETRESOURCE structure containing informa-
tion about each resource—until it’s run out of available network resources to enu-
merate. When you’re finished enumerating devices, you use the WNetCloseEnum
function to release the enumeration handle.

The next few sections look at using the WNetOpenEnum, WNetEnumResource,
and WNetCloseEnum functions to retrieve lists of available network resources.

Getting a Network Enumeration Handle

Retrieving the enumeration handle is the most critical part of the process of enu-
merating network resources because it’s your only chance to indicate to Windows
exactly what resources you’re looking for. Because you can enumerate everything
from connections that are currently on your machine to network shares on some-
one else’s machine (and everything in between), the way you handle the call to
WNetOpenEnum controls exactly what you get back from Windows. When you
call WNetOpenEnum, you pass three pieces of information:

• Scope of the enumeration

• Types of resources for the enumeration

• Resource usage for the enumeration

The possible value for each parameter is shown in Tables 11.7, 11.8, and 11.9.

T A B L E 1 1 . 7 : Enumeration Scope Constants

Constant Value Meaning

dhcResourceConnected &H1 All currently connected resources

dhcResourceGlobalNet &H2 All resources on the network

dhcResourceRemembered &H3 All remembered (persistent) resources

dhcResourceRecent &H4 All recently added resources

dhcRecourceContext &H3 All resources in the current domain

 Advanced Networking Functionality 665

The scope of an enumeration tells Windows where to look for resources. Choose
a value from Table 11.7 to specify the necessary scope. If you specify any value
besides dhResourceGlobalNet, the enumeration will work only through the devices
on a single machine. (In addition, the Usage flag will be ignored because it applies
only when you’re dealing with the global network-wide scope.)

The enumeration type constants are straightforward: They let you choose whether
you want to look at disks or printers. In addition, if the server on which you’re
performing an enumeration supports sharing other resources, such as COM ports,
they will show up only when you specify the dhcResourceTypeAny constant. If
the operating system cannot distinguish among different resource types, it may
return all resource types and ignore the enumeration type flag.

You use the enumeration usage flag when choosing the dhcResourceGlobalNet
scope. The concept is a little confusing, but it boils down to this: Some resources
(such as network shares) can be connected to, and some resources, instead, con-
tain other resources. By specifying the correct flag from Table 11.9, you indicate
which type of global resource you’d like to enumerate. Think of it this way: If a
resource is a container, you can use it with a new call to WNetOpenEnum in order
to see what resources are inside the container. If the resource is connectable, you
can pass the remote name string right to WNetAddConnection2 (or the wrapper
function, dhAddConnection2) and connect to the resource. Finally, adding the

T A B L E 1 1 . 8 : Enumeration Type Constants

Constant Value Meaning

dhcResourceTypeAny &H0 All resource types

dhcResourceTypeDisk &H1 All disk resources

dhcResourceTypePrint &H2 All printer resources

T A B L E 1 1 . 9 : Enumeration Usage Constants

Constant Value Meaning

dhcResourceUsageAll &H13 All resources

dhcResourceUsageConnectable &H1 All connectable resources

dhcResourceUsageContainer &H2 All container resources

dhcResourceUsageAttached &H10 All validated resources

Chapter 11 • The Windows Networking API666

dhcResourceUsageAttached to any enumeration causes the call to fail if the user is
not authenticated, even if the network allows browsing without authentication.

The following discussion of working with enumeration handles contains a great
deal of detail concerning the use of the low-level enumeration functions. The
“Putting It All Together” section later in this chapter provides some wrapper
functions to make it simpler to enumerate resources without dealing directly with
enumeration handles. You’ll find it simpler to use the wrapper functions, and
you’ll most likely use these functions instead of the WNetEnum functions. It’s
important to understand the lower-level details first, especially if you need to
perform network enumerations other than the four samples provided.

Here is the declaration for the WnetOpenEnum function:

Private Declare Function WNetOpenEnum Lib "mpr" Alias _
 "WNetOpenEnumA" (ByVal lngScope As Long, _
 ByVal lngType As Long, ByVal lngUsage As Long, _
 lpNetResource As Any, lngEnum As Long) As Long

The lpNetResource parameter can be either a variable of the NETRESOURCE
type or a null value. The NETRESOURCE type was discussed in the section “Con-
necting to a Network Resource” earlier in this chapter. Its definition is as follows:

Private Type NETRESOURCE
 dwScope As Long
 dwType As Long
 dwDisplayType As Long
 dwUsage As Long
 lpLocalName As String
 lpRemoteName As String
 lpComment As String
 lpProvider As String
End Type

Or, use the modified version, as we used earlier in other types that contain the
space for the buffer and the strings that we’ll use to hold the actual values later:

Public Type NETRESOURCE
 dwScope As dhcResourceScope
 dwType As dhcResourceType
 dwDisplayType As dhcResourceDisplayType
 dwUsage As dhcResourceUsage

 Advanced Networking Functionality 667

 ' Pointers to strings
 lpLocalName As Long
 lpRemoteName As Long
 lpComment As Long
 lpProvider As Long

 ' Add an extra buffer to the end which
 ' will be used to store the strings
 abyt(dhcMaxPath * 4) As Byte

 ' the actual location of the final strings
 strLocalName As String
 strRemoteName As String
 strComment As String
 strProvider As String
End Type

This structure contains information on the scope, type, and usage of the network
resource, as well as the display type, dwDisplayType. Possible values for this
member are listed in Table 11.10.

If you pass a null value for the lpNetResource parameter (remembering that since
all the lp* parameters are Long integers, “null” in this case means 0), the enumera-
tion will start at the root of the network. If you supply a NETRESOURCE structure,
you can enumerate resources within a specific network resource, such as a particular
drive. That is, you can also call WNetOpenEnum with a NETRESOURCE structure
filled in, as long as the dwUsage member is set to dhcResourceUsageContainer.
(You can’t enumerate the resources inside a resource that doesn’t contain other
resources; for example, a printer.)

T A B L E 1 1 . 1 0 : NetResource Display Type Constants

Constant Value Meaning

dhcResourceDisplayTypeGeneric &H0 Display type does not matter.

dhcResourceDisplayTypeDomain &H1 Object should be displayed as a domain.

dhcResourceDisplayTypeServer &H2 Object should be displayed as a server.

dhcResourceDisplayTypeShare &H3 Object should be displayed as a network
share.

Chapter 11 • The Windows Networking API668

There are two ways to use WNetOpenEnum:

• You can call WNetOpenEnum twice, passing a null value rather than a
NETRESOURCE structure the first time. Once you’ve got a list of all the
available resources, you can use any specific resource and call WNetOpenE-
num again, using the information about the particular resource.

• You can call WNetOpenEnum once if you already know the name of the
resource you want to enumerate. If you can fill in the NETRESOURCE struc-
ture yourself, you don’t need to call WNetOpenEnum twice.

To separate the two uses of WNetOpenEnum, we have provided two wrappers,
dhGetTopLevelEnumHandle and dhGetNetResourceEnumHandle. The first
function allows you to get the enumeration handle for the entire network, and the
second allows you to get the handle for a specific container device. Both functions
are shown in Listing 11.12.

If you only use a single type of network, you never need to fill in the Provider param-
eter. (Or, if you prefer, you can fill it in with “Microsoft Windows Network.”) How-
ever, if you use Novell Netware or any other network type, in addition to the
Microsoft Windows network provider, you will want to include the appropriate net-
work provider string for that network. Otherwise, you may not get the results you
are expecting. Later in the chapter, one of the enumeration samples shows how to
enumerate available network providers. By combining this function with others, you
can potentially handle the situation of multiple network providers generically.

Remember, WNetOpenEnum retrieves an enumeration handle that you’ll be able
to use if you want to enumerate resources (that is, retrieve information about all
the specified network resources). However, to do that, you’ll need to use the
WNetEnumResource API call discussed in the section “Enumerating Resources”
later in this chapter. The examples in this section merely retrieve the handle for
you so you can later enumerate the specified set of resources.

➲ Listing 11.12: Retrieve Enumeration Handles with WNetOpenEnum

Public Function dhGetTopLevelEnumHandle(_
 rsScope As dhcResourceScope, rtType As dhcResourceType, _
 rtUsage As dhcResourceUsage) As dhcNetworkErrors
 ' Opens a top-level network resource enumeration handle

 Advanced Networking Functionality 669

 Dim lngReturn As dhcNetworkErrors
 Dim hEnum As Long

 ' Since this is a top level item, pass in the
 ' fourth parameter as the value 0.
 lngReturn = WNetOpenEnum(rsScope, rtType, rtUsage, _
 ByVal 0&, hEnum)

 If lngReturn = dhcNoError Then
 dhGetTopLevelEnumHandle = hEnum
 End If

End Function

Public Function dhGetNetResourceEnumHandle(_
 rsScope As dhcResourceScope, rtType As dhcResourceType, _
 rtUsage As dhcResourceUsage, _
 usrNetResource As NETRESOURCE) As dhcNetworkErrors
 ' Opens a resource enumeration handle for a given net resource.

 Dim lngReturn As dhcNetworkErrors
 Dim hEnum As Long

 lngReturn = WNetOpenEnum(rsScope, rtType, _
 rtUsage, usrNetResource, hEnum)

 If lngReturn = dhcNoError Then
 dhGetNetResourceEnumHandle = hEnum
 End If

End Function

Let’s take a look at some examples to make this process a little clearer.

The easiest example is a simple call to dhGetTopLevelEnumHandle to find out
all the currently connected network drives. (Note that under Windows NT/2000,
some drives will be connected but may not have drive letters associated with
them.) The call to open the network enumeration handle would look like this:

hEnum = dhGetTopLevelEnumHandle(dhcResourceConnected, _
 dhcResourceTypeDisk, dhcResourceUsageAll)

Chapter 11 • The Windows Networking API670

Or, you might want to get a top-level handle to the entire network. (In the Win-
dows NT Network Connection dialog, this is the Microsoft Windows Network
node that appears above the domains.)

hEnum = dhGetTopLevelEnumHandle(dhcResourceGlobalNet, _
 dhcResourceTypeAny, dhcResourceUsageAll)

After calling dhGetTopLevelEnumHandle, you’ll be able to call WNetEnum-
Resource to investigate all the resources on the network. For any resource that’s a
container, such as a domain or server, you’ll be able to call dhGetNetResource-
EnumHandle and enumerate the resources that that item contains. The Windows
NT Network Connection dialog does something like this to fill the tree-view—like
display in the bottom half of its window, as shown earlier in Figure 11.1.

For example, if you need to look at the network disk shares on another machine
and you know its name, you can use code like the following to open the enumera-
tion handle:

Dim usrNetResource As NETRESOURCE
Dim hEnum as Long
Dim strServerANSI As String

With usrNetResource
 .dwDisplayType = dhcResourceDisplayTypeServer
 .dwScope = dhcResourceGlobalNet
 .dwUsage = dhcResourceUsageContainer
 .dwType = dhcResourceTypeDisk

 strServerANSI = StrConv("\\YourServer", vbFromUnicode)
 .lpRemoteName = StrPtr(strServerANSI)
End With
hEnum = dhGetNetResourceEnumHandle(dhcResourceGlobalNet, _
 dhcResourceTypeDisk, dhcResourceUsageConnectable, usrNetResource)

You can then use this handle to obtain all the available network shares on the
server whose name you’ve supplied. As another example, if you wanted to get the
names of all computers in a particular domain, you could use code like this:

Dim usrNetResource As NETRESOURCE
Dim hEnum as Long
Dim strDomainANSI As string

 Advanced Networking Functionality 671

With usrNetResource
 .dwDisplayType = dhcResourceDisplayTypeDomain
 .dwScope = dhcResourceGlobalNet
 .dwUsage = dhcResourceUsageContainer
 .dwType = dhcResourceTypeDisk
 strDomainANSI = StrConv("\\YourDomain", vbFromUnicode)
 .lpRemoteName = StrPtr(strDomainANSI)
End With
hEnum = dhGetNetResourceEnumHandle(dhcResourceGlobalNet, _
 dhcResourceTypeDisk, dhcResourceUsageContainer, usrNetResource)

This handle allows you to enumerate all the machines in the network specified by
your domain name. Code presented in the section “Enumerating Resources” a little
later in this chapter shows you how to use the enumeration handles you’ve
opened. (There will also be several examples of the sample code for the chapter.)

Closing an Enumeration Handle

You should always close anything you open (a prime rule for getting along in life,
as well as in programming), and network enumeration handles are no exception.
You use the WNetCloseEnum API function to do this, and its declaration looks
like this:

Private Declare Function WNetCloseEnum Lib "mpr.dll" _
 (ByVal hEnum As Long) As Long

For the sake of consistency, we’ve provided a wrapper for this call, although call-
ing this function directly is simple enough. The function, dhCloseEnum, is shown
in Listing 11.13.

➲ Listing 11.13: Use dhCloseEnum to Close Enumeration Handles

Public Function dhCloseEnum(hEnum As Long) As dhcNetworkErrors
 ' Closes a resource enumeration handle

 dhCloseEnum = WNetCloseEnum(hEnum)
End Function

It’s a good idea to have your code close a handle as soon as you’re done with it.
In theory, even if you don’t close the handles, they will be closed when you shut
down the host application you opened them from (Word, Excel, Access, and so
on), but an explicit close is cleaner and frees up the resources right away.

Chapter 11 • The Windows Networking API672

Enumerating Resources

It’s finally time to start using the previously discussed enumeration handles to
obtain information. This section discusses the use of WnetEnumResource, the API
function that actually performs the real work. This function is the workhorse that
takes the enumeration handle from WNetOpenEnum and uses it to retrieve infor-
mation about each available network resource.

The declaration of WNetEnumResource is as follows:

Private Declare Function WNetEnumResource Lib "mpr.dll" _
 Alias "WNetEnumResourceA" (ByVal hEnum As Long, _
 lngCount As Long, lpBuffer As Any, lngBufferSize As Long) _
 As Long

The hEnum parameter is a handle obtained by WNetOpenEnum. (You can use
either of the two wrapper functions, dhGetNetResourceEnumHandle or dhGet-
TopLevelEnumHandle, to obtain the handle.) The lngCount parameter specifies
the number of items you wish to receive. We’ve seen some unpredictable results
trying to obtain more than one at a time, so the wrapper function we provide,
dhEnumNext, requests only one at a time. As it turns out, there is no substantial
performance hit for multiple calls to WnetEnumResource. Although calls to WNet-
OpenEnum can take a little while, calls to WNetEnumResource do their work quickly.

The heart of the dhEnumNext function will look similar to some of the other
calls that you’ve seen already. Although you’ve seen the NETRESOURCE struc-
ture used previously, this is the first time we’ve used it for retrieving data. In this
case, the code must set the buffer length to be the size of the structure, taking
away the size of the four string pointers (16 bytes) at the end:

Dim lngReturn As dhcNetworkErrors
Dim lngBufferLength As Long

' Don't include the last four string pointers in the buffer size
lngBufferLength = Len(usrNetResource) - 16
lngReturn = WNetEnumResource(hEnum, 1, _
 usrNetResource, lngBufferLength)

The second half of the dhEnumNext function contains the logic that takes the
elements out of the byte array and puts them into a NETRESOURCE type. Before
you do this, take another look at the NETRESOURCE definition:

Public Type NETRESOURCE
 dwScope As dhcResourceScope
 dwType As dhcResourceType

 Advanced Networking Functionality 673

 dwDisplayType As dhcResourceDisplayType
 dwUsage As dhcResourceUsage

 ' Pointers to strings
 lpLocalName As Long
 lpRemoteName As Long
 lpComment As Long
 lpProvider As Long

 ' Add an extra buffer to the end which
 ' will be used to store the strings
 abyt(dhcMaxPath * 4) As Byte

 ' the actual location of the final strings
 strLocalName As String
 strRemoteName As String
 strComment As String
 strProvider As String
End Type

As shown earlier with the REMOTE_NAME_INFO structure, any code that uses
the NETRESOURCE structure for retrieving information must copy data from the
string pointers into the associated string members manually. For example, if you
are enumerating connected network resources (drive mappings to UNC paths),
the code will look like the following:

If lngReturn = dhcNoError Then
 With usrNetResource
 .strLocalName = dhStrFromAnsiPtr(.lpLocalName)
 .strRemoteName = dhStrFromAnsiPtr(.lpRemoteName)
 .strComment = dhStrFromAnsiPtr(.lpComment)
 .strProvider = dhStrFromAnsiPtr(.lpProvider)
 End With
End If

Listing 11.14 contains the complete code for the dhEnumNext function.

➲ Listing 11.14: Enumeration with dhEnumNext

Public Function dhEnumNext(hEnum As Long, _
 usrNetResource As NETRESOURCE) As dhcNetworkErrors
 ' Enumerate the next resource in hEnum and put the info
 ' in usrNetResource

Chapter 11 • The Windows Networking API674

 Dim lngReturn As dhcNetworkErrors
 Dim lngBufferLength As Long

 ' Don't include the last four string pointers in the buffer size
 lngBufferLength = Len(usrNetResource) - 16
 lngReturn = WNetEnumResource(hEnum, 1, _
 usrNetResource, lngBufferLength)

 If lngReturn = dhcNoError Then
 ' If the call succeeded, there are several pointers to data.
 ' Use the pointers to get the actual strings
 With usrNetResource
 .strLocalName = dhStrFromANSIPtr(.lpLocalName)
 .strRemoteName = dhStrFromANSIPtr(.lpRemoteName)
 .strComment = dhStrFromANSIPtr(.lpComment)
 .strProvider = dhStrFromANSIPtr(.lpProvider)
 End With
 End If

 dhEnumNext = lngReturn
End Function

In some applications, you may need to enumerate network resources one by one
until you find the one you’re searching for, or perhaps you’ll have some other rea-
son to enumerate network resources individually. However, in most cases, you’ll
need to specify the type of resources you want and then have a function return an
array of NETRESOURCE structures that meet your criteria. We present a wrapper
function that does this in the next section.

Putting It All Together
The wrapper function, dhGetNetResourceInfo, does all the work of calling the
enumeration functions for you. This function takes the following parameters:

Parameter Description

rsScope One of the values in Table 11.7.

rtType One of the values in Table 11.8.

rtUsage One of the values in Table 11.9.

 Advanced Networking Functionality 675

The dhGetNetResourceInfo function returns a VBA Collection object, filled with
the resources that match your request. You must use code like this to work with the
return value:

Dim col As Collection
Set col = dhGetNetResourceInfo(...parameters go here...)

Each item in the output collection is an object based on the NetResourceInfo class.
Therefore, you can use code like this to enumerate the results:

Dim nri As NetResourceInfo

If Not (col Is Nothing) Then
 For Each nri In col
 ' Do something with nri; perhaps print the RemoteName
 ' or some other property value.
 Next nri
End If

Listing 11.15 contains the entire dhGetNetResource function. Notice how it allows
you to pass in the values you need to as the string values in our custom NET-
RESOURCE type, and it changes them to the pointers that the API call needs with
the StrPtr function.

fSpecifyStart A Boolean value that tells the function whether
the next parameter (usrNetResourceStart) is
going to be passed; it should be False if you
want to use the network root to start your
enumeration, and True if you wish to pass in
usrNetResourceStart as the root of the
enumeration.

usrNetResourceStart A NETRESOURCE type specifying the
beginning of the enumeration if you want to
start anywhere but at the network root. This
must be passed in even if fSpecifyStart is False,
but, in that case, its members can be empty
because it will not be used.

Chapter 11 • The Windows Networking API676

➲ Listing 11.15: Doing It All with dhGetNetResourceInfo

Public Function dhGetNetResourceInfo(rsScope As dhcResourceScope, _
 rtType As dhcResourceType, rtUsage As dhcResourceUsage, _
 fSpecifyStart As Boolean, usrNetResourceStart As NETRESOURCE) _
 As Collection
 ' Retrieve all the net resources specified by the parameters

 Dim lngReturn As dhcNetworkErrors
 Dim hEnum As Long
 Dim nri As NetResourceInfo
 Dim usrNetResource As NETRESOURCE
 Dim colNetResource As Collection

 On Error GoTo HandleErrors

 ' If fSpecifyStart is selected use the usrNetResourceStart
 ' info as the root for the enumeration. Otherwise, assume
 ' the top level.
 If fSpecifyStart Then
 With usrNetResourceStart
 ' In case strings were specified, set them
 ' into the pointers now
 If Len(.strComment) > 0 Then
 .lpComment = StrPtr(.strComment)
 End If
 If Len(.strLocalName) > 0 Then
 .lpLocalName = StrPtr(.strLocalName)
 End If
 If Len(.strProvider) > 0 Then
 .lpProvider = StrPtr(.strProvider)
 End If
 If Len(.strRemoteName) > 0 Then
 .lpRemoteName = StrPtr(.strRemoteName)
 End If
 End With
 hEnum = dhGetNetResourceEnumHandle(_
 rsScope, rtType, rtUsage, usrNetResourceStart)
 Else
 hEnum = dhGetTopLevelEnumHandle(rsScope, rtType, rtUsage)
 End If

 Advanced Networking Functionality 677

 If hEnum <> 0 Then
 ' init the collection
 Set colNetResource = New Collection

 Do While lngReturn = dhcNoError

 lngReturn = dhEnumNext(hEnum, usrNetResource)
 ' lngReturn will be dhcErrorNoMoreItems when we are done.
 If lngReturn <> dhcErrorNoMoreItems Then
 Set nri = New NetResourceInfo

 With usrNetResource
 nri.Comment = .strComment
 nri.LocalName = .strLocalName
 nri.Provider = .strProvider
 nri.RemoteName = .strRemoteName
 End With

 colNetResource.Add nri
 End If
 Loop

 lngReturn = dhCloseEnum(hEnum)
 End If
 ' If there was an error, colNetResource
 ' (and the return value) will be Nothing.

ExitHere:
 Set dhGetNetResourceInfo = colNetResource
 Exit Function

HandleErrors:
 ' Raise the error back out.
 Err.Raise Err.Number, Err.Source, Err.Description
End Function

The four examples shown in Listing 11.16 (from the TestProcedures module) all
call the dhGetNetResourceInfo function. One example obtains all the computers
in a given domain (dhEnumPCsInDomain). The second one obtains all the net-
work shares available on a given computer (dhEnumSharesOnPC). The third one
obtains all the mapped network resources on the current machine (dhEnumCon-
nectedResourcesOnLocalPC). The final enumeration sample, which was already

Chapter 11 • The Windows Networking API678

mentioned earlier in connection with handling multiple networks, obtains the
names of all the network providers that are available (dhEnumAvailableNetworks).
The difference in each case is the specific parameters passed in, and possibly the
values placed in the usrNetResourceStart parameter (depending on the function
you’ve called).

In each sample function, the dhGetNetResourceInfo function returns a collection
object as its return value. (The return value will be Nothing if the enumeration
didn’t find any matching resources.) This function fills in the collection, and, on
return from the function call, the collection contains one object for each network
resource the function found that matches the criteria you specified when you
called the function. The sample functions enumerate through the collection with a
For...Each construct, displaying text in the Immediate window. But, obviously, you
would do something more useful with the enumerated values in your own
application.

➲ Listing 11.16: Sample Functions That Call dhGetNetResourceInfo

Public Sub dhEnumPCsInDomain(strDomainName As String)

 ' Retrieve all the servers in the given domain

 Dim col As Collection
 Dim nri As NetResourceInfo
 Dim usrNetResourceStart As NETRESOURCE
 Dim strDomainNameANSI As String

 strDomainNameANSI = StrConv(strDomainName, vbFromUnicode)

 With usrNetResourceStart
 .dwScope = dhcResourceGlobalNet
 .strRemoteName = strDomainNameANSI
 End With

 Set col = dhGetNetResourceInfo(dhcResourceGlobalNet, _
 dhcResourceTypeDisk, dhcResourceUsageContainer, _
 True, usrNetResourceStart)

 Advanced Networking Functionality 679

 If Not (col Is Nothing) Then
 For Each nri In col
 Debug.Print nri.RemoteName
 Next nri
 End If

End Sub

Public Sub dhEnumSharesOnPC(ByVal strMachineName As String)

 Dim col As Collection
 Dim nri As NetResourceInfo
 Dim usrNetResourceStart As NETRESOURCE
 Dim strMachineNameANSI As String

 If Left$(strMachineName, 2) <> "\\" Then
 strMachineName = "\\" & strMachineName
 End If
 strMachineNameANSI = StrConv(strMachineName, vbFromUnicode)

 With usrNetResourceStart
 .dwScope = dhcResourceGlobalNet
 .strRemoteName = strMachineNameANSI
 End With

 Set col = dhGetNetResourceInfo(_
 dhcResourceGlobalNet, dhcResourceTypeDisk, _
 dhcResourceUsageConnectable, True, _
 usrNetResourceStart)

 If Not (col Is Nothing) Then
 For Each nri In col
 Debug.Print nri.RemoteName
 Next nri
 End If

End Sub

Public Sub dhEnumConnectedResourcesOnLocalPC()
 ' Retrieve all the connections on the current machine

Chapter 11 • The Windows Networking API680

 Dim col As Collection
 Dim nri As NetResourceInfo
 Dim usrNetResourceStart As NETRESOURCE

 Set col = dhGetNetResourceInfo(dhcResourceConnected, _
 dhcResourceTypeDisk, 0, False, usrNetResourceStart)
 If Not (col Is Nothing) Then
 For Each nri In col
 Debug.Print nri.LocalName; _
 " is connected to "; nri.RemoteName
 Next nri
 End If
End Sub

Public Sub dhEnumAvailableNetworks()

 ' Retrieve all the network types available (usually this will just
 ' be the 'Microsoft Windows Network' but can also be Novell or
 other
 ' types when they are available.

 Dim col As Collection
 Dim nri As NetResourceInfo
 Dim usrNetResourceStart As NETRESOURCE

 Set col = dhGetNetResourceInfo(dhcResourceGlobalNet, _
 dhcResourceTypeDisk, dhcResourceUsageConnectable, _
 False, usrNetResourceStart)
 If Not (col Is Nothing) Then
 For Each nri In col
 Debug.Print nri.RemoteName
 Next nri
 End If
End Sub

As you can see, WNetEnumResource is extremely powerful: It can perform
many different operations and return a great deal of information. Unfortunately,
this quick look just scratches the surface of what this function can do, but it should
be enough to get you going.

 Advanced Networking Functionality 681

The LAN Manager API
The functions we’ve discussed so far provide a rich set of features that can make
your applications network aware, and they are available on any Windows 95/98
or Windows NT/2000 machine. However, as solid as the WNet API is, some nec-
essary functionality is missing. To get the rest of the functionality you need, you
must use the LAN Manager API, available only on Windows NT/2000 (with the
exception of 20 or so functions, which are available in some format in Windows
95/98). The full API consists of over 120 functions (as compared to the 14 in the
WNet API). They used to be rather underdocumented and widely unsupported,
but in the more recent version of the Win32 Platform SDK, Microsoft has backed
down from calling it unsupported and has promoted many of these functions to
being the “blessed” way of doing things. This section will cover how to perform
the following actions:

• Sharing resources (adding network shares)

• Deleting network shares

• Changing a user’s network password

• Retrieving the name of the primary domain controller (PDC) of the domain

• Getting the time of day from another machine

There are four interesting items to note about the LAN Manager functions:

• Some of these functions work only under Windows NT/2000; those func-
tions are not available to Windows 95 users. Out of 120 available functions,
those supported on Windows 95/98 are (there may be others we’ve missed)

• NetAccessAdd

• NetAccessCheck

• NetAccessDel

• NetAccessEnum

• NetAccessGetInfo

• NetAccessGetUserPerms

• NetAccessSetInfo

Chapter 11 • The Windows Networking API682

• NetConnectionEnum

• NetFileClose2

• NetFileEnum

• NetSecurityGetInfo

• NetServerGetInfo

• NetSessionDel

• NetSessionEnum

• NetSessionGetInfo

• NetShareAdd

• NetShareDel

• NetShareEnum

• NetShareGetInfo

• NetShareSetInfo

• All the strings you pass to LAN Manager API functions must be Unicode,
rather than ANSI, strings when you are calling them from Windows NT/
2000. This is in contrast to most Win32 APIs, which are implemented in both
ANSI and Unicode versions on Windows NT/2000. The examples shown
here force the use of Unicode by using the StrPtr function to use the actual
Unicode string stored in VBA.

Because the LAN Manager APIs require that you call a different API function
depending on whether you are running on Windows 95/98 or Windows NT/2000,
the wrappers we’ve provided determine which operating system is running and
will work on all platforms, making the correct API call. Rather than using the calls
to GetVersionEx, covered in Chapter 9 (which provides more information than you
need here), the functions in this chapter call the simpler GetVersion function to
determine the current operating system. For details, see the sample code and its
IsWinNT() function, which will return True on Windows NT/2000 machines.

 Advanced Networking Functionality 683

• The API functions have a consistent naming style that makes it easy to tell
what they do. Each function starts with a Net prefix, followed by a noun that
describes what object is being manipulated and a verb indicating what the
function does to that object. For example, if you wanted to add a user, you
would use the NetUserAdd function.

• These API functions have much in common. Learning one LAN Manager
API and how to call it is the key to calling dozens of others just like it.

Of course, not all the news is good news. Many of the LAN Manager functions are
not easily accessible to VBA programmers because they return pointers to pointers
to memory addresses. VBA has no supported mechanism for dereferencing these
pointers. However, this limitation can be worked around using API functions like
lstrcpy, lstrcpyn, and RtlMoveMemory. Although we are not specifically focusing
on covering those functions here, the dhStrFromAnsiPtr and dhStrFromPtr func-
tions discussed earlier show examples of dereferencing pointers with the lstrcpyn/
lstrcpynW functions. Also, the dhGetTimeFromServer function (covered later in
this section) provides an example that uses RtlMoveMemory.

Adding a Network Share

The WNet functions allow you to enumerate network shares but supply no way to
create a new one. The LAN Manager API provides the NetShareAdd function, which
does allow you to create a new share. For Windows NT/2000, use this declaration:

Private Declare Function NetShareAdd Lib "NETAPI32.DLL" _
 (ByVal strServername As String, ByVal lnglevel As Long, _
 strbuf As SHARE_INFO_2, lngParamErr As Long) As Long

For Windows 95/98, use this one:

Private Declare Function NetShareAdd9x Lib "srvapi.dll" _
 Alias "NetShareAdd" (ByVal pszServer As String, _
 ByVal lngLevel As Integer, strBuf As SHARE_INFO_50, _
 ByVal cbBuffer As Integer) As Long

Chapter 11 • The Windows Networking API684

The following list describes the parameters for NetShareAdd (the
NetShareAdd9x function uses similar parameters):

To use NetShareAdd, the currently logged-in user must have permission to add the
share. Otherwise, an error will occur. Unless you’re a member of the Administrators
or Account Operators local group or you have Communication, Print, or Server
operator group membership, you won’t be able to successfully execute NetShare-
Add. Even with these rights, the Print operator can add only printer queues, and the
Communication operator can add only communication-device queues.

Parameter Description

strServerName Machine name on which to add the share.

lngLevel Specifies what level of share information will be in the
strBuf parameter. In theory, you can pass either a
SHARE_INFO_2 or SHARE_INFO_50 data structure, and
this parameter indicates which you’ve sent. Supply either
the dhcShareInfo2 or dhcShareInfo50 constants here. The
Windows NT/2000 example shown here passes a
SHARE_INFO_2 data structure, so you should pass
dhcShareInfo2 constant in this parameter. The Windows
95/98 example passes a SHARE_INFO_50 structure, so
there you should pass dhcShareInfo50 for this parameter.

strBuf A buffer declared to be of type SHARE_INFO_2 or
SHARE_INFO_50 (the Windows NT/2000 example
uses SHARE_INFO_2, and the Windows 95/98
example uses SHARE_INFO_50), to be filled in by the
function call. Choose which structure you use based on
the information you want returned. The lngLevel
parameter’s value must indicate which structure you’re
sending.

lngParamErr Indicates which parameter, if any, was invalid on
return from the function call. (If only all API calls were
this helpful!) (Windows NT/2000 only)

cbBuffer The size of the buffer passed to the function (Windows
95/98 only).

 Advanced Networking Functionality 685

The SHARE_INFO_2 structure contains the parameters described in the follow-
ing list:

The SHARE_INFO_50 structure contains the following members:

Parameter Meaning

shi2_netname Name for the new share.

shi2_type Resource type, selected from the values in Table
11.11.

shi2_remark A comment that will appear in Windows Explorer
and in the network connection dialog under
Windows NT.

shi2_permissions Flag specifying permissions. (This parameter is
ignored unless share-level security is set up on the
machine.) See Table 11.12 for allowable values.

shi2_max_uses Maximum number of concurrent users allowed.
(–1 means no limit.)

shi2_current_uses Current number of users (ignored when adding a
new share).

shi2_path Local path of the shared resource on the machine.

shi2_passwd Password for the share. (Like shi2_permissions, this
parameter is ignored unless share-level security is
set up on the machine.)

Parameter Meaning

shi50_netname Name for the new share.

shi50_type Resource type, selected from the values in
Table 11.11.

shi50_remark A comment that will appear in Windows Explorer
and in the network connection dialog under
Windows NT.

shi50_flags Flag specifying permissions. (This parameter is
ignored unless share-level security is set up on the
machine.) Possible values are listed in Table 11.13.

Chapter 11 • The Windows Networking API686

The network share types are defined in Table 11.11. The permissions flags for
Windows NT/2000 are defined in Table 11.12. Table 11.13 shows allowable values
for Windows 95/98.

Parameter Meaning

shi50_path Local path of the shared resource on the machine.

shi50_rw_password Read-write password for the share. (Like
shi50_flags, this parameter is ignored unless
share-level security is set up on the machine.)

shi50_ro_password Read-only password for the share. (Like
shi50_flags, this parameter is ignored unless
share-level security is set up on the machine.)

T A B L E 1 1 . 1 1 : Network Share Types (Used for the shi2_type Parameter)

Constant Value Meaning

dhcLanManStypeDisktree &H0 Disk resource

dhcLanManStypePrintq &H1 Printer resource

dhcLanManStypeDevice &H2 Device resource (such as a COM port)

dhcLanManStypeIpc &H3 IPC resource

T A B L E 1 1 . 1 2 : Permissions Flags (Used for the shi2_ permissions Parameter)

Constant Value Meaning

dhcLanManAccessNone &H0 No access allowed

dhcLanManAccessRead &H1 Permission to read from the resource

dhcLanManAccessWrite &H2 Permission to write to the resource

dhcLanManAccessCreate &H4 Permission to create an instance of the resource

dhcLanManAccessExec &H8 Permission to execute the resource

dhcLanManAccessDelete &H10 Permission to delete the resource

dhcLanManAccessAtrib &H20 Permission to modify attributes

dhcLanManAccessPerm &H40 Permission to modify permissions

dhcLanManAccessAll &HFF A bitmask that includes all the previous flags

 Advanced Networking Functionality 687

To make all this simpler, we’ve provided a wrapper function, dhAddNetwork-
Share, as shown in Listing 11.17. This wrapper function determines the operating
system, fills in the appropriate data structures, and calls the correct API function.
Note that several of the parameters are optional and some are ignored, depending
on your platform. Table 11.14 describes each of the parameters for dhAddNet-
workShare.

T A B L E 1 1 . 1 3 : Windows 95/98 Flags (Used for the shi50_flags Parameter)

Constant Value Meaning

dhcLanManWin9xReadOnly &H1 Read-only share.

dhcLanManWin9xFull &H2 Full Access allowed.

dhcLanManWin9xAccessMask &H3 Specifies both of the above permissions, who
knows why they did this?

dhcLanManWin9xPersist &H100 Share is reconnected on a system reboot (if not
specified, the share will be removed on reboot).

dhcLanManWin9xSystem &H200 The share will not normally be visible (similar to
the functionality Windows NT/2000 provide when
you name the share with a $ suffix).

dhcLanManStypeIpc &H3 IPC resource.

T A B L E 1 1 . 1 4 : Parameters for dhAddNetworkShare

Parameter Optional? Default Value Description

strServer No Machine name on which to add the
share. You can pass vbNullString to use
the current machine.

strShareName No Name for the new share.

strPath No Local path of the shared resource on the
machine.

strRemarks Yes “” Comment for this share (appears in
Windows Explorer)

fIsDiskResource Yes True If True, share is for a drive. If False, share
is for a printer.

lngMaxUsers Yes –1 Maximum number of concurrent users
allowed (–1 means no limit).

Chapter 11 • The Windows Networking API688

➲ Listing 11.17: Add a Network Share

Public Function dhAddNetworkShare(_
 ByVal strServer As String, _
 strShareName As String, _
 strPath As String, _
 Optional strRemarks As String, _
 Optional fIsDiskResource As Boolean = True, _
 Optional lngMaxUsers As Long = -1, _
 Optional ByVal lngPermissions As Long = -1, _
 Optional strRwPassword As String = "", _
 Optional strRoPassword As String = "") As Long

 ' Adds a network share

 Dim si2 As SHARE_INFO_2
 Dim si50 As SHARE_INFO_50
 Dim lngParamError As Long

 If IsWinNT() Then
 If lngPermissions = -1 Then
 lngPermissions = dhcLanManAccessAll
 End If

 ' Place all strings in the structure as needed

lngPermissions Yes dhcLanManAccess
All on NT/2000,
dhcLanManWin9x
AccessMask on
95/98

Flag specifying permissions. (ignored
unless share-level security is set up on the
machine) See Tables 11.12 and 11.13 for
allowable values.

strRwPassword Yes “” Password for the share. (Like
shi2_permissions, this parameter is
ignored unless share-level security is set
up on the machine.)

strRoPassword Yes “” Read-only password for the share
(ignored on NT/2000).

T A B L E 1 1 . 1 4 : Parameters for dhAddNetworkShare (continued)

Parameter Optional? Default Value Description

 Advanced Networking Functionality 689

 With si2
 .shi2_netname = StrPtr(strShareName)
 If fIsDiskResource Then
 .shi2_type = dhcLanManStypeDisktree
 Else
 .shi2_type = dhcLanManStypePrintq
 End If
 .shi2_remark = StrPtr(strRemarks)
 .shi2_permissions = lngPermissions
 .shi2_max_uses = lngMaxUsers
 .shi2_path = StrPtr(strPath)
 .shi2_passwd = StrPtr(strRwPassword)
 End With

 dhAddNetworkShare = _
 NetShareAdd(StrPtr(strServer), _
 dhcShareInfo2, si2, lngParamError)
 Else
 If lngPermissions = -1 Then
 lngPermissions = dhcLanManWin9xAccessMask
 End If

 ' Place all strings in the structure as needed
 With si50
 .shi50_netname = strShareName & vbNullChar
 If fIsDiskResource Then
 .shi50_type = dhcLanManStypeDisktree
 Else
 .shi50_type = dhcLanManStypePrintq
 End If
 .shi50_remark = strRemarks & vbNullChar
 .shi50_path = strPath & vbNullChar
 .shi50_ro_password = strRwPassword & vbNullChar
 .shi50_rw_password = strRoPassword & vbNullChar
 End With

 dhAddNetworkShare = NetShareAdd9x(_
 strServer, dhcShareInfo50, si50, LenB(si50))
 End If
End Function

Chapter 11 • The Windows Networking API690

Calling this function is also straightforward. For example, to add a share named
ROOT, which points to the C drive on a machine named Hopper, you simply call

lngReturn = dhAddNetworkShare("\\Hopper","ROOT","c:\")

The strPath parameter must be a complete, valid path. Don’t fall into the same
trap we did when testing this function: If you pass “C:” without the backslash,
you’ll receive Error 123, “File, path, or drive name is incorrect,” for your efforts.

Deleting a Network Share

Deleting a network share requires less work and less explanation than adding a
share. The NetShareDel API function is defined as follows for Windows NT/2000:

Private Declare Function NetShareDel Lib "NETAPI32.DLL" _
 (ByVal lpServername As Long, ByVal lpNetName As Long, _
 ByVal lngReserved As Long) As Long

For Windows 95/98, it is:

Private Declare Function NetShareDel9x Lib "srvapi.dll" _
 Alias "NetShareDel" (ByVal StrServer As String, _
 ByVal strNetName As String, _
 ByVal lngReserved As Long) As Long

NetShareDel accepts the server name and the name of the share to delete. (The
lngReserved parameter is undocumented, and you should pass 0 in this parame-
ter.) Listing 11.18 provides a wrapper function, dhDeleteNetworkShare, for Net-
ShareDel. (The wrapper function calls the appropriate version of NetShareDel for
the platform you are on).

Unless you’re a member of the Administrators or Account Operators local group
or you have Communication, Print, or Server operator group membership, you
won’t be able to successfully execute NetShareDel. Even with these rights, the
Print operator can delete only printer queues, and the Communication operator
can delete only communication-device queues.

 Advanced Networking Functionality 691

➲ Listing 11.18: Delete a Network Share

Public Function dhDeleteNetworkShare(_
 ByVal strServer As String, ByVal strShareName As String) As Long
 ' Deletes a network share

 If IsWinNT() Then
 dhDeleteNetworkShare = NetShareDel(_
 StrPtr(strServer), StrPtr(strShareName), 0&)
 Else
 dhDeleteNetworkShare = NetShareDel9x(_
 strServer, strShareName, 0&)
 End If
End Function

If you are calling dhAddNetworkShare or dhDeleteNetworkShare on a Windows
95/98 machine, use caution! The NetShareAdd API in srvapi.dll is one of the most
unforgiving of any that we have ever seen. In particular, you will see the vbNull-
Chars that are concatenated to the end of the strings in the SHARE_INFO_50
structure. NetShareDel is case sensitive even when you are trying to delete share
names, but only on Windows 95 and 98.

Changing a User’s Password

It’s simple to change a user’s password using the LAN Manager’s NetUserChange-
Password API function (which is unfortunately only available on Windows NT
and Windows 2000.) This function (and the wrapper we’ve written around it)
takes four parameters, as shown here:

Parameter Description

DomainName Remote server or domain (If you don’t pass a value
for this parameter to the wrapper function, code in
the function will convert the parameter value into
vbNullString, so that the API function will use the
current logon domain of the caller.)

Chapter 11 • The Windows Networking API692

The declaration for NetUserChangePassword is shown here:

Private Declare Function NetUserChangePassword Lib "NETAPI32.DLL" _
 (ByVal DomainName As Long, ByVal UserName As Long, _
 ByVal OldPassword As Long, ByVal NewPassword As Long) As Long

As with the other LAN Manager APIs running on Windows NT/2000, the strings
must be Unicode. The wrapper function, dhChangeUserPassword, uses the StrPtr
function to accomplish this, passing the address of the strings directly to the API
function. (See the sidebar “ANSI and Unicode, Again” earlier in the chapter for
more information.) Listing 11.19 shows the wrapper function.

This function takes advantage of the fact that passing the special value
vbNullString to StrPtr returns 0. The NetUserChangePassword API function is
written so that if you pass Null (0&) for the domain or the username, the function
uses the current domain and/or currently logged-in user. Our wrapper handles this
for you: If you don’t pass in a value for the domain name or the username, the
procedure uses the default value for the parameter—vbNullString. Therefore,
when the wrapper calls the API function, the value for the strDomain and/or the
strUser parameter will be vbNullString if you haven’t supplied a value, and the return
value from StrPtr will be 0, indicating that you want the API function to calculate
the current domain and/or current user.

➲ Listing 11.19: Change a User’s Network Password
(Windows NT/2000 Only)

Public Function dhChangeUserPassword(_
 ByVal strOldPwd As String, ByVal strNewPwd As String, _
 Optional strUser As String = vbNullString, _
 Optional strDomain As String = vbNullString) As Long
 ' Change a user's password

Parameter Description

UserName Name of the user whose password is to be changed
(If you don’t specify this value, the wrapper function
retrieves the currently logged-in username.)

OldPassword Old password of the user

NewPassword New password of the user

 Advanced Networking Functionality 693

 dhChangeUserPassword = NetUserChangePassword(_
 StrPtr(strDomain), StrPtr(strUser), _
 StrPtr(strOldPwd), StrPtr(strNewPwd))
End Function

For example, to change your own password from oldpassword to newpassword,
you could make a call like this:

If dhChangeUserPassword(_
 "oldpassword", "newpassword") = dhcNoError Then
 ' You successfully changed the password
End If

The following is a list of the errors most likely to occur when calling
dhChangeUserPassword:

Retrieving the Name of the Primary Domain Controller
(PDC) of the Domain

It’s relatively easy to determine the name of the PDC using another LAN Manager
function, but this function is also only supported on Windows NT/2000. The dec-
larations for NetGetDCName and the NetApiBufferFree function required to free
the buffer NetGetDCName creates on Windows NT/2000 are

Private Declare Function NetGetDCName Lib "NETAPI32.DLL" _
 (ByVal servername As Long, ByVal domainname As Long, _
 bufptr As Long) As Long

Private Declare Function NetApiBufferFree Lib "NETAPI32.DLL" _
 (ByVal bufptr As Long) As Long

Error Description

dhcErrorInvalidPassword Old password is not correct.

dhcErrorAccessDenied User does not have access to the requested
information.

dhcErrorInvalidComputer Computer name is invalid.

dhcErrorNotPrimary Operation is allowed only on the primary
domain controller of the domain.

dhcErrorUserNotFound Username could not be found.

dhcErrorPasswordTooShort Password is shorter than required by the
domain’s password policies.

Chapter 11 • The Windows Networking API694

Many LAN Manager functions create an internal buffer for you, allocating a block
of memory to contain some piece of information. It’s up to you to make sure you
deallocate that memory once you’re done with it, using the NetApiBufferFree
function. If you forget to call this function, you will cause your application to have
a memory leak, and the memory won’t be released back to Windows. For more
details on whether individual LAN Manager functions have this requirement, see
MSDN. This is not true of any of the LAN Manager functions on Windows 95/98,
where the client is responsible for both creating and freeing the buffer.

In theory, you can find the PDC from Windows 95/98 in the same roundabout way
that the Windows Explorer does when you click the Up One Level toolbar button
(which means calling WNetGetResourceParent, followed by NetServerGetInfo). But
even this method is explicitly called “inappropriate” in MSDN, so we do not
document it here.

Just as with NetUserChangePassword, either parameter to NetGetDCName can
be a null pointer. (When you don’t specify the server name, the function assumes
you want to use the current machine. When you don’t specify the domain name,
the function uses the domain to which the machine is logged in.) Listing 11.20 con-
tains the wrapper function, dhGetPDC, that calls NetGetDCName.

➲ Listing 11.20: Retrieving a PDC (Windows NT/2000 Only)

Public Function dhGetPDC(_
 Optional ByVal strServer As String = vbNullString, _
 Optional ByVal strDomainName As String = vbNullString) _
 As String
 ' Gets the name of the primary domain controller

 Dim lngBufptr As Long

 If NetGetDCName(_
 StrPtr(strServer), StrPtr(strDomainName), _
 lngBufptr) = dhcNoError Then
 dhGetPDC = dhStrFromPtr(lngBufptr)
 Call NetApiBufferFree(lngBufptr)
 End If
End Function

 Advanced Networking Functionality 695

Common errors for the return of NetGetDCName are listed here:

As an interesting side note, we found that dhcErrorDCNotFound was almost
always the guaranteed return value any time you log on to your machine with
cached information, even if you do it on a remote machine and connect to the net-
work later via RAS. The function seems to have no such problems when you log
on to the network directly.

If your call to NetGetDCName fails, perhaps it’s because you’re logged in with
cached domain information. (You get the error dhcErrorDCNotFound.) You may
want to call the NetGetAnyDCName API function instead. This function (declared
in the sample code but not used here) will get the name of any domain controller,
not just the primary domain controller. You call it in the same way that you call
NetGetDCName, but it returns any available domain controller. (If you need to
know more information about the domain controller you have, you’ll need to also
call NetGetServerInfo.)

Although NetGetDCName isn’t explicitly listed as obsolete under Windows 2000,
MSDN recommends using the DsGetDcName function instead. DsGetDcName has
more options pertaining to the type of domain controller you can get, but it’s
slightly more complicated to call, as well.

Getting the Time of Day from Another Server

Developers often need to be able to synchronize the times of two computers. That
is, you may need to set the time of a workstation to be the same as the time on a
network server. The LAN Manager function, NetRemoteTOD, handles this for
you. Unfortunately, this function is again only supported on Windows NT/2000.
In order to do its work, NetRemoteTOD requires you to copy memory from one

Error Description

dhcErrorDCNotFound Could not find the name of the primary
domain controller.

dbcErrorInvalidName Could not find the specified name (can refer to
either of the parameters).

Chapter 11 • The Windows Networking API696

place to another, so you’ll also need the RtlMoveMemory API function. The decla-
rations are as follows:

Private Declare Function NetRemoteTOD Lib "NETAPI32.DLL" _
 (ByVal server As Long, bufptr As Long) As Long

Private Declare Sub RtlMoveMemory Lib "kernel32" _
 (pDest As Any, pSrc As Any, ByVal ByteLen As Long)

Listing 11.21 shows the simple wrapper we’ve created around this function.

➲ Listing 11.21: Retrieve the Date and Time from a Server (Windows
NT/2000 Only)

Public Function dhGetTimeFromServer(_
 Optional ByVal strServer As String = vbNullString) As Date
 ' Gets the time of day from the specified server
 '
 Dim tdi As TIME_OF_DAY_INFO
 Dim lngBufptr As Long

 If NetRemoteTOD(StrPtr(strServer), lngBufptr) = 0 Then
 Call RtlMoveMemory(tdi, ByVal lngBufptr, Len(tdi))

 ' Convert to a real date/time, allowing for the
 ' time zone shift
 dhGetTimeFromServer = _
 DateSerial(tdi.t_year, tdi.t_month, tdi.t_day) + _
 TimeSerial(tdi.t_hours, tdi.t_mins, tdi.t_secs) - _
 (tdi.t_timezone / 60 / 24)

 Call NetApiBufferFree(lngBufptr)
 End If
End Function

The NetRemoteTOD function expects to receive a Unicode string (hence the call
to StrPtr) containing the name of the machine from which you want to retrieve the
date/time, and it creates an internal buffer to contain the time info. The lngBufPtr
parameter comes back to you, filled in with the address of the structure in mem-

 Advanced Networking Functionality 697

ory. The wrapper function calls the RtlMoveMemory function, which copies the
data from that buffer into the locally declared TIME_OF_DAY_INFO structure.

The TIME_OF_DAY_INFO structure has an interesting definition, as shown here:

Public Type TIME_OF_DAY_INFO
 t_elapsedt As Long
 t_msecs As Long
 t_hours As Long
 t_mins As Long
 t_secs As Long
 t_hunds As Long
 t_timezone As Long
 t_tinterval As Long
 t_day As Long
 t_month As Long
 t_year As Long
 t_weekday As Long
End Type

This structure includes a value representing the number of seconds since January 1,
1970 (t_elapsedt), in case you’re interested in that particular value. It also includes
all of the date/time information in separate members, for the rest of us. It does
also include the important offset for the time zone (as compared to the current
machine settings) since both sets of time information are provided in GMT (Green-
wich Mean Time). We chose to use the actual values for the date, subtracting the
value found in the t_timezone member to correct for the time zone difference.

Finally, the wrapper function calls the NetApiBufferFree function, to release the
memory used by the internal TIME_OF_DAY_INFO structure. If you forget to call
this function, that structure (containing 12 long integers) would remain allocated.
It’s really best that your applications deallocate memory they’ve used!

To set your computer to have the same time as a server named HOMER, you
might write code like this:

Dim dtmValue As Date
dtmValue = dhGetTimeFromServer("\\HOMER")
Date = DateValue(dtmValue)
Time = TimeValue(dtmValue)

Chapter 11 • The Windows Networking API698

On Functions Not Covered

This section has just scratched the surface of the LAN Manager API. You’ll find
many useful functions among the large set of LAN Manager API calls (as well as
some that have become obsolete or have been superseded). These functions cover
all aspects of networking, including:

• Organizational unit information

• Domain “join” information

• Domain information

• Remote file information

• Handling local and global groups

• Sending messages

• Managing replicator import and export

• Scheduling services

• Managing servers and sessions

• Handling transports

• Managing users and workstations

Although some of these functions cannot easily be called from VBA because of
the way they pass parameters, there are still many LAN Manager functions you
can use (and, hopefully, some of the pointer tricks you’ve seen in this chapter will
make it possible for you to call most of the functions you need). The examples
we’ve provided in this chapter will help get you started.

As has been noted previously, Microsoft has backed down from the old position
of stating that much of the LAN Manager API is unsupported, and they have pro-
vided good documentation for most of LAN Manager functions in the Win32 Plat-
form SDK. Microsoft has also expanded the support for the API on Windows 2000,
for example, adding functions to help you join and unjoin domains (NetJoinDomain/
NetUnjoinDomain), getting information on how a machine is joined if it is (Net-
GetJoinInformation), on many NetDfs* functions for handling DFS (distributed
file system) shares, and more.

 Summary 699

Where do you find more information about the LAN Manager API? The answer is
(as always) MSDN—the Microsoft Developer Network CD-ROM. If you’re
interested in this information, there’s no excuse for not purchasing this incredibly
useful compendium of information. Of course, you can find much of this
information on Microsoft’s Web site, as well, but it’s not nearly as convenient as it
is on the CD-ROM. Have we said this often enough? The MSDN CD-ROM is one of
the most worthwhile purchases you can make if you want to use the Windows API
as part of your application development. For people who are not sure if they want
to join the MSDN subscription, you can easily look up information by going to the
MSDN Web site at http://msdn.microsoft.com/.

Summary
Making applications network aware can be one of the most challenging aspects of
programming in VBA, both because using the network APIs in VBA is not well
documented, and because many of them were not written with VBA developers in
mind. In this chapter, we covered most of the basic networking functions you may
want to add to your application, as well as several advanced networking func-
tions. In addition, we provided some special tricks to help you work around APIs
that are not “VBA friendly.” Specifically, we covered these topics:

• Using common network dialogs

• The network connection dialog

• The network disconnect dialog

• Making network connections manually

• Creating network connections

• Deleting network connections

• Retrieving basic network resource information

• Getting a UNC path from a mapped network resource

• Retrieving the name of the currently logged-in user

• Getting (and setting) the workstation name

• Getting advanced network information

Chapter 11 • The Windows Networking API700

• Enumerating network resources

• Opening, using, and closing enumeration handles

• Enumerating available network shares on a machine

• Enumerating mapped network resources on the current machine

• Enumerating the computers in a domain

• Calling the LAN Manager API

• Adding network shares on a machine

• Deleting network shares

• Changing a user’s network password

• Retrieving the name of the primary domain controller

• Getting the time of day from another server

For more extensive looks at string handling, see Chapter 1. For more informa-
tion on using the system Registry, see Chapter 10. For more coverage of using the
Windows API in general, see Appendix B, which is located on the companion CD-
ROM that accompanies this book.

c h a p t e r 12

Working with Disks and
Files

� Using built-in VBA disk and file functions

� Understanding the power of Windows API for
managing files

� Using Windows Common Dialogs in your
applications

Chapter 12 • Working with Disks and Files702

Sooner or later, as you write VBA programs you’ll have to interact with disks
and files. Your interaction might be to perform simple tasks, such as copying or
deleting files, or more complex ones, like opening and parsing a text file. This
chapter explores the many things you can do with disks and files. It begins with a
discussion of the built-in VBA disk and file functions. While adequate for per-
forming most tasks, they do not provide all the functionality many developers
desire. The second part of this chapter examines the numerous Windows API
functions at your disposal for doing things the built-in functions aren’t capable of.

You’ll find more information on working with disks and files using the Windows
Scripting Runtime in Chapter 14.

Table 12.1 lists the sample files located on the CD-ROM for this chapter.

T A B L E 1 2 . 1 : Sample Files

Filename Description

DISKFILE.XLS Microsoft Excel workbook containing the sample code

DISKFILE.MDB Access 2000 database containing the sample code

DISKFILE.VBP Visual Basic project containing the sample code

MAIN.FRM Startup form for Visual Basic project

COMMDLG.BAS Sample code for common dialog functions

DATETIME.BAS Sample code for file date and time functions

DISKINFO.BAS Sample code for disk information functions

HANDLES.BAS Sample code for file handle examples

FILEIO.BAS Sample code for VBA file I/O functions

FINDFUNC.BAS Sample code for Windows API file-listing functions

MISCFILE.BAS Miscellaneous Windows API functions

NOTIFY.BAS Sample code for directory change notification functions

PATHFUN.BAS Sample code for path parsing examples

FSEARCH.BAS Sample code for file search functions

STRINGS.BAS String manipulation code from Chapter 1

 The Built-In VBA Disk and File Functions 703

The Built-In VBA Disk and File Functions
VBA offers several built-in functions designed to manipulate disks and files. In
general, they are oriented toward tasks that are both common and simple. We
take a look at them in this section for the sake of completeness. They are, for the
most part, very old functions inherited from previous versions of BASIC. If you’ve
used BASIC for any length of time, you’ve probably used them before, possibly
dozens of times. If you’re new to VBA and need more detail on these functions,
you may want to reexamine the VBA documentation or another introductory text.
All the code for this section is contained in the basVBABuiltIn module of the sample
Excel workbook and the VBAFILE.BAS file.

The Dir Function Explained
While it’s not the most powerful built-in VBA file function, the Dir function is prob-
ably one of the most commonly used. Its primary purpose is to return the names of
files in a given directory. Dir accepts a file specification and returns a filename match-
ing the specification. There are four ways you can call the Dir function:

1. If you pass a complete filename (with no wildcard characters), Dir returns
the name of the file if it exists at the specified location. If the file doesn’t exist,
Dir returns an empty string.

2. If you pass a file specification (one that includes wildcard characters), Dir
returns the first filename that matches the specification.

3. If you pass a directory name, Dir finds the first file in that directory.

TEMPFILE.BAS Sample code for temporary file examples

VBAFILE.BAS Sample code for built-in VBA file function examples

COMMDLG.CLS Common dialog class

TESTCDLG.BAS Sample code testing common dialog class

CALLBAK.CLS Example callback object class

ICALLBAK.CLS Callback interface class

T A B L E 1 2 . 1 : Sample Files (continued)

Filename Description

Chapter 12

•

Working with Disks and Files

704

4.

If you don’t pass anything, Dir returns the next matching filename. You can
continue to call Dir in this manner until it returns an empty string indicating
no further matches.

Furthermore, the following rules apply when you call Dir:

•

You must pass a path the first time you call Dir or after Dir returns an empty
string; otherwise, an error occurs.

•

You can pass a complete path, relative path, or UNC path.

•

If you don’t specify a path, Dir searches the current drive and directory.

•

Each time you call Dir with a new path, it abandons the prior directory search.

The procedure shown in Listing 12.1 shows a number of examples of calling the
Dir function.

➲

Listing 12.1: Various Ways to Call the Dir Function

Sub dhTestDir()
 Dim strFile As String

 ' Prints "WIN.INI" if the file exists
 Debug.Print Dir("C:\WINDOWS\WIN.INI")

 ' Prints the first file that starts with "W"
 Debug.Print Dir("C:\WINDOWS\W*")

 ' Prints the next file that starts with "W"
 Debug.Print Dir

 ' Prints all the files in the current directory
 strFile = Dir("*")
 Do Until strFile = ""
 Debug.Print strFile
 strFile = Dir
 Loop

End Sub

You can use relative paths, including the single-dot (.) and double-dot (..) symbols,
which represent the current and parent directories, respectively, in all VBA file
functions. For example, the command Dir(“..*.*”) returns the first file in the

directory immediately above the current one.

 The Built-In VBA Disk and File Functions 705

Checking for a File’s Existence

One common need in an application is to determine whether a particular file
exists. You might need to do this before calling another VBA function, such as Kill
(which deletes a file). Checking for a file’s existence is easy using the Dir function.
Listing 12.2 shows the dhFileExists function. You pass it a complete path to a file
(with no wildcards); it returns True if the file exists and False if it doesn’t.

➲ Listing 12.2: A Simple Function to Check for a File’s Existence

Function dhFileExists(strFile As String) As Boolean
 ' Call Dir with the passed file name--
 ' if the file exists Dir will return
 ' back the file name and the length
 ' of the string will be > 0
 On Error Resume Next
 dhFileExists = (Len(Dir(strFile)) > 0)
End Function

Using File Attributes
Files maintained in FAT or NTFS file systems have attributes that indicate whether
they are read-only, hidden, to be archived, or part of the operating system. Under
normal circumstances, the Dir function returns the names of all files that do not
have the hidden or system attributes set, but you can instruct Dir to look for these
files. You can also search for directories, as well as retrieve a disk’s volume label.
To accomplish all this, you pass a bit mask of values as the optional second argu-
ment. You can pass any combination of the following values:

Value Constant Description

0 vbNormal Default file attributes

1 vbReadOnly Finds read-only files

2 vbHidden Finds hidden files

4 vbSystem Finds system files

8 vbVolume Returns disk volume label

16 vbDirectory Finds directories

Chapter 12 • Working with Disks and Files706

For example, to include hidden and system files in the list that Dir generates, you
could use a statement like this:

strFile = Dir("C:\", vbHidden + vbSystem)

Passing an attribute as the second argument does not limit the output only to files
with that attribute set. It only adds them to the list of normal files returned by the
Dir function.

GetAttr and SetAttr

You can also retrieve and set the attributes for a given file. VBA provides two
functions for this purpose, GetAttr and SetAttr. GetAttr accepts a filename and
returns a long integer containing a bit mask of the file’s attributes. In addition to the
ones listed above, you can check for the archive attribute (vbArchive, value 32).
Similarly, SetAttr accepts a filename and a bit mask of attributes. Listing 12.3
shows the dhIsAttr function. It accepts a filename and a set of attributes and
returns True if the file’s attributes match those passed to the function.

➲ Listing 12.3: Use the dhIsAttr Function to Check a File’s Attributes.

Function dhIsAttr(strFile As String, lngAttr As Long) _
 As Boolean

 ' Check the attributes of the file against the
 ' specified attributes--return True if they match
 On Error Resume Next
 dhIsAttr = ((GetAttr(strFile) And lngAttr) = lngAttr)
End Function

You can call the function with any attribute or combination of attributes. For
example,

' Is "C:\MSDOS.SYS" a system file?
Debug.Print dhIsAttr("C:\MSDOS.SYS", vbSystem)

' Is "C:\MSDOS.SYS" read-only AND a system file?
Debug.Print dhIsAttr("C:\MSDOS.SYS", vbSystem + vbReadOnly)

 The Built-In VBA Disk and File Functions 707

Another example of using GetAttr is shown in Listing 12.4. It shows three proce-
dures that list all the files in the root directory, along with their file attributes.
dhPrintAttr uses the Dir function to locate all the files and directories. (Note the
bit mask passed as the second argument.) dhBuildAttrString and dhBuildAttr
compare the attributes of each file against a given file attribute and construct a
string based on the results. Figure 12.1 shows the output from running dhPrintAttr.

➲ Listing 12.4: Two Procedures That Print Files and Attributes

Sub dhPrintAttr()
 Dim strFile As String
 Dim lngAttr As Long
 Dim strAttr As String

 ' Use the root directory of the current drive
 Const dhcDir = "\"

 ' Look for all types of files
 strFile = Dir(dhcDir, _
 vbHidden + vbSystem + vbDirectory)

 ' Loop until no more files are found
 Do Until strFile = ""

 ' Use GetAttr to get the file’s attributes
 lngAttr = GetAttr(dhcDir & strFile)

 ' Print the file with its attributes
 Debug.Print strFile, dhBuildAttrString(lngAttr)

 ' Get the next file and reset the attribute string
 strFile = Dir
 strAttr = ""
 Loop
End Sub

Function dhBuildAttrString(lngAttr As Long) As String
 Dim strAttr As String

 ' Build up an attribute string

Chapter 12 • Working with Disks and Files708

 dhBuildAttr strAttr, lngAttr, vbReadOnly, "R"
 dhBuildAttr strAttr, lngAttr, vbHidden, "H"
 dhBuildAttr strAttr, lngAttr, vbSystem, "S"
 dhBuildAttr strAttr, lngAttr, vbArchive, "A"
 dhBuildAttr strAttr, lngAttr, vbDirectory, "D"

 ' Return attribute string
 dhBuildAttrString = strAttr
End Function

Sub dhBuildAttr(strAttr As String, lngAttr As Long, _
 lngMask As Long, strSymbol As String)

 ' Compare the passed attributes with the
 ' mask--if it matches append the passed
 ' symbol to the string
 If (lngAttr And lngMask) = lngMask Then
 strAttr = strAttr & strSymbol
 Else
 strAttr = strAttr & " "
 End If
End Sub

F I G U R E 1 2 . 1
A list of files and their

attributes

Listing Directory Names

File attributes are critical to locating specific file types, especially directories. (To the
file system, directories are just like files but with a special attribute set.) Listing 12.5
shows a procedure that lists all the subdirectories beneath a given directory. Note
that after using the Dir function to build the list, the procedure uses dhIsAttr to
find the directories among the names returned.

 The Built-In VBA Disk and File Functions 709

➲ Listing 12.5: A Procedure That Prints Subdirectory Names

Sub dhListSubDirs(strPath As String)
 Dim strFile As String

 ' Make sure strPath is a directory
 If Right(strPath, 1) <> "\" Then
 strPath = strPath & "\"
 End If

 If dhIsAttr(strPath, vbDirectory) Then

 ' Find all the files, including directories
 strFile = Dir(strPath, vbDirectory)
 Do Until strFile = ""

 ' If the file is a directory, print it
 If dhIsAttr(strPath & strFile, vbDirectory) Then

 ' Ignore "." and ".."
 If strFile <> "." And _
 strFile <> ".." Then

 Debug.Print strFile
 End If
 End If

 ' Get the next file
 strFile = Dir
 Loop
 End If
End Sub

Those Pesky Dir Dots

You’ll notice that the code in Listing 12.5 includes an If…Then statement to weed
out two values returned by Dir: “.” and “..”. These values represent the current
directory and parent directory, respectively. Dir will return them whenever you
scan for directory names in any directory beneath the root. As far as the operating
system is concerned, they’re perfectly valid directory names. Under most circum-
stances, though, you won’t want to include them in the directory listing.

Chapter 12 • Working with Disks and Files710

Doing the Disk File Shuffle
Probably the most common tasks related to files involve copying, moving, renam-
ing, and deleting them. VBA has several functions, all of which are quite straight-
forward, designed to accomplish these tasks:

Listing 12.6 shows a small procedure that demonstrates their syntax. It copies
the WIN.INI file from the Windows directory to the root directory, renames it
WIN.TMP, and then deletes it. What could be simpler?

➲ Listing 12.6: Copy, Rename, and Delete Files.

Sub dhCopyRenameDelete()
 ' Copy WIN.INI to root directory
 FileCopy "C:\WINDOWS\WIN.INI", "C:\WIN.INI"

 ' Rename to WIN.TMP
 Name "C:\WIN.INI" As "C:\WIN.TMP"

 ' Delete the renamed file
 Kill "C:\WIN.TMP"
End Sub

While these functions are mostly unremarkable (except perhaps for Name’s odd
syntax), there are a few things you should know about them:

• FileCopy will overwrite the destination file if it exists.

• Name will not overwrite an existing file.

• You can copy and rename in one step by specifying a different destination
name.

• You can move files using the Name function by specifying a different desti-
nation name.

Function Description

FileCopy Copies a file

Name Moves or renames a file

Kill Deletes a file

 The Built-In VBA Disk and File Functions 711

Some File Information: FileLen and FileDateTime
Two other VBA file functions are worth mentioning: FileLen and FileDateTime.
FileLen returns the size of a file in bytes, given its name. FileDateTime returns the
date and time a given file was last modified. Listing 12.7 shows a very simple pro-
cedure that demonstrates their syntax. The sections “A Hardcore Replacement for
Dir” and “Getting File Information Quickly” later in this chapter discuss looking
to the Windows API to find out even more information about files.

➲ Listing 12.7: Print a File’s Size and Date of Last Modification.

Sub dhMoreFileInfo()
 ' How big is WIN.INI?
 Debug.Print FileLen("C:\WINDOWS\WIN.INI") & " bytes"

 ' When was it last modified?
 Debug.Print FileDateTime("C:\WINDOWS\WIN.INI")
End Sub

Directory Management
VBA features a number of functions for manipulating directories. Like the file
management functions, they are all straightforward. Using these functions, you
can set and retrieve the current directory, set the current drive, and create and
remove directories.

Current Confusion

What can make using these functions a bit confusing is the concept of the current
drive and directory. Each process (application) in Windows can set a current direc-
tory. Any operations on files that are not fully qualified affect the current direc-
tory. For example, if you were to issue the command

Debug.Print Dir("*.*")

the result would be the first file in the current directory. We recommend avoiding the
current directory altogether and using fully qualified path names (complete with
drive and directory), but sometimes it’s convenient to use the current directory. So
how do you find out what the current directory is? Use the CurDir function. For
example,

Debug.Print CurDir

Chapter 12 • Working with Disks and Files712

VBA includes the drive as well as the directory in the output. To change the cur-
rent directory, use the ChDir function:

ChDir "C:\WINDOWS"

There is also a ChDrive function to change the current drive. This is where things
get confusing. Shouldn’t you be able to change the current drive using the ChDir
command? The answer is no. The reason is that VBA tracks these elements sepa-
rately. While you can include another drive letter in the ChDir statement, that
drive does not become “active” until you use ChDrive. You can see this by run-
ning the code shown in Listing 12.8. (Just make sure you use drives and directo-
ries appropriate for your computer.)

➲ Listing 12.8: Demonstrating the Confusion of ChDir and ChDrive

Sub dhTestCurrent()
 ' Print the first file in the current directory
 Debug.Print Dir("*.*"), "in " & CurDir

 ' Try to change to the D drive using ChDir
 ChDir "D:\SOMEDIR"

 ' Print the first file again--it’s still on C!
 Debug.Print Dir("*.*"), "in " & CurDir

 ' Now use ChDrive to switch drives
 ChDrive "D"

 ' Print the first file again--this time it’s D!
 Debug.Print Dir("*.*"), "in " & CurDir
End Sub

The procedure begins by printing the first filename in the current directory,
which we assume is on the C drive, along with the directory name. It then tries to
change to the D drive using just ChDir. While this appears to execute just fine,
when the first filename is printed again, it’s the same as before. Since you can’t
change drives using ChDir, the current directory remains the same. The proce-
dure then uses ChDrive to change the current drive. When the filename is printed
a third time, it’s the first file in D:\SOMEDIR. This demonstrates that although
you can use ChDir with a different drive and directory, VBA does not recognize
the new current directory until you use ChDrive.

 The Built-In VBA Disk and File Functions 713

Creating and Deleting Directories and Directory Trees

You add and remove directories using the MkDir and RmDir functions. Both accept
a directory path as arguments. You can include a fully qualified path, including a
drive letter, or a partial one. If you omit a drive letter, MkDir and RmDir assume
the current drive and resolve all relative paths based on the current directory. In
other words, they work just like their namesake MS-DOS commands.

The only other item worth noting is that, like the MS-DOS command, RmDir
will fail if you attempt to remove a directory containing files or subdirectories.
You must use the Kill statement to delete any files that exist. Since subdirectories
can be nested several levels deep, removing a high-level directory is problematic.
The solution requires recursively looking for subdirectories and deleting any files
they contain. This is not easy, however, because each recursive call to Dir resets
any pending results from the previous call.

One possible solution is shown in Listing 12.9. The function, appropriately named
dhDelTree after the utility that appeared in MS-DOS 5, accepts a directory and
methodically deletes every nested file and subdirectory. It works by first storing
the name of the current directory in a variable. It then changes to the target direc-
tory and deletes any existing files. Next, it searches for subdirectories and, upon
finding one, calls itself recursively. When the recursive call returns, the function
restarts its subdirectory search until no more subdirectories exist. Finally, it
removes the target directory and resets the current directory to its original value.

➲ Listing 12.9: A Function to Delete an Entire Directory Tree

Function dhDelTree(ByVal Directory As String, _
 Optional RemoveRoot As Boolean = True, _
 Optional ByVal Level As Integer = 1) As Boolean

 On Error GoTo HandleErrors

 Dim strFilename As String
 Dim strDirectory As String

 strDirectory = dhFixPath(Directory)

 ' Check to make sure the directory actually exists.
 ' If not, we don't have to do a thing.

Chapter 12 • Working with Disks and Files714

 If Len(Dir(strDirectory, vbDirectory)) = 0 Then
 GoTo ExitHere
 End If

 If dhFixPath(CurDir) = strDirectory Then
 MsgBox "Unable to delete the current directory. " & _
 "Move to a different directory, and try again."
 GoTo ExitHere
 End If

 ' Delete all the files in the current directory
 strFilename = Dir(strDirectory & "*.*")
 Do Until strFilename = ""
 Kill strDirectory & strFilename
 strFilename = Dir
 Loop

 ' Now build a list of subdirectories
 Do
 strFilename = Dir(strDirectory & "*.*", vbDirectory)

 ' Skip "." and ".."
 Do While strFilename = "." Or strFilename = ".."
 strFilename = Dir
 Loop

 ' If there are no more files, exit the loop.
 ' Otherwise call dhDelTree again to wipe
 ' out the subdirectory.
 If strFilename = "" Then
 Exit Do
 Else
 ' Call dhDelTree recursively. Pass True for RemoveRoot,
 ' because you'll always want to remove subfolders.
 ' Indicate the level by passing Level + 1.
 If Not dhDelTree(strDirectory & strFilename, True, _
 Level + 1) Then
 GoTo ExitHere
 End If
 End If
 Loop

 The Built-In VBA Disk and File Functions 715

 ' Finally, remove the target directory
 ' The following expression returns True unless
 ' the first factor is True and the
 ' second factor is False -- that is,
 ' it always removes the folder unless
 ' you're at level 1 (the root level) and you've
 ' been told not to remove the root.
 If Level = 1 Imp RemoveRoot Then
 RmDir strDirectory
 End If

 dhDelTree = True

ExitHere:
 Exit Function

HandleErrors:
 Select Case Err.Number
 Case 75 ' Path or file access
 ' If a file or folder can't be deleted,
 ' just keep going.
 Resume Next
 Case Else
 dhDelTree = False
 MsgBox Err.Description, vbExclamation, _
 "Error " & Err.Number & " in dhDelTree"
 Resume ExitHere
 End Select
End Function

The dhFixPath function used in this procedure simply ensures that the path passed
in has a trailing backslash.

You may notice that this solution is not tremendously efficient, due to the fact
that it needs to change directories and restart subdirectory searches each time it’s
executed (which for large trees is many times). We offer a more elegant solution to
a related problem, copying an entire subdirectory tree, in our file system object
model, described in Appendix D, “An Object Model for Folders and Files” (which
is included on the CD-ROM that accompanies this book).

Chapter 12 • Working with Disks and Files716

Be extremely careful when calling the dhDelTree function. The results of executing
a statement like dhDelTree(“C:\”) could be highly counterproductive.

File I/O If You Must
BASIC, the language VBA is based on, is, in personal computing terms, very old.
It evolved during a time when there were no high-level, object-oriented database
tools. As such, it includes a number of functions that perform low-level file input/
output (I/O). While there are usually better ways to manipulate the contents of
files, sometimes you have to roll up your sleeves and dig into the bits and bytes.
This section briefly covers VBA’s file I/O functions. Since they are unchanged
from earlier versions of BASIC, we leave the advanced discussion of their usage to
the numerous existing books on the subject. All the code for this section is con-
tained in the basFileIO module of the sample Excel workbook and the
FILEIO.BAS file.

Thanks to COM and work by the scripting team at Microsoft, you have a much
more attractive option for working with file I/O. Chapter 14 discusses the objects
available through the Windows Scripting Runtime. If you have simple I/O needs
you should probably take a look at Chapter 14.

Getting a Handle on Files
Before you can begin manipulating files and their contents, you need to under-
stand the role of file handles (sometimes called file numbers in VBA documentation).
Like other handles in Windows, file handles are simply numbers that uniquely
identify open files to the operating system. The first step in opening a file using
VBA is getting an unused file handle. You do this using the FreeFile function. For
example,

Dim hFile As Long

' Get the next free file handle
hFile = FreeFile

 File I/O If You Must 717

If successful, FreeFile returns a nonzero value that you can use in the Open state-
ment described in the next section. A file’s handle is the key to using all the other
VBA file I/O functions.

VBA’s method of assigning file handles is different from that used by the
Windows API. Windows API functions return file handles as part of opening or
creating new files. The section “Getting a (Windows) Handle on Files” later in this
chapter discusses this subject in depth.

Other books on BASIC file functions and even the VBA documentation often
ignore the FreeFile function and use hard-coded file handles (for example “#1”).
While this is perfectly legal syntax, we recommend you use variables and the
FreeFile function to assign file handles, especially if you open more than one file at
once. Hard-coded file handles can lead to confusion and unwanted results if you
inadvertently write data to the wrong file.

Using the Open Function
You use the VBA Open function to open all disk files for reading, writing, or both.
It can be a confusing function because of its odd syntax and many permutations.
The general form of the Open function is shown here. (Square brackets indicate
optional components.)

Open pathname For mode [Access access] [lock] _
 As [#]filenumber [Len=reclength]

Table 12.2 lists each of the elements of the function and describes what each is
used for. As you can see, there are quite a few possible permutations!

T A B L E 1 2 . 2 : Elements of the Open Function

Element Description

pathname Path to the file to open

mode File open mode. Must be one of Append, Binary, Input, Output, or Random

access Access mode. Must be one of Read (default), Write, or Read Write

lock Share mode. Must be one of Shared (default), Lock Read, Lock Write, or
Lock Read Write

Chapter 12 • Working with Disks and Files718

The options for mode, access, and lock are probably the most confusing. The
next three sections explain each of them.

