

Marco Cantù

Delphi 2010
Handbook

A Guide to the New Features of Delphi 2010; upgrading from Delphi 2009

Piacenza (Italy), February 2010

2 -

Author: Marco Cantù

Publisher: Wintech Italia Srl, Italy

Editor: Peter W A Wood

Tech Reviewers: Holger Flick, Daniele Teti, Marco Breveglieri, Chirs Bensen,
Stefan Van As

Cover Designer: Fabrizio Schiavi

Copyright 2009-2010 Marco Cantù, Piacenza, Italy. World rights reserved.

The author created example code in this publication expressly for the free use by its readers. The source
code for this book is copyrighted freeware, distributed via the web site
http://www.marcocantu.com. The copyright prevents you from republishing the code in print
media without permission. Readers are granted limited permission to use this code in their applications,
as long at the code itself is not distributed, sold, or commercially exploited as a stand-alone product.
Aside from this specific exception concerning source code, no part of this publication may be stored in a
retrieval system, transmitted, or reproduced in any way, in the original or in a translated language,
including but not limited to photocopy, photograph, magnetic, or other record, without the prior agree-
ment and written permission of the publisher.

Delphi is a trademark of Embarcadero Technologies. Windows Vista and Windows Seven are trade-
marks of Microsoft. Other trademarks are of the respective owners, as referenced in the text. The author
and publisher have made their best efforts to prepare this book, and the content is based upon the final
release of the software. The author and publisher make no representation or warranties of any kind with
regard to the completeness or accuracy of the contents herein and accepts no liability of any kind includ-
ing but not limited to performance, merchantability, fitness for any particular purpose, or any losses or
damages of any kind caused or alleged to be caused directly or indirectly from this book.

ISBN: 1450597262 (EAN-13: 9781450597265)

Delphi 2010 Handbook, First Edition, Revision 01.

Electronic edition licensed by Embarcadero Technologies, Inc. and sold by FastSpring and
Plimus, on behalf of Wintech Italia Srl. Any other download or sale outlet is likely to be
illegal. This is not a free ebook, do not distribute it (even if you received if for free from
Embarcadero Technologies).

Printed copies of this book on sale on http://www.amazon.com.

More information and buying links on http://www.marcocantu.com/dh2010.

Marco Cantù, Delphi 2010 Handbook

Dedication - 3

Dedicated to my two wonderful kids,
Benedetta and Jacopo,

and their lovely mother, Lella

Marco Cantù, Delphi 2010 Handbook

4 - Dedication

Marco Cantù, Delphi 2010 Handbook

Introduction - 5

Introduction

With the creation of the partially independent CodeGear business unit within
Borland and the subsequent sale of the business unit to Embarcadero Techno-
logies, Delphi has seen a significant increase in investment and is once again a
growing and vibrant product thanks to its new technical features and to a
developer community gaining in morale and affection, after a few years of slow
growth and terms of capabilities and dwindling passion.

Embarcadero is investing more in Delphi than Borland did over almost the
entire life of the product, and also improving the way it reaches out to the com-
munity. Long considered a “cash cow” with little future ahead of it, the product
is now clearly at the center of Embarcadero's developer tools strategy, focused
on native cross-platform development (which is going to be the direction of
future versions of Delphi, according to the current product road map1).

Delphi 2010 is another very significant step in this direction, after the impress-
ive Delphi 2009 and a rather good Delphi 2007 release. From increased RTTI
support to a significantly improved IDE; from the opening up to new databases
(like Firebird) to the support of growing standards (like REST), Delphi 2010 is
much more than an incremental new version. Its extended support for the
Win32 platform, makes the latest Delphi the best tool, by far. for native devel-

1 The most recent Delphi road map, at the time of this writing, can be found at:
http://edn.embarcadero.com/article/39934

Marco Cantù, Delphi 2010 Handbook

6 - Introduction

opment for Windows 7. By devoting more than a couple of hundred pages to
the new features of the product, this book is a testimony to the significant
extension this version of Delphi offers to developers.

My Delphi Handbook Series
After a long series of Mastering Delphi books (published first through Sybex
and then Wiley, when it acquired Sybex), over the last few years I've focused on
specific books devoted to new features of individual versions of the product.
The Delphi Handbook series doesn't cover Delphi from the ground up, but
focuses only on new features.

By the time you are reading this, it should be possible to buy “reprints” of some
of my classic Delphi books, along with buying my Mastering Delphi 7 or 2005
from online and traditional resellers. My basic offering is Essential Pascal2.

Delphi 2007 Handbook, the first of my self-published volumes, covered
new features from Delphi 7 to Delphi 2007, from IDE updates to language
extensions, focusing on Windows Vista support and on the dbExpress data
access library. This is the list of the chapters:

• The Delphi 2007 IDE
• Code Templates and Refactoring
• Project Management and MSBuild
• The Debugger
• Recent Updates to the Delphi Language
• Core RTL Changes
• Changes in the VCL
• Memory Management (and Robust Applications)
• Windows Vista and the VCL
• Database Support and dbExpress 4
• InstallAware and Other Tools
• Upgrading Projects to Delphi 2007

2 Essential Pascal is an introduction to the core features of the Pascal language. The focus
is on traditional language structures and does not include object-oriented programming.
More information at the book page: http://www.marcocantu.com/epascal

Marco Cantù, Delphi 2010 Handbook

Introduction - 7

The Delphi 2009 Handbook had a long section on Unicode and delved into
the significant changes to the language, which included generics and anonym-
ous methods. There were also sections on the Ribbon user interface and the
new DataSnap multi-tier architecture. This is the chapters list:

• What is Unicode?
• The Unicode String Type
• Porting to Unicode
• New IDE Features
• Generics
• Anonymous Methods
• More Language and RTL Changes
• VCL Improvements
• COM Support in Delphi 2009
• The Ribbon
• Datasets and dbExpress
• DataSnap 2009

The past two Delphi Handbooks are on sale in printed form both on Lulu and
Amazon, while electronic versions can be bought online. Follow links on the
book pages for buying printed or electronic versions:
http://www.marcocantu.com/dh2007
http://www.marcocantu.com/dh2009

The Delphi 2010 Handbook
The current book continues with this tradition by focusing on new features of
Delphi 2010. Therefore, if you are upgrading from an older version of the
product, you might want to read one or both previous handbooks first3.

There isn't a specific focus in this book, as there isn't one in Delphi 2010. The
release brings to completion some of the recent features, like improved support
for the Win32 API (with specific focus on Windows 7) and the new DataSnap
architecture originally introduced in Delphi 2009 (now with HTTP support).

3 I might create a single all-encompassing Handbook Collection, but this still not a firm
plan and it might not happen.

Marco Cantù, Delphi 2010 Handbook

8 - Introduction

One of the new foundations of the product is its extended RTTI support and the
inclusion of attributes in the Object Pascal language, the subject of one of the
longest chapters. There was also a significant facelift in the IDE and debugger,
with some easy to use features, and other more complex to understand and
configure IDE extensions using the Delphi Open Tools API.

Needless to say the book covers all of this, and some more. Here is the list of
the chapters, with more details available in the table of contents:

• 1. A Better IDE
• 2. The Debugger
• 3. Extended RTTI and Attributes
• 4. More and the Compiler and the RTL
• 5. The VCL and Windows 7
• 6. Touch and Gestures
• 7. Database Access and DataSnap
• 8. REST Web Services

The specific web page devoted to this book, including updates, source code
downloads, and other information is at:
http://www.marcocantu.com/dh2010

Editor and Tech Reviewers
This book as seen the contribution of an editor and several tech reviewers,
involved at various degrees, which provided a huge help and I won't be able to
thank enough. The editor of this book (as of all my latest Delphi books) was
Peter Wood, an IT professional who lives in Malaysia. I got technical feedback
from Holger Flick, Marco Breveglieri, Stefan Van As, Daniele Teti, and Chris
Bensen. Here is a short profile of each of them.

Daniele Teti

Daniele (http://www.danieleteti.it) is the R&D Director of bitTime Software,
the Italian representative of Embarcadero. He is a passionate software
developer and has been a speaker for Italian conferences on Delphi, PHP,
design pattern, and multi-tier applications. Daniele has started a few open
source project like the DataSnapFilterCompendium, a STOMP client, and a
dependency injection framework for Delphi.

Marco Cantù, Delphi 2010 Handbook

Introduction - 9

Marco Breveglieri

Marco (http://www.marco.breveglieri.name) in a long time Delphi program-
mer, trainer, and consultant, primarily involved in Microsoft Windows based
software, targeting both the native and the .NET Framework platforms, and
Web development using (X)HTML, CSS, JavaScript frameworks, and Microsoft
ASP.NET MVC.

Chris Bensen

Chris (http://chrisbensen.blogspot.com) is a member of the Delphi R&D team
who helped reviewing the chapter on touch and gestures, one of the areas of the
product he worked on. He's also a great photographer.

Holger Flick

Holger (http://www.flickdotnet.de/) is a Delphi top developer and conference
speaker, and it part of German's Delphi Expert team. Holger worked on Q&A
for Embarcadero and has a deep knowledge of the product.

Stefan Van As

Stefan (http://www.dutchdelphidude.com) is a “Dutch Delphi Dude” and the
current author of TopStyle4, a great HTML and CSS editing tool written in
Delphi.

Author
I'm Marco Cantù, the author of this book. I've been in the “Delphi book writing”
business ever since the first version of the product, when I released the original
“Mastering Delphi” (a hefty tome of 1,500 pages). That was not my first writing
experience, as I had previously written works on Borland C++ and the Object
Windows Library.

The Mastering Delphi series, published by Sybex, was one of the best-selling
Delphi book series for several years, with translations into many languages and
sold in bookshops all over the world. More recently I started self-publishing the

Marco Cantù, Delphi 2010 Handbook

10 - Introduction

Delphi Handbook series, available from multiple print-on-demand outlets,
including Lulu and Amazon, and in PDF format.

Beside writing, I keep myself busy with consulting (mostly on applications
architectures), help selling Delphi in Italy, do code reviews, Delphi mentoring,
and general consulting for developers. I'm a frequent speaker at Delphi and
general developer conferences (in Europe and in the Unites States), including
the recent online CodeRage conferences organized by Embarcadero.

In 2009, Cary Jensen and I gave public training in both US and Europe at the
jointly organized Delphi Developer Days, which are already planned for May
2010; for details (and future dates) see:
http://www.delphideveloperdays.com

If you are interested in inviting me to speak at a public event or give a training
session (on new Delphi features or any advanced Delphi subject) at your com-
pany location, feel free to send me a note by email.

Contact Information
To follow my activity you can use several online resources and communities.

In the following list you can see my blog (which I tend to keep quite active), my
not-so-up-do-date personal site (a summary of my activities), my company site
(with training offers), my Twitter account, and my Facebook page:
http://blog.marcocantu.com
http://www.marcocantu.com
http://www.wintech-italia.com
http://twitter.com/marcocantu
http://www.facebook.com/marcocantu

I have an online mailing list based at Google groups. I also run an online news-
group with a section devoted to discuss my books and their content. Here are
the respective URLs:
http://groups.google.com/group/marco_cantu
http://delphi.newswhat.com/forumlistgroups?area=marcocantu

Finally, feel free to drop me an email at my public address, although I generally
don't offer tech support via email:
marco.cantu@gmail.com

Marco Cantù, Delphi 2010 Handbook

Table of Contents - 11

Table Of Contents

Introduction...5
My Delphi Handbook Series...6
The Delphi 2010 Handbook..7

Editor and Tech Reviewers..8
Author...9

Contact Information..10

Table of Contents..11

Chapter 1: A Better IDE...19
Installation..19

Proxy Configuration..20
Installation Folders..21
First Impressions...22

IDE Insight..23
Filter Wild Cards...24
Advanced: Customizing IDE Insight...25

The Delphi 2010 Editor..28
The Search Pane..29
Searching with Directory Groups..30
The Code Formatter...31
Live Templates and Code Completion..33

The Project Manager...34

Marco Cantù, Delphi 2010 Handbook

12 - Table of Contents

Build All and Active Project...35
The Object Inspector..36

The Description Pane..36
The Component Editor Pane...37

Other IDE Features..38
Background Compilation..38
The Return of the Component Toolbar...39
Many More Recent Files..41
Use Unit Dialog...42
Updates to the Gallery...42
View Messages...43

What's Next...44

Chapter 2: The Debugger..47
Dragging the Instruction Pointer...47
Small UI Changes...49
Debugging Threads...50
Debugger Visualizers..53

Advanced: Visualizer Internals...55
Building a Value Replacer for UCS4Char..56

What's Next...59

Chapter 3: Extended RTTI and Attributes...63
Extended RTTI..64

A First Example...65
Compiler Generated Information...66
Larger Executable Files...67

The Rtti Unit...70
Rtti Objects Lifetime Management and the TRttiContext record.................................72
A Tree of Classes (and Class Information)..74
RTTI for Packages..76

The TValue Structure..78
Reading a Property with TValue...80
Invoking Methods...80
Low-Level TValue..81

Custom Attributes..82
What is an Attribute?..83
Attribute Classes and Attribute Declarations...84
Browsing Attributes..86

Marco Cantù, Delphi 2010 Handbook

Table of Contents - 13

RTTI Case Studies..88
Attributes for ID and Description...88
XML Streaming...93

What's Next...100

Chapter 4: More on the Compiler and the RTL..103
New Compiler Features..103

Version...104
Extracting Objects from Interface References..104
Class Constructors (and Destructors)...106
Delayed Loading of DLL Functions...109
Scoped Enumerators..111
The With Statement Now Preserves Read Only Properties...111

New Run Time Library Features...113
RTL Trends...113
Browsing Existing Units...114
Collections and Containers..115
Discovering New Units...117

The Input/Output Utilities Unit..118
Extracting Subfolders...119
Searching Files...119
Filtering Sub-folders..121
Filtering Files...122

What's Next...122

Chapter 5: The VCL and Windows 7...125
Tech Overview of Windows 7..126

Delphi Support for Windows Vista..127
Notable Differences Between Vista and Windows 7...129

Delphi 2010 Windows API Units..131
New API Header Units...131
Extended Windows API Headers..133

Windows 7 Support...135
Working with Taskbar Buttons in Windows 7...135
Working with Libraries..140

DirectX for Forms...143
Direct2D...144
Gradients to the Max (With no Canvas)..149
DirectWrite...151

Marco Cantù, Delphi 2010 Handbook

14 - Table of Contents

Using the Windows Imaging Component...153
WIC Transformations..154

Other New VCL Features..156
Property Editors for Actions and Dates...157
Input Language and Language Libraries...158
Minor Incompatibilities with “Growing” Enumerations...159

What's Next...160

Chapter 6: Touch and Gestures...163
From Single Touch to Multi-Touch..164

Touch Hardware..165
Multi-Touch Pads..166
The Theory Behind Gestures...166
Towards a Touch-Based UI ...167

The Gesture Manager of the VCL..168
A Basic Gesture Example...168
The Standard Gestures...171
Gestures and Actions...172
Custom Gestures..174
Database Gestures..179

Touch Keyboard..183
Multi-Touch Support..186

Handling wm_touch..186
Chris Bensen's TouchMove Demo...188

Inertia Manipulation (with no Touch)...190
What's Next...196

Chapter 7: Database Access and DataSnap...199
New Field Types and Other Core Database Extensions..200

Themes Support and Other DBGrid Extensions...202
DBGrid In-place Editor Issues..203
Midas DLL Now With Source...206
ADO 2.8 Support...208

dbExpress in Delphi 2010..208
The Firebird Driver...208
Updated dbExpress Drivers: Interbase, MySQL, Oracle..210
The SQL Server Driver...210

DataSnap Updates...211
Overview of DataSnap in Delphi 2009...211

Marco Cantù, Delphi 2010 Handbook

Table of Contents - 15

Overview of DataSnap in Delphi 2010...212
DataSnap over HTTP..213

A DataSnap HTTP Server with the Wizard...214
Testing the Connection in Data Explorer..216
HTTP Authentication..218

DataSnap WebBroker Integration..221
Overview of the WebBroker Architecture...222
The DataSnap WebBroker Wizard..223
A Client for the Web Server...227

Filtering Connections...228
Using ZlibCompression...229
Creating Custom Filters...231

JSON and Object Marshaling...233
Introducing JSON...233
JSON in Delphi 2010...234
Parsing JSON..236
Streaming Objects to JSON...237
Using JSON Converters and Reverters...240
JSON Values and Marshaling in DataSnap Server Methods......................................243

Server Methods Callbacks...247
The Server Side Implementation of a Callback...248
The Client Side Implementation of a Callback...249

What's Next...251

Chapter 8: REST Web Services..253
Why Web Services?...254

Web Service Technologies: SOAP vs. REST..254
XML and SOAP Updates..255

XML Processing in Delphi 2010..255
SOAP 1.2 Support..259

What is REST?..260
REST Architecture's Key Points..260
The REST Architecture and Delphi...261

REST Clients Written in Delphi...263
A REST Client for RSS Feeds..263
Of Maps and Locations..266
Google Translate API..270

Building a REST Server..274
An Echo Action..275

Marco Cantù, Delphi 2010 Handbook

16 - Table of Contents

Returning the XML Data of a ClientDataSet...276
Returning a List of Customers..278

Building a DataSnap REST Server..281
Accessing the REST Server with a Browser..284
Returning Multiple Results...285
Calling the REST Server from a VCL Client..286
Calling the REST Server From a jQuery Client...288

Returning and Updating Objects with REST HTTP Methods..291
Listing Objects with a TJSONArray..295
Sending the List to the jQuery Web Client at Start-up...295
HTTP Methods: POST, PUT, and DELETE..298

Building a Database Oriented REST Server...302
REST Server Alternatives...305
What's Next...307

Index..309

Marco Cantù, Delphi 2010 Handbook

Table of Contents - 17

Marco Cantù, Delphi 2010 Handbook

18 - Table of Contents

Marco Cantù, Delphi 2010 Handbook

Chapter 1: A Better IDE - 19

Chapter 1: A
Better IDE

The Integrated Development Environment (or IDE) is, for most developers, the
key tool for writing applications with Delphi. The IDE in the 2010 version got a
significant face lift, aimed at improving its overall usability. Rather than sport-
ing incredible new features, the Delphi IDE lets developers perform many
common tasks more easily and more quickly.

This chapter covers the main improvements of the IDE, without getting into too
much detail, as in most cases it will be rather easy to pick them up. Still, there
are less visible features and details you might easily miss which I'll try to cover.

Installation
As is true of the last few versions, the installation of 2010 Delphi is based on
InstallAware. Installing the product is generally quite a smooth process, but
there are a few elements worth mentioning.

Marco Cantù, Delphi 2010 Handbook

20 - Chapter 1: A Better IDE

The first relates to the requirements for the machines on which Delphi 2010 is
being installed. As the IDE itself uses some .NET features, the presence of .NET
3.5 SP14 has been added to the prerequisites. If you keep your Windows
machine updated, you're likely to have already installed it.

Another change in the requirements is that Windows 2000 is no longer suppor-
ted as a development platform, although it is still fully supported as a target
operating system for running applications compiled in Delphi 2010. Support
for running applications on Windows 9x was already dropped in Delphi 2009.

It is not that you absolutely cannot run the Delphi IDE on Windows 2000, but
that Embarcadero Technologies gives you no guarantee it will work. In case you
want to try to install Delphi 2010 on this operating system you can run the
installation program with a specific flag5:
Setup.exe /win2k

On a very positive note, even if this is really a minor issue, in the Delphi 2010
installer you can paste all four sections of the serial number at once, rather than
having to paste each individual section.

Finally, consider that you can significantly reduce the installation footprint of
the help system (and make the information much more appropriate to Delphi)
if you disable the installation of the Microsoft Platform SDK, when installing
the Delphi help. The details are in this blog post by Dee Elling:
http://blogs.embarcadero.com/deeelling/2009/12/07/38310

Proxy Configuration
As an aside, there are two options for installing Delphi 2010 (and Embarcadero
RAD Studio 2010). One is to buy or download the DVD with the complete ver-
sion of the software. The second is to get the small footprint installer (the one

4 You might not be aware but .NET 3.5 SP1 provides countless improvements and is basic-
ally a brand new version of .NET compared to .NET 3.5. It has new libraries and features,
not only bug fixes or limited changes. The reasons it was delivered as a patch were mostly
commercial: to deliver it as an update and let more people download and install it on
their machines, compared to a new version you must specifically decide to install.