File Mode

The mode in which you open a file determines how Windows treats the opened
file and what you can do with it. Unless you’re constructing a random-access
database application in VBA, you’ll likely open a file in one of the sequential
access modes: Append, Input, or Output. These are the preferred modes for work-
ing with text files. Files opened in Input mode are restricted to read-only access.
Files opened in Output or Append mode can be read from or written to. The dif-
ference between the two is that Output always creates a new file, deleting an exist-
ing one with the same name, while Append adds text to the end of a file.

If you need to read and write data to a file on a byte-by-byte basis (such as when
working with image files), open the file in binary mode. Random mode, on the
other hand, is normally used for files that use a fixed record length, such as a
dBase file. Operations on files opened in random mode operate on units that cor-
respond to the size of the record specified by the reclength element of the Open
function.

File Access

Somewhat related to the file open mode is the file access mode. You choose from
three options: Read, Write, and Read Write. The meaning of each should be obvi-
ous. If you don’t have appropriate access rights to open a file with the specified
options, perhaps because of network or operating system security settings, an
error occurs.

filenumber File handle. Can be a hard-coded number or a variable containing the handle
obtained from FreeFile

reclength Record length (for Random mode) or number of bytes buffered (for append, input,
and output modes)

T A B L E 1 2 . 2 : Elements of the Open Function (continued)

Element Description

 File I/O If You Must 719

Locking

In multiuser scenarios, it is a good idea to select one of the locking options. The
default is Shared. This lets other users read from and write to the file while you
have it open. If this is not appropriate for your situation, you can select one of the
other options. Lock Read prevents other users from reading the file but still allows
them to write to it. Lock Write allows others to read the contents of the file but not
to modify them. Lock Read Write is the most restrictive. It prevents other users
from reading or writing.

While we don’t cover it in this chapter, you can lock parts of a file once you’ve
opened it. Search VBA online help for more information on the Lock statement.

A Simple Example

Now let’s look at a simple example of using the Open statement. The procedure
shown in Listing 12.10 opens a file in sequential access mode. Note from the state-
ment options that the procedure will only be able to read from the file. Note also
that if you want to test this procedure, you should make sure the file specified in
the Open statement exists.

➲ Listing 12.10: Open a File for Sequential Read Access.

Sub dhTestOpen()
 Dim hFile As Long

 ' Get a new file handle
 hFile = FreeFile

 ' Open a file for sequential access
 Open "C:\TESTPROC.BAS" For Input Access Read _
 Shared As hFile

 ' Do something here...

 ' Close the file
 Close hFile
End Sub

Chapter 12 • Working with Disks and Files720

Don’t Forget to Close!

You’ll notice that just before terminating, the procedure in Listing 12.10 calls the
VBA Close statement, passing the file handle. The Close statement closes an open
disk file. Closing a file after you’re done using it is important. If you fail to close a
file, you risk locking others out of it (if opened in non-shared mode) or losing data
(if you shut down Windows).

You can close multiple files simultaneously by passing more than one file han-
dle, separated by commas, to the Close statement. While we recommend using the
Close statement to close each open file individually as soon as you’re finished
with it, you can also use the Reset statement to close all disk files opened by your
application.

Manipulating File Position
Under most circumstances, you don’t want to blindly read and write data to disk
files. You normally need to know things like how big a file is, where the next read
or write operation will take place, and when you’ve reached the end of the file. VBA
offers several functio74ns to help you do this, described in the following sections.

LOF and EOF

No, we’re not talking about two of the dwarfs from The Hobbit. LOF and EOF are
two functions that tell you the size of a file and when you’re at the end of a file,
respectively. Each accepts a file handle as an argument. LOF simply returns the
size of the open file in bytes.

EOF returns a Boolean value indicating whether the current byte position is at the
end of the file. The current byte position is maintained internally by VBA. When
you first open a file, VBA sets this value to 0. As you use file I/O functions, VBA
changes this value. For example, after reading two bytes from a file opened in
Binary mode, the current byte position is set to 2. The next read operation will
occur at the next, or third, byte. When you have read the entire contents of a file,
the current byte position is set to the final byte number, and EOF returns True.
Any attempt to read more data will result in an error.

For files opened in output mode, EOF always returns True.

 File I/O If You Must 721

Loc and Seek

If you need to know what the current byte position is, call the Loc function. Loc
accepts a file handle as an argument and returns the current byte position. The
number returned, however, varies depending on the mode the file was opened in.
For files opened in binary mode, Loc returns the actual byte position. For files
opened in random mode, Loc returns the record number instead of the byte num-
ber. For files opened in sequential mode (input, output, or append), however, the
number returned by Loc is the current byte position divided by 128. (No, we don’t
know why.)

If you need to know the actual byte position of sequentially accessed files, use
the Seek function instead. Seek works just like Loc for binary and random files but
returns a true byte position for sequential files.

VBA also has a Seek statement that you can use to set the current byte or record
position for files opened in binary or random mode. (As the term sequential
implies, you can’t change the current byte position for sequential files.)

Statements for Reading and Writing
Just as there are many permutations of the Open statement, there are numerous
VBA statements for reading from and writing to disk files. Which one you use
depends on which file open mode you used and how you want to format the
incoming or outgoing data. Table 12.3 summarizes the different statements.

Sequential Access

Files opened in input, output, or append mode can be manipulated by any of five
functions. For reading data you can use Input, Line Input #, or Input #. Writing to
sequential files is accomplished with the Print # or Write # functions.

T A B L E 1 2 . 3 : VBA Statements for File I/O

Open Mode Read Statement(s) Write Statement(s)

Sequential (Input, Output, or Append) Input, Line Input #, Input # Print #, Write #

Random Get Put

Binary Input, Get Put

Chapter 12 • Working with Disks and Files722

Input Input is the simplest function for reading data and is useful for dealing
with text files that don’t contain line breaks and files containing binary data.
Listing 12.11 shows a procedure that accepts a filename and prints the contents
of the file to the Immediate window. You’ll notice that it uses the EOF function
to determine when it’s reached the end of the file.

➲ Listing 12.11: Print the Contents of a File, Byte by Byte.

Sub dhPrintBytes(strFile As String)
 Dim hFile As Long

 ' Get a new file handle
 hFile = FreeFile

 ' Open the file for sequential access
 Open strFile For Input Access Read Shared As hFile

 ' Print the file contents
 Do Until EOF(hFile)
 Debug.Print Input(1, hFile);
 Loop

 ' Close the file
 Close hFile
End Sub

This procedure is not very efficient, however, because it makes two function
calls (to EOF and Input) for each byte in a file. When using the Input function, it’s
best to fetch the data in chunks. Listing 12.12 shows an updated version of the
procedure that does this. In addition to the filename, it accepts a chunk size and
retrieves data in blocks rather than one byte at a time.

➲ Listing 12.12: Print the Contents of a File, Using Chunks.

Sub dhPrintChunks(strFile As String, intSize As Integer)
 Dim hFile As Long
 Dim lngSize As Long
 Dim intChunk As Integer

 ' Get a new file handle
 hFile = FreeFile

 File I/O If You Must 723

 ' Open the file for sequential access
 Open strFile For Input Access Read Shared As hFile

 ' Get the file size
 lngSize = LOF(hFile)

 ' Print the file contents, first in chunks
 For intChunk = 1 To lngSize \ intSize
 Debug.Print Input(intSize, hFile);
 Next

 ' Then the remainder
 If (lngSize Mod intSize) > 0 Then
 Debug.Print Input((lngSize Mod intSize), hFile)
 End If

 ' Close the file
 Close hFile
End Sub

You’ll notice that the procedure uses a For…Next loop to read in each block of
data. The number of iterations is computed by dividing the chunk size into the file
size, using integer division. A final Input statement is used to read any remaining
data, which will be left over if the file size is not equally divisible by the chunk size.

Of course, these methods of retrieving data evolved under early versions of
BASIC that could not cope with large amounts of data. String variables were lim-
ited to 32K, for instance. With the 32-bit versions of VBA, however, String vari-
ables can now hold over two billion characters, so you could use a statement like
this to read a file’s entire contents at once:

Debug.Print Input(LOF(hFile), hFile)

Line Input # For text files that contain line breaks (for example, configura-
tion files like AUTOEXEC.BAT and WIN.INI), use the Line Input # statement
instead. This statement accepts a file handle and a variable and reads the next
line from the file into the variable. (It strips the trailing carriage return and line-
feed characters.) Listing 12.13 shows a procedure that accepts a filename, opens
that file for read-only access, and prints each line to the Immediate window.
Using Line Input #, you don’t have to worry about byte position or buffer size.

Chapter 12 • Working with Disks and Files724

➲ Listing 12.13: Print Text Files with Line Breaks Using Line Input #.

Sub dhPrintLines(strFile As String)
 Dim hFile As Long
 Dim strLine As String

 ' Get a new file handle
 hFile = FreeFile

 ' Open the file for sequential access
 Open strFile For Input Access Read Shared As hFile

 ' Print the file contents
 Do Until EOF(hFile)
 Line Input #hFile, strLine
 Debug.Print strLine
 Loop

 ' Close the file
 Close hFile
End Sub

Input # Input #, the final sequential read statement, accepts a file handle and
a series of variables (separated by commas) and loads file data into those vari-
ables. Input # is most useful for comma-delimited data since it treats each data
element separately, loading it into a separate variable. It also automatically
removes quotes around text values and converts date strings to VBA dates.

Write # The counterpart of Input # is Write #. It accepts a file handle and a
comma-delimited list of values and writes each value to the file. Additionally,
the statement delimits the output with commas and encloses text in quotes and
dates in number signs (#). This makes it ideal for reading using Input #. Listing
12.14 shows a procedure that demonstrates both statements.

➲ Listing 12.14: Using Write # and Input #

Sub dhWriteAndInput(strFile As String)
 Dim hFile As Long
 ReDim varData(1 To 5) As Variant
 Dim i As Integer

 File I/O If You Must 725

 ' Open a file for output, write to it, and close it
 hFile = FreeFile
 Open strFile For Output Access Write As hFile
 Write #hFile, "Some Text", "A Date:", Date, "A Number:", 100
 Close hFile

 ' Now open it back up for reading
 hFile = FreeFile
 Open strFile For Input Access Read As hFile
 Input #hFile, varData(1), varData(2), varData(3), _
 varData(4), varData(5)
 Close hFile

 ' Print the data
 For i = 1 To 5
 Debug.Print varData(i)
 Next
End Sub

This procedure begins by opening a file for output and writing several values to
it. If you stepped through the code, stopping just after the first Close statement,
and opened the file, you would see that the contents look like this:

"Some Text","A Date:",#1997-01-21#,"A Number:",100

The procedure then opens the file again for read access; uses Input # to read the
data into five Variant variables, stored as an array; and prints them to the Immedi-
ate window.

When using Input #, the number of variables must match the number of data elements
in the file.

Print # Finally, there’s the Print # statement. You may recognize the state-
ment from the Print method of the Debug object. In fact, the two statements
work in much the same manner. Print # writes a series of values to a file open in
output or append mode. Unlike Write #, however, Print # does not format the
data with quotes or number signs. Furthermore, Print # separates each value
with tabs, not commas. If you were to substitute Print # for Write # in the previ-
ous example, the output file would look like this:

Some Text A Date: 1/21/97 A Number: 100

Chapter 12 • Working with Disks and Files726

Since there are no commas, you could not use Input # to read the file. You would
need to use Input or Line Input instead.

The Print # statement is normally used with just one piece of data, commonly a
line of text. Listing 12.15 contains a simple procedure to add line numbers to a text
file. It opens one file in input mode and another, new file in output mode. It then
loops through the input file, reads each line, and writes the line number and origi-
nal text to the output file using Print #.

➲ Listing 12.15: Use Print # to Add Line Numbers to a Text File.

Sub dhAddLineNumbers(strFileIn As String, strFileOut As String)
 Dim hFileIn As Long
 Dim hFileOut As Long
 Dim strInput As String
 Dim i As Integer

 ' Open first file for input
 hFileIn = FreeFile
 Open strFileIn For Input Access Read As hFileIn

 ' Open the second file for output
 hFileOut = FreeFile
 Open strFileOut For Output Access Write As hFileOut

 ' Read each line from the input file, add a line
 ' number and write it to the output file
 Do Until EOF(hFileIn)
 i = i + 1
 Line Input #hFileIn, strInput
 Print #hFileOut, i & ":", strInput
 Loop

 ' Close the files
 Close hFileIn
 Close hFileOut
End Sub

 File I/O If You Must 727

When opening two or more files simultaneously, always call FreeFile for the sec-
ond file handle after opening the first file. Otherwise, both file handles will be the
same (since you haven’t used the first handle, it’s still free), and an error will occur
when you try to open the second file.

Random Access

Although not often used in today’s world of Automation-enabled database technol-
ogies like ADO, VBA’s random-access file functions can still be used to produce
database-like behavior with very little overhead. The functions work by manipulat-
ing “records” in the form of user-defined data types. When you open a file for ran-
dom access, you pass the size of the record to the Open statement. All subsequent
read and write operations then move data to and from variables of a given user-
defined type in memory. Furthermore, these functions, Get and Put, transparently
handle the task of overwriting existing records in the middle of a file.

To illustrate this functionality, assume the following user-defined data type:

Type dhEmployee
 ID As Integer
 FirstName As String * 10
 LastName As String * 10
 Department As Integer
 HireDate As Date
 Salary As Currency
End Type

This represents a fictitious employee record. Note the fixed-length String vari-
ables. You must use fixed-length strings to prevent the record-oriented nature of
this process from breaking down. This is because you must tell VBA what the
record size is when you open it. Errors will occur if the record is of variable size.

Listing 12.16 shows two functions designed to read and write data in this format
to and from a file. Each function uses the same Open statement:

Open strFile For Random Access Read Write _
 As hFile Len = Len(empIn)

Note that the file is opened in random mode and that the record length (deter-
mined by applying the Len function to the record variable) is passed to the Open
statement.

Chapter 12 • Working with Disks and Files728

➲ Listing 12.16: Read and Write to a Random-Access File

Function dhReadEmp(strFile As String, _
 emp As dhEmployee) As Boolean

 Dim hFile As Long
 Dim empIn As dhEmployee

 ' Open file for random access
 hFile = FreeFile
 Open strFile For Random Access Read Write _
 As hFile Len = Len(empIn)

 ' Try to find the employee in existing records
 Do Until EOF(hFile)

 ' Read in the record
 Get hFile, , empIn

 ' Check IDs
 If empIn.ID = emp.ID Then
 emp = empIn
 dhReadEmp = True
 Exit Do
 End If
 Loop

 Close hFile
End Function

Function dhSaveEmp(strFile As String, _
 empToSave As dhEmployee) As Boolean

 Dim hFile As Long
 Dim empIn As dhEmployee
 Dim lngRec As Long

 ' Open the file for random access
 hFile = FreeFile
 Open strFile For Random Access Read Write _
 As hFile Len = Len(empIn)

 File I/O If You Must 729

 ' Try to find the employee in existing records
 Do Until EOF(hFile)
 lngRec = lngRec + 1

 ' Read in the record
 Get hFile, lngRec, empIn

 ' Check IDs
 If empIn.ID = empToSave.ID Then

 ' Write the new data and get out
 Put hFile, lngRec, empToSave
 GoTo ExitHere
 End If
 Loop

 ' Record doesn’t exist so write at end
 Put hFile, , empToSave

ExitHere:
 dhSaveEmp = True
 Close hFile
End Function

Each function loops through the contents of the file, loading existing data into a
record variable, empIn. In the case of dhReadEmp, the function is not concerned
with the record number per se. If the record is found, the function returns it to the
calling procedure. dhSaveEmp, on the other hand, uses a variable to track the
record number (lngRec). If an existing record is found, the procedure replaces it
with the new record simply by specifying the record number in the Put statement.
That’s one reason this mode of data access is so powerful. You can read or write to
any record in the file based on its number!

A procedure that demonstrates this functionality, dhTestRandom, is included in
the sample code but not printed here.

Of course, it would be difficult to convince anyone that what we’ve just
described constitutes a database. After all, to find a given record, our procedures
loop through every record in the file! But by using complex data structures such

Chapter 12 • Working with Disks and Files730

as linked lists and embedded pointers, you could create a sophisticated database
system using these functions. Why you would want to, given the availability of
component-based technologies, is another question.

The Windows API: Where the Real Power Is
As good as the built-in VBA functions are, they don’t do everything you might
need to do in an application. For instance, what if you need to find out how much
disk space is free or change the volume label of a disk? You’ll need to use the Win-
dows API to accomplish these tasks. This section examines a few of the many API
functions that relate to disks and files.

Comparing API Functions with VBA Functions
Before looking at specific functions, let’s compare the VBA functions we’ve
already discussed with their Windows API equivalents. You’ll see many similari-
ties. After all, when you call a VBA function, VBA is making the associated API
calls on your behalf.

Table 12.4 lists the VBA disk and file functions, along with their comparable
Windows API counterparts. Where the functionality provided by the Windows
API functions differs from the VBA functions, it is noted in the right-hand column.
Because the Windows API is a more complex interface than VBA, if there is no
appreciable benefit to using an API function, we don’t cover it in this chapter.

T A B L E 1 2 . 4 : Comparing VBA and Windows API Disk and File Functions

VBA Function(s) Comparable API Function(s) How API Functions Differ

ChDir, ChDrive SetCurrentDirectory No added functionality

CurDir GetCurrentDirectory No added functionality

Dir FindFirstFile, FindFirstFileEx,
FindNextFile, FindClose

Requires more function calls but yields
more information about each file

FileCopy CopyFile, CopyFileEx Allows you to prevent overwriting an
existing file. CopyFileEx provides
progress notification through a
callback mechanism.

 The Windows API: Where the Real Power Is 731

In addition to the API calls that duplicate built-in functionality, there is a whole
host of others that offer capabilities not found in VBA. Table 12.5 lists the ones
mentioned in this chapter. There are certainly others, but most are too esoteric or
too complex to warrant coverage here.

FileDateTime GetFileTime Much more complex but gives you
access to all three file times (creation,
access, and last-written)

FileLen GetFileSize, GetFileSizeEx Works with really huge files (greater
than 2GB)

GetAttr GetFileAttributes,
GetFileAttributesEx

No added functionality

Kill DeleteFile No added functionality

MkDir, RmDir CreateDirectory, CreateDirectoryEx,
RemoveDirectory

Support for NT security attributes

Name MoveFile, MoveFileEx Provides options on how to move the
file (e.g., on reboot)

SetAttr SetFileAttributes No added functionality

Open, Input, Print,
Write, Close

CreateFile, ReadFile, ReadFileEx,
WriteFile, WriteFileEx, CloseHandle

This is like comparing apples and
oranges. You must use the CreateFile
API function to obtain file handles,
but in general, using the VBA
functions for file I/O is simpler.

T A B L E 1 2 . 5 : Windows API Functions with No VBA Equivalent

Function(s) Description

CompareFileTime Compares the file time of two files

FindFirstChangeNotification, FindNext-
ChangeNotification, FindCloseChangeNotification

Instruct Windows to notify your application when
a file or directory changes

GetBinaryType Determines whether a file is an executable and if it
is, the type

GetDiskFreeSpace Retrieves information about a disk drive, including
available disk space

T A B L E 1 2 . 4 : Comparing VBA and Windows API Disk and File Functions (continued)

VBA Function(s) Comparable API Function(s) How API Functions Differ

Chapter 12 • Working with Disks and Files732

Some of the information in this section is available through the Windows Scripting
Runtime, explained in Chapter 14. We’ve presented it here because sometimes it’s
desirable to call the Windows API directly, and it provides insight into what the
runtime itself is doing.

Getting Disk Information
VBA has a number of functions that deal with files but very few that deal with
disks. For example, there is no way to determine the disk space available on
a given drive or the number and type of drives installed in your computer.

GetDriveType Determines what type a drive is (fixed, removable,
network, CD-ROM, or RAM disk)

GetFileInformationByHandle Retrieves detailed file information in a single
function call

GetFullPathName Retrieves the full path name for a file, given a
partial path

GetLogicalDrives, GetLogicalDriveStrings Retrieve the logical drives for the computer either
as a bit mask or as a null-delimited string

GetShortPathName Retrieves the short (8.3) filename associated with a
given long filename

GetTempFileName Computes a temporary filename based on a
directory name, prefix characters, and, optionally,
a unique integer

GetTempPath Retrieves the directory designated to hold
temporary files

GetVolumeInformation Retrieves information about the file system and
specified volume

SearchPath Searches for a file, given a search path or the
default system paths

SetFileTime Changes the times associated with a given file

SetVolumeLabel Sets the volume label for a drive

T A B L E 1 2 . 5 : Windows API Functions with No VBA Equivalent (continued)

Function(s) Description

 The Windows API: Where the Real Power Is 733

Fortunately, the Windows API comes to the rescue with a myriad of functions to
accomplish these tasks as well as many others. All the code for this section is con-
tained in the basDiskInfo module of the sample Excel workbook and the DIS-
KINFO.BAS file.

How Many Drives Do You Have?

To find out how many drives you have, the best place to start is with two func-
tions that determine the number of drives installed in your computer, including
both physical drives and network connections. The two functions are GetLogical-
Drives and GetLogicalDriveStrings. Which one you use will depend on what type
of data you’re dealing with.

GetLogicalDrives is a simple function call that returns drive information packed
into a single long integer. Each bit represents a drive letter (the first bit for drive A,
the second for drive B, and so on), with 1 indicating that the drive is installed. The
declaration for GetLogicalDrives is

Declare Function GetLogicalDrives Lib "kernel32" () As Long

It’s pretty simple. What little complexity there is comes in deciphering the bits.
Listing 12.17 shows a procedure, dhGetDrivesByNum, that takes the result of call-
ing GetLogicalDrives and performs a bit-wise comparison on the first 26 bits. If it
finds a drive, the procedure adds the drive number to a VBA collection passed as
an argument.

VBA Collection objects are extremely useful in situations like this. In fact, it’s a
good idea to consider a collection wherever you’re thinking of using an array.

➲ Listing 12.17: Fetch Logical Drives by Number.

Function dhGetDrivesByNum(colDrives As Collection) _
 As Integer

 Dim lngDrives As Long
 Dim intDrive As Integer

 ' Reset the collection
 Set colDrives = New Collection

Chapter 12 • Working with Disks and Files734

 ' Get the logical drives
 lngDrives = GetLogicalDrives()

 ' Do a bitwise compare on the first 26 bits
 For intDrive = 0 To 25
 If (lngDrives And (2 ^ intDrive)) <> 0 Then
 colDrives.Add intDrive, Chr(65 + intDrive)
 End If
 Next

 ' Return the number of drives found
 dhGetDrivesByNum = colDrives.Count

End Function

Using GetLogicalDriveStrings presents a different type of complexity, although
not daunting by any stretch of the imagination. GetLogicalDriveStrings returns
drive letters in a single string buffer. Each drive letter is separated by a null char-
acter (ASCII code 0), with the entire string terminated by two Nulls. (This is often
referred to as a double null-terminated string.) Listing 12.18 shows the counterpart
to dhGetDrivesByNum, a procedure called dhGetDrivesByString. After allocating
a buffer and calling GetLogicalDriveStrings, dhGetDrivesByString parses the buffer,
looking for null characters. Like dhGetDrivesByNum, it also adds these drive let-
ters to a VBA collection passed to the function.

➲ Listing 12.18: Fetch Logical Drives, This Time by Letter.

Function dhGetDrivesByString(colDrives As Collection) _
 As Integer

 Dim strBuffer As String
 Dim lngBytes As Long
 Dim intPos As Integer
 Dim varArray As Variant
 Dim strDrive As String

 ' Reset the collection
 Set colDrives = New Collection

 ' Set up a buffer
 strBuffer = Space(255)

 The Windows API: Where the Real Power Is 735

 ' Get the logical drive string
 lngBytes = GetLogicalDriveStrings(_
 Len(strBuffer), strBuffer)

 ' Parse the drive string by looking
 ' for the null delimiter and add each to
 ' the collection
 varArray = Split(strBuffer, Chr$(0))
 Do
 strDrive = varArray(intPos)
 colDrives.Add strDrive, strDrive
 intPos = intPos + 1
 Loop Until Len(varArray(intPos)) = 0

 ' Return the number of drives found
 dhGetDrivesByString = colDrives.Count
End Function

Note the use of the new VBA 6 function Split, which converts a string into an array
based on a given delimiter. In the last edition of this book we had to resort to a
manual search for the null character. Using Split is much, much simpler (not to
mention faster). You should keep this in mind when reviewing your own code
from older versions of VBA.

Listing 12.19 shows a sample procedure that tests each method. You can run this
code from the Immediate window. Figure 12.2 shows the results.

➲ Listing 12.19: Test the Methods for Retrieving Logical Drives.
Sub dhPrintDrives()
 Dim colDrives As New Collection
 Dim varDrive As Variant

 ' First by number
 Debug.Print "Drives found: " & _
 dhGetDrivesByNum(colDrives)
 For Each varDrive In colDrives
 Debug.Print varDrive,
 Next

 Debug.Print

Chapter 12 • Working with Disks and Files736

 ' Then by letter
 Debug.Print "Drives found: " & _
 dhGetDrivesByString(colDrives)
 For Each varDrive In colDrives
 Debug.Print varDrive,
 Next
End Sub

F I G U R E 1 2 . 2
Logical drive information

What Kind of Drives Are They?

Once you’ve determined which drives are on your system, you can call another
Windows API function, GetDriveType, to find out what kind of drive each one is.
GetDriveType’s declaration is as follows:

Declare Function GetDriveType Lib "kernel32" _
 Alias "GetDriveTypeA" (ByVal nDrive As String) As Long

GetDriveType accepts a string representing the root directory of a drive (includ-
ing the colon and backslash and like those produced by dhGetDrivesByString)
and returns a code indicating what type of drive it is. It can be any one of the val-
ues listed in Table 12.6.

T A B L E 1 2 . 6 : Drive Type Constants for GetDriveType

Value Constant Description

0 DRIVE_UNKNOWN Drive does not exist or type cannot be determined

1 DRIVE_NOROOT String passed was not the root directory

2 DRIVE_REMOVABLE Removable media

 The Windows API: Where the Real Power Is 737

If you pass the vbNullString constant as the drive letter, GetDriveType returns
information on the current drive.

To demonstrate the GetDriveType API function, we created a sample procedure
called dhPrintDriveTypes (shown in Listing 12.20) that prints the type of each
installed drive to the Immediate window. Note that it uses dhGetDrivesByString
to generate the list of drives. Figure 12.3 illustrates sample output.

➲ Listing 12.20: Print the Type of Each Installed Drive.

Sub dhPrintDriveTypes()
 Dim colDrives As New Collection
 Dim varDrive As Variant
 Dim lngType As Long

 ' Get drive letters
 If dhGetDrivesByString(colDrives) > 0 Then
 For Each varDrive In colDrives
 ' Print drive letter
 Debug.Print varDrive,

 ' Print drive type
 lngType = GetDriveType(CStr(varDrive))
 Select Case lngType
 Case DRIVE_UNKNOWN
 Debug.Print "Unknown"
 Case DRIVE_NOROOT
 Debug.Print "Unknown"
 Case DRIVE_REMOVABLE
 Debug.Print "Removable Media"

3 DRIVE_FIXED Fixed disk

4 DRIVE_REMOTE Network drive

5 DRIVE_CDROM CD-ROM

6 DRIVE_RAMDISK RAM disk

T A B L E 1 2 . 6 : Drive Type Constants for GetDriveType (continued)

Value Constant Description

Chapter 12 • Working with Disks and Files738

 Case DRIVE_FIXED
 Debug.Print "Fixed Disk"
 Case DRIVE_REMOTE
 Debug.Print "Network Drive"
 Case DRIVE_CDROM
 Debug.Print "CD-ROM"
 Case DRIVE_RAMDISK
 Debug.Print "RAM Disk"
 End Select
 Next
 End If
End Sub

F I G U R E 1 2 . 3
Printing drive types

Strings passed to GetDriveType must represent the root directory; otherwise, the
function will be unable to determine the drive type.

How Much Space Is Left?

Perhaps the most common question VBA developers want to ask concerning disk
drives is, “How much disk space is available?” Answering this question was
extremely difficult under 16-bit versions of BASIC because it involved making
DOS interrupt calls—not an easy task from VBA. The Win32 API, however, added
a simple function to retrieve this information, GetDiskFreeSpace. Of course, there
was one problem with GetDiskFreeSpace. When it was written (way, way back in
the early 90s), hard disk capacity was relatively limited compared to today and the
function only worked with drives up to 2 gigabytes in size. Today it’s not uncom-
mon for new PCs to come with hard drives in excess of 30 gigabytes.

 The Windows API: Where the Real Power Is 739

That’s why Windows 95 OSR2, Windows 98, and Windows NT/2000/XP all
support an improved function, GetDiskFreeSpaceEx. GetDiskFreeSpaceEx uses
64-bit integers to represent space and therefore supports drives up to 263 bytes in
size. (It’s 263 and not 264 because one bit is used to indicate sign.)

If you’ve ever installed Office 97 or Visual Studio 97 on a new PC and wondered
why “free disk space” always read 2GB, this is why.

One question you might ask is, “How do I call GetDiskFreeSpaceEx if it uses 64-
bit integers and VBA only supports 32-bit integers?” The answer is actually quite
simple. The VBA Currency data type is, in actuality, a 64-bit integer that’s scaled
by a factor of 10,000 to represent decimal values. As such, it’s perfectly compatible
with GetDiskFreeSpaceEx. The declaration for GetDiskFreeSpaceEx, therefore, is

Public Declare Function GetDiskFreeSpaceEx _
 Lib "kernel32" Alias "GetDiskFreeSpaceExA" _
 (ByVal lpRootPathName As String, _
 curFreeBytesAvailableToCaller As Currency, _
 curTotalNumberOfBytes As Currency, _
 curTotalNumberOfFreeBytes As Currency) As Boolean

As you can see from the declaration, you pass the root drive letter (e.g., “C:\”),
as well as three Currency variables. After the function completes, the three vari-
ables indicate free disk space available to the function caller (i.e., the current user),
total disk space, and overall free space. Note that the free disk space available to
the current user may be different from overall free space on the drive if you’re
using space allocation policies (very common on network file shares).

You can also pass UNC names (e.g., “\\MYSERVER\MYSHARE”) to GetDiskFreeSpaceEx.

If you pass the vbNullString constant as the drive letter, both GetDiskFreeSpace
and GetFreeDiskSpaceEx return information on the current drive.

We’ve boiled GetDiskFreeSpaceEx down to three useful functions, dhFree-
DiskSpaceEx, dhMyFreeDiskSpaceEx, and dhTotalDiskSpaceEx. To save paper,
only dhTotalDiskSpaceEx is shown in Listing 12.21. The others are nearly identical,
the only difference being they utilize other parameters to the API call. Listing 12.21

Chapter 12 • Working with Disks and Files740

also shows a test procedure, dhPrintDiskSpaceEx, which demonstrates how to call
the two functions. Figure 12.4 shows sample output.

F I G U R E 1 2 . 4
Printing disk space for

installed drives

As an optimization, you could create a single procedure that computes all three
types of information using arguments passed by reference and a single call to
GetFreeDiskSpaceEx. We created three separate functions so each could report
the results as a single return value.

If the GetDiskFreeSpaceEx function fails (returns False), then dhFreeDiskSpaceEx,
dhMyFreeDiskSpaceEx, and dhTotalDiskSpaceEx return –1.

➲ Listing 12.21: Functions for Determining Total Disk Space

Function dhTotalDiskSpaceEx(Optional strDrive As _
 String = vbNullString) As Currency

 Dim curTotal As Currency
 Dim curFree As Currency
 Dim curFreeToMe As Currency

 ' Call GetDiskFreeSpaceEx
 If GetDiskFreeSpaceEx(strDrive, _
 curFreeToMe, curTotal, curFree) Then

 The Windows API: Where the Real Power Is 741

 ' If successful compute total disk space
 dhTotalDiskSpaceEx = curTotal * 10000
 Else
 dhTotalDiskSpaceEx = -1
 End If
End Function

Sub dhPrintDiskSpaceEx()

 Dim colDrives As New Collection
 Dim varDrive As Variant

 ' Get drive letters
 If dhGetDrivesByString(colDrives) > 0 Then

 ' Print header
 Debug.Print "Drive", "Total Bytes", _
 "Free Bytes", "Free To Me"

 ' Print drive space for all drives
 For Each varDrive In colDrives

 Debug.Print varDrive, _
 dhTotalDiskSpaceEx(CStr(varDrive)), _
 dhFreeDiskSpaceEx(CStr(varDrive)), _
 dhMyFreeDiskSpaceEx(CStr(varDrive))

 Next
 End If
End Sub

For completeness we’ve included the old (and now obsolete) functions in the
sample code. You should, however, use the new functions explained here in any
new code you write. If you used the prior edition of this book we also recommend
you search for the outdated functions (dhFreeDiskSpace and dhTotalDiskSpace)
and replace them with the new ones.

Chapter 12 • Working with Disks and Files742

What about Drive Labels?

The last disk-related API functions covered in this chapter concern a disk’s vol-
ume label. You know that 11-character string you can set when you format a disk?
Using the VBA Dir function, you can retrieve a disk’s volume label, but you can’t
set it. With the Windows API functions GetVolumeInformation and SetVolume-
Label, you can do that and more.

In addition to the volume label, GetVolumeInformation returns information on
the volume’s serial number, the maximum filename length, and the name of the
installed file system. The declaration for GetVolumeInformation is

Declare Function GetVolumeInformation Lib "kernel32" _
 Alias "GetVolumeInformationA" _
 (ByVal lpRootPathName As String, _
 ByVal lpVolumeNameBuffer As String, _
 ByVal nVolumeNameSize As Long, _
 lpVolumeSerialNumber As Long, _
 lpMaximumComponentLength As Long, _
 lpFileSystemFlags As Long, _
 ByVal lpFileSystemNameBuffer As String, _
 ByVal nFileSystemNameSize As Long) As Long

We created a procedure that accepts a drive’s root directory (make sure to include
the colon and backslash) and prints information about the volume to the Immediate
window. Since the function call is straightforward, and to save space, we decided
not to include the code listing here. You can find the procedure, called dhPrintVol-
Info, in the basDiskInfo module in the sample Excel workbook or DISKFILE.BAS.

GetVolumeInformation’s counterpart, SetVolumeLabel, is a simple function
with a single purpose: to set the volume label of a disk drive. Its declaration is

Declare Function SetVolumeLabel Lib "kernel32" _
 Alias "SetVolumeLabelA" (ByVal lpRootPathName As String, _
 ByVal lpVolumeName As String) As Long

As with SetVolumeLabel’s cousins, you pass a string containing the root directory
of a drive as the first argument. The second argument is the string containing the
new volume label. If you wish, you can remove the volume label completely. Due to
a bug in Windows 95, however, there are two ways to do this. Under Windows 98
and Windows NT/2000/XP, the function works as designed. You pass a null
pointer (vbNullString) to the function to delete the volume label. Under Windows 95,
this doesn’t work. Instead you must pass an empty string (“”). If SetVolumeLabel is
successful in changing the volume label, it returns True; otherwise it returns False.

 The Windows API: Where the Real Power Is 743

Fun with Paths
One of the most common (and most tedious) tasks a VBA programmer must per-
form is manipulating file paths. Whether you’re deriving the full path from a par-
tial path, parsing paths, or determining the short form of a path, you’ll
undoubtedly devote more than a few moments to dealing with these issues dur-
ing your programming career. All the code for this section is contained in the
basPathFun module of the sample Excel workbook and the PATHFUN.BAS file.

Parsing Paths

Often you’ll need to break a complete file path into its components. Typically, this
means separating the filename from the path. You may also want to treat the file
extension as a separate component. At the extreme end, breaking a path into indi-
vidual directories is sometimes desirable. We’ve written two VBA functions to aid
you in this process.

These and other functions in this chapter use string functions introduced in Chapter 1.
For more information on how they work, see that chapter.

The first VBA function, shown in Listing 12.22, is dhParsePath, which takes a
complete file path and separates it into path and filename components. Note that
it accepts variables for the resulting components by reference and modifies them.
An optional argument, varExt, represents a variable for the file extension. If this is
passed to dhParsePath, the function strips the file extension from the name and
places it in the variable. If this argument isn’t passed, dhParsePath includes the
extension with the filename. You can test this function by calling the dhTestParse-
Path procedure, which is explained in the section “A Path-Parsing Example” a lit-
tle later in this chapter.

➲ Listing 12.22: A Function That Breaks Apart File Paths

Sub dhParsePath(ByVal strFullPath As String, _
 ByRef strPath As String, ByRef strFile As String, _
 Optional ByRef varExt As Variant, _
 Optional strPathSep = "\")

 Dim lngPos As Long
 Dim lngPos2 As Long

Chapter 12 • Working with Disks and Files744

 ' If varExt was passed, get the file extension
 If Not IsMissing(varExt) Then
 ' Find the last "."
 lngPos = InStrRev(strFullPath, ".")
 ' If this is a web address find the last "/"
 If strPathSep = "/" Then
 lngPos2 = InStrRev(strFullPath, strPathSep)
 End If
 ' If there’s a "." after the last "/" assume it's
 ' the file extension
 If lngPos > 0 And lngPos > lngPos2 Then
 varExt = Mid(strFullPath, lngPos + 1)
 Else
 varExt = ""
 End If
 Else
 varExt = ""
 End If

 ' Now get the file name, removing the extension
 ' if necessary
 lngPos = InStrRev(strFullPath, strPathSep)
 If lngPos > 0 Then
 strFile = Mid(strFullPath, lngPos + 1, _
 Len(strFullPath) - lngPos - Len(varExt))
 If Len(varExt) Then
 strFile = Left(strFile, Len(strFile) - 1)
 End If
 strPath = Left(strFullPath, lngPos - 1)
 End If
End Sub

A more complex function is shown in Listing 12.23. The dhGetPathParts func-
tion breaks a complete path into numerous components, based on each subdirec-
tory in the path. You call it by passing a path and a VBA Collection object. The
function places the components, which include the drive letter, each subdirectory,
and the filename, into the collection. We use this function in other procedures in
the sample code contained on the CD-ROM.

 The Windows API: Where the Real Power Is 745

Note that for UNC paths the function treats “\\” as the drive letter and for Web
addresses the function treats the protocol (e.g., “http:”, “file:”, etc.) as the drive
letter.

➲ Listing 12.23: Decompose a Path into Atomic Components.

Function dhGetPathParts(strPath As String, _
 colParts As Collection, _
 Optional strPathSep = "\") As Long

 Dim varParts As Variant
 Dim lngPos As Long

 Set colParts = New Collection

 ' For UNC paths treat "\\" as the drive letter
 If InStr(strPath, "\\") = 1 Then
 colParts.Add "\\"
 lngPos = 2
 End If

 ' Strip off web protcols
 lngPos = InStr(strPath, "//")
 If lngPos > 0 Then
 colParts.Add Left(strPath, lngPos - 1)
 lngPos = 2
 End If

 ' Split the path on the backslash
 varParts = Split(strPath, strPathSep)
 For lngPos = lngPos To UBound(varParts)
 colParts.Add varParts(lngPos)
 Next

 ' Return the number of parts
 dhGetPathParts = colParts.Count
End Function

Chapter 12 • Working with Disks and Files746

Retrieving Complete and Short Path Names

The Windows API also offers several functions that deal with paths. Some, like
GetTempPath, are discussed in other sections of this chapter because they relate to
other topics. Two that can’t be categorized with other functions are GetFullPath-
Name and GetShortPathName. They are declared as

Declare Function GetFullPathName Lib "kernel32" _
 Alias "GetFullPathNameA" _
 (ByVal lpFileName As String, ByVal nBufferLength As Long, _
 ByVal lpBuffer As String, ByVal lpFilePart As String) As Long

Declare Function GetShortPathName Lib "kernel32" _
 Alias "GetShortPathNameA" _
 (ByVal lpszLongPath As String, _
 ByVal lpszShortPath As String, _
 ByVal cchBuffer As Long) As Long

The sole purpose of GetFullPathName is to create a fully qualified path from a
given partial path and filename, based on the current directory. This means that if
you simply pass a filename, GetFullPathName will append the path of the current
directory to it. If you pass a relative path, such as “..\..\SOMEFILE.TXT”, GetFull-
PathName will resolve the relative path to the current directory and return the
result. We’ve written a VBA wrapper for the GetFullPath function called dhFull-
Path, shown in Listing 12.24.

➲ Listing 12.24: The dhFullPath Function Resolves Relative Paths and
Filenames.

Function dhFullPath(strPath As String) As String
 Dim strBuffer As String
 Dim strFilePart As String
 Dim lngBytes As Long

 ' Set up the buffer
 strBuffer = Space(MAX_PATH)

 ' Call GetFullPathName
 lngBytes = GetFullPathName(strPath, Len(strBuffer), _
 strBuffer, strFilePart)

 ' If successful, parse the buffer

 The Windows API: Where the Real Power Is 747

 If lngBytes > 0 Then
 dhFullPath = Left(strBuffer, lngBytes)
 End If
End Function

To test this function, try running the following code from the Immediate window:

?dhFullPath(Dir("*.*"))

The Dir statement returns the first file in the current directory. dhFullPath then
computes the complete path. Be careful when using this function, however, since
GetFullPathName doesn’t verify that the resulting filename is valid or that the file
actually exists. For instance, the following statement retrieves the first file in the
directory above the current one and appends it to the current directory name:

?dhFullPath(Dir("..*.*"))

Even though the file exists, the path is invalid.

GetShortPathName is useful if you need to work with filenames in their old 8.3
form. For example, perhaps your application needs to exchange files with
another system that doesn’t support long filenames (such as Windows 3.x). Get-
ShortPathName accepts a long filename and returns its associated short name.
Again, we’ve provided a simple wrapper function you can call, dhShortPath,
shown in Listing 12.25.

➲ Listing 12.25: dhShortPath Returns a File’s 8.3 Filename.

Function dhShortPath(strPath As String) As String
 Dim strBuffer As String
 Dim lngBytes As Long

 ' Set up a buffer
 strBuffer = Space(MAX_PATH)

 ' Call GetShortPathName
 lngBytes = GetShortPathName(strPath, strBuffer, _
 Len(strBuffer))

 ' If succcessful parse the buffer
 If lngBytes > 0 Then
 dhShortPath = Left(strBuffer, lngBytes)
 End If
End Function

Chapter 12 • Working with Disks and Files748

A Path-Parsing Example

Listing 12.26 shows a procedure that demonstrates the functions we’ve just dis-
cussed. It begins by retrieving the first file in the current directory. It then calls the
other functions to compute the full path, the short path, and the path parts. Some
sample output is shown in Figure 12.5.

➲ Listing 12.26: A Procedure to Demonstrate Path Parsing

Sub dhTestParsePath()
 Dim strCurrFile As String
 Dim strFullPath As String
 Dim strShortPath As String
 Dim strPath As String
 Dim strFile As String
 Dim varExt As Variant
 Dim lngParts As Long
 Dim colParts As New Collection
 Dim varPart As Variant

 ' Get first file from current directory
 strCurrFile = Dir("*.*")

 ' Get the full path name
 strFullPath = dhFullPath(strCurrFile)

 ' Get the short path name
 strShortPath = dhShortPath(strFullPath)

 ' Parse the path into its parts
 Call dhParsePath(strFullPath, strPath, strFile, varExt)

 ' Decompose the entire path
 lngParts = dhGetPathParts(strFullPath, colParts)

 ' Print the information
 Debug.Print "File:", strCurrFile
 Debug.Print "Full path:", strFullPath
 Debug.Print "Short path:", strShortPath
 Debug.Print "Path:", strPath
 Debug.Print "Filename:", strFile

 The Windows API: Where the Real Power Is 749

 Debug.Print "Extension:", varExt
 Debug.Print "Path parts:", lngParts
 lngParts = 2
 For Each varPart In colParts
 Debug.Print Space(lngParts) & varPart
 lngParts = lngParts + 2
 Next
End Sub

F I G U R E 1 2 . 5
Result of parsing a file path

A Replacement for Dir
If the VBA Dir function does not offer all the power you need, consider using the
underlying Windows API functions that Dir is based on: FindFirstFile, FindNext-
File, and FindClose. Individually, these three functions emulate the functionality
of various forms of the VBA Dir function. FindFirstFile initiates a directory search
and returns the first matching filename, just as Dir does when you pass a file spec-
ification. FindNextFile locates the next matching file, and FindClose terminates a
search. Calling Dir again with a new file specification performs this last step
implicitly.

These functions go even further than Dir, however. In addition to matching file-
names, these functions return additional information, such as creation date, size,
and short (8.3) filename. Declarations for the functions are shown here:

' Functions for searching for files in a given directory
Declare Function FindFirstFile Lib "kernel32" _
 Alias "FindFirstFileA" (ByVal lpFileName As String, _
 lpFindFileData As WIN32_FIND_DATA) As Long

Chapter 12 • Working with Disks and Files750

Declare Function FindNextFile Lib "kernel32" _
 Alias "FindNextFileA" (ByVal hFindFile As Long, _
 lpFindFileData As WIN32_FIND_DATA) As Long

Declare Function FindClose Lib "kernel32" _
 (ByVal hFindFile As Long) As Long

These functions don’t actually “find” files in the sense that they search your hard
disk. For that you’ll have to write custom VBA code. If you simply need to find a
file given a certain search path, see the discussion of the SearchPath API function
in the section “Searching for Files” later in this chapter.

All the code for this section is contained in the basFindFunctions module of the
sample Excel workbook and the FINDFUNC.BAS file.

Calling the “Find” Functions

You call FindFirstFile with a file specification, using the same rules as when pass-
ing a file specification to Dir: You can pass a complete or partial path, including
wildcards or UNC server names. You also pass a pointer to a WIN32_FIND_
DATA structure. FindFirstFile fills in the members of this structure with informa-
tion on the matching file. The definition of the structure is as follows:

Type WIN32_FIND_DATA
 lngFileAttributes As Long ' File attributes
 ftCreationTime As FILETIME ' Creation time
 ftLastAccessTime As FILETIME ' Last access time
 ftLastWriteTime As FILETIME ' Last modified time
 lngFileSizeHigh As Long ' Size (high word)
 lngFileSizeLow As Long ' Size (low word)
 lngReserved0 As Long ' reserved
 lngReserved1 As Long ' reserved
 strFileName As String * MAX_PATH ' File name
 strAlternate As String * 14 ' 8.3 name
End Type

MAX_PATH is defined as 260, the maximum path size for Windows.

 The Windows API: Where the Real Power Is 751

As you can see from the type definition, you can gather quite a bit of informa-
tion from a single function call. (For more information on the FILETIME structure,
see the section “Windows API Dates and Times” later in this chapter.)

If FindFirstFile locates a file matching the passed specification, it fills in the
WIN32_FIND_DATA structure and returns a handle to the find operation. You
use this handle in subsequent calls to FindNextFile. When you no longer want to
continue searching, call FindClose, passing the handle of the find operation you
want to abandon.

If FindFirstFile fails, it returns –1. You can then inspect the LastDLLError prop-
erty of VBA’s Err object for the error code returned by the DLL function. FindNextFile
simply returns True if the next find operation was successful and False if it wasn’t.

With this information in hand, you can build a simple function that lists the files
in a given directory. Listing 12.27 shows the dhFindFiles procedure, which does
just that. It begins by calling FindFirstFile with a path passed as an argument. If
this is successful, the procedure then calls FindNextFile inside a Do…Loop, con-
tinuing until FindNextFile returns False.

➲ Listing 12.27: List Files in a Given Directory Using API Functions.

Sub dhFindFiles(strPath As String)
 Dim fd As WIN32_FIND_DATA
 Dim hFind As Long

 ' Find the first file
 hFind = FindFirstFile(strPath, fd)

 ' If successful...
 If hFind > 0 Then
 Do
 ' Print file information
 With fd
 Debug.Print dhTrimNull(.strFileName), _
 .lngFileSizeLow & " bytes", _
 dhBuildAttrString(.lngFileAttributes)
 End With

Chapter 12 • Working with Disks and Files752

 ' Find the next file and continue as long
 ' as there are files to be found
 Loop While CBool(FindNextFile(hFind, fd))

 ' Terminate the find operation
 Call FindClose(hFind)
 End If
End Sub

Since the filename members in WIN32_FIND_DATA are fixed-length strings,
the procedure must parse the results, looking for a terminating null character.

To test this procedure, try calling it from the Immediate window. Figure 12.6
shows what the output might look like.

F I G U R E 1 2 . 6
File information produced

by calling dhFindFiles

A New and Improved Dir

Having all this extra information at your disposal creates some interesting possi-
bilities. We’ve used these API functions to create a replacement for the VBA Dir
function. Why have we done this? One drawback to the VBA Dir function is that,
while it lets you include files with certain attributes in the search, it does not allow
you to limit the search based on a set of attributes. Our replacement, dhDir, does.

Listing 12.28 shows the dhDir function, along with a helper function, dhFind-
ByAttr. We’ve structured dhDir so you can call it just as you would the VBA Dir
function. Specifically, you call it with a path name to begin a search and then call it
with no arguments to continue retrieving matching filenames. Unlike Dir, how-
ever, our function executes an exclusive search when you provide an attribute
value. You can override this behavior, and thus revert to the same functionality
Dir provides, by passing False as the optional third argument.

 The Windows API: Where the Real Power Is 753

If you attempt to call either Dir or dhDir for the first time and don’t pass any arguments,
they both produce runtime error 5, “Invalid procedure call or argument.”

➲ Listing 12.28: Our Replacement for the VBA Dir Function

Function dhDir(Optional ByVal strPath As String = "", _
 Optional lngAttributes As VbFileAttribute= vbNormal, _
 Optional fExclusive As Boolean = True) As String

 Dim fd As WIN32_FIND_DATA
 Static hFind As Long
 Static lngAttr As Long
 Static fEx As Boolean
 Dim strOut As String

 ' If no path was passed, try to find the next file
 If strPath = "" Then
 If hFind > 0 Then
 If CBool(FindNextFile(hFind, fd)) Then
 strOut = dhFindByAttr(hFind, fd, lngAttr, fEx)
 End If
 Else
 Err.Raise 5 ' Invalid procedure call or argument
 End If

 ' Otherwise, start a new search
 Else
 ' Store the attributes and exclusive settings
 lngAttr = lngAttributes
 fEx = fExclusive

 ' If the path ends in a backslash, assume
 ' all files and append "*.*"
 If Right(strPath, 1) = "\" Then
 strPath = strPath & "*.*"
 End If

 ' Find the first file
 hFind = FindFirstFile(strPath, fd)

Chapter 12 • Working with Disks and Files754

 If hFind > 0 Then
 strOut = dhFindByAttr(hFind, fd, lngAttr, fEx)
 End If
 End If

 ' If the search failed, close the Find handle.
 If Len(strOut) = 0 Then
 If hFind > 0 Then
 Call FindClose(hFind)
 End If
 End If
 dhDir = strOut
End Function

Function dhFindByAttr(hFind As Long, _
 fd As WIN32_FIND_DATA, lngAttr As VbFileAttribute, _
 fExclusive As Boolean) As String

 Dim fOk As Boolean

 ' Continue looking for files until one
 ' matches the given attributes exactly
 ' (if fExclusive is True) or just contains
 ' them (if fExclusive is False)
 Do
 If fExclusive Then
 fOk = (fd.lngFileAttributes = lngAttr)
 Else
 fOk = ((fd.lngFileAttributes And lngAttr)) = lngAttr
 End If

 If fOk Then
 dhFindByAttr = dhTrimNull(fd.strFilename)
 Exit Do
 End If
 Loop While FindNextFile(hFind, fd)
End Function

Note our use of the VbFileAttribute data type in the function declarations. When
you declare arguments using an enumerated type, VBA displays a list of constants
as you type the parameter.

 The Windows API: Where the Real Power Is 755

Our function works by first calling FindFirstFile to begin a new search (but only
if you pass a file specification in the first argument). The dhFindByAttr function
checks the file’s attributes against the requested set and, if no match is found, uses
FindNextFile to return the next filename. This continues until a match is found or
no more files matching the original specification exist. Static variables in dhDir are
used to store parameter values between function calls.

Figure 12.7 shows an example of calling dhDir to search for all files in the root
directory that have the system and hidden attributes set. The first call to dhDir
establishes the search parameters. Subsequent calls return other files with these
exact three attributes.

F I G U R E 1 2 . 7
Calling dhDir to perform an

exclusive directory search

Figure 12.8 shows a similar directory search, but this time the search is not
exclusive. It returns all files that have the three attributes set, regardless of whether
they have any others set. As a result, the DBLSPACE.BIN file, which has all three
attributes plus the archive attribute, is included in this search.

F I G U R E 1 2 . 8
Calling dhDir to perform an

inclusive directory search

Chapter 12 • Working with Disks and Files756

Exploiting the True Power of FindFirstFile

At this point you might be wondering why we went to all this trouble for what
you might describe as a minimum gain in functionality over Dir. First of all, dhDir
does serve a purpose. How often have you wanted to retrieve a list of only hidden
files without having to weed out normal files? Second, the true power of these
functions lies in the additional information you get as part of the function call.

For another example of using these functions, see Appendix D (located on the CD-
ROM that accompanies this book), where we describe an object model for folders
and files constructed using VBA class modules.

Windows Notification Functions
Have you ever needed to know when the contents of a file or directory have
changed? For example, suppose you’re writing a “drop-box” application that
monitors a network directory for incoming files. Wouldn’t it be nice if Windows
could tell your application when a file arrives? Well, it can, if you use the file noti-
fication functions discussed in this section. All the code for this section is con-
tained in the basNotification module of the sample Excel workbook and the
NOTIFY.BAS file.

How Change Notifications Work

The functions FindFirstChangeNotification, FindNextChangeNotification, and
FindCloseChangeNotification are similar to the Find functions just described,
except that instead of returning results right away, they establish change handles
that you pass to the operating system. Each change handle denotes a particular
state change, such as a directory being renamed. When the event occurs, Win-
dows notifies your application. You can then continue monitoring the directory or
cancel the change handle.

You may have noticed this effect when using Windows Explorer. If you leave a
directory window open and use another application to copy a file to that direc-
tory, Explorer shows the new file immediately; you don’t have to manually refresh
the window contents.

You can choose to monitor one or more conditions using a bit mask of values
from Table 12.7.

 The Windows API: Where the Real Power Is 757

Setting Up a Change Notification

You establish a change notification using the FindFirstChangeNotification func-
tion. Its declaration is as follows:

Declare Function FindFirstChangeNotification Lib "kernel32" _
 Alias "FindFirstChangeNotificationA" _
 (ByVal lpPathName As String, ByVal bWatchSubtree As Long, _
 ByVal dwNotifyFilter As Long) As Long

The lpPathName argument is the name of a directory you want to monitor. If
you want to monitor subdirectories as well, pass 1 as the second argument. The
third argument is a combination of values from Table 12.7.

If successful, FindFirstChangeNotification returns a change handle. (If it fails, it
returns –1.) You pass this change handle to another Windows API function, Wait-
ForSingleObject:

Declare Function WaitForSingleObject Lib "kernel32" _
 (ByVal hHandle As Long, ByVal dwMilliseconds As Long) _
 As Long

WaitForSingleObject is a generic function designed to work with a number of
Windows notification handles. When you call the function, it does not return until
one of the following two things happens:

• The event associated with the change handle occurs.

• The number of milliseconds passed as the second argument elapses.

T A B L E 1 2 . 7 : Values for Monitoring Conditions

Constant Description

FILE_NOTIFY_CHANGE_FILE_NAME File creations, deletions, and name changes

FILE_NOTIFY_CHANGE_DIR_NAME Directory creations, deletions, and name changes

FILE_NOTIFY_CHANGE_ATTRIBUTES File or directory attribute changes

FILE_NOTIFY_CHANGE_SIZE File size changes

FILE_NOTIFY_CHANGE_LAST_WRITE Changes to a file’s last write time

FILE_NOTIFY_CHANGE_SECURITY File security descriptor changes (Windows NT only)

Chapter 12 • Working with Disks and Files758

If you want to wait indefinitely, you can pass &HFFFF as the second argument. We
don’t recommend doing this, however, because your program may appear to
hang if the event never happens.

This brings up the downside of using these functions: your VBA procedure
waits until the event occurs, effectively halting your application. Therefore, these
functions are of limited use in single-threaded environments like the current ver-
sion of VBA (although if VBA ever becomes multithreaded, these functions will be
extremely useful). Nonetheless, in some circumstances, like the drop-box scenario
mentioned at the beginning of this section, you may not mind this behavior.

What to Do When a Notification Occurs

When WaitForSingleObject returns, the result indicates whether the event has
occurred (WAIT_OBJECT_0) or the timeout period has elapsed (WAIT_TIMEOUT).
Based on this value, you can take appropriate action. In our drop-box scenario, for
example, a return value of WAIT_OBJECT_0 would be your cue to scan the direc-
tory for the new file and begin the file-manipulation process.

Then, if you want to continue waiting for another change, call Find-
NextChangeNotification, passing the change handle obtained earlier from
FindFirstChangeNotification. FindNextChangeNotification returns True if Win-
dows is ready to resume monitoring the directory for changes. Then you call
WaitForSingleObject again, and the process repeats itself. When you no longer
want to monitor changes, call FindCloseChangeNotification.

Using Change Notifications

For the reasons described earlier in this discussion, these functions are difficult
to demonstrate using VBA. Nonetheless, we’ve put together a little “game” that
demonstrates how to use the functions. You can think of it as a computerized ver-
sion of the arcade game featuring little gophers that pop up from random holes.
The object of that game is to whack each gopher with a rubber mallet before it dis-
appears back into its den. Listing 12.29 shows the heart of our gopher-whacking
game, the dhFunWithNotify procedure.

 The Windows API: Where the Real Power Is 759

➲ Listing 12.29: Test Notification Functions and Have Fun Too.

Sub dhFunWithNotify(strPath As String, ByVal lngTimeout As Long)
 Dim colPaths As New Collection
 Dim strFile As String
 Dim hChange As Long
 Dim lngStatus As Long
 Dim lngFlags As Long
 Dim fKeepGoing As Boolean
 Dim lngScore As Long
 Dim lngTotalScore As Long

 Const dhcBaseScore = 100000

 ' Build a list of subdirectories beneath strPath
 Debug.Print "Building directory list..."
 If dhGetSubdirectories(strPath, colPaths) = 0 Then
 Debug.Print "Could not build subdirectory list!"
 Exit Sub
 End If

 ' Set up flags
 lngFlags = FILE_NOTIFY_CHANGE_FILE_NAME

 ' Create the first file
 Debug.Print "Here we go!!!"
 strFile = dhCreateTempFile(dhGetRandomFile(colPaths), _
 "~DH")
 If strFile = "" Then
 Debug.Print "Error creating first file!"
 Exit Sub
 End If

 ' Create first change notification
 hChange = FindFirstChangeNotification(strPath, _
 1, lngFlags)

 ' Make sure it was successful
 If hChange > 0 Then

Chapter 12 • Working with Disks and Files760

 ' Loop until timeout has occurred,
 ' the notification function fails,
 ' or our timeout reaches zero
 Do

 ' Print the relative file name
 Debug.Print "You have " & lngTimeout / 1000 & _
 " seconds to delete:"
 Debug.Print "..\" & mid(strFile, Len(strPath) + 2)

 ' Wait for the change to happen
 lngStatus = WaitForSingleObject(hChange, _
 lngTimeout)

 ' What happened?
 Select Case lngStatus
 Case WAIT_OBJECT_0
 ' A change happened! Check to see if
 ' the right file was deleted
 If Dir(strFile) = "" Then

 ' File is gone! Compute score
 lngScore = CLng((dhcBaseScore * _
 colPaths.Count) / lngTimeout)
 lngTotalScore = lngTotalScore + _
 lngScore
 Debug.Print "Good job! Score " & _
 lngScore & " points"

 ' Create next temp file
 strFile = dhCreateTempFile(_
 dhGetRandomFile(colPaths), "~DH")
 fKeepGoing = CBool(Len(strFile))

 ' If successful...
 If fKeepGoing Then

 ' Call FindNextChangeNotification
 ' once to clear change handle
 Call FindNextChangeNotification(_
 hChange)

 The Windows API: Where the Real Power Is 761

 ' Call it again to establish the
 ' next change event
 fKeepGoing = CBool(_
 FindNextChangeNotification(_
 hChange))

 ' Reduce timeout and wait again
 lngTimeout = lngTimeout - 500

 Else
 Debug.Print "Error creating file!"
 End If
 Else
 ' The file’s still there!
 Debug.Print _
 "Oh, no! You got the wrong file!"
 fKeepGoing = False
 End If
 Case WAIT_TIMEOUT
 ' The wait timed out!
 Debug.Print "Time’s up! Timeout = " & _
 lngTimeout & " ms"
 fKeepGoing = False

 Case WAIT_FAILED
 ' This is bad, the wait didn’t work
 Debug.Print "Wait failed!"
 fKeepGoing = False
 End Select

 Loop While fKeepGoing And (lngTimeout > 0)

 ' Close the change notification
 Call FindCloseChangeNotification(hChange)

 ' Print exit message
 Debug.Print "Total score: " & lngTotalScore
 Debug.Print "Thanks for playing"
 End If
End Sub

Chapter 12 • Working with Disks and Files762

You start the game by calling dhFunWithNotify, passing a directory name and a
timeout value in milliseconds. dhFunWithNotify then builds a list of all the subdi-
rectories beneath the given directory and creates a zero-byte file in one of them.
The object of the game is to find the file using Windows Explorer and delete it
before time runs out. If you’re successful, dhFunWithNotify creates a new file for
you to find. To make things a bit more challenging, dhFunWithNotify also reduces
the timeout value by 500 milliseconds (one half second) each time you success-
fully find the file! Your score is based on the number of subdirectories and how
fast you can delete the file. See how long you can continue finding and deleting
files before the timeout elapses. The more subdirectories you specify, the more
challenging the game becomes.

To get the best results, position the VBA Immediate window so you can see it
while working in Explorer.

While the example is whimsical, it does point out how you can use the notifica-
tion functions. The procedure calls FindFirstChangeNotification to establish the
initial change handle, passing the original directory name. Note that it also passes
1 as the second argument. Passing the number 1 forces the function to include sub-
directories in the change notification. The other item worth noting is that Find-
NextChangeNotification is called twice. This is necessary because the process
requesting the change notification is also causing a change event (in this case, each
time a new file is created). Calling FindNextChangeNotification the first time clears
the notification for the newly created file. Calling it a second time sets up a new
notification.

You can find the helper functions dhFunWithNotify uses here in the basNotifi-
cation module of the sample Excel workbook or the NOTIFY.BAS file.

If you find yourself playing this wonderfully exciting game as often as we do, you’ll
accumulate a number of zero-byte files on your hard disk. To get rid of them, use
the Windows Find dialog to search for all files that begin with “~DH”.

Monitoring Multiple Changes

You can also monitor more than one change event simultaneously—for example, to
monitor changes to two completely separate directory trees. To do this, you create

 The Windows API: Where the Real Power Is 763

an array of change handles, calling FindFirstNotificationHandle once for each con-
dition. You then call another API function, WaitForMultipleObjects, passing the
first element of the array and the total number of handles in the array. You can
also specify whether WaitForMultipleObjects should wait for all the events to hap-
pen or any one of them. In the latter case, when an event occurs, the return value
from WaitForMultipleObjects will be WAIT_OBJECT_0 plus a number indicating
which event it was. If you wish, you can then call FindNextNotificationHandle
just as in our example.

We included the declaration for WaitForMultipleObjects in the sample code but
did not create an example of how to use it. You should, however, be able to
deduce this from the function declaration.

Searching for Files
Another common task many applications must perform is searching for a particu-
lar file. Simple searches in a known directory can be accomplished easily using
Dir or dhDir. Sometimes, however, you don’t know where to look for a file. You
can write custom VBA procedures that utilize API functions to help you find files,
and they can be simple or complex, depending on your needs. All the code for this
section is contained in the basSearch module of the sample Excel workbook and
the FSEARCH.BAS file.

Using the SearchPath API Function

The Windows API offers a simple solution in the form of the SearchPath function.
SearchPath is designed to search for files in a series of directories. The declaration
for SearchPath is shown here:

Declare Function SearchPath Lib "kernel32" _
 Alias "SearchPathA" (ByVal lpPath As String, _
 ByVal lpFileName As String, ByVal lpExtension As String, _
 ByVal nBufferLength As Long, ByVal lpBuffer As String, _
 ByVal lpFilePart As String) As Long

Chapter 12 • Working with Disks and Files764

Which directories SearchPath looks in is controlled by the first argument,
lpPath. If you pass a null pointer (using the vbNullString constant), SearchPath
looks in the following directories, in order:

1. The directory from which your application loaded

2. The application’s current directory

3. Under Windows 95/98, the Windows system directory. Under Windows
NT/2000/XP, the 32-bit Windows system directory

4. Under Windows NT/2000/XP only, the 16-bit Windows system directory

5. The Windows directory

6. The directories listed in the PATH environment variable

You can override this behavior by passing a value in the lpPath argument. The
value takes the form of a DOS PATH statement, with individual directories sepa-
rated by semicolons. For example,

C:\MYDATA;C:\MYAPPS;D:\SOME OTHER FILES;C:\BACKUPS

You pass the filename you’re looking for in the lpFileName argument. If the file-
name doesn’t contain a file extension, you can pass one in the lpExtension argu-
ment, and SearchPath will append it to the results for you. Listing 12.30 shows the
dhSearch function. We wrapped the SearchPath function inside this function so
you could call it easily. Just pass a filename and, optionally, a search path, and the
function will return the full path to the file, if found. Figure 12.9 shows an exam-
ple of calling the function.

➲ Listing 12.30: dhSearch Looks for Files in Particular Directories.

Function dhSearch(strFile As String, _
 Optional strPath As String = vbNullString) As String

 Dim strBuffer As String
 Dim lngBytes As Long
 Dim strFilePart As String

 ' Create a buffer
 strBuffer = Space(MAX_PATH)

 ' Call search path

 The Windows API: Where the Real Power Is 765

 lngBytes = SearchPath(strPath, strFile, vbNullString, _
 Len(strBuffer), strBuffer, strFilePart)
 ' If successful, parse out the file name
 If lngBytes > 0 Then
 dhSearch = Left(strBuffer, lngBytes)
 End If
End Function

F I G U R E 1 2 . 9
Calling the dhSearch

function

Recursive Searches with VBA

SearchPath is a convenient and powerful function, but what if you need to search
your entire hard disk? Unfortunately, there is no API function that will do that
(we dearly wish there were), but you can write your own VBA function to do it.
The key is to create a function that can be called recursively.

The dhFindAllFiles Function

We’ve created such a function for you, dhFindAllFiles, as shown in Listing 12.31.
It may seem complex, but that’s mostly because we added a few bells and whistles
that aren’t completely necessary but that make it much more fun.

➲ Listing 12.31: Use the dhFindAllFiles Function to Search Your Entire
Hard Disk.

Function dhFindAllFiles(strSpec As String, _
 ByVal strPath As String, colFound As Collection, _
 Optional lngAttr As Long = -1, _
 Optional fRecursive As Boolean = True, _
 Optional objCallback As IFileFindCallback) As Long

Chapter 12 • Working with Disks and Files766

 Dim strFile As String
 Dim colSubDir As New Collection
 Dim varDir As Variant

 ' Make sure strPath ends in a backslash
 If Right(strPath, 1) <> "\" Then
 strPath = strPath & "\"
 End If

 ' If the callback object was supplied
 ' call its Searching method
 If Not objCallback Is Nothing Then
 objCallback.Searching strPath
 End If

 ' Find all files in the directory--if no
 ' attributes were specified use a non-exclusive
 ' search for all files, otherwise use a
 ' restrictive search for the attributes
 If lngAttr = -1 Then
 strFile = dhDir(strPath & strSpec, , False)
 Else
 strFile = dhDir(strPath & strSpec, lngAttr True)
 End If

 Do Until strFile = ""

 ' Add file to collection if attributes match
 ' (special case directories "." and ".."
 If (strFile <> ".") And (strFile <> "..") Then
 colFound.Add strPath & strFile
 End If

 ' If the callback object was supplied
 ' call its Found method
 If Not objCallback Is Nothing Then
 objCallback.Found strPath, strFile
 End If

 ' Get the next file
 strFile = dhDir
 Loop

 ' If the recursive flag is set build a list

 The Windows API: Where the Real Power Is 767

 ' of all the subdirectories
 If fRecursive Then

 strFile = dhDir(strPath, vbDirectory, False)
 Do Until strFile = ""
 ' Ignore "." and ".."
 If strFile <> "." And strFile <> ".." Then

 ' Add each to the directory collection
 colSubDir.Add strPath & strFile
 End If
 strFile = dhDir
 Loop

 ' Now recurse through each subdirectory
 For Each varDir In colSubDir
 dhFindAllFiles strSpec, varDir, colFound, _
 lngAttr, fRecursive, objCallback
 Next
 End If

 ' Return the number of found files
 dhFindAllFiles = colFound.Count
End Function

Basically, the function works like this:

1. Given a file specification (such as *.TXT) and a starting directory, it scans the
directory for all files matching the specification.

2. It adds each filename it finds to a VBA Collection object supplied by the call-
ing procedure.

3. After finding all the files in the directory, it scans the directory a second
time, looking for subdirectories.

4. It adds each subdirectory to an internal Collection object.

5. It iterates through each subdirectory in the Collection object and calls itself
recursively, passing the subdirectory as a new starting point.

dhFindAllFiles passes the same collection of found files down the call chain
into deeper and deeper subdirectory levels. When all the subdirectories have
been scanned, the collection contains a complete list of files matching the original
specification.

Chapter 12 • Working with Disks and Files768

Testing dhFindAllFiles

To demonstrate this function, we’ve provided a procedure called dhPrintFound-
Files, shown in Listing 12.32. dhPrintFoundFiles accepts a file specification and
path and passes them directly to dhFindAllFiles. It also performs the other required
task: it declares a new VBA Collection object and passes it to dhFindAllFiles along
with the other information. Figure 12.10 shows you how to call dhPrintFoundFiles
and what the output might look like.

➲ Listing 12.32: This Procedure Tests dhFindAllFiles.

Sub dhPrintFoundFiles(strPath As String, strSpec As String)

 Dim colFound As New Collection
 Dim lngFound As Long
 Dim varFound As Variant

 ' Test the file find logic
 Debug.Print "Starting search..."

 ' Call dhFindAllFiles
 lngFound = dhFindAllFiles(strSpec, strPath, colFound)

 ' Print the results
 Debug.Print "Done. Found: " & lngFound

 ' With the collection of file names
 ' you can do something with them
 Debug.Print
 Debug.Print "What we found:"
 Debug.Print "=============="

 For Each varFound In colFound
 Debug.Print varFound
 Next
End Sub

Once you have the collection of found files, you can use them to drive another
process. We simply print them to the Immediate window using a For Each loop,
but you could use them in other file operations (copying, deleting, and so on).

 The Windows API: Where the Real Power Is 769

F I G U R E 1 2 . 1 0
Performing a file search
using dhPrintFoundFiles

Embellishments to dhFindAllFiles

We dressed up the basic functionality in dhFindAllFiles in three ways. First, we
added an optional argument to limit the search to files with a given set of attributes.
By default, this argument, lngAttr, is set to –1. This instructs the dhDir functions
to find all files matching the specification. You can override this by passing your
own set of attributes. In this case, dhDir performs a restrictive search, finding only
those files that have the given attributes.

Second, we provided an option (fRecursive) to control the recursive function
calls. Setting this option to False forces dhFindAllFiles to search only the original
starting directory.

The third embellishment we added is a provision for a callback object (objCall-
back). A callback object is a pointer to a VBA class that implements a set of required
methods, Searching and Found. As each new subdirectory is searched, dhFindAll-
Files calls the Searching method, passing the subdirectory name. Furthermore,
when dhFindAllFiles finds a file, it calls the Found method, passing the path and
filename. Since the search process may take a long time (especially if you’re search-
ing your whole hard disk), you may want to provide your users with feedback on
the progress. If you’ve ever used the Windows Find dialog, you know it displays,
in the status bar, the directory currently being searched. It also adds each file to a
list as it is found. You can implement similar functionality using a callback object
of your own.

To enforce the required interface we’ve created an interface class, IFileFindCall-
back, that declares the two methods. We’ve also written a very simple class called

Chapter 12 • Working with Disks and Files770

FileFindCallback that implements the interface. Listing 12.33 shows both class
modules. Note the use of the Implements keyword in the second class module.

➲ Listing 12.33: A Callback Interface Class and a Simple
Implementation

' IFileFindCallback interface class:

' This gets called each time a
' matching file is found
Public Sub Found(Path As String, File As String)

End Sub

' This gets called each time a new
' directory is searched
Public Sub Searching(Path As String)

End Sub

' FileFindCallback implementation:

Implements IFileFindCallback

Private Sub IFileFindCallback_Found(Path As String, File As String)
 Debug.Print "Found: " & Path & File
End Sub

Private Sub IFileFindCallback_Searching(Path As String)
 Debug.Print "Searching: " & Path
 Debug.Print "--------------------------------------"
End Sub

For more information on interface classes and the Implements keyword see the
section “Interface Classes and the Implements Keyword” in Chapter 6, “Advanced
Class Module Techniques.”

 The Windows API: Where the Real Power Is 771

Listing 12.34 shows a modified version of the dhPrintFoundFiles procedure
called dhPrintFoundFilesWithFeedback. It declares a new instance of the FileFind-
Callback class and passes it to dhFindAllFiles. As each matching filename is
found, it is printed to the Immediate window. Try this out yourself by calling
dhPrintFoundFilesWithFeedback from the Immediate window.

➲ Listing 12.34: dhPrintFoundFilesWithFeedback Uses a Callback
Object.

Sub dhPrintFoundFilesWithFeedback(strPath As String, _
 strSpec As String)

 Dim colFound As Collection
 Dim lngFound As Long
 Dim objCallback As FindFileCallback

 Set colFound = New Collection
 Set objCallback = New FindFileCallback

 ' Test the file find logic
 Debug.Print "Starting search..."

 ' Call dhFindAllFiles, passing a callback
 ' object--the callback object will print
 ' the file names to the Immediate window
 ' as they are found
 lngFound = dhFindAllFiles(strSpec, strPath, _
 colFound, , , objCallback)

 ' Print the results
 Debug.Print "Done. Found: " & lngFound
End Sub

These embellishments are just the beginning. The Windows Find dialog, for
instance, lets you customize the search by specifying file sizes, dates, and even the
text the files contain. If you feel like a challenge, you can extend the dhFindAll-
Files function using the other file functions mentioned in this chapter.

Chapter 12 • Working with Disks and Files772

Procuring Temporary Filenames
Many applications use temporary files to store intermediate results while processing
data. All the major Microsoft applications use them for various reasons. If your
application needs to use temporary files, there are two API functions you should
use to choose a filename and path. GetTempPath returns the directory designated
to hold temporary files. The directory returned will be one of those listed below,
evaluated in the order listed:

1. The directory specified by the TMP environmental variable

2. The directory specified by the TEMP environmental variable

3. The current directory (Windows 95/98) or the Windows directory (Win-
dows NT/2000/XP) if neither TMP nor TEMP is defined

GetTempFileName creates a temporary filename, given a path, a prefix string,
and, optionally, a unique integer. If you pass a nonzero value as the integer,
GetTempFileName converts it to hexadecimal and concatenates it with the path
and prefix. In this case, the function does not test to see whether the file already
exists. If you pass a 0, GetTempFileName chooses a number based on the system
clock. It continues to choose numbers until it can construct a filename that does
not already exist.

All the code for this section is contained in the basTempFiles module of the sam-
ple Excel workbook and the TEMPFILE.BAS file.

The declaration for each function is shown here:

Declare Function GetTempPath Lib "kernel32" _
 Alias "GetTempPathA" (ByVal nBufferLength As Long, _
 ByVal lpBuffer As String) As Long

Declare Function GetTempFileName Lib "kernel32" _
 Alias "GetTempFileNameA" (ByVal lpszPath As String, _
 ByVal lpPrefixString As String, ByVal wUnique As Long, _
 ByVal lpTempFileName As String) As Long

Using these two functions together, you can create a single VBA function that
returns a unique temporary filename. We’ve done this for you in the form of the
dhTempFileName function shown in Listing 12.35. Note that the function accepts
an optional argument for the file prefix. If you omit this argument, the string
“~DH” is used.

 The Windows API: Where the Real Power Is 773

➲ Listing 12.35: dhTempFileName Computes a Unique Temporary
Filename.

Function dhTempFileName(_
 Optional strPrefix As String = "~DH") As String

 Dim strPath As String
 Dim strBuffer As String
 Dim lngBytes As Long

 ' Set up a buffer
 strBuffer = Space(MAX_PATH)

 ' Call GetTempPath
 lngBytes = GetTempPath(Len(strBuffer), strBuffer)

 ' If successful extract the path
 If lngBytes > 0 Then
 strPath = Left(strBuffer, lngBytes)

 ' Reset the buffer and call GetTempFileName
 strBuffer = Space(MAX_PATH)
 lngBytes = GetTempFileName(strPath, _
 strPrefix, 0, strBuffer)

 ' If successful extract the file name
 If lngBytes > 0 Then
 dhTempFileName = Left(strBuffer, lngBytes)
 End If
 End If
End Function

Note that GetTempFileName actually creates the temporary file. If you don’t
use the file, be sure to delete it using the VBA Kill function.

Getting a (Windows) Handle on Files
The discussion of the VBA file I/O functions earlier in this chapter introduced the
concept of file handles. To work with a file using some of the Windows API func-
tions, you must also get a handle to it. These handles are not equivalent, however.

Chapter 12 • Working with Disks and Files774

You cannot use a file handle derived from the VBA FreeFile function with Win-
dows API functions.

All the code for this section is contained in the basFileHandles module of the
sample Excel workbook and the HANDLES.BAS file.

Using the CreateFile Function

You obtain file handles by calling the CreateFile function. CreateFile has a myriad
of uses in addition to opening and creating files. We could spend an entire chap-
ter, and then some, fully explaining all the things you can use CreateFile for. For
our purposes, however, we’ll stick to opening a file for read-only access.

CreateFile is declared as follows:

Declare Function CreateFile Lib "kernel32" _
 Alias "CreateFileA" _
 (ByVal lpFileName As String, _
 ByVal dwDesiredAccess As Long, _
 ByVal dwShareMode As Long, _
 lpSecurityAttributes As Any, _
 ByVal dwCreationDisposition As Long, _
 ByVal dwFlagsAndAttributes As Long, _
 ByVal hTemplateFile As Long) As Long

The lpSecurityAttributes parameter, declared As Any in our example, is normally a
pointer to a SECURITY_ATTRIBUTES structure. These structures are used to set and
retrieve Windows NT security descriptor information. Operating system security is
a complex topic in its own right and beyond the scope of this book. In all our
examples, we pass null pointers to functions that accept security attributes.

Table 12.8 lists the many arguments to CreateFile, along with the allowable con-
stants, where applicable. The meanings of the constants should be self-explana-
tory. For more information on CreateFile and its arguments, consult the Windows
Platform SDK documentation available online at http://msdn.microsoft.com/
library/.

If you look carefully at the arguments and constants shown in Table 12.8, you
should see a similarity between them and the options for the VBA Open state-
ment. This is no coincidence; the capabilities are comparable.

 The Windows API: Where the Real Power Is 775

A Quick and Dirty Wrapper

Since most of our examples involve opening a file for simple read-only access, we
wrote a wrapper function for CreateFile called dhQuickOpenFile. Shown in List-
ing 12.36, it accepts a filename and an optional access mode (GENERIC_ READ is
the default) and returns the result of calling CreateFile. If CreateFile is successful
in opening the file, the result is a handle to the open file. If an error occurs, Create-
File returns –1. Any procedure calling dhQuickOpenFile should check for this
value.

T A B L E 1 2 . 8 : Arguments to CreateFile

Argument Description Allowable Values

lpFileName Path to the file or directory Any valid, fully qualified file path to
open

dwDesiredAccess Desired file access (bit mask) GENERIC_READ, GENERIC_WRITE

dwShareMode File-sharing mode (bit mask) FILE_SHARE_READ,
FILE_SHARE_WRITE

lpSecurityAttributes Windows NT security information Pointer to SECURITY_ATTRIBUTES
structure

dwCreationDisposition Defines what action to take if file
does (or does not) exist

CREATE_NEW, CREATE_ALWAYS,
OPEN_EXISTING, OPEN_ALWAYS,
TRUNCATE_EXISTING

dwFlagsAndAttributes File attributes (bit mask) FILE_ATTRIBUTE_ARCHIVE,
FILE_ATTRIBUTE_COMPRESSED,
FILE_ATTRIBUTE_NORMAL,
FILE_ATTRIBUTE_HIDDEN,
FILE_ATTRIBUTE_READONLY,
FILE_ATTRIBUTE_SYSTEM,
FILE_FLAG_WRITE_THROUGH,
FILE_FLAG_OVERLAPPED,
FILE_FLAG_NO_BUFFERING,
FILE_FLAG_RANDOM_ACCESS,
FILE_FLAG_SEQUENTIAL_SCAN,
FILE_FLAG_DELETE_ON_CLOSE,
FILE_FLAG_BACKUP_SEMANTICS,
FILE_FLAG_POSIX_SEMANTICS

hTemplateFile Defines the file to use as a
template for attributes

File handle. Invalid under Windows 95
and ignored in our examples

Chapter 12 • Working with Disks and Files776

Many Windows API functions, including CreateFile, return error codes via the
GetLastError API function. You can use the LastDLLError property of VBA’s Err
object to determine this error code after a failed API call.

➲ Listing 12.36: dhQuickOpenFile, a Wrapper Function for CreateFile

Function dhQuickOpenFile(strFile As String, _
 Optional lngMode As Long = GENERIC_READ) As Long

 ' Call CreateFile to open the file in
 ' read-only, shared mode unless the user
 ' has passed a different access method--
 ' return the resulting file handle
 dhQuickOpenFile = CreateFile(strFile, lngMode, _
 FILE_SHARE_READ Or FILE_SHARE_WRITE, _
 ByVal 0&, OPEN_EXISTING, _
 FILE_ATTRIBUTE_NORMAL Or _
 FILE_FLAG_RANDOM_ACCESS, 0&)

End Function

A Simple Example

To demonstrate dhQuickOpenFile (and thus CreateFile), the procedure in List-
ing 12.37 opens a given file and prints the file’s size (using the GetFileSizeEx API
function) to the Immediate window.

➲ Listing 12.37: Print a File’s Size the API Way.

Sub dhPrintSizeAPI(strFile As String)

 Dim hFile As Long
 Dim curSize As Currency

 ' Open the file and get the handle
 hFile = dhQuickOpenFile(strFile)

 The Windows API: Where the Real Power Is 777

 ' If successful, print the size--
 ' if not, print the DLL error code
 If hFile > 0 Then

 ' Get the file size
 Call GetFileSizeEx(hFile, curSize)

 ' Print the results
 Debug.Print curSize * 10000 & “ bytes”

 ' Close the file
 Call CloseHandle(hFile)
 Else
 Debug.Print "Error calling CreateFile: " & _
 Err.LastDllError
 End If
End Sub

You’ll notice that, just like our VBA function examples, the procedure closes the
file after it’s finished using it. In this case, it calls the CloseHandle API function.
(CloseHandle is a function used to close various Kernel object handles.)

A Word on File Sizes
As hard disks and files have continued to grow the operating system, developers at
Microsoft have had to keep inventing ways to measure their sizes. The primary problem
was that long (32-bit) integers can only hold values up to about 2 billion, far less than
today’s massive hard drive capacities. The now-obsolete GetFileSize API function provided
a workaround by returning a large file’s size in two 32-bit chunks, one as the return value
of the function and one through a passed-in parameter. This worked but was less than
convenient for VBA developers. With Windows NT, Windows 2000, and Windows XP,
Microsoft provided GetFileSizeEx, which returns a file’s size through a single 64-bit integer
parameter. We’ve included a declaration for GetFileSizeEx (along with GetFileSize) in
basFileHandles in case you’re developing for Windows NT/2000/XP. The declaration is shown
below:

Private Declare Function GetFileSizeEx Lib "kernel32" _

 (ByVal fhile As Long, curFileSize As Currency) As Long

To use the function, declare and pass a Currency variable as the second argument (just like
with GetDiskFreeSpaceEx described earlier in the chapter). If the call succeeds, GetFile-
SizeEx will return a non-zero value. If it fails it will return 0.

Chapter 12 • Working with Disks and Files778

Getting File Information Quickly

Now that you understand what Windows file handles are and how to get them,
you’re ready for a little gem of an API function called GetFileInformationByHandle.
In a single function call, you can retrieve almost everything you ever wanted to
know about a file. The information returned is similar to what you get using the
Find functions described earlier in this chapter, but you use an open file handle
instead of performing a directory scan.

GetFileInformationByHandle uses a user-defined data type to hold the information.
The declaration for this type, BY_HANDLE_FILE_INFORMATION, is as follows:

Type BY_HANDLE_FILE_INFORMATION
 lngFileAttributes As Long ' File attributes
 ftCreationTime As FILETIME ' Creation time
 ftLastAccessTime As FILETIME ' Last access time
 ftLastWriteTime As FILETIME ' Last write time
 lngVolumeSerialNumber As Long ' Serial number
 lngFileSizeHigh As Long ' File size high-order word
 lngFileSizeLow As Long ' File size low-order word
 lngNumberOfLinks As Long ' Links to file (1 for FAT)
 lngFileIndexHigh As Long ' Unique ID high-order word
 lngFileIndexLow As Long ' Unique ID low-order word
End Type

GetFileInformationByHandle accepts a file handle and pointer to an instance of
this structure and returns True or False, indicating success or failure. For an expla-
nation of the FILETIME members, see the next section.

Windows API Dates and Times
Before going any further in discussing Windows API file and disk functions, we
need to spend some time discussing date and time issues because a number of
tasks (like setting the creation date of a file) require expressing time values in a
way the Windows API understands. Specifically, the API uses two time formats,
system time and file time, neither of which is directly compatible with VBA. These
formats are discussed in the following sections.

All the code for this discussion is contained in the basDatesAndTimes module
of the sample Excel workbook and the DATETIME.BAS file.

 The Windows API: Where the Real Power Is 779

System Time

System time is the format used internally by Windows. Functions that deal in sys-
tem time express it using a user-defined data type called, appropriately, SYSTEM-
TIME. The data type is structured as follows:

Type SYSTEMTIME
 intYear As Integer
 intMonth As Integer
 intDayOfWeek As Integer
 intDay As Integer
 intHour As Integer
 intMinute As Integer
 intSecond As Integer
 intMilliseconds As Integer
End Type

As you can see, each date and time element is represented by a separate integer
value. Using this format, you can represent any date from January 1, 32768 B.C. to
December 31, 32767. This date range is wide enough for most applications, except
perhaps archeological or paleontological programs.

We’ve provided two procedures for converting between VBA and system time
values. Listing 12.38 shows these functions, dhSysTimeToVBATime and dhVBA-
TimeToSysTime.

➲ Listing 12.38: Convert between VBA and System Time Formats.

Function dhSysTimeToVBATime(stSysTime As SYSTEMTIME) As Date
 ' Construct a VBA date/time value using the
 ' DateSerial and TimeSerial functions
 With stSysTime
 dhSysTimeToVBATime = _
 DateSerial(.intYear, .intMonth, .intDay) + _
 TimeSerial(.intHour, .intMinute, .intSecond)
 End With
End Function

Sub dhVBATimeToSysTime(datTime As Date, stSysTime As SYSTEMTIME)
 ' Fill in the structure with date and time parts
 With stSysTime
 .intMonth = Month(datTime)
 .intDay = Day(datTime)
 .intYear = Year(datTime)

Chapter 12 • Working with Disks and Files780

 .intHour = Hour(datTime)
 .intMinute = Minute(datTime)
 .intSecond = Second(datTime)
 End With
End Sub

When working with system time data, keep in mind that Windows tracks time
internally using coordinated universal time (UTC). Coordinated universal time is
loosely defined as the current time of day in Greenwich, England, and is some-
times called Greenwich Mean Time (GMT). You can retrieve the current system
time by calling the GetSystemTime API function. Most functions that utilize the
SYSTEMTIME data type assume the time being passed is in UTC format.

Local time is the current time of day where you are, that is, in the time zone spec-
ified on your system. If you want to know the current local time, call the GetLocal-
Time API function. While there is no direct way to convert between the two time
scales, you can retrieve time zone information by calling the GetTimeZoneInfor-
mation function. The information returned (via another user-defined type called
TIME_ZONE_INFORMATION) contains, among other things, the time zone
bias—the difference between local time and coordinated universal time.

File Time

The other type of time format you’ll come across in disk and file functions, file
time, is used to set and retrieve the three time values associated with files and
directories. 32-bit Windows operating systems track the time a file was created,
the time it was last accessed, and the time it was last modified.

Like system times, file times use a user-defined type. Called FILETIME, it’s
structured as follows:

Type FILETIME
 lngLowDateTime As Long
 lngHighDateTime As Long
End Type

The contents of a FILETIME structure are not quite as obvious as those of SYS-
TEMTIME. The two long integers that make up FILETIME represent a 64-bit num-
ber containing (and we’re not making this up) the number of 100-nanosecond
intervals since January 1, 1601!

Fortunately, you rarely have to work with FILETIME data in its raw format. The
Windows API contains functions that convert from file time to system time and
back. Using these functions, we were able to create the VBA time conversion func-
tions shown in Listing 12.39.

 The Windows API: Where the Real Power Is 781

➲ Listing 12.39: Functions for Converting between File Time and
VBA Time

Function dhFileTimeToVBATime(ftFileTime As FILETIME, _
 Optional fLocal As Boolean = True) As Date

 Dim stSystem As SYSTEMTIME
 Dim ftLocalFileTime As FILETIME

 ' If the user wants local time, convert the file
 ' time to local file time
 If fLocal Then
 Call FileTimeToLocalFileTime(ftFileTime, ftLocalFileTime)
 ftFileTime = ftLocalFileTime
 End If

 ' Convert the file time to system time then
 ' call our own function to convert to VBA time
 If CBool(FileTimeToSystemTime(ftFileTime, stSystem)) Then
 dhFileTimeToVBATime = dhSysTimeToVBATime(stSystem)
 End If
End Function

Sub dhVBATimeToFileTime(datTime As Date, ftTime As FILETIME, _
 Optional fLocal As Boolean = True)

 Dim stSystem As SYSTEMTIME
 Dim ftSystem As FILETIME

 ' Call our function to convert the VBA time to
 ' system time
 Call dhVBATimeToSysTime(datTime, stSystem)

 ' Convert the system time to file time
 If CBool(SystemTimeToFileTime(stSystem, ftTime)) Then

 ' If the VBA time was local time, convert the
 ' local file time to system file time
 If fLocal Then
 Call LocalFileTimeToFileTime(ftTime, ftSystem)
 ftTime = ftSystem
 End If
 End If
End Sub

Chapter 12 • Working with Disks and Files782

Note that each function accepts a flag value, fLocal, as an optional argument. If
this is set to True (the default), the VBA time value is treated as local time. If fLocal
is False, it’s treated as system, or UTC, time.

Working with File Times
With the discussion of time formats out of the way, let’s take a look at API functions
that deal in file dates and times. A common requirement for some applications is
to be able to set the creation time of a file. You may have noticed that when you
install an application from a company like Microsoft, all the files have the same
creation date and time. As mentioned earlier in this discussion, the file system
actually tracks three time values for each file. Using Windows API functions, you
can set and retrieve all of them. This section shows you how this is done and how
to compare the times of two files quickly and easily.

Getting and Setting File Times

The functions that enable you to get and set file times are GetFileTime and SetFile-
Time. The declarations for these functions are as follows (note that each accepts a
file handle as the first argument):

Declare Function GetFileTime Lib "kernel32" _
 (ByVal hFile As Long, lpCreationTime As FILETIME, _
 lpLastAccessTime As FILETIME, _
 lpLastWriteTime As FILETIME) As Long

Declare Function SetFileTime Lib "kernel32" _
 (ByVal hFile As Long, lpCreationTime As FILETIME, _
 lpLastAccessTime As FILETIME, _
 lpLastWriteTime As FILETIME) As Long

Since the FILETIME format can be tricky to work with, we’ve come up with sev-
eral wrapper functions you can use to set or retrieve file times. These functions
open the file (using dhQuickOpenFile) and handle the conversion between time
formats. Listing 12.40 shows the first two, dhGetFileTimes and dhSetFileTimes.
Each uses a custom structure, dhtypFileTimes, not shown in Listing 12.40. We cre-
ated this structure, which groups three VBA Date variables, to make it convenient
to work with all three file time values at once.

 The Windows API: Where the Real Power Is 783

➲ Listing 12.40: Two Functions for Retrieving or Setting All Three File
Times

Function dhGetFileTimes(strFile As String, _
 dftTimes As dhtypFileTimes) As Boolean

 Dim ftCreate As FILETIME
 Dim ftAccess As FILETIME
 Dim ftWrite As FILETIME
 Dim hFile As Long
 Dim lngRet As Long

 ' Open the file
 hFile = dhQuickOpenFile(strFile)
 If hFile > 0 Then

 ' Call GetFileTime to fetch time information
 ' into the local FILETIME structures
 If CBool(GetFileTime(hFile, ftCreate, _
 ftAccess, ftWrite)) Then

 ' If successful, convert the values to
 ' VBA Date format and return them in
 ' the passed dhtypFileTimes structure
 With dftTimes
 .datCreated = dhFileTimeToVBATime(ftCreate)
 .datAccessed = dhFileTimeToVBATime(ftAccess)
 .datModified = dhFileTimeToVBATime(ftWrite)
 End With

 ' Return success
 dhGetFileTimes = True
 End If

 ' Close the file
 Call CloseHandle(hFile)
 End If
End Function

Function dhSetFileTimes(strFile As String, _
 dftTimes As dhtypFileTimes) As Boolean

Chapter 12 • Working with Disks and Files784

 Dim ftCreated As FILETIME
 Dim ftAccessed As FILETIME
 Dim ftModified As FILETIME
 Dim hFile As Long

 ' Open the file for write access
 hFile = dhQuickOpenFile(strFile, GENERIC_WRITE)

 ' If successful then...
 If hFile > 0 Then

 ' Convert the passed time to a FILETIME
 With dftTimes
 Call dhVBATimeToFileTime(.datCreated, ftCreated)
 Call dhVBATimeToFileTime(.datAccessed, ftAccessed)
 Call dhVBATimeToFileTime(.datModified, ftModified)
 End With

 ' Set the times
 If CBool(SetFileTime(hFile, ftCreated, _
 ftAccessed, ftModified)) Then

 ' Return success
 dhSetFileTimes = True
 End If

 ' Close the file
 Call CloseHandle(hFile)
 End If
End Function

As an example, suppose you wanted to set the creation, last access, and last
write times of a file to midnight, January 1, 1997. You could use code like this:

Dim dft As dhtypFileTimes

With dft
 .datCreated = #1/1/97 12:00:00 AM#
 .datAccessed = #1/1/97 12:00:00 AM#
 .datModified = #1/1/97 12:00:00 AM#
End With

Call dhSetFileTimes("C:\SOMEFILE.EXE", dft)

 The Windows API: Where the Real Power Is 785

If you use dhSetFileTimes to change a file time value, be sure not to leave any of
the structure elements blank. Doing so will set the file time to 0 or, expressed as a
VBA date, Saturday, December 30, 1899!

Both functions require you to declare a dhtypFileTimes variable and pass it as
the second argument. If you want to retrieve or modify only a single file time, you
can use two other VBA functions we’ve provided, dhGetFileTimesEx and dhSetFile-
TimesEx. Instead of a user-defined data type, these functions accept an integer spec-
ifying which time or times you’re interested in. In the case of dhGetFileTimesEx,
this is a single number indicating one of the time values. dhSetFileTimesEx, on the
other hand, accepts a bit mask of numbers and changes one or more time values to
the supplied time. Both functions have reasonable defaults for these arguments,
so you don’t have to supply a value if you don’t want to. The following code illus-
trates how you might call these functions:

' Get the last modified time for WIN.INI
Debug.Print dhGetFileTimesEx("C:\WINDOWS\WIN.INI")

' Get the last accessed time for WIN.INI
Debug.Print dhGetFileTimesEx("C:\WINDOWS\WIN.INI", _
 dhcFileTimeAccessed)

' Set the last modified and last accessed time for WIN.INI
' to right now
Debug.Print dhSetFileTimesEx("C:\WINDOWS\WIN.INI", Now)

' Set the created time for WIN.INI to yesterday
Debug.Print dhSetFileTimesEx("C:\WINDOWS\WIN.INI", Now - 1, _
 dhcFileTimeCreated)

Since dhGetFileTimesEx and dhSetFileTimesEx are basically modified versions of
dhGetFileTimes and dhSetFileTimes, we haven’t included their code here. You can
find it, along with the constant definitions, in the sample files for this chapter.

Comparing File Times

In addition to simply retrieving the time values associated with a file, you’ll
sometimes need to compare them against those of another file. You might do

Chapter 12 • Working with Disks and Files786

this, for example, to determine whether a file on a desktop computer and
another on a laptop are the same. While you could retrieve the times for both
files using the functions described above, there is also a simple Windows API
call you can use, CompareFileTime:

Declare Function CompareFileTime Lib "kernel32" _
 (lpFileTime1 As FILETIME, lpFileTime2 As FILETIME) As Long

CompareFileTime accepts pointers to two FILETIME structures and returns a
result indicating the difference, if any, between them. It returns –1 if the first file
time is less than the second, 1 if it’s greater, and 0 if the two are equal. Listing 12.41
shows a function that uses CompareFileTime to compute the difference between
the time values for two files. To use it, pass the path to both files, along with the
time you want to check. Note that it returns the same values as CompareFileTime
except in the event of an error (perhaps due to an invalid filename), in which case
it returns –2.

➲ Listing 12.41: Use the Windows API to Compare File Times.

Function dhCompareFileTime(strFile1 As String, _
 strFile2 As String, Optional intTime As _
 Integer = dhcFileTimeModified) As Long

 Dim ftCreate1 As FILETIME
 Dim ftAccess1 As FILETIME
 Dim ftWrite1 As FILETIME
 Dim hFile1 As Long
 Dim ftCreate2 As FILETIME
 Dim ftAccess2 As FILETIME
 Dim ftWrite2 As FILETIME
 Dim hFile2 As Long

 ' Set a return value in case things go wrong
 dhCompareFileTime = -2

 ' Open the first file
 hFile1 = dhQuickOpenFile(strFile1)
 If hFile1 > 0 Then

 ' Open the second file
 hFile2 = dhQuickOpenFile(strFile2)
 If hFile2 > 0 Then

 The Windows API: Where the Real Power Is 787

 ' Get the file times
 If CBool(GetFileTime(hFile1, ftCreate1, _
 ftAccess1, ftWrite1)) Then
 If CBool(GetFileTime(hFile2, ftCreate2, _
 ftAccess2, ftWrite2)) Then

 ' Call CompareFileTime for the
 ' requested time and return the result
 Select Case intTime
 Case dhcFileTimeCreated
 dhCompareFileTime = _
 CompareFileTime(ftCreate1, _
 ftCreate2)
 Case dhcFileTimeAccessed
 dhCompareFileTime = _
 CompareFileTime(ftAccess1, _
 ftAccess2)
 Case dhcFileTimeModified
 dhCompareFileTime = _
 CompareFileTime(ftWrite1, ftWrite2)
 End Select
 End If
 End If

 ' Close the second file
 Call CloseHandle(hFile2)
 End If

 ' Close the first file
 Call CloseHandle(hFile1)
 End If
End Function

For more information on comparing and manipulating dates and times using VBA,
see Chapter 3.

Chapter 12 • Working with Disks and Files788

Using the Windows Common File Dialogs
The bulk of this chapter has discussed manipulating files once you know which
ones you want to manipulate. Sometimes you’ll need to ask the user to select a file.
To standardize specific often-needed dialogs, including those for file selection,
Windows provides a group of common dialogs all applications can use. If you
want to allow your users to select a filename for opening or saving, Windows has
a common dialog box to handle the selection. VBA provides no built-in mecha-
nism for you to get to any of the common dialogs, but the Windows API makes it
possible to use any of them.

Using these API functions is somewhat daunting, however, so we’ve wrapped
up much of the code in a simpler-to-use class module, CommonDlg, and have
provided several examples of using this class. The following sections discuss how
you can use the CommonDlg class, making it easy for you to take advantage of
these common dialogs in your own applications.

Using the CommonDlg Class
The CommonDlg class contains code that allows you to easily display the File
Save, File Open, Font, and Color common dialogs. The class takes care of all the
communication between VBA and the Windows API. It takes advantage of a num-
ber of user-defined types, enums, and API calls and provides a large number of
methods and properties. In particular, the four methods you’ll need to use in
order to display the common dialogs are as follows:

To use the dialogs in the simplest case, you can instantiate a new CommonDlg
object and then call one of these methods. That is, the simplest usage for display-
ing the Font common dialog might look like this:

Dim cdl As CommonDlg
Set cdl = New CommonDlg
cdl.ShowOpen
Debug.Print cdl.FileName

Method Action

ShowColor Displays the Color chooser common dialog

ShowFont Displays the Font chooser common dialog

ShowOpen Displays the File Open common dialog

ShowSave Displays the File Save common dialog

 Using the Windows Common File Dialogs 789

The color and font dialogs fall outside the scope of the chapter but are included in the
class for completeness. More information on how they work can be found in
Chapter 17 of Access 2000 Developer’s Handbook, Volume I: Desktop Edition
from Sybex.

How About the CommonDialog ActiveX Control?

If you have the Windows Common Dialog ActiveX control available, you’re wel-
come to use that in place of the CommonDlg class we’ve provided here. We’ve
encountered several issues using that control, however, including the following:

• The control must be placed on a form. If you want to use the common dialogs
from multiple locations in your application, you’ll either need to place the con-
trol on every form where you might need it or make sure that the form hosting
the control is always open. Using the class module has no similar requirements.

• The control does not allow you to specify a callback function. It’s in this call-
back function (that is, a function you supply that’s called by the common dia-
log while it’s displayed on screen) that you can position the dialog box where
you want it, change the captions of controls on the dialog (in the case of the
File Open/Save dialog boxes), or react to other actions taken on the dialog
box. Our class can take advantage of this callback mechanism and includes an
example callback function that centers the dialog box on the screen.

• The control does not allow you to specify the owner of the dialog box. With-
out this capability, it’s difficult to manage what happens when you use the
Alt+Tab keystroke to move to a different application while the dialog box is
displayed. The CommonDlg class provides an hWndOwner property,
which allows you to specify which window “owns” the dialog box.

• The control doesn’t include source code. If you want to add features or mod-
ify the behavior of existing features, you’re out of luck. Using the Common-
Dlg class, you have full control over the source code.

Common Steps

No matter which of the common dialogs you want to use, the steps are similar:

1. Make sure your project contains the CommonDlg class. (If you want to use a
callback function described later, you might also want to import basCommon-
Dlg and basCommon. These modules make it possible to use the sample
callback functions.)

Chapter 12 • Working with Disks and Files790

2. Create a variable of type CommonDlg to refer to the CommonDlg object in
memory, like this:

Dim cdl As CommonDlg

3. Instantiate the variable:

Set cdl = New CommonDlg

4. Set properties of the CommonDlg object. You needn’t set any properties at
all, but you’ll normally set the appropriate flags property (OpenFlags, Col-
orFlags, FontFlags), indicating specific preferences you have about the
behavior of the dialog box. Use the Or operator to combine various settings.
You might see code like this:

cdl.InitDir = "C:\"
cdl.OpenFlags = cdlOFNAllowMultiSelect Or _
 cdlOFNNoChangeDir

5. Call the appropriate method of the object (ShowOpen, ShowSave, ShowColor,
or ShowFont) to display the selected dialog box. This will halt your code until
the user has dismissed the dialog box. Your code might look like this:

cdl.ShowOpen

6. Once the user has dismissed the dialog box, retrieve the appropriate infor-
mation from the CommonDlg object. For example, to retrieve the selected
filename, you might write code like this:

Me.txtFileName = cdl.FileName

7. When you’re done, destroy the CommonDlg object:

Set cdl = Nothing

Generally, you’ll also want to add a bit of code to determine whether the user
clicked the Cancel button. To do this, you must set the CancelError property of the
CommonDlg object to True. You must then add error handling to trap for the error
raised by the object. This happens when the user cancels the dialog box by clicking
the Cancel button. See the section “Checking for Cancellation” later in the
chapter for more information on using this technique.

All that’s left to take care of is the details. Describing those details is the job of
the following sections, which show how to use File Open and File Save dialog

 Using the Windows Common File Dialogs 791

boxes. Make sure you take the time to investigate all the options to see how the
dialog boxes work.

Setting Options

Besides the basic properties of the CommonDlg class that you’ll see described in
the next few sections, the Windows common dialogs allow you to specify detailed
properties all rolled into a single value. Internally, the CommonDlg class sends a
user-defined type full of information to the Windows API, and one of the ele-
ments of that structure is named Flags. This long integer consists of 32 possible
bits of information. By turning on various bits within the 32 available bits, you
indicate to Windows exactly how you want the common dialog to behave.

We’ve mirrored that same behavior in the Flags property of the CommonDlg
object. Each different type of dialog box interprets the bits in the Flags property
differently, and we’ve provided groups of constants as enums to make your
choice of bits easier. In the CommonDlg class module, you’ll find the dhFileOpen-
Constants enumerated type for both the File Open and File Save dialogs. Inter-
nally, the CommonDlg class copies these individual values into the general Flags
property for you.

Because the various flags properties can consist of combinations of zero or more
of these constants, you’ll need to combine them together to specify multiple val-
ues. To do this, you can either use the “+” or Or operator. Mathematically, these
accomplish the same goal. We use Or in our code because that makes it clearer
that we’re combining bits together to create a long integer value. If you’re more
comfortable using “+”, however, your code will still work fine. Figure 12.11 shows
how you might select from available lists of constants to supply the value for the
OpenFlags property.

Compatibility of Existing Code
To make it easier for you to migrate code that you may have already written using the Com-
monDialog ActiveX control, we decided to make the CommonDlg class compatible with the
Common Dialog ActiveX control. That is, if you have code written using the ActiveX control,
you should be able to remove the control from your project and use the CommonDlg class
instead. Although we’ve added new options and properties, existing code that uses the
ShowOpen, ShowSave, ShowColor, or ShowFont methods of the ActiveX control should
work with this class as well.

Chapter 12 • Working with Disks and Files792

F I G U R E 1 2 . 1 1
Use IntelliSense to choose
from lists of possible flag
values combined with Or.

Using a Callback Function

The ability to have your own code executing while the Windows common dialog
is onscreen is a powerful feature, and it’s available to you using the CommonDlg
class. We’ve supplied a simple callback function (it centers the dialog box on the
screen after the dialog has been initialized), but this technique is powerful—and
potentially dangerous—once you’ve studied the API documentation.

For more information on using callback functions with Windows API procedures,
see Appendix B (located on the CD-ROM accompanying this book).

In order to use a callback procedure with the Windows common dialogs, you
must work through four issues:

• How do you indicate to the CommonDlg class that it should call your call-
back function?

• How do you declare the callback function so that the Windows common dia-
log can send information to it correctly?

• How do you supply the address of the procedure as a property of the
CommonDlg class?

• What do you do from within the callback function?

 Using the Windows Common File Dialogs 793

The first question is the simplest: set the appropriate flag property to include the
flag that enables a hook (that is, a callback) procedure. These flag values all
include the text “EnableHook.” If you don’t set this flag, Windows will never call
your procedure.

How do you specify the parameters for the callback function? When you create
the procedure called by the common dialog, it’s imperative that you get the data
types, return type, and parameter-passing information correct. Because Windows
calls your procedure directly, with no intervention from Visual Basic, any mis-
takes in the declaration of the procedure will generally cause your application to
crash. For the common dialogs, your callback function must be declared like this:

Public Function SampleCallback(_
 ByVal hWnd As Long, ByVal uiMsg As Long, _
 ByVal wParam As Long, ByVal lParam As Long) As Long

The exact name of the procedure is inconsequential, as are the names of the
parameters, but the data types, the parameter passing (that is, the use of ByVal),
and the return type must match this example. If you use our sample callback func-
tions, you won’t have any trouble.

How do you tell Windows about this procedure? The CallBack property of the
CommonDlg object requires you to send it the address of a VBA procedure. To do
that, you use the AddressOf modifier (previously available only in Visual Basic,
now available in all VBA hosts), which converts a procedure name into its address
in memory. For this mechanism to work, this procedure must be a public proce-
dure in a standard module—it can’t be Private, and it can’t be within a class mod-
ule. (For more information on using the AddressOf modifier, see Appendix B,
which is located on the CD-ROM accompanying this book.) One small problem:
AddressOf only works within a procedure call. You can’t write code like this:

cdl.CallBack = AddressOf SampleCallBack

because VBA won’t compile this code. You need to supply the address of a proce-
dure in the Callback property, however. To get around this problem, we’ve sup-
plied the dhFnPtrToLong function in basTestCommonDlg, which takes one Long
parameter and simply returns that value:

Public Function dhFnPtrToLong(lngAddress As Long) As Long
 dhFnPtrToLong = lngAddress
End Function

Chapter 12 • Working with Disks and Files794

How is this useful? Although it looks like dhFnPtrToLong isn’t really doing
anything, it allows you to call it using the AddressOf modifier, and it returns the
address you’ve sent it. With a procedure like this, you can now write:

cdl.CallBack = dhFnPtrToLong(AddressOf SampleCallBack)

and get the address you need in the CallBack property of the class. If you look at
the samples that use the CommonDlg class, you’ll see that they all use code simi-
lar to this in order to set the CallBack property.

What can you do within the callback procedure? From within the function itself,
you react to messages sent to the callback function from Windows. These mes-
sages indicate the current state of the dialog box and allow you to make decisions
about what to do. (You can think of messages in Windows as constants—they’re
actually long integers—that Windows uses to communicate to application win-
dows.) Windows passes to your procedure a message value and the window han-
dle for the open dialog box. Although, with enough research into the Windows
API documentation, you can perform major tricks with the common dialogs, our
example simply waits to receive the WM_INITDIALOG message (indicating that
the dialog box has finished its initialization process) and then centers the dialog
box on the screen. Listing 12.42 shows the callback function for the File Open and
File Save dialogs. (You’ll find both this and the CenterWindow procedure in the
basCommonDlg module.)

For more information on using callback functions with common dialogs, you’ll
need to consult a good Windows API reference. If you have a subscription to the
Microsoft Developer Network (MSDN), that’s a good place to start. Go online at
http://msdn.microsoft.com.

➲ Listing 12.42: A Sample Callback Function for Use with Windows
Common Dialogs

Public Function GFNCallback(ByVal hWnd As Long, ByVal uiMsg As Long, _
 ByVal wParam As Long, ByVal lParam As Long) As Long

 Dim hWndParent As Long

 Select Case uiMsg
 Case WM_INITDIALOG

 Using the Windows Common File Dialogs 795

 ' In this case, hWnd is the handle
 ' of the child dialog box. You need to
 ' call GetParent to get the handle of the main
 ' dialog box. Go figure.
 hWndParent = GetParent(hWnd)
 If hWndParent <> 0 Then

 ' On initialization, center the dialog.
 Call CenterWindow(hWndParent)
 End If

 #If False Then
 ' Now THIS is cool. You can send a message
 ' to the File Open/Save dialog box, and either change
 ' text or hide a control. Check out the
 ' CDM_* messages, and the fos* enum in the
 ' CommonDlg class for all the options.
 Call SendMessageText(hWndParent, CDM_SETCONTROLTEXT, _
 fosOKButton, "&Select")
 Call SendMessageLong(hWndParent, CDM_HIDECONTROL, _
 fosFilterListLabel, 0)
 #End If

 ' You could get many other messages here, as well.
 ' All the normal window messages get
 ' filtered through here, and you can
 ' react to any that you like.
 End Select
 ' Tell the original code to handle the message, too.
 ' Otherwise, things get pretty ugly.
 ' To do that, return 0.
 GFNCallback = 0
End Function

Using the Windows File Open/Save Common Dialogs
The Windows File Open and File Save dialogs make it easy for you to allow users
to select a file for opening or saving. The programmatic interface to these common
dialogs requires you to send Windows some information, and then Windows will
do its job, pop up the dialog, and return information to you.

Chapter 12 • Working with Disks and Files796

No matter what options you choose and what file you select, the dialog box does
no more than return to your application the choices made while the dialog box was
visible. It does not open or save a file—it merely allows you to make choices. What
you do with the information gathered by the dialog box is up to you.

In order to use the File Open or File Save common dialogs, you may want to set
properties of the CommonDlg object that pertain to these dialogs. Table 12.9 lists
the properties that apply to the dialogs.

In Windows 98, Windows 2000, and Windows XP you can modify the size and
position of the File Open and File Save dialog boxes and Windows will “remember”
those settings for subsequent uses of the dialog box. See the notes in Table 12.10
on specific flags that alter this behavior. We’ve also noticed that if any VBA error
occurs (if the user presses Cancel on the dialog box, for example, and you’ve got the
CancelError property set to True), Windows seems to “forget” the size and location.

T A B L E 1 2 . 9 : Properties of the CommonDlg Class That Pertain to the File Open and Save
Dialogs

Property Name Data Type Description

CallBack Long Address of a procedure to be called while the dialog is
displayed. This procedure can position the dialog box or take
other actions, depending on the particular dialog box.

CancelError Boolean If True, pressing the Cancel button on the common dialog
triggers a runtime error in the class. Check for the cdlCancel
error if you’ve set this property to True.

DefaultExt String If you don’t supply an extension, the dialog appends this to
your filename. See also the cdlOFNExtensionDifferent value in
Table 17.2.

DialogTitle String Text that appears in the dialog caption.

FileExtOffset Long After returning from the call to ShowOpen or ShowSave,
contains the offset, in characters, to the file extension. This
makes it easy to parse the filename.

FileList String() If you’ve specified the cdlOFNAllowMultiSelect flag setting, the
user may have selected multiple files. After dismissing the dialog
box, this array of strings will contain one element for each
selected file. FileList(0) always contains the folder in which the
user selected files, and FileList(1) through FileList(n) (where n is
the total number of selected files) contain the names of the
selected files. If the user only selected a single file, FileList(0)
contains the folder, and FileList(1) contains the single filename.

 Using the Windows Common File Dialogs 797

FileName String The full name (including path) of the selected file. If you specify
this value before calling ShowOpen or ShowSave, the dialog will
display this filename as the default file to be selected.

FileNameBufferSize Long When you call the Open or Save dialog boxes, the CommonDlg
class must allocate space for the returned filename(s). The
default size allocated is 20,000 bytes. If you think you may need
more space, you can specify your own size. Unless you know
users are going to be choosing lots of files at once, the default
should be sufficient.

FileOffset Long After returning from the call to ShowOpen or ShowSave, contains
the offset, in characters, to the name of the file (that is, the offset
of the beginning of the filename portion of the full path).

FileTitle String After returning from the call to ShowOpen or ShowSave,
contains the filename and extension (no path information) of
the selected file. If you’ve selected multiple files, this property
will contain no text.

Filter String List of pairs of filter values, separated with “|”. For example, you
can use a string like the following:
"Text Files (*.txt)|
*.txt|
Database Files (*.mdb,*.mda,.mde)|
.mdb;.mda;*.mde|
All Files (*.*)|
."
The first half of each pair contains the text the user sees in the
Files of Type combo box, and the second half of each pair
indicates to Windows the file specification it should look for.
(For multiple wildcards in the second half of a pair, use a
semicolon to separate the items.) Supplying no filter is the same
as requesting all files.

FilterIndex Integer One-based index of the filter item that you want to be selected
when the dialog box opens (the default value is 1). After the
dialog has been dismissed, contains the index of the currently
selected filter.

Flags Long Zero or more values from Table 12.10, combined with the Or
operator, indicating how you want the dialog box to be initialized
and how it should behave. You can set the value of this or the
OpenFlags property, but using the OpenFlags property supplies a
drop-down list of values based on dhFileOpenConstants
enumerated type. We suggest you use the OpenFlags property
instead of this property, which is provided for compatibility with
the CommonDialog ActiveX control.

T A B L E 1 2 . 9 : Properties of the CommonDlg Class That Pertain to the File Open and Save
Dialogs (continued)

Property Name Data Type Description

Chapter 12 • Working with Disks and Files798

hWndOwner Long Windows handle for the parent of the dialog. Normally, supply a
form’s hWnd property. If you’re not using a form, supply
Application.hWndAccessApp for this property.

InitDir String The folder in which you want the dialog to first show files. If you
don’t specify this property, the dialog box will start in the
current folder. Once you make a selection, Windows makes the
selected file’s folder the new current folder, unless you also
specify the cdlOFNNoChangeDir flag.

OpenFlags dhFileOpen
Constants

Zero or more values from Table 12.10, combined with the Or
operator, indicating how you want the dialog box to be
initialized and how it should behave. You can set the value of
this or the Flags property, but using the OpenFlags property
supplies a drop-down list of values based on
adcFileOpenConstants enumeration. We suggest you use the
OpenFlags property instead of the Flags property, which is
provided for compatibility with the CommonDialog ActiveX
control.

OpenFlagsEx dhFileOpen
ConstantsEx

Additional flags available only under Windows 2000/XP

T A B L E 1 2 . 1 0 : Possible Values for the Flags or OpenFlags Properties

Constant Name Description

cdlOFNAllowMultiselect Specifies that the File Name list box allows multiple selections. If you
include this flag, use the FileList property to investigate the array of
selected filenames (see Table 12.9).

cdlOFNCreatePrompt If the user selects a file that doesn’t exist, this flag causes the dialog box
to prompt for permission to create the file. It doesn’t actually create the
file, however. If the user chooses to create the file, the dialog box closes
and the FileName property contains the name of the selected file.
Without this flag set, specifying a nonexistent file requires no
intervention from the user. If you use this flag with the
cdlOFNAllowMultiselect flag, only one nonexistent file is allowed.

cdlOFNEnableHook If you include this flag, Windows will call the function specified in the
CallBack property as it processes the dialog box. In Windows 98,
Windows 2000, or Windows XP, setting this property causes the dialog
box to not be sizable, unless you also set the cldOFNEnableSizing flag.

*Will require extra Windows API coding to fully support, so we recommend that you know what you’re doing when using these flags.

T A B L E 1 2 . 9 : Properties of the CommonDlg Class That Pertain to the File Open and Save
Dialogs (continued)

Property Name Data Type Description

 Using the Windows Common File Dialogs 799

cdEnableSizing (Windows 98/2000/XP only) The ability to resize the dialog box is the
default behavior, and Windows remembers the last position/size of the
dialog box between uses. Generally, you won’t need this flag, but if you
also specify the cdlOFNEnableHook flag, Windows thinks you’re
providing your own form template for the dialog and disables sizing.
Using this class, you cannot supply your own template, so if you specify
the cdlOFNEnableHook flag, you’ll also want to include this flag. This flag
is ignored (and you cannot resize the dialog box) under Windows 95 and
Windows NT.

cdlOFNExplorer Causes the dialog box to use the newer “explorer-style” interface. The
CommonDlg class always adds this flag to the value you specify for the
Flags or OpenFlags property. If you want to alter this behavior, you’ll
need to modify the code in the CommonDlg class.

cdlOFNExtensionDifferent On return from the dialog box, indicates that the user chose a file with
an extension different from that in the DefaultExt property. If you
haven’t specified a value for DefaultExt, this flag will never be set. Use
the And operator, like this, to check for this flag:
If cdl.OpenFlags And _
 cdlOFNExtensionDifferent <> 0 Then
 ' You know that you selected a
 ' file whose extension is different
 ' than that specified in the
 ' DefaultExt property.
End If

cdlOFNFileMustExist Specifies that the user can only enter names of existing files in the File
Name entry field. If the user enters an invalid name, the dialog box
displays a warning in a message box. If you specify this flag, the common
dialog works as if you’d also specified the cdlOFNPathMustExist flag.

cdlOFNHelpButton Displays a Help button on the dialog box. Although it’s possible to react
to the user clicking this button, it requires subclassing a form and
reacting to Windows registered messages to make it work. Doing this is
beyond the scope of this book, and this constant is only supplied for
compatibility with the ActiveX control.*

cdlOFNHideReadOnly If selected, this flag hides the Read Only check box on the dialog box.

cdlOFNLongNames For old-style dialog boxes (see cdlOFNExplorer), causes the dialog to use
long filenames. Has no effect in the CommonDlg class and is included for
compatibility only.

T A B L E 1 2 . 1 0 : Possible Values for the Flags or OpenFlags Properties (continued)

Constant Name Description

*Will require extra Windows API coding to fully support, so we recommend that you know what you’re doing when using these flags.

Chapter 12 • Working with Disks and Files800

You needn’t set any of the CommonDlg properties if you’re happy with the
default behavior. When you’re ready to select a file for opening or saving, call the
appropriate method of the CommonDlg object (either ShowOpen or ShowSave).

cdlOFNNoChangeDir If specified, Windows restores the directory to its original value if the user
changed the directory while searching for a file.

cdlOFNNoDereferenceLinks Causes the dialog box to return the path and filename of the selected
shortcut (.LNK) file. If not specified, the dialog box returns the path and
filename of the file referenced by the selected shortcut.

cdlOFNNoLongNames If you’re using the old-style dialog box, causes the dialog to display all
filenames using 8.3 format. Has no effect in the CommonDlg class and is
included for compatibility only.

cdlOFNNoNetworkButton If you’re using the old-style dialog box (see the cdlOFNExplorer flag),
setting this flag removes the Network button from the dialog box. Has
no effect in the CommonDlg class and is included for compatibility only.

cdlOFNNoReadOnlyReturn On return from the dialog box, if this flag is set, the returned file does
not have the Read Only check box checked and is not in a write-
protected folder. Use the And operator (see the example shown in the
cdlOFNExtensionDifferent flag) to find out if this flag has been set.

cdlOFNNoValidate Specifies that the dialog box allows invalid characters in the filename.
Generally, it’s not a good idea to use this flag setting.*

cdlOFNOverwritePrompt Causes the Save As dialog box to generate a message box if the selected
file already exists. The developer can decide whether to allow the
selection of this file.

cdlOFNPathMustExist Specifies that the user can only select valid paths and filenames. If
selected, this flag causes the dialog box to display a message box if the
entered filename and path are invalid.

cdlOFNReadOnly Causes the Read Only check box to be checked when the dialog box
opens. After the dialog box has been dismissed, indicates whether the
check box was checked at the time the user closed the dialog box. Use
the And operator (see the example shown in the
cdlOFNExtensionDifferent flag) to find out if this flag has been set.

cdlOFNShareAware Specifies that if the user specifies a file that’s in use, the error is ignored
and the dialog box returns the selected name anyway.*

T A B L E 1 2 . 1 0 : Possible Values for the Flags or OpenFlags Properties (continued)

Constant Name Description

*Will require extra Windows API coding to fully support, so we recommend that you know what you’re doing when using these flags.

 Using the Windows Common File Dialogs 801

That is, if you simply write code like this, you’ll see the name of the file you select
from the dialog box:

Dim cdl As CommonDlg
Set cdl = New CommonDlg
cdl.ShowOpen
MsgBox cdl.FileName

On the other hand, if you want to control which files are offered to the user,
which folder the dialog starts in, whether the Read Only check box is displayed, or
any other specific attributes of the dialog box, you’ll want to investigate the many
properties and flags shown in Tables 12.9 and 12.10. To demonstrate the use of
many of the properties of the CommonDlg class, Listing 12.43 shows a test proce-
dure from basTestCommonDlg.

➲ Listing 12.43: Testing the CommDlg class

Sub dhTestFileOpen()

 Dim cdl As CommonDlg
 Set cdl = New CommonDlg

 cdl.hWndOwner = GetActiveWindow()
 cdl.CancelError = True

 On Error GoTo HandleErrors

 ' Set three pairs of values for the Filter.
 cdl.Filter = _
 "Text files (*.txt)|" & _
 "*.txt|" & _
 "Database files (*.mdb, *.mde, *.mda)|" & _
 "*.mdb;*.mde;*.mda|" & _
 "All files (*.*)|" & _
 "*.*"

 ' Select filter 2 (Database files) when
 ' the dialog opens.
 cdl.FilterIndex = 2

 ' Indicate that you want to use a callback function,
 ' change back to the original directory when
 ' you're done, and require that the selected

Chapter 12 • Working with Disks and Files802

 ' file actually exists.
 cdl.OpenFlags = cdlOFNEnableHook Or _
 cdlOFNNoChangeDir Or cdlOFNFileMustExist

 ' Select the callback function.
 cdl.CallBack = dhFnPtrToLong(AddressOf GFNCallback)

 ' Set up miscellaneous properties.
 cdl.InitDir = "C:\"
 cdl.FileName = "autoexec.bat"
 cdl.DefaultExt = "bat"

 ' Open the file open dialog box,
 ' and wait for it to be dismissed.
 cdl.ShowOpen

 ' Retrieve the selected file name
 Debug.Print cdl.FileName

 ' Check the OpenFlags (or Flags) property to
 ' see if the selected extension is different than
 ' the default extension.
 If (cdl.OpenFlags And _
 cdlOFNExtensionDifferent) <> 0 Then
 MsgBox "You chose a different extension!"
 End If

ExitHere:
 Set cdl = Nothing
 Exit Sub

HandleErrors:
 Select Case Err.Number
 Case cdlCancel
 ' Cancelled!
 Resume ExitHere
 Case Else
 MsgBox "Error: " & Err.Description & _
 "(" & Err.Number & ")"
 End Select
 Resume ExitHere
End Sub

 Using the Windows Common File Dialogs 803

This procedure takes the following actions:

• Declares and instantiates the CommonDlg object:

Dim cdl As CommonDlg
Set cdl = New CommonDlg

• Sets the owner of the dialog to be the current form:

cdl.hwndOwner = GetActiveWindow()

So that this example would work from whatever client you happen to run it in,
we’ve used the GetActiveWindow API function. In practice you’ll want to assign
the hWnd of one of your application’s windows. For example, you could use the
hWnd property of a VB form.

• Sets up the filter text, and selects a particular filter to be displayed when the
dialog appears:

' Set three pairs of values for the Filter.
cdl.Filter = _
 "Text files (*.txt)|" & _
 "*.txt|" & _
 "Database files (*.mdb, *.mde, *.mda)|" & _
 "*.mdb;*.mde;*.mda|" & _
 "All files (*.*)|" & _
 "*.*"

' Select filter 2 (Database files) when
' the dialog opens.
cdl.FilterIndex = 2

• Sets the OpenFlags property, indicating how you want the dialog box to
behave:

cdl.OpenFlags = cdlOFNEnableHook Or _
 cdlOFNNoChangeDir Or cdlOFNFileMustExist

• Sets up the callback function, pointing to our sample callback function (stored
in basCommonDlg). This callback function must be a public function in a
standard module and must meet the requirements described in the previous
section, “Using a Callback Function.” Note that you must call the dhFnPtr-
ToLong function in order to store the address of the procedure into a variable:

cdl.CallBack = dhFnPtrToLong(AddressOf GFNCallback)

Chapter 12 • Working with Disks and Files804

• Sets up other miscellaneous properties:

cdl.InitDir = "C:\"
cdl.FileName = "autoexec.bat"
cdl.DefaultExt = "bat"

• Calls the ShowOpen method of the object. This causes your code to halt,
waiting for the dialog box to be dismissed:

cdl.ShowOpen

• After the dialog has been dismissed, retrieves the selected filename:

txtFileOpen = cdl.FileName

• Checks to see if the selected file had a different extension from that provided
in the DefaultExt property. If so, handles that situation:

If (cdl.OpenFlags And _
 cdlOFNExtensionDifferent) <> 0 Then
 MsgBox "You chose a different extension!"
End If

You can see the entire procedure by looking at the sample code.

To use this functionality in your own applications, make sure you’ve imported
the CommonDlg class module. If you want to use callbacks, you’ll also want to
import basTestCommonDlg.

For information on using the CancelError property to trap when a user cancels the
dialog box, see the upcoming section, “Checking for Cancellation.”

The only real difference between the File Open and File Save dialog boxes is the
interpretation of some of the flag values shown in Table 12.10. Otherwise, the
usage and behavior of the common dialog is the same whether you use the Show-
Open or ShowSave methods. In either case, use the OpenFlags property to specify
the flags you’d like to apply.

If you’d rather have this all wrapped up for you, check out the dhFileDialog
procedure in basCommonDialog. This procedure allows you to pass in parameters
indicating the behavior you’d like, and the procedure does all the work of
instantiating the object for you. It then returns the filename that was selected.

 Using the Windows Common File Dialogs 805

Changes for Windows 2000 and Windows XP

Common dialog functionality remained relatively unchanged from Windows 95
to Windows NT 4 and Windows 98. Beginning with Windows 2000 and continuing
with Windows XP, Microsoft modified the File Open and File Save dialogs to look
and work more like those in Office 2000 (and now Office XP). That is, they now
have the familiar Outlook-like places bar on the left-hand side (see Figure 12.12).

F I G U R E 1 2 . 1 2
New Windows 2000/XP

common-file open dialog

Unfortunately, to make sure you enable the new functionality you must use an
extended version of the OPENFILENAME structure that includes four more
member variables. If you try to use the older version of this user-defined type and
you specify a callback function, you’ll get the old-style dialog like the one shown
in Figure 12.13.

F I G U R E 1 2 . 1 3
Old-style open file

dialog that appears if
you don’t use the right

OPENFILENAME structure

Chapter 12 • Working with Disks and Files806

The CommonDlg class accounts for this automatically by checking for the Win-
dows version in the Class_Initialize procedure. If you’re running Windows 2000 or
Windows XP it sets a flag that’s used later on in the SetOpenProperties procedure:

' If we're not running Windows 2000/XP set structure
' size equal to the older UDT
If mblnIsWin2000 Then
 .lStructSize = Len(ofn)
Else
 .lStructSize = Len(ofnTmp)
End If

The ofn variable is defined as OPENFILENAMEEX, which includes the extra
variables, while ofnTmp is an OPENFILENAME structure. By setting the lStruct-
Size member appropriately, GetOpenFileName works correctly. For more infor-
mation on system information as well as this technique, see Chapter 9.

Checking for Cancellation

If you want to know whether the user pressed the Cancel button (as opposed to
clicking OK with no file selected), you’ll need to add code to handle this. Specifi-
cally, follow these steps:

1. Set the CancelError property of your CommonDlg object to True.

2. Add an error handler to your procedure, and specifically check for the error
cdlCancel (32755). This is the error the CommonDlg class will raise if the user
clicks the Cancel button (or presses Escape) while the dialog is displayed.

In your error handler, you may decide to do something if the user pressed Cancel.
Most of the time, however, you’ll simply go on with your application without tak-
ing any action. For example, the following code, excerpted from the dhTestFile-
Open procedure, reacts to the user pressing Cancel by doing nothing at all:

ExitHere:
 Set cdl = Nothing
 Exit Sub

HandleErrors:
 Select Case Err.Number
 Case cdlCancel
 ' Cancelled!
 Resume ExitHere

 Using the Windows Common File Dialogs 807

 Case Else
 MsgBox "Error: " & Err.Description & _
 "(" & Err.Number & ")"
 End Select
 Resume ExitHere
End Sub

Make sure you check the VBA Error Trapping property (the General tab on the
Tools � Options dialog) when running in a VBA host. If it’s set to Break in Class
Module, none of these classes will work correctly. If this setting is checked, that
means that even if you have error handling in a class module, the code will drop
into break mode if a runtime error occurs. Although this setting may make sense
when you’re working in Visual Basic, which creates standalone executables, it
never makes sense when you distribute VBA applications. You must make sure to
set this option to Break on Unhandled Errors, or you won’t be able to make use of
the CancelError property of this class. To try this out, open a module, make sure the
setting is set to Break in Class Module, and then try the code in dhTestFileOpen,
pressing the Cancel button. Although you wouldn’t expect it, you’ll hit a break-
point in the error handler. Not cool. If you use error handling, make sure you verify
this option setting for each and every project you distribute.

Modifying the Look of the File Open or Save
Common Dialog Box

Although it’s not simple, you can modify the text displayed in any command button or label on
the common dialog boxes, and you can control the visibility of any item on the form, as well.
To accomplish these goals, you’ll need to modify code in the callback function used by the dia-
log. To modify the dialog box’s layout, you must use the Windows API Send Message function
to send the dialog box messages indicating that you want to change its appearance. Windows
provides a long integer that uniquely identifies each of the controls on the form, and you can
find an enumeration of those values in the dhFileOpenSaveControls enum in the CommonDlg
class. To change the text of a control, call the SendMessageText variation on the SendMessage
API (see the code in basCommonDlg), specifying the window handle for the dialog box, the
CDM_SETCONTROLTEXT message, the identifier of the control you want to change, and
the new text. The following example shows how you might do this:

Call SendMessageText(hWndParent, CDM_SETCONTROLTEXT, _

 fosOKButton, "&Select")

Chapter 12 • Working with Disks and Files808

Summary
This chapter has presented a lot of information regarding disk and file manipula-
tion using VBA. Specifically, we covered the following topics:

• How to use VBA file and directory information functions such as Dir,
GetAttr, FileLen, and FileDateTime

• How to copy, move, create, and delete files and directories

• How to create and modify files using VBA file I/O functions

• How to search for files on your hard disk

• How to manipulate path names and temporary files

• Using Windows API functions to retrieve file and disk information such as
the volume label, disk types, and free space

• How to set and retrieve file dates and times

• How to force Windows to inform you when the contents of a directory have
changed

• Using a VBA class module–based system for easing file and directory
management

In addition to supplying you with “out of the box” functions you can use in
your applications, we’ve tried to help you understand how you can utilize both
VBA and Windows API functions to get the most out of the file system.

To change the visibility of a control on the dialog box, call the SendMessageLong variation
on the SendMessage API, passing the window handle, the CDM_HIDECONTROL message,
the identifier of the control, and 0, like this:

Call SendMessageLong(hWndParent, CDM_HIDECONTROL, _

 fosFilterListLabel, 0)

(Note that there’s no message available to redisplay a hidden control.) Remove the condi-
tional compilation statements in the GFNCallBack procedure (in basTestCommonDlg) to
see this code working. When you make this change and run the dhTestFileOpen proce-
dure, you’ll see that the label for the Open button is now Select, and the “Files of Type”
label is invisible.

c h a p t e r 13

Adding Multimedia to Your
Applications

� Understanding Windows multimedia services

� Playing WAV files

� Controlling your CD player

� Exploring digital video with AVI files

Chapter 13 • Adding Multimedia to Your Applications810

To help round out this book on Visual Basic language development, we
decided to include a chapter on multimedia. Why, you might ask? After all, it’s
such an immense subject that entire books have been written about it. We couldn’t
possibly explain everything you need to know to write complete multimedia
titles. Fortunately, that’s not what we wanted to do. Our intent was to provide
you with a few simple tricks you can use to enhance your application. Even the
most serious developers have, from time to time, wanted to play sound files or
video clips in their applications. In this chapter, you’ll learn a few easy techniques
to make this happen. The chapter begins with a discussion of the multimedia
capabilities of Windows. Then we’ll take a look at individual topics that range
from playing sound files to running video clips in a window. By the end of this
chapter, you should have a basic understanding of how Windows handles multi-
media, as well as a grab bag of useful VBA functions to add to your applications.

Table 13.1 lists the sample files included on the CD-ROM for this chapter.

T A B L E 1 3 . 1 : Sample Files

Filename Description

MMEDIA.XLS Excel file with sample functions

MMEDIA.MDB Access 2000 database with sample functions

MMEDIA.VBP Visual Basic project containing the sample code

MAIN.FRM Start-up form for the Visual Basic project

FRMVIDEO.FRM VBA user form for AVI example

FRMVIDEO.FRX Binary components of the VBA user form

CLASSEX.BAS Code for class modules

CSTRING.BAS Code for MCI command string example

MCIBASE.BAS MCI function, type, and constant declarations

REGISTRY.BAS Registry functions

SIMPLE.BAS Simple multimedia examples

CDPLAY.CLS CDPlayer class module

VIDPLAY.CLS VideoPlayer class module

WAVEPLAY.CLS WavePlayer class module

 An Introduction to Windows Multimedia 811

To test the sample code in this chapter, you will need a multimedia-capable computer,
including a CD player and a sound card.

An Introduction to Windows Multimedia
Before exploring the various techniques for manipulating multimedia elements,
let’s take a look at the foundation on which they are based: the Windows multimedia
subsystems. While the examples in this chapter are just the tip of the iceberg as far
as multimedia is concerned, this section gives you an overview of the many multi-
media capabilities Windows offers.

Multimedia Services and MCI
Microsoft first introduced real multimedia support as an add-on to Windows 3.x,
called the Multimedia Extensions. These were additional DLLs that implemented
functions for playing digital sound and video, as well as MIDI (Musical Instru-
ment Digital Interface) files. With the advent of Windows 95, Microsoft integrated
these functions directly into the operating system. Even though they still exist as
separate DLLs apart from the traditional Windows API triad of User, Kernel, and

GO.WAV Sample WAV file

NORTH.WAV Sample WAV file

EAST.WAV Sample WAV file

SOUTH.WAV Sample WAV file

WEST.WAV Sample WAV file

WAVE.DLL Resource-only DLL containing embedded WAV files

WAVE.RC Resource script for WAVE.DLL

WAVE.RES Compiled resource file

WAVE.MAK Make file for WAVE.DLL

T A B L E 1 3 . 1 : Sample Files (continued)

Filename Description

Chapter 13 • Adding Multimedia to Your Applications812

GDI, you can now be assured that the functions are available on any machine run-
ning Windows 95, Windows 98, Windows NT 4, or Windows 2000. (However, this
does not mean that you can count on the presence of multimedia hardware neces-
sary to make them work!)

The multimedia support in the current versions of Windows has matured into a
robust environment with support for numerous and varied hardware devices,
such as digital audio and laser disc players, audio compact discs, overlay video
(a.k.a. TV-in-a-window), and animation. Much of this is coordinated through the
Media Control Interface (MCI). MCI defines a function interface to control differ-
ent multimedia devices. Even though the features of the devices themselves vary
greatly, they all share a more or less common set of abilities. For example, all must
open some sort of multimedia data (referred to as a media object in this chapter), be
it a sound file or an audio compact disc track. All have the ability to play the data,
as well as manipulate the current position (rewind, fast forward, and so on). This
section reviews the capabilities of several multimedia devices. Later sections in
this chapter demonstrate how to control them using MCI commands.

MCI is considered a high-level multimedia interface because the devices
themselves handle most of the work of manipulating media objects. Windows
also has a host of low-level multimedia functions that give you a fine degree of
control over multimedia data. Since it’s unlikely that you’ll choose Visual Basic to
build an application such as, say, a speech recognition system, we decided to stick
with the high-level functions in this chapter.

Waveform Audio

Waveform audio is the correct term for the ever-popular WAV file format so famil-
iar to Windows users. You create waveform audio using a sound card capable of
taking analog input from a microphone and converting it to a digital signal. Wave-
form audio is the most common way of providing sound effects for applications
because of its ability to duplicate sounds exactly, with a high degree of clarity.
You can affect the level of quality by controlling the following input parameters:

Sample rate The number of digital “snapshots” taken each second (often
denoted by the term hertz, abbreviated Hz). The more samples you take, the bet-
ter the quality. You can choose one of three distinct values: 11025 Hz (radio or
voice quality), 22050 Hz (medium quality), or 44100 Hz (CD quality).

 An Introduction to Windows Multimedia 813

Bits per sample Determines how accurate each sample is. The more data
per sample you store, the better the quality. You can store either 8 or 16 bits per
sample.

Channels Refers to whether you record in stereophonic (2 channels) or
monophonic (1 channel).

The downside to waveform audio is the amount of storage space required for
sound data. For example, 60 seconds of CD-quality, 16-bit stereo sound requires
10,584,000 bytes of storage! (That’s 60 x 44100 x (16 / 8) x 2.) Fortunately, you
rarely need this level of clarity. Due to the mediocre quality of many sound cards,
plus the inefficiency of the human ear, 11025 Hz, 8-bit monophonic sounds are
usually adequate for sound effects and voice prompts.

Compact Disc Audio

If you really need CD-quality audio, you should use CD audio tracks. MCI offers
simple functions for playing CD audio, and the storage requirements are zero
because the media are on a compact disc. However, the one problem with CD
audio is the difficulty of producing it. Unless you purchase the right to use exist-
ing content, you’ll have to create your own. This is a time-consuming process
requiring considerable artistic talent.

MIDI Audio

MIDI audio offers a compromise between waveform audio and CD audio. MIDI
(which stands for Musical Instrument Digital Interface) is the format understood
by electronic synthesizers. Most sound cards include an FM synthesizer chip
capable of producing music from MIDI commands. Unlike waveform audio,
which stores an exact replica of recorded sound, MIDI audio is stored as “songs”
made up of information regarding musical instruments, notes, pitch, duration,
and so on. For this reason, the storage requirements are quite low. For example,
Windows 98 and Windows 2000 ship with a MIDI-encoded file named CANYON
.MID. Despite the fact that the song is over two minutes long, the song file is only
about 21K in size.

However, there are three drawbacks to MIDI files. First, since the songs don’t
store actual sounds but instead define musical instruments, it’s up to the sound
card to supply the actual sound, so the output will vary from one sound card to
the next. The second problem is that unless you have a specially designed sound
card, the CPU must process the musical information, adding to the overall system

Chapter 13 • Adding Multimedia to Your Applications814

load. Third, sound cards that use FM synthesizers to produce the output can only
approximate the true sound of an instrument by modulating the frequency of a carrier
wave. Newer sound cards that store digital samples of actual instruments (so-called
wave table sound cards) reproduce the intended music much more accurately, but
they are still more expensive and less prevalent than FM synthesizer-based cards.
For these reasons, MIDI songs are normally used as background music for games
where instrumental fidelity is not essential.

Digital Video

One of the best features of Windows is its ability to process digital video. You
probably know this feature better as AVI files. Microsoft shipped software called
Video for Windows that allowed you to view AVI files under Windows 3.x. In
fact, Video for Windows defined the AVI file format, which is the most popular
format around today. Starting with Windows 95 and NT 4, digital video became
an integral part of the multimedia subsystem.

Other digital video formats include Apple QuickTime, MPEG, and DVI (Digital
Video Interactive).

Digital video files are created using special hardware that converts the analog
signal from a television tuner or VCR into digital images. The quality of the image
can vary greatly depending on the size of the image, the speed of playback (mea-
sured in frames per second), and the compression algorithms used. For example,
compression is used so that not every pixel an image comprises needs to be
updated if it doesn’t change from frame to frame. A variety of compression algo-
rithms offer different levels of speed and size reduction.

In addition to using analog-to-digital converter hardware, you can create AVI
files with software products such as Lotus ScreenCam. These products produce
computer-generated frames based on screen captures or other means and are par-
ticularly useful for creating demos or instructional videos for software programs.

Like digital audio, digital video suffers the problem of media size. Even a short
video clip recorded at small frame size can take up 500K or more of disk space. To
further complicate matters, to view an AVI file, you must have the same codec
(compression/decompression software) used to create the file on your computer.
While most computers have numerous codecs installed, which allow them to play
back most videos, there is a chance for incompatibility. You can see which ones

 One-Step Multimedia 815

you have using the Control Panel Multimedia applet under Windows 95, Win-
dows 98, or Windows NT 4; or under Windows 2000 by using the Computer Man-
agement applet, shown in Figure 13.1.

F I G U R E 1 3 . 1
Viewing audio and video

codecs in the Windows
2000 Computer

Management applet

You can also access codec information through the Control Panel under Windows
2000, but it’s not easy. First open the Sound and Multimedia applet and click the
Hardware tab in the dialog. Locate the Video Codecs entry in the list of devices
and double-click it. This opens the Device Property dialog. From here, click the
Properties tab. At this point, you can double-click again to get more information
on a particular codec, but what’s the point? Just use the new Windows 2000
Computer Management applet, which lists all the information in one place. (If the
Start Menu icon of the applet is not listed after you install Windows 2000, you can
display it via the Start Menu Properties dialog.)

One-Step Multimedia
Unless you’re writing a complete multimedia title, your multimedia needs are
probably quite simple. For example, you may just want to generate a simple
sound or play a certain WAV file. This section explains how to do this using single
VBA statements.

Chapter 13 • Adding Multimedia to Your Applications816

Beeping Away
If all you want to do is generate a simple, obvious noise, nothing beats the VBA
Beep statement. This single statement generates a sound regardless of the pres-
ence of multimedia hardware. If no hardware is installed, the result is just a “beep”
from the computer’s speaker. On the other hand, if a sound card is installed, VBA
plays the default system sound. (For more information on system sounds, see the
section “Playing System Event Sounds” later in this chapter.)

MessageBeep: One Step Better
If the default system sound doesn’t tickle your fancy, you can resort to the Win-
dows API MessageBeep function. MessageBeep plays one of five predefined
sounds associated with a Message Box icon. These sounds are based on the system
sounds you define using the Sounds applet in the Control Panel. You can use the
same constants you use with the VBA MsgBox function or those defined by the
Windows API. Table 13.2 lists both sets of constants. (You can also pass the value
&HFFFFFFFF to produce the default sound.)

MessageBeep is a simple function that accepts one of the constants listed in
Table 13.2 and produces that sound. If no sound card is installed, the function sim-
ply produces a beep from the computer speaker.

If your development tool doesn’t already play a system sound when it displays
a message box, you can use the MessageBeep and MsgBox functions together to
do this. The dhMsgBeep function, shown in Listing 13.1, provides an example.

T A B L E 1 3 . 2 : VBA and Windows API Constants for Producing System Sounds

Value VBA Constant Windows API Constant

0 none MB_OK

16 vbCritical MB_ICONHAND or MB_ICONSTOP

32 vbQuestion MB_ICONQUESTION

48 vbExclamation MB_ICONEXCLAMATION

64 vbInformation MB_ICONASTERISK or MB_ICONINFORMATION

 One-Step Multimedia 817

➲ Listing 13.1: Make a Message Box Make Noise

Function dhMsgBeep(strMsg As String, _
 Optional lngType As Long = 0, _
 Optional strCaption As String = "") As Long

 Dim lngSound As Long

 ' Get sound type
 lngSound = lngType And &HF0

 ' Play sound
 Call MessageBeep(lngSound)

 ' Show message box
 If strCaption = "" Then
 dhMsgBeep = MsgBox(strMsg, lngType)
 Else
 dhMsgBeep = MsgBox(strMsg, lngType, strCaption)
 End If
End Function

Playing Waveform Audio with PlaySound
For the ultimate in one-step multimedia, you can use the PlaySound API function.
This simple function lets you play any arbitrary waveform audio file, including
system sounds and waveform data contained in executable files. The declaration
of the PlaySound function is as follows:

Declare Function PlaySound Lib "winmm.dll" _
 Alias "PlaySoundA" (ByVal lpszSoundName As String, _
 ByVal hMod As Long, ByVal uFlags As Long) As Long

As you can see, PlaySound accepts only three arguments: the name of a sound,
the handle to a loaded module (more on that in a moment), and a set of flags. The
function is nonetheless highly versatile. Table 13.3 lists the flags you can pass to
the function.

Chapter 13 • Adding Multimedia to Your Applications818

Regardless of the other flags you choose to pass to the function, you should pass
one of the following: SND_FILENAME, SND_ALIAS, or SND_MEMORY. These
flags tell PlaySound how to interpret the lpszSoundName argument—as a file-
name, as a system event name, or as a memory address. The following sections
discuss each of these methods.

If you don’t pass one of these flags, PlaySound tries to determine the meaning of the
lpszSoundName argument on its own. However, it’s usually better to do this yourself.

The hMod argument is used only to play embedded resources with the SND_
MEMORY flag; otherwise, it must be set to 0.

Playing WAV Files

The most obvious use for PlaySound is to play arbitrary WAV files. You pass the
path to the wave file and a set of flags. The most common flags, along with
SND_FILENAME, are SND_SYNC and SND_ASYNC. Passing the SND_SYNC

T A B L E 1 3 . 3 : PlaySound Flag Constants

PlaySound Flag Description

SND_SYNC Plays the sound synchronously (the default).

SND_ASYNC Plays the sound asynchronously.

SND_NODEFAULT If the specified sound is invalid, PlaySound does not play the default
sound.

SND_LOOP Loops the sound until the next call to PlaySound.

SND_NOSTOP Does not stop the sound currently playing.

SND_NOWAIT Doesn’t wait if the sound driver is busy.

SND_MEMORY The lpszSoundName argument is a pointer to a sound in memory.

SND_ALIAS Sound is a system sound name.

SND_ALIAS_ID Sound is a system sound identifier.

SND_FILENAME Sound is a filename.

SND_RESOURCE Sound is a resource name.

 One-Step Multimedia 819

flag forces PlaySound to play the entire file before returning control to your appli-
cation. Conversely, the SND_ASYNC flag tells PlaySound to cue the sound, begin
playback, and return immediately. For example, suppose you wanted to play a
WAV file containing instructions on how to use your application while a user was
using it. You could use a statement like this:

Call PlaySound("C:\MYAPP\SOUNDS\HOWTO.WAV", 0&, _
 SND_ANSYC Or SND_FILENAME)

This would play the sound asynchronously, allowing the user to interact with
your application while the sound was playing.

If you don’t specify a path, PlaySound will look for the file using the same search
rules followed by the SearchPath function described in Chapter 12.

If PlaySound cannot play the requested sound, perhaps because the filename
you passed does not exist, it plays the default Windows sound (the familiar elec-
tronic “ding”). If you don’t want to hear this sound, pass the SND_NODEFAULT
flag. The function’s return value will tell you whether the sound was played suc-
cessfully, as the following code illustrates:

If Not CBool(PlaySound("MYSOUND.WAV", 0&, SND_NODEFAULT)) Then
 ' Something went wrong!
End If

If you don’t include the SND_NODEFAULT flag and PlaySound can’t play the
requested sound, it plays the default sound and returns a value of 1, indicating
success!

If you want to repeat a sound continuously, pass the SND_LOOP flag. Play-
Sound will continue to call the sound over and over until you call the function
again. You can call it with another sound or an empty string to stop the current
sound from looping. For instance, suppose you wanted to create the illusion of a
barking dog for a theft-deterrent system. You might use code like this:

' Make the dog bark
Call PlaySound("BARK.WAV", 0&, SND_FILENAME Or SND_LOOP)

' Okay, that’s enough!
Call PlaySound("", 0&, SND_NODEFAULT)

Chapter 13 • Adding Multimedia to Your Applications820

Playing System Event Sounds

The PlaySound function also provides an easy way to play Windows system event
sounds. The discussion of the MessageBeep function earlier in this chapter explained
a few of the system sounds. Other system sounds include system start and stop,
window minimize and maximize, and the infamous critical stop. (That’s the event
associated with an IPF.) You can change the sounds associated with various events
using the Sounds applet in the Control Panel, which is shown in Figure 13.2.

F I G U R E 1 3 . 2
You can change system

sounds using the Sounds
applet in the Control Panel

Playing Stock System Sounds

To play a system sound using PlaySound, you must specify its name along with
the SND_ALIAS flag. For example:

Call PlaySound("AppGPFault", 0&, SND_ALIAS Or SND_NODEFAULT)

Table 13.4 lists the system sounds recognized by the PlaySound function, as
well as the descriptions shown in the Sounds applet. Note that the two are differ-
ent. The system sound names are fixed and are mapped to the descriptive text
shown in the Sounds applet through the use of registry settings. You can find the
mappings in the HKEY_CURRENT_USER\AppEvents\EventLabels key.

 One-Step Multimedia 821

Playing Application Event Sounds

In addition to the system sounds listed in Table 13.4, other applications may add
event sounds that can also be customized using the Sounds applet. Unfortunately,
you can’t play these sounds directly using PlaySound and the SND_ALIAS flag.
To play application-specific sounds, you must first look in the Registry to locate
the sound entry, read the name of the WAV file, and then call PlaySound.

All event sounds, including the system sounds, are stored in the HKEY_
CURRENT_USER\AppEvents\Schemes\Apps key. Windows system sounds are
stored in a subkey called .Default (note the leading period). Other applications

T A B L E 1 3 . 4 : System Sounds You Can Play Using PlaySound

System Sound Name Default Description in Control Panel

.Default Default sound

AppGPFault Program error

Close Close program

EmptyRecycleBin Empty Recycle Bin

MailBeep New mail notification

Maximize Maximize

MenuCommand Menu command

MenuPopup Menu popup

Minimize Minimize

Open Open program

RestoreDown Restore down

RestoreUp Restore up

SystemAsterisk Asterisk

SystemExclamation Exclamation

SystemExit Exit Windows

SystemHand Critical Stop

SystemQuestion Question

SystemStart Start Windows

Chapter 13 • Adding Multimedia to Your Applications822

may add additional subkeys with their own event sounds. Beneath every subkey
there are other subkeys for each event, and beneath those are subkeys represent-
ing the default sound associated with the event, the sound that is currently
assigned, and the sounds associated with any sound schemes you may have
installed. Figure 13.3 shows the Registry Editor open to a portion of this wild Reg-
istry branch.

F I G U R E 1 3 . 3
Registry entries for

event sounds

To make retrieving the name of the sound file associated with an application
event easier, we created a function called dhGetEventSound. This function uses
the Registry functions explained in Chapter 10 to retrieve the sound associated
with any event, be it system or application specific. Listing 13.2 shows the
dhGetEventSound function.

For those of you keeping score at home, the dhGetEventSound function was
adapted from the dhReadWallpaper procedure described in the section “Working
with Registry Values” in Chapter 10.

 One-Step Multimedia 823

➲ Listing 13.2: Retrieve Any Event Sound from the Registry

Function dhGetEventSound(_
 Optional strApp As String = ".Default", _
 Optional strEvent As String = ".Default", _
 Optional strScheme As String = ".Current") As String

 Dim hKeySound As Long
 Dim strKeySound As String
 Dim lngResult As Long
 Dim strBuffer As String
 Dim cb As Long

 ' Build the key name
 strKeySound = "AppEvents\Schemes\Apps\" & _
 strApp & "\" & strEvent & "\" & strScheme

 ' Open the sound key
 lngResult = RegOpenKeyEx(dhcHKeyCurrentUser, _
 strKeySound, 0&, dhcKeyAllAccess, hKeySound)

 ' Make sure the call succeeded
 If lngResult = dhcSuccess Then

 ' Create the buffer
 strBuffer = Space(255)
 cb = Len(strBuffer)

 ' Read the default value
 lngResult = RegQueryValueEx(hKeySound, "", _
 0&, dhcRegSz, ByVal strBuffer, cb)

 ' Check return value
 If lngResult = dhcSuccess Then

 ' Return the value
 dhGetEventSound = Left(strBuffer, cb)
 End If

 ' Close the sound key
 lngResult = RegCloseKey(hKeySound)
 End If
End Function

Chapter 13 • Adding Multimedia to Your Applications824

As you can see from the function declaration, dhGetEventSound accepts three
optional arguments representing the application name, event name, and sound
scheme. We’ve supplied default values that, if you call the function with no argu-
ments, cause dhGetEventSound to return the default system sound. You can over-
ride these defaults with settings of your own. For example, the following code
plays the WAV file associated with starting Microsoft Money 2000. (Naturally,
you must have installed Money for this to work since its installation program cop-
ies the WAV files to your system and sets up the right Registry entries.)