5 The win2k installation flag disables the check for Windows 2000 done by the installer, it
doesn't change anything in the installation to make Delphi work on that version of the
operating system. You can use it, but you won't be able to access technical support if any-
thing goes wrong.

Marco Cantù, Delphi 2010 Handbook

Chapter 1: A Better IDE - 21

you'll generally receive when buying the Electronic Software Delivery (ESD)
version of Delphi. This smaller installer will retrieve only the required installa-
tion files automatically based on your configuration and the edition you
licensed.

There have been several reports about problems with this installer in the past,
for developers behind a firewall and with a proxy configuration. What is not
mentioned well enough is that the installer uses port 80 for downloading the
installation files and that it uses the system wide proxy defined in the Internet
Explorer configuration. So you shouldn't have any problems installing the ESD
version even via a proxy server, providing you have Internet Explorer properly
configured.

Installation Folders
For a long time Delphi was installed under the Program Files\Borland folder.
With changes in the product ownership (first the Borland's CodeGear division
and later Embarcadero Technologies) and the need to support Windows Vista
folder permissions, the overall structure has kept changing considerably.

The main installation folder is now (by default):
C:\Program Files\Embarcadero\RAD Studio\7.0

Other relevant folders include (on my computer, using the defaults) respect-
ively projects, examples, database configuration, and sample database data:
C:\Users\Marco\Documents\RAD Studio\Projects\
C:\Users\Public\Documents\RAD Studio\7.0
C:\Users\Public\Documents\RAD Studio\dbExpress\7.0
C:\Program Files\Common Files\CodeGear Shared

These folders are not very much different from the past two versions of the
IDE, with the welcome addition of a sub-folder for the dbExpress configura-
tion.

While the main installation folder has been changed from CodeGear to Embar-
cadero, the Registry settings are still saved under the more familiar:
HKEY_CURRENT_USER\Software\CodeGear\BDS\7.0

Marco Cantù, Delphi 2010 Handbook

22 - Chapter 1: A Better IDE

First Impressions
When you first start Delphi 2010, you won't see lots
of big differences from Delphi 2009, but cleaner
graphics, with new icons for the IDE and for your applications, by default. The
new icon and style borrows heavily from the company style, but also revamps
some of the classic elements of Delphi, like the three-column temple and the
Greek helmet (shown up here). Needless to say you might like the new style or
not, as it is mostly a matter of taste. I think it is a good step in the right direc-
tion, a more modern look without betraying the product history.

The overall user interface has been cleaned up somewhat, replacing some of the
older dialog boxes of the product with versions that have a more modern user
interface and (in many cases) extended search options. As an example, con-
sider the View Form dialog box, now properly renamed Search for forms:

Not only does it have a nicer look, compared to the older one with the gray
background, but it also has a very handy search capability, terribly useful for
large projects. The View Units dialog box had been given the same kind of
improvement. A similar makeover was made to the Use Units dialog box,
covered at the end of this chapter. Oddly enough now that some of these dialog
boxes have been cleaned up, most developers will use them less and less,
simply because the information they list (like the forms and the units of the
current project or the projects in the current project group) now shows up in
the new IDE Insight dialog box, a sort of central starting point to find just about
anything you might want to look for in the IDE and the current project.

Marco Cantù, Delphi 2010 Handbook

Chapter 1: A Better IDE - 23

IDE Insight
Both newcomers and expert users can easily get lost in the large number of
menu items, settings, components, and features you can activate in the IDE. At
times even experts get lost because features were moved from a version of
Delphi they spent a lot of time with. That's why the team grabbed an idea that
other development tools already implement and came up with searching capab-
ilities in several dialog boxes
(more on these later) and with
an overall search mechanism
for the entire IDE, called “IDE
Insight”.

You activate this window by
pressing the F6 key (or by
using Ctrl + <period>)6. You
can see the IDE Insight dialog
box here on the right.

As you start typing into this
dialog box, it will show a
filtered list of just about any-
thing you might want to look
for in the IDE:

• Commands of the main menu of the IDE, including those added dynamic-
ally in the Tools menu or by Wizards or extensions of any kind (but the
menu items of local popup menus)

• Component Palette elements, where the current view is a visual designer,
like a form or a data module.

• Components used by the current designer, again where the current view is
a visual designer. Components depend on the installed packages, and obvi-
ously include third-party ones.

• Code Templates, where the current view is an Object Pascal source code
editor, a C++Builder editor, or any other editor supporting code templates.

6 You might have to press Alt-F1 if you are not using the default key bindings.

Marco Cantù, Delphi 2010 Handbook

24 - Chapter 1: A Better IDE

• Desktop SpeedSetting, usually managed with the corresponding toolbar
of the main form, the one with the small combo box.

• Files include the list of files of the current project (and other projects in the
group) and is available only if a project is active in the Project Manager.

• Forms filters the forms and designers of the current project, again only if a
project is active.

• New Items has elements of the New Items dialog box.
• Open Files provides fast access to any file currently open in the editor.
• Preferences filters on the individual elements of the IDE preferences (the

Tools | Options dialog box) and will open the corresponding page of the dia-
log box when selected.

• Project Options does the same with the options of the current project
(again, you need to have a project open). Finding project options by typing
their names is a superb feature I'm using a lot.

• Projects let's you jump to a project of the current project group.
• Recent Files and Recent Projects filter the recently closed source code

files and projects (which in Delphi 2010 can be customized much more than
in the past, as we'll see in the section “Many More Recent Files”).

Notice that as you start searching, the IDE Insight dialog will show only a few
elements of each category, unless you press the “Show all matches” button or
the use corresponding Ctrl+E shortcut (which toggles between showing all cat-
egories with the best match in each one or showing all matches).

Filter Wild Cards
What is less intuitive to figure out is that you can use wild cards when typing in
this search box (and most other search boxes available in the IDE):

• ? will match any single character
• * will match zero, one, or more characters

Notice that an implicit * is automatically added both at the beginning and at the
end of the search text to match sub strings. The same wild cards work in most
of the other filtered search dialog boxes added to the IDE.

Marco Cantù, Delphi 2010 Handbook

Chapter 1: A Better IDE - 25

Advanced: Customizing IDE Insight
Warning: This is an advanced section using Delphi's Open Tools API.
If you are not interested in extending the Delphi IDE or have never
used such a low-level API, you might want to skip this section.

The list of elements in the IDE Insight is quite extensive, but there are certainly
many others you might want to add to it. This is why the Delphi 2010 has a new
Open Tools API (the extensions you can register with the IDE) specifically
intended for adding custom IDE Insight entries. In this and the next chapter,
I'll be covering a couple of specific IDE extensions written using the Open Tools
API, but we have no room to discuss it from a broad perspective7.

Here I'm going to show you a trivial example, which has no particular goal
other than adding an entry to that window. There are certainly several interest-
ing ways to extend IDE Insight, from presenting existing Delphi files and
projects to open (after searching some folders) to integrating more sophistic-
ated bookmarks, from code search on web sites to hooking up help pages.

Although I don't have room for a detailed coverage of the architecture of
Delphi's Open Tools API, here I'm presenting a demo that can get you started
in creating your own IDE Insight extensions.

The service interface you have to call to interact with this portion of the IDE is
called IOTAIDEInsightService. One of its methods, AddItem, lets you add
an element to the IDE Insight window. You can do this when registering the
given unit of your design time package:
var
 firstIDEInsight: INTAIDEInsightItem;

procedure Register;
begin
 firstIDEInsight := TIDEInsightTest.Create('First Test');
 (BorlandIDEServices as IOTAIDEInsightService).AddItem(
 firstIDEInsight, 'Cantools');
end;

7 In the first few years of Delphi, there was some extensive documentation of the Open
Tools API, which was originally way more limited than it is today. Now there are some
online references, often not really up-to-date. Even some commonly used IDE extensions
stick to low-level techniques rather than using newer portions of this API. Even though a
good part of the API methods are commented in the ToolsApi unit, it is true that it is far
from trivial to start using it. I have written papers on this topic in the past and presented
it at conferences, but I've not been able to publish anything on the topic since Delphi 3!

Marco Cantù, Delphi 2010 Handbook

26 - Chapter 1: A Better IDE

The code first creates an object of the TIDEInsightTest class, which imple-
ments the required INTAIDEInsightItem interface as you'll see shortly;
second, it adds that item to a new section of the IDE Insight window (called
'Cantools' after all of my IDE extensions).

There is further code in the unit to remove the IDE Insight item before the
package is unloaded:
procedure RemoveIDEInsight;
begin
 (BorlandIDEServices as IOTAIDEInsightService).
 RemoveItem (firstIDEInsight);
 firstIDEInsight := nil; // it is an interface
end;

initialization

finalization
 RemoveIDEInsight;

The core of the code is in the TIDEInsightTest class, which implements the
INTAIDEInsightItem interface and the basic IOTANotifier interface. The
class is defined as follows, with the methods grouped by interface:
type
 TIDEInsightTest = class (TInterfacedObject,
 INTAIDEInsightItem, IOTANotifier)
 private
 fFileName: string;
 fDescription: string;
 public
 constructor Create (const fName: string);

 { INTAIDEInsightItem }
 function DrawText(Canvas: TCanvas; Rect: TRect;
 var DrawDefault: Boolean; DoDraw: Boolean = True): Integer;
 procedure Execute;
 function GetDescription: string;
 function GetDescriptionSearchable: Boolean;
 function GetGlyph(Bitmap: TBitmap): Boolean;
 function GetSticky: Boolean;
 function GetTitle: string;
 function GetVisible: Boolean;
 procedure Update;
 { IOTANotifier }
 procedure AfterSave;
 procedure BeforeSave;
 procedure Destroyed;
 procedure Modified;
 end;

Marco Cantù, Delphi 2010 Handbook

Chapter 1: A Better IDE - 27

Most of the methods have a rather trivial implementation, with the constructor
taking a string parameter that is later returned as the item title. The descrip-
tion, instead changes every time the Update method is called:
constructor TIDEInsightTest.Create(const aName: string);
begin
 fName := aName;
 fDescription := 'Sample IDE Insight entry';
end;

function TIDEInsightTest.GetTitle: string;
begin
 Result := fName;
end;

function TIDEInsightTest.GetDescription: string;
begin
 Result := fDescription;
end;

procedure TIDEInsightTest.Update;
begin
 fDescription := 'Sample IDE Insight entry, last updated at: ' +
 TimeToStr (Now);
end;

You can see the effect of these definitions in the image below, taken from the
IDE Insight pane after installing the package with this custom extension:

As a user selects the new item, the Execute method IDE Insight object is
called. In my case the implementation is not terribly interesting, but you can
see the output along with the source code of its Execute method:

Marco Cantù, Delphi 2010 Handbook

28 - Chapter 1: A Better IDE

Again, this is only an example showcasing the technology, not useful in itself.
The ability to plug in custom actions in the IDE as you customize it beyond the
planned activities (new components, new wizards, new Live Templates, new
Tools configurations) is a significant change from the past. Let's hope open
source communities and developers of Delphi paid add-on tools take advantage
of this feature.