Dim strFile As String

' Get the name of the WAV file
strFile = dhGetEventSound("MSMoney", "MSMoney_Intro")

' Play the WAV file if successful
If strFile <> "" Then
 Call PlaySound(strFile, 0&, SND_FILENAME Or SND_NODEFAULT)
End If

Unless you want to play a sound associated with a sound scheme other than the
current one, leave the third argument to dhGetEventSound blank.

Playing Embedded Sounds

The last use for PlaySound is to play sounds that are embedded within an EXE or
DLL file. Executable files (we’ll consider DLLs executable files for the purpose of
this discussion) usually contain numerous embedded objects known generically
as resources. Common resources include icons, bitmaps, menus, string tables, and
dialog box definitions. Application developers embed resources because doing so
reduces the number of additional files that must be distributed with the applica-
tion. Furthermore, it’s difficult, although by no means impossible, to extract
embedded resources from an executable. Therefore, embedding a resource is a
convenient way to protect intellectual property.

Creating Embedded WAV Files

If you plan on using numerous WAV files in your application, you may want to
consider embedding them in a DLL, even though it may not contain any program

 One-Step Multimedia 825

code. Developers commonly create resource-only DLLs for this purpose. Creating a
resource-only DLL requires only two steps:

1. Compile individual WAV files (or other resources) into a resource file using
a resource compiler such as RC.EXE, which ships with Microsoft Visual C++.

2. Link the resource file into a DLL using a linker such as LINK.EXE, which
also comes with Microsoft Visual C++.

Accomplishing the first step requires that you create a resource script. A resource
script tells the resource compiler what files to include and how to identify them in
the resource file. Listing 13.3 shows the contents of WAVE.RC, a sample resource
script we’ve provided for this chapter.

➲ Listing 13.3: A Sample Resource Script

///
//
// Resource script for creating embedded WAV files
//
// Make sure each WAVE resource is assigned a unique number!
//
///

101 WAVE DISCARDABLE "GO.WAV"

201 WAVE DISCARDABLE "NORTH.WAV"
202 WAVE DISCARDABLE "EAST.WAV"
203 WAVE DISCARDABLE "SOUTH.WAV"
204 WAVE DISCARDABLE "WEST.WAV"

// End RC file

Each line in the script file (except those beginning with //, which are com-
ments) identifies a resource. For each line you must include

• A unique number or name (without quotes) identifying the resource

• The type of resource (WAVE, in this case)

• The keyword DISCARDABLE (which tells Windows it can dynamically load
and unload the resource)

• The path to the resource

Chapter 13 • Adding Multimedia to Your Applications826

If the files are not located in the same directory as the RC file, you need to include
the path. Furthermore, since RC.EXE conforms to the same rules as a C compiler,
you must double all path separators (for example, C:\\WAVE\\GO.WAV).

You compile the resource script into a resource file by running RC.EXE from the
command line. For example,

RC WAVE.RC

results in a resource file with the same name as the resource script and an .RES file
extension.

At this point you need to link the resource file into a DLL. Since this is a resource-
only DLL, which requires no other object files, you can use a command line like
the following (assuming you’re using Microsoft’s LINK.EXE linker):

LINK /out:WAVE.DLL /dll /machine:i386 /noentry wave.res

Each part of the command line has a specific meaning:

• /out:outputfile defines the output file.

• /dll informs LINK.EXE to produce a DLL.

• /machine:machinetype defines the binary executable format.

• /noentry informs LINK.EXE that there is no entry point (that is, this is a
resource-only DLL).

• The remaining entries are the input files separated by spaces.

You can also use a make file instead of specifying all the options on the command
line. Use the syntax LINK @makefile, where makefile is the name of the make file.
We’ve included a make file, WAVE.MAK, with the sample code.

Playing an Embedded WAV File

Once you’ve compiled a series of WAV files into a DLL, you can use PlaySound to
play one. However, it’s not quite that simple because you have to load the resource
into memory first. That involves loading the DLL, finding the resource, loading
the resource, and calling PlaySound with the SND_MEMORY flag. Don’t despair,
though; we’ve created a wrapper function, dhPlayResource, that takes care of all
these tasks for you. It’s shown in Listing 13.4.

 One-Step Multimedia 827

If you’re using Visual Basic as your development tool, you can use VB’s LoadResource
function to obtain a memory pointer to the resource in place of the library- and
resource-loading code in Listing 13.4.

➲ Listing 13.4: The dhPlayResource Function Plays an Embedded
WAV File

Function dhPlayResource(strLibrary As String, _
 varResource As Variant, Optional lngFlags As Long = 0) _
 As Boolean

 Dim hMod As Long
 Dim hRes As Long
 Dim lngRes As Long
 Dim fOk As Boolean

 ' Load the library as a data file
 hMod = LoadLibraryEx(strLibrary, 0&, _
 LOAD_LIBRARY_AS_DATAFILE)
 If hMod <> 0 Then

 ' If the resource is a number add the "#",
 ' otherwise just use it
 If IsNumeric(varResource) Then
 varResource = "#" & varResource
 End If

 ' Find the WAVE resource in the library
 lngRes = FindResource(hMod, CStr(varResource), "WAVE")
 If lngRes <> 0 Then
 ' Load the resource
 hRes = LoadResource(hMod, lngRes)
 If hRes <> 0 Then
 ' Lock the resource and play it
 If CBool(LockResource(hRes)) Then
 dhPlayResource = CBool(PlayResSound(_
 hRes, 0&, SND_MEMORY Or lngFlags))
 End If

Chapter 13 • Adding Multimedia to Your Applications828

 ' Free the resource
 Call FreeResource(hRes)
 End If
 End If

 ' Free the library
 Call FreeLibrary(hMod)
 End If
End Function

Since a discussion of loading resources from an executable file goes beyond the
scope of this book, you’ll have to deduce how the function works on your own.
(However, do notice that the call to PlaySound includes the SND_MEMORY flag.)
You can try out the function by calling it with WAVE.DLL, the sample DLL pro-
vided with this chapter. It contains the five WAV files referenced in the WAVE.RC
file. To play these sounds and hear one of the author’s lovely voices, try executing
the following code:

?dhPlayResource("WAVE.DLL", 101), dhPlayResource("WAVE.DLL", 201)

If the sounds don’t play for you, it may be because the current directory is not set
to the one containing the DLL. In this case, edit the filename to include the path
where the DLL is located.

Because you must supply a pointer to the resource in memory as a Long integer,
we created a second declaration for PlaySound, called PlayResSound, which
defines the first argument as Long.

If you’re using Visual Basic and you have compiled WAVE resources into your
executable file, you can use a much more convenient form of PlaySound. Simply
pass the instance handle of your VB application as the second argument in
addition to the resource name and the SND_RESOURCE flag—for example:
PlaySound(“WAVENAME”, App.hInstance, SND_RESOURCE).

Whatever you do, don’t call the dhPlayResource function with the SND_ ASYNC
flag! This will cause the library to be unloaded before the sound is finished play-
ing, resulting in a very nasty IPF.

 Understanding the Media Control Interface 829

Understanding the Media Control Interface
The Media Control Interface component of Windows’ multimedia services is an
extremely powerful mechanism for controlling multimedia devices. Using just a
few (three!) functions, it can play audio CDs, record digital audio, control VCRs.
(You get the idea.) Furthermore, it offers two ways of controlling devices: a com-
mand string-based approach and a command message-based approach. This sec-
tion looks at MCI in detail, including both interfaces.

Due to space limitations, we couldn’t provide a complete listing of MCI com-
mands and their options. If the examples in this book aren’t enough for you to
accomplish your tasks, consult additional resources, such as the Microsoft Devel-
oper Network (MSDN) library CD-ROM. You can also find MSDN online at
http://msdn.microsoft.com/.

Working with MCI Devices
MCI was designed from the start to support a number of different multimedia
devices. Each device is assigned a unique device type that can be expressed as a text
description or a number. You use these designations in MCI functions. Table 13.5
provides a summary of the device types, along with their identifiers.

T A B L E 1 3 . 5 : Multimedia Device Types and MCI Designations

Device Device Type Constant Device Type String

Compact disc audio MCI_DEVTYPE_CD_AUDIO cdaudio

Digital video in a window MCI_DEVTYPE_DIGITAL_VIDEO digitalvideo or avivideo

Digital-audio tape player MCI_DEVTYPE_DAT dat

Image scanner MCI_DEVTYPE_SCANNER scanner

MIDI sequencer MCI_DEVTYPE_SEQUENCER sequencer

Other MCI devices MCI_DEVTYPE_OTHER other

Overlay video (analog) MCI_DEVTYPE_OVERLAY overlay or avivideo

Video-cassette recorder MCI_DEVTYPE_VCR vcr or player

Videodisc player MCI_DEVTYPE_VIDEODISC videodisc

Waveform audio MCI_DEVTYPE_WAVEFORM_AUDIO waveaudio

Chapter 13 • Adding Multimedia to Your Applications830

Simple versus Complex Device Types

As far as MCI is concerned, there are two broad classes of multimedia devices:
simple and complex. Simple devices are those that are more or less inseparable
from the media they handle. For example, audio CD players are simple devices
because they can handle only one media object at a time (the compact disc), and
the media is either available for playing or it isn’t. On the other hand, complex
devices can create, save, load, and unload media objects dynamically. Windows’
waveform audio driver is an example of a complex device. You can use it to create
and save new WAV files or to load and play existing ones.

Determining Which Devices Are Installed

Device information is stored in the system Registry in the HKEY_LOCAL_
MACHINE\System\CurrentControlSet\Control\MediaResources\mci key.
Figure 13.4 shows REGEDIT open to this branch. You can use the Registry func-
tions explained in Chapter 10 to retrieve this information.

F I G U R E 1 3 . 4
Viewing installed MCI
devices in the Registry

 Understanding the Media Control Interface 831

Note the Disabled value for the Registry key shown in Figure 13.4. While there
may be a number of MCI devices listed, those that aren’t actually installed in the
computer will have a Disabled setting of 1.

Working with Devices

Regardless of which type of device you decide to use, working with devices fol-
lows the same overall pattern. You begin by opening the device. This tells MCI
what device you intend to use and prepares it for subsequent commands. If the
device is available (which may not be the case—a device could be in use by
another process), MCI assigns the device a unique device ID that your application
uses to control the device.

Once you’ve opened a device, you use it by sending various commands, using
one of the two supported interfaces. The following sections describe the interfaces
in detail.

Finally, when you’re finished using a device, you close it. Closing a device releases
any memory allocated by MCI for the session. It also makes the device available for
other applications or processes. This is important for media types such as compact
disc audio because they cannot be shared among multiple applications.

MCI Commands

Whether you decide to use the command string interface or the command mes-
sage interface, you control devices using a fixed set of commands. These com-
mands are represented by both strings and numeric constants for use with the
different interfaces. While all devices must support a core set of commands, some
commands apply only to certain device types. MCI categorizes commands in one
of four ways: system, required, basic, and extended. The next few sections explain
each category and summarize the commands that make it up. Later sections give
examples of using these commands to play CD audio, waveform audio, and dig-
ital video devices.

System Commands

System commands, of which there are only two, are handled directly by MCI rather
than by individual devices. The MCI_BREAK command (also represented by the
command string “break”) sets a break key for an MCI device. You press the break
key to interrupt device actions, such as playing and recording. The MCI_SYSINFO
command (command string “sysinfo”) requests information about MCI devices.

Chapter 13 • Adding Multimedia to Your Applications832

Required Commands

All MCI devices must support a set of required commands. These commands, along
with a standard set of options, represent the common capabilities of all MCI
devices. Table 13.6 summarizes the MCI required commands. (This and other
tables in this section list the command message constant, as well as the command
string and description.)

Basic Commands

As you can see from Table 13.6, required commands supply only the minimum
functionality needed to initialize, query, and close a device. To control a device for
a useful purpose, you must call one of the basic commands shown in Table 13.7.
Most, but not all, devices implement these commands. If you need to know whether
a device supports a particular command before calling it, you can use the MCI_
GETDEVCAPS command listed in Table 13.6. Most of the examples later in this
chapter focus on these commands.

T A B L E 1 3 . 6 : MCI Required Commands

Command Message
Constant

Command String Description

MCI_GETDEVCAPS capability Obtains device capabilities (for example, whether
the device can record media objects).

MCI_CLOSE close Closes the device.

MCI_INFO info Obtains textual device information.

MCI_OPEN open Opens the device and, optionally, a media object.

MCI_STATUS status Obtains status information (for example, whether
the device is currently playing.)

T A B L E 1 3 . 7 : MCI Basic Commands

Command Message
Constant

Command String Description

MCI_LOAD load Loads a media object from a file.

MCI_PAUSE pause Pauses playback or recording.

MCI_PLAY play Starts playback.

 Understanding the Media Control Interface 833

Extended Commands
A few devices, such as digital video and videodisc players, support extended com-
mands. These tend to be the most complex of the lot, designed to enable features
specific to a particular device. Table 13.8 summarizes these commands, along with
the devices they apply to.

MCI_RECORD record Starts recording.

MCI_RESUME resume Resumes paused playback or recording.

MCI_SAVE save Saves media object to disk.

MCI_SEEK seek Positions current playback or recording position.

MCI_SET set Sets various operating parameters.

MCI_STATUS status Obtains status information. (Note that this is
also a required command.)

MCI_STOP stop Stops playback.

T A B L E 1 3 . 8 : MCI Extended Commands

Command Message Command
String

Description Applies to

MCI_CONFIGURE configure Displays a configuration dialog. digitalvideo

MCI_CUE cue Cues a file for playback. digitalvideo,
waveaudio

MCI_DELETE delete Deletes a portion of a media object. waveaudio

MCI_ESCAPE escape Sends escape codes to a device. videodisc

MCI_FREEZE freeze Freezes video signal acquisition. overlay

MCI_PUT put Defines source, destination, and
frame windows.

digitalvideo, overlay

MCI_REALIZE realize Realizes a device’s palette into a
device context.

digitalvideo

MCI_SETAUDIO setaudio Sets audio parameters. digitalvideo

T A B L E 1 3 . 7 : MCI Basic Commands (continued)

Command Message
Constant

Command String Description

Chapter 13 • Adding Multimedia to Your Applications834

The MCI Command String Interface
The MCI command string interface was designed to allow control of multimedia
devices using simple string-based commands. Originally aimed at programming
languages that could not easily handle complex data structures, it has been mostly
supplanted by the more powerful and flexible command message interface described
in the next section. Nonetheless, we cover this interface here both for completeness
and because, for simple tasks, it’s easier to implement than command messages.

The mciSendString Function

All the command string capabilities are accessed with a single function, mciSend-
String. Its declaration is as follows:

Declare Function mciSendString _
 Lib "winmm.dll" Alias "mciSendStringA" _
 (ByVal lpstrCommand As String, _
 ByVal lpstrReturnString As String, _
 ByVal uReturnLength As Long, _
 ByVal hwndCallback As Long) As Long

MCI_SETVIDEO setvideo Sets video parameters. digitalvideo

MCI_SIGNAL signal Identifies a specific position within
a signal.

digitalvideo

MCI_SPIN spin Starts or stops disc spinning. videodisc

MCI_STEP step Steps through playback frame by
frame.

digitalvideo,
videodisc

MCI_UNFREEZE unfreeze Enables video signal acquisition. overlay

MCI_UPDATE update Repaints the current frame. digitalvideo

MCI_WHERE where Defines source, destination, or
frame areas.

digitalvideo, overlay

MCI_WINDOW window Controls the display window. digitalvideo, overlay

T A B L E 1 3 . 8 : MCI Extended Commands (continued)

Command Message Command
String

Description Applies to

 Understanding the Media Control Interface 835

As you can see, mciSendString accepts four arguments that dictate the com-
mand carried out by the device. It returns 0 on success and a nonzero error code
on failure. The error codes are the same as those used by the command message
interface. (For more information, see the section “MCI Errors” later in this chapter.)

Of the four arguments, you’ll be primarily interested in only the first two. These
two arguments allow you to send commands and receive results from MCI. The
third argument, uReturnLength, is merely an indicator of the size of the data
returned. The final argument, hwndCallback, is the handle of the window that
you want to receive status messages from MCI. Using this argument requires
hacking a window’s message loop—a topic well beyond the scope of this book.

Constructing Command Strings

You instruct MCI to take action by passing a command string in the lpstrCom-
mand argument. Constructing command strings is probably the second most
tedious part of working with the command string interface. (Parsing return infor-
mation is the first!) The more complex the action you want to take, the more
tedious it is. Command strings use a standard verb-object-modifier syntax:

command mediatype|filename|alias [options]

All command strings begin with a predefined MCI command. The command is
followed by the media type descriptor string, a registered multimedia filename, or
an alias (which is just a unique string). Specifying an alias when you open a device
makes it easier to refer back to the device in subsequent commands. Following the
device or alias are any options a particular command requires.

Listing 13.5 shows a simple procedure that plays a MIDI file. You can see that
command strings are constructed by concatenating the filename to MCI com-
mands and that an alias is used to refer back to the open device.

For all our examples involving MCI, you should step through the code one line at a
time. Otherwise, the device will be closed before you have a chance to see or hear
the results.

Chapter 13 • Adding Multimedia to Your Applications836

➲ Listing 13.5: Play a MIDI File Using the MCI Command String
Interface

Sub dhPlayMIDIFile(strFile As String)
 Dim strCommand As String
 Dim strRet As String
 Dim lngBytes As Long
 Dim lngRet As Long

 ' Open the file (must have a .MID or .RMI extension)
 strCommand = "open " & strFile & " alias seq"
 strRet = Space(255)
 lngRet = mciSendString(strCommand, strRet, lngBytes, 0&)

 ' If successful, start playback
 If lngRet = 0 Then
 strCommand = "play seq"
 strRet = Space(255)
 lngRet = mciSendString(strCommand, strRet, lngBytes, 0&)
 End If

 ' Close the device
 strCommand = "close seq"
 strRet = Space(255)
 lngRet = mciSendString(strCommand, strRet, lngBytes, 0&)
End Sub

If the filename passed in an MCI command string contains spaces, you must enclose
the filename in double quotation marks.

In this example, no information is returned by MCI, so allocating space for a
buffer in the strRet variable is unnecessary. For those commands that do return
information (such as the “where” command), you should allocate the buffer prior
to calling mciSendString and inspect its contents afterward. This section has con-
sidered the command string interface as a simple method of playing multimedia
elements. For information on retrieving information using the command message
interface, see the section “MCI Information Functions” later in this chapter.

 Understanding the Media Control Interface 837

The MCI Command Message Interface
The MCI command message interface is a simple but powerful mechanism for
controlling multimedia devices. Like the command string interface, its purpose is
to allow you to send commands to devices. However, rather than using text strings,
the command message interface uses integer commands and structures to specify
options.

The mciSendCommand Function

You use the command message interface by calling the mciSendCommand func-
tion, which is declared as follows:

Declare Function mciSendCommand _
 Lib "winmm.dll" Alias "mciSendCommandA" _
 (ByVal wDeviceID As Long, ByVal uMessage As Long, _
 ByVal dwParam1 As Long, dwParam2 As Any) As Long

You pass four pieces of information in the function’s arguments:

• The device ID of an open device. This can be 0 for devices not yet opened or
MCI_ALL_DEVICE_ID to send a message to all open devices.

• The message expressed as a numeric constant.

• A bitmask of flags associated with the message.

• A pointer to a structure containing details concerning the message.

Like its counterpart mciSendString, mciSendCommand returns 0 on success or
an MCI error code on failure. The beauty of mciSendCommand is that it works
with a variety of devices through its ability to accept different data types as the
fourth argument.

General Message Flags

The third argument to mciSendCommand is a combination of flags that fine-tune
the behavior of the command. Most of the flag values are associated with certain
commands and the data structures they use. (See the next section, “Message Infor-
mation Structures.”) However, there are two flags you can use with all commands:
MCI_WAIT and MCI_NOTIFY.

The MCI_WAIT flag instructs MCI to wait until the command has been carried
out. Depending on the device, this may take a considerable amount of time. For
example, audio CD devices must spin up in response to an MCI_OPEN command.

Chapter 13 • Adding Multimedia to Your Applications838

Loading a large WAV file into a waveform audio device can also be time consum-
ing. Omitting this flag causes the mciSendCommand function to return immedi-
ately, but use this option with care—if you attempt to carry out a second, dependent
action before the first action completes (playing a WAV file before it’s finished
loading, for instance), the command may fail.

If you choose not to use the MCI_WAIT flag, you can determine the status of a
device by issuing the MCI_STATUS command. (See the section “MCI Information
Functions” a little later in this chapter for more information.)

The MCI_NOTIFY flag instructs MCI to notify your application when the com-
mand completes. Specifically, it sends an MM_MCINOTIFY message to a window
that you designate. If you are using a development tool capable of intercepting
window messages, you can use this flag to detect, for instance, when MCI has fin-
ished loading a file.

Message Information Structures

MCI defines numerous data types that you use in conjunction with different com-
mands. We’ve included the declarations for these types (along with the API func-
tions and constants) in the basMCIBase module. Since there are so many, the ones
used in this chapter are explained in the sections describing our sample code.

In general, each command message has an associated structure. For example,
the MCI_OPEN command uses the MCI_OPEN_PARMS structure:

Type MCI_OPEN_PARMS
 lngCallback As Long
 lngDeviceID As Long
 strDeviceType As String
 strElementName As String
 strAlias As String
End Type

Every structure designed to work with MCI commands has a lngCallback member.
You use this to specify the handle of a window that will receive an MM_MCINOTIFY
message when the command finishes. Of course, this feature is useful only if
you’re using a development tool that can hook into a window’s message queue or
if you have an ActiveX control that can do so.

 Understanding the Media Control Interface 839

The MCI message interface does not require you to use every member variable
of a structure. Instead, you fill in the values you need and pass a bitmask of flags
to mciSendCommand that indicate which elements are used. For example, if you
were opening a waveform audio device and set the strElementName member to
the name of a WAV file, you would also need to pass the MCI_OPEN_ELEMENT
flag as part of the call to mciSendCommand. If you pass a flag but don’t fill in the
member variable with a valid value, an error occurs.

Additionally, some devices may use more complex structures for certain com-
mands. For example, overlay video devices use the MCI_OVLY_OPEN_PARMS
structure with the MCI_OPEN command instead of MCI_OPEN_PARMS. These
structures let you supply additional information that is unique to the device.

MCI Errors

If an error occurs during a call to mciSendCommand, the result is a nonzero error
code. MCI has conveniently provided a function called mciGetErrorString that
returns a description for a given error code. You should always check the result of
calling mciSendCommand and, if it’s greater than 0, call mciGetErrorString to
retrieve the text. We’ve written a wrapper function called dhMCIError to enable
you to do this. Listing 13.6 shows the function, along with the declaration for
mciGetErrorString.

➲ Listing 13.6: A Function for Retrieving MCI Error Descriptions

Declare Function mciGetErrorString _
 Lib "winmm.dll" Alias "mciGetErrorStringA" _
 (ByVal dwError As Long, ByVal lpstrBuffer As String, _
 ByVal uLength As Long) As Long

Function dhMCIError(ByVal lngErr As Long, _
 Optional varTag As Variant) As String

 Dim strBuffer As String
 Dim lngPos As Long
 Dim lngRet As Long

 If lngErr <> 0 Then
 ' Set up a buffer
 strBuffer = Space(1024)

Chapter 13 • Adding Multimedia to Your Applications840

 Call mciGetErrorString(lngErr, strBuffer, _
 Len(strBuffer))

 ' Trim string
 lngPos = InStr(strBuffer, vbNullChar)
 If lngPos > 0 Then
 strBuffer = Left(strBuffer, lngPos - 1)

 ' Get tag?
 lngPos = InStr(strBuffer, " ")
 If Not IsMissing(varTag) And lngPos > 0 Then
 varTag = Left(strBuffer, lngPos - 1)
 End If

 ' Return result
 dhMCIError = Mid(strBuffer, lngPos + 1)
 End If
 End If
End Function

You can pass an optional Variant argument to the function. All MCI error mes-
sages begin with the string “MMSYSTEMxxx ”, where xxx is the error code. dhM-
CIError normally strips this encoded error string from the text it returns.
However, if you supply a variable as the varTag argument, dhMCIError places
the prefix text in it.

MCI Time Formats

MCI expresses time intervals for devices using a number of different formats.
Retrieving the current position and controlling playback depend on your under-
standing of these formats. Table 13.9 lists the numeric constant and description of
each format.

T A B L E 1 3 . 9 : MCI Time Formats

Time Format Constant Description

MCI_FORMAT_BYTES Bytes (in pulse code modulated [PCM] format files)

MCI_FORMAT_MILLISECONDS Milliseconds

MCI_FORMAT_MSF Minute/second/frame

 Understanding the Media Control Interface 841

Not all time formats are appropriate for all device types. In general, you’ll use
TMSF format for compact disc audio, milliseconds, or samples for waveform
audio; and the SMPTE (Society of Motion Picture and Television Engineers) for-
mats for all video devices.

Regardless of the format, MCI stores time information in a Long integer. For
TMSF, MSF, and SMPTE types, each byte represents a distinct unit of time. Table
13.10 lists these formats and the information packed into each byte.

To make it easy to convert from MCI to VBA time formats, we created the func-
tion shown in Listing 13.7. You call it with the value and format of an MCI time
interval. The result is a VBA Date variable. Listing 13.7 also shows the user-defined
data types we created to make splitting a Long integer into its component bytes
easier.

MCI_FORMAT_SAMPLES Samples

MCI_FORMAT_SMPTE_24 SMPTE, 24 frame

MCI_FORMAT_SMPTE_25 SMPTE, 25 frame

MCI_FORMAT_SMPTE_30 SMPTE, 30 frame

MCI_FORMAT_SMPTE_30DROP SMPTE, 30 frame drop

MCI_FORMAT_TMSF Track/minute/second/frame

MCI_SEQ_FORMAT_SONGPTR MIDI song pointer

T A B L E 1 3 . 1 0 : Data Storage for Different Time Formats

Byte Position TMSF MSF SMPTE

High-order word/high-order byte Frames Unused Frames

High-order word/low-order byte Seconds Frames Seconds

Low-order word/high-order byte Minutes Seconds Minutes

Low-order word/low-order byte Tracks Minutes Hours

T A B L E 1 3 . 9 : MCI Time Formats (continued)

Time Format Constant Description

Chapter 13 • Adding Multimedia to Your Applications842

➲ Listing 13.7: Convert between MCI and VBA Time Formats

Type dhDoubleWordByByte
 LowWordLowByte As Byte
 LowWordHighByte As Byte
 HighWordLowByte As Byte
 HighWordHighByte As Byte
End Type

Type dhDoubleWordLong
 DoubleWord As Long
End Type

Function dhMCITimeToVBATime(lngTime As Long, _
 lngTimeFormat As Long) As Date

 Dim dwb As dhDoubleWordByByte
 Dim dwl As dhDoubleWordLong
 Dim datResult As Date

 ' Break up long into four bytes using LSet
 dwl.DoubleWord = lngTime
 LSet dwb = dwl

 ' Use the busted-up bytes
 With dwb
 ' Which time format?
 Select Case lngTimeFormat
 ' frames (assume 30/sec)
 Case MCI_FORMAT_FRAMES
 datResult = TimeSerial(0, _
 0, lngTime / 30)
 ' minute/second/frame
 Case MCI_FORMAT_MSF
 datResult = TimeSerial(0, _
 .LowWordLowByte, _
 .LowWordHighByte)
 ' track/minute/second/frame
 Case MCI_FORMAT_TMSF
 datResult = TimeSerial(0, _
 .LowWordHighByte, _
 .HighWordLowByte)

 Understanding the Media Control Interface 843

 ' Society of Motion Picture Engineers
 ' (hour/minute/second/frame)
 Case MCI_FORMAT_SMPTE_24, _
 MCI_FORMAT_SMPTE_25, _
 MCI_FORMAT_SMPTE_30, _
 MCI_FORMAT_SMPTE_30DROP, _
 MCI_FORMAT_HMS
 datResult = TimeSerial(_
 .LowWordLowByte, _
 .LowWordHighByte, _
 .HighWordLowByte)
 ' Milliseconds
 Case MCI_FORMAT_MILLISECONDS
 datResult = lngTime / 86400000
 End Select
 End With

 ' Set the return value
 dhMCITimeToVBATime = datResult
End Function

MCI Information Functions

In addition to specific examples of controlling multimedia devices, there are two
commands you can use to obtain information about a device. We’ve encapsulated
these commands, MCI_STATUS and MCI_INFO, in two wrapper functions.

MCI_STATUS

You use the MCI_STATUS command to obtain status information regarding a
device. For example, you can determine whether a CD audio device is ready to
play. We’ve written a wrapper function for this command, dhMCIStatus, which is
shown in Listing 13.8.

➲ Listing 13.8: A Wrapper Function for the MCI_STATUS Command

Function dhMCIStatus(lngDevID As Long, lngItem As Long, _
 Optional lngAddlFlags As Long = 0, _
 Optional bytTrack As Byte = 0) As Long

 Dim mst As MCI_STATUS_PARMS
 Dim lngRet As Long

Chapter 13 • Adding Multimedia to Your Applications844

 ' Make sure device ID is valid
 If lngDevID Then

 ' Set values of MCI_STATUS_ITEM structure
 With mst
 .lngItem = lngItem
 .lngTrack = bytTrack

 ' Call mciSendCommand
 lngRet = mciSendCommand(lngDevID, MCI_STATUS, _
 MCI_STATUS_ITEM Or lngAddlFlags, mst)

 ' If successful, return lngReturn
 ' member of MCI_STATUS_ITEM structure
 If lngRet = 0 Then
 dhMCIStatus = .lngReturn
 End If
 End With
 End If
End Function

dhMCIStatus accepts a device ID and a status item number. A complete list of
status items is shown in Table 13.11. You can also pass an optional bit mask of
additional flags that dhMCIStatus merges with the required flag (MCI_STATUS_
ITEM) before passing it to mciSendCommand. Finally, for status information that
applies to a particular media track, you can pass the track number.

For track-dependent information, you must pass the MCI_TRACK flag in the
lngAddlFlags argument in addition to the track number.

T A B L E 1 3 . 1 1 : MCI_STATUS_ITEM Types

Status Item Constant Description

MCI_STATUS_LENGTH Length of a particular media object or track.

MCI_STATUS_POSITION Current position (in the current time format).

MCI_STATUS_NUMBER_OF_TRACKS Number of tracks for the current audio compact disc.

MCI_STATUS_MODE Current device mode (stopped, playing, and so on).

 Understanding the Media Control Interface 845

To determine whether a CD audio device is ready to play, you would use a
statement like this:

fReady = CBool(dhMCIStatus(lngDeviceID, MCI_STATUS_READY))

You can use the MCI_STATUS command to return the current operating mode
of a device. Calling dhMCIStatus with the MCI_STATUS_MODE constant results
in one of the constant values listed in Table 13.12. For example, you can determine
whether a device, such as a CD audio player, is currently playing by using code
like this:

fIsPlaying = (dhMCIStatus(lngDeviceID, MCI_STATUS_MODE) = _
 MCI_MODE_PLAY)

MCI_STATUS_MEDIA_PRESENT Returns 1 if CD audio media is present.

MCI_STATUS_TIME_FORMAT Current time format.

MCI_STATUS_READY Returns 1 if the device is ready to play or record.

MCI_STATUS_CURRENT_TRACK The CD audio track currently playing.

MCI_WAVE_STATUS_BLOCKALIGN Waveform audio block alignment.

MCI_WAVE_STATUS_FORMATTAG Waveform audio format tag (for example, “PCM” for
pulse code modulation).

MCI_WAVE_STATUS_CHANNELS Waveform audio channels (1 = mono, 2 = stereo).

MCI_WAVE_STATUS_SAMPLESPERSEC Waveform audio sample rate in Hertz (11,025; 22,050; or
44,100).

MCI_WAVE_STATUS_AVGBYTESPERSEC Average storage size for 1 second of waveform audio.

MCI_WAVE_STATUS_BITSPERSAMPLE Waveform audio bits per sample (8 or 16).

MCI_WAVE_STATUS_LEVEL Waveform audio record level.

MCI_SEQ_STATUS_TEMPO MIDI sequencer tempo.

MCI_SEQ_STATUS_PORT MIDI sequencer port.

MCI_SEQ_STATUS_OFFSET MIDI sequencer SMPTE offset.

MCI_SEQ_STATUS_DIVTYPE MIDI sequencer file division type.

T A B L E 1 3 . 1 1 : MCI_STATUS_ITEM Types (continued)

Status Item Constant Description

Chapter 13 • Adding Multimedia to Your Applications846

MCI_INFO

You use the MCI_INFO command to obtain textual information for a device. For
example, you can determine the unique media ID assigned to audio compact
discs. We’ve written a wrapper function for the MCI_INFO command called
dhMCIInfo, shown in Listing 13.9.

➲ Listing 13.9: A Wrapper Function for the MCI_INFO Command

Function dhMCIInfo(lngDevID As Long, lngInfo As Long) As String
 Dim min As MCI_INFO_PARMS
 Dim lngRet As Long

 If lngDevID Then
 With min
 ' Set up buffer
 .strReturn = Space(255)
 .lngRetSize = Len(.strReturn)
 lngRet = mciSendCommand(lngDevID, MCI_INFO, _
 lngInfo, min)

 ' If successful, return portion of
 ' strReturn buffer
 If lngRet = 0 Then
 dhMCIInfo = Left(.strReturn, _
 InStr(.strReturn, vbNullChar) - 1)

T A B L E 1 3 . 1 2 : Device Modes

Device Mode Constant Description

MCI_MODE_NOT_READY Device is not ready to play or record.

MCI_MODE_STOP Device is currently stopped.

MCI_MODE_PLAY Device is currently playing.

MCI_MODE_RECORD Device is currently recording.

MCI_MODE_SEEK Device is currently seeking (moving to new position).

MCI_MODE_PAUSE Device is currently paused.

MCI_MODE_OPEN Device door is open.

 Putting MCI to Work 847

 End If
 End With
 End If
End Function

You call dhMCIInfo with a device ID and one of the item constants listed in
Table 13.13. Therefore, to return the media ID for a compact disc, you would use
code like this:

strMediaID = dhMCIInfo(lngDeviceID, MCI_INFO_MEDIA_IDENTITY)

Not all information items apply to all devices and media types. If you request an
inappropriate item, the result is an empty string.

Putting MCI to Work
To demonstrate the power of the Media Control Interface, we’ve constructed sev-
eral working examples that do such things as playing audio CDs and recording
waveform audio. We’ve implemented all of these as class modules to make them
easy to integrate into your applications. The next several sections use the samples
to explain the basic elements of MCI’s command message interface.

T A B L E 1 3 . 1 3 : MCI_INFO Types

Information Item Constant Description

MCI_INFO_PRODUCT Description of the device hardware

MCI_INFO_FILE Media filename

MCI_INFO_MEDIA_UPC Media UPC (Universal Product Code)

MCI_INFO_MEDIA_IDENTITY Unique media identifier

MCI_INFO_NAME Name of the current track or MIDI sequence

MCI_INFO_COPYRIGHT Media copyright information

Chapter 13 • Adding Multimedia to Your Applications848

If you want to use these classes in your applications, be sure to include basMCIBase,
as well as the class module.

Playing Audio CDs
One of the simplest applications of MCI is playing audio compact discs. It’s sim-
ple because all you really have to do is open the CD audio device and start play-
back. However, we’ve added a few additional features to our class module, such
as the ability to retrieve track times and play individual tracks. You’ll find all the
sample code in the CDPlayer class module. Table 13.14 provides a complete list-
ing of its properties and methods.

T A B L E 1 3 . 1 4 : CDPlayer Class Properties and Methods

Member Type Name Description

Properties Frame Current track position in frames.

 IsReady Returns True if the device is ready to play.

 IsPlaying Returns True if the device is playing.

 MediaID Compact disc media identifier.

 Minute Current track position in minutes.

 Mode Current device mode.

 Second Current track position in seconds.

 Time Current track position as a VBA Date value.

 Track Current track.

 Tracks Number of tracks.

 TrackTime Track length for a given track.

Methods Pause Pauses playback.

 Play Starts playback at current position or plays a given track.

 Position Positions the device to a given track, minute, and second.

 StopPlaying Stops playback.

 Putting MCI to Work 849

Opening a Device

To open any device, you send the MCI_OPEN command, specifying the device
type you want to open. This information is contained in an instance of the
MCI_OPEN_PARMS data type:

Type MCI_OPEN_PARMS
 lngCallback As Long
 lngDeviceID As Long
 strDeviceType As String
 strElementName As String
 strAlias As String
End Type

At a minimum, you must specify the device type in the strDeviceType member.
You can optionally supply the name of a media object (such as a WAV file for
waveform audio devices) in the strElementName member. If you want to assign
an alias to the open device, pass it in the strAlias member.

Since an audio compact disc device is a simple device, you needn’t supply
an element name. Our CDPlayer class opens the device in a procedure called
OpenDevice. Listing 13.10 shows the portion of the procedure that calls
mciSendCommand.

➲ Listing 13.10: Open an Audio Compact Disc Device

Dim lngRet As Long
Dim mop As MCI_OPEN_PARMS

' If we’re already open then close
If mlngDevID Then
 Call CloseDevice
End If

' Set device type
mop.strDeviceType = "cdaudio"

' Open the device
lngRet = mciSendCommand(0&, MCI_OPEN, MCI_OPEN_TYPE, mop)
If lngRet = 0 Then
 ' Store the device id
 mlngDevID = mop.lngDeviceID

Chapter 13 • Adding Multimedia to Your Applications850

Else
 Err.Raise lngRet, "CDPlayer::OpenDevice", _
 dhMCIError(lngRet)
End If

Note the device type, “cdaudio”. This informs MCI of the device to open. The
flag in the function call, MCI_OPEN_TYPE, instructs MCI to look at the strDevice-
Type member of the MCI_OPEN_PARMS structure.

If the function call is successful, the procedure stores the contents of the lng-
DeviceID member in a class-level variable, mlngDevID. We use this in subsequent
calls to identify the device.

Getting Track Information

After opening the device, OpenDevice retrieves information on the number and
length of tracks on the compact disc. Listing 13.11 shows the code that accom-
plishes this.

➲ Listing 13.11: Retrieve Compact Disk Track Information

' Get number of tracks
lngRet = dhMCIStatus(mlngDevID, _
 MCI_STATUS_NUMBER_OF_TRACKS)
If lngRet > 0 Then

 ' Get track times (note: these
 ' will be in MSF time format)
 Set mcolTracks = New Collection
 For bytTrack = 1 To lngRet

 ' Get time for one track
 lngRet = dhMCIStatus(mlngDevID, _
 MCI_STATUS_LENGTH, MCI_TRACK, bytTrack)

 ' Add track time to collection
 mcolTracks.Add lngRet, "Track" & bytTrack
 Next
End If

The procedure uses the dhMCIStatus function (described in the section “MCI
Information Functions” earlier in this chapter) to obtain the number of tracks. It

 Putting MCI to Work 851

then calls the function again, once for each track, to retrieve the length of each
track in MSF time format. To make it easy to retrieve this information later, the
procedure adds the data to a class-level Collection object, mcolTracks.

Setting the Time Format

Once the track information has been collected, the procedure sets the time format
of the device to TMSF (tracks/minutes/seconds/frames). It does this so it will be
easy to play an individual track. If the procedure didn’t change the format, all
commands to play a portion of the compact disc would have to be expressed in
MSF format. A single function call using the MCI_SET command changes the time
format:

msp.lngTimeFormat = MCI_FORMAT_TMSF
lngRet = mciSendCommand(mlngDevID, MCI_SET, _
 MCI_SET_TIME_FORMAT, msp)

Note that setting the lngTimeFormat member of an MCI_SET_PARMS structure
specifies the new time format.

Starting Playback

The Play method is a good example of using the MCI_PLAY command. You can
use MCI_PLAY to start playback at a particular point in a media object or at the
current position. Listing 13.12 shows CDPlayer’s Play method, as well as the MCI_
PLAY_PARMS declaration.

➲ Listing 13.12: Play a CD Audio Track

Type MCI_PLAY_PARMS
 lngCallback As Long
 lngFrom As Long
 lngTo As Long
End Type

Public Sub Play(Optional Track As Byte = 0)
 Dim mpp As MCI_PLAY_PARMS
 Dim lngRet As Long

 If mlngDevID Then

Chapter 13 • Adding Multimedia to Your Applications852

 ' If no track was supplied play from
 ' the current position
 If Track = 0 Then
 lngRet = mciSendCommand(mlngDevID, _
 MCI_PLAY, 0&, 0&)

 ' Otherwise, set begin and end tracks
 ' and play just that track
 Else
 mpp.lngFrom = Track
 mpp.lngTo = Track + 1
 lngRet = mciSendCommand(mlngDevID, MCI_PLAY, _
 MCI_FROM Or MCI_TO, mpp)
 End If

 If lngRet <> 0 Then
 Err.Raise lngRet, "CDPlayer::Play", _
 dhMCIError(lngRet)
 End If
 End If
End Sub

You’ll notice that Play accepts an optional track number. If this is omitted, Play
simply starts playback at the current position by calling the MCI_PLAY command
with no additional flags and a null pointer in place of the MCI_PLAY_PARMS
structure. On the other hand, if a track number is supplied, it sets the lngFrom and
lngTo members of the structure and calls MCI_PLAY with the MCI_FROM and
MCI_TO flags.

Even though the lngFrom and lngTo members of the MCI_PLAY_PARMS structure
should be expressed using the TMSF time format, that’s not important in this case.
Since, in TMFS format, the track number is stored in the low-order byte of the
low-order word, you can just set the value of these members to the track number
directly.

Changing Playback Position

On most devices, you can change the current playback or recording position by
issuing the MCI_SEEK command. You use the MCI_SEEK_PARMS structure, set-
ting its lngTo member variable to the new position expressed in the device’s current

 Putting MCI to Work 853

time format. Listing 13.13 shows the Position method that accomplishes this task for
the CDPlayer class, along with the definition of the MCI_SEEK_ PARMS structure.

➲ Listing 13.13: Change the Playback Position with MCI_SEEK

Type MCI_SEEK_PARMS
 lngCallback As Long
 lngTo As Long
End Type

Public Sub Position(_
 Optional Track As Byte = 0, _
 Optional Minute As Byte = 0, _
 Optional Second As Byte = 0)

 Dim dwb As dhDoubleWordByByte
 Dim dwl As dhDoubleWordLong
 Dim msk As MCI_SEEK_PARMS
 Dim lngRet As Long
 Dim fWasPlaying As Boolean

 If mlngDevID Then
 ' If the disc is playing, pause it
 If IsPlaying Then
 Me.Pause
 fWasPlaying = True
 End If

 ' If no track was supplied then assume
 ' the current one
 If Track = 0 Then
 Track = Me.Track
 End If

 ' Construct position in TMSF format
 With dwb
 .LowWordLowByte = Track
 .LowWordHighByte = Minute
 .HighWordLowByte = Second
 End With
 LSet dwl = dwb

Chapter 13 • Adding Multimedia to Your Applications854

 ' Set time and call MCI_SEEK
 msk.lngTo = dwl.DoubleWord
 lngRet = mciSendCommand(mlngDevID, _
 MCI_SEEK, MCI_TO, msk)

 If lngRet = 0 Then
 ' If cd was playing when this was
 ' called, resume playing
 If fWasPlaying Then
 Me.Play
 End If
 Else
 Err.Raise lngRet, "CDPlayer::Position",
 dhMCIError(lngRet)
 End If
 End If
End Sub

The Position method accepts track, minute, and second values as optional argu-
ments, assuming the current track if none was supplied. It creates a TMSF time
value from these arguments using the user-defined data types explained in the
section “MCI Time Formats” earlier in this chapter. After checking to see whether
the disc is currently playing, and pausing it if it is, the Position method issues the
MCI_SEEK command, passing the MCI_TO flag and a pointer to the MCI_SEEK_
PARMS structure. If the call to mciSendCommand was successful, the method
restarts the CD if necessary by calling the Play method.

The IsPlaying property referenced in Listing 13.13 is implemented using the
dhMCIStatus function explained in the section “MCI Information Functions” earlier in
this chapter.

Pausing and Stopping Playback

The last general topic in this section is pausing and stopping playback. While we
use CD audio as an example, you can apply these techniques to most MCI devices.
Listing 13.14 shows the Pause and StopPlaying methods. Note that all they do is
issue the appropriate MCI command (MCI_PAUSE or MCI_STOP).

 Putting MCI to Work 855

➲ Listing 13.14: Pause and Stop Playback

Public Sub Pause()
 Dim lngRet As Long

 If mlngDevID Then
 ' Pause playback by issuing the MCI_PAUSE command
 lngRet = mciSendCommand(mlngDevID, MCI_PAUSE, 0&, 0&)
 If lngRet <> 0 Then
 Err.Raise lngRet, "CDPlayer::Pause", _
 dhMCIError(lngRet)
 End If
 End If
End Sub

Public Sub StopPlaying()
 Dim lngRet As Long

 If mlngDevID Then
 ' Stop playback by issuing the MCI_STOP command
 lngRet = mciSendCommand(mlngDevID, MCI_STOP, 0&, 0&)
 If lngRet <> 0 Then
 Err.Raise lngRet, "CDPlayer::StopPlaying", _
 dhMCIError(lngRet)
 End If
 End If
End Sub

An Example

We’ve created a simple procedure to show off our CDPlayer class. Shown in Listing
13.15, this procedure prints information about the currently loaded compact disc,
starts playback, pauses playback, and moves to different tracks and locations.

➲ Listing 13.15: Play Around with an Audio Compact Disc

Sub dhTestCD()
 Dim cd As CDPlayer
 Dim bytTrack As Byte

Chapter 13 • Adding Multimedia to Your Applications856

 ' Create a new instance
 Set cd = New CDPlayer
 With cd

 ' Make sure the device is ready
 If .IsReady Then

 ' Print CD and track information
 Debug.Print "Media ID: " & .MediaID
 Debug.Print .Tracks & " tracks"
 Debug.Print "=========="
 For bytTrack = 1 To .Tracks
 Debug.Print "Track " & bytTrack & ": " & _
 Format(.TrackTime(bytTrack), "nn:ss")
 Next

 ' Start playback
 .Play

 ' Print the current position
 Debug.Print .Track & " " & .Minute & _
 ":" & Format(.Second, "00")

 ' Move to second track
 .Position Track:=2

 ' Pause playback
 .Pause

 ' Skip ahead to the 1-minute mark
 .Position Minute:=1

 ' Restart playback
 .Play

 ' Stop playback
 .StopPlaying
 End If
 End With

 ' Terminate instance
 Set cd = Nothing
End Sub

 Putting MCI to Work 857

Figure 13.5 shows the VBA Immediate window with the results of running
dhTestCD with the Austin Powers: The Spy Who Shagged Me soundtrack compact disc.

F I G U R E 1 3 . 5
Playing the Austin Powers:
The Spy Who Shagged Me

compact disc

Recording and Playing Waveform Audio
Now let’s take a look at another MCI device, waveform audio, better known as
WAV files. Waveform audio devices can be used to record, store, and play digital
audio sounds. We’ve created a class called WavePlayer that demonstrates these
capabilities. Table 13.15 lists WavePlayer’s properties and methods.

T A B L E 1 3 . 1 5 : WavePlayer Class Properties and Methods

Member Type Name Description

Properties AvgBytesPerSecond Average storage required for 1 second of audio.

 BitsPerSample Number of bits to use for recording (8 or 16).

 Channels Number of channels to use for recording (1 or 2).

 Filename Name of the current WAV file.

 FormatTag Format of recorded media (normally PCM).

 Length Length of the sample in milliseconds.

 Position Current playback or record position in number of
milliseconds from start of sample.

Chapter 13 • Adding Multimedia to Your Applications858

Loading Files with Complex Devices

Waveform audio is a complex MCI device, which means it operates on a data file
instead of on a fixed media object like an audio CD. Before you can begin playback
on a complex device, you must load or record a sample. You can load a file by
specifying a filename when opening a device or by issuing the MCI_LOAD com-
mand after the device has been opened.

Waveform audio devices do not support loading a file dynamically. Instead,
you must load the file at the same time you open the device. Listing 13.16 shows
the Private OpenDevice procedure, as well as the Open method. Note that all the
Open method does is call OpenDevice with a filename.

We created a separate OpenDevice procedure so we could call it in the Class_Initialize
event procedure. This procedure opens the device and prepares it for recording.

 SampleRate Sample rate to use for recording (11,025;
22,050; or 44,100).

 Wait Specifies whether sounds play synchronously or
asynchronously.

Methods Delete Removes a portion of the current sample.

 OpenFile Opens a WAV file.

 Play Plays the current sample.

 Record Records sound into the current sample.

 Reset Clears the current sample from the device.

 Save Saves the current sample using the current
filename.

 SaveAs Saves the current sample using a new filename.

 StopRecording Stops asynchronous recording.

T A B L E 1 3 . 1 5 : WavePlayer Class Properties and Methods (continued)

Member Type Name Description

 Putting MCI to Work 859

➲ Listing 13.16: Open a Waveform Audio File

Public Sub OpenFile(WaveFile As String)
 Call OpenDevice(WaveFile)
End Sub

Private Sub OpenDevice(Optional strFile As String = "")
 Dim lngRet As Long
 Dim mwo As MCI_WAVE_OPEN_PARMS

 If mlngDevID Then

 ' Close the device
 Call CloseDevice
 End If

 ' Set member variables
 With mwo
 .strDeviceType = "waveaudio"
 .strElementName = strFile
 .lngBufferSeconds = 10
 End With

 ' Load the requested file
 lngRet = mciSendCommand(mlngDevID, MCI_OPEN, _
 MCI_OPEN_ELEMENT Or MCI_OPEN_TYPE, mwo)
 If lngRet = 0 Then
 mlngDevID = mwo.lngDeviceID
 Else
 Err.Raise lngRet, "WavePlayer::OpenDevice", _
 dhMCIError(lngRet)
 End If
End Sub

WavePlayer’s OpenDevice procedure, shown in Listing 13.16, differs from the
same procedure in the CDPlayer class in three significant ways:

• It uses an MCI_WAVE_OPEN_PARMS structure instead of the standard
MCI_OPEN_PARMS. MCI_WAVE_OPEN_PARMS includes an additional
member, lngBufferSeconds, which lets you specify the size of the buffer
used by the device.

Chapter 13 • Adding Multimedia to Your Applications860

• It passes the name of the file to open in the strElementName member variable.

• It includes the MCI_OPEN_ELEMENT flag in the call to mciSendCommand.

Playing Waveform Audio

Like the CDPlayer class, the WavePlayer class features a Play method. However,
playing waveform audio is unlike playing CD audio because waveform audio is
not broken into tracks. Therefore, WavePlayer’s Play method is designed to accept
starting and stopping positions in milliseconds rather than as a track number.
Listing 13.17 shows the code behind the Play method.

➲ Listing 13.17: Play Waveform Audio

Public Sub Play(Optional StartTime As Long, _
 Optional StopTime As Long)

 Dim mpp As MCI_PLAY_PARMS
 Dim lngLength As Long
 Dim lngRet As Long

 If mlngDevID Then

 ' Validate inputs
 lngLength = Length()
 If StartTime < 0 Or StartTime > lngLength Then
 StartTime = 0
 End If
 If StopTime <= StartTime Or StopTime > lngLength Then
 StopTime = lngLength
 End If

 ' Play the wave file
 mpp.lngFrom = StartTime
 mpp.lngTo = StopTime
 lngRet = mciSendCommand(mlngDevID, MCI_PLAY, _
 MCI_FROM Or MCI_TO Or mlngWait, mpp)
 If lngRet <> 0 Then
 Err.Raise lngRet, "WavePlayer::Play", _
 dhMCIError(lngRet)
 End If
 End If
End Sub

 Putting MCI to Work 861

The Play method validates the start and stop values against the length of the
current audio sample. If neither argument is supplied, the method plays the entire
sample.

Determining the total length of the sample is easy, as the code behind the
Length property illustrates:

Property Get Length() As Long
 Length = dhMCIStatus(mlngDevID, MCI_STATUS_LENGTH)
End Property

With waveform audio, time is measured in milliseconds, eliminating the need to
convert to and from complex time forms, such as TMSF.

Recording Waveform Audio

Recording waveform audio is perhaps the most relevant use for the WavePlayer
class (since you can play a WAV file simply by calling PlaySound). To record with
an MCI device, you issue the MCI_RECORD command, passing a pointer to an
instance of the MCI_RECORD_PARMS structure. MCI automatically allocates a
buffer for the recorded sound based on settings in the MCI_RECORD_PARMS
member variables. You can also start recording without specifying a time interval,
and the waveform audio device will record until it receives an MCI_STOP command,
or until you run out of virtual memory.

Listing 13.18 shows the Record method of the WavePlayer class. It accepts three
optional arguments: Milliseconds, StartTime, and Overwrite. Milliseconds speci-
fies the length of time for the recording. StartTime represents the point in the cur-
rent waveform audio file to start recording. The Overwrite argument controls whether
the newly recorded sound is inserted into the current file (the default) or replaces
existing contents.

➲ Listing 13.18: Record Waveform Audio

Type MCI_RECORD_PARMS
 lngCallback As Long
 lngFrom As Long
 lngTo As Long
End Type

Chapter 13 • Adding Multimedia to Your Applications862

Public Sub Record(_
 Optional Milliseconds As Integer = 0, _
 Optional StartTime As Long = -1, _
 Optional Overwrite As Boolean = False)

 Dim mrp As MCI_RECORD_PARMS
 Dim lngLength As Long
 Dim lngFlags As Long
 Dim lngRet As Long

 If mlngDevID And Milliseconds >= 0 Then

 ' If StartTime is -1, get current position
 lngLength = Length
 If StartTime < 0 Or StartTime > lngLength Then
 StartTime = Position
 End If

 ' Set flag values
 If Milliseconds > 0 Then
 lngFlags = MCI_FROM Or MCI_TO Or MCI_WAIT
 End If
 If Overwrite Then
 lngFlags = lngFlags Or MCI_RECORD_OVERWRITE
 Else
 lngFlags = lngFlags Or MCI_RECORD_INSERT
 End If

 ' Record for a given number of seconds
 With mrp
 .lngFrom = StartTime
 .lngTo = StartTime + Milliseconds
 End With
 lngRet = mciSendCommand(mlngDevID, MCI_RECORD, _
 lngFlags, mrp)
 If lngRet <> 0 Then
 Err.Raise lngRet, "WavePlayer::Record", _
 dhMCIError(lngRet)
 End If
 End If
End Sub

 Putting MCI to Work 863

If no start time is specified (or if it exceeds the current size of the file), the start
position is set to the current position. The current position is determined by call-
ing dhMCIStatus with the MCI_STATUS_POSITION flag. Our class encapsulates
this in the Position property.

The Record method determines the flags to send to mciSendCommand based on
the arguments passed to the procedure. If you call Record with a positive value
for Milliseconds, the method sets the MCI_FROM, MCI_TO and MCI_WAIT flags.
If you call the method with no arguments (Milliseconds equals 0), no flags are set.
This causes the waveform audio device to start recording and continue until you
issue the MCI_STOP command. WavePlayer features a StopRecording method
that does just this.

If you issue the MCI_RECORD command with no time interval specified, make sure
you don’t include the MCI_WAIT flag in the function call. This will cause MCI to
continue recording forever.

In either case, the Record method adds either the MCI_RECORD_INSERT or
MCI_RECORD_OVERWRITE flag based on the value of the Overwrite argument.
This flag controls whether the new sample is inserted into the current file at the
specified position or replaces the contents at that position.

Starting and ending positions are determined by the StartTime and Milliseconds
arguments. These values are written to the MCI_RECORD_PARMS structure
before the call to mciSendCommand.

Setting Input Parameters

Waveform audio devices have a number of configurable parameters that control
the quality of input and, subsequently, the quality of output. Our WavePlayer
class lets you set and retrieve these values through a series of properties. Table 13.15,
presented earlier in this section, listed these properties: AvgBytesPerSecond, Bits-
PerSample, Channels, and SampleRate. The higher the sample rate, channel, or
bits-per-sample setting, the better the quality is. However, be aware that as the
quality increases, so does the space required to store the sample.

Retrieving these values is accomplished simply by calling the dhMCIStatus func-
tion and passing the appropriate status item constant. (See Table 13.11 earlier in
this chapter for a list of these constants.) On the other hand, setting the values

Chapter 13 • Adding Multimedia to Your Applications864

requires issuing the MCI_SET command. Listing 13.19 shows the Private Change-
Setting procedure, which is called by the Property Let procedures for the properties.

➲ Listing 13.19: Change Waveform Audio Device Input Parameters

Private Sub ChangeSetting(lngSetting As Long, lngNewValue _
 As Long)
 Dim mws As MCI_WAVE_SET_PARMS
 Dim lngRet As Long

 ' Make sure device ID is valid
 If mlngDevID Then

 ' Use the MCI_WAVE_SET_PARMS structure
 With mws

 ' Get the existing values
 .intFormatTag = Me.FormatTag
 .intBitsPerSample = Me.BitsPerSample
 .intChannels = Me.Channels
 .lngSamplesPerSec = Me.SampleRate

 ' Change the desired setting
 Select Case lngSetting
 Case MCI_WAVE_STATUS_FORMATTAG
 .intFormatTag = lngNewValue
 Case MCI_WAVE_STATUS_CHANNELS
 .intChannels = lngNewValue
 Case MCI_WAVE_STATUS_SAMPLESPERSEC
 .lngSamplesPerSec = lngNewValue
 Case MCI_WAVE_STATUS_BITSPERSAMPLE
 .intBitsPerSample = lngNewValue
 End Select

 ' Compute derived settings
 .lngAvgBytesPerSec = ((.intBitsPerSample / 8) * _
 .intChannels * .lngSamplesPerSec)
 .intBlockAlign = ((.intBitsPerSample / 8) * _
 .intChannels)

 Putting MCI to Work 865

 ' Call mciSendCommand
 lngRet = mciSendCommand(mlngDevID, MCI_SET, _
 MCI_WAIT Or MCI_WAVE_SET_FORMATTAG Or _
 MCI_WAVE_SET_BITSPERSAMPLE Or _
 MCI_WAVE_SET_CHANNELS Or _
 MCI_WAVE_SET_SAMPLESPERSEC Or _
 MCI_WAVE_SET_AVGBYTESPERSEC Or _
 MCI_WAVE_SET_BLOCKALIGN, mws)

 If lngRet <> 0 Then
 Err.Raise lngRet, "WavePlayer::ChangeSetting", _
 dhMCIError(lngRet)
 End If
 End With
 End If
End Sub

The procedure works by first retrieving the existing settings into a MCI_ WAVE_
SET_PARMS structure. It then changes one of those settings based on the value of
the lngSetting argument. Two settings, average bytes per second and block align-
ment, are derived values, so the ChangeSetting procedure computes them based
on the new settings. Finally, the procedure issues the MCI_SET command, pass-
ing a reference to the MCI_WAVE_SET_PARMS structure and a series of flags
representing the various settings.

While it would appear that you can change settings individually, Microsoft
recommends changing all of them at once in the manner we’ve just described.
Failing to do this could result in the waveform audio device falling back into its
lowest-quality mode.

Removing Portions of a Waveform Audio File

Unlike most other types of devices, waveform audio devices are capable of delet-
ing portions of the media object they work with. To accomplish this, you issue the
MCI_DELETE command with beginning and ending time periods stored in an
instance of the MCI_WAVE_DELETE_PARMS structure. Listing 13.20 shows the
Delete method of our WavePlayer class. (We omitted the structure declaration
because it’s identical to the MCI_RECORD_PARMS structure.)

Chapter 13 • Adding Multimedia to Your Applications866

➲ Listing 13.20: Delete a Portion of a Waveform Audio File

Public Sub Delete(StartTime As Long, _
 Milliseconds As Long)

 Dim mdp As MCI_WAVE_DELETE_PARMS
 Dim lngLength As Long
 Dim lngRet As Long

 If mlngDevID Then

 ' Validate inputs
 lngLength = Length()
 If StartTime < 0 Or StartTime > lngLength Then
 StartTime = 0
 End If

 ' Delete the specified portion
 With mdp
 .lngFrom = StartTime
 .lngTo = StartTime + Milliseconds
 If .lngTo > lngLength Then
 .lngTo = lngLength
 End If
 End With
 lngRet = mciSendCommand(mlngDevID, MCI_DELETE, _
 MCI_FROM Or MCI_TO, mdp)
 If lngRet <> 0 Then
 Err.Raise lngRet, "WavePlayer::Delete", _
 dhMCIError(lngRet)
 End If
 End If
End Sub

After validating the inputs—the starting point and the length of the sample to
delete—the Delete method issues the MCI_DELETE command. If it’s successful, a
portion of the current file will be completely removed.

 Putting MCI to Work 867

Saving a Waveform Audio File

The final bit of waveform audio functionality to look at is saving a recorded or
modified file to disk. You do this by issuing the MCI_SAVE command. As you can
imagine, there is an associated MCI_SAVE_PARMS structure to go along with the
command. We’ve implemented two methods to perform this task: SaveAs and
Save. Listing 13.21 shows both methods, the Private procedure they call to get the
job done, and the declaration of the MCI_SAVE_PARMS structure.

➲ Listing 13.21: Save a Waveform Audio File to Disk

Type MCI_SAVE_PARMS
 lngCallback As Long
 lpFileName As String
End Type

Public Sub SaveAs(Filename As String)
 If Filename <> "" Then
 Call SaveFile(Filename)
 End If
End Sub

Public Sub Save()
 Dim strFile As String

 ' Use the current file name
 strFile = Me.Filename
 Call SaveAs(strFile)
End Sub

Private Sub SaveFile(strFile As String)
 Dim lngRet As Long
 Dim msp As MCI_SAVE_PARMS

 If mlngDevID Then

 ' Save the file
 msp.lpFileName = strFile
 lngRet = mciSendCommand(mlngDevID, MCI_SAVE, _
 MCI_SAVE_FILE Or MCI_WAIT, msp)
 If lngRet <> 0 Then

Chapter 13 • Adding Multimedia to Your Applications868

 Err.Raise lngRet, "WavePlayer::SaveFile",
 dhMCIError(lngRet)
 End If
 End If
End Sub

After calling SaveAs for the first time, you can call Save to save the file with the
same name. The Save method uses the dhMCIInfo function to obtain the name of
the current waveform audio file. If you want to save the file with a different name,
just call SaveAs again.

When you save a file using the MCI_SAVE command, any existing file is overwrit-
ten without warning.

An Example
Our example to demonstrate the WavePlayer class is shown in Listing 13.22. After
initializing the class and playing a saved WAV file, the procedure changes the
input settings and records three seconds of sound. It then plays the sample back,
removes the middle one second, plays it again, and saves it to disk.

➲ Listing 13.22: Play and Record Waveform Audio

Sub dhTestWave()
 Dim wav As WavePlayer

 ' Create new instance
 Set wav = New WavePlayer
 With wav

 ' Open and play a saved WAV file
 .OpenFile "C:\Windows\Media\Chord.wav"
 .Play

 ' Reset the device and record for 3 seconds
 .Reset
 .SampleRate = 22050
 .BitsPerSample = 16
 .Record Milliseconds:=3000

 ' Play the recorded sound
 .Play

 Putting MCI to Work 869

 ' Now remove the middle 1 second
 .Delete StartTime:=1000, Milliseconds:=1000

 ' Play it again and then save it
 .Play
 .SaveAs "C:\NEWWAVE.WAV"
 End With

 ' Terminate instance
 Set wav = Nothing
End Sub

Putting Digital Video in a Window
Digital video, better known as AVI files, is being used increasingly in multimedia
training applications and even as a supplement to standard online help topics.
This section shows you how to load an AVI file and play it in any arbitrary win-
dow on your desktop. As with the other examples, we created a class (Video-
Player) to encapsulate the functionality. Table 13.16 lists VideoPlayer’s properties
and methods.

T A B L E 1 3 . 1 6 : VideoPlayer Class Properties and Methods

Member Type Name Description

Properties Caption Title of display window.

 Filename Name of AVI file.

 hWnd Window handle of display window.

 IsPlaying True if a video clip is playing.

 Length Length of the current clip in milliseconds.

 Stretch True if image is to be stretched to fill the
display window.

Methods Center Centers the image in the display window.

 OpenFile Opens an AVI file.

 Play Plays the current video clip.

 StopPlaying Stops playing the current video clip.

Chapter 13 • Adding Multimedia to Your Applications870

To demonstrate this class, we’ve included a form (frmVideo) in the sample Excel
workbook. If you don’t have a copy of Excel, you’ll need to create a new form in
whatever development tool you use.

MCI Video Types

MCI defines two broad categories of video: digital and overlay. Digital video is
recorded and saved in a file. Overlay video is based on a direct analog feed and is
the basis for those “TV-in-a-window” applications you’ve no doubt seen adver-
tised. Overlay video requires special hardware in order to operate. Digital video
does not.

While MCI defines these two categories and supplies separate commands and
structures to manipulate them, they share many characteristics. For example, each
must be played in a window, and you can define which portion of that window is
used. In describing the techniques required to play digital video, we’ve “borrowed”
some functionality from MCI’s overlay video features.

Basic AVI Functionality

There’s not much to say about the basic functionality in the VideoPlayer class. You
open and close it in much the same manner as you do the CDPlayer and Wave-
Player classes. You use “avivideo” as the device type and, optionally, the path to
an AVI file as the element name. The class implements a number of the same prop-
erties and methods as the CDPlayer and WavePlayer classes, such as IsPlaying,
Play, and StopPlaying. In fact, the code used to implement these is almost identi-
cal. What makes this class unique is how it interacts visually with the system.

Putting Digital Video in a Window

Digital and overlay video must have a window in which to display themselves.
You can either specify an existing window or let them create their own. If you
choose not to specify a window, the result is the same as if you had simply run an
AVI from Explorer. Under Windows 95, Windows 98, and Windows NT 4, the
device creates a window using attributes defined in the Video section of the Multi-
media Control Panel applet (shown in Figure 13.6) and in the Windows Media
Player Options dialog (shown in Figure 13.7). In Windows 2000, you change video
options only through the Media Player applet.

 Putting MCI to Work 871

F I G U R E 1 3 . 6
Multimedia video settings

in the Control Panel

F I G U R E 1 3 . 7
AVI settings in the Win-

dows Media Player

Under most circumstances, you’ll want to control the playback, restricting it to a
certain window and size. To do this, you must issue the MCI_WINDOW com-
mand after opening the device. Among other things, you pass the handle to the
window in which you want playback to happen. We’ve implemented an hWnd
property of the VideoPlayerclass that accomplishes this. Listing 13.23 shows the
Property Let procedure.

Chapter 13 • Adding Multimedia to Your Applications872

➲ Listing 13.23: Setting the hWnd Property Assigns a Window to the
Device

Property Let hWnd(hWnd As Long)
 Dim mow As MCI_OVLY_WINDOW_PARMS
 Dim lngFlags As Long
 Dim lngRet As Long

 If mlngDevID Then
 ' Set default flags
 lngFlags = MCI_OVLY_WINDOW_HWND

 ' Set stretch flag
 If mfStretch Then
 lngFlags = lngFlags Or _
 MCI_OVLY_WINDOW_ENABLE_STRETCH
 Else
 lngFlags = lngFlags Or _
 MCI_OVLY_WINDOW_DISABLE_STRETCH
 End If

 ' Set the window handle and, optionally, the caption
 mow.hWnd = hWnd
 If Len(mstrCaption) Then
 mow.strText = mstrCaption
 lngFlags = lngFlags Or _
 MCI_OVLY_WINDOW_TEXT
 End If

 ' Issue the MCI_WINDOW command
 lngRet = mciSendCommand(mlngDevID, MCI_WINDOW, _
 lngFlags, mow)

 ' If successful, store the window handle
 If lngRet = 0 Then
 mHwnd = hWnd
 Else
 mHwnd = 0
 Err.Raise lngRet, "VideoPlayer::hWnd (Let)", _
 dhMCIError(lngRet)
 End If
 End If
End Property

 Putting MCI to Work 873

The procedure uses an MCI_OVLY_WINDOW_PARMS structure to define the
window attributes. The members of this structure let you supply a window han-
dle, a caption, and a display mode (maximized, normal, and so on). Flags passed
to the mciSendCommand function validate each of these members. In our example,
we maintain a class-level variable, mstrCaption, for a window caption. If the vari-
able is set (nonblank), the procedure adds the MCI_OVLY_WINDOW_TEXT flag
to the current set of flags. MCI will, in turn, change the caption of the specified
window.

We also maintain another class variable, mfStretch, which controls whether the
video image will be stretched to fill the entire window. If this variable is set to
True (via the Stretch property of the class), MCI will stretch the image to com-
pletely fill the window’s client area. (A window’s client area is the area inside a
window, excluding the window’s border and caption.) To further control the size
and position, you can issue the MCI_PUT command, described in the next section.

Positioning Playback

If you need to further refine the position of a video clip within the window speci-
fied in the MCI_WINDOW command, you issue the MCI_PUT command. MCI_PUT,
and its counterpart MCI_GET, set and retrieve window coordinates for both video
source and output elements. To demonstrate how to use these commands, we’ve
implemented a Center method that centers the output in the window when called
after you assign a window handle to the video device. Listing 13.24 shows the
Center method.

➲ Listing 13.24: Center a Video Clip in a Window

Public Sub Center()
 Dim morSource As MCI_OVLY_RECT_PARMS
 Dim morDest As MCI_OVLY_RECT_PARMS
 Dim rc As RECT
 Dim lngRet As Long

 ' Make sure we’ve got something loaded and that
 ' the user has specified a window
 If mlngDevID And Len(Me.Filename) > 0 And _
 CBool(mHwnd) Then

Chapter 13 • Adding Multimedia to Your Applications874

 ' Issue the MCI_WHERE command to get the
 ' size of the current AVI file
 lngRet = mciSendCommand(mlngDevID, MCI_WHERE, _
 MCI_OVLY_WHERE_SOURCE, morSource)
 If lngRet = 0 Then

 ' Get the available client area
 If CBool(GetClientRect(mHwnd, rc)) Then

 ' Do the math to center the image
 With rc
 morDest.rc.Top = (.Bottom - .Top - _
 morSource.rc.Bottom) / 2
 morDest.rc.Left = (.Right - .Left - _
 morSource.rc.Right) / 2
 End With

 ' Issue the MCI_PUT command to place the
 ' output at the computed position in the
 ' destination window
 lngRet = mciSendCommand(mlngDevID, _
 MCI_PUT, MCI_OVLY_PUT_DESTINATION Or _
 MCI_OVLY_RECT, morDest)
 If lngRet <> 0 Then
 Err.Raise lngRet, "VideoPlayer::Center", _
 dhMCIError(lngRet)
 End If
 Else
 Err.Raise lngRet, "VideoPlayer::Center", _
 dhMCIError(lngRet)
 End If
 Else
 Err.Raise lngRet, "VideoPlayer::Center", _
 dhMCIError(lngRet)
 End If
 End If
End Sub

Both commands rely on two user-defined data types. The MCI_OVLY_RECT_
PARMS structure includes the standard callback member, as well as a pointer to
the second data type, RECT. The RECT type is a standard Windows API type used
to define the boundaries of a rectangle.

 Putting MCI to Work 875

Centering a video clip in a window involves four steps:

1. Determining the size of the source video

2. Determining the size of the window’s client area

3. Computing the correct position for the output based on the video and win-
dow sizes

4. Setting the destination area to reflect this position

The Center method accomplishes the first step by issuing the MCI_WHERE
command. You can use this command to determine the size and position of both
the current source video and the output region. The method passes the MCI_
OVLY_WHERE_SOURCE flag, indicating that it wants to know the size of the
source video. If the command is successful, the dimensions are stored in the RECT
structure within the passed MCI_OVLY_RECT_PARMS variable. The Top and
Left member variables will contain the position of the video’s upper-left corner
(initially, these are both 0), and the Bottom and Right members will contain the
height and width of the image, respectively.

MCI uses the RECT structure differently from most other Windows API functions.
Usually, API functions use the Bottom and Right members to represent the extent
of a rectangle relative to the upper-left corner of the client area, not to its size.

Determining the size of the target window’s client area is easy. The method calls
the standard Windows API GetClientRect function to grab the dimensions and
place them in the passed RECT structure.

Finally, after performing some simple arithmetic to determine the new position
for the video, the Center method issues the MCI_PUT command, passing a pointer
to the MCI_OVLY_RECT_PARMS structure containing the new dimensions and
the MCI_OVLY_PUT_DESTINATION and MCI_OVLY_RECT flags.

An Example

Our example uses a form in Excel VBA (shown in Figure 13.8) to display an AVI file.
(The one shown is from Microsoft Flight Simulator 2000.) However, you can use just
about any window you can get a handle to. Listing 13.25 shows the code behind the
form. You’ll need to enter a valid path to an AVI file in the form’s text box.

Chapter 13 • Adding Multimedia to Your Applications876

F I G U R E 1 3 . 8
Displaying an AVI file in a

window

➲ Listing 13.25: Code Required to Use the VideoPlayer Class

Option Explicit

' This is required to get a handle to the form
Private Declare Function GetActiveWindow _
 Lib "user32" () As Long

' Private instance of VideoPlayer class
Private vid As VideoPlayer

Private Sub cmdPlay_Click()
 ' Create a new instance
 Set vid = New VideoPlayer

 ' Open a file
 vid.OpenFile Me.txtAVI.Text

 ' Set the window and caption
 vid.Caption = "Window Caption"
 vid.hWnd = GetActiveWindow()

 ' Center the video in the window and play it
 vid.Center
 vid.Play
End Sub

 Summary 877

Private Sub UserForm_QueryClose(Cancel As Integer, _
 CloseMode As Integer)

 ' If video is still playing, stop it
 If vid.IsPlaying Then
 vid.StopPlaying
 End If
End Sub

Private Sub UserForm_Terminate()
 ' Terminate the instance
 Set vid = Nothing
End Sub

You can see how the form uses the class to open an AVI file, center it on the
screen, and play it. The only other item worth pointing out is the use of the GetActive-
Window API function. This function is necessary because VBA forms do not
expose their window handle directly. On the other hand, if you’re using a tool like
Visual Basic or Access, you can reference this value directly via a form’s hWnd
property.

Summary
In this chapter, we’ve presented a few simple techniques for integrating multime-
dia into your VBA applications. While we could not be as thorough as we would
have liked due to space considerations, we’ve given you several tools that should
add a little life to your programs. We examined the multimedia capabilities of
Windows, and the Media Control Interface in particular, as a way of accomplish-
ing the following tasks:

• Play audio compact disc tracks.

• Record and play waveform audio.

• Display digital video in a window.

We hope this chapter has also given you the insight to add other multimedia ele-
ments to your applications.

This page intentionally left blank

c h a p t e r 14

Using the Scripting Runtime
Library Objects

� Use objects provided by SCRRUN.DLL, part of the
Windows Script Host.

� Use the FileSystemObject, and its Drive, Folder, and
File objects, to manage files, folders, and drives.

� Use the TextStream object to work with text files.

� Take advantage of the Dictionary object, a data
structure similar to a collection but more powerful.

Chapter 14 • Using the Scripting Runtime Library Objects880

The sample files you’ll find on the CD-ROM that accompanies this book are
listed in Table 14.1.

The examples in this chapter are provided in a VB6 project, SCRIPTING.VBP. We’ve
compiled the project into an executable, SCRIPTING.EXE, so you can simply run the
program to test out the various methods and properties. If you have a copy of VB6,
open the project to investigate its source code. If you don’t, you can open the various
BAS and FRM files with a text editor and view the sample code there or use the XLS or
MDB projects containing the code (but not the forms). There’s very little reusable code
in this chapter—it’s mostly demonstrations of the various objects, properties, and
methods—so you needn’t worry that you can’t simply use the modules “as is.” We’ve
grouped any code you might want to use in your own projects into standard modules
(which you can easily import into any VBA host) and have noted these situations
throughout the chapter. In addition, if you attempt to run SCRIPTING.EXE and the
application fails, run the SETUP.EXE program in the folder associated with this chapter
to install the program, the VB runtime libraries, and the scripting DLL.

If you have an out-of-date version of the Scripting Runtime Library, none of the
code in this chapter will compile or execute. In that case, you’ll need to go to
http://msdn.microsoft.com/scripting and download the latest Microsoft
Scripting (version 5.1 or higher).

T A B L E 1 4 . 1 : Demonstration Files

Filename Description

SCRIPTING.EXE Demonstration program for this chapter

SCRIPTING.XLS Demonstration Excel 2000 spreadsheet

SCRIPTING.MDB Demonstration Access 2000 database

SCRIPTING.VBP Project file for the VB6 project

DRIVES.FRM Sample VB form

FILEFOLDERNAMES.FRM Sample VB form

FILES.FRM Sample VB form

FOLDER.FRM Sample VB form

 Why Is This Chapter Different? 881

Why Is This Chapter Different?
The world of ActiveX components is huge and constantly growing. It would be, as
far as we can tell, impossible to write a book containing information on all the
available objects, properties, and methods out there, even if we limited it to just a
single developer’s products, such as those from Microsoft. The problem is that
every day there are many new libraries full of objects out there.

Because the playing field is huge, one option would have been for us to simply
sidestep the issue and avoid discussion of the available components entirely. On
the other hand, one ActiveX component that Microsoft provides is so universally
available and so useful that we thought it important to treat it as if it was part of
VBA. (And, therefore, this becomes the only chapter in the book where we’ve
looked at a particular ActiveX component and described it in detail.) That is, the
SCRRUN.DLL component of the Windows Script Host. This ActiveX component
provides three areas of functionality that are useful, important, and somewhat dif-
ficult to re-create yourself. Boiled down to the bare minimum, SCRRUN.DLL pro-
vides objects that allow you to

• Work with the file system, retrieving information on and working with
drives, folders, and files.

SWITCHBOARD.FRM Sample VB form

ATTRIBUTES.BAS Sample module

DICTIONARY.BAS Sample module

NAVIGATEFOLDERS.BAS Sample module

TESTATTRIBUTES.BAS Sample module

TESTPROCEDURES.BAS Sample module

TRANSLATE.BAS Sample module

COMMONDLG.CLS Sample class module

SETUP.EXE (and associated files, SETUP.LST,
SCRIPTING.CAB)

Setup program for VB compiled project (SCRIPTING.EXE),
in case you don’t own a copy of Visual Basic 6

T A B L E 1 4 . 1 : Demonstration Files (continued)

Filename Description

Chapter 14 • Using the Scripting Runtime Library Objects882

• Work with text files, both reading and writing to the files.

• Work with a data structure similar to a VBA Collection object but with more
features.

This chapter introduces you to all the objects provided by SCRRUN.DLL and
includes explanation of all the properties and methods of the objects. Along the
way, you’ll see how to use the objects and find some of the pitfalls to avoid. This
DLL comes with VB6 and with Internet Explorer. Most likely, if you’re using
Microsoft products, it’s already available on your machine. If not, you can always
browse to http://msdn.microsoft.com/scripting and download the pieces
you need. Your users can download it from here as well, or you can distribute the
pieces you need along with your applications.

Referencing and Using SCRRUN.DLL
Before you can take advantage of the objects provided by SCRRUN.DLL, you'll
need to set a reference to the component from within your development environ-
ment. In VB, use the Project � Reference menu, and in other VBA hosts, use the
Tools � References menu item. Either way, scroll down through the list until you
find the Microsoft Scripting Runtime entry, shown in Figure 14.1.

What Is the Windows Script Host?
The Windows Script Host is a tool provided by Microsoft that makes it possible for devel-
opers to create scripts (like batch files) that can run natively within the operating system.
Using this tool, end users don’t require a full development environment, or even the runt-
ime libraries associated with VB, to run scripts. In order to make it possible for script devel-
opers to access drives, folders, and files; to work with text files; and to use in-memory data
structures, Microsoft provided an ActiveX component, SCRRUN.DLL (generally called
“Windows Scripting Runtime”). This chapter describes this component of the Windows
Script Host in detail, so you can take advantage of it, too.

 Why Is This Chapter Different? 883

F I G U R E 1 4 . 1
Use the Tools � References

(or Project � References)
menu item, and select

Microsoft Scripting Runtime.

Once you’ve set a reference to this library of objects, you can use the objects as if
they were built into your project. For the most part, you’ll simply need to declare a
variable and then instantiate it, like this:

Dim fso As Scripting.FileSystemObject
Set fso = New Scripting.FileSystemObject

For more information on using VBA to automate other applications, see Chapter
4. In this case, the application you’re controlling has a project name of “Scripting”
(just as Microsoft Excel’s project name is “Excel,” for example). In addition, pay
careful attention to the use of the project name in front of each reference to any
object from the Scripting library—this makes your code run slightly faster and
makes the code more readable, as well. Again, see Chapter 4 for more
information on this technique.

If, for some reason, you don’t find Microsoft Scripting Runtime in your list of
available references, and you’re sure it should already be installed on your
machine, you can always use the Browse button on the dialog box to allow you to
go search for SCRRUN.DLL on your own. It should be in the System (Win9X) or
System32 (Windows NT/2000) folder, underneath your installation of Windows.

If you want to distribute an application to other users, and you’ve taken advan-
tage of the Scripting objects, you’ll need to make sure your users also have a copy

Chapter 14 • Using the Scripting Runtime Library Objects884

of SCRRUN.DLL on their own machines. To do that, you’ll need to use some tool
that creates a setup program of some sort. If you’re using VB, you can use the
Package and Deployment wizard that comes with that product. If you’ve pur-
chased the Microsoft Office 2000 Developer product, you’ll find that it also includes
a version of the Package and Deployment wizard. Besides these two tools, there
are many other products that help you create and install packaged applications.

In any case, no matter what tool you use, your users need to have a copy of SCR-
RUN.DLL on their machines, and it needs to have been registered (in their system
registry) before they attempt to run your application. See your host application’s
documentation on distributing applications to end users for more information.

Microsoft was in the midst of releasing a new version of the Windows Script Host
as we were writing this book, and we based this chapter on the latest version.
Some features of the objects demonstrated in this chapter may not work with
your version of SCRRUN.DLL. If you find this to be true, visit http://
msdn.microsoft.com/scripting and download the latest version of the Script-
ing Runtime Library files.

The rest of the chapter is devoted to introducing, demonstrating, and explaining
each of the objects provided by the SCRRUN.DLL library.

The FileSystemObject Object
Yes, the name seems redundant. And so it is. But the FileSystemObject (you’ll
understand what we mean if we leave off that extra “object,” right?) allows you to
access any other object in the file system, including drives, folders, and files. It has
but a single property (Drives, a collection containing all the drives available in the
file system), and plenty of methods for managing drives, folders, and files.

In order to take advantage of the FileSystemObject and all the other file system
objects, you must first declare and create a new instance of the class, like this:

Dim fso As Scripting.FileSystemObject
Set fso = New Scripting.FileSystemObject

The FileSystemObject makes all the other file system objects available, and it’s the
only creatable object in the Scripting library.

 Why Is This Chapter Different? 885

Actually, the FileSystemObject isn’t the only creatable Scripting object. It is,
however, the only creatable object that allows you to work with the file system.
You can also instantiate a Dictionary object, described later in the chapter. In
addition, if you’re using the Scripting library associated with Windows Script Host
2, you can also instantiate an Encoder object, allowing you to encode scripting
code. This isn’t something you’re likely to need in a VBA application, and we
won’t cover this object in this book.

Declaring and Instantiating in One Step
It’s tempting to declare and instantiate the FileSystemObject in the same line of code
(using the “As New” syntax), and you’ll see this done often in other publications. As we’ve
mentioned in other places throughout this book, there’s generally nothing to be gained by
collapsing the two lines down into one. That is, you’ll see this line of code:

Dim fso As New Scripting.FileSystemObject

instead of the two-line version:

Dim fso As Scripting.FileSystemObject

Set fso = New Scripting.FileSystemObject

When you collapse these two lines together, you cause two problems:

• VBA can’t tell when it should instantiate the object (it only instantiates the object
when you first use it), so VBA must insert checks throughout your code to see if it’s
time to instantiate the object. This slows down your application’s execution.

• If you collapse the two lines into one, you won’t be able to compare your variable to
Nothing—the moment you try, VBA will instantiate the object (because it thinks you
now want to use the object, whether it had already been instantiated), in which case
it won’t be Nothing anymore. That is, code like this will always instantiate the object
referred to by fso, even though it ought not, and the code inside the If Then state-
ment will never run:

Dim fso As New Scripting.FileSystemObject

' Later in your code...

If fso Is Nothing Then

 ' Too late! This code will never run.

End If

Chapter 14 • Using the Scripting Runtime Library Objects886

Methods of the FileSystemObject

The FileSystemObject provides a number of methods that allow you to manage and
manipulate files, folders, and drives. In addition, the object provides a few methods
for creating and opening text files, using the TextStream object. Tables 14.2, 14.3,
and 14.4 list and describe the methods of the FileSystemObject, and the subsequent
sections dig into some of the methods in greater detail. (Examples in the tables
assume you've already declared and instantiated a FileSystemObject named fso.)

We won’t discuss the TextStream object, nor the three methods of the FileSystem-
Object that manipulate text files, in this section. For more information, see the
section titled “The TextStream Object” later in the chapter.

Windows Script Host 2 added some new methods for the FileSystemObject. We’ve
noted those by adding an asterisk to the method name. If you’re using an earlier
version of the Scripting library, these methods won’t be available.

We can only think of one good reason to use the combined declaration/instantiation: if
you’re writing code and want to test out methods and properties of an object in the Immedi-
ate window, it’s useful to temporarily create an object in a standard module, like this:

Public fso As New Scripting.FileSystemObject

Then, at any time, you can open the Immediate window and work with methods and
properties of fso. Other than this, we think you’re better off using two lines of code for
declaration and instantiation of any object.

T A B L E 1 4 . 2 : FileSystemObject Methods Allowing You to Manage File and Folder Names
and Versions

Method Return Type Description

BuildPath String Given a filename and path name, concatenates the two
pieces. Inserts a path separator character if necessary.
(This method is simple: it does nothing more than relieve
you of the burden of having to determine if a path name
includes a trailing slash before you concatenate a filename
onto the path.) This function doesn’t ensure that either
the path or the file actually exists: it simply performs a
string manipulation on whatever strings you send it.

 Why Is This Chapter Different? 887

GetAbsolutePathName String Given a relative path, returns a complete and
unambiguous path based on the current selected
Windows path.

GetBaseName String Returns the base name (the filename portion) of the last
component of the passed-in path. This method doesn’t
ensure that the file exists—it simply performs a string
manipulation, looking for “\” and “.” characters.

GetDriveName String Returns the drive name portion of the passed-in path.
This method doesn’t ensure that the drive exists—it
simply performs a string manipulation, looking for “\”
characters. The method correctly handles drives in either
C: or \\share\drive format.

GetExtensionName String Returns the extension name (after the final “.” in the
filename) of the last component of the passed-in path.
This method doesn’t ensure that the file exists—it simply
performs a string manipulation, looking for “\” and “.”
characters.

GetFileName String Returns the filename portion (including the base name
and extension) of the last component of the passed-in
path. This method doesn’t ensure that the file exists—it
simply performs a string manipulation, looking for “\”
and “.” characters.

GetFileVersion* String Returns the internal file version (supplied by the original
application developer), for executable, DLL, and driver
files that support this feature. For other files, returns an
empty string.

GetParentFolderName String Returns the drive and folder name portion of the passed-
in path. This method doesn’t ensure that the drive or
folder exists—it simply performs a string manipulation,
looking for “\” characters. The method correctly handles
drives in either C: or \\share\drive format.

GetSpecialFolder Folder Returns the path to one of three special folders (the
Windows, Windows System, or Temp folder). Pass in one
of the following constants: WindowsFolder (0),
SystemFolder (1), or TemporaryFolder (2), and the
method returns the full path to the requested special
folder.

T A B L E 1 4 . 2 : FileSystemObject Methods Allowing You to Manage File and Folder Names
and Versions (continued)

Method Return Type Description

Chapter 14 • Using the Scripting Runtime Library Objects888

GetTempName String Returns a unique name, which you can use for creating a
file or folder. The method does not actually create
anything—it simply returns a name you can use for
creating your own file or folder. Although the
documentation doesn’t state the scope of the unique
name, our assumption is that it guarantees a unique
name within the Windows temporary folder.

T A B L E 1 4 . 3 : FileSystemObject Methods Allowing You to Manipulate Files, Folders, and
Drives

Method Return Type Description

CopyFile Copy a file (or files) from one location to another.

CopyFolder Copy a folder (or folders) from one location to another.

CreateFolder Folder Create a folder with the specified name, and return a reference
to the newly created folder. If the entire path to the new folder
doesn’t exist, the method raises error 76 (“Path not found”). If
the folder already exists, the method raises error 58 (“File
already exists”). See “The Folder Object,” later in the chapter,
for information on working with Folder objects. For example,
you might write code like this:
Set fld = fso.CreateFolder("C:\NewFolder")

DeleteFile Deletes one or more files, given a file specification. Optionally,
forces the deletion of system and/or read-only files. Files
deleted using this method are not placed into the Recycle Bin.
For example:
fso.DeleteFile "C:\Autoexec.bak"
fso.DeleteFile "C:*.bat"

DeleteFolder Deletes one or more folders (even if the folder includes files—in
that case, the files are deleted along with the folder). If you
specify a wildcard, so that multiple folders are deleted, the
method stops at the first error but makes no attempt to roll
back deletions before the error. Folders and files deleted using
this method are not placed into the Recycle Bin. For example:
fso.DeleteFolder "C:\NewFolder"

T A B L E 1 4 . 2 : FileSystemObject Methods Allowing You to Manage File and Folder Names
and Versions (continued)

Method Return Type Description

 Why Is This Chapter Different? 889

DriveExists Boolean Given a drive letter or complete file specification, determines if
the drive exists. This method does not attempt to see if the
drive is available or if media has been inserted. See the IsReady
property of the Drive object for more information on checking
the readiness of a drive. For example:
If fso.DriveExists("Q:") Then
 ' You know drive Q exists.
End If

FileExists Boolean Determines if the specified file exists. Either include a full or
relative path—otherwise, the method only looks in the current
folder (and it’s not always clear in Windows exactly what the
current folder is). For example:
If fso.FileExists("C:\Autoexec.bat") Then
 ' You know the file exists.
End If

FolderExists Boolean Determines if the specified folder exists. Either include a full or
relative path—otherwise, the method only looks in the current
folder. For example:
If fso.FolderExists("C:\Backup") Then
 ' You know the folder exists.
End If

GetDrive Drive Given a drive letter (D), a drive specification (D:\), or a network
share (\\share\path), return a Drive object referring to the
selected drive. For example:
Dim drv As Scripting.Drive
Set drv = fso.GetDrive("C")

GetFile File Given a relative or absolute file path, return a File object
corresponding to the selected item. For example:
Dim fil As Scripting.File
Set fil = fso.GetFile("C:\Autoexec.bat")

GetFolder Folder Given a relative or absolute folder path, return a Folder object
corresponding to the selected item. For example:
Dim fld As Scripting.Folder
Set fld = fso.GetFolder("C:\Backup")

MoveFile Move a file (or files) to new location.

MoveFolder Move a folder (or folders) to a new location.

T A B L E 1 4 . 3 : FileSystemObject Methods Allowing You to Manipulate Files, Folders, and
Drives (continued)

Method Return Type Description

Chapter 14 • Using the Scripting Runtime Library Objects890

Testing the Simple FileSystemObject
Methods

The sample form, frmFileFolderNames, shown in Figure 14.2, allows you to test
out most of the methods described in Table 14.2. If you dig into the form’s code,
you’ll find that the Load event procedure for the form instantiates a form-level
FileSystemObject, and the form’s Unload event procedure destroys it. (That way,
none of the individual procedures needs to create an instance.) The code within
the form’s events uses simple methods of the FileSystemObject, like this fragment
that fills in labels on the form with portions of a selected filename:

lblFilePart(1).Caption = fso.GetBaseName(strFile)
lblFilePart(2).Caption = fso.GetDriveName(strFile)
lblFilePart(3).Caption = fso.GetExtensionName(strFile)
lblFilePart(4).Caption = fso.GetParentFolderName(strFile)

T A B L E 1 4 . 4 : FileSystemObject Methods Allowing You to Work with TextStream Objects

Method Return Type Description

CreateTextFile TextStream Given a filename, creates a new text file and returns a
TextStream object so that you can manipulate the file
programmatically.

GetStandardStream* TextStream In order to work with the standard I/O streams, this
method allows you to open the StdIn, StdOut, or
StdErr devices. If you need to create CGI applications
for use on a Web site, or if you want to allow input or
output from one of the standard operating system
streams, you can finally do so from within VBA. Pass
in one of the constants StdIn (0), StdOut (1), or StdErr
(2), and the method returns a TextStream object with
which you can either read or write. We’ve not had a
compelling reason to need this feature and won’t
dwell on it here.

OpenTextFile TextStream Opens a specified file and returns a TextStream object
that can be used to read from or append to the file

 Copying and Moving Files and Folders 891

F I G U R E 1 4 . 2
Use this sample form,

frmFileFolderNames, to
test out several of the

FileSystemObject methods
and properties.

Copying and Moving Files and Folders
The FileSystemObject’s methods make it easy to copy and move files and folders.
This power comes at a price: Copying and moving files and/or folders using the
FileSystemObject can be treacherous because of the flexibility inherent in these
methods. In each case, you specify a source and a destination. When copying files
or folders (not when moving), you can also specify whether you want the copied
files or folders to overwrite existing items.

Every example in this section assumes you’ve already declared and instantiated a
FileSystemObject named fso.

For example, if you want to copy one file to a new location (the new location
must be a valid, existing folder), you could write code like this:

fso.CopyFile "C:\autoexec.bat", _
 "D:\SaveFolder\"

Note the trailing backslash on the output folder name: if you don't specify the
trailing backslash, the method assumes you're specifying a filename to copy the
file to. If you already have a folder with the specified name, you'll get a runtime

Chapter 14 • Using the Scripting Runtime Library Objects892

error. If you do want to copy the file to a folder and give it a new name, you can
write code like this:

fso.CopyFile "C:\autoexec.bat", "D:\SaveFolder\save.bat"

To copy multiple files, you might write code like this:

fso.CopyFile "C:*.bat", "D:\SaveFolder\"

Note that you cannot rename the files as you copy them. That is, this code will fail:

fso.CopyFile "C:*.bat", "D:\SaveFolder*.sav"

If you want to overwrite existing files without raising an error, pass True as the
optional third parameter, like this:

fso.CopyFile "C:*.bat", "D:\SaveFolder\", True

The CopyFolder method works the same way, except that this method copies a
folder and all its contents to a new location. You can write code like this:

fso.CopyFolder "D:\SaveFolder", "D:\NewFolder"

and you'll find a new folder with all the contents of the original. As when copying
files, you can specify the third optional parameter, telling the method to overwrite
existing files without complaint.

Don't attempt to copy a folder to a subfolder of itself. This is an illegal operation,
no matter how you try it.

Moving files and folders works basically the same as copying, except you can-
not overwrite existing files or folders as you move. In other words, there's no
parameter that allows you to overwrite existing items, and attempting to do so
will trigger a runtime error.

If you need to move files or folders, and you're not sure whether they already
exist, you'll need to use error handling to your advantage. If the attempt to move
fails, you can use the appropriate method to delete the file or folder, and use the
Resume statement to attempt the move again.

 The Drives Collection 893

The Drives Collection
The FileSystemObject provides a single property: the Drives collection. You can
use this property to access the entire file system hierarchy associated with your
computer. Once you’ve created an instance of the FileSystemObject, you can work
your way down through the Drives collection to a particular drive. From there,
you can use the RootFolder property to retrieve a reference to the Folder object
corresponding to the root folder of the drive. Once there, you can use the SubFolders
property to retrieve a Folders collection, representing all the folders on the drive.
Given a Folders collection, you can work with individual Folder objects and the
Files collection within them.

Generally, you won’t iterate through Drive, Folder, and File objects to work with
individual items. Instead, you’ll use the GetDrive, GetFolder, and GetFile methods
of the FileSystemObject, mentioned in earlier sections. If you need to iterate
through and work with all the drives, folders, and files on your computer,
however, you can easily use For Each...Next loops to visit each and every item in
the file system. The following sections detail how you can loop through the
various collections.

To retrieve a reference to a particular drive on your computer, you might write
code like this:

Dim fso As Scripting.FileSystemObject
Dim drv As Scripting.Drive
Set fso = New Scripting.FileSystemObject
Set drv = fso.Drives("C")

This code declares and instantiates a new FileSystemObject and retrieves a refer-
ence to the C: drive. Once you have that reference, you can use the Drive object
and all its properties, as described in the next section.

To demonstrate the use of the Drives collection and the Drive object (see the
next section for details on the individual properties of the Drive object), check out
the frmDrives demo form, shown in Figure 14.3. This form displays all the avail-
able drives in a list box. Once you select a particular drive, the form displays for-
matted information about that drive’s properties in controls on the form.

Chapter 14 • Using the Scripting Runtime Library Objects894

To do its job, the sample form uses code like this in its Load event procedure,
filling the list box with the list of available drives:

Private Sub Form_Load()
 Dim drv As Scripting.Drive

 On Error Resume Next

 Set fso = New Scripting.FileSystemObject

 For Each drv In fso.Drives
 lstDrives.AddItem drv.DriveLetter
 Next drv

 ' This will fail if the current
 ' drive is a UNC drive. That's why
 ' we added the "On Error Resume Next"
 ' in here.
 lstDrives.Text = Left$(CurDir, 1)
End Sub

F I G U R E 1 4 . 3
The sample form frmDrives

displays a list of all
available drives, and

information about each
particular drive.

The Drive Object
The Drive object represents a particular drive within your computer’s file system.
You can either use the Drives property or the GetDrive method of the FileSystem

 The Drive Object 895

object to retrieve a particular drive. That is, the following fragment demonstrates
two methods for retrieving a reference to a particular drive:

Dim fso As Scripting.FileSystemObject
Dim drv As Scripting.Drive

Set fso = New Scripting.FileSystemObject
' Use this technique:
Set drv = fso.Drives("C")

' or this one. It doesn't matter:
Set drv = fso.GetDrive("C")

Table 14.5 lists all the properties of the Drive object. (The Drive object has no
methods.)

T A B L E 1 4 . 5 : Properties of the Drive Object

Property Type Description

AvailableSpace Variant Available space on the drive for the current user,
taking into account disk quotas applied by the
system administrator.

DriveLetter String The drive letter associated with the drive. If the drive
is mapped from a network share, the ShareName
property will indicate the original share’s location.

DriveType DriveTypeConst;
one of CDROM (4),
Fixed (2), RamDisk (5),
Remote (3),
Removable (1),
Unknown (0)

Returns the type of the selected drive.
Unfortunately, this property can gather no more
information than the six available return values. If
you’re using a particular brand of removable drive,
for example, there’s no way to differentiate
different manufacturer’s drives, given this
information.

FileSystem String Type of file system in use on the drive. Generally,
this will be one of “FAT,” “CDFS,” or “NTFS.”

FreeSpace Variant Available space on the selected drive, not taking
into account quotas for the current user. That is, this
value will return all available space, even if the
current user cannot access all that space.

IsReady Boolean Returns True if the selected drive is ready. Only
applicable for removable drives (see the DriveType
property for more information), this property is True
when the media is inserted and ready for access.

Chapter 14 • Using the Scripting Runtime Library Objects896

The Drive object returns Variant values for its drive size properties—AvailableSpace,
FreeSpace, and TotalSize—rather than returning Long integers. The problem is
that a single drive can be larger than 2 gigabytes (and that’s the maximum size a
Long can hold). Therefore, by using Variants, the return type can be a Long,
Single, or Double, as required by the individual drive. We tested this object with
drives up to 18 gigabytes, and it worked fine for all the drives we threw at it.

The AvailableSpace and FreeSpace properties seem redundant, but they’re not. In
some environments, system administrators place disk quotas on individual users.
The AvailableSpace property takes disk quotas into account, and the FreeSpace
property simply returns the amount of free space on the drive.

Path String The path for the specified drive. Doesn’t include a
trailing backslash.

RootFolder Folder Folder object representing the root folder. Use the
Files property to work with files in the root folder or
the SubFolders property to work with folders under
the root. See the section titled “The Folder Object”
for more information.

SerialNumber Long Long integer (in base 10) containing the unique
serial number for the drive. Normally, you see this
value formatted in hex, and the sample form
contains a function to perform this conversion for
you.

ShareName String If the drive represents a mapped share, this property
contains the name of the share. If the drive isn’t
mapped, ShareName returns an empty string (“”).

TotalSize Variant Returns the total size for the drive, in bytes. Divide
by 1024 to convert to Kb (kilobytes).

VolumeName String Set or get the volume name for the drive. This is the
only read/write property of the Drive object. You
can set this property’s value to change the volume
name of the drive.

T A B L E 1 4 . 5 : Properties of the Drive Object (continued)

Property Type Description

 The Folder Object 897

Several of the Drive properties displayed on the form in Figure 14.3 require for-
matting. For example, if you want to display the drive type, you’ll need a function
like the following to convert from the DriveTypeConst value into a string:

Private Function DriveType(_
 lngType As Scripting.DriveTypeConst) As String
 Select Case lngType
 Case Fixed
 DriveType = "Fixed"
 Case Remote
 DriveType = "Remote"
 Case CDRom
 DriveType = "CDRom"
 Case Removable
 DriveType = "Removable"
 Case Unknown
 DriveType = "Unknown"
 Case RamDisk
 DriveType = "RamDisk"
 End Select
End Function

Generally, programs display a drive’s SerialNumber property in Hex, formatted
as XXXX-YYYY, where X and Y represent hexadecimal values. To take care of this
conversion, the sample form includes the following function:

Private Function FormatHex(lngValue As Long) As String
 Dim strTemp As String
 ' This guarantees that the string has 8 characters,
 ' left-padded with 0's.
 strTemp = Right$(String(8, "0") & Hex(lngValue), 8)
 FormatHex = Format$(strTemp, "@@@@-@@@@")
End Function

The Folder Object
The Folder object represents a single folder within the file system, and the Folders
object provides a collection of Folder objects. Each Folder object exposes the prop-
erties listed in Table 14.6. The sample VB form, frmFolder, shown in Figure 14.4,
demonstrates each of these properties for a folder you select. (Select a file first and
then click the link provided in the ParentFolder property to view the sample form.)

Chapter 14 • Using the Scripting Runtime Library Objects898

F I G U R E 1 4 . 4
The sample form frmFiles
allows you to select a file
and then displays all the
Folder object properties

associated with the Parent-
Folder property.

T A B L E 1 4 . 6 : Properties of the Folder Object

Property Type Description Comments

Attributes (read/write) FileAttribute One or more of the values
from Table 14.8, added
together

Set this property to modify the
attributes of a folder. Use a
combination of the values in
Table 14.8, adding the values
together. Some combinations
of values are invalid.

DateCreated Date Date the folder was
created

Includes both the date and time

DateLastAccessed Date Date the folder was last
accessed

Includes both the date and time

DateLastModified Date Date the folder was last
modified

Includes both the date and time

Drive Drive Drive object representing
the drive containing the
folder

This property will return a UNC
path, if the drive isn’t local

Files Files Collection containing all
the File objects in the
folder

 The Folder Object 899

IsRootFolder Boolean Indicates whether the
specified folder is the
root folder of a drive

Returns True even for the root
folder of UNC shares, even if
the actual folder mapped isn’t
the root of a physical drive.

Name (read/write) String Name of the folder You can set this property to
effectively rename the Folder.
Returns the name portion only,
so a folder such as “C:\” will
return an empty string for this
property.

ParentFolder Folder Parent folder of the
current folder

Path String Full path name of the file This property includes long
filenames. The ShortPath
property provides the 8.3 version
of the path and filename.

ShortName String 8.3 (8 character file name,
3 character extension)
version of the filename

ShortPath String 8.3 version of the full path

Size Variant Sum of the sizes of all the
files in the folder and its
subfolders

In order to accommodate drives
larger than the value a Long can
contain, this property returns a
Variant. Divide this value by
1024 to calculate the Kb size.
This property returns the same
value as if you’d right-clicked
the folder in Windows Explorer
and selected Properties.

SubFolders Folders Collection containing all
the folders within the
selected folder, at the
current level. This
collection does not
contain folders within the
current level’s folders.

Clearly, this data structure
becomes recursive if a folder
contains subfolders, each of
which can contain subfolders.

Type String The file type association
for the folder

Although this isn’t documented,
our testing found that local
drives returned “Local Disk,”
and UNC paths on remote
drives returned “File” as the
value of this property.

T A B L E 1 4 . 6 : Properties of the Folder Object (continued)

Property Type Description Comments

Chapter 14 • Using the Scripting Runtime Library Objects900

Many of these properties are shared with the File object. See the section titled
“The File Object” for examples of using some of the properties. Navigating through
folders, however, is an issue specific to the Folders collection, Folder objects, and
the ParentFolder and SubFolders properties. The following paragraphs describe
using these objects and properties.

Although the Folders collection provided by the SubFolders property looks like a
normal VBA collection (it provides only Count and Item methods, however, leav-
ing out the Add and Remove methods), its Item method accepts only a string as its
parameter. That is, if you want to reference a particular folder within the SubFolders
collection, you cannot do it by position within the collection. You must specify a
folder name as the key. If you want to iterate through all the items in the SubFolders
collection, you may not use a For...Next loop: instead, you must use a For Each...
Next loop.

Navigating through Folders
The two procedures in Listing 14.1 demonstrate how you might recursively iterate
down through subfolders and how you might work your way back up the folder
hierarchy to the root folder.

➲ Listing 14.1: You Can Work Your Way Down through the Hierarchy
of Subfolders, or Back Up to the Root Folder, as Shown in These
Procedures from basNavigateFolders.

Public Sub IterateFolders(_
 fld As Scripting.Folder, _
 Optional Level As Integer = 0)

 ' Demo recursive procedure to iterate through
 ' folders, including subfolders.

 Dim fldSub As Scripting.Folder
 ' Print out the current folder, indented.
 Debug.Print Space(2 * Level); fld.Path

 ' Now loop through all the subfolders.

 The Folder Object 901

 For Each fldSub In fld.SubFolders
 Call IterateFolders(fldSub, Level + 1)
 Next fldSub
End Sub

Public Sub GetParentFolder(fld As Scripting.Folder)
 ' Demo procedure to work back through
 ' folders, up to the root.

 Do Until fld.IsRootFolder
 Debug.Print fld.Path
 Set fld = fld.ParentFolder
 Loop
 Debug.Print fld.Path
End Sub

The IterateFolders procedure first prints out the current folder’s Path property,
and then loops through all the folders in its SubFolders collection. For each sub-
folder, the code calls the IterateFolders procedure recursively, effectively working
its way through all the folders under the selected folder. To test this procedure, try
this code from basNavigateFolders:

Public Sub TestIterateFolders()
 Dim fso As Scripting.FileSystemObject
 Set fso = New Scripting.FileSystemObject
 Call IterateFolders(fso.GetFolder("C:\"))
 Set fso = Nothing
End Sub

The GetParentFolder procedure is simpler: it uses the ParentFolder property of
each folder, working its way uphill until the selected folder’s IsRootFolder prop-
erty returns True. The TestGetParent procedure, shown here, demonstrates the
use of GetParentFolder:

Public Sub TestGetParent()
 Dim fso As Scripting.FileSystemObject
 Set fso = New Scripting.FileSystemObject
 ' Substitute your own folder for the hard-coded
 ' folder used in this example.
 Call GetParentFolder(_
 fso.GetFolder("C:\OPG\SAMPLES\CH02"))
 Set fso = Nothing
End Sub

Chapter 14 • Using the Scripting Runtime Library Objects902

The Files Collection
Once you’ve selected a particular folder, you can use the Files property of the
Folder object to retrieve a collection of File objects. The next section describes the
File object in detail, but the following code demonstrates how you might iterate
through the Files collection to work with each File object in a folder:

Public Sub ListFiles()
 Dim fso As Scripting.FileSystemObject
 Dim fld As Scripting.Folder
 Dim fil As Scripting.File

 Set fso = New Scripting.FileSystemObject
 Set fld = fso.GetFolder("C:\")

 Debug.Print "There are " & fld.Files.Count & " files."

 ' This loop doesn't work, and it would
 ' be the slowest solution, even if it DID work.
 'Dim i As Integer
 'For i = 1 To fld.Files.Count
 ' Debug.Print fld.Files.Item(i).Name
 'Next i

 For Each fil In fld.Files
 Debug.Print fil.Name
 Next fil
End Sub

Just as mentioned earlier with the SubFolders collection, the Files collection looks
like a normal VBA collection but its Item method only accepts a string as its param-
eter. That is, if you want to reference a particular file within the Files collection,
you cannot do it by position within the collection. You must specify a filename as
the key. If you want to iterate through all the items in the Files collection, you may
not use a For...Next loop: instead, you must use a For Each...Next loop.

 The File Object 903

The File Object
Each item in the Files collection is itself a File object, and each File object exposes
the properties listed in Table 14.7. (Table 14.8 lists possible values for the Attributes
property of a File object.) The sample VB form, frmFiles, shown in Figure 14.5,
demonstrates each of these properties for a file that you select.

F I G U R E 1 4 . 5
The sample form allows you

to select a file and then
displays all the File object

properties associated
with that file.

T A B L E 1 4 . 7 : File Object Properties. All Properties Are Read-Only Unless Otherwise
Specified.

Property Type Description Comments

Attributes (read/write) FileAttribute One or more of the values
from Table 14.8, added
together

Set this property to modify the
attributes of a file. Use a
combination of the values in
Table 14.8, adding the values
together. Some combinations
of values are invalid.

DateCreated Date Date the file was created Includes both the date and
time

DateLastAccessed Date Date the file was last
accessed

Includes both the date and
time

DateLastModified Date Date the file was last
modified

Includes both the date and
time

Chapter 14 • Using the Scripting Runtime Library Objects904

Drive Drive Drive object representing
the drive containing the
file

Name (read/write) String Full name of the file,
including the extension

You can set this property to
effectively rename the file.

ParentFolder Folder Folder containing the file

Path String Full path name of the file This property includes long
filenames. The ShortPath
property provides the 8.3
version of the path and
filename.

ShortName String 8.3 (8 character filename,
3 character extension)
version of the filename

ShortPath String 8.3 version of the full
path

Size Variant Actual size of the file, in
bytes

In order to accommodate
drives larger than the value a
Long can contain, this property
returns a Variant. Divide this
value by 1024 to calculate the
Kb size.

Type String The file type association
for the file

T A B L E 1 4 . 8 : FileAttribute Enumeration

Constant Value Description Can Be Set

Normal 0 Normal file, with no
attributes set

No (this is the absence of
any other attribute)

ReadOnly 1 Read-only file Yes

Hidden 2 Hidden file Yes

System 4 System file Yes

Volume 8 Disk volume label No

T A B L E 1 4 . 7 : File Object Properties. All Properties Are Read-Only Unless Otherwise
Specified. (continued)

Property Type Description Comments

 The File Object 905

Most of the properties listed in Table 14.7 require no explanation. Some of the
properties, however, are not so clear:

• The “Modifying Attributes” section below provides details on using the
Attributes property.

• The Drive property returns a Drive object representing the drive containing
the file. Because the Path property of the Drive object is the object’s default
member, if you type something like this (where fil is a File object referring
to an existing file), you’ll get the Path property without explicitly requesting
it:

Debug.Print fil.Drive

• You can change the name of a File object by modifying its Name property.

• The ParentFolder property returns a Folder object, and the default member
of the Folder object is the Path property. Therefore, if you simply write code
like the following, you’ll get the Path property of the parent folder. If you
need more information about the parent folder, you can use the other prop-
erties of the Folder object returned by the ParentFolder property:

Debug.Print fil.ParentFolder

Methods of File Objects
The File object provides just four methods, shown in Table 14.9. The Copy, Delete,
and Move methods are similar to the parallel methods of the FileSystemObject.
Here, however, you needn’t specify source filenames—that information comes
from the File object you’ve already referenced. (Using the CopyFile method of the

Directory 16 Folder or directory No

Archive 32 File has been changed
since most recent
backup

Yes

Alias 1024 File is link or shortcut No

Compressed 2048 File is compressed No

T A B L E 1 4 . 8 : FileAttribute Enumeration (continued)

Constant Value Description Can Be Set

Chapter 14 • Using the Scripting Runtime Library Objects906

FileSystemObject, however, you can copy multiple files at once, specifying a
source using wildcards. Here, you can only copy a single file—the selected file.)

Copying a File

To call the Copy method, use syntax like this:

fil.Copy Destination[, OverWrite]

where:

• Destination is a string representing the location for the new file. Wildcard
characters are not allowed.

• Overwrite is an optional Boolean (default is True), indicating whether you
want to have the copy operation overwrite an existing file. If set to False, the
Copy method raises an error if the file already exists. (You’ll get error 58,
“File already exists,” if you set this parameter to False and the destination
file already exists.)

For example, if fil is a Scripting.File object referring to an existing file, you
might write code like this to copy the file to the root of your D: drive, raising an
error if the output file already exists:

fil.Copy "D:\", False

T A B L E 1 4 . 9 : Methods of the File Object

Method Return Value Description

Copy Copy the selected file to a new location,
optionally overwriting an existing
output file.

Delete Delete the selected file, optionally
allowing you to delete system and read-
only files. Files deleted this way are
permanently deleted, not moved to the
Recycle Bin.

Move Move the selected file to a new location.

OpenAsTextStream TextStream Open the selected file as a TextStream
object, allowing you to work with its
contents. See “The TextStream Object,”
later in the chapter, for more
information.

 The File Object 907

Although VBA provides a FileCopy method, it doesn’t work with open files, and it
cannot be made to raise an error if the output file exists. In addition, you must
specify the full output filename, rather than just the path, as you can with the
Copy method of the Scripting.File object.

Deleting a File

To delete a file, use the Delete method of the Scripting.File object, like this:

fil.Delete [Force]

where:

• Force is an optional Boolean (default is False) indicating whether the method
should delete read-only and system files without raising an error. (Nor-
mally, attempting to delete read-only files raises error 70, “Permission
denied.”)

For example, if fil is a Scripting.File object referring to an existing file, you
might write code like this to delete the file, forcing a delete even if the file is read-
only:

fil.Delete True

VBA includes the Kill statement, which allows you to delete some files. It doesn’t,
however, allow you to delete system or hidden files. (Perhaps that’s a good
thing?) If you want to delete multiple files using the Scripting objects, use the
DeleteFile method of the FileSystemObject.

Moving a File

To call the Move method, use syntax like this:

fil.Move Destination

where:

• Destination is a string representing the location for the new file. Wildcard
characters are not allowed.

For example, if fil is a Scripting.File object referring to an existing file, you
might write code like this to move the file to the root of your D: drive:

fil.Move "D:\"

Chapter 14 • Using the Scripting Runtime Library Objects908

Unlike the Copy method, the Move method does not provide any means for over-
writing existing files. If a file with the same name already exists in the output loca-
tion, the Move method will raise error 58, “File already exists.” You’ll need to add
error handling to your code in order to handle this occurrence.

If you want to move multiple files using a wildcard specifier, see the MoveFile
method of the FileSystemObject. If you want to move an entire folder, you can use
the Move method of a Folder object. If you want to move multiple folders, use the
MoveFolder method of the FileSystemObject.

Opening a TextStream Based on a File

If you want to open a File object as a text stream and work with its contents as text,
you can use the OpenAsTextStream method of the File object. The syntax for the
OpenAsTextStream method looks like this:

Set ts = fil.OpenAsTextStream [IOMode][, Format]

where:

• ts is previously declared as Scripting.TextStream.

• IOMode is optional and is one of the values ForReading, ForWriting, or
ForAppending, indicating the mode to be used when opening the file. The
default value is ForReading.

• Format is optional and is one of the values TristateUseDefault (use the sys-
tem default file format), TriStateTrue (open the file as Unicode), or TriState-
False (open the file as ASCII). The default is TristateFalse, indicating that the
file will be opened as an ASCII file unless you specify otherwise.

This method provides the same functionality as the FileSystemObject’s Open-
TextFile method. You’ll find that method described in the section titled “The Text-
Stream Object” later in the chapter.

Retrieving a Specific File Object
You can use the Drives, SubFolders, and Files collections of the FileSystemObject
to drill down to a particular file. On the other hand, if you need information on a

 The File Object 909

particular file, given its name, you can also use the GetFile method of the FileSys-
temObject. For example, you’re more likely to use the second code example,
rather than the first (both are in basTestProcedures), to retrieve a reference to
J:\WINNT\WIN.INI:

Sub GetAFile1()
 ' Get a reference to a file, the hard way.
 Dim fso As Scripting.FileSystemObject
 Dim drv As Scripting.Drive
 Dim fld As Scripting.Folder
 Dim fil As Scripting.File

 Set fso = New Scripting.FileSystemObject
 Set drv = fso.Drives("J:")
 Set fld = drv.RootFolder.SubFolders("WINNT")
 Set fil = fld.Files("WIN.INI")
 Debug.Print fil.Size
End Sub

Sub GetAFile2()
 ' Get a reference to a file, the easy way.
 Dim fso As Scripting.FileSystemObject
 Dim fil As Scripting.File

 Set fso = New Scripting.FileSystemObject
 Set fil = fso.GetFile("J:\WINNT\WIN.INI")
 Debug.Print fil.Size
End Sub

Modifying Attributes
The Attributes property of a File object allows you to modify its attributes within
the file system. You modify a file’s Attributes property using only four of the pos-
sible attributes: ReadOnly, Hidden, System, and Archive. In each case, you must
modify a bitwise value, toggling bits as needed to set these values. In other words,
you can’t simply set the Attributes property to equal one of these values—doing
so would modify existing attributes. Therefore, you must use the Or operator to
add one or more attributes to a file’s attribute settings, and the And Not operators
to remove one or more attributes. You can use the And operator to check whether
a particular attribute is set. The procedures in Listing 14.2, from basAttributes,
allow you to check, set, or clear one or more attributes.

Chapter 14 • Using the Scripting Runtime Library Objects910

➲ Listing 14.2: Use These Procedures to Check, Set, or Clear One or
More File Attributes.

Public Function CheckAttributes(_
 lngValue As Scripting.FileAttribute, _
 lngAttribute As Scripting.FileAttribute) As Boolean

 ' Given a file attribute and one or more
 ' attributes to check, return True if all
 ' the requested attributes are set, and False
 ' otherwise.
 CheckAttributes = ((lngValue And lngAttribute) = lngAttribute)
End Function

Public Function SetAttributes(_
 lngValue As Scripting.FileAttribute, _
 lngAttribute As Scripting.FileAttribute) As Scripting.FileAttribute

 ' Given a file attribute and one or more
 ' attributes to set, return the modified
 ' file attribute.
 SetAttributes = lngValue Or lngAttribute
End Function

Public Function ClearAttributes(_
 lngValue As Scripting.FileAttribute, _
 lngAttribute As Scripting.FileAttribute) As Scripting.FileAttribute

 ' Given a file attribute and one or more
 ' attributes to clear, return the modified
 ' file attribute.
 ClearAttributes = lngValue And Not lngAttribute
End Function

The procedures in Listing 14.3, from basTestAttributes, demonstrate the use of
the three attribute-handling functions. ClearAllAttributes clears all file attributes
from the file whose name you supply. SetReadOnly sets the read-only attribute
for the selected file, and CopyIfArchived copies the selected file to a new location
if its archive attribute has been set.

 The File Object 911

➲ Listing 14.3: Test Procedures for the Procedures in Listing 14.2

Public Sub ClearAllAttributes(strPath As String)
 ' Given a full file name, clear
 ' all the modifiable attributes:
 ' Archive, ReadOnly, System, and Hidden.

 Dim fso As Scripting.FileSystemObject
 Dim fil As Scripting.File

 Set fso = New Scripting.FileSystemObject
 Set fil = fso.GetFile(strPath)

 ' Clear all modifiable attributes.
 fil.Attributes = ClearAttributes(fil.Attributes, _
 Archive + System + Hidden + ReadOnly)

 Set fil = Nothing
 Set fso = Nothing
End Sub

Public Sub SetReadOnly(strPath As String)
 ' Given a full file name, set the
 ' ReadOnly attribute for the file.

 Dim fso As Scripting.FileSystemObject
 Dim fil As Scripting.File

 Set fso = New Scripting.FileSystemObject
 Set fil = fso.GetFile(strPath)

 ' Set read-only attribute.
 fil.Attributes = SetAttributes(_
 fil.Attributes, ReadOnly)

 Set fil = Nothing
 Set fso = Nothing
End Sub

Public Function CopyIfArchived(_
 strInPath As String, strOutPath As String) As Boolean

Chapter 14 • Using the Scripting Runtime Library Objects912

 ' If the selected file has its Archive bit set,
 ' copy it to the output path.

 ' Return True if the file was copied,
 ' False otherwise.

 Dim fso As Scripting.FileSystemObject
 Dim fil As Scripting.File

 ' Assume the file won't be copied.
 CopyIfArchived = False

 Set fso = New Scripting.FileSystemObject
 Set fil = fso.GetFile(strInPath)

 ' Set read-only attribute.
 If CheckAttributes(fil.Attributes, Archive) Then
 fso.CopyFile strInPath, strOutPath, True
 CopyIfArchived = True
 End If

 Set fil = Nothing
 Set fso = Nothing
End Function

For more information on working with files and file attributes, see Chapter 12.

Bitwise Arithmetic
The Attributes property of a File object is a long integer but is actually a set of bits (0s and 1s),
each representing one possible file attribute. The position of each bit within the integer indi-
cates the meaning of the bit. For example, if a file’s Attributes property is 2051, the bits that
are set represent 2048 + 2 + 1, indicating a compressed, hidden, and read-only file.

Each of the constant values shown in Table 14.8 (except Normal) has one bit set, indicat-
ing the particular bit within the Attributes property representing that particular attribute.
For example, because the bit farthest to the right in the Attributes property represents the
read-only attribute of a file, the ReadOnly constant contains all 0s except for the right-
most bit, which is set to 1.

 The TextStream Object 913

The TextStream Object
If you have a need to work with text files, you’ll appreciate the TextStream object.
Yes, we’ve introduced other techniques for working with text files in other chap-
ters (see Chapter 12, in particular), but all the built-in VBA techniques are painful,
at best.

The TextStream object in SCRRUN.DLL allows you to read and write text in a
text file. In addition, you can choose to work with text a line at a time or on a char-
acter-by-character basis. (A line consists of characters up to, but not including, a
carriage return/linefeed pair of characters.)

To modify the Attributes property, you use either the And or the Or bitwise operator. The
And operator takes any two values and returns 1 in any of the positions that was 1 in both
values and returns 0 in any of the positions where either or both were 0. The Or operator
sets any position to 1 if either of the corresponding positions is 1, and 0 otherwise.

Therefore, to force a specific bit to be on, you use the Or operator with a number that has
all zeros except in the particular bit you care about, where you have a 1. (This works
because any value Or’d with 0 isn’t changed, but any value Or’d with 1 is set to 1.) The
SetAttributes procedure in basAttributes demonstrates this behavior.

To force a bit to be off, you use the And operator with 1s in all the bits except the one you
care about, where you have a 0. (This works because any value And’d with 1 isn’t
changed, but any value And’d with 0 is set to 0.) To control whether you’re turning bits on
or off, you can apply the Not logical operator to the constant representing the bit you’re
attempting to toggle, which flips all the bits of a value from 0 to 1 or from 1 to 0. The
ClearAttributes procedure in basAttributes demonstrates this behavior.

Therefore, because the constant ReadOnly contains the correct bit settings to set the file
attribute so that it’s read-only, you could Or it with the value returned from the file’s
Attributes property to set the file to be read-only. To turn it off, you And it with Not Rea-
dOnly. This leaves all the bits alone except the one controlling the ReadOnly attribute of
the file, which is set to 0.

To determine if a particular bit is set, you can use the And operator. If the file’s Attribute
property And’d with an attribute to check returns a value that’s the same as the attribute
to be checked, you know that the particular bit you were interested in is, in fact, set on.
The CheckAttribute procedure in basAttributes demonstrates this behavior.

Chapter 14 • Using the Scripting Runtime Library Objects914

You can open the text file for reading, for writing, or for appending (depending
on options you choose when you open the file). You cannot mix these options: that
is, once you’ve opened a file for writing, you cannot go back and read text without
closing the file and re-opening it. If you’ve opened the file to append text to it, the
same limitation applies: you’ll need to close and re-open the file before you can
read any text. Basically, you can never move backwards within a text file without
closing and opening the file again. You can only read characters moving forward
and can only write characters with a forward-moving file pointer.

Opening a TextStream
You can create a TextStream object in one of three ways:

• You can call the CreateTextFile method of either a FileSystemObject or of a
Folder object. This method creates a new text file and returns a TextStream
object so you can programmatically manipulate the new file. The syntax for
this method is as follows:

Set TextStreamVariable = FSOOrFolder.CreateTextFile(_
 FileName[, OverWrite][, Unicode]

where:

• FileName is a string containing the name of the new file, including its
path.

• OverWrite is an optional Boolean (default value True), indicating
whether an existing file can be overwritten without raising an error.
Currently, the documentation incorrectly states that the default is
False. It is not—if you omit this parameter, files get overwritten.

• Unicode is an optional Boolean, indicating whether the file should be
created using the Unicode character set (True) or using the ASCII char-
acter set (False). The default is False.

• You can call the OpenAsTextStream method of a File object. In this case, the
syntax is as follows:

Set TextStreamVariable = fil.OpenAsTextStream(_
 [IOMode][, Format])

where:

• IOMode is an optional value that can be one of ForAppending, For-
Reading, or ForWriting. This tells the File object how you want to

 The TextStream Object 915

use the TextStream object that it’s creating. The default choice is For-
Reading.

• Format is an optional value that indicates whether to use ASCII
(TristateFalse), Unicode (TristateTrue), or the system default
(TristateUseDefault). The default value is TristateFalse, meaning that
you’ll get an ASCII file.

• You can call the OpenTextFile method of the FileSystemObject to open an
existing file as a TextStream object. The syntax is as follows:

Set TextStreamVariable = fso.OpenTextFile(_
 FileName[, IOMode][, Create][, Format]

• FileName is a string containing the name of the new file, including its path.

• IOMode is an optional value that can be one of ForAppending, ForRead-
ing, or ForWriting. This tells the File object how you want to use the Text-
Stream object that it’s creating. The default choice is ForReading.

• Create is an optional Boolean value (default is False) indicating whether
the method should create a new text file if one with the specified name
doesn’t already exist.

• Format is an optional value that indicates whether to use ASCII
(TristateFalse), Unicode (TristateTrue), or the system default
(TristateUseDefault). The default value is TristateFalse, meaning that
you’ll get an ASCII file.

You can use any of these methods to retrieve a TextStream object. The OpenText-
File and OpenAsTextFile methods can open an existing text file, and the Create-
TextFile and OpenTextFile methods can create a new text file. Which technique
you use is up to you—choose the one that’s most convenient, depending on the
objects you currently have available.

Making the TextStream Object Work
Once you’ve opened a TextStream object, representing a text file on disk, you can
use methods of the object to read, write, and move within the text file. Table 14.10
lists all the methods of the TextStream object.

Chapter 14 • Using the Scripting Runtime Library Objects916

Some points to consider:

• All methods that read and write from or to the text file take into account the
current position (sometimes called the file pointer) within the text file. That is,
calling the ReadAll method starts at the current position within the text file
and reads all the text from there. The ReadAll method does not go back to
the beginning of the file if you’ve already moved the file pointer.

T A B L E 1 4 . 1 0 : Methods of the TextStream Object

Method Description

Close Close an open TextStream object. Although VBA will do this for you when the
variable referring to the text file goes out of scope, it’s best to close the file
explicitly—this forces any open buffers to be flushed and guarantees that any
data written to the file is actually placed into the file on disk.

Read Starting at the current location in the text file, read the specified number of
characters, move the current position forward by the specified amount of
characters, and return the characters read from the file.

ReadAll Read the remaining contents of the text file, starting at the current position
within the text file, and return the text. Moves the current position within the
text file to the end of the file. For large files, consider reading one line at a time
or, at least, smaller chunks than the entire file.

ReadLine Starting at the current position, read the remainder of the current line, move the
current position to the beginning of the next line, and return the characters read.

Skip Move the file pointer ahead by the number of characters specified in the
parameter to Skip. Skipped characters are discarded—that is, they don’t show up
in the output in any of the methods that read from the file.

SkipLine Starting at the current file location, skip to the beginning of the next line,
disregarding any characters skipped along the way, and the carriage return/line
feed between the current position and the new line. After a call to this method,
the file pointer will either be at the beginning of a new line or at the end of the
file.

Write Write the specified text to the end of the file. This method doesn’t insert spaces
or line breaks, so use the WriteLines method if you want to insert a line at a time.

WriteBlankLines Write the specified number of carriage return/line feed pairs to the output file,
effectively inserting a specified number of blank lines.

WriteLine Write the text you specify, and a carriage return/line feed, to the output file. If you
call this without specifying any text, it will be as if you’d called WriteBlankLines(1)—
that is, the object will simply insert a single blank line into the file.

 The TextStream Object 917

• If you attempt to read when the file pointer is at the end of the file, you’ll get
error 62 (“Past end of file”). You’ll get this same error if you attempt to read
from an empty file.

• If you’re reading from a file and want to go back to the beginning, don’t
attempt to use the Skip method to move. You’ll need to close and re-open
the text file to move the pointer backwards.

• The Skip method only works when you’re reading. That means you cannot
move to an arbitrary location in a file and start writing there. You can only
create a new file and write continuously or append to an existing file. (This
is just a limitation with this implementation of the TextStream object.) If you
attempt to use the Skip or SkipLine methods when your TextStream object is
open for writing, you’ll receive a runtime error.

Properties of the TextStream Object
In addition to the methods listed in Table 14.10, the TextStream object provides
four simple properties, shown in Table 14.11. You’re most likely to use the AtEnd-
OfStream property, which returns True once you’ve reached the end of the input
file), but the others can be useful as well. (All the properties shown in Table 14.11
are read-only.)

T A B L E 1 4 . 1 1 : Properties of the TextStream Object

Property Return Value Description

AtEndOfLine Boolean Returns True if the file pointer is just about to
reach the end of a line. This property is only valid
when reading from a text file.

AtEndOfStream Boolean Returns True when the file pointer is at the end of
the text file. This property is only valid when
reading from a text file.

Column Long Returns the current column within the current line
of text. This property is available either when
reading or writing. After you write a new line, the
Column property returns 1.

Line Long Returns the line number containing the file
pointer. When you first open a file for reading or
for writing, the Line property returns 1.

Chapter 14 • Using the Scripting Runtime Library Objects918

Using the TextStream Object
As a simple example of using the TextStream object, we’ve provided the AddLine-
Numbers procedure (from basTestProcedures), shown in Listing 14.4. This proce-
dure allows you to specify input and output filenames and, optionally, a starting
line number, the amount to increment for each line, and the fixed width (padded
with 0s) for the line numbers. For example, calling the procedure as shown here
will create a file named OUT.TXT containing the contents of TEMP.TXT with line
numbers starting at 10, incrementing by 10s, and with a fixed width of 4 charac-
ters. Figure 14.6 shows a portion of both the input and output text files:

AddLineNumbers "C:\temp.txt", "C:\out.txt", 10, 10, 4

F I G U R E 1 4 . 6
Before and after photos,

using AddLineNumbers to
modify the text file

➲ Listing 14.4: AddLineNumbers Demonstrates Reading and Writing
Text Files Using the TextStream Object.

Public Sub AddLineNumbers(_
 strInFile As String, _
 strOutFile As String, _
 Optional Start As Long = 1, _
 Optional Increment As Long = 1, _
 Optional Width = 6)

 The TextStream Object 919

 Dim fso As Scripting.FileSystemObject
 Dim tsIn As Scripting.TextStream
 Dim tsOut As Scripting.TextStream
 Dim lngCount As Long
 Dim strLead As String
 Dim strText As String
 Dim strNumber As String

 On Error GoTo HandleErrors

 Set fso = New Scripting.FileSystemObject
 Set tsIn = fso.OpenTextFile(strInFile)
 ' Accept all the defaults: Overwrite, use ASCII.
 Set tsOut = fso.CreateTextFile(strOutFile)

 ' Create the leader text, by default: "000000"
 If Width < 0 Then Width = 0
 If Width > 10 Then Width = 10
 strLead = String(Width, "0")
 lngCount = Start

 Do Until tsIn.AtEndOfStream
 strText = tsIn.ReadLine
 ' Add the line number to the piece of text.
 If Width = 0 Then
 strNumber = CStr(lngCount)
 Else
 strNumber = Right$(strLead & lngCount, Width)
 End If
 strText = strNumber & " " & strText
 tsOut.WriteLine strText
 lngCount = lngCount + Increment
 Loop

ExitHere:
 On Error Resume Next
 tsIn.Close
 tsOut.Close
 Set tsIn = Nothing
 Set tsOut = Nothing
 Set fso = Nothing
 Exit Sub

Chapter 14 • Using the Scripting Runtime Library Objects920

HandleErrors:
 Select Case Err.Number
 ' Handle all errors the same.
 Case Else
 MsgBox "Error: " & Err.Description & _
 " (" & Err.Number & ")"
 End Select
 Resume ExitHere
End Sub

Working with the Dictionary Object
Although it seems like a poor fit for the rest of the objects in this chapter, the Win-
dows Script Host also provides a useful in-memory data structure, the Dictionary
object. Much like the VBA Collection object, the Dictionary object acts as an asso-
ciative array. That is, you can add items to the dictionary, and for each item,
assign a string (or any other data type) that uniquely identifies the item. In this
section, you’ll learn the properties and methods of the Dictionary object and why
it’s better than the built-in Collection object.

To create a Dictionary object, you can write code like this:

Dim dct As Scripting.Dictionary
Set dct = New Scripting.Dictionary
' Then, start adding items using the Item property
' or the Add method.

To get you started, Tables 14.12 and 14.13 list the properties and methods of the
Dictionary object.

T A B L E 1 4 . 1 2 : Methods of the Dictionary Object

Method Description

Add Given a unique Key value and an item (both can be of any data type), add a new
Key/Item pair to the dictionary. For example, you might write code like this:
dct.Add "Integer", 5
dct.Add "Form", frmMain
In this example, the Key value was “Integer” or “Form,” and the Item value was
the value 5 or a reference to the opened form, frmMain. The first parameter (the
Key value) must be unique within the dictionary.

 Working with the Dictionary Object 921

Exists Given a unique Key value, indicates whether a particular item exists within the
dictionary. Just as when adding an item to the dictionary, the Key value can be of
any data type. If the key exists, the Exists method returns True. Otherwise, it
returns False. For example, the following expression returns True, given the items
added in the example code for the Add method:
If dct.Exists("Form") Then

Items Zero-based array of all the items associated with the Dictionary object. You can
write code like this to iterate through all the items:
For i = 0 To dct.Count – 1
 Debug.Print dct.Items(i)
Next i

Keys Zero-based array of all the keys associated with the Dictionary object. You can
write code like this to iterate through all the keys:
For i = 0 To dct.Count – 1
 Debug.Print dct.Keys(i)
Next i

Remove Removes both a key and its item from the specified Dictionary object. If you
attempt to remove a pair that doesn’t exist, you’ll get a runtime error. You must
supply a Key value in order to remove a specific Key/Item pair from the dictionary.
(Using a collection, you can specify an index to remove the item corresponding to
that index from the collection—here, you cannot.) To remove the Key/Item pair
associated with the Key value “Hello,” you might write code like this:
dct.Remove "Hello"

RemoveAll Removes all Key/Item pairs from the dictionary:
dct.RemoveAll

T A B L E 1 4 . 1 3 : Properties of the Dictionary Object

Property Data Type Description

CompareMode CompareMethod One of the constants BinaryCompare, DatabaseCompare, or
TextCompare. In addition, you can specify a LocaleID value
to specify comparisons for a specific locale. See Chapter 1,
with information on the various string functions that
compare two values. You can only set this property when
there are no items in the dictionary.

Count Long Number of items in the dictionary.

T A B L E 1 4 . 1 2 : Methods of the Dictionary Object (continued)

Method Description

Chapter 14 • Using the Scripting Runtime Library Objects922

Taking the Dictionary for a Spin
Given that a dictionary looks and feels so much like a VBA Collection object, you
may be tempted to use it as if it was a collection—you won’t be making the best
use of the object, and you’ll likely be frustrated by the differences.

First and foremost, the Add method of a Collection object and the Add method
of a Dictionary object look strikingly similar. For example, the following code
(from the TestDictionary procedure, in basDictionary) adds items to a Dictionary
object, dct:

Dim dct As Scripting.Dictionary
Set dct = New Scripting.Dictionary

Item Variant Sets or returns an item for a specified Key value. If the key
doesn’t already exist in the dictionary, it gets created using
the specified key and item. If you attempt to retrieve an item
for a key that doesn’t exist, a new key is created and its item
is left empty. We suggest you use this technique (shown in
the first bullet point in the upcoming section “Why Is a
Dictionary Better Than a Collection?”) rather than using the
Add method, unless your goal is to raise an error when you
attempt to add the same Key value more than once. You can
use the Item property like this to return the value of an item:
varItem = dct.Item("Keyword")
To set the value of an item, you can use code like this:
dct.Item("Keyword") = "NewValue"
One interesting thing to note: the Key value of an item in a
dictionary can be of any data type. It needn’t be just a string.
For example, you could add an item to a Dictionary object,
using a form reference as the key:
dct.Item(frmMain) = Time
This code would add a new item to the dictionary, using the
form named frmMain as the Key value, with an item
containing the current time. Were you to call this code in the
Load event procedure of every form, your dictionary would
contain one item per form and the time each form was
loaded.

Key Variant Can only be used to set the Key property for an existing key.
That is, you can use the Key property to modify an existing
element of the Dictionary, like this:
dct.Key("OldItem") = "NewItem"

T A B L E 1 4 . 1 3 : Properties of the Dictionary Object (continued)

Property Data Type Description

 Working with the Dictionary Object 923

dct.Add "Butter", "Dairy"
dct.Add "Carrots", "Vegetable"
dct.Add "Beets", "Vegetable"
dct.Add "Apple", "Fruit"
dct.Add "Milk", "Dairy"
dct.Add "Yogurt", "Dairy"

Given this code, the Dictionary object contains six Key/Item pairs, and the Key
values are “Butter,” “Carrots,” “Beets,” and so on (remember, the Key values
must all be unique). The Item values are “Dairy,” “Vegetable,” and so on.

If you want to iterate through all the keys in the dictionary, you can use code
like this:

Dim varItem As Variant
For Each varItem In dct.Keys
 Debug.Print varItem
Next varItem

The dictionary assumes you want to iterate through the Keys array, unless you
specify otherwise. In other words, the previous loop would have worked without
the explicit “.Keys” reference.

To iterate through all the items in a dictionary, you might write code like this:

For Each varItem In dct.Items
 Debug.Print varItem
Next varItem

You can also use a For...Next loop to iterate through the items or keys, like this:

Dim i As Long
For i = 0 To dct.Count - 1
 Debug.Print dct.Items(i)
Next i

Dictionary objects’ Items and Keys arrays are 0-based.

You can modify a Key/Item pair’s Key value, simply by setting the Key prop-
erty to a new value, like this:

dct.Key("Yogurt") = "Frozen Yogurt"

Chapter 14 • Using the Scripting Runtime Library Objects924

You can, likewise, change the Item property of any Key/Item pair by simply
changing the value, like this:

' The Item value was originally "Dairy".
' After this, it will be "Fruit".
dct.Item("Frozen Yogurt") = "Fruit"

To retrieve an Item value within the Dictionary object, you can either use the
Item property, specifying the Key value; or you can use the Items array, specifying
the location within the dictionary, like this:

Debug.Print dct.Item("Frozen Yogurt")
' You can also loop through the array, using
' a For Next loop.
Debug.Print dct.Items(5)

You can only retrieve a Key value using the Keys array, like this:

' You can also loop through the array, using
' a For Next loop.
Debug.Print dct.Keys(5)

A Simple Example
Back in Programmer School (we went there, a long time ago), we suffered through
homework exercises where we were required to create a data structure to count
the number of times each unique word appeared within a text file. Back in the
dark ages, the best solution was to use a hash table (a somewhat complex data
structure). Now, we've repeated the same experiment using a Dictionary object,
and it's a lot simpler.

To test this technique, try out the CountWords procedure in basDictionary. You
specify a text file, and this procedure fills a module-level Dictionary object with
Key/Item pairs using the individual words as the Key values and the number of
times the word has appeared as the Item value. Once this procedure has done its
work, you can use the ListItems procedure to display all the words and counts.
Figure 14.7 shows part of the output of running this procedure, in the Immediate
window. Listing 14.5 shows the full code for both procedures.

 Working with the Dictionary Object 925

F I G U R E 1 4 . 7
Use the CountWords and

ListItems procedures to test
out a Dictionary object.

➲ Listing 14.5: The CountWords and ListItems Procedures Use a
Dictionary Object to Maintain a Listing of Words and the Number
of Times Each Occurs within a Text File.

Private mdct As Scripting.Dictionary

Public Sub CountWords(strFileName As String)

 ' Given a text file name, add an item to
 ' mdct for each distinct word. Keep track
 ' of the number of times each word appears
 ' in the text file.

 Dim fso As Scripting.FileSystemObject
 Dim ts As Scripting.TextStream

 Dim strText As String
 Dim astrItems() As String
 Dim i As Long

 On Error GoTo HandleErrors

 Set fso = New Scripting.FileSystemObject
 Set mdct = New Scripting.Dictionary

Chapter 14 • Using the Scripting Runtime Library Objects926

 ' Open the text file, and read it all
 ' into a string.
 Set ts = fso.OpenTextFile(strFileName)
 strText = ts.ReadAll

 ' Replace all delimiters with spaces.
 ' Trim out all the extra white space, and
 ' then call the Split function to retrieve
 ' an array full of words from the file.
 ' dhTranslate and dhTrimAll are copied from the
 ' Chapter 1 samples for this book.
 strText = dhTranslate(strText, _
 " @()[]{},;:.-" & vbCrLf, " ")
 strText = dhTrimAll(strText)
 astrItems = Split(strText)

 mdct.CompareMode = TextCompare
 For i = LBound(astrItems) To UBound(astrItems)
 strText = astrItems(i)
 If mdct.Exists(strText) Then
 mdct.Item(strText) = mdct.Item(strText) + 1
 Else
 mdct.Item(strText) = 1
 End If
 Next i

ExitHere:
 ts.Close
 Set fso = Nothing
 Exit Sub

HandleErrors:
 Select Case Err.Number
 Case Else
 MsgBox "Error: " & Err.Desciption & _
 " (" & Err.Number & ")"
 End Select
End Sub

 Working with the Dictionary Object 927

Public Sub ListItems()
 Dim i As Integer

 For i = 0 To mdct.Count - 1
 Debug.Print mdct.Keys(i), mdct.Items(i)
 Next i
End Sub

The sample code starts by instantiating both a FileSystemObject and the mod-
ule-level dictionary:

Set fso = New Scripting.FileSystemObject
Set mdct = New Scripting.Dictionary

Next, the code opens the specified text file and reads its entire contents into a
string variable:

' Open the text file, and read it all
' into a string.
Set ts = fso.OpenTextFile(strFileName)
strText = ts.ReadAll

The next chunk of code translates all text delimiters into a space character, trims
off all excess white space, and then uses the built-in Split function to return an
array full of all the words from the original text file.

' Replace all delimiters with spaces.
' Trim out all the extra white space, and
' then call the Split function to retrieve
' an array full of words from the file.
' dhTranslate and dhTrimAll are copied from the
' Chapter 1 samples for this book.
strText = dhTranslate(strText, _
 " @()[]{},;:.-" & vbCrLf, " ")
strText = dhTrimAll(strText)
astrItems = Split(strText)

See Chapter 1 for more information about the dhTranslate and dhTrimAll functions,
provided in the sample code for that chapter.

It's important in this example that the Dictionary object disregard capitalization
and treat uppercase, mixed-case, and lowercase versions of the same word as the

Chapter 14 • Using the Scripting Runtime Library Objects928

same. Therefore, the next line of code sets the CompareMode property of the dic-
tionary to treat all versions of a word the same:

mdct.CompareMode = TextCompare

Finally, the code that does all the work: The following fragment loops through
all the items in the array returned by the Split function and, if the word already
exists in the dictionary, increments its Item value. If the word doesn't exist, the
code sets the Item value to be 1. Study this code fragment carefully—it points out
how you can effectively use the Item property of a dictionary to add items to the
data structure:

For i = LBound(astrItems) To UBound(astrItems)
 strText = astrItems(i)
 If mdct.Exists(strText) Then
 mdct.Item(strText) = mdct.Item(strText) + 1
 Else
 mdct.Item(strText) = 1
 End If
Next I

The ListItems procedure simply loops through all the items in the dictionary by
position and prints out the Key and Item properties for each Key/Item pair:

For i = 0 To mdct.Count - 1
 Debug.Print mdct.Keys(i), mdct.Items(i)
Next i

Why Is a Dictionary Better Than a Collection?
The Dictionary object fixes several of the glaring errors in the design of the VBA
Collection object—errors that continue even after several versions. Perhaps the
VBA team doesn’t see these issues as “errors,” but they make the Collection object
difficult, if not impossible, to use. In specific,

• You can add items to the dictionary using the Item property. That is, you can
write code like this, to add a new word and initialize its count in a dictionary
named dct:

dct.Item("NewWord") = 1

• You can retrieve both keys and items, given a Dictionary object. That is,
because of the Items and Keys properties, you can retrieve items from either
array. In a collection, you can only retrieve the items, not the Key values. For

 Working with the Dictionary Object 929

example, you might write code like this to iterate through a Dictionary
object, printing out the keys and values:

Dim i As Integer

For i = 0 To mdct.Count - 1
 Debug.Print dct.Keys(i), dct.Items(i)
Next I

• You can modify a key once it’s been added to the dictionary. For example,
imagine Excel’s workbook, a collection of worksheet objects. Each work-
sheet must have a unique name within its collection (that is, the Name prop-
erty acts as the Key value within its collection), yet you have always been
able to change the Name property of a worksheet. Using a Collection object,
the Key property of an object is write-only and write-once. If you need to
change the Key value, you must delete the item from the collection and then
re-add it with the new key. Using a dictionary, you can modify the Key
property at any time (the value must continue to be unique within the Dic-
tionary object, however). For example, to change the Key property from
“lowercase” to “UPPERCASE,” you might write code like this:

dct.Key("lowercase") = "UPPERCASE"

From then on, the item associated with the key “lowercase” would now be associ-
ated with the key “UPPERCASE” instead.

• You’re not limited to using strings as the Key values for items in a dictio-
nary. In a collection, each object can either have no Key value, or a unique
string value. In a dictionary, each object must have a unique Key value asso-
ciated with it, but that key can be of any data type.

• A Collection object provides no easy way to determine if a particular item
has already been added to the collection. The Dictionary object provides the
Exists method, which returns True if the specified Key value already exists
within the dictionary.

• A collection provides no obvious way to remove all its items. The Dictionary
class provides a RemoveAll method, effectively resetting the dictionary.

Chapter 14 • Using the Scripting Runtime Library Objects930

Summary
Although we could never attempt to cover all the available ActiveX components
or even a small subset, we find the Scripting Runtime Library and its FileSystem-
Object, TextStream, and Dictionary objects to be so useful and so easy to get that it
made sense to spend a chapter digging into these objects. Just as with any other
component, you’ll need to worry about distributing the DLL and getting it regis-
tered on users’ machines—don’t underplay the importance of this step in your
development efforts.

As you’ve seen, the Scripting Runtime Library provides a unique set of objects
that allow you to

• Work with the hierarchy of drives, folders, and files in your computer’s file
system.

• Work with individual drives, folders, and files.

• Recursively drill into the file system, or work up from a specific folder back
to the root folder.

• Open a text file, and read and write text in the file.

• Create a fast, simple-to-use in-memory data structure similar to, but more
powerful than, the VBA Collection object.

Although we didn’t cover it here, you may also find the other set of objects pro-
vided by the Windows Script Host to be useful. That is, take a look at the Win-
dows Script Host Object Model (using the References dialog) for a whole group of
more objects. To be honest, we didn’t focus on this set of objects for two reasons:

• They’re more limited than they need to be.

• We cover almost all of the functionality provided by those objects elsewhere
in this book, with more flexibility available to you.

If nothing else, we hope that this chapter provided insight into the power of
using external components in your VBA applications. If you have some extra
hours, take the time to set a reference to other libraries you find available in the
References dialog, look in the Object Browser to see what objects the library pro-
vides, and try working with the objects programmatically. It’s a great way to
while away the time on a long plane flight!

c h a p t e r 15

Writing Add-Ins for the
Visual Basic IDE

� Understanding the VB and VBA IDE Automation
interfaces

� Writing code that manipulates the user interface

� Modifying code programmatically

� Developing COM add-ins

Chapter 15 • Writing Add-Ins for the Visual Basic IDE932

Developers are unique among computer users in the fact that, when faced
with a problem, they are more likely to invent their own solution than to look for
an existing one. In particular, developers are fond of creating their own special-
ized tools that help them work with their purchased development tools. The
Visual Basic Integrated Development Environment (IDE) affords programmers
this ability by implementing both an Automation interface and an add-in architec-
ture. Using the Automation interface, you can manage projects; manipulate com-
ponents, such as modules and forms; and modify source code. This new feature
opens the door for a whole new breed of utilities and add-ins. Furthermore, all of
this is exposed with a consistent, COM-based add-in architecture now used by
Microsoft Office 2000, Visual Basic, VBA, and the Microsoft Development Envi-
ronment (the shell that hosts Visual C++).

In this chapter, we explain the basic concepts of Microsoft COM Add-in archi-
tecture and the add-in interfaces exposed by Visual Basic and VBA. (There are
subtle differences.) We also discuss the IDE object model, focusing on the most
useful classes, properties, and methods for managing your projects programmati-
cally. We also introduce you to a custom object model, which we created to sup-
plement the IDE’s object model. We use this object model to add capabilities that
are lacking in the IDE classes. If you’ve ever wanted to create tools to help you
program, or if you just want to understand what’s under the hood of the Visual
Basic programming environment, this chapter is for you.

To fully explore the add-in described in this chapter, you will need either a copy of
Visual Basic 6 or a copy of Microsoft Office 2000 Developer, which includes the add-
in designer necessary to compile the sample files. If you do not have either of these,
we have included on the CD-ROM an Access 2000 database and an Excel workbook
file containing material from the prior edition of this book that demonstrates VBA
IDE Automation but cannot be used to create a true COM Add-in.

Table 15.1 lists the sample files for this chapter.

T A B L E 1 5 . 1 : Sample Files

Filename Description

VBAIDE.XLS Excel workbook containing sample code

VBAIDE.MDB Access 2000 database containing sample code

IDEEX.BAS IDE code examples

933

TESTPROC.BAS Sample code module for testing the IDE object model

EVENTS.CLS Class module for hooking VBA IDE command bar events

CBARNUMS.TXT Command Bar button IDs for the VBA IDE

CODEEX.BAS VBA code examples

CLASSEX.BAS Custom object module examples

PROJECT.CLS Sample Project class

MODULE.CLS Sample Module class

MODULES.CLS Sample Modules class

PROC.CLS Sample Procedure class

PROCS.CLS Sample Procedures class

VB IDE Addin.VBP Project file for VB IDE add-in template

VBA IDE Addin.VBP Project file for VBA IDE add-in template

VBIDET.DSR VB IDE add-in designer template

VBAIDET.DSR VBA IDE add-in designer template

IDEADDNT.FRM VB form template with basic functionality

VBIDE.VBP VB project for sample VB IDE COM Add-in

VBAIDE.VBP VB project for sample VBA IDE COM Add-in

VBAIDE.VBA VBA IDE COM Add-in project for VBA Add-in Designer

VBIDE.DSR Add-in designer for sample VB IDE project

VBAIDE.DSR Add-in designer for sample VBA IDE project

IDEADDIN.FRM Sample add-in form

CODE.FRM Sample add-in form

VBAIDE.DLL Compiled VB IDE add-in

VBIDE.DLL Compiled VBA IDE add-in

T A B L E 1 5 . 1 : Sample Files (continued)

Filename Description

Chapter 15 • Writing Add-Ins for the Visual Basic IDE934

Working with the IDE Object Model
Before you can create a COM Add-in for either the VB or VBA IDE, you’ll need to
become familiar with the classes that make up their object models. Fortunately,
they are very easy to experiment with, independent of an add-in, by using VBA in
Microsoft Office. That’s because the VBE object is exposed as part of an Office appli-
cation’s object model. This means you can write code in the VBA environment and
run it from the Immediate window. The object model is relatively simple and easy
to grasp. This section gives you an overview of the class structure, as well as
examples of using it.

If you want to use the VBA or VBA IDE object models in your applications without
using the COM add-in designer described later in this chapter, you’ll need to add a
reference to your project. To do so, open the References dialog box and select either
“Microsoft Visual Basic for Applications 5.3 Extensibility” for VBA, or “Microsoft
Visual Basic 6.0 Extensibility” for VB.

It’s an unfortunate fact that the VB IDE and VBA IDE Automation interfaces differ
ever so slightly. For example, project items in VB represent actual disk files, while
in VBA, every project item is contained in a single file. As such, the properties and
methods are not identical. In this chapter, we focus on the similarities, using the
VBA IDE as an example and calling out the differences where applicable. If you’re
developing add-ins for Visual Basic as opposed to VBA, make sure you pay close
attention to these differences and double-check the VB documentation.

The Class Hierarchies
The IDE class hierarchy features the VBE (Visual Basic Environment) class at its
head. This is similar to the Application class used by many VBA host applica-
tions—it represents the top-level class of the hierarchy.

COM Add-ins receive a pointer to the VBE object passed in during the initialization
stage.

 Working with the IDE Object Model 935

Descending from the VBE class are a number of collections representing objects
in the development environment: Addins, CodePanes, CommandBars, VBProjects,
and Windows. Several properties of the VBE (ActiveCodePane, ActiveVBProject, and
so on) return convenient references to other objects. Depending on what you’re
trying to do, you might find using these properties easier than using the related
collections.

Table 15.2 shows a complete list of the classes implemented in the VB and VBA
IDE type libraries. Note that some, like ContainedVBControls, are only supported
in Visual Basic due its slightly different development capabilities.

T A B L E 1 5 . 2 : Classes in the IDE Type Library

Class Description VB IDE? VBA IDE?