The Delphi 2010 Editor
The Delphi 2010 editor sees limited changes, some of which are interesting in
terms of usability. Let me start with the most simple ones.

Since the early days of Delphi, and of its Turbo Pascal predecessor, developers
using this language have got the habit of indenting their source code with two
spaces rather than a tabulator, which is a more common approach in other lan-
guages. That's why the Tab key has been neglected for so much time, contrary
to other development environments.

In the editor of Delphi 2010, if a code block (of one or more lines) is high-
lighted the Tab key will indent it, while pressing Shift+Tab will unindent it.
This is exactly like using the Ctrl+Shift+I and Ctrl+Shift+U key combination
that have been available for a long time. As you can see the only reason for this
change is to help developers coming from other development environments or
those who regularly have to use more than one.

Another small but nice feature is the ability to move editor bookmarks (which
have been persistent between editing sessions since Delphi 2007) to different
lines by dragging them in the gutter at the side of the editor. There is a specific

Marco Cantù, Delphi 2010 Handbook

Chapter 1: A Better IDE - 29

icon that gets displayed during this drag operation. As we'll see in the next
chapter, a similar dragging operation is available also for breakpoints and
(believe it or not) the instruction pointer.

Among new options there is the ability to show all of the search matches (a new
feature, discussed next) and to disable code folding (which was previously only
available through a registry setting).

As you search for a term, all search terms found in the current file will be high-
lighted, using the color specified as “Additional search match highlight”8 (worth
mentioning because I think you might really want to change the default, which
I don't particularly like).

The Search Pane
In past versions of Delphi you could use the Ctrl+F combination (or the Search
| Find menu command) to open a search dialog box, and afterward press F3 to
search for the next occurrence of the term. A common alternative was to use
the less powerful, but faster to use, Ctrl+E combination (invoking the Search |
Incremental Search command), and then start typing in the editor status bar
and jump to the searched element while typing.

Both Find and Incremental Search commands show specific search panes at
the bottom of the editor, making the former easier to use but keeping the dif-
ference in the behavior. When you call Find you get the pane above but need to
press Enter (or click on one of the arrow buttons) to activate the search; when
you use Incremental Search you search as you type but have fewer options:

In both cases the number of matches is displayed and all elements found that
are visible in the editor will be highlighted. Notice also that while you can use
the arrow keys to move from a match to the next one and back, the classic F3
key and Shift + F3 keys still work. A related new feature is that as you get to the
end of the file, Delphi will ask you to “Restart search from the beginning of the
file” and let you make the “wrap around” setting permanent. (You'd late be able

8 In the Editor options | Colors page of the Options dialog box, this color is the last entry in
the Elements list.

Marco Cantù, Delphi 2010 Handbook

30 - Chapter 1: A Better IDE

to change this setting in the main page of the Editor
options.) In any case the wrap status is displayed at the
right end of the pane, as shown here on the side.

Searching with Directory Groups
These improved file searching capabilities relate to finding information in the
current file in the editor. For searching multiple files in the editor, in the cur-
rent project, or in a given folder and its sub-folders, Delphi provides the Search
| Find in Files command (or Ctrl+Shift+F).

This dialog box was made more flexible in Delphi 2010 by adding support for
searching in multiple folders and for user-defined Directory Groups, a set of
folders the user can refer to
using a name. The find in
Folders pane of the Find in
Files Dialog box looks like on
the side here.

In the Directories combo box
you can have one or more
folders, while in older versions of Delphi you could enter only one folder name.
There is also a second button, with a new relevant behavior:

• The first button on the right (the one with a single folder) lets you pick
one folder as in the past

• The second button (the one with two folders), opens up a new Select
Directories dialog, displayed below).

You can now type the folder names, or pick a folder on each line with the
upper button (with the folder), and cleanup invalid paths with the second
button (the X over the page).

Marco Cantù, Delphi 2010 Handbook

Chapter 1: A Better IDE - 31

The bottom portion of the dialog can be used to give a name to a group of
folders, which can later be used among the directories to search by prefixing
the name with the @ sign. If in doubt, you can add a group to the list in
the upper half of the dialog using the up arrow button (here on the right)
that shows up as you select a group name in the combo box:

The actual line listed in the search dialog (which you can also type manually)
would be like:
C:\Users\Marco\Documents\RAD Studio\Projects;@examples

The Code Formatter
Many Delphi developers have long relied on third-party source code formatters
to clean up the layout of existing code and promote company standards. Even if
late to the game, Delphi itself now includes code formatting capabilities, with
enough flexibility built into the system to make it worthwhile (even in what is
clearly a first attempt, but still a good one).

Marco Cantù, Delphi 2010 Handbook

32 - Chapter 1: A Better IDE

The Code Formatter is invoked with the Format Source command of the local
menu of the editor or with the corresponding Ctrl+Alt+F shortcut. If there is
some text selected in the editor, the formatting will be applied only to the selec-
tion, if not to the entire source code file. There doesn't seem to be a direct way
to reformat the source code of all of the files in a project on opening the editor,
although it might not be too difficult to write an IDE extension to accomplish
this.

Despite the fact that there are some Delphi source code formatting guidelines,
it is very difficult to find perfect agreement among different Delphi program-
mers on how exactly the code should be written. Formatting is generally subject
of intense debate. The new source code formatter in Delphi 2010 provides 54
different options to fine tune its behavior. Granted this won't satisfy one mil-
lion different formatting styles (one for each Delphi developer!), but it comes
reasonably close.

One of the goals is at least to let developer format source code using the stand-
ard style used within the VCL source code and for the code generated at design
time. This is almost the case with absolutely minimal exceptions, as long as you

Marco Cantù, Delphi 2010 Handbook

Chapter 1: A Better IDE - 33

keep the default settings. You can see some of the options in the screen shot in
the previous page, but I won't cover each of them in detail as they are quite
intuitive and the help section at the bottom of the pane is quite informative.

The proof of the quality of the code formatter would be in its actual use by the
Delphi community, and although I anticipate this feature will find its strong
detractors, I've had a limited but positive experience with it (using it to cleanup
the source code for this book) and think that a fair number of developers will
get used to it.

By the way, I find it quite odd that there isn't an option to apply the active
formatting style to all files of a project. Doing this unit by unit can be extremely
tedious.

Live Templates and Code Completion
There are some very minor improvements to refactorings and live templates,
including three new live templates, in Delphi 2010. All of them are quite trivial.
There is a raise template and a todo template, producing the following two
lines of code respectively:
raise ExceptionType.Create('Error');
{TODO -oOwner -cGeneral : ActionItem}

The third new live template is a variation of the class declaration, called
classf, which produces the same code of the class template without com-
ments in each section.

Speaking of refactorings, even if there are no brand new capabilities it is cer-
tainly worth noting that the Rename, Change Parameters, and Extract Method
refactorings now work on generic types.

Finally, you can add the reserved words to Code Completion, by enabling the
“Show reserved words” check box of the Editor Options | Code Insight page of
the Options dialog box. This options becomes handy when you have to type
some rather long reserved words like initialization or resourcestring.

Marco Cantù, Delphi 2010 Handbook

34 - Chapter 1: A Better IDE

The Project Manager
There are enough small changes in the Project Manager to devote a small sec-
tion to it. Being one of the most commonly used panes of the IDE, even minor
changes in it become significant. Before we look into this, let me underline that
project files (the new .dproj format used by MSBUILD and introduced in
Delphi 2007) remain identical to Delphi 2009, to the point that they even carry
the same version number 12.0. The actual version number of Delphi 2010, in
fact, is 149.

This is a snippet of the initial section of a new Delphi 2010 project file includ-
ing the version information:
<Project xmlns="http://schemas.microsoft.com/...msbuild">
 <PropertyGroup>
 <ProjectGuid>{F7C0ED24-7449...}</ProjectGuid>
 <ProjectVersion>12.0</ProjectVersion>
 <MainSource>SimpleTest.dpr</MainSource>
 <Config Condition="'$(Config)'==''">Debug</Config>
 <DCC_DCCCompiler>DCC32</DCC_DCCCompiler>
 </PropertyGroup>
 ...

The fact that there was no change in the version number means you can dir-
ectly open Delphi 2009 projects in 2010 and vice verse, with no conversions or
any hidden changes.

After this brief introduction to the project files format, here are the new fea-
tures of the Project Manager:

• Where there are multiple projects open in
the Project Manager, the project group
local menu will also have the Compile All,
Build All, and Clean All commands, as
shown here on the side. Individual project
nodes have a new From Here menu item,
with a sub-menu hosting the three Compile
All From Here, Build All From Here, and
Clean All From Here commands.

9 The reason the Delphi internal version number (not to be confused with the compiler
version number, which is currently at 21.0) jumped from 12 to 14, is the same you won't
find floor 13 in a US hotel or row 13 on a plane: that number is associated with bad luck!

Marco Cantù, Delphi 2010 Handbook

Chapter 1: A Better IDE - 35

• You can drag a file from the editor to the Project Manager window to add it
to the current project.

• The local menu of a project has a new Sort By menu that let's you sort the
project's units by Name, Modified Date, Type, or Path. If you keep the Auto
Sort option on, the setting will be applied to any new unit added to the pro-
ject and in case status of a unit changes. If Auto Sort is off, the sorting
option you enable will be applied only once. In case you manually reorder
one of the units of the project, the Auto Sort options will be turned off.

• The Project Manager toolbar has a sort button that let's you define the sort
order for all of the open projects and also preset some default sort options.