Addin IDE COM Add-in Yes Yes

Addins Addins collection Yes Yes

CodeModule VB code module (normal or class) Yes Yes

CodePane Code window Yes Yes

CodePanes CodePanes collection Yes Yes

CommandBarEvents Command bar control event interface Yes Yes

ContainedVBControls Collection of controls contained within a
control or form

Yes No

Events Global event interface Yes Yes

FileControlEvents Project file event interface Yes No

IDTExtensibility Obsolete add-in interface—add-in
designers now implement IDTExtensibility2

Yes No

LinkedWindows Collection of dock-able windows Yes Yes

Member Procedure within a code module Yes No

Members Members collection Yes No

Property VB component attribute Yes Yes

Properties Properties collection Yes Yes

Reference Project reference (e.g., type library) Yes Yes

References References collection Yes Yes

Chapter 15 • Writing Add-Ins for the Visual Basic IDE936

In this section, we show you a few ways to manipulate IDE objects by highlight-
ing and describing each class. We also mention some of the more noteworthy
properties and methods of the classes. While we focus on the VBA IDE object
model, almost everything here also applies if you’re writing add-ins for the VB
IDE. However, this section is not meant to be a complete dissertation on the object
model. For a complete list of the properties and methods of these classes, refer to
the Object Browser and online help.

ReferencesEvents References event interface Yes Yes

SelectedVBControls Collection of selected controls within the UI Yes No

SelectedVBControlsEve
nts

SelectedVBControls event interface Yes No

VBComponent Project component (e.g., module, form,
etc.)

Yes Yes

VBComponents VBComponents collection Yes Yes

VBComponentsEvents VBComponents event interface Yes No

VBControl VB control (e.g., command button) Yes No

VBControls VBControls collection Yes No

VBControlsEvents VBControls event interface Yes No

VBE Main IDE object Yes Yes

VBForm VB form Yes No

VBNewProjects A collection of new projects added to the
environment after a given operation

Yes No

VBProject Root object for a VB or VBA project Yes Yes

VBProjects VBProjects collection Yes Yes

VBProjectsEvents VBProjects event interface Yes No

Window VB IDE window (e.g., Code window,
toolbox, etc.)

Yes Yes

Windows Windows collection Yes Yes

T A B L E 1 5 . 2 : Classes in the IDE Type Library (continued)

Class Description VB IDE? VBA IDE?

 Working with the IDE Object Model 937

You’ll find the sample code for the first half of this section in the basIDEExamples
module in VBAIDE.XLS. For the second half—the part that deals with modifying
source code programmatically—you’ll find the examples in the basCodeExamples
module.

Working with Windows
The VBA IDE classes offer a surprising degree of control over the physical appear-
ance of the IDE itself. You can write code to manipulate the main IDE window, as
well as its children and command bars. Why is this surprising? Normally, when
you consider what you’d like to do with the VBA object model, you think about
modifying the objects and code that make up your project. (At least it’s what we
think about.) The IDE’s user interface is immaterial. Nonetheless, it is a big part of
the object model, so let’s look at what you can do.

The Window Class

The Window class is a generic class that represents all windows in the IDE, includ-
ing the IDE’s main window. You access individual Window objects using the
Windows collection of the VBE class (which contains references to the IDE’s child
windows) or its MainWindow property (which refers to the IDE’s main window).
The class features obvious properties, such as Top, Left, Height, Width, Visible,
WindowState, and Caption, as well as SetFocus and Close methods. It also has a
Type property that returns the type of a given window. Table 15.3 lists the possi-
ble values for the Type property. Finally, the Window class implements two prop-
erties, LinkedWindows and LinkedWindowFrame, which we explain in the next
section.

T A B L E 1 5 . 3 : Possible Values of the Type Property of the Window Class

Value Constant Window Type

0 vbext_wt_CodeWindow Code window

1 vbext_wt_Designer Object Designer window

2 vbext_wt_Browser Object Browser

3 vbext_wt_Watch Watch window

Chapter 15 • Writing Add-Ins for the Visual Basic IDE938

Linked Windows

The VBA IDE features a number of windows (for example, the Project and Proper-
ties windows) that can be docked to the main IDE window. You dock a window by
dragging it close to one of the main window’s borders. When you release the
mouse, the window “sticks” to the edge of the main window. Within the object
model, these are known as linked windows. The Window class implements two
properties that allow you to control the docking behavior. Both the LinkedWin-
dowFrame and LinkedWindows properties return references to other Window
objects.

If a given Window object is docked, its LinkedWindowFrame property will
return a reference to the window it is docked to. In the current incarnation of the
VBA IDE, this is always the IDE main window. (Presumably, Microsoft left the
door open for future user interface designs in which a window might be docked to
multiple objects.) If the window is not docked, LinkedWindowFrame returns
Nothing.

4 vbext_wt_Locals Locals window

5 vbext_wt_Immediate Immediate window

6 vbext_wt_ProjectWindow Project Explorer

7 vbext_wt_PropertyWindow Properties window

8 vbext_wt_Find Find window

9 vbext_wt_FindReplace Find-and-replace window

10 vbext_wt_Toolbox VB Form toolbox (not applicable to VBA)

11 vbext_wt_LinkedWindowFrame Frame for a linked (docked) window

12 vbext_wt_MainWindow The IDE main window

13 vbext_wt_Preview VB form layout Preview window (not
applicable to VBA)

14 vbext_wt_ColorPalette VB Color Palette window (not applicable
to VBA)

15 vbext_wt_ToolWindow VBA Form toolbox

T A B L E 1 5 . 3 : Possible Values of the Type Property of the Window Class (continued)

Value Constant Window Type

 Working with the IDE Object Model 939

LinkedWindows works in the opposite direction. It tells you which windows
are docked to the current one via a collection of Window objects. Again, in the cur-
rent version of the IDE, the only window that can have linked windows is the IDE
main window.

If you try to reference the LinkedWindows collection of a normal window (other
than the IDE main window), VBA generates Error 91, “Object variable or With
block variable not set.”

As a collection, LinkedWindows has several properties and methods, including
Count, Add, and Remove. Add and Remove both accept references to other win-
dows and, when used, toggle the docked state of a given window. For example,
the code shown in Listing 15.1 “undocks” all the docked windows in the IDE.

➲ Listing 15.1: Undock Windows in the VBA IDE

Sub dhUndockAllWindows()
 Dim intWindow As Integer

 ' Use the LinkedWindows collection of the
 ' VBE object’s MainWindow
 With Application.VBE.MainWindow.LinkedWindows

 ' Loop backward through each linked
 ' window, removing it from the collection
 For intWindow = .Count To 1 Step -1
 .Remove .Item(intWindow)
 Next
 End With
End Sub

Docking windows is a bit trickier because only certain types of windows (such
as the Project, Properties, and Watch windows) can be docked Code windows,
and other windows (like user forms) that appear in the main IDE workspace can-
not be docked. Listing 15.2 shows a procedure that docks all dockable windows.
Also, if you run the procedure, you’ll notice that the configuration of the docked
windows changes. (They dock in different places.) There does not appear to be
any way to control where windows dock.

Chapter 15 • Writing Add-Ins for the Visual Basic IDE940

➲ Listing 15.2: Dock Windows in the VBA IDE

Sub dhDockAllWindows()
 On Error GoTo HandleError

 Dim objWindow As VBIDE.Window

 Const conErrCantDock = &H80004005

 ' Use the VBE object
 With Application.VBE

 ' Loop through all its windows
 For Each objWindow In .Windows

 ' If the window is visible, dock it by
 ' adding it to the LinkedWindows collection
 If objWindow.Visible Then
 .MainWindow.LinkedWindows.Add objWindow
 End If
 Next
 End With

ExitHere:
 Exit Sub
HandleError:
 Select Case Err.Number
 ' Check for error when adding
 ' a window that can’t be docked
 Case conErrCantDock
 Resume Next
 Case Else
 MsgBox Err.Description, vbExclamation, _
 "Error " & Err.Number
 Resume ExitHere
 End Select
End Sub

The dhDockAllWindows procedure, shown in Listing 15.2, works by looping
through the Windows collection of the VBE object, attempting to add each window
to the LinkedWindows collection. Note that before attempting this, the procedure

 Working with the IDE Object Model 941

checks the window’s Visible property. This is necessary because when you launch
the IDE, VBA opens all the environment windows (Locals, Immediate, and so on)
and displays only those that were visible during the last editing session. If you
attempt to add a hidden window to the LinkedWindows collection, VBA makes it
visible. Normally, this is not a desirable side effect, and that’s why the procedure
first checks each window’s Visible property.

Note also the error handling in the procedure. Since the For Each loop will iter-
ate through all open windows and since some, like Code windows, can’t be
docked, the Add method may fail. The error handler traps this error and simply
resumes executing at the next statement.

The CodePane Class

So far, we’ve discussed the general Window class. The CodePane class is a specific
window type that corresponds to a Code window in the IDE. VBA maintains a
separate CodePanes collection within the VBE object, in addition to the Windows
collection. You can also use the ActiveCodePane property. The most important
property of a CodePane is CodeModule. It gives you access to your project’s
actual source code. We examine the CodeModule class in the section “Manipulat-
ing Code Modules” later in this chapter.

What can you do with a CodePane that you can’t do with a normal window?
Not much, as it turns out. You can determine how many lines of code are visible
(using the CountOfVisibleLines property) and which line of code is at the top of
the window (using TopLine). You can also retrieve and set the text selection using the
GetSelection and SetSelection methods, respectively.

Listing 15.3 shows the dhCodePaneInfo procedure, which prints information
about the active code pane to the Immediate window. To test the procedure, high-
light some code in a Module window and then run the procedure from the Imme-
diate window. Figure 15.1 shows an example of the output.

➲ Listing 15.3: Print Details about a CodePane Object

Sub dhCodePaneInfo()
 On Error GoTo ExitHere

 Dim lngRowStart As Long
 Dim lngColStart As Long
 Dim lngRowEnd As Long
 Dim lngColEnd As Long

Chapter 15 • Writing Add-Ins for the Visual Basic IDE942

 ' Use the active code pane
 With Application.VBE.ActiveCodePane
 ' Print window caption
 Debug.Print "Information on: " & .Window.Caption
 Debug.Print "=================================="

 ' Print visible lines and top line
 Debug.Print "Visible lines: " & .CountOfVisibleLines
 Debug.Print "Top line: " & .TopLine

 ' Print selection info
 Call .GetSelection(lngRowStart, lngColStart, _
 lngRowEnd, lngColEnd)

 Debug.Print "Selection:"
 Debug.Print " Start line: " & lngRowStart
 Debug.Print " Start column: " & lngColStart
 Debug.Print " End line: " & lngRowEnd
 Debug.Print " End column: " & lngColEnd
 End With
ExitHere:
End Sub

F I G U R E 1 5 . 1
Printing information about

the code selection to the
Immediate window

 Working with the IDE Object Model 943

There are two items worth noting in this procedure:

• CodePane objects have a Window property that is a pointer to the associated
window. You can use this property to access properties of the Window class
described earlier in this chapter.

• The GetSelection method accepts four Long integer variables by reference
and modifies them to represent the current selection. Make sure you declare
these variables before calling the method.

Working with VBA Projects
The remainder of this section discusses the most interesting aspect of program-
ming the VBA IDE: working with VBA projects. This is where the fun starts,
because it is this portion of the object model that deals with programmatic control
of project components and source code.

The VBProject Class

The VBA IDE is a shared component, capable of hosting multiple projects at the
same time. You would expect the object model to represent this. In fact, it does so

What about Command Bars?
In the prior edition of this book, we spent several pages explaining how to manipulate
command bars in the IDE. We’ve omitted that material from this version for two reasons:
First, when we last wrote about the IDE, command bars were still relatively new, appearing
for the first time in Office 97, and there weren’t that many other sources of information.
Second, before the advent of COM Add-in support in the IDE, the only way to manipulate
command bars was by accessing them through the host application’s object model, just as
in the rest of the examples in this section.

Today there are abundant sources of information on programmatically controlling com-
mand bars, and it would be mostly redundant to cover the topic here. (For an extensive
discussion of command bars, you can consult our Access 2000 Developer’s Handbook,
Volume I: Desktop Edition, also from Sybex.) Furthermore, it’s likely you’ll only want to
manipulate command bars from within a COM Add-in. This is because pointers to Com-
mand Bar buttons (as well as their associated event hooks) are destroyed when the VBA
run-time environment is reset—something that happens often in an Office application.
That’s why we cover command bars in the COM Add-ins section later in the chapter, and
then, only briefly.

Chapter 15 • Writing Add-Ins for the Visual Basic IDE944

by means of the VBProjects collection of the VBE object. Each VBProject object in
the collection represents a loaded VBA project.

When working with the VBA IDE object model, you cannot directly add or remove
objects from the VBProjects collection. This must be done by the host application,
but you can write code that instructs the host application to load a project. For
example, you could write Microsoft Excel Automation code to open an XLS file
containing VBA code. The VB IDE object model lets you create new projects, as
well as open existing ones.

The VBProject class implements properties that map to those in the project
options dialog (see Figure 15.2 for an example). For example, you can set and
retrieve the Name, Description, HelpFile, and HelpContextID properties. Chang-
ing these through code changes the values in the options dialog and vice versa.

F I G U R E 1 5 . 2
Project options you can set

and retrieve using
VBA code

The class also implements several read-only properties that can give you addi-
tional information about the project. Specifically, the Mode property tells you
whether the project is in Run, Break, or Design mode. These states are represented
by the integer values 0, 1, and 2 and by the constants vbext_vm_Run, vbext_vm_
Break, and vbext_vm_Design, respectively. Furthermore, the Protection property
returns the value 1 (vbext_pp_locked) if the project is password protected and 0
(vbext_pp_none) if it is not. Finally, the Saved property tells you whether the
project has changed since the last time it was saved. A True value indicates that no
changes have been made, while False indicates that changes have been made but
not yet saved.

 Working with the IDE Object Model 945

Use the VBE object’s ActiveVBProject property to return a reference to the project
that is currently active in the VBA IDE.

The Reference Class

Part of a VBA project is the set of type library references for any Automation com-
ponents it uses. Simple projects will have but a few references, such as those for
VBA itself, Automation, and the host application. Complex projects—those that
use additional Automation components or ActiveX controls—will have numerous
references. You can manage references interactively using the References dialog
shown in Figure 15.3. You can also manipulate them programmatically using the
References collection of the VBProject class.

F I G U R E 1 5 . 3
The References dialog

showing type library refer-
ences for a VBA project

If you’re working through the examples in this chapter, your project will also have
a reference to the VBA IDE extensibility type library.

As you might expect, the References collection contains one element for each
reference in a particular project. The Reference class itself defines properties that
describe the reference, such as Name, Major and Minor version numbers, Descrip-
tion, FullPath, Guid (for type library references), Type, Builtin, and IsBroken. The
IsBroken property is of particular interest because when a reference is broken

Chapter 15 • Writing Add-Ins for the Visual Basic IDE946

(because a type library or an application has been moved or deleted), the VBA
project containing it won’t compile. When you determine that a reference is bro-
ken, you can delete and re-create it using methods of the References collection.

Be careful when manipulating VBA References using Microsoft Access 2000.
Access implements its own References collection and Reference class that are
slightly different from those implemented by VBA. This is a holdover from prior
versions that did not have the full VBA IDE. You should disambiguate any object
references in your code to use a specific class. For example, “Dim objRef As
VBIDE.Reference” will force VBA to use its own Reference class, not Access’.

Built-in references are required by the VBA project and will normally include
references to VBA and the host application. You cannot remove a built-in
reference from a project.

Listing 15.4 shows a procedure that prints information on the active project’s
references to the Immediate window. Figure 15.4 illustrates some sample output.
Note the references to VBA and the host application (Microsoft Excel in this case).

F I G U R E 1 5 . 4
Reference information

printed to the Immediate
window

 Working with the IDE Object Model 947

➲ Listing 15.4: Print Reference Information to the Immediate
Window

Sub dhPrintReferences()
 Dim ref As Reference

 ' Iterate the references of the active project
 For Each ref In Application.VBE. _
 ActiveVBProject.References

 ' Use each reference and print:
 ' Name and version
 ' Description
 ' Built-in or custom?
 ' Project or typelib?
 ' Broken or intact?
 ' Full path
 ' GUID
 With ref
 Debug.Print .Name & " " & .Major & "." & .Minor
 If Not .IsBroken Then
 Debug.Print " " & .Description
 End If
 Debug.Print " "; IIf(.BuiltIn, "Built-in/", _
 "Custom/");
 Debug.Print IIf(.Type = vbext_rk_Project, _
 "Project/", "TypeLib/");
 Debug.Print IIf(.IsBroken, "Broken!", "Intact")
 Debug.Print " "; .FullPath
 Debug.Print " "; IIf(.Type = _
 vbext_rk_TypeLib, .GUID, "")
 End With
 Next
End Sub

You cannot access the Description property of a broken reference. Attempting to
do so will result in a run-time error.

Chapter 15 • Writing Add-Ins for the Visual Basic IDE948

Removing References

If a reference is broken, you can rebuild it using methods of the References collec-
tion. You can’t use Reference class properties because they are all read only and
are set when the reference is added to the project. Therefore, you must first delete
the invalid reference using the References collection’s Remove method. Remove
accepts a pointer to a Reference object as an argument. Listing 15.5 shows the
dhRemoveAllBadRefs procedure, which removes all broken references from the
active project.

➲ Listing 15.5: Procedure for Removing All Broken References

Sub dhRemoveAllBadRefs()
 Dim ref As Reference

 ' Use the active project
 With Application.VBE.ActiveVBProject

 ' Iterate through the references
 For Each ref In .References

 ' If reference is broken, remove it
 If ref.IsBroken Then
 .References.Remove ref
 End If
 Next
 End With
End Sub

Adding References

Once you’ve removed the offending reference, you can then add it back to the
project. You can add a reference using one of two methods of the References col-
lection: AddFromFile or AddFromGuid. (Of course, this works the same way for
new references, as well.) Use AddFromFile to create a reference to a DLL, an EXE,
or another VBA project. For example, to add a reference to an Excel add-in, you
might use code like this:

Application.VBE.ActiveVBProject.References.AddFromFile _
 "C:\Excel\Addins\MinMax.xla"

 Working with the IDE Object Model 949

If the file does not exist and a path is specified, a run-time error occurs. If no path
is specified, VBA searches for the file in the Windows and Windows\System
directories, as well as in the current directory.

AddFromGuid adds a reference to a type library or other component based on
its Globally Unique Identifier (GUID), which is stored in the Registry. You pass
the GUID as a string, along with major and minor version numbers. VBA attempts
to find the component in the Registry and, if successful, creates a reference to it in
the project. For example, to add a reference to Microsoft Access 2000’s type
library, you would use a statement like this:

Application.VBE.ActiveVBProject.References.AddFromGuid _
 "{4AFFC9A0-5F99-101B-AF4E-00AA003F0F07}", 9, 0

If VBA can’t find the reference, it raises a run-time error. If the exact version speci-
fied doesn’t exist but a more recent version does, VBA adds a reference to the
more recent version.

The easiest way to determine the GUID for a given type library is to add a
reference to the type library to a project using the References dialog and then
print the Guid property of the associated Reference object.

Modifying Project Components
Manipulating projects and references is fine, but what about the real meat of an
application—the code-bearing components, such as modules, forms, and host-
application objects? The VBComponent class represents all these objects. Each
VBA project has a VBComponents collection that contains one object for each
component.

VBA code modules (both class modules and regular code modules) are exam-
ples of VBComponent objects. The types of other components you can add to your
project will depend on the host application. For instance, if you’re using Microsoft
Excel, your project will contain one Worksheet object for each worksheet in the
workbook, as well as a reference to the workbook itself. A Microsoft Word VBA
project would contain a reference to the associated document file. You can also
add VBA user forms to projects based on Excel, Word, Outlook, FrontPage, and
PowerPoint. (Visual Basic and Access have their own form design tools.)

Chapter 15 • Writing Add-Ins for the Visual Basic IDE950

The number of different object types that fall under the heading of VBCompo-
nents is quite large. However, as far as VBA is concerned, there are only five types
of components: standard modules, class modules, user forms, ActiveX designers,
and documents. The exact manifestation of the last category will depend on the
host application. On the other hand, VB has a much richer set of components,
including resource files, user controls, and ActiveX document objects.

Listing 15.6 shows dhDumpComps, a procedure that prints the components of a
VBA project to the Immediate window. It accepts a pointer to a project as an argu-
ment and uses a For Each loop to iterate through each component. Figure 15.5
illustrates the output produced when calling the procedure from the Immediate
window, passing a reference to the active project.

F I G U R E 1 5 . 5
Sample output from the

dhDumpComps procedure

➲ Listing 15.6: Procedure That Prints the Components of a VBA
Project

Sub dhDumpComps(vbp As VBProject)
 Dim vbc As VBComponent

 ' Loop through each component in the project
 For Each vbc In vbp.VBComponents

 ' Print the component’s name
 Debug.Print vbc.Name & " (";

 ' Print the component’s type
 Select Case vbc.Type

 Working with the IDE Object Model 951

 Case vbext_ct_StdModule
 Debug.Print "Standard Module";
 Case vbext_ct_ClassModule
 Debug.Print "Class Module";
 Case vbext_ct_MSForm
 Debug.Print "User Form";
 Case vbext_ct_Document
 Debug.Print "Document";
 Case 11 ' vbext_ct_ActiveXDesigner
 Debug.Print "ActiveX Designer";
 Case Else
 Debug.Print "Unknown"
 End Select
 Debug.Print ")"
 Next
End Sub

There is no enumeration associated with an ActiveX designer declared in the VBA
IDE type library. However, the constant vbext_ct_ActiveXDesigner is defined in the
VB IDE type library as the value 11. Our procedure uses that value to indicate that
the component is a designer, such as the COM Add-in Designer or Data
Environment.

The VBComponent Class

From a programming perspective, the VBComponent class is simple. It features
Name and Type properties that correspond to a component’s name and classifica-
tion (one of the five types mentioned in the “Modifying Project Components” sec-
tion). Like the VBProject class that it’s a part of, the VBComponent class has a
Saved property.

The VBComponent class also implements several methods. The Activate method
gives the component the input focus in the VBA IDE. The Export method accepts a
filename and exports the component’s definition as text. You can use Export to
produce individual source files from a VBA project stored as part of a host appli-
cation’s document. For instance, to export the contents of a code module stored in
an Excel workbook, you might use code like this:

Application.VBE.ActiveVBProject.VBComponents("basMain") _
 .Export "C:\MAIN.BAS"

Chapter 15 • Writing Add-Ins for the Visual Basic IDE952

While you can use the Export method of any VBComponent object, only the VBA-
specific portions of the object will be exported. For instance, VBA exports an Excel
worksheet object as a class module, including any code attached to the object’s
events. However, VBE does not include the Excel worksheet properties in the
output file.

Creating New Components

Unlike most of the collections in the VBA IDE, you can add new members to the
VBComponents collection, thus creating new components in your project. The
Add method accepts an argument that defines the component type, but you can-
not use this method to add an ActiveX designer. For that, you must use the
AddCustom method. For example, to create a new code module in the active
project, you could use code like this:

Set vbcNew = Application.VBE.ActiveVBProject. _
 VBComponents.Add(vbext_ct_StdModule)

Note that the Add method returns a pointer to the newly created component. In the
preceding example, a VBComponent object variable, vbcNew, stores this pointer.

The AddCustom method, newly added to VBA 6, let’s you add a custom com-
ponent to your project. This is how you programmatically add ActiveX designers.
You call AddCustom by passing the designer’s GUID. Table 15.4 lists the GUIDs
for designers that ship with Visual Basic 6 and Microsoft Office 2000 Developer.

Keep in mind that with VBA you cannot add designers to standard VBA projects,
you can only add them to stand-alone or add-in projects. As an example, assuming

T A B L E 1 5 . 4 : ActiveX Designer GUIDs

Designer GUID

Add-in {AC0714F6-3D04-11D1-AE7D-00A0C90F26F4}

Data Environment {C0E45035-5775-11D0-B388-00A0C9055D8E}

Data Report {78E93846-85FD-11D0-8487-00A0C90DC8A9}

DHTML Page {90290CCD-F27D-11D0-8031-00C04FB6C701}

Web Class {17016CEE-E118-11D0-94B8-00A0C91110ED}

 Working with the IDE Object Model 953

an add-in project is open in the environment, the following line of code would
add a new data environment designer to it:

Application.VBE.VBProjects(2).VBComponents.AddCustom _
 "{C0E45035-5775-11D0-B388-00A0C9055D8E}"

You can also create new components by importing them from a text file. The
VBComponents collection’s Import method accepts a filename and returns a
pointer to the new component, provided VBA was able to process the file contents
successfully.

Finally, if you want to eliminate a component from your project, simply call the
Remove method, passing a pointer to the VBComponent object.

Component Properties

What makes the VBComponent class truly useful is its collection of Property objects.
Each Property object corresponds to a property of the particular component.
These are the same properties that appear in the IDE’s Properties window. You
can iterate the collection to examine the name and value of each property. Listing 15.7
shows a procedure, dhDumpProps, that does just that. It accepts a pointer to a
VBComponent object as an argument and uses a For Each loop to examine each of
the component’s properties. You can call the procedure from the Immediate win-
dow, as the following code illustrates:

Call dhDumpProps(Application.VBE. _
 ActiveVBProject.VBComponents(1))

➲ Listing 15.7: Printing VBComponent Property Values
Sub dhDumpProps(vbc As VBComponent)
 On Error GoTo HandleError

 Dim prp As Property
 Dim var As Variant
 Dim fReadingValue As Boolean

 Const dhcPadding = 25

 ' Iterate the properties of the given
 ' component and print the names and values
 For Each prp In vbc.Properties

 ' Use each property
 With prp

Chapter 15 • Writing Add-Ins for the Visual Basic IDE954

 ' Print the property name, padded
 ' with spaces
 If Len(.Name) >= dhcPadding Then
 Debug.Print .Name & " ";
 Else
 Debug.Print .Name & _
 Space(dhcPadding - Len(.Name));
 End If

 ' Set a flag indicating we’re about
 ' to try to read the actual value
 fReadingValue = True

 ' If this is an indexed property,
 ' print the number of indices
 If .NumIndices > 0 Then
 Debug.Print "<indexed (" & _
 .NumIndices & ")>"

 ' If the value is an object, just print
 ' "<object>"
 ElseIf IsObject(.Value) Then
 Debug.Print "<object (" & _
 TypeName(prp.Object) & ")>"

 ' If the value is an array, print
 ' each element
 ElseIf IsArray(.Value) Then
 For Each var In .Value
 Debug.Print var,
 Next
 Debug.Print

 ' If the value is not an object
 ' or an array, just print it
 Else
 Debug.Print prp.Value
 End If

 ' Reset flag
 fReadingValue = False
 End With

 Working with the IDE Object Model 955

NextProp:
 Next
ExitHere:
 Exit Sub
HandleError:
 ' If we were trying to read the value,
 ' print the error we got and move on
 If fReadingValue Then
 Debug.Print "<error " & Err.Number & _
 ": " & Err.Description & ">"
 Resume NextProp
 ' Otherwise, bail out
 Else
 MsgBox Err.Description, vbExclamation, _
 "Error " & Err.Number
 Resume ExitHere
 End If
End Sub

While the dhDumpProps procedure might seem needlessly complex, it actually
is not. All the code is necessary due to the intricacy of a VBA Property object. To
fully understand this, let’s look at what the procedure does with each property.

After printing the property name, along with some padding to make the output
look nice, dhDumpProps sets a Boolean flag variable that indicates it is about to
try to read the property’s value. The procedure does this so that if an error occurs,
the error handler can skip to the next property rather than abort the entire proce-
dure. For some reason, trying to read the value of certain properties results in run-
time errors, despite efforts to trap for these cases.

Our procedure prints all the properties of a component, including hidden ones.
Hidden properties often have an underscore as the first character of their name. To
view hidden properties and methods in Object Browser, right-click anywhere in the
Object Browser window and select Show Hidden Members from the context menu.

Indexed Properties
After determining that a property value can be read, a series of If and ElseIf
statements try to determine what type of property the current Property object is
and how best to deal with it. The first If statement checks the property’s
NumIndices property. Some component properties are indexed, which means
that to read their values, you must supply up to four index values. An example

Chapter 15 • Writing Add-Ins for the Visual Basic IDE956

of an indexed property is the Colors property of an Excel Workbook object. The
Colors property is made up of 56 separate values representing the individual RGB
color values used for the workbook’s palette. You can write VBA code to set or
retrieve any one of these values. To do so, you must use the Property object’s
IndexedValue property, passing a number from 1 to 56. For example:

Application.VBE.ActiveVBProject. _
 VBComponents("ThisWorkbook").Properties("Colors"). _
 IndexedValue(2) = RGB(255, 255, 0)

Since dhDumpProps is a generic procedure and doesn’t know what type of
component it is manipulating. When it come across an indexed property, it simply
prints the string “<indexed>”, along with the number of indices. If you were writ-
ing VBA code to manipulate a specific component type, you would certainly want
to use the IndexedValue property with particular index values.

Object Properties
Next, the procedure uses the VBA IsObject function to determine whether the cur-
rent Property object’s Value property is itself an object. You will find that many
component properties are objects with their own sets of properties and methods.
Again, since dhDumpProps is a generic procedure, it simply prints the string
“<object>” and the object type after the property name.

If you know the type of object being returned, you can manipulate the object’s
properties and methods. However, here’s where things get a bit strange. The VBA
documentation states that if a property value returns an object, you must use the
Property object’s Object property to access the returned object’s properties and
methods. For instance, to manipulate the font properties of a VBA user form, you
should be able to use code like this:

Application.VBE.ActiveVBProject.VBComponents("UserForm1"). _
 Properties("Font").Object.Size = 10

However, in our testing, this did not work. VBA generated a compile-time error,
“Method or data member not found” on the Size property.

What did work was using the Property object’s Value property, although not as
you’d expect. You might think you could use it in place of the Object property in the
preceding statement. In reality, the Value property returned a collection containing
the properties of the Font object. We were then able to use a statement like this one:

Application.VBE.ActiveVBProject.VBComponents("UserForm1"). _
 Properties("Font").Value.Item("Size") = 10

Note that the Item method is required when passing the property name (Size).
While we can’t explain why VBA behaves like this with object properties, it at
least appears to be consistent.

 Working with the IDE Object Model 957

We did find that the Object property worked when we assigned an object pointer
to it. For instance, we were able to set the Picture property of a VBA user form
using the following statement:

Set Application.VBE.ActiveVBProject. _
 VBComponents("UserForm1").Properties("Picure"). _
 Object = LoadPicture("C:\WINDOWS\WAVES.BMP")

LoadPicture loads an image file from disk and returns a pointer to it.

Scalar and Array Properties
If the Value property doesn’t yield an object, it still might be an array, so the next
ElseIf statement checks for this using the IsArray function. If IsArray returns True,
the procedure uses another For Each loop to print each element of the array.

Finally, if none of the preceding conditions have been met, dhDumpProps
assumes that Value is a scalar value and just prints it to the Immediate window.
The last thing the procedure does is reset the flag variable.

Figure 15.6 shows some sample output from running the dhDumpProps proce-
dure. The property values shown belong to an Excel Workbook object.

F I G U R E 1 5 . 6
Property names and values

for a workbook

Chapter 15 • Writing Add-Ins for the Visual Basic IDE958

Component Designers

Components can also have designers. In the context of components, designers are
supplemental windows that allow you to change the design of a component. The
most common example of a designer is the VBA User Form Design window, but
other examples may include things like the COM Add-in designer or the Data
Environment designer. Designers allow you to easily change property values (in
conjunction with the Properties window).

VBA standard and class modules do not have designers.

The VBComponent class implements one method and two properties that allow
you to interact with component designers. First, the DesignerWindow method
returns a pointer to the component’s Designer window. The object returned
belongs to the VBA IDE Window class, so you can use all the properties and meth-
ods described earlier in this chapter. For example, to display the Designer win-
dow for a VBA user form, you could use a statement like this:

Application.VBE.ActiveVBProject. _
 VBComponents("UserForm1").DesignerWindow.Visible = True

You can tell whether a particular Designer window is open by inspecting the
HasOpenDesigner property.

The Designer method of the VBComponent class gives you direct control over
the designer itself. Depending on the component, this may give you additional
design capabilities. For instance, a VBA user form designer provides access to a
UserForm object from the MSForms type library. By using properties and meth-
ods of the UserForm class, you can change the appearance of the form, as well as
its controls. The following statement prints the number of controls on a user form,
named UserForm1, to the Immediate window:

Debug.Print Application.VBE.ActiveVBProject. _
 VBComponents("UserForm1").Designer.Controls.Count

Exploring the MSForms type library is beyond the scope of this book. However,
you can check it out yourself by using Object Browser. A reference to the type
library is added to all VBA projects hosted by Microsoft Excel, PowerPoint,
Outlook, FrontPage, and Word.

 Working with the IDE Object Model 959

Manipulating Code Modules
You’ll find VBA code in two places within the IDE object model: as properties of
both the CodePane and VBComponent classes. Each class has a CodeModule
property that returns a pointer to the associated CodeModule object. The Code-
Module class is perhaps the most complex of the VBA IDE classes. It is also the
most fun and most rewarding to work with.

Counting Code Lines

The CodeModule class implements a number of properties that provide numeri-
cal counts of code lines. The CountOfLines and CountOfDeclarationLines proper-
ties return the total number of lines in the module and the number of lines in the
declarations section, respectively. Obviously, the number of lines occupied by
procedures is the difference between the two. Listing 15.8 shows a code fragment
that illustrates how to use these properties.

➲ Listing 15.8: Count Lines of Code in a Module

With Application.VBE.ActiveVBProject. _
 VBComponents("basCodeExamples").CodeModule

 Debug.Print "Total lines: " & .CountOfLines
 Debug.Print "Declarations: " & .CountOfDeclarationLines
 Debug.Print "Procedures: " & .CountOfLines - _
 .CountOfDeclarationLines
End With

CodeModule objects also have a ProcCountLines property that returns the num-
ber of lines in a given procedure. We’ll discuss that in a moment, in the section
“Working with Procedures.”

Getting at the Code

To return the actual contents of a module, use the Lines property. Lines accepts
two arguments: a starting line number and a line count. It returns the text speci-
fied by the two values. Listing 15.9 shows code that complements that shown in
Listing 15.8. Instead of printing the number of lines to the Immediate window, the
code in Listing 15.9 prints the actual text.

Chapter 15 • Writing Add-Ins for the Visual Basic IDE960

➲ Listing 15.9: Print the Contents of a Module

With Application.VBE.ActiveVBProject. _
 VBComponents("basCodeExamples").CodeModule

 Debug.Print "All code:"
 Debug.Print .Lines(1, .CountOfLines)

 Debug.Print "Declarations:"
 Debug.Print .Lines(1, .CountOfDeclarationLines)

 Debug.Print "Procedures:"
 Debug.Print .Lines(.CountOfDeclarationLines + 1, _
 .CountOfLines - .CountOfDeclarationLines)
End With

Working with Procedures

Using the CodeModule class, you can work with VBA procedures programmati-
cally. Unfortunately, the VBA IDE object module does not subdivide code modules
into procedures. To work with procedures, you call methods of the CodeModule
class, passing (among other things) the name of the procedure you want to work
with. Of course, this assumes you know the name of the procedure! Fortunately,
there is a way, albeit not simple, to determine the procedures contained within a
code module: You use the ProcOfLine property to pass a line number. The result
is the name of the procedure that contains that line of code. For example, to deter-
mine the name of the procedure that contains the tenth line of code in the basIDE-
Examples module, you would use the following statement:

Debug.Print Application.VBE.ActiveVBProject. _
 VBComponents("basIDEExamples").CodeModule. _
 ProcOfLine(10, lngType)

If you executed this line of code in the sample project for this chapter, the result
would be “dhShowVBEVersion”. The second argument to ProcOfLine, lngType,
is a Long integer that the ProcOfLine property will fill in with the type of proce-
dure on the specified line. It will contain a value from 0 to 3, which represents
standard procedures (Subs and Functions) and Property Let, Set, and Get state-
ments, respectively.

 Working with the IDE Object Model 961

Once you know the name and type of a procedure in a module, there are several
other properties you can use. All of the following properties accept a procedure
name and type as arguments:

ProcStartLine Returns the line on which a procedure begins.

ProcBodyLine Returns the line on which a procedure’s code begins (the line
containing the Sub, Function, or Property statement). This differs from Proc-
StartLine, which may include preceding comments or blank lines.

ProcCountLines Returns the length of the procedure, in lines, including any
preceding comments or blank lines.

Using these properties, you can quickly list all the procedures in a module. List-
ing 15.10 shows a procedure that does just this. dhListProcs accepts a CodeModule
object as an argument and uses the CountOfLines property to loop through each
line of code. For each line, the procedure employs the ProcOfLine property to
determine whether the current line is contained within a procedure definition.

➲ Listing 15.10: Procedure That Lists the Procedures in a Module

Sub dhListProcs(modAny As CodeModule)
 Dim cLines As Long
 Dim lngType As Long
 Dim strProc As String

 ' Use the passed CodeModule
 With modAny
 ' Loop through all the code lines,
 ' looking for a procedure
 For cLines = 1 To .CountOfLines

 ' Get the name of the procedure
 ' on the current line
 strProc = .ProcOfLine(cLines, lngType)

 ' If non-blank we’ve found a proc
 If strProc <> "" Then

 ' Print the line number, proc
 ' name, and type
 Debug.Print "Line " & cLines, _
 strProc & "(" & lngType & ")"

Chapter 15 • Writing Add-Ins for the Visual Basic IDE962

 ' Skip the code lines by adding the
 ' number of lines in the proc (less one)
 ' to the current line number
 cLines = cLines + _
 .ProcCountLines(strProc, lngType) - 1
 End If
 Next
 End With
End Sub

Most lines in a typical module will be part of some procedure, so it doesn’t
make sense to loop through every line. Instead, once dhListProcs has found the
line at the start of a procedure, it skips the line following the end of the procedure.
It does this by adding the number of lines in the procedure (obtained using the
ProcCountLines property), minus 1, to the current line number. This results in a
procedure that executes quite quickly, even on a large module. Figure 15.7 shows
sample output obtained by running the procedure.

F I G U R E 1 5 . 7
Sample output from the

dhListProcs procedure

In the section “Putting It Together: An Alternative Object Model” later in this
chapter, you’ll see how to integrate this code into a class module that creates and
maintains a collection of procedures.

The VB IDE object model does give you a more direct way to access procedures via
its Members collection. This collection contains objects that provide you with the
starting line of each procedure within a module.

 Working with the IDE Object Model 963

CodeModule Methods

As good as the VBA IDE object model is, it is not very granular when it comes to
modifying code. We’ve already explained that there is no direct support for proce-
dures. You perform code modifications indirectly, as well. Specifically, there are
seven methods of the CodeModule class that you can use to modify code:

AddFromFile Accepts a filename and adds the contents of the file to the
module after the declarations section but before the first existing procedure.

AddFromString Works like AddFromFile, but it accepts a text string as an
argument rather than a filename.

CreateEventProc Accepts object and event names, both as text, and creates a
new event procedure in the module. It returns the number of the line on which
the new event procedure starts.

DeleteLines Accepts a starting line number and an optional number of lines.
It deletes the specified number of lines of code (the default is 1) from the mod-
ule, starting at the line passed as the first argument.

Find Locates text within the module. It accepts a number of arguments that
affect its search logic. (We explain Find in more detail in the section “Finding
and Replacing Code” later in this chapter.)

InsertLines Accepts a line number and a text string as arguments. It inserts
the contents of the text string at the specified line.

ReplaceLine Accepts a line number and a text string as arguments. It
replaces the existing line at the specified location with the supplied text.

Adding and Removing Code

What could be easier than adding code to a module? The AddFromFile and
AddFromString methods are fairly self-explanatory. AddFromFile inserts the con-
tents of a text file containing VBA code into a module after the declarations sec-
tion. AddFromString simply inserts whatever you pass as an argument. For example,
the code in Listing 15.11 creates a new code module in the active project, inserts a
global variable declaration, and then inserts the contents of a file. Figure 15.8
shows the new code module.

Chapter 15 • Writing Add-Ins for the Visual Basic IDE964

➲ Listing 15.11: Create a New Module and Insert Some Code

Sub dhNewModule()
 ' Use the active project
 With Application.VBE.ActiveVBProject

 ' Create and use a new module
 With .VBComponents.Add(vbext_ct_StdModule)

 ' Change the module name
 .Name = "basTest"

 ' Use the code module
 With .CodeModule

 ' Add a variable declaration
 .AddFromString "Global gintText As Integer"

 ' Add the contents of a file
 .AddFromFile "C:\TESTPROC.BAS"
 End With
 End With
 End With
End Sub

F I G U R E 1 5 . 8
A new module created

using VBA code

 Working with the IDE Object Model 965

You don’t have to add the Option Explicit directive to the new module if you’ve
enabled the Require Variable Declaration option. If you’re not sure if this option is
enabled, you can use the Lines and CountOfDeclarationLines properties (or the Find
method described in the section “Finding and Replacing Code”) to search the
declarations section.

Like AddFromString, the InsertLines method accepts a text string and inserts it
into the module. However, it inserts the string at a location specified by its first
argument. Suppose, for example, you wanted to insert a comment block at the
beginning of a module. You couldn’t use AddFromString, because that method
inserts text at the end of the declarations section. By using InsertLines, on the other
hand, you can put the text wherever you want. The following code illustrates this.

' Add a comment block
With Application.VBE.ActiveVBProject. _
 VBComponents("basTest").CodeModule

 .InsertLines 1, "'========================"
 .InsertLines 2, "' Created by me, " & Date
 .InsertLines 3, "'========================"
End With

AddFromFile, AddFromString, and InsertLines each append a carriage return to
any text inserted into a module. If you want to add additional carriage returns, you
must embed them in the inserted text (using the vbCrLf constant, for example).

You can remove lines of code using the DeleteLines method. DeleteLines
accepts a starting line and an optional line count. It removes one or more lines of
code (one is the default) from the module, starting at the specified line. Therefore,
to remove the comment block, you might use code like this:

' Remove comment block
Application.VBE.ActiveVBProject. _
 VBComponents("basTest").CodeModule. _
 DeleteLines 1, 3

Chapter 15 • Writing Add-Ins for the Visual Basic IDE966

Use caution when calling the DeleteLines method. Make sure you know what
you’re deleting! You can inspect the text on the affected lines using the Lines
property. You can also use the Find method (explained in the section “Finding and
Replacing Code”) to locate specific text before deleting it.

Event Procedures

Event procedures are special procedures that VBA calls in response to an event for
a given object. The CodeModule class implements a special method for creating
them: CreateEventProc. CreateEventProc accepts an object name and an event
name as arguments and creates a new event procedure in a given module. It
returns the line number on which the procedure definition begins. You can use
this number to insert additional lines of code in the body of the procedure.

The code in Listing 15.12 creates an event procedure for the Initialize event of a
new class module. It then inserts code (a comment and a MsgBox statement) after
the procedure declaration. Note that it uses the line number returned by Create-
EventProc as the starting line for the inserted code. Figure 15.9 illustrates the
results of running the procedure.

The object name for class modules will always be Class.

➲ Listing 15.12: Create a New Event Procedure

Sub dhSampleEventProc()
 Dim lngStart As Long
 Dim strQuotes As String

 strQuotes = Chr(34)

 ' Create a new class module
 With Application.VBE.ActiveVBProject. _
 VBComponents.Add(vbext_ct_ClassModule).CodeModule

 ' Add a new event proc
 lngStart = .CreateEventProc("Initialize", "Class")

 Working with the IDE Object Model 967

 ' Add some code
 .InsertLines lngStart + 1, " ' This is a test"
 .InsertLines lngStart + 2, " MsgBox " & _
 strQuotes & "Test" & strQuotes & ", " & _
 "vbInformation"
 End With
End Sub

F I G U R E 1 5 . 9
A new class module with a

newly created Initialize
event procedure

One important consideration when using CreateEventProc is to make sure that
the object in question exists and that it supports the specified event. If it does not
exist or it does not support the event, VBA generates an “Event handler is invalid”
error. However, you can create event procedures using the methods described
earlier in this chapter for inserting code into a module. VBA does not verify the
correctness of procedures created in this manner.

You cannot create event procedures in standard modules. The only event procedures
allowed for class modules are Initialize and Terminate.

Making full use of the CreateEventProc method goes beyond the scope of this
book. It requires knowledge of the particular event-generating components in
your project.

Finding and Replacing Code

The last way to modify a project’s source code is by using the Find and Replace
methods. Find is a powerful method that searches the code within a module,
given a search string and a set of rules. It accepts five required and three optional
arguments and returns a Boolean value indicating success or failure. These argu-
ments are shown in Table 15.5.

Chapter 15 • Writing Add-Ins for the Visual Basic IDE968

We can best describe how to use the Find method through an example. Listing
15.13 shows a procedure designed to search through a given module looking for
the string “Copyright 2000”. Once the string is found, the procedure replaces the
line with one that reads “Copyright © 2000”. (Listing 15.16 also illustrates the use
of the Replace method.)

The Find method is case insensitive.

➲ Listing 15.13: Example of Search-and-Replace

Sub dhFindAndReplace(modAny As CodeModule)
 Dim lngStartLine As Long
 Dim lngStartCol As Long
 Dim lngEndLine As Long
 Dim lngEndCol As Long
 Dim strLine As String

 Const dhcFind = "Copyright 2000"
 Const dhcReplace = "Copyright © 2000"

T A B L E 1 5 . 5 : Arguments to the Find Method

Argument Data Type Required Description (Default)

Target String Yes The string you want to find.

StartLine Long Yes The line on which to start searching.

StartColumn Long Yes The column in which to start searching.

EndLine Long Yes The line on which to stop searching.

EndColumn Long Yes The column in which to stop searching.

WholeWord Boolean No Specifies a whole word search. (False)

MatchCase Boolean No Specifies a case-sensitive search. (False)

PatternSearch Boolean No If True, allows the use of a wildcard.
(False)

 Working with the IDE Object Model 969

 ' Use the passed code module
 With modAny

 ' Set initial parameters
 lngStartLine = 1
 lngStartCol = 1
 lngEndLine = .CountOfLines
 lngEndCol = Len(.Lines(.CountOfLines, 1))

 ' Keep searching until no other
 ' occurrences are found
 Do While .Find(dhcFind, lngStartLine, _
 lngStartCol, lngEndLine, lngEndCol, True)

 ' Replace the line that contains
 ' the text with a new one
 strLine = .Lines(lngStartLine, 1)
 strLine = Left(strLine, lngStartCol - 1) & _
 dhcReplace & Mid(strLine, lngEndCol)
 .ReplaceLine lngStartLine, strLine

 ' Reset parameters
 lngStartLine = lngEndLine + 1
 lngStartCol = 1
 lngEndLine = .CountOfLines
 lngEndCol = Len(.Lines(.CountOfLines, 1))
 Loop
 End With
End Sub

The most interesting aspect of the procedure is how the Long integer variables
are used. Before calling the Find method for the first time, the procedure initial-
izes these variables to specify the entire contents of the code module. The starting
line and column (lngStartLine and lngStartCol) are both set to 1. Ending line and
column numbers are computed using properties of the CodeModule object. lng-
EndLine is set to the number of lines in the module, while lngEndCol is set to the
length of the last line.

These values (along with the search string) are passed to the Find method inside
a Do While loop. Since Find returns True only if a match was found, this ensures
that it will be called repeatedly until it finds no other matches.

Chapter 15 • Writing Add-Ins for the Visual Basic IDE970

When the Find method is called and a match is found, the method sets the four
long integers to values indicating where the search string was located. For example,
if the second line in the module was

' Sample code copyright 2000 by Sybex

the lngStartLine, lngStartCol, lngEndLine, and lngEndCol would be set to 2, 15, 2,
and 28, respectively. This would indicate that the search string started at line 2,
column 15, and ended at line 2, column 28.

Our sample procedure uses this information, in conjunction with the Left and
Mid functions, to substitute the new text for the old. Once it has constructed the
new line of code, it calls the module’s ReplaceLine method to replace the entire
line with a new one. VBA limits you to replacing an entire line. You cannot replace
individual characters directly.

Finally, after finding the text and making the substitution, it’s important to reset
the four numbers before calling Find again. Otherwise, the search area will be lim-
ited to the last known location of the search string! Our procedure resets the num-
bers at the bottom of the loop. Note that it sets the starting line number equal to
the ending line number, plus one. That forces VBA to begin a subsequent search at the
next line of code.

Be very careful when modifying code in the currently executing module or a mod-
ule containing procedures called by the current module. You might inadvertently
alter compiled, running code, which may lead to unpredictable (and probably
undesirable) results.

Putting It Together: An Alternative Object
Model

So far, we’ve explained the individual classes, properties, and methods that make
up the VBA IDE Automation interface. In this final section, we put it all together
by building our own object model to represent VBA project components. The rea-
son for doing this is to add functionality that the VBA IDE object model lacks. For
instance, we’ve created a Procedure class that encapsulates individual procedures
within a module. Creating our own object model also gives us additional flexibil-
ity in manipulating VBA projects and could be the basis for useful add-ins and
utilities.

 Putting It Together: An Alternative Object Model 971

You’ll find all the nonclass module sample code for this section in the basClass-
Examples module in VBAIDE.XLS.

Examining Our Object Model
We’ve created a very simple object model, consisting of three classes, two of which
have associated collections. This required a total of five class modules to implement.

The Project Class
At the root of the hierarchy is the Project class. It has but one property, VBProject, in
addition to its Modules collection. The VBProject property is a direct pointer to a
normal VBProject object. We created this single property rather than replicating
each of the properties of the VBProject class in our class. You can use the VBProject
property to access any property of the VBProject object. Listing 15.14 shows a sample
procedure that creates a new instance of our Project class, sets its VBProject prop-
erty, and then reads the VBProject’s Name property. If you want to use our object
model, you’ll need to instantiate the Project class in a similar manner.

Because Modules is a class name defined by Microsoft Access, you cannot use it
for a custom class module. You’ll notice that we named the class VBModules in
VBAIDE.MDB.

➲ Listing 15.14: Instantiate and Use the Project Class

Sub dhUseProjectClass()
 Dim objProject As Project

 ' Instantiate the project
 Set objProject = New Project

 ' Set the new Project object’s
 ' VBProject property to the active project
 Set objProject.VBProject = _
 Application.VBE.ActiveVBProject

 ' Print the VBProject’s name
 Debug.Print objProject.VBProject.Name
End Sub

Chapter 15 • Writing Add-Ins for the Visual Basic IDE972

The Module Class

Our Module class is a thin layer over the VBA CodeModule class. The only real
difference is that it appears as a child of the Project class. CodeModule objects are
grandchildren of a VBProject. We’re not interested in the project components, just
their code, so we left them out.

Our class features Name and Kind properties, both of which are derived from
the VBComponent object that contains the code module. You can access the Code-
Module object directly through the Module property of our class in the same man-
ner as the VBProject property of the Project class described in the previous section.

Finally, the Module class implements a Declarations property that lets you set or
retrieve the contents of a module’s declarations section. The property is initially set
when the Module property is set. Listing 15.15 shows the Property Set statement.

➲ Listing 15.15: Property Set Statement for the Module Property

Property Set Module(modModule As CodeModule)
 ' Make sure property hasn’t been set
 If mmodModule Is Nothing Then

 ' Store the module pointer
 Set mmodModule = modModule

 ' Set the Module property of the
 ' Procedures collection
 Set mobjProcs.Module = modModule

 ' Read the declarations section
 mstrDeclarations = modModule. _
 Lines(1, modModule.CountOfDeclarationLines)
 End If
End Property

The Procedure Class

Going one step further than the VBA IDE object model, we’ve implemented a Pro-
cedure class that represents a procedure in a code module. This, combined with
the Procedures collection class, lets us model a code module from a more detailed
perspective. The class features Name and Kind properties, the latter based on the

 Putting It Together: An Alternative Object Model 973

VBA procedure types described in the section “Working with Procedures” earlier
in this chapter.

Our class also has a Code property, which contains the body of the procedure,
including the declaration and any preceding comments. The Lines property of the
class dynamically computes the number of lines in the procedure, based on the
code it currently contains.

The Collections

There are two collections represented in our object model: Modules and Proce-
dures. We’ve implemented these as two class modules. In addition to the standard
collection properties and methods (Count, Item, Add, and Remove), we’ve added
a Refresh method. Refresh iterates through existing modules or procedures, add-
ing them to the appropriate collection. Listing 15.16 shows the code from the
Modules collection’s Refresh method. Its implementation is straightforward. It
uses a For Each loop to iterate through all the components in the project, checking
their CodeModule property. If the method finds a valid CodeModule, it calls the
Add method to add it to the collection.

➲ Listing 15.16: The Modules Collection’s Refresh Method

Public Sub Refresh()
 Dim vbc As VBComponent

 ' Clear out any existing objects
 Set mcolModules = New Collection

 ' Loop through each component in the
 ' project, adding its module (if it has one)
 For Each vbc In mvbpProject.VBComponents
 If Not vbc.CodeModule Is Nothing Then
 Call Add(vbc.Name, _
 vbc.Type, vbc.CodeModule)
 End If
 Next
End Sub

The reason the code in Listing 15.16 is so simple is that the VBA IDE object
model features a collection of CodeModule objects (accessed indirectly through

Chapter 15 • Writing Add-Ins for the Visual Basic IDE974

the VBComponents collection). Implementing a Refresh method for our Proce-
dures collection (see Listing 15.17) is a bit more difficult. However, the code in
Listing 15.17 should seem familiar; it’s just an adaptation of the code we presented
in the section “Working with Procedures” earlier in this chapter.

➲ Listing 15.17: The Procedures Collection’s Refresh Method

Public Sub Refresh()
 Dim cLines As Long
 Dim lngType As Long
 Dim strProc As String
 Dim objProc As Procedure

 ' Clear out any existing objects
 Set mcolProcs = New Collection

 ' Use the private code module
 With mobjModule
 ' Loop through all the lines
 For cLines = 1 To .CountOfLines

 ' If a procedure is on this line
 ' add it to the collection
 strProc = .ProcOfLine(cLines, lngType)
 If strProc <> "" Then

 ' Add a new Procedure object
 Set objProc = Add(strProc, lngType)

 ' Set its Code property
 objProc.Code = .Lines(cLines, _
 .ProcCountLines(strProc, lngType))

 ' Skip to the next line after
 ' this procedure
 cLines = cLines + _
 .ProcCountLines(strProc, lngType) - 1
 End If
 Next
 End With
End Sub

 Putting It Together: An Alternative Object Model 975

The only difference this time around is that instead of printing procedure names
to the Immediate window, the Refresh method adds new Procedure objects to the
collection.

If you look at the complete source code for our object model, you’ll see that both
collections implement properties that are pointers to VBA IDE objects. The Mod-
ules collection features a Project property that points to a VBProject object, while
the Procedures collection features a Module property that points to an associated
CodeModule object. We trigger the Refresh methods when these properties are
set. For example, the code for the Modules collection’s Project Property Set proce-
dure is shown in Listing 15.18.

➲ Listing 15.18: Setting the Project Property Triggers the Refresh
Method

Property Set Project(vbpProject As VBProject)
 ' Make sure the property hasn’t been set
 If mvbpProject Is Nothing Then
 ' Store the object pointer
 Set mvbpProject = vbpProject
 ' Call the Refresh method
 Refresh
 End If
End Property

All of this is triggered when the VBProject property of our Project class is set.
Therefore, all you need to do to populate an instance of our object model is to
instantiate a Project object and set its VBProject property. What could be easier?

Using Our Object Model
While we’ve constructed an object model for representing the code in a VBA
project, we haven’t done much with it. That’s up to you. What kinds of things
might you do with it? You could create a reporting tool that prints statistics on,
and the contents of, a VBA project. Listing 15.19 shows a sample procedure that
does this. After creating a new Project object, the procedure simply loops through
each object in the hierarchy, printing selected information to the Immediate win-
dow. Figure 15.10 shows some sample output.

Chapter 15 • Writing Add-Ins for the Visual Basic IDE976

➲ Listing 15.19: A Procedure That Prints Detailed Project Information

Sub dhPrintProjectInfo()
 Dim objProject As Project
 Dim cModule As Long
 Dim cProc As Long

 Set objProject = New Project

 ' Set the new Project object’s
 ' VBProject property to the active project
 Set objProject.VBProject = _
 Application.VBE.ActiveVBProject

 ' Print project information
 With objProject.VBProject
 Debug.Print "Information for: " & .Name
 Debug.Print " Description: " & .Description
 Debug.Print " HelpFile: " & .HelpFile
 Debug.Print " HelpContext: " & .HelpContextID
 Debug.Print " Reference count: " & .References.Count
 End With

 ' Print module and procedure info
 With objProject.Modules
 Debug.Print " Module count: " & .Count

 ' Loop through each module
 For cModule = 1 To .Count

 ' Print module info
 With .Item(cModule)
 Debug.Print " Module: " & .Name
 Debug.Print " Type: " & .KindName

 ' Print procedure info
 With .Procedures
 Debug.Print " Procedures: " & .Count

 Putting It Together: An Alternative Object Model 977

 ' Loop through each procedure
 For cProc = 1 To .Count

 ' Print procedure info
 With .Item(cProc)
 Debug.Print " " & .Name & _
 " (" & .KindName & ", " & _
 .Lines & " lines)"
 End With
 Next
 End With
 End With
 Next
 End With
End Sub

F I G U R E 1 5 . 1 0
Example of running the

dhPrintProjectInfo
procedure

Coincidentally, this is more or less what we’ve decided to use as the example for
our COM Add-in. So, without further delay, let’s explore that topic.

Chapter 15 • Writing Add-Ins for the Visual Basic IDE978

COM Add-Ins
Starting with Visual Basic 6 and Office 2000, Microsoft has taken a bold step
toward unifying the programming experience for developers creating add-ins.
Prior to these versions, if you wanted to write add-ins for multiple applications or
development environments, you needed to cope not only with object model dif-
ferences but also with differences in project, storage, and deployment models.
However, this has all changed with the COM Add-in architecture in VB and VBA.
Before we get to the individual extensibility models, we begin this section with a
discussion of the COM Add-in architecture.

This section assumes some level of familiarity with COM and creating COM
components. If you’ve never written a COM component with, say, Visual Basic,
you may want to consult a resource like Visual Basic Developer’s Handbook or
Visual Basic Developer’s Guide to COM and COM+, both from Sybex.

The primary benefit of the new COM Add-in architecture is that it’s the same,
regardless of application. Defined around a COM interface called IDTExtensibility2,
the architecture defines how an add-in is registered with an application, how the
add-in gets loaded, and what information is passed to the add-in regarding the
application that it is running. What this means is that the add-in need only worry
about the application’s object model, not the idiosyncrasies of how it gets loaded,
unloaded, and so on.

Since the new architecture is based on COM, you can use any COM-enabled
tool, such as Microsoft Visual Basic, to create COM Add-ins. COM Add-ins are
really nothing more than COM EXEs or DLLs that you can create with VB, C++,
Delphi, or a host of other tools. You can also create add-ins in VBA using the COM
Add-in Designer that comes with Microsoft Office 2000 Developer.

Using the COM Add-Ins Dialog
Both VB and VBA include a new dialog for managing add-ins. Figure 15.11 shows the
dialog that you can access with the Add-ins � Add-In Manager menu command.

 COM Add-Ins 979

F I G U R E 1 5 . 1 1
The COM Add-ins dialog

shows those add-ins
registered with VB or VBA.

You can change the loaded or unloaded state of individual add-ins by selecting
the add-in and checking or unchecking the appropriate check box. You can also
change whether individual add-ins are loaded automatically when the develop-
ment environment loads. Initial load behavior is covered later in this chapter.

Exploring IDTExtensibility2
The COM Add-in model is based on a COM interface called IDTExtensibility2. A
COM interface is a defined set of properties and methods that a COM component
must support. In this case, IDTExtensibility2 defines a set of methods that allow
an application to load and unload add-ins and pass them useful information.
Table 15.6 lists the methods that make up IDTExtensibilty2. When you create your
own COM Add-ins, they must implement these methods.

T A B L E 1 5 . 6 : Methods Defined by IDTExtensibility2

Method Description

OnAddinsUpdate Called when an application’s list of add-ins changes, for instance, if
another add-in is loaded or unloaded

OnBeginShutdown Called by the application prior to shutting down

OnConnection Called when the add-in is loaded

Chapter 15 • Writing Add-Ins for the Visual Basic IDE980

The two methods you’ll use most often are OnConnection and OnDisconnec-
tion, as they denote the lifespan of an instance of your add-in. The others also
have interesting uses.

OnConnection

When an application loads a COM Add-in that you’ve created and installed, it
first creates an instance of your add-in using the COM CoCreateInstance function
call. Once it has a pointer to an instance of your add-in, it attempts to call the
OnConnection method. OnConnection accepts a number of parameters, as you
see from its prototype:

Private Sub AddinInstance_OnConnection(_
 ByVal Application As Object, _
 ByVal ConnectMode As AddInDesignerObjects.ext_ConnectMode, _
 ByVal AddInInst As Object, _
 custom() As Variant)

End Sub

The first argument, Application, is a pointer to the host application that’s load-
ing the add-in. In the case of VB or VBA, this will be a pointer to the VBE object
described later in this chapter. Since IDTExtensibility2 can be used by any applica-
tion, you can use the Application object to determine what application you’re run-
ning in using the VBA TypeName function. OnConnection is also where you set
up the mechanism for responding to events. (We’ll explore this later in the section
“Coding the Add-in.”)

Additionally, OnConnection accepts a value indicating when the add-in was
loaded. Table 15.7 lists the possible values for this argument.

OnDisconnection Called when the add-in is unloaded

OnStartupComplete Called by the applications when it finishes its start-up routines (i.e., when
the application is in a ready state)

T A B L E 1 5 . 6 : Methods Defined by IDTExtensibility2 (continued)

Method Description

 COM Add-Ins 981

The enumerated constants in Table 15.7 are defined by the COM Add-in Designer
DLL that ships with Visual Basic and Microsoft Office 2000 Developer. We used
the Designer to create our sample add-in. If you choose not to use the Designer or
to create your add-in using other tools like C++ or Delphi, you’ll need to either
define these constants yourself or to use the numeric values in Table 15.7.

The AddInInst argument is a pointer to the instance of the add-in itself. It’s use-
ful for determining properties of the add-in at runtime.

Finally, the last argument, custom, is a Variant array that contains additional
information that may be passed by the application. For example, Office 2000 appli-
cations pass one piece of information in the first array element indicating how the
host application was started. Custom(1) will return 1 if the application was loaded
normally (i.e., from the Start menu or by opening an Office document), 2 if the appli-
cation was started by embedding one document inside another, and 3 if the applica-
tion was started via Automation. You can use this to decide not to enable your
add-in’s functionality if, for instance, the host application was started by activat-
ing an embedded document.

OnDisconnection

OnDisconnection is the counterpart to OnConnection. It’s called when an add-in is
being unloaded from the host application. It’s your chance to perform housekeeping
tasks like deleting menu items or dropping database connections. OnDisconnection is

T A B L E 1 5 . 7 : Startup Methods for a COM Add-In

Constant Value Description

ext_cm_AfterStartup 0 The add-in was loaded after the application was
already running, either by selecting it in the COM
Add-ins dialog or programmatically.

ext_cm_Startup 1 The add-in was loaded at application startup.

ext_cm_External 2 The add-in was loaded from an external source, such
as from the VB Wizard Toolbar through Automation.

ext_cm_CommandLine 3 The add-in is an EXE loaded from the command line.
This is only applicable to Visual Basic add-ins.

Chapter 15 • Writing Add-Ins for the Visual Basic IDE982

similar to OnConnection in that your add-in will be passed information during
the event. Take a look at the procedure definition:

Private Sub AddinInstance_OnDisconnection(_
 ByVal RemoveMode As AddInDesignerObjects.ext_DisconnectMode, _
 custom() As Variant)

End Sub

RemoveMode will be one of two values: ext_dm_HostShutdown (0) if the host
application itself is shutting down, or ext_dm_UserClosed (1) if the user dese-
lected the add-in using the COM Add-ins dialog. (RemoveMode will also be
ext_dm_UserClosed if an application programmatically unloads the add-in.)

The custom argument contains the same information as the argument of the
same name in OnConenction.

Other Add-in Methods

While you’ll probably use OnConnection and OnDisconnection the most, you
may occasionally write code for the other add-in methods. For instance, if your
add-in depends on the host application being in a completely ready state, you
delay taking any action until the OnStartupComplete method is called.

Likewise, if your add-in depends on other add-ins, you can write code in the
OnAddInsUpdate method to check to see if the add-ins are still loaded. OnAddIns-
Update is called whenever an application’s list of loaded add-ins changes, either
by the user selecting or deselecting them from the COM Add-ins dialog or through
code. Both VB and VBA implement an AddIns collection that your add-in can
query for the existence of other add-ins (and even load or unload them).

Building a COM Add-In for the VBA IDE
There’s no better way to explore the ins and outs of COM Add-ins than by build-
ing a sample add-in. To demonstrate these techniques, we’ve created an add-in
that provides information on projects loaded in the VBA IDE using our object
model that was described earlier. In this section, we’ll show how to create an add-
in project and set up a reference to the IDE type library. Coding examples will
come later, as we explore the IDE object model.

 Building a COM Add-In for the VBA IDE 983

Using the COM Add-In Designer
The easiest way to create COM Add-ins is by using the COM Add-in designer that
ships as part of Visual Basic 6 or Microsoft Office 2000 Developer. The Designer
takes care of implementing the IDTExtensibility2 COM interface and includes a
user interface for specifying options that enable the add-in to register itself with
an application. If you don’t use the Designer, you’ll need to handle all these details
yourself. Figure 15.12 shows the Designer window open in our add-in project.

F I G U R E 1 5 . 1 2
COM Add-in Designer win-

dow showing options for
the sample project

There are two ways to create a new add-in project, depending on whether you
are using Visual Basic or VBA. In Visual Basic, you begin by selecting File � New
Project and choosing Add-in from the list of project types shown in Figure 15.13.
Since VB creates new projects based on a list of templates, a new add-in project
includes the add-in designer plus a default form and code module.

Chapter 15 • Writing Add-Ins for the Visual Basic IDE984

F I G U R E 1 5 . 1 3
Creating a new add-in
project in Visual Basic

The template’s sample code is optimized only for the VB IDE. We’ve included
replacement project template files that enable you to create add-ins that work with
the VB IDE or the VBA IDE. To use these, you must copy the files listed in Table
15.8 to the Templates\Projects subdirectory in the VB installation folder.

Once you’ve copied the files, two new entries will appear in the VB New Project
dialog: VB IDE Add-in and VBA IDE Add-in (see Figure 15.14)

If you’re using VBA and Office 2000 Developer, you create a new add-in project
by selecting it from the New Project dialog, shown in Figure 15.15 (also accessible
via the File � New Project command). Unlike VB, the VBA add-in project does not
include a form or any code. You’ll have to write the code yourself. To make this
easy, you can copy the VBA code (and only the VBA code) from the VBIDE.DSR
or VBAIDE.DSR files into the designer’s code module to create add-ins for VB or
VBA, respectively.

T A B L E 1 5 . 8 : Files That Compose Our Enhanced IDE Add-In Project Templates

File Description

VB IDE Addin.VBP Project file for VB IDE add-in

VBA IDE Addin.VBP Project file for VBA IDE add-in

IDEADDNT.FRM VB form with basic functionality

VBIDET.DSR Add-in designer for VB IDE

VBAIDET.DSR Add-in designer for VBA IDE

 Building a COM Add-In for the VBA IDE 985

F I G U R E 1 5 . 1 4
Two new project templates

for IDE add-ins

F I G U R E 1 5 . 1 5
Creating a new add-in

project in VBA

The New Project command is only available in the VBA IDE if you’ve installed
Microsoft Office 2000 Developer.

Once you’ve created a new add-in project, you use the Designer’s UI to set basic
options for the add-in. Table 15.9 lists each field and its purpose.

T A B L E 1 5 . 9 : Settable Options in the COM Add-In Designer

Option Description

Addin Display Name Sets the display name as it will appear in the COM Add-ins dialog. Also
sets the value of the COMAddIn object’s Description property.

Addin Description Sets the description as it will appear in the COM Add-ins dialog when a
user selects the add-in from the list.

Chapter 15 • Writing Add-Ins for the Visual Basic IDE986

The Advanced tab of the Designer lets you supply additional information that will
be compiled into the add-in. Figure 15.16 shows the Advanced tab. Using this tab, you
can specify a satellite DLL for your project. Satellite DLLs are used to provide local-
ized resources separate from the add-in to aid developers who distribute solutions in
multiple languages. For more information on satellite DLLs, consult a Visual Basic
resource, such as the MSDN online library (http://msdn.microsoft.com/).

F I G U R E 1 5 . 1 6
Advanced COM Add-in

properties

The Advanced tab also lets you specify additional Registry values under a key
of your choosing that the add-in will create when it’s registered with the operat-
ing system. You could use this, for instance, to set preference data into the Regis-
try when the add-in is first installed. Simply set the Registry key you want to use

Application Defines the host application for this instance of the designer.

Application Version Controls the version for which this add-in is intended.

Initial Load Behavior Sets the initial load behavior of the add-in (see next).

T A B L E 1 5 . 9 : Settable Options in the COM Add-In Designer (continued)

Option Description

 Building a COM Add-In for the VBA IDE 987

to store the data (e.g., HKEY_CURRENT_USER\Software\VB & VBA Program Set-
tings) and then use the command buttons to add, edit, or delete Registry values.

Specifying Add-In Load Behavior
Add-in load behavior is probably the most important setting on the Designer’s
dialog because it controls how and when your add-in gets loaded into the host
application. There are four possible settings for this option: None, Startup, Load at
Startup Only, and Load on Demand.

None

When you choose None as the load behavior, your add-in will not be loaded auto-
matically by the host application. However, it will still show up in the COM Add-
ins dialog so the user can load it. You can also load it programmatically by setting
the add-in’s Connect property to True using the object model.

Startup

Loading an add-in at startup will likely be the option you choose most often.
When an add-in loads at startup, it appears as if it’s part of the host application—
a new feature—and the user never has to deal with the COM Add-ins dialog.

Command Line

This setting indicates that the add-in is an executable file and should be started
from the command line. Command line startup is only valid for add-ins created
with Visual Basic since the add-in designer that ships with Microsoft Office 2000
Developer can only create DLLs.

Command Line/Startup

This setting indicates that the add-in is an executable file and should be started
when the environment loads but can also be launched from the command line.

Adding the Type Library Reference
After creating a new add-in project, you must set a reference to the IDE’s type
library to the add-in project. To do this, open the References dialog and make sure

Chapter 15 • Writing Add-Ins for the Visual Basic IDE988

either “Microsoft Visual Basic 6.0 Extensibility” for the VB IDE or “Microsoft
Visual Basic for Applications Extensibility 5.3” for VBA (see Figure 15.17) is
selected.

F I G U R E 1 5 . 1 7
Selecting the VBA IDE type

library reference

Many add-ins you’ll create will want to add a custom menu command to the
Add-ins or other menu. For this, you’ll also need a reference in your project to the
Microsoft Office 9.0 type library, which implements the command bars for the IDE.

If you use our enhanced VB add-in project templates, you don’t need to do this
since the correct references are already included.

Coding the Add-in
When you create a COM Add-in to work with the VB or VBA IDE, your add-in
will receive a pointer to the IDE object (represented by the VBE class in Table 15.2)
as part of the OnConnection event procedure. You must store this pointer in a
module-level variable so you can access the IDE after the procedure terminates.

The most important coding task is writing code in the OnConnection event to
somehow “hook” your add-in into the host application. This can be done through
a custom menu command, a toolbar button, or through sinking to one of the IDE’s
events. Unfortunately, only Visual Basic’s IDE offers any really useful events. Our
sample add-in uses a Command Bar button to open the add-in’s form but other-
wise doesn’t leverage any other events. Listing 15.20 shows the relatively small
amount of code from our add-in designer.

 Building a COM Add-In for the VBA IDE 989

➲ Listing 15.20: Source Code from Our IDE Add-In Designer

Option Explicit

Public IDEInstance As VBIDE.VBE

Private mfrmAddin As frmAddIn
Private WithEvents mcbeAddin As VBIDE.CommandBarEvents
Private mcbbAddin As Office.CommandBarControl

Const conAddinMenuName = "IDE Add-in"

Private Sub AddinInstance_OnConnection(_
 ByVal Application As Object, _
 ByVal ConnectMode As ext_ConnectMode, _
 ByVal AddInInst As Object, _
 custom() As Variant)

 On Error GoTo HandleErrors

 Dim cbrAddins As Object
 Dim cbbNew As Office.CommandBarControl

 ' Store a pointer to the IDE
 Set IDEInstance = Application

 ' Create a new command bar button
 Set mcbbAddin = IDEInstance.CommandBars("Add-ins"). _
 Controls.Add(msoControlButton)
 mcbbAddin.Caption = conAddinMenuName

 ' Set its event hook
 Set mcbeAddin = IDEInstance.Events.CommandBarEvents(mcbbAddin)

 ' If launched from an external source (e.g. the
 ' wizard toolbar) show the form right away
 ' (VB IDE only)
 If ConnectMode = ext_cm_External Then
 Me.Show
 End If

Chapter 15 • Writing Add-Ins for the Visual Basic IDE990

ExitHere:
 Exit Sub
HandleErrors:
 Select Case Err.Number
 Case Else
 MsgBox Err.Description, vbExclamation, _
 "Error " & Err.Number & Err.Number & _
 " in Addin::OnConnection"
 End Select
 Resume ExitHere
End Sub

Private Sub AddinInstance_OnDisconnection(_
 ByVal RemoveMode As ext_DisconnectMode, _
 custom() As Variant)

 On Error Resume Next

 ' Delete the command bar button
 mcbbAddin.Delete

 ' Unload the form
 Unload mfrmAddin
End Sub

Public Sub Show()
 ' Load the form, give it a pointer to the IDE
 ' and show the form
 On Error GoTo HandleErrors

 Set mfrmAddin = New frmAddIn
 Set mfrmAddin.IDEInstance = Me.IDEInstance

 ' Refresh the lists of projects, etc.
 mfrmAddin.RefreshLists

 mfrmAddin.Show
ExitHere:
 Exit Sub
HandleErrors:
 Select Case Err.Number
 Case Else

 Building a COM Add-In for the VBA IDE 991

 MsgBox Err.Description, vbExclamation, _
 "Error " & Err.Number & " in Addin::Show"
 End Select
 Resume ExitHere
End Sub

Public Sub Hide()
 ' Unload the form
 On Error Resume Next
 Unload mfrmAddin
End Sub

Private Sub mcbeAddin_Click(_
 ByVal CommandBarControl As Object, _
 handled As Boolean, _
 CancelDefault As Boolean)

 ' Show the form
 Me.Show
End Sub

Note the use of the WithEvents keyword in the declarations section to provide
an event hook for the Command Bar button. After creating the new Command Bar
button, the procedure references the IDE’s Events collection to establish the hook
for the new button.

The listing also shows the OnDisconnection event procedure, where the Com-
mand Bar button is removed, and the Show method, which handles the task of
displaying the add-in’s form.

Using Our Object Model
Our add-in uses the object model we described earlier in the chapter to provide a
list of projects and their components. Figure 15.18 shows the add-in’s form when
it is open and displaying project information.

All of the project-specific code is contained in the form’s module. Since the classes
we created do most of the hard work, the form’s code is relatively straightforward.
For example, code behind the form’s RefreshLists method simply uses the IDE’s
VBProjects collection to populate the form’s Projects combo box. Listing 15.21
shows the code.

Chapter 15 • Writing Add-Ins for the Visual Basic IDE992

F I G U R E 1 5 . 1 8
Displaying information on

loaded projects

➲ Listing 15.21: Building a List of Loaded Projects

Public Sub RefreshLists()
 Dim vbp As VBIDE.VBProject

 ' Clear the combo box and restock it with
 ' a list of loaded projects
 cboProjects.Clear
 For Each vbp In IDEInstance.VBProjects
 cboProjects.AddItem vbp.Name & " (" & _
 GetFileName(vbp) & ")"
 Next

 ' If there are projects, select the first one
 ' in the list (this will trigger the Click event)
 If cboProjects.ListCount > 0 Then
 cboProjects.ListIndex = 0
 End If
End Sub

 Building a COM Add-In for the VBA IDE 993

The combo box’s Click event is triggered when the procedure sets the control’s
ListIndex property. Code in the event procedure creates a new instance of our
Project class, sets its VBProject property, and then uses its Modules collection to
populate the Modules list box. Listing 15.22 shows the event procedure.

➲ Listing 15.22: Populating the Modules List Using Our Object Model

Private Sub cboProjects_Click()
 Dim modAny As Module
 Dim strTemp As String

 ' Declare a new project as the current one
 ' and set it equal to the selected VB project
 Set mprjCurrent = New Project
 Set mprjCurrent.VBProject = IDEInstance. _
 VBProjects(cboProjects.ListIndex + 1)

 ' Clear the list box and restock it with a list
 ' of the modules in the project
 lstComponents.Clear
 For Each modAny In mprjCurrent.Modules
 lstComponents.AddItem modAny.Name & _
 " (" & modAny.KindName & ")"
 Next

 ' If there are modules, select the first one
 ' in the list (this will trigger the Click event)
 If lstComponents.ListCount > 0 Then
 lstComponents.ListIndex = 0
 End If
End Sub

Just as with the project list, setting the ListIndex property triggers an event pro-
cedure that fills the Procedures list box. Refer to the sample project for the com-
plete code listing.