• In case of package projects, there is a new Uninstall menu. Notice that you
don't generally need to use this command, as when you Compile or Build a
package, if this is already installed it will be automatically uninstalled before
compiling it and reinstalled after the compilation. In specific circumstances,
though, it is handy to remove a package directly from the Project Manager.

• Notice also that depending whether the package is installed or not
its icon in the Project Manager changes, with the small gear turn-
ing from gray (not installed) to yellow (installed). This icon with
the gear is used by design time packages, while run time packages
have the base icon with no gear (they cannot be installed in the IDE).

• By the way, you can now also select multiple packages in the Project Man-
ager and perform an Install operation on all of them at once, using the local
menu of the Project Manager.

Build All and Active Project
There is another significant change (which I don't like really) in the way the
project manager behaves when building multiple projects. What used to hap-
pen when doing a Build All was that each project would become the active
project in turn and you could use this visual clue to see the progress of a long
compilation. Now you get information about each project while it compiles, but
no overall view.

Another difference, and possibly the reason for this change, is that at the end of
the multi-project compilation the current project doesn't change. If you debug
a project, do a rebuild all, and than start debugging again you'll be working on
the same project, regardless of their sequence. This is actually quite nice, but I
wish the two effects (display the current project being compiled, plus restoring

Marco Cantù, Delphi 2010 Handbook

36 - Chapter 1: A Better IDE

the one you were working on at the end of the compilation) could be combined,
rather than adding one at the expense of the other.

The Object Inspector
Even if the changes to the Object
Inspector in Delphi 2010 are limited,
they are certainly worth a look, consider-
ing that this is a window developers
generally spend a lot of time working
with. The first noticeable change is the
new property editor for Boolean values,
which displays a check box you can use
to toggle the value (although the drop
down list with True and False is still available).

The Description Pane
Two more changes are visible at the bottom of the Object Inspector. First, there
is now a Description pane at the bottom of the Object Inspector. This pane (ori-
ginally introduced in the IDE during the devel-
opment of Delphi for .NET) is supposed to show
information about the current property, but all it
does is repeat the property name. This seems
quite a waste: You can reduce its size to a single
line (or even less than a line), but there is no
obvious way to remove it altogether.

Since I really don't like it, I've written a small
informal10 IDE plugin to get rid of it. The unit
that removes that pane is part of the CustomInsight package. In its Register

10 An informal plug-in of the Delphi IDE, in my personal jargon, is one that doesn't use the
Open Tools API but manipulates IDE object directly, something that can easily be done
considering the Delphi is itself a VCL application, so you can reach for the global
Application and Screen objects and ... look around.

Marco Cantù, Delphi 2010 Handbook

Chapter 1: A Better IDE - 37

procedure it looks for the Object Inspector windows by scanning the
Screen.Forms list, finds the component called DescriptionPane, and sets its
Height property to zero. The skeleton of the code (without some of the needed
tests) is the following:
function FindObjectInspector: TComponent;
var
 I: Integer;
begin
 Result := nil;
 for I := 0 to Screen.FormCount - 1 do
 if Screen.Forms [I].ClassName =
 'TPropertyInspector' then
 Exit (Screen.Forms [I]);
end;

procedure Register;
var
 aComp: TComponent;
begin
 aComp := FindObjectInspector;
 aComp := aComp.FindComponent('DescriptionPane');
 (aComp as TControl).Height := 0;
end;

The Component Editor Pane
The second new pane is an area devoted to the component editor menu items,
following the style used by Visual Studio. Traditionally in Delphi component
editors (that is, special actions you can perform on given components at design
time) showed up in the local menu of the
designer, once the component was selected.
Now, while the commands in the local menu are
still there, the same information is visible in
another pane at the bottom of the Object
Inspector, as you can see here on the side for the
ClientDataSet component11. This new user inter-
face makes the component editor commands
easier to reach not only for developers using
Visual Studio, but even for most existing Delphi

11 Notice that in this case I've removed the Object Inspector status bar and reduced the De-
scription pane to the minimum, without using the IDE plug-in covered earlier.

Marco Cantù, Delphi 2010 Handbook

38 - Chapter 1: A Better IDE

users, as you often could only use the component local menu to figure out if a
editor was available, while now this is clearly visible once a component has
been selected.

Notice you can now select the component with the combo box of the Object
Inspector and activate its Component editors, without having to make it visible
in a designer as it was the case until Delphi 2009.The Return of Component
Toolbar

Other IDE Features
Beside the new IDE Insight capability and the new features that relate with the
editor, there are other changes that are worth highlighting, from background
compilations to the Components toolbar.

Background Compilation
While in the past compiling a large application would force you to stop using
the IDE while the operation was taking place, in Delphi 2010 you can turn on
background compilation. This is not meant to speed up the compilation, but
only to avoid blocking the IDE while doing so.

Considering Delphi compilation speed, this is hardly noticeable for the average
application, but when compiling a large project group that takes some time it
certainly can be nice to keep working while Delphi is compiling. When you turn
on this setting, keep in mind that Delphi will take a sort of snapshot of the files
in the editor during a background compilation, so that the changes you perform
after issuing a compilation request won't be seen by the compiler.

How can you take advantage of this feature? An example would be looking at
the source code files for warnings the compiler has already issued, while it
keeps compiling. Another options could be adding breakpoints. You can also
edit files, but this won't make a lot of sense if you plan debugging your program
after you've compiled it. In fact, when you issue a Run (or F9) command, back-
ground compilation won't be used, regardless of your settings. The same
happens for a Step Over (F8) command.

Marco Cantù, Delphi 2010 Handbook

Chapter 1: A Better IDE - 39

Still, running a compilation while you keep writing more code will reduce fol-
lowing compile times and (at times) improve the reliability of the Code Insight
information, like Error Insight.

In any case there is a long list of other operations you cannot do during a back-
ground compilation, from changing compiler options to closing a project or
activating another one, from using any refactoring to executing another compil-
ation, from installing packages to starting the debugger. The full list is available
in the Delphi 2010 help file under:
ms-help://embarcadero.rs2010/rad/Background_Compilation.html

The Return of the Component Toolbar
In Delphi 2010 there is now an option to display the components visible in the
Tool Palette in a toolbar below the main menu12. This is extremely similar to
how the Component Toolbar used to look like in Delphi 7 and before), and the
feature has been specifically added as a way to convince some of the Delphi 7
aficionados to migrate to a new version:

You can actually go to some extreme and make Delphi 2010 look almost exactly
like Delphi 7. This was covered in a short video by Andreano Lanusse of
Embarcadero Technologies at:
http://blogs.embarcadero.com/andreanolanusse/how-to-configure
-delphi-2010-to-look-work-and-feel-like-delphi-7/

The new toolbar, visible in the image above, has the classic tabs to pick on of
the pages plus a local menu with the tabs in alphabetic order13 and a Search box
active like a component filter (removing pages with no matching components).

12 The code of the new Component Toolbar was originally part of the “Andy's DDevExten-
sions” and was donated to the product by Andreas Hausladen.

Marco Cantù, Delphi 2010 Handbook

40 - Chapter 1: A Better IDE

You can drag the tabs to reorder them (they'll start by matching the sequence in
the Tools Palette).

There is also a specific page of the Options dialog that you can use to fully cus-
tomize and configure the Component Toolbar, as you can see below. Notice that
if you change the Component Toolbar configuration, this won't stay in sync any
more with the Tools Palette, which is the default behavior.

Speaking of the Tools palette, you can now rename Palette categories (like
those hosting the components) using a new corresponding menu. The Palette
has another new feature: it remembers the current position (with the current
open categories) when switching designers.

13 In case you are wondering what the Win 3.1 tab is for, its hosts a set of very old VCL con-
trols that pre-date Windows 95 and have been kept around for compatibility reasons.
Nothing to do with the development of 16-bit applications for Win 3.1, a feature available
only in the first version of Delphi, many years ago.

Marco Cantù, Delphi 2010 Handbook

Chapter 1: A Better IDE - 41

Many More Recent Files
In Delphi the lists of recent projects and files have always been limited to a
fixed size, 5 for projects and 10 for files (units). Now in the File | Reopen menu
you can pick the Properties command and open up a configuration dialog box,
which lets you both change that number and and clean up the list, by removing
non-existing files and individual entries you don't care about:

Although this is a nice addition, I think I'd still prefer using the project man-
agement features of the Welcome page, which let's you pick specific projects
and mark them as favorites, so that they remain available over time. In the
Welcome page you can also group favorite projects and manage these categor-
ies. If you are used to that (like I am), the extensions to the recent files will help
you only with individual files and units, not with projects. Though using both
techniques together gives the best of both worlds.

Keep in mind, though, that the recent files can be stored on a project by project
basis, when you let Delphi save Project Desktop settings. In this case the list of
recent files depends on the active project, which is not a bad idea after all. That
list, though, cannot be managed in the same way of the global one.

Marco Cantù, Delphi 2010 Handbook

42 - Chapter 1: A Better IDE

There is a problem that might happen if you increase the number or files or
projects and your screen has a limited resolution. In case the second level menu
with the list of projects and files doesn't fit on the screen, it will simply not
show up at all (rather than showing a partial list)! This is a bug of the PopupAc-
tionBar control used by the IDE and the only work around is to reduce the
number of items in the list.

Use Unit Dialog
Among the dialog boxes that have been made to look more modern, there is
certainly the Use Unit dialog box, displayed below in both the Delphi 2010 and
“classic” Delphi 2009 versions. This dialog box also shows a small new feature,
the ability to add the unit you are interested in to the uses statement of the
interface section of the current unit or to the uses statement of the
implementation section (which was the only option in the past). Again, you
can now search a unit with the filter at the top of the dialog box.

Updates to the Gallery
The last dialog box that I want to mention is the Gallery, or New Items dialog
box. As many other windows, it now has a search box to filter its content (con-
tent that also shows up in IDE Insight), but also has some changes in its
behavior.

Marco Cantù, Delphi 2010 Handbook

Chapter 1: A Better IDE - 43

Rather than showing only the available options for the current context, as
happened in the past, the Gallery now shows all of the possible new items:
those not available for the current context are grayed out. This makes it easier
for users to find things, and also to figure out what is currently not available. In
the past, at times one had to go through many pages looking for something that
was simply not there because it was not available for the current context. It
used to be quite annoying.