Debugging, Compiling, and Distributing
Once you’ve completed coding a COM Add-in, you must explicitly execute the
add-in before you can debug it. In the case of the Office 2000 Developer COM

Chapter 15 • Writing Add-Ins for the Visual Basic IDE994

Add-in Designer, you do this by clicking the Run Project button on the toolbar (as
opposed to the Run Sub/Userform button). With add-ins created using Visual
Basic, you simply click the Run button. Other than that, debugging works just like
it does with regular VBA projects. For instance, you can add a breakpoint in the
OnConnection event to step through the start-up code.

After you’ve tested and debugged your add-in, it’s time to compile it. To do so,
select the File � Make command from the Visual Basic Editor. This creates a COM
DLL (although you can create a COM EXE if you’re using Visual Basic) on your
hard disk. It also creates the required Registry entries that associate the add-in
with a host application on your development machine. You still need to cope with
deploying the add-in to your users.

Once you’ve created the add-in, you can distribute it to others. Since it’s a COM
component, you’ll need to register the component of each user’s computer. For
instance, if you want to do this manually to test your add-in on another devel-
oper’s computer, you can use the REGSVR32 program. Just copy your add-in to a
directory on the hard drive and run REGSVR32 from a DOS prompt as follows:

REGSVR32 <addinpath>\<addinfile>

REGSVR32 is normally installed in the Windows\System directory. If this
directory is not in your PATH statement, you’ll need to modify the command line.
You can also unregister the add-in using the /u flag, like this:

REGSVR32 /u <addinpath>\<addinfile>

It’s unlikely you’ll want to install your add-in manually on every user’s work-
station. Instead, you’ll want to use a setup program that will automatically install
and register the add-in. The Package and Deployment Wizard that ships with
both Visual Basic and Microsoft Office 2000 Developer creates setup programs
that will do this.

COM Add-In Registry Entries

One thing that differentiates an Office COM Add-in from regular COM compo-
nents is the set of Registry entries that associates it with a particular host applica-
tion. We’ll document these here, although if you use the COM Add-in Designer to
create your add-ins, you probably won’t need to worry about them unless you
need to troubleshoot a misbehaving add-in.

 Building a COM Add-In for the VBA IDE 995

The VB and VBA IDEs look in two different locations in the Registry to
determine which add-ins they should load. Add-in information is stored
under HKEY_CURRENT_USER\Software\Microsoft\Visual Basic\6.0\Addins
for Visual Basic and HKEY_CURRENT_USER\Software\Microsoft\VBA\VBE\
6.0\Addins. Note that all add-ins are associated with a given user.

When you register a COM Add-in, it creates a subkey that is its Prog ID. Figure
15.19 shows the Windows Registry Editor open to the add-ins key for Visual Basic.
You can see the subkey for our sample add-in—its Prog ID is VBIDEAddin.Addin.

F I G U R E 1 5 . 1 9
Registry entries for the
sample VB IDE add-in

At load time, the IDE reads the subkeys looking for registered add-ins. It then
looks at values for each key to determine whether to load the add-in. Table 15.10
lists the Registry values defined for COM Add-ins. LoadBehavior is the value that
controls whether an application loads the add-in at startup or not.

Chapter 15 • Writing Add-Ins for the Visual Basic IDE996

The AddIns Collection
To help you manage COM Add-ins, the VB IDE (but not the VBA IDE) imple-
ments an AddIns collection. You can use this as you would any other collection to
iterate through the list of add-ins registered with the development environment.

Table 15.11 lists the collection’s properties and methods. You’ll notice that while
you can iterate through existing add-ins, there is no way to add new ones. That’s
because the only way to add new COM Add-ins is to make Registry entries. Nor-
mally, this happens automatically when the add-in itself is registered. Refer back
to the previous section for more information on COM Add-in Registry entries.

T A B L E 1 5 . 1 0 : Registry Values for COM Add-Ins

Value Name Data Type Description

CommandLineSafe DWORD Determines whether the add-in can be launched from a
command line.

Description String Description of the add-in that will appear in the COM
Add-ins dialog.

FriendlyName String Name of the add-in that will appear in the list of add-ins
in the COM Add-ins dialog.

LoadBehavior DWORD Load behavior of the add-in:
0 = none
3 = startup

SatelliteDLLName String Name of add-in’s satellite DLL, if it has one.

T A B L E 1 5 . 1 1 : Properties and Methods of the Application’s AddIns Collection

Property or Method Description

VBE Returns a pointer to the VBE object.

Count Returns the number of add-ins in the collection.

Parent Same as VBE.

Item Returns a particular AddIn object.

Update Updates the collection. This should be used after an add-in has been added
or removed from the system while the development is running.

 Summary 997

It’s no surprise that the AddIns is a collection of AddIn objects. Table 15.12 lists
the properties for the AddIn class.

In addition to being able to see the description of each add-in, you can use the
Connect property to load or unload individual add-ins. You might use this, say, to
load a series of add-ins required by one of yours. Once loaded, you can use the
Object property to return the running instance of each add-in. This lets your add-
in communicate with other add-ins using any Public properties or methods they
expose.

Summary
In this chapter, we’ve introduced you to the VB and VBA IDE object models and
shown you how to use their classes, properties, and methods. By understanding
the object model, you can create you own custom tools and utilities to help you
write code and create applications. Most often, you’ll want to implement these as
COM Add-ins. This chapter also explained the COM Add-in architecture and
showed you how to implement them. By now, you should be familiar with

• Adding a reference to the IDE type library

• Controlling the IDE user interface using the Window and CodePane classes

T A B L E 1 5 . 1 2 : Properties of the COMAddIn Class

Property Description

Collection Returns a pointer to Addins collection.

Connect True or False value indicating whether the add-in is loaded. You use this
to load or unload individual add-ins.

Description Description of the add-in as it appears in the Add-ins dialog.

Guid Global unique identifier of the COM component that implements the add-in.

Object Returns a pointer to the running instance of the add-in if it’s loaded.

ProgId Returns the ProgId for the add-in (for example, “MyAddin.Init”).

VBE Returns a pointer to the VBE object.

Chapter 15 • Writing Add-Ins for the Visual Basic IDE998

• Manipulating projects using the VBProject, Reference, VBComponent, and
Property classes

• Modifying source code using the CodeModule class

• Creating COM Add-ins and the IDTExtensibility2 interface

• Using the COM Add-in designer

• Creating a simple COM Add-in

This chapter also provided a custom object model that enhances the IDE classes.
You can use this model as the basis for your own utilities and add-ins.

a p p e n d i x A

The Reddick VBA Naming
Conventions, Version 6

Appendix A • The Reddick VBA Naming Conventions, Version 61000

The purpose of the Reddick VBA (RVBA) Naming Conventions is to provide a
guideline for naming objects in the Visual Basic for Applications (VBA) language.
Having conventions is valuable in any programming project. When you use them,
the name of the object conveys information about the meaning of the object. These
conventions attempt to provide a way of standardizing that meaning across the
body of VBA programmers.

VBA is implemented to interact with a host application—for example, Microsoft
Access, Microsoft Visual Basic, AutoCAD, and Visio. The RVBA conventions
cover all implementations of the VBA language, regardless of the host application.
Some of the tags described in this appendix may not necessarily have an imple-
mentation within some of the particular host programs for VBA. The word object,
in the context of this appendix, refers to simple variables and VBA objects, as well
as to objects made available by the VBA host program.

While I am the editor of these conventions, they are the work of many people,
including Charles Simonyi, who invented the Hungarian conventions on which
these are based, and Stan Leszynski, who co-authored several versions of the con-
ventions. Many others, too numerous to mention, have also contributed to the
development and distribution of these conventions.

These conventions are intended as a guideline. If you disagree with a particular
part of the conventions, simply replace that part with what you think works bet-
ter. However, keep in mind that future generations of programmers may need to
understand those changes, and place a comment in the header of a module indi-
cating what changes have been made. The conventions are presented without
rationalizations for how they were derived, although each of the ideas presented
has a considerable history to it.

Changes to the Conventions
Some of the tags in the version of the conventions presented here have changed
from previous versions. Consider all previous tags to be grandfathered into the
conventions—you don’t need to go back and make changes. For new develop-
ment work, I leave it up to you to decide whether to use the older tags or the ones
suggested here. In a few places in this appendix, older tags are shown in {braces}.
As updates to this appendix are made, the current version can be found at http:/
/www.xoc.net.

 An Introduction to Hungarian 1001

An Introduction to Hungarian
The RVBA conventions are based on the Hungarian conventions for constructing
object names (they were named for the native country of the inventor, Charles
Simonyi). The objective of Hungarian is to convey information about the object
concisely and efficiently. Hungarian takes some getting used to, but once
adopted, it quickly becomes second nature. The format of a Hungarian object
name is

[prefixes]tag[BaseName[Suffixes]]

The square brackets indicate optional parts of the object name. These compo-
nents have the following meanings:

Notice that the only required part of the object name is the tag. This may seem
counterintuitive; you may feel that the BaseName is the most important part of
the object name. However, consider a generic procedure that operates on any
form. The fact that the routine operates on a form is the important thing, not what
that form represents. Because the routine may operate on forms of many different

Component Meaning

Prefixes Modify the tag to indicate additional information.
Prefixes are all lowercase. They are usually picked
from a standardized list of prefixes, given later in
this appendix.

Tag Short set of characters, usually mnemonic, that
indicates the type of the object. The tag is all
lowercase. It is usually selected from a
standardized list of tags, given later in this
appendix.

BaseName One or more words that indicate what the object
represents. The first letter of each word in the
BaseName is capitalized.

Suffixes Additional information about the meaning of the
BaseName. The first letter of each word in the
Suffix is capitalized. They are usually picked from
a standardized list of suffixes, given later in this
appendix.

Appendix A • The Reddick VBA Naming Conventions, Version 61002

types, you do not necessarily need a BaseName. However, if you have more than
one object of a type referenced in the routine, you must have a BaseName on all
but one of the object names to differentiate them. Also, unless the routine is
generic, the BaseName conveys information about the variable. In most cases, a
variable should include a BaseName.

Tags
You use tags to indicate the data type of an object, and you construct them using
the techniques described in the following sections.

Variable Tags

Use the tags listed in Table A.1 for VBA data types. You can also use a specific tag
instead of obj for any data type defined by the host application or one of its objects.
(See the section “Host Application and Component Extensions to the Conven-
tions” later in this appendix.)

T A B L E A . 1 : Tables for VBA Variables

Tag Object Type

bool {f, bln} Boolean

byte {byt} Byte

cur Currency

date {dtm} Date

dec Decimal

dbl Double

int Integer

lng Long

obj Object

sng Single

str String

stf String (fixed length)

var Variant

 An Introduction to Hungarian 1003

Here are several examples:

lngCount
intValue
strInput

You should explicitly declare all variables, each on a line by itself. Do not use
the old-type declaration characters, such as %, &, and $. They are extraneous if
you use the naming conventions, and there is no character for some of the data
types, such as Boolean. You should always explicitly declare all variables of type
Variant using the As Variant clause, even though it is the default in VBA. For
example:

Dim intTotal As Integer
Dim varField As Variant
Dim strName As String

Constructing Properties Names

Properties of a class present a particular problem: should they include the naming
convention to indicate the type? To be consistent with the rest of these naming
conventions, they should. However, it is permitted to have property names with-
out the tags, especially if the class is to be made available to customers who may
not be familiar with these naming conventions.

Collection Tags

You treat a collection object with a special tag. You construct the tag using the data
type of the collection followed by the letter s. For example, if you had a collection
of Longs, the tag would be lngs. If it were a collection of forms, the collection
would be frms. Although, in theory, a collection can hold objects of different data
types, in practice, each of the data types in the collection is the same. If you do
want to use different data types in a collection, use the tag objs. For example:

intsEntries
frmsCustomerData
objsMisc

Constants

Constants always have a data type in VBA. Because VBA will choose this data
type for you if you don’t specify it, you should always specify the data type for a
constant. Constants declared in the General Declarations section of a module should

Appendix A • The Reddick VBA Naming Conventions, Version 61004

always have a scope keyword of Private or Public and be prefixed by the scope
prefixes m or g, respectively. A constant is indicated by appending the letter c to
the end of the data type for the constant. For example:

Const intcGray As Integer = 3
Private Const mdblcPi As Double = 3.14159265358979

Although this technique is the recommended method of naming constants, if
you are more concerned about specifying that you are dealing with constants
rather than their data type, you can alternatively use the generic tag con instead.
For example:

Const conPi As Double = 3.14159265358979

Menu Items

The names of menu items should reflect their position in the menu hierarchy. All
menu items should use the tag mnu, but the BaseName should indicate where in
the hierarchy the menu item falls. Use Sep in the BaseName to indicate a menu
separator bar, followed by an ordinal. For example:

mnuFile (on menu bar)
mnuFileNew (on File popup menu)
mnuFileNewForm (on File New flyout menu)
mnuFileNewReport (on File New flyout menu)
mnuFileSep1 (first separator bar on file popup menu)
mnuFileSaveAs (on File popup menu)
mnuFileSep2 (second separator bar on file popup menu)
mnuFileExit (on File popup menu)
mnuEdit (on menu bar)

Creating Data Types
VBA gives you three ways to create new data types: enumerated types, classes,
and user-defined types. In each case, you will need to invent a new tag that repre-
sents the data type that you create.

Enumerated Types

Groups of constants of the Long data type should be made an enumerated type.
Invent a tag for the type, append a c, then define the enumerated constants using
that tag. Because the name used in the Enum line is seen in the object browser, you

 An Introduction to Hungarian 1005

can add a BaseName to the tag to spell out the abbreviation indicated by the tag.
For example:

Public Enum ervcErrorValue
 ervcInvalidType = 205
 ervcValueOutOfBounds
End Enum

The BaseName should be singular, so that the enumerated type should be ervcEr-
rorValue, not ervcErrorValues. The tag that you invent for enumerated types can
then be used for variables that can contain values of that type. For example:

Dim erv As ervcErrorValue
Private Sub Example(ByVal ervCur As ervcErrorValue)

While VBA only provides enumerated types of groups of the Long type, you
can still create groups of constants of other types. Just create a set of constant defi-
nitions using an invented tag. For example:

Public Const estcError205 As String = "Invalid type"
Public Const estcError206 As String = "Value out of bounds"

Unfortunately, because this technique doesn’t actually create a new type, you
don’t get the benefit of the VBA compiler performing type checking for you. You
create variables that will hold constants using a similar syntax to variables meant
to hold instances of enumerated types. For example:

Dim estError As String

Tags for Classes and User-Defined Types

A class defines a user-defined object. Because these invent a new data type, you
will need to invent a new tag for the object. You can add a BaseName to the tag to
spell out the abbreviation indicated by the tag. User-defined types are considered
a simple class with only properties but in all other ways are used the same as class
modules. For example:

gphGlyph
edtEdit
Public Type grbGrabber

You then define variables to refer to instances of the class using the same tag.
For example:

Dim gphNext As New gphGlyph
Dim edtCurrent as edtEdit
Dim grbHandle as grbGrabber

Appendix A • The Reddick VBA Naming Conventions, Version 61006

Polymorphism

In VBA, you use the Implements statement to derive classes from a base class. The
tag for the derived class should use the same tag as the base class. The derived
classes, though, should use a different BaseName from the base class. For example:

anmAnimal (base class)
anmZebra (derived class of anmAnimal)
anmElephant (derived class of anmAnimal)

This logic of naming derived classes is used with forms, which are all derived
from the predefined Form base class and use the frm tag. If a variable is defined to
be of the type of the base class, then use the tag, as usual. For example:

Dim anmArbitrary As anmAnimal
Dim frmNew As Form

On the other hand, if you define a variable as an instance of a derived class,
include the complete derived class name in the variable name. For example:

Dim anmZebraInstance As anmZebra
Dim anmElephantExample As anmElephant
Dim frmCustomerData As frmCustomer

Constructing Procedures
VBA procedures require you to name various items: procedure names, parame-
ters, and labels. These objects are described in the following sections.

Constructing Procedure Names

VBA names event procedures, and you cannot change them. You should use the
capitalization defined by the system. For user-defined procedure names, capital-
ize the first letter of each word in the name. For example:

cmdOK_Click
GetTitleBarString
PerformInitialization

Procedures should always have a scope keyword, Public or Private, when they
are declared. For example:

Public Function GetTitleBarString() As String
Private Sub PerformInitialization

 An Introduction to Hungarian 1007

Naming Parameters

You should prefix all parameters in a procedure definition with ByVal or ByRef,
even though ByRef is optional and redundant. Procedure parameters are named
the same as simple variables of the same type, except that arguments passed by
reference use the prefix r. For example:

Public Sub TestValue(ByVal intInput As Integer, _
 ByRef rlngOutput As Long)
Private Function GetReturnValue(ByVal strKey As String, _
 ByRef rgph As Glyph) As Boolean

Naming Labels

Labels are named using upper- and lowercase, capitalizing the first letter of each
word. For example:

ErrorHandler:
ExitProcedure:

Prefixes
Prefixes modify an object tag to indicate more information about an object.

Arrays of Objects Prefix

Arrays of an object type use the prefix a. For example:

aintFontSizes
astrNames

Index Prefix

You indicate an index into an array by the prefix i, and, for consistency, the data
type should always be a Long. You may also use the index prefix to index into other
enumerated objects, such as a collection of user-defined classes. For example:

iaintFontSizes
iastrNames
igphsGlyphCollection

Appendix A • The Reddick VBA Naming Conventions, Version 61008

Prefixes for Scope and Lifetime

Three levels of scope exist for each variable in VBA: Public, Private, and Local. A
variable also has a lifetime of the current procedure or the lifetime of the object in
which it is defined. Use the prefixes in Table A.2 to indicate scope and lifetime.

You also use the m and g constants with other objects, such as constants, to indi-
cate their scope. For example:

intLocalVariable
mintPrivateVariable
gintPublicVariable
mdblcPi

VBA allows several type declaration words for backward compatibility. The
older keyword Global should always be replaced by Public, and the Dim keyword
in the General Declarations section should be replaced by Private.

Other Prefixes

Table A.3 lists and describes some other prefixes:

T A B L E A . 2 : Scope Prefixes

Prefix Object Type

(none) Local variable, procedure-level lifetime, declared with Dim

s Local variable, object lifetime, declared with Static

m Private (module) variable, object lifetime, declared with Private

g Public (global) variable, object lifetime, declared with Public

T A B L E A . 3 : Other Commonly Used Prefixes

Prefix Object Type

c Count of some object type

h Handle to a Windows object

r Parameter passed by reference

 An Introduction to Hungarian 1009

Here are some examples:

castrArray
hWndForm

Suffixes
Suffixes modify the base name of an object, indicating additional information
about a variable. You’ll likely create your own suffixes that are specific to your
development work. Table A.4 lists some generic VBA suffixes.

Here are some examples:

iastrNamesMin
iastrNamesMax
iaintFontSizesFirst
igphsGlyphCollectionLast
lngCustomerIdCnt
varOrderIdCnt

T A B L E A . 4 : Commonly Used Suffixes

Suffix Object Type

Min The absolute first element in an array or other kind of list

First The first element to be used in an array or list during the current operation

Last The last element to be used in an array or list during the current operation

Lim The upper limit of elements to be used in an array or list. Lim is not a valid
index. Generally, Lim equals Last + 1.

Max The absolutely last element in an array or other kind of list

Cnt Used with database elements to indicate that the item is a Counter.
Counter fields are incremented by the system and are numbers of either
type Long or type Replication Id.

Appendix A • The Reddick VBA Naming Conventions, Version 61010

Filenames
When naming items stored on the disk, no tag is needed because the extension
already gives the object type. For example:

Test.Frm (frmTest form)
Globals.Bas (globals module)
Glyph.Cls (gphGlyph class module)

Host Application and Component Extensions to the
Conventions

Each host application for VBA, as well as each component that can be installed,
has a set of objects it can use. This section defines tags for the objects in the various
host applications and components.

Access 2000, Version 9 Objects

Table A.5 lists Access object variable tags. Besides being used in code to refer to
these object types, these same tags are used to name these kinds of objects in the
form and report designers.

T A B L E A . 5 : Access Object Variable Tags

Tag Object Type

aob AccessObject

aops AccessObjectProperties

aop AccessObjectProperty

app Application

bfr BoundObjectFrame

chk CheckBox

cbo ComboBox

cmd CommandButton

ctl Control

ctls Controls

 An Introduction to Hungarian 1011

ocx CustomControl

dap DataAccessPage

dcm DoCmd

frm Form

fcd FormatCondition

fcds FormatConditions

frms Forms

grl GroupLevel

hyp Hyperlink

img Image

lbl Label

lin Line

lst ListBox

bas Module

ole ObjectFrame

opt OptionButton

fra OptionGroup (frame)

brk PageBreak

pal PaletteButton

prps Properties

shp Rectangle

ref Reference

refs References

rpt Report

rpts Reports

scr Screen

T A B L E A . 5 : Access Object Variable Tags (continued)

Tag Object Type

Appendix A • The Reddick VBA Naming Conventions, Version 61012

Some examples:

txtName
lblInput

For ActiveX custom controls, you can use the tag ocx as specified in Table A.5 or
more specific object tags that are listed later in this appendix in Tables A.14 and
A.15. For an ActiveX control that doesn’t appear in the Tables A.14 or A.15, you
can either use ocx or invent a new tag.

DAO 3.6 Objects

DAO is the programmatic interface to the Jet database engine shared by Access,
Visual Basic, and Visual C++. The tags for DAO 3.6 objects are shown in Table A.6.

sec Section

sfr SubForm

srp SubReport

tab TabControl

txt TextBox

tgl ToggleButton

T A B L E A . 6 : DAO Object Tags

Tag Object Type

cnt Container

cnts Containers

db Database

dbs Databases

dbe DBEngine

doc Document

docs Documents

T A B L E A . 5 : Access Object Variable Tags (continued)

Tag Object Type

 An Introduction to Hungarian 1013

err Error

errs Errors

fld Field

flds Fields

grp Group

grps Groups

idx Index

idxs Indexes

prm Parameter

prms Parameters

pdbe PrivDBEngine

prp Property

prps Properties

qry QueryDef

qrys QueryDefs

rst Recordset

rsts Recordsets

rel Relation

rels Relations

tbl TableDef

tbls TableDefs

usr User

usrs Users

wrk Workspace

wrks Workspaces

T A B L E A . 6 : DAO Object Tags (continued)

Tag Object Type

Appendix A • The Reddick VBA Naming Conventions, Version 61014

Here are some examples:

rstCustomers
idxPrimaryKey

Table A.7 lists the tags used to identify types of objects in a database.

If you wish, you can use more exact tags or suffixes to identify the purpose and
type of a database object. If you use the suffix, use the tag given from Table A.7 to
indicate the type. Use either the tag or the suffix found along with the more gen-
eral tag, but not both. The tags and suffixes are shown in Table A.8.

T A B L E A . 7 : Access Database Explorer Object Tags

Tag Object Type

tbl Table

qry Query

frm Form

rpt Report

mcr Macro

bas Module

dap DataAccessPage

T A B L E A . 8 : Specfic Object Tags and Suffixes for Access Database
Explorer Objects

Tag Suffix Object Type

tlkp Lookup Table (lookup)

qsel (none) Query (select)

qapp Append Query (append)

qxtb XTab Query (crosstab)

qddl DDL Query (DDL)

qdel Delete Query (delete)

qflt Filter Query (filter)

qlkp Lookup Query (lookup)

 An Introduction to Hungarian 1015

Here are some examples:

tblValidNamesLookup
tlkpValidNames
fmsgError
mmnuFileMnu

When naming objects in a database, do not use spaces. Instead, capitalize the
first letter of each word. For example, instead of Quarterly Sales Values Table, use
tblQuarterlySalesValues.

There is strong debate over whether fields in a table should have tags. Whether you
use them is up to you. However, if you do use them, use the tags from Table A.9.

qmak MakeTable Query (make table)

qspt PassThru Query (SQL pass-through)

qtot Totals Query (totals)

quni Union Query (union)

qupd Update Query (update)

fdlg Dlg Form (dialog)

fmnu Mnu Form (menu)

fmsg Msg Form (message)

fsfr SubForm Form (subform)

rsrp SubReport Form (subreport)

mmnu Mnu Macro (menu)

T A B L E A . 9 : Field Tags (If You Decide to Use Them)

Tag Object Type

lng Autoincrementing (either sequential or random) Long (used with the suffix Cnt)

bin Binary

byte Byte

T A B L E A . 8 : Specfic Object Tags and Suffixes for Access Database
Explorer Objects (continued)

Tag Suffix Object Type

Appendix A • The Reddick VBA Naming Conventions, Version 61016

Visual Basic 6 Objects

Table A.10 shows the tags for Visual Basic 6 objects.

cur Currency

date Date/time

dbl Double

guid Globally unique identified (GUID) used for replication AutoIncrement fields

int Integer

lng Long

mem Memo

ole OLE

sng Single

str Text

bool Yes/No

T A B L E A . 1 0 : Visual Basic 6 Object Tags

Tag Object Type

app App

chk CheckBox

clp Clipboard

cbo ComboBox

cmd CommandButton

ctl Control

dat Data

dir DirListBox

drv DriveListBox

T A B L E A . 9 : Field Tags (If You Decide to Use Them) (continued)

Tag Object Type

 An Introduction to Hungarian 1017

fil FileListBox

frm Form

fra Frame

glb Global

hsb HScrollBar

img Image

lbl Label

lics Licenses

lin Line

lst ListBox

mdi MDIForm

mnu Menu

ole OLE

opt OptionButton

pic PictureBox

prt Printer

prp PropertyPage

scr Screen

shp Shape

txt TextBox

tmr Timer

uctl UserControl

udoc UserDocument

vsb VscrollBar

T A B L E A . 1 0 : Visual Basic 6 Object Tags (continued)

Tag Object Type

Appendix A • The Reddick VBA Naming Conventions, Version 61018

Microsoft ActiveX Data Objects 2.1 Tags

Office 2000 provides version 2.1 of the ActiveX Data Objects library. Table A.11
lists the recommended tags for this version of ADO.

Avoiding Object Confusion
Many of the ADO, ADOX, and JRO tags overlap with existing DAO tags. Make sure you
include the object library name in all references in your code, so there’s never any possibil-
ity of confusion. For example, use

Dim rst As ADODB.Recordset

or

Dim cat As ADOX.Catalog

rather than using the object types without the library name. This will not only make your
code more explicit and avoid confusion about the source of the object but will also make
your code run a bit faster.

T A B L E A . 1 1 : ADO 2.1 Object Tags

Tag Object Type

cmd Command

cnn {cnx} Connection

err Error

errs Errors

fld Field

flds Fields

prm Parameter

prms Parameters

prps Properties

prp Property

rst Recordset

 An Introduction to Hungarian 1019

Microsoft ADO Ext. 2.1 for DDL and Security (ADOX) Tags

In order to support DDL and security objects within Jet database, Microsoft pro-
vides ADOX, an additional ADO library of objects. Table A.12 lists tags for the
ADOX objects.

T A B L E A . 1 2 : ADOX Object Tags

Tag Object Type

cat Catalog

clms Column

clm Columns

cmd Command

grp Group

grps Groups

idx Index

idxs Indexes

key Key

keys Keys

prc Procedure

prcs Procedures

prps Properties

prp Property

tbl Table

tbls Tables

usr User

usrs Users

vw View

vws Views

Appendix A • The Reddick VBA Naming Conventions, Version 61020

Microsoft Jet and Replication Objects 2.1

In order to support Jet’s replication features, ADO provides another library, JRO.
Table A.13 lists suggested tags for the JRO objects.

Microsoft SQL Server and Microsoft Data Engine (MSDE)
Objects

Table A.14 lists tags for Microsoft SQL Server and the Microsoft Data Engine (a
limited-connection version of SQL Server 7) objects.

T A B L E A . 1 3 : JRO Object Tags

Tag Object Type

flt Filter

flts Filters

jet JetEngine

rpl Replica

T A B L E A . 1 4 : SQL Server/MSDE Object Tags

Tag Object Type

tbl table

proc stored procedure

trg trigger

qry view

dgm database diagram

pk primary key

fk foreign key

idx other (non-key) index

rul check constraint

def default

 An Introduction to Hungarian 1021

Microsoft Common Control Objects

Windows 95 and Windows NT have a set of common controls that are accessible
from VBA. Table A.15 lists the tags for objects created using these controls.

T A B L E A . 1 5 : Microsoft Common Control Object Tags

Tag Object Type

ani Animation

btn Button (Toolbar)

bmn ButtonMenu (Toolbar)

bmns ButtonMenus (Toolbar)

bnd Band (CoolBar)

bnds Bands (CoolBar)

bnp BandsPage (CoolBar)

btns Buttons (Toolbar)

cbr CoolBar

cbp CoolBarPage (CoolBar)

hdr ColumnHeader (ListView)

hdrs ColumnHeaders (ListView)

cbi ComboItem (ImageCombo)

cbis ComboItems (ImageCombo)

ctls Controls

dto DataObject

dtf DataObjectFiles

dtp DTPicker

fsb FlatScrollBar

imc ImageCombo

iml ImageList

lim ListImage

Appendix A • The Reddick VBA Naming Conventions, Version 61022

Other Custom Controls and Objects

Finally, Table A.16 lists the tags for other commonly used custom controls and
objects.

lims ListImages

lit ListItem (ListView)

lits ListItems (ListView)

lsi ListSubItem (ListView)

lsis ListSubItems (ListView)

lvw ListView

mvw MonthView

nod Node (TreeView)

nods Nodes (TreeView)

pnl Panel (Status Bar)

pnls Panels (Status Bar)

prb ProgressBar

sld Slider

sbr StatusBar

tab Tab (Tab Strip)

tabs Tabs (Tab Strip)

tbs TabStrip

tbr Toolbar

tvw TreeView

udn UpDown

T A B L E A . 1 5 : Microsoft Common Control Object Tags (continued)

Tag Object Type

 An Introduction to Hungarian 1023

T A B L E A . 1 6 : Tags for Commonly Used Custom Controls

Tag Object Type

cdl CommonDialog (Common Dialog)

dbc DBCombo (Data Bound Combo Box)

dbg DBGrid (Data Bound Grid)

dls DBList (Data Bound List Box)

gau Gauge (Gauge)

gph Graph (Graph)

grd Grid (Grid)

msg MAPIMessages (Messaging API Message Control)

ses MAPISession (Messaging API Session Control)

msk MaskEdBox (Masked Edit Textbox)

key MhState (Key State)

mmc MMControl (Multimedia Control)

com MSComm (Communication Port)

out Outline (Outline Control)

pcl PictureClip (Picture Clip Control)

rtf RichTextBox (Rich Textbox)

spn SpinButton (Spin Button)

Appendix A • The Reddick VBA Naming Conventions, Version 61024

Summary
Using a naming convention requires a considerable initial effort on your part. The
payoff comes when either you or another programmer has to revisit your code at a
later time. Using the conventions given here will make your code more readable
and maintainable.

Greg Reddick is the President of Xoc Software, a software development company devel-
oping programs in Visual Basic, Microsoft Access, and C/C++. He leads training semi-
nars in Visual Basic for Application Developers Training Company and is a co-author of
Microsoft Access 95 Developer’s Handbook, published by Sybex. He worked for four
years on the Access development team at Microsoft. Greg can be reached at grr@xoc.net
or at the Xoc Software Web site at http://www.xoc.net.

INDEX

Note to the Reader:

 Throughout this index

boldfaced

 page numbers indicate primary discussions of a
topic.

Italicized

 page numbers indicate illustrations.

A

A/P characters in Format, 166
a prefix, 1007
Abs function, 649
Access program, VBA references in, 946
access to files,

718

random,

727–730

sequential,

721–727

Accessibility class
AccessTimeOut in,

529

creating,

542–545

features of,

527–529

FilterKeys in,

529–530

,

537–538

HighContrast in,

530–531

MouseKey in,

531–532

,

540

SoundSentry in,

534–535

,

539

StickyKeys in,

532–534

,

536

ToggleKeys in,

535

,

538

using,

541–542

AccessTimeOut properties,

529

ACCESSTIMEOUT structure, 543–544
ACLineStatus property, 578,

581

Activate method, 951
active object properties, 312
ActiveBorder property, 591
ActiveCaption property, 591
ActiveCodePane property, 941
ActiveGradientColor property, 591
ActiveProcessorMask property, 502, 520
ActiveVBProject property, 945
ActiveWindowTracking property, 558
ActiveWindowTrackingTimeOut property, 558
ActiveX components, 225, 881
ActiveX controls,

789

ActiveX designers, 952
Add-In Manager dialog box, 978–979,

979

add-ins,

932–933

alternate object model for,

970–971

collections for,

973–975

Module for,

972

Procedure for,

972–973

Project for,

971

using,

975–977

,

977

code modules for.

See

 code modules
COM.

See

 COM Add-ins
IDE object model for,

934

class hierarchies in,

934–937

windows in,

937–943

projects for
components in,

949–958

,

950

,

957

Reference for,

945–949

,

945–946

VBProject for,

943–945

,

944

Add method
in collections, 321–323
in Dictionary, 920, 922–923
in FileDataObject, 413
in Keys,

621–622

in Lines, 327–328
in LinkedWindows, 939
in List, 456–457,

460–463

,

462–464

in Queue,

451–452

,

452–453

in SortedCollection,

404–406

in Tree,

473–475

in Values,

622–624

in VBComponents, 952
AddCustom method, 952
AddFromFile method

in CodeFile, 963–965
in Reference, 948–949

AddFromGuid method, 948–949
AddFromString method, 963–965

Addin class – arrays

1026

Addin class, 935
Addin Description option, 985
Addin Display Name option, 985
adding

code,

963–965

,

964

intervals to dates,

153–154

items
to binary trees,

473–476

to collections,

322–323

to ordered linked lists,

460–463

,

462–464

to queues,

451–452

,

452–453

network shares,

683–690

nodes,

475–477

,

476

references,

948–949

AddinInstance_OnConnection procedure, 980,
989–990

AddinInstance_OnDisconnection procedure,
982, 990

AddIns collection, 935,

996–997

AddItem method, 438
AddLineNumbers procedure,

918–920

,

918

AddNode method,

474–476

addresses
for applications, 521
for callback functions, 793–794

AddressOf modifier, 793–794
AddUnique method,

473–475

adjectives in member names,

314

ADO (ActiveX Data Objects), naming conven-
tions for,

1018

ADOX, naming conventions for,

1019

Advanced Settings for FilterKeys dialog box,

537–538

Advanced tab, 986,

986

AfterOpen event, 340
AfterOpen procedure, 350
age calculations,

207–208

Alias constant, 905
aliases in MCI commands, 835
AllocationGranularity property, 502, 520–521
alphabetic characters, checking for,

50–51

alphanumeric characters, checking for,

51

AM/PM characters, 165

ampersands (&) in string formats, 13
AMPM characters, 166
analog-to-digital converters, 814
And operator, 913
ANIMATIONINFO structure, 495
anniversaries,

178–179

annuity functions,

121–122

ANSI characters and strings
for fonts, 573–574,

574

functions for,

35–36

in networking,

647

vs. Unicode,

4–6

Append access mode, 718
Append method, 624
AppGPFault system sound, 821
Application class, 241,

241

events in, 269
in Excel, 249
in Outlook, 251
in PowerPoint, 250
in Word, 249

application events, sounds for,

821–824

,

822

Application option, 986
application processes,

309

Application Version option, 986
applications

in automation,

245–246

object models for,

243–245

,

244

AppWorkspace property, 591
Archive attributes, 909
Archive constant, 905
area functions, 132–133
arguments

arrays of,

46–47

for callback functions, 793
for events, 341
naming conventions for, 1008
optional,

38–39

,

168–169

in property procedures, 290
arithmetic, bitwise,

912–913

Array function,

382

arrays,

374–377

,

375–376

byte,

5

Asc function – AvailablePhysical property

1027

checking for,

957

,

957

creating, 377
limitations of, 433
new features for,

383–384

of parameters,

46–47

pointers to,

380–382

prefixes for, 1007
sizing,

378–380

sorting
collections,

401–407

data types in,

408–420

Quicksort for,

384–399

speed considerations for,

399–401

,

415

statistics for,

137–140

of strings,

28

filtering,

34–35

,

35

joining strings from,

32–33

splitting strings into,

29–32

working with data in,

377–378

Asc function,

35–36

AscB function, 36
AscW function, 53
asterisks (*) in string comparisons, 7–8
at properties, 529
at signs (@) in string formats, 13
AtEndOfLine property, 917
AtEndOfStream property, 917
Atn function, 105
attributes

in collection classes,

335–336

of files,

705–706

in file listings,

708–709

modifying,

909–912

setting and retrieving,

706–708

,

708

Attributes property
in File, 903
in Folder, 898

audio
CDs,

813

,

848

example,

855–857

,

857

opening devices for,

849–850

pausing and stopping playback in,

854–855

playback position for,

852–854

starting playback for,

851–852

time formats for,

851

track information for,

850–851

MIDI,

813–814

waveform,

812–813

,

857–858

embedded,

824–828

example,

868–869

input parameters for,

863–865

loading files for,

858–860

playing,

818–819

,

860–861

with PlaySound,

817–828

recording,

861–863

removing portions of files in,

865–866

saving,

867–868

AutoCreate property, 280, 283
automation,

224–225

application behavior in,

245–246

benefits of,

226–227

browsing objects in,

230–232

,

231–232

classes in,

226–228

events in,

266–270

,

267–269

instances in,

232

binding,

233–235

creating,

237–240

in multiple-use classes,

241–242

,

241

reference counting for,

243

in single-use classes,

240

,

240

timing of,

236–237

memory and resource issues in,

246

with Microsoft Office,

246–247

Excel,

248–249

,

248

,

260–265

,

261

,

264

Outlook,

251–252

,

252

PowerPoint,

250

,

251

Word,

249

,

250

,

253–259

,

254

,

259

object models in,

243–245

,

244

Registry for,

235–236

terminology in,

225–226

type libraries in,

228–230

,

229

Automation interface, 932
autorepeat keyboard setting, 548–549
AvailableExtendedVirtual property, 554
AvailablePageFile property, 554
AvailablePhysical property, 554

AvailableSpace property – BubbleSort algorithm1028

AvailableSpace property, 895–896
AvailableVirtual property, 554
AvgBytesPerSecond property, 857, 863
AVI files

creating, 814
VideoPlayer for, 870

avivideo string, 829

B

Background property, 591
backslashes (\)

in Format, 166
for Registry keys, 601

base names in naming conventions, 1001
bases, number system

converting, 125–129
values in, 94–95

basic MCI commands, 832–833
BATTERY_ flags, 581–582
BatteryCharging property, 578, 582
BatteryFullLifeTime property, 578, 582
BatteryLifePercent property, 578, 582
BatteryLifeTime property, 578, 582
BatteryState property, 578, 581–582
Beep property, 502
Beep statement, 816
beeping, 816–817
BeforeClose event, 340
BeforeClose procedure, 350
beginning dates, finding

months, 169–170
quarters, 173–176
weeks, 170–172
years, 172–173

Bias property, 219
Big-endian data types, 601
Binary access mode, 718
binary comparisons, 6–7

binary numbers, 94–95, 97–98
converting, 126–129
inaccuracies with, 99–100
in Registry, 600

binary searches
benefits of, 420–421
operation of, 421–427, 423, 425, 427
using, 428–430

binary trees, 435, 435, 469
adding items to, 473–476
adding nodes to, 475–477, 476
benefits of, 470–472, 471
implementing, 472–473
sample, 481–482
traversing, 469–470, 470, 477–481, 479

binding object instances, 233–235
bit masks, 606
bits, 95
bits per sample, 813
BitsPerSample property, 857, 863
bitwise arithmetic, 912–913
blink properties, 548
bookmarks, 253–254, 254
bool tag, 1002
BootMethod property, 502
Border3DX property, 584
Border3DY property, 584
BorderMultiplier property, 587
BorderWidth property, 565
brackets ([]) for names, 337
Break in Class Module option, 360, 807
break key for MCI devices, 831
Break on All Errors option, 360
Break on Unhandled Errors option, 359, 807
breaking on errors, 359–360, 359
BreakOnAllErrors value, 360
BreakOnServerErrors value, 360
broken links, 230
browsing objects

Automation, 230–232, 231–232
collection default members, 335, 335

BubbleSort algorithm, 399–401

buffers – channels in waveform audio 1029

buffers
in networking, 657–663
for strings, 11

BuildPath method, 886
Builtin property, 945
ButtonFace property, 591–592
ButtonHighlight property, 591
Buttons property, 558, 561
ButtonShadow property, 591
ButtonText property, 591
BY_HANDLE_FILE_INFORMATION structure,

778
byte arrays, 5
byte tag, 1002
bytes and Byte data type, 96–97

functions for, 36–38, 37
printing contents of files by, 722

C

c character
in Format, 164
as name prefix, 1008

CalcSize procedure, 577
CallBack property, 793–794, 796
callbacks

in common dialogs, 792–795
with dhFindAllFiles, 769–771
implementation classes for, 350–356, 351, 355
interface for, 349–350

CancelError property, 790, 796, 806
cancellations in common dialogs, 806–807
CancelWakeUpRequest method, 579
capitalization, 313–314
CapsLock property, 546–547, 551
Caption property

in NonClientMetrics, 566
in VideoPlayer, 869
in Window, 937

CaptionBarButtonX property, 584

CaptionBarButtonY property, 584
CaptionButtonX property, 584
CaptionButtonY property, 584
CaptionFont property, 566
CaptionHeight property, 565, 584
CaptionText property, 591
CaptionWidth property, 565
CaretBlinkTime property, 546–547
CaretOn property, 546–547
CaretWidth property, 558
case of strings, converting, 13–14, 63–70
case-sensitivity in comparisons, 10
cash-flow functions, 122–125
cboProjects_Click procedure, 993
CByte function, 109
CCur function, 109, 111
CD (compact disk) audio, 813, 848

example, 855–857, 857
opening devices for, 849–850
pausing and stopping playback in, 854–855
playback position for, 852–854
starting playback for, 851–852
time formats for, 851
track information for, 850–851

CD audio quality, 812
CDate function, 157–158
cdaudio string, 829
CDbl function, 110
CDec function, 110, 198
cdlOFN constants, 798–801
Cells collection, 249
Center method, 869, 873–875
centuries in dates, 167
change handles, 756
change notification functions, 756

for multiple changes, 762–763
operation of, 756–757
setting up, 757–758
using, 758–762

Changed property, 328
ChangeSetting procedure, 864–865
changing user passwords, 691–693
channels in waveform audio, 813

Channels property – class modules1030

Channels property, 857, 863
character lists in string comparisons, 7
characters and character sets. See also strings

ANSI vs. Unicode, 4–6
characteristics of, 49–53
for fonts, 573–574, 574
replacing, 39–43
wide, 52–53

CharCode function, 79–80
Chart class, 226
charts, 263–265, 264
ChartWizard method, 265
ChDir function, 712
ChDrive function, 712
CheckAttributes function, 910
child nodes, 469
Chr function, 35–36
ChrB function, 36
chunks, printing file contents by, 722–723
CInt function, 109–110
circles, area of, 132
circular reference issues, 360

delayed termination, 361–362, 362
orphaned objects, 362–364, 363
proper termination, 364–365

Class Builder Wizard, 316
Class_Initialize procedure, 268, 806

in Line, 326
in Lines, 327
in MemoryStatus, 500, 556–557
in NonClientMetrics, 572
in ScreenInfo, 525–526
in SortedCollection, 403–404
in SystemInfo, 498
in TestEvents, 343
in TextFile, 288

class instances
in class modules, 277
creating, 284–288
with multiple-use classes, 241–243, 241
with single-use classes, 240, 240

class members
computed properties in, 311

developer considerations in, 311–312
events for, 312
existing functionality for, 311
properties vs. methods in, 310–311
simplicity of, 310

class modules, 272–273, 306–307
circular reference issues in, 360

delayed termination, 361–362, 362
orphaned objects, 362–364, 363
proper termination, 364–365

collections of objects. See collections
development benefits in, 276
for dynamic data structures. See dynamic

data structures
for emulating data structures, 438–439
encapsulation in, 273–275, 274–275
enumerated types in, 294–296, 295
error handling in, 356–360, 359
events in, 339

caveats for, 347
for class members, 312
defining, 339–340
forms with, 345–347, 346
raising, 340–342
responding to, 342–345, 342, 345

hiding processes in, 276
in IDE object model, 934–937
inserting, 278
interface classes for, 347–348

defining, 349–350
inheritance in, 348–356, 351, 355

names for, 1005
object hierarchies in, 315–319
object model design principles in, 307–308,

307
class members, 310–312
class relationships, 314–315
class requirements, 308–309
names, 312–314

property procedures for, 289–292
shared classes in, 365–367
as templates, 277
for text file class, 278

Class_Terminate procedure – collections 1031

class instances for, 284–288
creating, 278–280, 279
initialize and terminate events for, 288
methods for, 281–284
properties for, 280–281

and Windows API, 296–303
for wrapper functions, 488

Class_Terminate procedure
in SortedCollection, 403
in TestEvents, 343
in TextFile, 288

classes
in automation, 226–228
for collections

creating, 324–329
default members in, 334–335, 334–335
disadvantages of, 330–331
enumeration methods for, 337–339, 338
object keys for, 331–333
procedure attributes in, 335–336
using, 329–330

naming, 278–280, 279
in object models, 314–315
requirements for

application processes in, 309
conceptual data objects in, 308
for Registry, 620–628
strict boundaries, 309
type libraries for, 228–230, 229
user interface constructs as, 308–309

Cleanup procedure, 364
Clear method, 263
ClearAllAttributes procedure, 911
ClearAttributes function, 910
client areas in windows, 873
clients in automation, 226
clipboard, 297
Clipboard class

designing, 297–302
testing, 302–303

CLng function, 109–110, 125–126
Close method

in TextStream, 916

in Window, 937
Close statement, 720
Close system sound, 821
CloseHandle function, 731, 777
closing

files, 720
network enumeration handles, 671
Registry keys, 607

cmdOpen_Click procedure
in frmEvents, 346
in frmImplements, 354

cmdPlay_Click procedure, 876
Cnt suffix, 1009
CoCreateInstance function, 980
code modules

adding code to, 963–965, 964
counting lines in, 959
event procedures in, 966–967, 967
finding and replacing code in, 967–970
methods in, 963
procedures in, 960–962, 962
removing code in, 965–966
retrieving code in, 959–960

Code property, 973
codecs, 814–815
CodeModule class, 935, 959
CodeModule property, 973

in CodePane, 941, 959
in VBComponent, 959

CodePane class, 935, 941–943, 942
CodePanes collection, 935, 941
Collection property, 997
collections, 319–320

classes for
creating, 324–329
default members in, 334–335, 334–335
disadvantages of, 330–331
enumeration methods for, 337–339, 338
object keys for, 331–333
procedure attributes in, 335–336
using, 329–330

creating, 322–324
vs. Dictionary objects, 928–929

colons (:) in time/date formats – computed properties1032

manipulating objects in, 321–322
pointers for, 321, 324
properties and methods of, 320–321
sorting, 401–407
tags for, 1003
of tokens, converting strings into, 88–91

colons (:) in time/date formats, 163
color, system, 591–595
ColorFlags property, 790
Colors property, 956
Column property, 917
COM (Component Object Model)

for events, 342
and OLE, 225

COM Add-ins, 978
AddIns for, 996–997
coding, 988–991
debugging, compiling, and distributing, 993–

994
Designer for, 983–987, 983–986
dialog box for, 978–979, 979
IDTExtensibility2 for, 979–982
loading, 987
Registry entries for, 994–996, 995
type library references for, 987–988, 988
using, 991–993, 992

ComboBoxAnimation property, 587
Comctl32.dll file, 514–515
command bars, 943
Command Line option, 987
Command Line/Startup option, 987
command message interface for MCI, 837–847
command string interface for MCI, 834–836
CommandBarEvents class, 935
CommandLineSafe key, 996
common control objects, naming conventions

for, 1021–1022
Common Dialog ActiveX controls, 789
common dialogs, 788–789

appearance of, 807–808
callback functions in, 792–795
cancellations in, 806–807
File Open/Save, 795–804

for networking, 635–642
options in, 791, 792
steps in using, 789–791
in Windows 2000, 805–806, 805

CommonDlg class, 788–791
Compact disc audio device, 829
compact disk (CD) audio, 813, 848

example, 855–857, 857
opening devices for, 849–850
pausing and stopping playback in, 854–855
playback position for, 852–854
starting playback for, 851–852
time formats for, 851
track information for, 850–851

Compare method
in FileDataObject, 412–414
in ISortable, 417

CompareFileTime function, 731, 786
CompareMode property, 921, 928
CompareResults enumeration, 416
CompareSearch procedure, 426–427
CompareTimers procedure, 373
comparing

file times, 785–788
floating-point numbers, 101–102
strings, 6–10, 77–81

compilers, resource, 825
compiling COM add-ins, 993–994
complete path names, 746–747
complex MCI device types

vs. simple, 830
for waveform audio, 858–860

Component Object Model (COM). See also COM
Add-ins

for events, 342
and OLE, 225

components in projects, 949–951, 950
creating, 952–953
designers for, 958
properties of, 953–957, 957
VBComponent for, 951–952

compression in digital video, 814
computed properties, 311

computer and operating system information – CreateDirectoryEx function 1033

computer and operating system information,
501–505

Accessibility class for. See Accessibility class
SystemInfo class for, 501–505

computer and user information, 506–513
Internet Explorer, 526–527
path information, 513–520
processor information, 520–522
version information, 522–526

computer names in networking, 655–656
Computer/User category, 505
ComputerName formats, 507–508
ComputerName property, 502, 506, 509–510,

512–513
con tag, 1004
conceptual data objects, 308
Connect property, 997
connecting to network resources, 636–638, 636,

642–647
Conpressed constant, 905
constants

in enumerated types, 295
tags for, 1003–1004

ContainedVBControls class, 935
containment relationships, 315
controllers in automation, 226
converting

analog signals to digital, 814
Currency data type

to Long, 557
to text, 133–136

to dates, 147
elapsed minutes to strings, 215–216
number bases, 125–129
numbers, 109–110

to dates, 199–201
to Roman numerals, 60–63
to strings, 59–60

radians and degrees, 106
strings, 10

to byte arrays, 5
case of, 13–14, 63–70
to collection of tokens, 88–91

to dates, 201–202
to Soundex code, 77–81

text
to dates, 156–158
to pig latin, 32–33

time
to elapsed minutes, 214–215
formats for, 841–843
VBA and file, 780–782
VBA and system, 779–780

ConvertToTable method, 259
coordinated universal time (UTC), 217, 780
Copy method, 906
CopyFile function, 731
CopyFile method, 888, 891–892
CopyFileEx function, 731
CopyFolder method, 888, 892
CopyIfArchived function, 911–912
copying files

with File object, 906–907
with FileCopy, 710
with FileSystemObject object, 891–892

Cos function, 105
Count property

in AddIns, 996
in collections, 321
in Dictionary, 921
in Lines, 327–328
in LinkedWindows, 939
in SortedCollection, 403

counters in For Each loops, 322
counting

code lines, 959
substrings, 53–55
tokens, 55–57
words, 57–58

CountOfDeclarationLines property, 959, 965
CountOfLines property, 959, 961
CountOfVisibleLines property, 941
CountVowels function, 55
CountWords procedure, 924–926, 925
CreateDirectory function, 731
CreateDirectoryEx function, 731

CreateEventProc method – DAO (data access objects), naming conventions for1034

CreateEventProc method, 963, 966–967
CreateFile function, 731, 774–775
CreateFolder method, 888
CreateObject function, 237–238
CreateProperXML function, 70–71
CreateTableFromRecordset function, 257–259
CreateTextFile method, 890, 914–915
CSIDL_ADMINTOOLS value, 516
CSIDL_ALTSTARTUP value, 516
CSIDL_APPDATA value, 516
CSIDL_BITBUCKET value, 516
CSIDL_COMMON_ADMINTOOLS value, 516
CSIDL_COMMON_ALTSTARTUP value, 516
CSIDL_COMMON_APPDATA value, 516
CSIDL_COMMON_DESKTOPDIRECTORY

value, 516
CSIDL_COMMON_DOCUMENTS value, 517
CSIDL_COMMON_FAVORITES value, 517
CSIDL_COMMON_PROGRAMS value, 517
CSIDL_COMMON_STARTMENU value, 517
CSIDL_COMMON_STARTUP value, 517
CSIDL_COMMON_TEMPLATES value, 517
CSIDL_CONTROLS value, 517
CSIDL_COOKIES value, 517
CSIDL_DESKTOP value, 517
CSIDL_DESKTOPDIRECTORY value, 518
CSIDL_DRIVES value, 518
CSIDL_FAVORITES value, 518
CSIDL_FLAG_CREATE value, 516
CSIDL_FONTS value, 518
CSIDL_HISTORY value, 518
CSIDL_INTERNET value, 518
CSIDL_INTERNET_CACHE value, 518
CSIDL_LOCAL_APPDATA value, 518
CSIDL_MYPICTURES value, 518
CSIDL_NETHOOD value, 518
CSIDL_NETWORK value, 514, 519
CSIDL_PERSONAL value, 519
CSIDL_PRINTERS value, 519
CSIDL_PRINTHOOD value, 519
CSIDL_PROFILE value, 519
CSIDL_PROGRAM_FILES value, 514, 519

CSIDL_PROGRAM_FILES_COMMON value,
519

CSIDL_PROGRAMS value, 519
CSIDL_RECENT value, 519
CSIDL_SENDTO value, 519
CSIDL_STARTMENU value, 519
CSIDL_STARTUP value, 519
CSIDL_SYSTEM value, 520
CSIDL_TEMPLATES value, 520
CSIDL_WINDOWS value, 520
CSng function, 110
cumulative time, formatting, 214–217
cur tag, 1002
CurDir function, 711–712
Currency data type, 96, 103

converting
to Long, 557
to text, 133–136

formatting, 14–15, 15
in MEMORYSTATUSEX, 556
rounding, 111

CurrencyToLong function, 557
current directories, 711–712
CurrentTimeZoneName property, 219
CursorOn property, 558, 561
CursorShadow property, 558
CursorX property, 558
CursorY property, 558
custom errors, raising, 358–359
CVar function, 110

D

d character
in DateAdd, 154
in DatePart, 152
in dhFormatInterval, 209
in Format, 164

DAO (data access objects), naming conventions
for, 1012–1016

DarkShadow3D property – Decimal data type 1035

DarkShadow3D property, 591
dat string, 829
Data Environment designer, 952
Data Report designer, 952
data structures

dynamic. See dynamic data structures
for functions, 496–501

data types
in array sorts, 408–420
in collections, 325
for numbers, 96–97
in Registry, 600

database comparisons with Option Compare, 6
database engines, 398–399
database tables, searching in, 428
Date function, 145, 147–148
Date$ function, 148
Date statement, 148
date tag, 1002
DateAdd function, 153–154
DateCreated property

in File, 903
in Folder, 898

DateDiff function, 154–156, 156
DateLastAccessed property

in File, 903
in Folder, 898

DateLastModified property
in File, 903
in Folder, 898

DatePart function, 152–153
dates, 144–145

adding intervals to, 153–154
age calculations, 207–208
anniversaries, 178–179
considerations for, 159–160
converting, 147

numbers to, 199–201
strings to, 201–202
text from, 156–158

days in months, 190–194
determining, 147–148
displaying, 160–167, 162–164

entering, 146–147
of file modification, 711
finding, 168–169

months, beginning and end, 169–170
quarters, beginning and end, 173–176
weekdays, in months, 180–182
weekdays, next and previous, 176–178
weeks, beginning and end, 170–172
workdays, next and previous, 186–190
years, beginning and end, 172–173

formatting, 16, 17
holidays, 183–185, 189–190
leap years, 194–196
portions of, 149–153
as serial numbers, 145–146
setting, 148
subtracting, 154–156, 156
workdays, 182–185, 203–206

DateSerial function, 146, 158–160
DateValue function, 149, 157–158
Day function, 150
DaylightBias property, 219
DaylightTimeZoneName property, 219
days

in DateAdd, 154
in DatePart, 152
in DateSerial, 159
in dhFormatInterval, 209
in Format, 164
in months, determining, 190–194
retrieving, 150
of week, determining, 150–151

dbl tag, 1002
DCOM (distributed COM), 238–239
dd characters in Format, 164
DDB function, 120
ddd characters in Format, 164
dddd characters in Format, 164
ddddd characters in Format, 164
debugging COM add-ins, 993–994
DebugList method, 456, 467–468
dec tag, 1002
Decimal data type, 96, 103–105

decimal numbers – dhCMinutes function1036

decimal numbers, 97–98
declarations

array, 374
with instantiating, 885
object, 236
with WithEvents, 267

Declarations property, 972
decrypting strings, 71–75, 73
default members in collection classes, 334–335,

334–335
.Default system sound, 821
default values in Registry, 599
DefaultExt property, 796, 804
degrees, 106
Delay property, 548–549
delayed termination, 361–362, 362
Delete method, 858

in File, 906–907
in List, 456–457, 464–466, 465–467
in WavePlayer, 865–866

DeleteFile function, 731
DeleteFile method, 888, 907
DeleteFolder method, 888
DeleteLines method, 963, 965–966
DeleteSetting function, 602–603
deleting. See also removing

directory trees, 713–716
files

with File object, 907
with Kill, 710

network shares, 690–691
ordered linked list items, 464–466, 465–467

delimited strings
converting into collection of tokens, 88–91
counting tokens in, 55–57

delimiters for time, 216–217
depreciation functions, 120
derived trigonometric functions, 108–109
Description key, 996
Description property

in AddIn, 997
in Err, 358
in Reference, 945
in VBProject, 944

Designer method, 958
designers, 952

for COM add-ins, 983–987, 983–986
for project components, 958

DesignerWindow method, 958
DesktopWallpaper property, 587
developer considerations in class members, 311–

312
device IDs, 831
Device Property dialog box, 815
devices, MCI, 829–834

simple vs. complex, 830
for waveform audio, 858–860

dhAddConnection1 function, 643–645
dhAddConnection2 function, 645–647
dhAddLineNumbers procedure, 726
dhAddNetworkShare function, 687–691
dhAge function, 207–208
dhAge1 function, 208
dhAreaofCircle function, 132
dhAreaOfRectangle function, 132
dhAreaOfSphere function, 132
dhAreaOfTrapezoid function, 132–133
dhArrayAverage function, 137–138
dhArrayMax function, 141
dhArrayMedian function, 138
dhArrayMin function, 141–142
dhArrayMode function, 139–140
dhArrayStandardDeviation function, 139
dhBinarySearch function

operation of, 422–426, 423, 425, 427
using, 428–430

dhBinaryToDec function, 126, 129
dhBinaryToHex function, 126, 128–129
dhBubbleSort procedure, 399–401
dhBuildAttr function, 708
dhBuildAttrString function, 707–708
dhc security bit masks, 606
dhCalcPayment function, 122
dhCancelConnection1 function, 648–649
dhCancelConnection2 function, 648–649
dhChangeUserPassword function, 692–693
dhCloseEnum function, 671
dhCMinutes function, 214–215

dhCNumDate function – dhLastDayInWeek function 1037

dhCNumDate function, 199–201
dhCodePaneInfo procedure, 941–942, 942
dhCompareFileTime function, 786–787
dhConnectDlg function, 637–639
dhCopyRenameDelete procedure, 710
dhCountDOWInMonth function, 192–194
dhCountIn function, 53–55
dhCountTokens function, 55–57
dhCountWords function, 57–58
dhCountWorkdays function, 203–206
dhCreateNewKey procedure, 608–609
dhCStrDate function, 199–202
dhCTimeStr function, 214–216
dhDaysInMonth function, 191
dhDecToBinary function, 126, 129
dhDegToRad function, 106
dhDeleteNetworkShare function, 690–691
dhDelTree function, 713–715
dhDir function, 752–756, 755
dhDisconnectDlg function, 640–641
dhDockAllWindows procedure, 940–941
dhDumpComps procedure, 950–951, 950
dhDumpProps procedure, 953–957, 957
dhEnumAvailableNetworks procedure, 680
dhEnumConnectedResources procedure, 679–

680
dhEnumNext function, 672–674
dhEnumPCsInDomain procedure, 678–679
dhEnumSharesOnPC procedure, 679
dhExtractCollection function, 88–91
dhExtractString function, 82–86
dhFactorial function, 136–137
dhFactorialRecursive function, 136
dhFileExists function, 705
dhFileTimeToVBATime function, 781
dhFindAllFiles function, 765–767

embellishments to, 769–771
testing, 768, 769

dhFindAndReplace procedure, 968–970
dhFindByAttr function, 754–755
dhFindFiles procedure, 751–752, 752
dhFirstDayInMonth function, 169–170
dhFirstDayInQuarter function, 173–176

dhFirstDayInWeek function, 170–172
dhFirstDayInYear function, 172–173
dhFirstWord function, 86–88
dhFirstWorkdayInMonth function, 187–188
dhFixPath function, 715
dhFixWord function, 68–70
dhFnPtrToLong function, 793–794
dhFormatInterval function, 209–214
dhFreeDiskSpaceEx function, 739
dhFullPath function, 746–747
dhFunWithNotify procedure, 758–762
dhGetComputerName function, 655–656
dhGetDrivesByNum function, 733–734
dhGetDrivesByString function, 734–735
dhGetEventSound function, 822–824
dhGetFileTimes function, 782–783
dhGetFileTimesEx function, 785
dhGetLastNetworkError function, 639–640
dhGetNetResourceEnumHandle function, 668–

669
dhGetNetResourceInfo function, 674–678
dhGetPathParts function, 744–745
dhGetPDC function, 694–695
dhGetRemoteInfo function, 659, 661–662
dhGetRemoteName function, 651–653
dhGetTimeFromServer function, 683, 696–697
dhGetTopLevelEnumHandle function, 668–670
dhGetUniversalInfo function, 662
dhGetUserName function, 653–654
dhGreatestCommonFactor function, 130
dhHandleGroup function, 135–136
dhHexToBinary function, 126–128
dhHyperbolicSine function, 109
dhIsAttr function, 706
dhIsCharAlpha function, 50–51
dhIsCharAlphaNumeric function, 51–53
dhIsCharNumeric function, 51–52
dhIsCharsetWide function, 52–53
dhIsLeapYear function, 194–196
dhIsPrime function, 131–132
dhLastDayInMonth function, 170
dhLastDayInQuarter function, 173–176
dhLastDayInWeek function, 171–172

dhLastDayInYear function – dhTranslate function1038

dhLastDayInYear function, 172–173
dhLastWord function, 86–88
dhLastWorkdayInMonth function, 188–189
dhLinearSearch function, 426–427, 427
dhListProcs procedure, 961–962, 962
dhListSubDirs procedure, 709
dhListSubkeys procedure, 614–615
dhListValues procedure, 616–617
dhLogN function, 107
dhLowestCommonMultiple function, 130–131
dhMCIError function, 839–840
dhMCIInfo function, 846–847
dhMCIStatus function, 843–846
dhMCITimeToVBATime function, 842–843
dhMoreFileInfo procedure, 711
dhMsgBeep function, 816–817
dhMyFreeDiskSpaceEx function, 739
dhNetPresentValue function, 124
dhNewModule procedure, 964
dhNextAnniversary function, 178–179
dhNextDOW function, 178
dhNextWorkday function, 186–187
dhNthWeekday function, 180–182
dhNumToStr function, 133–136
dhOrdinal function, 59–60
dhPadLeft function, 75–76
dhPadRight function, 75–76
dhParsePath procedure, 743–744
dhPlayMIDIFile procedure, 836
dhPlayResource function, 826–828
dhPreviousDOW function, 177
dhPreviousWorkday function, 186–187
dhPrintAttr function, 707, 708
dhPrintBytes procedure, 722
dhPrintChunks procedure, 722–723
dhPrintDiskSpaceEx function, 740–741, 740
dhPrintDrives procedure, 735–736, 736
dhPrintDriveTypes procedure, 737–738, 738
dhPrintFoundFiles procedure, 768
dhPrintFoundFilesWithFeedback procedure, 771
dhPrintLines procedure, 724
dhPrintProjectInfo procedure, 976–977
dhPrintReferences procedure, 947

dhPrintSizeAPI procedure, 776–777
dhPrintValues procedure, 604
dhPrintVolInfo function, 742
dhProperLookup function, 63–66
dhQuickOpenFile function, 775–776
dhQuickSort procedure

operation of, 386–396, 390–391, 393–394, 396
testing, 396–397, 397
using, 398

dhQuickSortObjects procedure, 410–412
dhRadToDeg function, 106
dhRandomShuffle function, 118–119
dhReadEmp function, 728–729
dhReadWallpaper procedure, 611
dhRemoveAllBadRefs procedure, 948
dhRoman function, 60–63
dhRound function, 114–115
dhRoundTime function, 196–199
dhSampleEventProc method, 966–967, 967
dhSaveEmp function, 728–729
dhSearch function, 764–765, 765
dhSetComputerName function, 656
dhSetFileTimes function, 782–784
dhSetFileTimesEx function, 785
dhShortPath function, 747
dhSoundex function, 77–79
dhSoundsLike function, 80–81
dhStrFromANSIPtr function, 659–660, 683
dhStrFromPtr function, 660, 683
dhSubtract function, 116
dhSysTimeToVBATime function, 779–780
dhTempFileName function, 772–773
dhTestCD procedure, 855–857, 857
dhTestCurrent procedure, 712
dhTestDir procedure, 704
dhTestFileOpen procedure, 801–804
dhTestOpen procedure, 719
dhTestParsePath procedure, 748–749, 749
dhTestWave procedure, 868–869
DHTML Page designer, 952
dhTokenReplace function, 46–49
dhTotalFreeDiskSpaceEx function, 739–741
dhTranslate function, 39–43, 55, 57

dhTrimAll function – DriveType property 1039

dhTrimAll function, 43–44
dhTrimNull function, 44–46, 575
dhUndockAllWindows procedure, 939
dhUseProjectClass procedure, 971
dhVBATimeToFileTime function, 781
dhVBATimeToSysTime function, 779–780
dhVolOfPyramid function, 133
dhVolOfSphere function, 133
dhWriteAndInput procedure, 724–725
dhWriteWallpaper procedure, 612–613
dhXORText function, 71–75
DialogTitle property, 796
Dictionary object

vs. collections, 928–929
example, 924–928, 925
methods of, 920–921
properties of, 921–922
using, 922–924

Digital-audio tape player device, 829
digital video, 814–815, 815, 869–870

AVI functionality in, 870
example, 875–877, 876
positioning playback in, 873–875
types of, 870
in windows, 829, 870–873, 871

digitalvideo string, 829
Dim keyword

for class instances, 284–285
with New, 436

dimensions, array, 374–377, 375–376
Dir function

calling, 703–704
replacement for, 749–756, 752, 755

directories
creating, 713
current, 711–712
deleting, 713–716
listing, 708–709

Directory constant, 905
directory trees, deleting, 713–716
Disconnect Network Drive dialog box, 640, 640
disconnecting from network resources, 640–641,

640, 647–650

disks and disk drives, 702–703
information on, 732–733
labels for, 742
listing directories on, 708–709
listing files on, 703–704
number of, 733–736, 736
space available on, 738–741, 740
types of, 736–738, 738

displaying dates, 160–167, 162–164
distributed COM (DCOM), 238–239
distributing COM add-ins, 993–994
divide and conquer sorting techniques, 385–386
docked windows, 938–941
Document class, 249
dollar signs ($) in function names, 38
dots (.) in directory listings, 709
Double data type, 96, 98
double null-terminated strings, 734
double quotes (") in Format, 166
DoubleClickTime property, 558, 561
DoubleClickX property, 495, 559
DoubleClickY property, 559
DragFullWindows property, 587
DragX property, 559, 561
DragY property, 559
Drive object, 894–897
Drive property

in File, 904–905
in Folder, 898

DriveExists method, 889
DriveLetter property, 895
DrivePowerState property, 578, 582
drives

information on, 732–733
labels for, 742
listing directories on, 708–709
listing files on, 703–704
number of, 733–736, 736
space available on, 738–741, 740
types of, 736–738, 738

Drives collection, 893–894, 894
DriveType function, 897
DriveType property, 895

DumpBytes function – Error Trapping property1040

DumpBytes function, 37, 37
DumpItems method, 413
DWORD data types, 600–601
dynamic arrays, 379
dynamic data structures, 432–433

binary trees, 435, 435, 469
adding items to, 473–476
adding nodes to, 475–477, 476
benefits of, 470–472, 471
implementing, 472–473
sample, 481–482
traversing, 469–470, 470, 477–481, 479

emulating, 438–439
header classes for, 439
ordered linked lists, 456

adding items to, 460–463, 462–464
benefits of, 469
deleting items from, 464–466, 465–467
finding items in, 457–460, 459
List class, 456
ListItem class, 456
testing, 468
traversing, 467–468

queues, 448
adding items to, 451–452, 452–453
benefits of, 448–449
empty, 454–455
example, 455
implementing, 449–451, 449–450
removing items from, 453–454, 454

recursive, 434–435, 435
references in, 433

to existing items, 437
to new items, 436–437
to nothing, 437–438

stacks, 439–440
benefits of, 440
empty, 445
example, 446–447, 448
implementing, 440, 441
popping items from, 444–445, 445
pushing items onto, 442–444, 443
top of, 446

vs. static, 433–435, 434–435
dynamic strings, 3–4

E

early binding, 233–235
elapsed time

age calculations, 207–208
converting to strings, 214–216
formatting, 209–214
StopWatch for, 371–374
workdays between two dates, 203–206

embedded sounds, 824–828
empty queues, detecting, 454–455
empty stacks, detecting, 445
empty strings in string formats, 13
EmptyRecycleBin system sound, 821
emulating data structures, 438–439
encapsulation, 273–275, 274–275
encrypting strings, 71–75, 73
#endif preprocessor directive, 523
ending dates, finding

months, 169–170
quarters, 173–176
weeks, 170–172
years, 172–173

EndTimer function, 372
Enumerate function, 404
enumerated types, 294, 295

defining, 294–295
with methods and properties, 295–296
names for, 1004–1005

enumerating
network resources, 663–664, 674–680

closing handles for, 671
getting handles for, 664–671

Registry keys, 613–615, 629–630
Registry values, 615–617, 616, 629–630

enumeration methods, 331, 337–339, 338
EOF function, 720
EOF property, 283
equal signs (=) for string comparisons, 7
equality of floating-point numbers, 101–102
Err object, 357–358
Error Trapping property, 807

errors and error handling – FileOpen method 1041

errors and error handling
in class modules, 356–360, 359
in CommonDlg, 806–807
in docking windows, 941
with floating-point numbers, 98–102
in MCI, 839–840
in networking, 638–641, 640

“Event handler is invalid” message, 967
Event keyword, 339
event procedures, 966–967, 967
event sinking, 269, 269
events, 339

in automation, 266–270, 267–269
caveats for, 347
for class members, 312
defining, 339–340
forms with, 345–347, 346
raising, 340–342
responding to, 342–345, 342, 345
sounds for, 820–824, 820, 822

Events class, 935
Excel application, 248–249, 248

existing files in, 260–262
worksheets and charts in, 263–265, 264

exclamation points (!) in string formats, 13
existence of files, 705
Exists method

in Dictionary, 921
in TextFile, 283

Exp function, 106–107
exponents in scientific notation, 99
ext_cm_ constants, 981
extended MCI commands, 833–834
extended network error information, 638–641,

640
Extract function, 31–32
extracting

substrings, 31–32
words from strings, 81–88

F

face names, 573–576, 574
FaceName property, 566
factorials, 136–137
FIFO (First In First Out) data flow, 448
FILE_NOTIFY_CHANGE_ conditions, 757
File object, 903–905, 903

copying files with, 906–907
deleting files with, 907
methods of, 905–906
modifying attributes with, 909–912
moving files with, 907–908
opening text stream files with, 908
retrieving, 908–909

File Open dialog, 640–641
File Open/Save common dialogs

appearance of, 807–808
using, 795–804

file times, 780–782
comparing, 785–788
getting and setting, 782–785

FileClose method, 283
FileControlEvents class, 935
FileCopy method, 907
FileDataObject class, 412–416
FileDateTime function, 711
FileExists method, 889
FileExtOffset property, 796
FileLen function, 711
FileList property, 796
Filename property

in VideoPlayer, 869
in WavePlayer, 857

FileName property in CommDlg, 797
FileNameBufferSize property, 797
FileOffset property, 797
FileOpen method, 281–283

files – financial functions1042

files, 702–703
access to, 718

random, 727–730
sequential, 721–727

attributes of, 705–706
in file listings, 708–709
modifying, 909–912
setting and retrieving, 706–708, 708

change notification functions for, 756
for multiple changes, 762–763
operation of, 756–757
setting up, 757–758
using, 758–762

closing, 720
common dialogs for, 788–789

appearance of, 807–808
callback functions in, 792–795
cancellations in, 806–807
File Open/Save, 795–804
for networking, 635–642
options in, 791, 792
steps in using, 789–791
in Windows 2000, 805–806, 805

copying
with File object, 906–907
with FileCopy, 710
with FileSystemObject object, 891–892

deleting
with File object, 907
with Kill, 710

existence of, 705
functions for, API vs. VBA, 730–732
handles for, 716–717, 773–778
information for, 778
length of, 711
listing, 703–704, 749–756, 752, 755, 902
loading, 858–860
locking, 719
modes for, 718
modification date of, 711
moving

with File object, 907–908
with FileSystemObject object, 891–892

naming conventions for, 1010
opening, 281–283, 717–719
paths to

complete and short path names, 746–747
parsing, 743–745, 748–749, 749
SystemInfo class for, 513–520
UNC, 650–653

positioning, 720–721
printing contents of, 286, 722–723
renaming, 710
searching for, 763

with dhFindAllFiles, 765–771, 769
recursive searches, 765
SearchPath for, 763–765, 765

size of, 776–777
temporary filenames for, 772–773
time for

file, 780–789
system, 779–780

Files collection, 902
Files property, 898, 902
FileSystem property, 895
FileSystemObject object, 884–886

for copying and moving files and folders,
891–892

Drive object, 894–897
Drives collection, 893–894, 894
Folder object, 897–901, 898
methods of, 886–890, 891

FILETIME structure, 614, 780
FileTitle property, 797
Filter function, 34–35, 35
Filter property, 797
FilterIndex property, 797
filtering arrays of strings, 34–35, 35
FilterKeys properties

in Accessibility class, 529–530, 537–538
retrieving, 543
setting, 543–544

financial functions
annuity, 121–122
cash-flow, 122–125
depreciation, 120

Find method – formatting 1043

Find method, 963, 967–970
FindClose function, 731, 749–751
FindCloseChangeNotification function, 731, 756,

758
FindFirstChangeNotification function, 731, 756–

757
FindFirstFile function, 731, 749, 751, 756
FindFirstFileEx function, 731
finding

binary searches for
benefits of, 420–421
operation of, 421–427, 423, 425, 427
using, 428–430

code, 967–970
dates, 168–169

anniversaries, 178–179
months, beginning and end of, 169–170
quarters, beginning and end of, 173–176
weekdays, next and previous, 176–178
weekdays in months, 180–182
weeks, beginning and end of, 170–172
workdays, 183–190
years, beginning and end of, 172–173

files, 763
with dhFindAllFiles, 765–771, 769
recursive searches, 765
SearchPath for, 763–765, 765

ordered linked list items, 457–460, 459
strings, 21–23, 23, 27–28, 28

FindNextChangeNotification function, 731, 756,
758

FindNextFile function, 731, 749–751
first day of week, setting, 151
First In First Out (FIFO) data flow, 448
First suffix, 1009
first words in strings, extracting, 86–88
first workday in months, 187–188
Fix function, 111–112
fixed-length strings, 3–4
fixed-size arrays, 379
FixedBorderX property, 566, 584
FixedBorderY property, 566, 584
FixMsgBox procedure, 569–570

FixNCM procedure, 568
fk properties, 529–530
fkApply procedure, 543
fkClickOn property, 544
fkReset procedure, 542–543
flags for MCI messages, 837–838
Flags property, 791, 797
floating-point numbers

errors with, 98–102
subtracting, 115–116

Folder object, 897–901, 898
FolderExists method, 889
folders

copying and moving, 891–892
navigating through, 900–901

Folders collection, 252
FontFlags property, 790
fonts

face names for, 573–576, 574
in NonClientMetrics, 568–570
point sizes for, 576–577

FontSmoothing property, 587
For Each loops

for arrays, 378
for collections, 322, 331

For..Next constructs, 378
ForegroundFlashCount property, 587
ForegroundLockTimeOut property, 587
Form_Load procedure, 894
Format function

for dates, 160–167, 162–164
for strings, 12–14

FormatCurrency function, 14–15, 15
FormatDateTime function, 16, 17
FormatHex function, 897
FormatNumber function, 14–15
FormatPercent function, 14–15, 15
formats for dates, 146, 160–167, 162–164
FormatTag property, 857
formatting

cumulative time, 214–217
elapsed time, 209–214
strings, 12–18, 15, 18

forms with events – GetClientRect function1044

forms with events, 345–347, 346
FormulaArray property, 264
Found procedure, 770
fractions

representing, 97–98
in scientific notation, 99

Frame property, 848
FreeFile function, 716–717
FreeSpace property, 895–896
FriendlyName key, 996
frmDrives form, 893–894, 894
frmEvents form, 346–347
frmFileFolderNames form, 890, 891
frmFolder form, 897, 898
frmImplements form, 353–356
FullPath property

in Key, 627
in Reference, 945

FullScreenX property, 584
FullScreenY property, 584
FunctionKeys property, 546, 549
functions

for dates
adding intervals, 153–154
converting text to dates, 156–158
determining, 147–148
portions of, 149–153
subtracting, 154–156, 156

for disks and files
API vs. VBA, 730–732
attributes, 705–708, 708
directory management, 711–716
information on, 711
listing directories, 708–709
listing files, 703–705
manipulating, 710

for numbers
base conversions, 125–129
conversion, 109–110
financial, 120–125
mathematical and trigonometric, 105–109
random numbers, 116–119
rounding, 110–115, 113

for Registry
VBA, 601–604, 603
Windows, 604–617

for strings
for ANSI values, 35–36
for arrays, 28–35, 35
for bytes, 36–38, 37
comparing, 6–10
converting, 10
creating, 11
formatting, 12–18, 15, 18
justifying, 19–21
length, 12
optional parameters in, 38–39
portions of, 24–28
reversing, 18–19
for search and replace, 27–28, 28
searching for, 21–23, 23