Another update to the New
Items dialog box relates to the
selection of a new text file
(Other Files | Text File). Rather
than simply opening a new
blank text file, the Delphi IDE
now asks for an extension and
whether you want to add the
file to the project. This way
adding an .INI file, an XML file,
or other configuration file to
your projects becomes easier.
The New file dialog box has the
long list of extensions partially
visible in the image on the side.

The list of extensions can be
modified using the same dialog box and is stored in the Registry using the Exts
key under:
HKEY_CURRENT_USER\Software\CodeGear\BDS\7.0\TNewFileDlg

View Messages
The View menu has a new command, View | Messages, that lets you open the
message pane at the bottom of the editor. When you compile a program that
has errors or warnings, that pane is opened automatically. In case there are no
errors, you might still want to look at the information about the compilation
added to the Output tab (with the command line executed for compiling) or the
Build tab, like the following:
Checking project dependencies...

Marco Cantù, Delphi 2010 Handbook

44 - Chapter 1: A Better IDE

Compiling Project33.dproj (Debug configuration)
Success
Elapsed time: 00:00:01.2

Oddly enough, since this output was added in Delphi 2007, there was no way to
see it for a successful compilation (unless the Message pane was already open
because of a previous compilation error).

What's Next
In this chapter I focused on the new features of the IDE and the editor of
Delphi 2010, but I actually skipped a significant area of the IDE, the debugger.
The reason is that there are quite a few interesting new features for the debug-
ger, so I wanted to devote its own chapter to this specific topic.

In Chapter 2, I won't simply look at new features of the debugger but will also
cover new debugger customizations.

Marco Cantù, Delphi 2010 Handbook

Chapter 1: A Better IDE - 45

Marco Cantù, Delphi 2010 Handbook

46 - Chapter 1: A Better IDE

Marco Cantù, Delphi 2010 Handbook

Chapter 2: The Debugger - 47

Chapter 2: The
Debugger

One area of the Delphi Integrated Development Environment that has seen a
significant number of improvements is the Integrated Debugger. This is one of
the reasons why I decided to devote a specific chapter to this topic even if it is a
short one.

The second reason is that the Delphi Debugger is more powerful than most
developers realize and it often an underused area of the product, with many
little known features, and by covering it specifically I hope to reverse this trend.

I'll start the chapter with a new nifty feature, dragging the instruction pointer,
look at various UI and functional changes, and spend the final part of the
chapter focusing on the new debugger visualizers.

Dragging the Instruction Pointer
We have seen in the last chapter that in gutter of the Delphi editor you can now
drag bookmarks and also breakpoints. This can be useful, but is not that

Marco Cantù, Delphi 2010 Handbook

48 - Chapter 2: The Debugger

important, as creating a new bookmark or thread is generally a matter of a click
(although a bookmark with complex rules will take some time to configure).

A similar dragging operation is also available (believe it or not) for the instruc-
tion pointer (or IP). This means that while you are debugging an application,
you can move the instruction pointer forward, skipping some statements or
move it back, executing a statement a second time. In between, of course, you
can alter a local variable or perform other operations as usual.

Let me illustrate this new feature, that I find extremely powerful, with an
example. Suppose you have this code (which is part of the MoveIP demo);
procedure TForm39.Button1Click(Sender: TObject);
var
 X, Y: Integer;
begin
 X := 100;
 Y := 50;
 Left := X;
 Top := Y;
 X := X + Y;
 (Sender as TButton).Caption := IntToStr (X);
end;

If you place a breakpoint on the first line, and start stepping into the statements
(pressing F8), you can get to the line in which you add X and Y, as in the follow-
ing image:

Now you can press F8 again, to execute that line, move the mouse over the
instruction pointer (the left-to-right light blue arrow), drag it back to the addi-
tion, and repeat the process a few time. This way you can execute the same
statement multiple times, increasing the value of X. In more practical situ-
ations you can repeat an operation after changing some variables rather than
having to stop the program and restart debugging. In real world situations get-
ting back to a given method can take quite some time.

Marco Cantù, Delphi 2010 Handbook

Chapter 2: The Debugger - 49

Another option would be to place the same breakpoint, execute the initial
assignment of X, move the instruction pointer to the addition (skipping the ini-
tialization of Y and the property assignments), to see what it happens in the
program. At times, it might be very handy to skip some operations and test the
following ones.

Just for fun, you can also go back to the statement adding X and Y, execute it,
move the instruction pointer back to the original assignment of X, then bump it
to the final line, and display 100 in the button's caption.

In theory you can even drag the instruction pointer to a different method, in
which case the debugger will show
you the warning displayed here on
the right side. In most cases,
though, this will result in an
access violation as the specific
code is not properly initialized
and cannot be executed.

Again, being able to change the execution flow of a program without having to
stop the debugger, actually edit the code, recompile the program, and restart
debugging getting the program again in the same status is an extremely signi-
ficant step forward for the debugger. In my view, this is one of the most useful
new features of Delphi 2010, but it seems that it was somewhat neglected in
terms of documentation and product marketing.

Small UI Changes
In general, Delphi 2010 sees quite a few changes in terms of the debugger user
interface in addition to its new capabilities. Here I'm providing just a very short
overview. The Event Log view uses an optimized Virtual Tree View component
and adds support for multi-line output from OutputDebugString calls and
exception messages. In the same pane, when auto scrolling is enabled, you can
temporarily disable scrolling by clicking on the pane, and resume it by selecting
the last item (pressing the End key).

In the local menus of the Local Variables view, the Watches view, and the
Debug Inspector pane, there are new commands for opening the

Marco Cantù, Delphi 2010 Handbook

50 - Chapter 2: The Debugger

Evaluate/Modify dialog box for the given symbol or expression and for creating
a new watch.

There are changes also to the CPU view, with the option of “following”
registers, but details are relevant only to those who know how to use this
debugger view (which are a very few, myself excluded). Another small but
interesting change is that the debugger tries to remember the expanded status
(that is, if you've expanded any of the properties or ancestor objects) of
watched variables and variables in the Local view. Next time you stop at a
breakpoint, the previous situation will be restored if possible.14

Debugging Threads
If debugging applications can at times become a very complex task, debugging
multi-threaded applications is always complex and can become a daunting
activity. The debugger, in fact, interferes with the flow of execution of the
threads, for example slowing the thread that is being stepped into. Also while
you are debugging a method you've placed a breakpoint in, other threads might
need to call the same method, causing a great deal of confusion.

To help you out a little bit (making things a little more manageable, even if still
very complex) the debugger in Delphi 2010 introduces a few thread-oriented
operations.

First, when you set a break-
point you can tie it to a
specific thread. This is partic-
ularly handy when placing a
breakpoint in a method or
routine executed by multiple
threads. If you name the
threads, you'll see a list with
the names of the active
threads, as in the image,

14 More information about the fix to this long-standing issue in Chris Hesik blog at:
http://blogs.embarcadero.com/chrishesik/2009/10/06/34989

Marco Cantù, Delphi 2010 Handbook

Chapter 2: The Debugger - 51

which will remain valid for following debug sessions. If the threads have no
name, you'll get the IDs of the threads being executed. The option to specify a
given thread for a breakpoint is available for Source Breakpoints (the com-
monly used ones), the Address Breakpoints, and also for Data Breakpoints.

Once a thread (the main thread or a secondary one) is stopped in the debugger,
you can take control of the threads' execution. In the Thread Status View pane,
in fact, you can use new local menu commands for freezing and thawing (that
is, unfreezing) a given thread or all threads except the current one:

As you can see in the previous image, the status of the thread named MyThread
is now frozen, after calling the Freeze command for the given thread.

For experimenting with threads in the
debugger I've create a basic application
that uses named threads, called Named-
Threads.

If the ability to create named threads
was already in Delphi 2009, the code
generated by the Thread Wizard of the
New Items dialog box is considerably
different. In Delphi 2009 the code of
your named thread will include the fol-
lowing:
procedure TMyThread.SetName;
var

Marco Cantù, Delphi 2010 Handbook

52 - Chapter 2: The Debugger

 ThreadNameInfo: TThreadNameInfo;
begin
 ThreadNameInfo.FType := $1000;
 ThreadNameInfo.FName := 'MyThread';
 ThreadNameInfo.FThreadID := $FFFFFFFF;
 ThreadNameInfo.FFlags := 0;

 try
 RaiseException($406D1388, 0,
 sizeof(ThreadNameInfo) div sizeof(LongWord),
 @ThreadNameInfo);
 except
 end;
end;

procedure TMyThread.Execute;
begin
 SetName;
 { Place thread code here }
end;

Now the same code, in Delphi 2010, is part of a new class method of the
TThread class, called NameThreadForDebugging, so the same code becomes:
procedure TMyThread.Execute;
begin
 NameThreadForDebugging('MyThread');
 { Place thread code here }
end;

The same class method can also be called from the main thread, to give it a
thread name like “Main”. Again, doing so let's you refer to the main thread in a
standard way between consecutive debug sessions.

Getting back to the NamedThreads example, it has a thread that computes a
string with the current time by calling a trivial global function:
function CurrentTimeAsStr: string;
begin
 Result := TimeToStr (Now);
end;

This single line of code is called by both the secondary thread, in its own con-
text, and by the main thread. Calling a synchronized method of the main form
would have defeated the example altogether, as I need a single function called
in two different threads to demonstrate placing a thread-specific breakpoint.

The thread calls the function is a loop that keep going until its Terminate flag
is set and uses an anonymous method for synchronizing (again calling the
CurrentTimeAsStr function within the synchronized code would have
defeated the purpose of this example):

Marco Cantù, Delphi 2010 Handbook

Chapter 2: The Debugger - 53

procedure TMyThread.Execute;
var
 strTime: String;
begin
 NameThreadForDebugging('MyThread');
 FreeOnTerminate := True;

 while not Terminated do
 begin
 sleep (1000);
 strTime := CurrentTimeAsStr;
 Synchronize(procedure ()
 begin
 FormNamedThreads.Log ('MyThread: ' + strTime);
 end)
 end;
end;

The global function CurrentTimeAsStr is called also by the main thread in the
handler of an OnTimer event:
procedure TFormNamedThreads.Timer1Timer(Sender: TObject);
begin
 Log ('Main: ' + CurrentTimeAsStr);
end;

Other than that, the main form has code for creating and freeing a single
instance of the thread object. You can experiment with this project by placing a
breakpoint in the CurrentTimeAsStr function and try stepping into the first
thread that stops, first with no freezing and later freezing the other thread.
Notice that if you freeze the main thread, the Synchronize call won't return
(because it needs to execute code in the context of the main thread, which is
blocked), effectively blocking also the secondary thread. In this case (with no
thread blocked in the debugger), you cannot thaw the frozen thread. What you
can do, instead, is pause the program: at that point the Thread Status View will
let you issue the various freezing and thawing commands.

Debugger Visualizers
Another useful change in the architecture of the Delphi debugger is the ability
to plug in specific visualizers for complex data structures. For example in the
past when looking at a TDateTime variable, you'd see its internal floating point
value. In Delphi 2010, instead, one of the pre-installed visualizers lets you see
the date and time value in a specific and more meaningful way. This is quite

Marco Cantù, Delphi 2010 Handbook

54 - Chapter 2: The Debugger

obvious if you compare the Delphi 2009 view of a local TDateTime variable on
the left with the Delphi 2010 one on the right:

You can see this visualizer by experimenting with the DebugVisual project of
the current chapter. There aren't many such visualizers pre-installed in the
Delphi IDE. One of them is the TDateTime Visualizer, and the other is a
TStrings Visualizer, as you can see in the new page of the Options dialog
(Debugger Options | Visualizers) showing the visualizers configuration:

The good news, however, is that third parties can build and plug-in their own
custom visualizers into the IDE. You can do the same for any specific data
structures you tend to work with. The two predefined visualizers are examples
of the two different kinds of visualizers available in Delphi. A value replacer,
like the TDateTime Visualizer displayed earlier, shows its value directly in
place of the default one the debugger would display (including the Evaluator
Tooltips, the Watch View, the Locals
View, the Evaluate/Modify dialog, and
the Debug Inspector View. An
external viewer, like the TStrings
Visualizer shown in action here on the
right, adds to the default debugger rep-
resentation a magnifying glass icon,
which brings up a menu with a view
command.

Activating this command opens up a separate window, which can generally be
docked alongside the others panes of the IDE. This is the viewer of the
TStringsVisualizer, the only one external viewer supplied with Delphi 2010:

Marco Cantù, Delphi 2010 Handbook

Chapter 2: The Debugger - 55

Advanced: Visualizer Internals
Warning: This and the next are two advanced sections using the Open Tools
API. If you are not interested in extending the Delphi IDE or have never used
such a low-level API, you might want to skip the remainder of this chapter.

With only two visualizers available, it is quite clear that what is important is the
plug-in ability, and the possibility for a power user to configure this feature
more than what's already in the box (and also to distribute its visualizers just
like other IDE extensions). This is why it is worth looking behind the scenes,
opening up another new area of the Open Tools API, just like I did in Chapter 1
regarding customization of the IDE Insights.

This time less effort is needed, because Delphi 2010 ships with the complete
source code of its two ready-to-use visualizers, which provide good blue prints
for experiments. The code is in the Win32\Visualizers section of the source
code that comes with the Delphi installation (under Embarcadero\RAD
Studio\7.0\source).

If you look in the ToolsAPI unit (the unit hosting most of the Open Tools API
interface), you can see that the IOTADebuggerServices interface has a new
method for installing a visualizer in the IDE:
procedure RegisterDebugVisualizer(
 const Visualizer: IOTADebuggerVisualizer);

The parameter is an object implementing the IOTADebuggerVisualizer
interface, which provides the overall information about the visualizer like its
unique name, a description, and the data types to which it can be applied. The
visualizer object must also implement one of the two specific interfaces for the
two types of visualizers I mentioned earlier:

Marco Cantù, Delphi 2010 Handbook

56 - Chapter 2: The Debugger

IOTADebuggerVisualizerValueReplacer
IOTADebuggerVisualizerExternalViewer

The first has a method receiving a string with the value to be evaluated and
returning a different one, after some custom processing; the second has a
method to let you add an entry to the type inspection menu item and a second
method executed when the menu item is invoked. You can have only one value
replacer for each data type, while you can have multiple external viewers.

Building an external viewer is more complex, as you'll have to integrate the
user interface with the IDE, providing docking support by implementing the
other Open Tools API interface, and provide a way to refresh the output
depending on the status of the debugger. You obtain this integration by imple-
menting the IOTADebuggerVisualizerExternalViewerUpdater interface,
which has four rather complex methods. That's why here I'll build a value
replacer15.

Building a Value Replacer for UCS4Char
Before we delve into the development of a debugger visualizer, let me point you
to a specific situation in which the debugger provides limited information
about the values of a type. Consider the following code snippet, which is part of
the DebugVisual example which is also used to demonstrate the other debugger
visualizers.
procedure TForm39.btnUcs4CharClick(Sender: TObject);
var
 ch: UCS4Char;
begin
 ch := Ord ('ù');
 ShowMessage (Character.ConvertFromUtf32 (ch));
end;

If you put a breakpoint in the code above and look to the value of ch, you'll see
its numerical value, not the character is
represents, as shown on the right. It
would be nice to see the accented letter,
something we can now do thanks to this
new feature.

15 Refer to the source code of the TStringsVisualizer for an example of the other type
(which is certainly more interesting, but also quite complex).

Marco Cantù, Delphi 2010 Handbook

Chapter 2: The Debugger - 57

To install a custom visualizer we have to create a design time package that
requires the designide.dcp package and add a unit with a class implement-
ing two debugger visualizer interfaces (the base one and the specific one) plus
the IOTAThreadNotifier interface.

The class must provide all of the methods (here grouped by interface), even if
most of them will have an empty implementation:
type
 TDebuggerUcs4CharVisualizer = class (
 TinterfacedObject, IOTADebuggerVisualizer,
 IOTADebuggerVisualizerValueReplacer, IOTAThreadNotifier)
 public
 { IOTADebuggerVisualizer }
 function GetSupportedTypeCount: Integer;
 procedure GetSupportedType(Index: Integer;
 var TypeName: string; var AllDescendants: Boolean);
 function GetVisualizerIdentifier: string;
 function GetVisualizerName: string;
 function GetVisualizerDescription: string;

 { IOTADebuggerVisualizerValueReplacer }
 function GetReplacementValue(const Expression,
 TypeName, EvalResult: string): string;

 { IOTAThreadNotifier }
 procedure EvaluteComplete(const ExprStr: string;
 const ResultStr: string; CanModify: Boolean;
 ResultAddress: Cardinal; ResultSize: Cardinal;
 ReturnCode: Integer);
 procedure ModifyComplete(const ExprStr: string;
 const ResultStr: string; ReturnCode: Integer);
 procedure ThreadNotify(Reason: TOTANotifyReason);
 procedure AfterSave;
 procedure BeforeSave;
 procedure Destroyed;
 procedure Modified;
 end;

The methods implementing the IOTADebuggerVisualizer interface provide
information about the debugger visualizer, including the name and description
that will be displayed in the Debugger Options | Visualizers page of the Options
dialog box, covered earlier:
function TDebuggerUcs4CharVisualizer.
 GetVisualizerIdentifier: string;
begin
 Result := ClassName;
end;

function TDebuggerUcs4CharVisualizer.ù
 GetVisualizerName: string;
begin

Marco Cantù, Delphi 2010 Handbook

58 - Chapter 2: The Debugger

 Result := 'Ucs4Char Visualizer for Delphi';
end;

function TDebuggerUcs4CharVisualizer.
 GetVisualizerDescription: string;
begin
 Result := 'Displays the Unicode string for a Ucs4Char';
end;

The last two methods return the number of types the visualizer can be used for,
and each of their names (in this case, there is only one type, making the code
much simpler):
function TDebuggerUcs4CharVisualizer.
 GetSupportedTypeCount: Integer;
begin
 Result := 1;
end;

procedure TDebuggerUcs4CharVisualizer.GetSupportedType(
 Index: Integer; var TypeName: string;
 var AllDescendants: Boolean);
begin
 AllDescendants := False;
 TypeName := 'UCS4Char';
end;

The other relevant method is GetReplacementValue of the specific interface
for this type of visualizer, IOTADebuggerVisualizerValueReplacer:
function TDebuggerUcs4CharVisualizer.GetReplacementValue(
 const Expression, TypeName, EvalResult: string): string;
var
 ch: UCS4Char;
begin
 ch := StrToIntDef (EvalResult, 0);
 Result := Character.ConvertFromUtf32 (ch);
end;

In this specific example, all of the IOTAThreadNotifier methods have an
empty body (but if you don't refer to that interface, the IDE will raise a low-
level exception, so it is compulsory to have those empty methods).

Now that we have a class implementing our debugger visualizer for the
UCS4Char type, we can install it after creating a global object, and clean up
when the package is unloaded:
var
 Ucs4CharVis: IOTADebuggerVisualizer;

procedure Register;
var
 DebuggerServices: IOTADebuggerServices;
begin

Marco Cantù, Delphi 2010 Handbook

Chapter 2: The Debugger - 59

 Ucs4CharVis := TDebuggerUcs4CharVisualizer.Create;
 if Supports(BorlandIDEServices, IOTADebuggerServices,
 DebuggerServices) then
 DebuggerServices.RegisterDebugVisualizer(Ucs4CharVis);
end;

procedure RemoveVisualizer;
var
 DebuggerServices: IOTADebuggerServices;
begin
 if Supports(BorlandIDEServices, IOTADebuggerServices,
 DebuggerServices) then
 begin
 DebuggerServices.UnregisterDebugVisualizer(
 Ucs4CharVis);
 FreeAndNil (Ucs4CharVis);
 end;
end;

initialization
finalization
 RemoveVisualizer;

After compiling the package with this
unit and installing it, if you debug the
same sample program again you'll see
the Local Variables view here on the
right, including the accented letter
assigned to the Ucs4Char variable. This is much more informative than the ori-
ginal version16. It shows the value of installing similar in-place viewers for any
non trivial low-level data types or structures you are working with.

What's Next
In the first two chapters I've provided you with a complete overview of the new
IDE features in Delphi 2010. It is now time to move to another important topic,
that is the changes in the Object Pascal compiler. The most significant new fea-
ture of the compiler in Delphi 2010 is the support for Extended RTTI and
Attributes, a topic to which I've devoted the entire Chapter 3. In the chapter
after that I'll touch on other interesting, even if less ground-breaking features
of the compiler and also focus on changes to the Run Time Library.