FV function, 121

G

g prefix, 1008
GCF (greatest common factor) of numbers, 130
GDI DLL, 812
General Date format, 161
General page, 541
geometric calculations, 132–133
Get function, 727
Get property, 289–290
GetAbsolutePathName method, 887
GetActiveWindow function, 803, 876–877
GetAFile1 procedure, 909
GetAFile2 procedure, 909
GetAllSettings function, 602–603
GetAttr function, 706
GetBaseName method, 887
GetBinaryType function, 731
GetCaretBlinkTime function, 551
GetClientRect function, 875

GetComputerName function – GUIDs (Globally Unique Identifiers) 1045

GetComputerName function, 506, 655
GetComputerNameEx function, 506
GetCurrentDrive function, 731
GetDeviceCaps function, 577
GetDiskFreeSpace function, 731, 738
GetDiskFreeSpaceEx function, 739
GetDrive method, 889, 894–895
GetDriveName method, 887
GetDriveType function, 732, 736–737
GetErrorText method, 298
GetExtensionName method, 887
GetFile method, 889, 909
GetFileAttributes function, 731
GetFileAttributesEx function, 731
GetFileInformationByHandle function, 732, 778
GetFileName method, 887
GetFileSize function, 731, 777
GetFileSizeEx function, 731, 777
GetFileTime function, 731, 782
GetFileVersion* method, 887
GetFileVersionInfo function, 527
GetFolder method, 889
GetFontInfo procedure, 573
GetFullPathName function, 732, 746–747
GetKeyboardState function, 552
GetKeyboardType function, 551
GetKeyState function, 551
GetLastWord function, 29–30
GetLocalDriveStrings function, 732
GetLocaleInfo function, 216
GetLocalTime function, 780
GetLogicalDrives function, 732
GetLogicalDriveStrings function, 734
GetObject function, 239–240, 262
GetOpenFileName function, 806
GetParentFolder procedure, 901
GetParentFolderName method, 887
GetRows method, 263–264
GetSelection method, 941–943
GetSetting function, 602–603
GetShortPathName function, 732, 746–747
GetSpecialFolder method, 887
GetStandardStream* method, 890

GetString method, 259
GetSysColor function, 594
GetSystemDirectory function, 514
GetSystemMetrics function, 488, 491–492, 570,

590
GetSystemPowerStatus function, 577
GetSystemTime function, 780
GetTempFileName function, 732, 772
GetTempName method, 888
GetTempPath function, 514, 732, 772
GetText method, 298, 300–302
GetTextFileObject function, 366
GetTickCount function, 372–373
GetTimeDelimiter function, 216–217
GetTimeZoneInformation function, 780
GetUserName function, 506
GetUserNameEx function, 506
GetVersionEx function, 496–498, 522
GetVolumeInformation function, 732, 742
GetWindowsDirectory function, 513–514
GetWorkarea method, 589
GFNCallback function, 794–795
Globally Unique Identifiers (GUIDs), 235–236,

949
GlobalMemoryStatus function, 498–499, 555–556
GlobalMemoryStatusEx function, 498, 500, 555–

556
GMT (Greenwich Mean Time), 780
GradientCaptions property, 587
granularity of memory, 520–521
GrayText property, 591
greater than signs (>)

in string comparisons, 7
in string formats, 13

greatest common factor (GCF) of numbers, 130
Greenwich Mean Time (GMT), 780
GridGranularity property, 587
Guid property

in AddIn, 997
in Reference, 945, 949

GUIDs (Globally Unique Identifiers), 235–236,
949

h character – IDE (Integrated Development Environment)1046

H

h character
in DateAdd, 154
in DatePart, 152
in dhFormatInterval, 209
in Format, 165
as name prefix, 1008

Handle property
in Key, 619
in TextFile, 283

handles
change, 756
for files, 716–717, 773–778
for network enumerations, 664–671
to Registry keys, 610

HasOpenDesigner property, 958
hc properties, 530–531
header classes, 439
header information in Word, 256
height of fonts, 577
Height property, 937
HelpContextID property, 944
HelpFile property, 944
hertz (Hz), 812
Hex function, 125–126
hexadecimal numbers, converting, 125–126
hh characters in Format, 165
Hidden attributes, 909
Hidden constant, 904
Hide procedure, 991
hiding processes, 276
hierarchies

in class modules, 315–319
in IDE object model, 934–937

high-level multimedia, 812
HighContrast properties, 530–531
Highlight property, 591
HighlightText property, 591
hives in Registry, 599–600
HKEY_CLASSES_ROOT hive, 599

HKEY_CURRENT_USER hive, 599–600
HKEY_LOCAL_MACHINE hive, 599
HKEY_USERS hive, 599–600
holidays, 183–185, 189–190
HorizontalScrollX property, 584
HorizontalScrollY property, 584
HotTracking property, 587
HotTrackItem property, 591
Hour function, 150
hours

in DateAdd, 154
in DateDiff, 155
in DatePart, 152
in dhFormatInterval, 209
in Format, 165
retrieving, 150
in TimeSerial, 159

HoverDelay property, 559
HoverX property, 559
HoverY property, 559
hWnd property, 869, 871–872
hWndOwner property, 798
Hz (hertz), 812

I

i prefix, 1007
IconFontName property, 588, 590
IconFontSize property, 588, 590
IconHorizontalSpacing property, 588
IconSizeX property, 585
IconSizeY property, 585
IconSpacingX property, 585
IconSpacingY property, 585
IconTitleWrap property, 588
IconVerticalSpacing property, 588
ID property, 326
IDE (Integrated Development Environment), 932

alternate object model for, 970–971
collections for, 973–975

IDE object model – I/O functions 1047

Module for, 972
Procedure for, 972–973
Project for, 971
using, 975–977, 977

code modules for. See code modules
projects in

components in, 949–958, 950, 957
Reference for, 945–949, 945–946
VBProject for, 943–945, 944

IDE object model, 934
class hierarchies in, 934–937
windows in

CodePane for, 941–943, 942
linked, 938–941
Window for, 937–938

IDTExtensibility class, 935
IDTExtensibility2 interface, 979–982
#if preprocessor directive, 523
IFileFindCallback_Found procedure, 770
IFileFindCallback interface, 769–770
IFileFindCallback_Searching procedure, 770
Image scanner device, 829
ImmWndCallback class, 350–352, 351
implementation classes, 313, 348

creating, 350–353, 351
using, 353–356, 355

implementation inheritance, 348
Implements keyword, 415–418
in-process servers, 265
InactiveBorder property, 591
InactiveCaption property, 591
InactiveCaptionText property, 591
InactiveGradientColor property, 592
indexed properties, 955–956
IndexedValue property, 956
indexes

extracting words from strings by, 81–86
prefixes for, 1007

inheritance, 348
with callbacks, 349–356, 351, 355
uses for, 348–349

INI files, 599
InitDir property, 798

Initial Load Behavior option, 986
initialize events, 288
InitWordEvents procedure, 268–269
inorder binary tree traversal, 470
InOrder procedure, 478–479
Input access mode, 718
Input function, 722–723
Input # function, 724–725
InsertAfter method, 259
InsertLines method, 963
installed MCI device types, 830–831
instances in automation, 232

binding, 233–235
creating, 237–240
in multiple-use classes, 241–242, 241
reference counting for, 243
in single-use classes, 240, 240
timing of, 236–237

instantiating
collections, 322–323
with declaring, 885

InStr function, 21–22
InstrB function, 36
InStrRev function, 22–23, 23
Int function, 111–112
int tag, 1002
Integer data type, 96
integers

greatest common factor of, 130
lowest common multiple of, 130–131
scaled, 102–105

Integrated Development Environment. See IDE
(Integrated Development Environment)

interface classes, 347–348
defining, 349–350
inheritance in, 348–356, 351, 355
prefixes for, 313

interfaces to objects, 276
international date settings, 146
Internet Explorer, SystemInfo class for, 526–527
intervals, adding to dates, 153–154
I/O functions

for file handles, 716–717

IPmt function – Kernel DLL1048

for file positioning, 720–721
for locking files, 719
for opening files, 717–719
for random access, 727–730
for sequential access, 721–727

IPmt function, 121
IRR function, 122–125
IsArray function, 382, 957
IsBitSet function, 544–545
IsBroken property, 945–946
IsCharAlphaA function, 50
IsCharAlphaNumericA function, 51
IsDate function, 157
IsDBCS property, 502
IsEmpty property, 454–455
IsIMMEnabled property, 502
IsMissing function, 38–39, 168
IsObject function, 956
IsOpen property, 283
ISortable class, 416–418
ISortable_Compare function, 417
ISortable_LowerBound function, 418
ISortable_SetCompareValue function, 417–418
ISortable_Swap function, 418
ISortable_UpperBound function, 418
IsPalindrome function, 18–19
IsPlaying property, 848, 869
IsReady property

in CDPlayer, 848
in Drive, 895

IsRemoteSession property, 502
IsRootFolder property, 899
IsSuiteInstalled property, 502
IsSystemResumeAuto property, 578, 582
Istrcpy function, 683
Istrcpyn function, 683
IsWeekend function, 182–183
IsWin2000 property, 502
IsWin95 property, 502
IsWin98 property, 502
IsWinNT function, 682
IsWinNT property, 502
Italic property, 566

Item method
in AddIns, 996
in collections, 321, 330–331
in Lines, 327, 333
in Property, 956
in SortedCollection, 403–404

Item property in Dictionary, 922, 928
Items collection, 252
Items method, 921
IterateFolders procedure, 900–901
ITextFileCallback_AfterOpen procedure

in ImmWndCallback, 351
in ListBoxCallback, 353

ITextFileCallback_BeforeClose procedure
in ImmWndCallback, 351
in ListBoxCallback, 353

ITextFileCallback classes, 349–350
ITextFileCallback_ReadLine function

in ImmWndCallback, 352
in ListBoxCallback, 352

ITextFileCallback_WriteLine function
in ImmWndCallback, 352
in ListBoxCallback, 353

IUnknown data type, 337

J

Jet, naming conventions for, 1020
Join function, 32–33
joining strings from arrays, 32–33
JRO (Jet and Replication Objects), naming con-

ventions for, 1020
justifying strings, 19–21

K

KanjiWindow property, 585, 589
Kernel DLL, 811

Key class – linear data structures 1049

Key class, 618–619
key codes, 551
Key/Item pairs in Dictionary, 922–923
Key property, 922, 929
Keyboard class

creating, 551–553
using, 546–550, 547

Keyboard page, 536
KeyboardType property, 546, 550
keys

in collections, 321, 323, 331–333, 401–402
in Dictionary, 922–923, 928–929
in Registry, 599–600

closing, 607
creating, 607–609, 621–623, 630–631, 631
enumerating, 613–615, 629–630
opening, 605–607, 629
paths for, 626–627
referring to, 601
removing, 627–628

Keys collection, 619–620
Keys method, 921
Keys property, 928
Kill statement, 713, 907
Kind property

in Module, 972
in Procedure, 972

L

labels
for drives, 742
naming conventions for, 1007

LAN Manager API, 681–683
miscellaneous functions in, 698–699
for network shares

adding, 683–690
deleting, 690–691

for primary domain controllers, 693–695
for time of day, 695–697
for user passwords, 691–693

Last suffix, 1009
last words in strings, extracting, 86–88
last workday in months, 188–189
LastDLLError property, 751, 776
late binding, 233
LBound function, 91
LCase function, 13–14
LCM (lowest common multiple) of numbers,

130–131
leap years, 194–196
left child nodes, 469
Left function, 24–25
left padding in strings, 75–76
Left property, 937
LeftB function, 36
Len function, 12
LenB function, 36
length

of files, 711
of strings, 12

Length property
in Line, 326
in VideoPlayer, 869
in WavePlayer, 857

less than signs (<)
in string comparisons, 7
in string formats, 13

Leszynski, Stan, 1000
Let procedure, 289–292
letter, listing logical drives by, 734–735
libraries

in automation, 228–230, 229
for COM add-ins, 987–988, 988

lifetime
of collection items, 324
prefixes for, 1008

Light3D property, 592
Like operator, 7–8
Lim suffix, 1009
line breaks, printing text files with, 722–723
Line class, 325–326
Line Input # function, 723–724
Line property, 917
linear data structures, 433–434

linear searches – macros1050

linear searches, 426–427, 427
lines, counting, 959
Lines collection, 327–328
Lines property

in CodeModule, 959
in Procedure, 973

link data types, 601
linked lists, 434, 434, 456

adding items to, 460–463, 462–464
benefits of, 469
deleting items from, 464–466, 465–467
finding items in, 457–460, 459
List for, 456
ListItem for, 456
testing, 468
traversing, 467–468

linked windows, 938–941
LinkedWindowFrame property, 937–938
LinkedWindows class, 935
LinkedWindows property, 937–939
List class, 456
ListBoxCallback class, 352–353
ListBoxSmoothScrolling property, 588
ListFiles procedure, 902
listing

directories, 708–709
files, 703–704, 749–756, 752, 755, 902
network resources, 663–664, 674–680

closing handles for, 671
getting handles for, 664–671

Registry keys, 613–615, 629–630
Registry values, 615–617, 616, 629–630

ListItem class, 438, 456
ListItems procedure, 927–928
lists, linked, 434, 434, 456

adding items to, 460–463, 462–464
benefits of, 469
deleting items from, 464–466, 465–467
finding items in, 457–460, 459
List for, 456
ListItem for, 456
testing, 468
traversing, 467–468

Little-endian data types, 601
lng tag, 1002
LoadBehavior key, 996
loading

COM add-ins, 987
waveform audio files, 858–860

Loc function, 721
local time function, 780
locales in number conversions, 110
locking files, 719
LOF function, 720
Log function, 106–107
logarithmic functions, 107
LogFont structure, 571–572
logged-in users, 653–654
logical drives, number of, 733–736, 736
logical operators

in bitwise arithmetic, 913
with CommonDlg flags, 791, 792

Long data type, 96
Long Date format, 161
Long Time format, 161
low-level multimedia, 812
LowerBound property, 413
lowest common multiple (LCM) of numbers,

130–131
Lset statement, 19–21
lstrlen function, 659
LT_ constants, 583
LTrim function, 25–26

M

m character
in DateAdd, 153
in DatePart, 152
in dhFormatInterval, 209
in Format, 164
as name prefix, 1008

macros, 249

MailBeep system sound – MCI_SEEK_PARMS structure 1051

MailBeep system sound, 821
MainWindow property, 937
Major property, 945
mantissas, 99
Map Network Drive dialog, 636, 636
MAPI (Messaging Application Programming

Interface), 252
mapped network drives, UNC paths from, 650–

653
masks

for processors, 520
for Registry functions, 606

mathematical functions, 105–109
Max suffix, 1009
MaxAppAddress property, 502
Maximize system sound, 821
MaximizedX property, 585
MaximizedY property, 585
maximum values, 140–142
MaximumApplicationAddress property, 521
MaxTrackX property, 585
MaxTrackY property, 585
mcbeAddin_Click procedure, 991
MCI (Media Control Interface), 811–812, 829

for audio CDs, 848
example, 855–857, 857
opening devices for, 849–850
pausing and stopping playback in, 854–855
playback position for, 852–854
starting playback for, 851–852
time formats for, 851
track information for, 850–851

commands for, 831–834
command message interface for, 837–847
command string interface for, 834–836

devices for, 829–834
simple vs. complex, 830
for waveform audio, 858–860

for digital video, 869–870, 871
AVI functionality in, 870
example, 875–877, 876
positioning playback in, 873–875
types of, 870

in windows, 829, 870–873, 871
errors in, 839–840
information functions in, 843–847
time formats in, 840–843
for waveform audio, 857–858

example, 868–869
input parameters for, 863–865
loading files for, 858–860
playing, 818–819, 860–861
recording, 861–863
removing portions of files in, 865–866
saving, 867–868

MCI_BREAK command, 831
MCI_CLOSE constant, 832
MCI_CONFIGURE message, 833
MCI_CUE message, 833
MCI_DELETE command, 833, 865–866
MCI_DEVTYPE_ constants, 829
MCI_ESCAPE message, 833
MCI_FORMAT_ constants, 840–841
MCI_FREEZE message, 833
MCI_GET command, 873
MCI_GETDEVCAPS constant, 832
MCI_INFO_ constants, 847
MCI_INFO command, 832, 846–847
MCI_LOAD constant, 832
MCI_MODE_ constants, 846
MCI_OPEN constant, 832
MCI_OPEN_PARMS structure, 838, 849
MCI_OVLY_OPEN_PARMS structure, 839
MCI_OVLY_RECT_PARMS structure, 874
MCI_OVLY_WINDOW_PARMS structure, 873
MCI_PAUSE command, 832, 854–855
MCI_PLAY command, 832, 851–852
MCI_PUT command, 833, 873
MCI_REALIZE message, 833
MCI_RECORD command, 833, 861
MCI_RECORD_PARMS structure, 861
MCI_RESUME constant, 833
MCI_SAVE constant, 833
MCI_SAVE_PARMS structure, 867
MCI_SEEK command, 833, 852–854
MCI_SEEK_PARMS structure, 852–854

MCI_SEQ_STATUS_ constants – Microsoft Office, automation with1052

MCI_SEQ_STATUS_ constants, 845
MCI_SET command, 833, 851
MCI_SETAUDIO message, 833
MCI_SETVIDEO message, 834
MCI_SIGNAL message, 834
MCI_SPIN message, 834
MCI_STATUS_ constants, 844–845
MCI_STATUS command, 832–833, 843–846
MCI_STEP message, 834
MCI_STOP command, 833, 854–855, 861
MCI_SYSINFO command, 831
MCI_UNFREEZE message, 834
MCI_UPDATE message, 834
MCI_WAVE_DELETE_PARMS structure, 865
MCI_WAVE_OPEN_PARMS structure, 859
MCI_WAVE_STATUS_ constants, 845
MCI_WHERE command, 834, 875
MCI_WINDOW command, 834, 871
mciGetErrorString function, 839
mciSendCommand function, 837–838
mciSendString function, 834–835
Me object, 282–283, 318
mean function, 137–138
Media Control Interface. See MCI (Media Con-

trol Interface)
media objects, 812
MediaID property, 848
median function, 137–138
medium audio quality, 812
Medium Date format, 161
Medium Time format, 161
Member class, 935
members, class

computed properties in, 311
developer considerations in, 311–312
events for, 312
existing functionality for, 311
properties vs. methods in, 310–311
simplicity of, 310

Members collection, 935
memory

for automation, 246
for dynamic data structure items, 437–438

granularity of, 520–521
system information on, 553–557

memory leakage from circular references, 360
MemoryLoad property, 554–555
MemoryStatus class, 498–499, 553–554

creating, 555–557
using, 554–555

MEMORYSTATUS structure, 499, 555
MEMORYSTATUSEX structure, 499, 556
Menu property, 592
MenuAnimation property, 588
MenuBarButtonsX property, 585
MenuBarButtonsY property, 585
MenuCheckX property, 585
MenuCheckY property, 585
MenuCommand system sound, 821
MenuDelay property, 559
MenuDropAlignment property, 588
MenuFade property, 588
MenuFont property, 566
MenuHeight property, 565, 585
MenuKeysAlwaysUnderlined property, 588
MenuPopup system sound, 821
menus, tags for, 1004
MenuText property, 592
MenuWidth property, 565
message interface for MCI, 837–847
MessageBeep function, 816–817
MessageFont property, 566
Messaging Application Programming Interface

(MAPI), 252
methods

in code modules, 963
in collections, 320–321
creating, 281–284
enumerated types with, 295–296
vs. properties, 310–311
using, 285–286

Microsoft Data Engine (MSDE), 1020
Microsoft Developer Network Library, 244
Microsoft Office, automation with, 246–247

Excel, 248–249, 248, 260–265, 261, 264
object models in, 247–248, 248

Microsoft Office 2000/Visual Programmer's Guide – months 1053

Outlook, 251–252, 252
PowerPoint, 250, 251
Word, 249, 250, 253–259, 254, 259

Microsoft Office 2000/Visual Programmer’s
Guide, 244

Mid function, 24–25
Mid statement, 26–28
MidB function, 36
MidEastEnabled property, 502
MIDI (Musical Instrument Digital Interface)

audio, 813–814
MIDI sequencer device, 829
Min suffix, 1009
MinAnimation property, 496, 588
MinAppAddress property, 502
Minimize system sound, 821
MinimizedX property, 585
MinimizedY property, 585
minimum values, 140–142
MinimumApplicationAddress property, 521
MinimumX property, 585
MinimumY property, 585
Minor property, 945
MinSpacingX property, 585
MinSpacingY property, 585
MinTrackX property, 585
MinTrackY property, 585
Minute function, 150
Minute property, 848
minutes

in DateAdd, 154
in DatePart, 152
in dhFormatInterval, 209
in Format, 165
retrieving, 150
in TimeSerial, 159

MIRR function, 122
Miscellaneous category, 505
mk properties, 531–532
MkDir function, 713
mm characters in Format, 164
mmm characters in Format, 164
mmmm characters in Format, 164

mnu tag, 1004
mobjFile_ReadLine procedure

in frmEvents, 347
in TestEvents, 343

Mod operator, 60, 74
mode function, 137, 139–140
Mode property

in CDPlayer, 848
in VBProject, 944

modes for files, 718
modification date of files, 711
modifying attributes, 909–912
Module class, 972
Module property, 975
modules

class. See class modules
code

adding code to, 963–965, 964
counting lines in, 959
event procedures in, 966–967, 967
finding and replacing code in, 967–970
methods in, 963
procedures in, 960–962, 962
removing code in, 965–966
retrieving code in, 959–960

Modules collection, 973–975
MonitorCount property, 585
monophonic audio, 813
Month function, 150
MonthName function, 17, 18
months

beginning and end of, 169–170
in DateAdd, 153
in DateDiff, 155
in DatePart, 152
in DateSerial, 159
days in, determining, 190–194
in Format, 164
formatting, 17, 18
retrieving, 150
weekdays in

determining, 192–194
finding, 180–182

Mouse class – Name property1054

workdays in
first, 187–188
last, 188–189

Mouse class
properties of, 558–560
using, 561–565, 563

Mouse page, 540
MouseButtonSwap property, 560–561
MouseKey properties, 531–532, 540
MousePresent property, 560
MouseSpeed property, 560–565, 563
MouseThreshold1 property, 560, 562–565, 563
MouseThreshold2 property, 560, 562–565, 563
MouseTrails property, 560–561
Move method, 906–908
MoveFile function, 731
MoveFile method, 889
MoveFileEx function, 731
MoveFolder method, 889
moving files

with File object, 907–908
with FileSystemObject object, 891–892

MSDE (Microsoft Data Engine), 1020
MSDN CD-ROM, 486, 699
MSF format, 841
MSForms library, 958
MsgBox function, 569
MSMQ product, 449
multidimensional arrays, 374–377, 375–376
multimedia, 810–811

audio CDs, 813, 848
example, 855–857, 857
opening devices for, 849–850
pausing and stopping playback in, 854–855
playback position for, 852–854
starting playback for, 851–852
time formats for, 851
track information for, 850–851

beeping, 816–817
digital video, 814–815, 815, 869–870

AVI functionality in, 870
example, 875–877, 876
positioning playback in, 873–875

types of, 870
in windows, 829, 870–873, 871

MCI for
commands in, 831–847
devices for, 829–834, 858–860
errors in, 839–840
information functions in, 843–847
time formats in, 840–843

MIDI audio, 813–814
services for, 811–812
waveform audio, 812–813, 857–858

embedded, 824–828
example, 868–869
input parameters for, 863–865
loading files for, 858–860
playing, 818–819, 860–861
with PlaySound, 817–828
recording, 861–863
removing portions of files in, 865–866
saving, 867–868

Multimedia applet, 815, 815
Multimedia Properties dialog box, 870, 871
multiple-use classes, instances of, 241–242, 241
Musical Instrument Digital Interface (MIDI)

audio, 813–814

N

n character
in DateAdd, 154
in DatePart, 152
in Format, 165

name formats
for computers, 507–508
for users, 508–509

Name property
for classes, 279, 279
in File, 904–905
in Folder, 899
in Module, 972

names – number systems 1055

in Procedure, 972
in Reference, 945
in VBProject, 944

names
class, 278–280, 279
computer, 655–656
file, 710, 772–773
logged-in users, 653–654
in object models, 312–314

Namespace class, 252
navigating through folders, 900–901
negative numbers, 97–98
NetApiBufferFree function, 693–694
NetBIOS, 634
NetGetDCName function, 693–695
NetGetJoinInformation function, 698
NetJoinDomain function, 698
NetRemoteTOD function, 695–696
NETRESOURCE structure, 642–643, 666–668,

672–673
NetShareAdd function, 683–690
NetShareAdd9x function, 683–690
NetShareDel function, 690
NetShareDel9x function, 690
NetUnjoinDomain function, 698
NetUserAdd function, 683
NetUserChangePassword function, 691–692
Network Connection dialog, 636, 636
network resources

connecting to, 636–638, 636, 642–647
disconnecting from, 640–641, 640, 647–650
enumerating, 663–664, 674–680

closing handles for, 671
getting handles for, 664–671

information about, 650–656
network shares

adding, 683–690
deleting, 690–691

networking, 634–635
buffer problem in, 657–663
common dialogs for, 635–642
computer names in, 655–656
error information in, 638–641, 640

LAN Manager API for, 681–683
miscellaneous functions in, 698–699
for network shares, 683–691
for primary domain controllers, 693–695
for time of day, 695–697
for user passwords, 691–693

universal name information for, 657–663
user names in, 653–654

NetworkPresent property, 502
New Project dialog box, 983–985, 984–985
New statement

in Automation, 235
for class instances, 285
with Dim, 436

NewEnum function, 337–338, 338
next weekdays, finding, 176–178
next workdays, finding, 186–187
nn characters in Format, 165
nodes in binary trees, 469, 475–477, 476
NonClientMetrics class, 565–566

creating, 570–573
face names in, 573–576, 574
font properties in, 568–570
point sizes in, 576–577
using, 567–568, 567

None option for loading COM add-ins, 987
Normal constant, 904
Not operator, 913
Nothing keyword, 437–438
notification functions, 756

for multiple changes, 762–763
operation of, 756–757
setting up, 757–758
using, 758–762

nouns in member names, 314
Now function, 147
NPer function, 121
NPV function, 122–123
null strings, 13
number signs (#)

for dates, 146
in string comparisons, 7–8

number systems, 94–95

numbered tokens in strings, replacing – objects1056

numbered tokens in strings, replacing, 46–49
NumberOfProcessors property, 503, 520
numbers, 94

converting
base conversion functions, 125–129
currency to text, 133–136
to dates, 199–201
to Roman numerals, 60–63
to strings, 59–60

financial functions for, 120–125
floating-point, 98–102
formatting, 14–15
geometric calculations, 132–133
greatest common factor of, 130
logarithmic functions for, 107
logical drives listed by, 733–734
lowest common multiple of, 130–131
mathematical and trigonometric functions

for, 105–109
prime, 131–132
random, 116–119
rounding, 110–115, 113
scaled integers, 102–105
sign of, 107
statistics, 136–142
storing, 94–97
subtracting, 115–116
whole, 97–98

numeric characters, checking for, 51–52
NumIndices property, 955–956
NumLock property, 546–547, 551, 553

O

obj tag, 1002
Object Browser

for Automation objects, 230–232, 231–232
for collection default members, 335, 335

object classes. See classes
object hierarchies

in class modules, 315–319
in IDE object model, 934–937

object instances, 232
binding, 233–235
creating, 237–240
in multiple-use classes, 241–242, 241
reference counting for, 243
in single-use classes, 240, 240
timing of, 236–237

object keys for collection classes, 321, 323, 331–
333, 401–402

Object Linking and Embedding (OLE), 225
object models

for applications, 243–245, 244
in automation, 226
design principles for, 307–308, 307

class members, 310–312
class relationships, 314–315
class requirements, 308–309
names, 312–314

for IDE, 970–971
collections for, 973–975
Module for, 972
Procedure for, 972–973
Project for, 971
using, 975–977, 977

for Office, 247–248, 248
for Registry, 617–620, 619

object-oriented languages, 275
object properties

creating, 292–293
for project components, 956–957

Object property
in AddIn, 997
in Property, 956–957

“Object variable or With block variable not set”
error, 542

objects
in automation, 226
browsing

Automation, 230–232, 231–232
collection default members, 335, 335

orphaned, 362–364, 363

ObjPtr function – palindromes 1057

ObjPtr function, 660
Oct function, 125–126
octal numbers, converting, 125–126
Office, automation with, 246–247

Excel, 248–249, 248, 260–265, 261, 264
object models in, 247–248, 248
Outlook, 251–252, 252
PowerPoint, 250, 251
Word, 249, 250, 253–259, 254, 259

OLE (Object Linking and Embedding), 225
OnAddinsUpdate method, 979
OnBeginShutdown method, 979
OnConnection method, 979–981
OnDisconnection method, 981–982
one-to-many relationships, 315
OnStartupComplete method, 980
Open function, 717–719
Open system sound, 821
OpenAsTextStream method, 906, 908, 914–915
OpenDevice procedure, 849–851, 858–860
OpenFile method

in VideoPlayer, 869
in WavePlayer, 858–859

OPENFILENAME structure, 805–806
OpenFlags property, 790–791, 798
OpenFlagsEx property, 798
opening

audio devices, 849–850
enumeration handles, 664–671
files, 281–283, 717–719
Registry keys, 605–607, 629
text stream files, 908, 914–915

OpenMode property, 282–283, 294–296
OpenSubKey method, 620
OpenTextFile method, 890, 915
operators

in bitwise arithmetic, 913
with CommonDlg flags, 791, 792
in string comparisons, 7–8

optimizing binary tree traversals, 481
Option Base statement, 379, 382
Option Compare statement, 6–7
Option Explicit directive, 965

optional parameters, 38–39, 168–169
Options dialog box

for digital video, 870, 871
for error handling, 359–360, 359

options in common dialogs, 791, 792
Or operator

in bitwise arithmetic, 913
with CommonDlg flags, 791, 792

ordered linked lists, 456
adding items to, 460–463, 462–464
benefits of, 469
deleting items from, 464–466, 465–467
finding items in, 457–460, 459
List for, 456
ListItem for, 456
testing, 468
traversing, 467–468

ordinal suffixes for converted numbers, 59–60
orphaned objects, 362–364, 363
OSBuild property, 503
OSExtraInfo property, 503
OSMajorVersion property, 497–498, 503
OSMinorVersion property, 503
OSVersion property, 503
OSVERSIONINFO structure, 496–497
OSVERSIONINFOEX structure, 496–498
Other MCI devices, 829
out-of-process servers, 265
Outlook application, 251–252, 252
Output access mode, 718
overlay string, 829
overlay video, 829, 870

P

padding in strings
removing, 44–45
for specified widths, 75–76

PageSize property, 503, 520
palindromes, 18–19

Paragraphs property – PowerStatus class1058

Paragraphs property, 249
ParamArray construct, 46–47
parameters

arrays of, 46–47
for callback functions, 793
for events, 341
naming conventions for, 1008
optional, 38–39, 168–169
in property procedures, 290

Parent property
in AddIns, 996
in Excel, 262
in Key, 620
in object hierarchies, 317–319

ParentFolder property
in File, 904–905
in Folder, 899

parsing paths, 743–745, 748–749, 749
passwords

changing, 691–693
for encryption, 75

Path property, 281–282, 289–291
in Drive, 896, 905
in File, 904
in Folder, 899
in TextFile, 284

paths
complete and short path names, 746–747
for keys and values, 626–627
parsing, 743–745, 748–749, 749
SystemInfo class for, 513–520
UNC, 650–653

Paths category, 505
Pause method, 848
Pause procedure, 854–855
pausing CD playback, 854–855
PDCs (primary domain controllers), 693–695
PenWindows property, 586
percents, formatting, 14–15, 15
performance in late binding, 233
periods (.) in directory listings, 709
permission flags, 686–687

Picture property, 957
pig latin function, 32–33
Play method

in CDPlayer, 848, 851–852
in VideoPlayer, 869
in WavePlayer, 858, 860–861

playback position
for audio CDs, 852–854
for digital video, 873–875

player string, 829
PlaySound function, 817–828
Pmt function, 121
point sizes, 576–577
pointers. See also references

for collections, 321, 324
for dynamic data structures, 433
to instances, 287–288
Variants for, 380–382

polymorphism, naming conventions for, 1006
Pop method, 442, 444–445
popping stack items, 444–445, 445
portions

of dates, 149–153
of strings

replacing, 26–28
working with, 24–26

of waveform audio files, 865–866
Position method, 848, 853–854
Position property, 857
positioning

audio CDs, 852–854
digital video, 873–875
files, 720–721

postorder binary tree traversal, 470
PostOrder procedure, 478
pound signs (#)

for dates, 146
in string comparisons, 7–8

PowerPoint application, 250, 251
powers in number systems, 95
PowerStatus class, 577

enumeration types in, 579–580

PPmt function – pyramids, volume of 1059

methods in, 579
properties in, 578
using, 580–583

PPmt function, 121
precision, 95–96

of floating-point numbers, 98–100
and rounding, 100–102
in subtraction, 115–116

prefixes for names, 313, 1001, 1008–1009
preorder binary tree traversal, 470
PreOrder procedure, 478
Presentations collection, 250
Preserve keyword, 379–380
previous weekdays, finding, 176–178
previous workdays, finding, 186–187
primary domain controllers (PDCs), 693–695
prime numbers, 131–132
Print # function, 725–726
printing

collection items, 330
file contents, 286, 722–723

PrintInvoiceWithWord function, 257
ProcBodyLine property, 961
ProcCountLines property, 959, 961–962
procedure attributes, 335–336
Procedure Attributes dialog box, 334–335, 334
Procedure class, 972–973
Procedure ID property, 334–335, 334
procedures

in code modules, 960–962, 962
naming conventions for, 1006–1007
property, 289–292

Procedures collection, 973–975
Processor Info category, 505
processor information, 520–522
ProcessorArchitecture property, 503, 521
ProcessorLevel property, 503, 522
ProcessorRevision property, 503, 522
ProcessorType property, 503, 521
ProcOfLine property, 960
ProcStartLine property, 961
ProductType property, 503

ProgId property, 997
program identifiers, 226
Project class, 971
Project property, 975
projects

components in, 949–951, 950
creating, 952–953
designers for, 958
properties of, 953–957, 957
VBComponent for, 951–952

Reference for, 945–949, 945–946
VBProject for, 943–945, 944

proper case conversions, 63–70
properties

of collections, 320–321
computed, 311
creating, 280–281, 292–293
enumerated types with, 295–296
vs. methods, 310–311
of project components, 953–957, 957
read-only and write-only, 292
tags for, 1003
using, 285–286
in versions, 489

Properties collection, 935
Properties window, 279, 279
Property class, 935, 953–955
Property Get procedure, 289–290
Property Let procedure, 289–292
property procedures, 289–292
Protection property, 944
Public class modules, 366
Public methods, 281
Public variables, 280–281
PublicNotCreatable value, 366
Push method, 442–443, 443
pushing stack items, 442–444, 443
Put function, 727
PV function, 121
pwr flags, 581
pyramids, volume of, 133

q character – Reddick VBA naming conventions1060

Q

q character
in DateAdd, 153
in DatePart, 152
in Format, 165

quarters
beginning and end of, 173–176
in DateAdd, 153
in DatePart, 152
in Format, 165

question marks (?) in string comparisons, 7
Queue class, 449–451
QueueItem class, 449
queues, 448

adding items to, 451–452, 452–453
benefits of, 448–449
empty, 454–455
example, 455
implementing, 449–451, 449–450
removing items from, 453–454, 454

Quicksort algorithm, 384–385
operation of, 385–396, 390–391, 393–394, 396
using, 398
watching, 396–397, 397

quotes (") in Format, 166

R

r prefix, 1007–1008
radians, 106
radio audio quality, 812
Raise method, 357–359
RaiseErrors property, 503, 507, 554
RaiseEvent keyword, 340–341
raising

errors, 358–359
events, 340–342

Random access mode, 718
random access to files, 727–730
random numbers, 116–119
Randomize statement, 116–117
Range class, 249
Range method, 264
range of data types, 96
ranges in string comparisons, 7
Rate function, 121
Read file access, 718
Read method, 916
read-only properties

creating, 292
in Mouse class, 561

Read Write file access, 718
read/write properties, 561
ReadAll method, 916
ReadFile function, 731
ReadFileEx function, 731
reading

files
random access in, 727–730
sequential access in, 721–727

Registry values, 609–611, 620–621
ReadLine event, 340–341
ReadLine function, 350
ReadLine method, 916
ReadNext method, 284
ReadOnly attributes, 909
ReadOnly constant, 904
ReadValue method, 620–621
Record method, 858, 861–863
recording waveform audio, 861–863
recordsets, sources of, 70–71
RECT structure, 874–875
rectangles, area of, 132
recursive dynamic data structures, 434–435, 435
recursive operations

factorials, 136–137
file searches, 765, 769
in sorting, 387–389

Reddick VBA naming conventions, 1000
for Access objects, 1010–1012

ReDim keyword – Remove method 1061

for ADO, 1018
for ADOX objects, 1019
changes to, 1000
for common control objects, 1021–1022
for created types, 1004–1006
for DAO, 1012–1016
for files, 1010
introduction, 1001
for JRO, 1020
prefixes in, 1008–1009
for procedures, 1006–1007
for SQL Server and MSDE objects, 1020
suffixes in, 1009
for tags, 1001–1004
for Visual Basic objects, 1016–1017

ReDim keyword, 379–380
Reference class, 935, 945–949, 946
references

adding, 948–949
in automation, 243
circular, 360

delayed termination in, 361–362, 362
orphaned objects in, 362–364, 363
proper termination in, 364–365

for dynamic data structures, 433
to existing items, 437
to new items, 436–437
to nothing, 437–438

removing, 948
References collection, 935
References dialog box, 228, 229, 945, 945, 987–

988, 988
ReferencesEvents class, 936
Refresh method

in Keys, 620
in Modules, 973–974
in Procedures, 974–975
in SubKeys, 628

RefreshLists procedure, 992
RegCloseKey function, 607
RegCreateKeyEx function, 607–609
RegDeleteKey function, 627
REGEDIT.EXE program, 599, 600

RegEnumKeyEx function, 613–615
RegEnumValue function, 615–617, 616
RegFlushKey function, 613
Registry, 598

for automation, 235–236
classes for, 620–628
for COM add-ins, 994–996, 995
for computer names, 655
error handling settings in, 360
for event sounds, 821–822, 822
for installed MCI device types, 830–831, 830
keys and subkeys in, 601

closing, 607
creating, 607–609, 621–623, 630–631, 631
enumerating, 613–615, 629–630
opening, 605–607, 629
paths for, 626–627
removing, 627–628

object model for, 617–620, 619
structure of, 599–601, 600
values in

creating, 630–631, 631
enumerating, 615–617, 616, 629–630
paths for, 626–627
property for, 623–626
reading, 609–611, 620–621
setting, 612–613, 620–621

VBA functions for, 601–604, 603
Windows functions for, 604–617

Registry Editor, 599, 600
RegOpenKeyEx function, 605–607
RegQueryValueEx function, 609–611
RegSetValueEx function, 612–613
relationships in object models, 314–315
RemainAwake method, 579, 583
REMOTE_NAME_INFO structure, 657–659
Remove method

in collections, 321
in Dictionary, 921
in Keys, 628
in Lines, 327–328
in LinkedWindows, 939
in Queue, 453–454, 454

RemoveAll method – SaveSetting function1062

in Reference, 948
in SortedCollection, 403

RemoveAll method, 921
RemoveDirectory function, 731
removing. See also deleting

code, 965–966
queue items, 453–454, 454
references, 948
Registry keys, 627–628
trailing null and padding from strings, 44–45
waveform audio file portions, 865–866
white space in strings, 43–44

renaming files, 710
repeat rate, keyboard, 548–549
Replace function, 27–28, 28
Replace method, 967–970
ReplaceLine method, 963
replacing

code, 967–970
in strings

characters, 39–43
numbered tokens, 46–49
portions, 26–28, 28

replication, naming conventions for, 1020
reports in Word, 253–259, 254, 259
RequestWakeUp method, 579
Require Variable Declaration directive, 965
required MCI commands, 832
Reset method, 858
Reset statement, 720
resource compilers, 825
resource data types, 601
resource scripts, 825–826
resources

for automation, 246
in embedded sounds, 824–825
network, enumerating, 663–664, 674–680

closing handles for, 671
getting handles for, 664–671

responding to events, 342–345, 342, 345
RestoreDown system sound, 821
RestoreUp system sound, 821
reversing strings, 18–19

right child nodes, 469
Right function, 24–25
right padding in strings, 75–76
RightB function, 36
RmDir function, 713
Rnd function, 116–117
Roman numerals, 60–63
RootFolder property, 893, 896
Round function, 113, 113
rounding

with floating-point numbers, 99–100
numbers, 110–115, 113
times, 196–199

Rset statement, 19
RtlMoveMemory function, 683, 696
RTrim function, 25–26
Run button, 994
Run Project button, 994
Russell Soundex algorithm, 77–81

S

s character
in DateAdd, 154
in DatePart, 152
in dhFormatInterval, 209
in Format, 165
as name prefix, 1008

SameDisplayFormat property, 586
sample rate in waveform audio, 812
SampleCallback function, 793
SampleRate property, 858, 863
satellite DLLs, 986
SatelliteDLLName key, 996
Save method, 858, 867–868
SaveAs method, 858, 867–868
Saved property, 944
SaveFile method, 867–868
SaveFile property, 292–293
SaveSetting function, 602–603

SaveSettings method – seconds 1063

SaveSettings method, 569, 573
saving waveform audio, 867–868
scalar properties, 957, 957
scaled integers, 102–105
scanner string, 829
scientific notation, 98–99
scope of collection items, 324
scoping, prefixes for, 1008
ScreenInfo class, 525–526, 583–584

creating, 590
properties in, 584–589
using, 589–590

ScreenSaverActive property, 504
ScreenSaverRunning property, 504
ScreenSaverTimeout property, 504
ScreenX property, 586, 589
ScreenY property, 586, 589
scripting runtime library objects, 880–882

Dictionary object
vs. collections, 928–929
example, 924–928, 925
methods of, 920–921
properties of, 921–922
using, 922–924

File object, 903–905, 903
copying files with, 906–907
deleting files with, 907
methods of, 905–906
modifying attributes with, 909–912
moving files with, 907–908
opening text stream files with, 908
retrieving, 908–909

Files collection, 902
FileSystemObject object, 884–886

for copying and moving files and folders,
891–892

Drive object, 894–897
Drives collection, 893–894, 894
Folder object, 897–901, 898
methods of, 886–890, 891

SCRRUN.DLL in, 882–884, 883
TextStream object, 913–914

methods of, 915–917

opening, 914–915
properties of, 917
using, 918–920, 918

scripts, resource, 825–826
ScrollBar property, 592
ScrollHeight property, 565
ScrollLock property, 546–547, 551
ScrollWidth property, 565
SCRRUN.DLL, 881–884, 883
Search function, 457–460, 459
searching, 370–371, 420

binary searches for
benefits of, 420–421
operation of, 421–427, 423, 425, 427
using, 428–430

for code, 967–970
for dates, 168–169

anniversaries, 178–179
months, beginning and end of, 169–170
quarters, beginning and end of, 173–176
weekdays, next and previous, 176–178
weekdays in months, 180–182
weeks, beginning and end of, 170–172
workdays, 183–190
years, beginning and end of, 172–173

for files, 763
with dhFindAllFiles, 765–771, 769
recursive searches, 765
SearchPath for, 763–765, 765

ordered linked list items, 457–460, 459
for strings, 21–23, 23, 27–28, 28
in tables, 428

Searching procedure, 770
SearchPath function, 732, 763–765, 765
Second function, 150
Second property, 848
seconds

in DateAdd, 154
in DatePart, 152
in dhFormatInterval, 209
in Format, 165
retrieving, 150
in TimeSerial, 159

Sections property – ShowCursor function1064

Sections property, 249
Secure property, 504
SECURITY_ATTRIBUTES structure, 608, 774
security bit masks, 606
seed values for random numbers, 116
Seek function, 721
SelectedVBControls collection, 936
SelectedVBControlsEvents class, 936
SelectionFade property, 588
self-referencing relationships, 319
semicolons (;) in string formats, 13
SendMessage function, 807
SendMessageLong function, 808
Sentences property, 249
separators in time/date formats, 163
sequencer string, 829
sequential access to files, 721–727
SerialNumber property, 896–897
server termination, reference counting for, 243
servers

in automation, 226
DCOM with, 238–239
in-process vs. out-process, 265
time of day from, 695–697

ServicePackMajorVersion property, 504
ServicePackMinorVersion property, 504
Set statement, 285
SetAttr function, 706
SetAttributes function, 910
SetBit function, 544–545
SetCaretBlinkTime function, 551
SetColor procedure, 594–595
SetCompareValue method

in FileDataObject, 412, 414
in ISortable, 416

SetComputerName function, 513, 655
SetComputerNameEx function, 506
SetCurrentDrive function, 731
SetDeskPattern method, 589
SetFaceName function, 575–576
SetFileAttributes function, 731
SetFileTime function, 732, 782
SetFocus method, 937

SetFontInfo procedure, 572–574
SetKeyboardState function, 552
SetKeyState function, 551–552
SetOpenProperties procedure, 806
SetReadOnly procedure, 911
SetSelection method, 941
SetSysColors function, 594–595
SetSystemPowerStatus function, 577
SetText method, 298–300
setting

file times, 782–785
registry values, 612–613, 620–621

Settings for FilterKeys dialog box, 537
Settings for MouseKeys dialog box, 540
Settings for SoundSentry dialog box, 539
Settings for StickyKeys dialog box, 536
Settings for ToggleKeys dialog box, 538
SetVolumeLabel function, 732, 742
SetWorkArea method, 589–590
Sgn function, 106–107
Shapes collection, 250
SHARE_INFO_2 structure, 685
SHARE_INFO_50 structure, 685–686
shared classes, 365–367
ShareName property, 896
shares, adding, 683–690
ShDocVW.dll file, 526–527
Shell32.dll file, 514–515
SHGetFolderLocation function, 515
SHGetSpecialFolderLocation function, 515
Shlwapi.dll file, 514–515
Short Date format, 161
short path names, 746–747
Short Time format, 161
ShortName property

in File, 904
in Folder, 899

ShortPath property
in File, 904
in Folder, 899

Show procedure, 990–991
ShowColor method, 788, 790–791
ShowCursor function, 561

ShowFont method – StackItem class 1065

ShowFont method, 788, 790–791
ShowOpen method, 788, 790–791
ShowSave method, 788, 790–791
ShowSounds property, 504
sign functions, 107
SillySearch procedure, 429
Simonyi, Charles, 1000–1001
simple MCI device types, 830
simplicity of class members, 310
Sin function, 105
Single data type, 96, 98
single-use classes, instances of, 240, 240
size

of arrays, 378–380
of data types, 96
of digital video files, 814
of files, 776–777
of fonts, 576–577
of video windows, 873

Size property
in File, 904
in Folder, 899
in Font, 566, 576

SizingBorderX property, 586
SizingBorderY property, 586
sk properties, 532–534
Skip method, 916–917
SkipHolidays function

code for, 183–185
testing, 189–190

SkipLine method, 916
slashes (/) in time/date formats, 163
Slides collection, 250
SLN function, 120
SlowMachine property, 504
SmallCaption property, 566, 586
SmallCaptionButtonHeight property, 565
SmallCaptionButtonWidth property, 565
SmallCaptionFont property, 566
SmallIconX property, 586
SmallIconY property, 586
smart proper case conversions, 63–70

SMPTE (Society of Motion Picture and Televi-
sion Engineers) format, 841

SnapToDefault property, 560–561
SND_ constants, 818–819
sng tag, 1002
Society of Motion Picture and Television Engi-

neers (SMPTE) format, 841
SortedCollection class, 402–407
sorting, 370–371

arrays
data types in, 408–420
Quicksort for, 384–399
speed considerations for, 399–401, 415

collections, 401–407
sound. See audio
Sound page, 539
Soundex code, 77–81
SoundSentry properties, 534–535, 539
space available on drives, 738–741, 740
Space function, 11
spaces in strings, removing, 44–45
SpecialFolderLocation property, 504, 513–514
specified widths, strings padded to, 75–76
speed considerations in sorting arrays, 385, 399–

401
Speed property, 546, 550
spheres

area of, 132
volume of, 133

SPI_ constants, 493
SPIF_ constants, 493
Split function, 29–32, 735
splitting strings into arrays, 29–32
SQL Server, naming conventions for, 1020
Sqr function, 106
square brackets ([]) for names, 337
ss characters in Format, 165
ss properties, 534–535
Stack class, 442
StackEmpty property, 442, 445
StackItem class, 441–442

stacks – StringToByteArray procedure1066

stacks, 439–440
benefits of, 440
empty, 445
example, 446–447, 448
implementing, 440, 441
popping items from, 444–445, 445
pushing items onto, 442–444, 443
top of, 446

StackTop property, 442, 446
standard deviation function, 137, 139
StandardBias property, 219
StandardTimeZoneName property, 220
Start Menu Properties dialog box, 815
StartTimer function, 372
Startup option for loading COM add-ins, 987
static data structures vs. dynamic, 433–435, 434–

435
statistics

for arrays, 137–140
factorials, 136–137
minimum and maximum values, 140–142

StatusFont property, 566
stereophonic audio, 813
stf tag, 1002
StickyKeys properties, 532–534, 536
StopPlaying method

in CDPlayer, 848
in VideoPlayer, 869

StopPlaying procedure, 854–855
StopRecording method, 858, 863
StopWatch class, 371–374
storing

dates, 145–146
numbers, 94–97
strings, 3–4

str tag, 1002
StrComp function, 9–10
StrConv function, 10, 574–575
Stretch property, 869
strict class boundaries, 309
StrikeOut property, 566
String function, 11

strings, 2
arrays of, 28

filtering, 34–35, 35
joining strings from, 32–33
splitting strings into, 29–32

byte functions for, 36–38, 37
characteristics of characters in, 49–53
comparing, 6–10, 77–81
converting, 10

to byte arrays, 5
case in, 13–14, 63–70
to collection of tokens, 88–91
to dates, 201–202
elapsed minutes to, 215–216
numbers to, 59–60
to Soundex code, 77–81

counting in
substrings in, 53–55
tokens in, 55–57
words in, 57–58

creating, 11
encrypting, 71–75, 73
extracting words from, 81–88
formatting, 12–18, 15, 18
justifying, 19–21
length of, 12
padded, 75–76
portions of

replacing, 26–28
working with, 24–26

in Registry, 600
removing from

trailing null and padding, 44–45
white space, 43–44

replacing in
characters, 39–43
numbered tokens, 46–49

reversing, 18–19
search and replace for, 27–28, 28
searching for, 21–23, 23
storing, 3–4
Unicode vs. ANSI, 4–6

StringToByteArray procedure, 5

StrPtr function – tags 1067

StrPtr function, 660
StrReverse function, 18–19
structures

dynamic. See dynamic data structures
for functions, 496–501

SubFolders property, 893, 899
subkeys

creating, 630–631, 631
listing, 629–630
opening, 629

substrings
counting, 53–55
replacing, 26–28
searching for, 21–23, 23
working with, 24–26

subtracting
dates, 154–156, 156
floating-point numbers, 115–116

suffixes in naming conventions, 1001, 1009
Suspend method, 579, 583
Swap method

in FileDataObject, 412–413
in ISortable, 417

SYD function, 120
symbolic link data types, 601
System attributes, 909
system commands for MCI, 831
System constant, 904
SYSTEM.DAT file, 599
system events, sounds for, 820–824, 820, 822
system information, 486–487, 501–505

Accessibility class. See Accessibility class
computer and operating system information,

506–513
data structures in, 496–501
GetSystemMetrics for, 491–492
Internet Explorer, 526–527
keyboard information, 545–553, 547
memory status, 553–557
mouse information, 558–565
non-client metrics, 565–577, 567, 574
path information, 513–520
power status, 577–583

processor information, 520–522
screen and window information, 583–590
system colors, 591–595
SystemParametersInfo for, 492–496
VBA support for, 487–490
version information, 522–526

system time for files, 779–780
SystemAsterisk system sound, 821
SystemColors class, 591–592

creating, 594–595
using, 592–594

SystemDateTime property, 220
SystemDirectory property, 504, 513–514
SystemExclamation system sound, 821
SystemExit system sound, 821
SystemHand system sound, 821
SystemInfo class

for computer and user information, 506–513
for Internet Explorer, 526–527
for path information, 513–520
for processor information, 520–522
for version information, 522–526

SystemParametersInfo function, 488, 492–496,
590

SystemQuestion system sound, 821
SystemStart system sound, 821
SYSTEMTIME structure, 779–780
SystemTimeInfo class, 218–221

T

tables, searching for data in, 428
tabs with Print #, 725
tags

for Access objects, 1010–1012
for ADO, 1018
for ADOX objects, 1019
for common control objects, 1021–1022
for DAO, 1012–1016
for JRO, 1020

Tan function – time1068

in naming conventions, 1001–1004
for SQL Server and MSDE objects, 1020
for Visual Basic objects, 1016–1017

Tan function, 106
TEMP environment variable, 772
templates

class modules as, 277
in Word, 253–255, 254

temporary filenames, 772–773
TempPath property, 504, 513–514
terminate events, 288
termination

delayed, 361–362, 362
proper, 364–365
reference counting for, 243

TestClip procedure, 302–303
TestCountWorkdays procedure, 206
TestCurrency procedure, 103
TestDecimal procedure, 104
TestEquality procedure, 101–102
TestEvents class, 342–345, 342
TestExtract procedure, 82
TestExtractCollection function, 89
TestExtractString procedure, 82–83
TestFileEvents procedure, 344
TestFloatingPoints procedure, 100–101
TestGetParent procedure, 901
testing dhFindAllFiles, 768, 769
TestInt procedure, 112
TestInterval procedure, 213–214
TestIterateFolders procedure, 901
TestLists procedure, 468
TestProperMDB procedure, 66–68
TestProperXML procedure, 71
TestQueues procedure, 455
TestQuickSortObjects procedure, 413
TestRef1 procedure, 361, 362
TestRef2 procedure, 363, 363
TestRef3 procedure, 364–365
TestShuffle procedure, 119
TestSkipHolidays procedure, 189–190
TestSortDemo procedure, 396–397, 397

TestSortedCollection procedure, 407
TestStacks procedure, 446–447, 448
TestSystemInfo procedure, 501
TestSystemTimeInfo procedure, 220
TestTimes procedure, 419–420
TestUniversal procedure, 662–663
TestXL procedure, 234
TestXLDelayed procedure, 236–237
TestXLExisting procedure, 242
TestXLLateBound procedure, 238
text. See also strings

comparisons with Option Compare, 6
converting

currency to, 133–136
to dates, 156–158

encrypting, 71–75, 73
text file class, 278

class instances for, 284–288
creating, 278–280, 279
initialize and terminate events for, 288
methods for, 281–284
properties for, 280–281

Text property
in Clipboard, 298
in Line, 326
in TextFile, 284

text stream files, opening, 908, 914–915
TextFile class, 339–340
TextFrame class, 250
TextRange class, 250
TextStream object, 913–914

methods of, 915–917
opening, 914–915
properties of, 917
using, 918–920, 918

ThumbX property, 586
ThumbY property, 586
time. See also dates

cumulative, formatting, 214–217
elapsed

age calculations, 207–208
converting to strings, 214–216

time formats – typNonClientMetrics structure 1069

formatting, 209–214
StopWatch for, 371–374
workdays between two dates, 203–206

for files
file, 780–789
modification, 711
system, 779–780

formatting, 16, 17
rounding, 196–199
setting, 148
time zones in, 217–221

time formats
for audio CDs, 851
in MCI, 840–843

Time function, 147–148
Time$ function, 148
time of day from servers, 695–697
TIME_OF_DAY_INFO structure, 697
Time property, 848
Time statement, 148
time zone differences, 217–221
timeouts, properties for, 529
Timer function, 371–373
TimeSerial function, 158–160
TimeValue function, 149, 157–158
timing, StopWatch for, 371–374
tk properties, 535
TMP environment variable, 772
TMSF format, 841
ToggleKeys properties, 535, 538
tokens

converting strings into, 88–91
in strings

counting, 55–57
replacing, 46–49

TooltipAnimation property, 588
TooltipBackground property, 592, 594–595
TooltipFade property, 588
TooltipText property, 592
top of stacks, 446
Top property, 937
ToPigLatin function, 32–33

TotalPageFile property, 554, 557
TotalPhysical property, 500, 554
TotalSize property, 896
TotalVirtual property, 554
track information for audio CDs, 850–851
Track property, 848
TrackedWindowToTop property, 560
Tracks property, 848
TrackTime property, 848
trailing nulls in strings, 44–45
translating characters, 39–43
Transpose function, 264
trapezoids, area of, 132
traversing

binary trees, 469–470, 470, 477–481, 479
ordered linked lists, 467–468

Tree class, 473
TreeItem class, 472–473
trees, binary, 435, 435, 469

adding items to, 473–476
adding nodes to, 475–477, 476
benefits of, 470–472, 471
implementing, 472–473
sample, 481–482
traversing, 469–470, 470, 477–481, 479

trigonometric functions, 105–109
Trim function, 3, 25–26
trimming trailing null and padding from strings,

44–45
tttt characters in Format, 165
two-byte character sets, 52–53
type libraries

in automation, 228–230, 229
for COM add-ins, 987–988, 988

Type property
in File, 904
in Folder, 899
in Reference, 945
in Window, 937

TypeName function, 97, 381
typNonClientMetrics structure, 570–571

UBound function – VBNewProjects class1070

U

UBound function, 91
UCase function, 13–14
UI (user interface) constructs, 308–309
UIEffects property, 588
UNC (universal name) information for network-

ing, 657–663
UNC paths, 650–653
Underline property, 566
Unexpanded data type, 601
Unicode characters

vs. ANSI, 4–6
for fonts, 573–574, 574
in networking functions, 647

Union method, 264
unique object keys for collection classes, 331–333
universal name (UNC) information for network-

ing, 657–663
UNIVERSAL_NAME_INFO structure, 657–658
Update method, 996
UpperBound property, 413
USER.DAT file, 599
user-defined data types, naming conventions

for, 1005
User DLL, 811
user information, 506–513
user interface (UI) constructs, 308–309
user names in networking, 653–654
user passwords, changing, 691–693
UserControl property, 245–246
UserForm class, 958
UserForm_QueryClose procedure, 877
UserForm_Terminate procedure, 877
UserName property, 504, 506–507, 510–511
UTC (coordinated universal time), 217, 780

V

Val function, 110
Value class, 618–619
Value property

in Property, 956
in Value, 623–626

values
for dates, 146–147
in Registry, 599–600

creating, 630–631, 631
enumerating, 615–617, 616, 629–630
paths for, 626–627
reading, 609–611, 620–621
referring to, 601
setting, 612–613, 620–621

Values collection, 619–620
var tag, 1002
variables

for properties, 280
tags for, 1002–1003

Variant data type, 96–97
for array pointers, 380–382
for optional parameters, 168

VarPtr function, 660
VarType function, 382
VBComponent class, 936, 949–952, 950
VBComponents collection, 936, 949
VBComponentsEvents class, 936
VBControl class, 936
VBControls collection, 936
VBControlsEvents class, 936
VBE class, 936
VBE property

in AddIn, 997
in AddIns, 996

vbext_wt_ constants, 937–938
VBForm class, 936
VBNewProjects class, 936

VBProject class – weekends, dates on 1071

VBProject class, 936, 943–945, 944
VBProject property, 971
VBProjects collection, 936, 944
VBProjectsEvents class, 936
vcr string, 829
verbs in member names, 314
VerQueryValue function, 527
Version category, 505
versions

information on, 520–526
properties in, 489

VerticalScrollX property, 586
VerticalScrollY property, 586
video, digital, 814–815, 815, 869–870

AVI functionality in, 870
example, 875–877, 876
positioning playback in, 873–875
types of, 870
in windows, 829, 870–873, 871

Video-cassette recorder device, 829
Video for Windows program, 814
Videodisc player device, 829
videodisc string, 829
VideoPlayer class

AVI functionality in, 870
example using, 875–877, 876
for positioning playback, 873–875
properties and methods in, 869–870
for video in windows, 870–873, 871

virtual key codes, 551
VirtualScreenHeight property, 586
VirtualScreenWidth property, 586
VirtualScreenX property, 586
VirtualScreenY property, 586
Visible property

in Office applications, 245–246
in Window, 937, 941

voice audio quality, 812
Volume constant, 904
volume functions, 133
volume labels, 742
VolumeName property, 896
vowels, counting, 55, 57

W

w character
in DateAdd, 154
in DateDiff, 155
in DatePart, 152
in Format, 164

Wait property, 858
WaitForDoubleObject function, 763
WaitForSingleObject function, 757–758
WakeUpLatency method, 579, 583
WalkInOrder procedure, 478
WalkPostOrder procedure, 478
WalkPreOrder procedure, 478
wave table sound cards, 814
waveaudio string, 829
waveform (WAV) audio, 812–813, 857–858

embedded, 824–828
example, 868–869
input parameters for, 863–865
loading files for, 858–860
playing, 818–819, 860–861
with PlaySound, 817–828
recording, 861–863
removing portions of files in, 865–866
saving, 867–868

Waveform audio device, 829
WavePlayer class. See waveform (WAV) audio
Web Class designer, 952
Weekday function, 151, 176–177
WeekdayName function, 18, 18
weekdays

in DateAdd, 154
in DatePart, 152
in Format, 164
formatting, 18, 18
in months

determining, 192–194
finding, 180–182

next and previous, 176–178
weekends, dates on, 183

weeks – Write # function1072

weeks
beginning and end of, 170–172
in DateDiff, 155–156
in DatePart, 152

Weight property, 566
WheelPresent property, 560–561
WheelScrollLines property, 493–494, 560
white space in strings, 43–44
whole numbers, 97–98
wide character sets, 52–53
width

of fonts, 577
of strings, 75–76

Width property, 937
wildcards in string comparisons, 7–8
WIN32_FIND_DATA structure, 750–752
WIN32_IE property, 504, 526–527
WIN32_WINDOWS property, 505
WIN32_WINNT property, 505
Win32Registry class, 618–620
Window class, 936–938
window information, 583–590
Window property

in CodePane, 943
in SystemColors, 592

WindowBorderX property, 586
WindowBorderY property, 586
WindowFrame property, 592
windows

CodePane for, 941–943, 942
digital video in, 870–873, 871
linked, 938–941
Window for, 937–938

Windows collection, 936, 941
Windows functions

and class modules, 296–303
for Registry, 604–617

Windows Script Host, 882
WindowsDirectory property, 505, 513–514
WindowsExtension property, 505
WindowState property, 937
WindowText property, 592
WINVER property, 505, 525

With statement, 321–322
WithEvents keyword, 266–267, 267, 342

forms with, 345–347, 346
using, 267–270, 268–269

WNet API, 634
WNetAddConnection function, 642–643
WNetAddConnection2 function, 642–643
WNetCancelConnection function, 647–648
WNetCancelConnection2 function, 647–649
WNetCloseEnum function, 663–664, 671
WNetConnectionDialog function, 636–638
WNetDisconnectDialog function, 638, 640
WNetEnumResource function, 663–664, 670,

672–673
WNetGetConnection function, 650–653
WNetGetLastError function, 638–640
WNetGetResourceParent function, 694
WNetGetUniversalName function, 653, 657–659
WNetGetUser function, 653
WNetOpenEnum function, 663–671
Word application, 249, 250

invoices in, 255–259, 259
templates in, 253–255, 254

WordBasic, 249
words

counting, 57–58, 924–926, 925
extracting, 81–88

Words property, 249
WordsContaining function, 34–35, 35
Workbooks collection, 249
workdays, 182

determining, 182–183
finding

first in month, 187–188
last in month, 188–189
next and previous, 186–187

skipping to, 183–185
between two dates, 203–206

worksheets, 263–265, 264
Worksheets collection, 249
wrapper functions, 488
Write file access, 718
Write # function, 724–725

Write method – yyyy characters 1073

Write method, 916
write-once properties, 318
write-only properties

creating, 292
in Mouse class, 561

WriteBlankLines method, 916
WriteFile function, 731
WriteFileEx function, 731
WriteLine event, 340–342
WriteLine method

in ITextFileCallback, 350
in TextStream, 916

WriteValue method, 620–621
writing files

random access in, 727–730
sequential access in, 721–727

ww characters
in DateAdd, 154
in DateDiff, 155
in DatePart, 152
in Format, 164

X

XOR encryption, 71–75, 73

Y

y character in Format, 165
Year function, 150
years

beginning and end of, 172–173
in DateAdd, 153
in DateDiff, 155
in DatePart, 152
in DateSerial, 158–160
in Format, 165

leap years, 194–196
retrieving, 150

yy characters in Format, 165
yyyy characters

in DateAdd, 153–154
in DatePart, 152
in Format, 165

	Table of Contents
	Introduction
	Chapter 1 Manipulating Strings
	How Does VBA Store Strings?
	Unicode versus ANSI
	Using Built-In String Functions
	Comparing Strings
	Converting Strings
	Creating Strings: The Space and String Functions
	Calculating the Length of a String
	Formatting Data
	Reversing a String
	Justifying a String
	Searching for a String
	Working with Portions of a String
	Replacing Portions of a String
	Search and Replace in Strings
	Working with Arrays of Strings
	ANSI Values
	Working with Bytes
	Putting the Functions Together

	Searching for and Replacing Text
	Replacing Any Character in a List with Another Character
	Removing All Extra White Space
	Removing Trailing Null and Padding from a String
	Replacing Numbered Tokens within a String

	Gathering Information about Strings
	Determining the Characteristics of a Character
	Counting the Number of Times a Substring Appears
	Counting the Number of Tokens in a Delimited String
	Counting the Number of Words in a String

	Converting Strings
	Converting a Number into a String with the Correct Ordinal Suffix
	Converting a Number into Roman Numerals
	Performing a "Smart" Proper Case Conversion
	Encrypting/Decrypting Text Using XOR Encryption
	Returning a String Left-Padded or Right-Padded to a Specified Width
	Using Soundex to Compare Strings

	Working with Substrings
	Returning a Specific Word, by Index, from a String
	Retrieving the First or Last Word in a String
	Converting a Delimited String into a Collection of Tokens

	Summary

	Chapter 2 Working with Numbers
	How Does VBA Store Numeric Values?
	Whole Numbers
	Floating-Point Numbers and the Errors They Can Cause
	Scaled Integers

	Using Built-In Numeric Functions
	Mathematical and Trigonometric Functions
	Numeric Conversions and Rounding
	Random Numbers
	Financial Functions
	Base Conversions

	Custom Math and Numeric Functions
	Mathematical Functions
	Geometric Calculations
	Statistics

	Summary

	Chapter 3 Working with Dates and Times
	What Is a Date, and How Did It Get There?
	An Added Benefit
	Supplying Date Values

	The Built-In VBA Date Functions
	Exactly When Is It?
	What If You Just Want One Portion of a Date/Time Value?
	Pulling the Pieces Apart
	Performing Simple Calculations

	Odd Behaviors
	Displaying Values the Way You Want
	Beyond the Basics
	Finding a Specific Date
	Finding the Beginning or End of a Month
	Finding the Beginning or End of a Week
	Finding the Beginning or End of a Year
	Finding the Beginning or End of a Quarter
	Finding the Next or Previous Weekday

	Finding the Next Anniversary
	Finding the nth Particular Weekday in a Month
	Working with Workdays
	Finding the Next, Previous, First, or Last Workday in the Month

	Manipulating Dates and Times
	How Many Days in That Month?
	How Many Mondays in June?
	Is This a Leap Year?
	Rounding Times to the Nearest Increment
	Converting Strings or Numbers to Real Dates

	Working with Elapsed Time
	Finding Workdays between Two Dates
	Calculating Age
	Formatting Elapsed Time
	Formatting Cumulative Times

	Handling Time Zone Differences
	Using the SystemTimeInfo Class

	Summary

	Chapter 4 Using VBA to Automate Other Applications
	Automation Basics
	Terminology
	What's the Value of Automation?
	Object Classes
	Type Libraries: The Key to Classes
	Browsing Objects with Object Browser

	Creating Object Instances
	Early Binding and Late Binding
	A Simple Early Binding Example
	When to Instantiate
	CreateObject and GetObject
	Understanding Class Instancing

	Controlling Other Applications
	Learning an Application's Object Model
	Differences in Application Behavior
	Memory and Resource Issues

	Creating Automation Solutions with Microsoft Office
	The Office Object Models

	Example: Word as a Report Writer
	Creating the Word Template
	Building the Invoice

	Example: Populating an Excel Worksheet
	Using an Existing File
	Our Scenario
	Creating an Object from an Existing Document
	Updating the Worksheets and Chart

	Tapping into Events Using WithEvents
	What Is WithEvents?
	Using WithEvents

	Summary

	Chapter 5 Creating Your Own Objects with VB Class Modules
	Why Use Class Modules?
	Encapsulate Data and Behavior
	Hide Complex Processes from Other Developers
	Making Development Easier

	How Class Modules Work
	Class Modules Are Like Document Templates
	Class Instances Are the Documents

	A Simple Example: A Text File Class
	Creating an Object Class
	Creating a Property
	Creating a Method
	Using the Object Class

	Using Property Procedures
	What Are Property Procedures, and Why Use Them?
	Retrieving Values with Property Get
	Setting Values with Property Let
	Read-Only and Write-Only Properties
	Creating Object Properties

	Creating Enumerated Types
	Defining an Enumerated Type
	Using Enumerated Types with Methods and Properties

	Applying Class Module Techniques to the Windows API
	Working with the Clipboard
	Designing the Clipboard Class
	Testing the Clipboard Class

	Summary

	Chapter 6 Advanced Class Module Techniques
	Object Model Design Principles
	Determining Class Requirements
	Specifying Class Members
	Object Model Naming
	Modeling Class Relationships

	Developing Object Hierarchies
	Creating a Parent Property
	Self-Referencing

	Collections of Objects
	Collection Basics
	Creating Your Own Collections
	Creating a Collection Class
	Collection Class Tricks

	Creating and Using Custom Events
	Defining Custom Events
	Raising an Event
	Responding to Events
	Using Forms with WithEvents
	Custom Events Caveats

	Interface Classes and the Implements Keyword
	Interface Inheritance
	When to Inherit
	Interface Inheritance Example: Callbacks

	Other Advanced Considerations
	Error Handling in Classes
	Circular Reference Issues
	Shared Classes

	Summary

	Chapter 7 Searching and Sorting in VBA
	Timing Is Everything
	Introducing the StopWatch Class
	Using the StopWatch Class

	Using Arrays
	What Is an Array, Anyway?
	Creating an Array
	Using Data in an Array
	Sizing an Array
	Using a Variant to Point to an Array

	Sorting Arrays
	How Does Quicksort Work?
	Watching Quicksort Run
	Using Quicksort
	Speed Considerations
	Sorting Collections
	Sorting Other Types of Data

	Searching
	Why Use the Binary Search?
	How Does Binary Search Work?
	Using Binary Search

	Summary

	Chapter 8 Creating Dynamic Data Structures Using Class Modules
	Dynamic versus Static Data Structures
	Simple Dynamic Structures
	Recursive Dynamic Structures

	How Does This Apply to VBA?
	Retrieving a Reference to a New Item
	Making an Object Variable Refer to an Existing Item
	What If a Variable Doesn't Refer to Anything?
	Emulating Data Structures with Class Modules
	Creating a Header Class

	Creating a Stack
	Why Use a Stack?
	Implementing a Stack
	The StackItem Class

	Creating a Queue
	Why Use a Queue?
	Implementing a Queue

	Creating Ordered Linked Lists
	The ListItem Class
	The List Class

	Creating Binary Trees
	Traversing Binary Trees
	What's This Good For?
	Implementing a Binary Tree

	The Tree Class
	Adding a New Item
	Adding a New Node: Walking the Code
	Traversing the Tree
	Traversing a Tree: Walking the Code
	Optimizing the Traversals

	The Sample Project
	What Didn't We Cover?
	Summary

	Chapter 9 Retrieving and Setting System Information
	VBA and System Information
	The API Functions
	Using the GetSystemMetrics Function
	Using the SystemParametersInfo Function
	Functions That Require Data Structures

	Computer and Operating System Information
	Using the SystemInfo Class
	Windows Accessibility
	Using the Accessibility Class
	Creating the Accessibility Class

	Keyboard Information
	Using the Keyboard Class
	Creating the Keyboard Class

	Memory Status
	Using the MemoryStatus Class
	Creating the MemoryStatus Class

	Mouse Information
	Using the Mouse Class

	Non-Client Metrics
	Using the NonClientMetrics Class
	Creating the NonClientMetrics Class

	Power Status
	Using the PowerStatus Class

	Screen and Window Information
	Using the ScreenInfo Class
	Creating the ScreenInfo Class

	System Colors
	Using the SystemColors Class
	Creating the SystemColors Class

	Summary

	Chapter 10 Managing Windows Registry Data
	Registry Structure
	Referring to Registry Keys and Values

	VBA Registry Functions
	Windows Registry Functions
	Opening, Closing, and Creating Keys
	Working with Registry Values
	Enumerating Keys and Values

	An Object Model for the Registry
	An Overview
	Implementing the Classes
	Using the Registry Objects

	Summary

	Chapter 11 The Windows Networking API
	Basic Network Functionality
	Using Common Network Dialogs
	Handling Network Resources Yourself
	Disconnecting from a Network Resource
	Retrieving Information about Network Resources

	Advanced Networking Functionality
	Retrieving Universal Name Information
	Enumerating Network Resources
	Putting It All Together
	The LAN Manager API

	Summary

	Chapter 12 Working with Disks and Files
	The Built-In VBA Disk and File Functions
	The Dir Function Explained
	Using File Attributes
	Doing the Disk File Shuffle
	Some File Information: FileLen and FileDateTime
	Directory Management

	File I/O If You Must
	Getting a Handle on Files
	Using the Open Function
	Manipulating File Position
	Statements for Reading and Writing

	The Windows API: Where the Real Power Is
	Comparing API Functions with VBA Functions
	Getting Disk Information
	Fun with Paths
	A Replacement for Dir
	Windows Notification Functions
	Searching for Files
	Procuring Temporary Filenames
	Getting a (Windows) Handle on Files
	Windows API Dates and Times
	Working with File Times

	Using the Windows Common File Dialogs
	Using the CommonDlg Class
	Using the Windows File Open/Save Common Dialogs

	Summary

	Chapter 13 Adding Multimedia to Your Applications
	An Introduction to Windows Multimedia
	Multimedia Services and MCI

	One-Step Multimedia
	Beeping Away
	MessageBeep: One Step Better
	Playing Waveform Audio with PlaySound

	Understanding the Media Control Interface
	Working with MCI Devices
	The MCI Command String Interface
	The MCI Command Message Interface

	Putting MCI to Work
	Playing Audio CDs
	Recording and Playing Waveform Audio
	Putting Digital Video in a Window

	Summary

	Chapter 14 Using the Scripting Runtime Library Objects
	Why Is This Chapter Different?
	Referencing and Using SCRRUN.DLL
	The FileSystemObject Object

	Testing the Simple FileSystemObject Methods
	Copying and Moving Files and Folders
	The Drives Collection
	The Drive Object
	The Folder Object
	Navigating through Folders

	The Files Collection
	The File Object
	Methods of File Objects
	Retrieving a Specific File Object
	Modifying Attributes

	The TextStream Object
	Opening a TextStream
	Making the TextStream Object Work
	Properties of the TextStream Object
	Using the TextStream Object

	Working with the Dictionary Object
	Taking the Dictionary for a Spin
	A Simple Example
	Why Is a Dictionary Better Than a Collection?

	Summary

	Chapter 15 Writing Add-Ins for the Visual Basic IDE
	Working with the IDE Object Model
	The Class Hierarchies
	Working with Windows
	Working with VBA Projects
	Modifying Project Components
	Manipulating Code Modules

	Putting It Together: An Alternative Object Model
	Examining Our Object Model
	Using Our Object Model

	COM Add-Ins
	Using the COM Add-Ins Dialog
	Exploring IDTExtensibility2

	Building a COM Add-In for the VBA IDE
	Using the COM Add-In Designer
	Specifying Add-In Load Behavior
	Adding the Type Library Reference
	Coding the Add-In
	Using Our Object Model
	Debugging, Compiling, and Distributing
	The Add-Ins Collection

	Summary

	Appendix A The Reddick VBA Naming Conventions, Version 6
	Changes to the Conventions
	An Introduction to Hungarian
	Tags
	Creating Data Types
	Constructing Procedures
	Prefixes
	Suffixes
	Filenames
	Host Application and Component Extensions to the Conventions

	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