16 This visualizer will only work for Unicode characters that the default font can display.

Marco Cantù, Delphi 2010 Handbook

60 - Chapter 2: The Debugger

Marco Cantù, Delphi 2010 Handbook

Chapter 2: The Debugger - 61

Marco Cantù, Delphi 2010 Handbook

62 - Chapter 2: The Debugger

Marco Cantù, Delphi 2010 Handbook

Chapter 3: Extended RTTI and Attributes - 63

Chapter 3:
Extended RTTI
And Attributes

The area of the compiler that has seen the most significant update in Delphi
2010 is the generation and management of Run Time Type Information, RTTI.
Traditionally, compilers of strongly, statically typed languages, such as Pascal,
provided little or no information about the available types at runtime. All the
information about data types was visible only during the compilation phase.

The first version of Delphi broke with this tradition, by providing run time
information for properties and other class members marked with a specific
compiler directive, published. This feature was enabled for classes compiled
with a specific setting {$M+} and is the foundation of the streaming mechan-
ism behind DFM files and the way you work with the form and other visual
designers. When it was first made available in Delphi 1, this feature was a com-
pletely new idea, and along the years other environment and development tools
adopted and extended it in several ways.

Marco Cantù, Delphi 2010 Handbook

64 - Chapter 3: Extended RTTI and Attributes

First, there were extensions to the type system (available only in Delphi) to
account for method discovery and dynamic invocation in COM. This is suppor-
ted in Delphi by dispatch ID, applying methods to variants, and other COM-
related features. Eventually COM support in Delphi was extended with its own
flavor of run time type information.

The advent of managed environments, such as Java and .NET, brought forward
a very extensive form of run time type information, with detailed RTTI bound
by the compiler to the executable modules and available for discovery by pro-
grams using those modules. This has the drawback of unveiling some of the
program internals and of increasing the size of the modules, but it brings along
new programming models that combine some of the flexibility of dynamic lan-
guages with the solid structure and the speed of strongly types ones.

Whether you like it or not (and this is indeed the subject of intense debate)
Delphi is slowly moving into the same direction, and the adoption of an extens-
ive form of RTTI in Delphi 2010 marks a very significant step in that direction.
As we'll see, you can opt out of the new RTTI, but if you don't you can leverage
some extra power in your applications.

The topic is far from simple, so I will proceed in steps. We'll first focus on the
new extended RTTI that's built into the compiler and the new classes of the Rtti
unit that you can use to explore it. Second, I'll look at the new TValue structure
and dynamic invocation. Third, I'll introduce custom attributes, a feature that
parallels its .NET counterpart and let's you extend the RTTI information gener-
ated by the compiler. Only in the last part of the chapter will I try to get back at
the reasons behind the extended RTTI and look at practical examples of its use.

Extended RTTI
The compiler in Delphi 2010 generates by default much more extended RTTI
information than any past version. Run time information includes all types,
including classes and all other user defined types as well as the core data types
predefined by the compiler and covers published fields as well as public ones,
even protected and private elements. This is needed to be able to delve into the
internal structure of any object.

Marco Cantù, Delphi 2010 Handbook

Chapter 3: Extended RTTI and Attributes - 65

A First Example
Before we look into the information generated by the compiler and the various
techniques for accessing them, let me jump towards the conclusion and show
you what can be done using RTTI. The specific example is very minimal and
could have been written with the older RTTI, but it should give you an idea of
what I'm talking about (also considering that not all Delphi developers used the
traditional RTTI explicitly).

Suppose you have a form with a button, like in the RttiIntro example. You can
write the following code to read the value of the control's Caption property:
uses
 Rtti;

procedure TFormRttiIntro.btnInfoClick(Sender: TObject);
var
 context: TRttiContext;
begin
 Log (context.
 GetType(TButton).
 GetProperty('Caption').
 GetValue(Sender).ToString);
end;

The code uses the TRttiContext record to refer to information about the
TButton type, from this type information to the RTTI data about a property,
and this property data is used to refer to the actual value of the property, which
is converted into a string. If you are wondering how this works, keep reading.
My point here is that this approach can now be used not only to access a prop-
erty dynamically, but also to read the values of fields, including private fields.

We can also change the value of a property, as the second button of the RttiIn-
tro example shows:
procedure TFormRttiIntro.btnChangeClick(Sender: TObject);
var
 context: TRttiContext;
 aProp: TRttiProperty;
begin
 aProp := context.GetType(TButton).GetProperty('Caption');
 aProp.SetValue(btnChange, StringOfChar (
 '*', random (10) + 1));
end;

This code replaces the Caption with a random number of *s. The difference
from the code above is that it has a temporary local variable referring to the
RTTI information for the property. Now that you have an idea what we are into,

Marco Cantù, Delphi 2010 Handbook

66 - Chapter 3: Extended RTTI and Attributes

let's start from the beginning by checking the extended RTTI information gen-
erated by the compiler in Delphi 2010.

Compiler Generated Information
There is nothing you have to do to let the compiler add this extra information to
your executable program (whatever its kind: application, library, package...).
Just open a project and compile it. By default, the compiler generates Extended
RTTI for all fields (including private ones) and for public and published meth-
ods and properties. You might be surprised by the fact that you get RTTI
information for private fields, but this is required for dynamic operations like
binary object serialization and tracing objects on the heap.

You can control the Extended RTTI generation according to a matrix of set-
tings: On one axis you have the visibility and on the other the kind of member.
The following table depicts the default:

Field Method Property

Private x

Protected x

Public x x x

Published x x x

Technically, the four visibility settings are indicated by using the following set
type, declared in the System unit:
type
 TVisibilityClasses = set of (vcPrivate,
 vcProtected, vcPublic, vcPublished);

There are some ready to use constant values for this set indicating the default
RTTI visibility settings applied to TObject and inherited by all other classes by
default:
const
 DefaultMethodRttiVisibility = [vcPublic, vcPublished];
 DefaultFieldRttiVisibility = [vcPrivate..vcPublished];
 DefaultPropertyRttiVisibility = [vcPublic, vcPublished];

The information produced by the compiler is controlled by a new directive,
$RTTI, which has a status indicating if the setting is for the given type or also
for its descendants (EXPLICIT or INHERITED) followed by three specifiers to

Marco Cantù, Delphi 2010 Handbook

Chapter 3: Extended RTTI and Attributes - 67

set the visibility for methods, fields, and properties. The default applied in the
System unit is:
{$RTTI INHERIT
 METHODS(DefaultMethodRttiVisibility)
 FIELDS(DefaultFieldRttiVisibility)
 PROPERTIES(DefaultPropertyRttiVisibility)}

To completely disable the generation of extended RTTI for all of the members
of your classes you can use the following directive17:
{$RTTI EXPLICIT METHODS([]) FIELDS([]) PROPERTIES([])}

When using this setting, consider it will be applied only to your code and a
complete removal is not possible, as the RTTI information for the RTL and VCL
classes is already compiled into the corresponding DCUs and packages. Keep
also in mind that the $RTTI directive doesn't cause any change on the tradi-
tional RTTI generated for published types: This is still produced regardless of
the $RTTI directive18.

What you can do with this directive is avoid the Extended RTTI being gener-
ated for your own classes. At the opposite end of the scale, you can also increase
the amount of RTTI being generated, including private and protected methods
and properties, if you wish (although it doesn't make a lot of sense).

Larger Executable Files
The obvious effect of adding Extended RTTI information to an executable file is
that the file will grow larger (which has the main drawback of a larger file to
distribute, as the extra loading time and memory footprint would be almost
unnoticeable). For very small programs, the effect is somewhat minimal, but in
large applications the increase will be significant. I'll look at very small pro-
grams first, testing two applications I've used over the years and with multiple
versions of Delphi, to see how their size changes. After that, we'll look at a more
real-world situation.

17 You cannot place the RTTI directive before the unit declaration, as it happens for other
compiler directives, because it depends on settings defined in the System unit. If you do
so, you'll receive an internal error message, which is not particularly intuitive. In any
case, just move it after the unit statement.

18 The new RTTI processing classes, available in the Rtti unit covered in the coming section,
hook to the traditional RTTI and its PTypeInfo structure.

Marco Cantù, Delphi 2010 Handbook

68 - Chapter 3: Extended RTTI and Attributes

The MiniSize program is not an attempt to build the smallest possible program,
but rather to build a very small program that does something: it reports the size
of its own executable file. This programs doesn't use the VCL and only a very
minimal portion of the RTL. All of the example code is as follows:
program MiniSize;

uses
 Windows;

{$R *.RES}

var
 nSize: Integer;
 hFile: THandle;
 strSize: String;

begin
 // open the current file and read the size
 hFile := CreateFile (PChar (ParamStr (0)),
 0, FILE_SHARE_READ, nil, OPEN_EXISTING, 0, 0);
 nSize := GetFileSize (hFile, nil);
 CloseHandle (hFile);

 // copy the size to a string and show it
 SetLength (strSize, 20);
 Str (nSize, strSize);
 MessageBox (0, PChar (strSize), ‘Mini Program’, MB_OK);
end.

The program opens its own executable file after retrieving its name from the
first command-line parameter (ParamStr (0)), extracts the size, converts it
into a string using the old-fashioned Str function, and shows the result in a
message. The program uses the Str function for the integer-to-string conver-
sion to avoid including the SysUtils unit, which defines all of the more complex
formatting routines and would impose a little extra overhead. The following list
compares past versions with Delphi 2010:

• Delphi 5 compiled this program to 18,432 bytes
• Delphi 6 reduced it to 15,360 bytes
• Delphi 7 produced a file of 15,872 bytes
• Delphi 2005 made a slightly bigger file at 16,384 bytes
• Both Delphi 2006 and Delphi 2007 make it grow to 19,456 bytes
• In Delphi 2009 the program size was 20,992 bytes.
• In Delphi 2010, it grows to 29,184 bytes.

The size difference (due to the RTTI for the compiler types and those defined in
the System and Windows units) is quite relevant for a do-nothing program.

Marco Cantù, Delphi 2010 Handbook

Chapter 3: Extended RTTI and Attributes - 69

Now let's move one step ahead, and I'll recompile another programs I used in
past books. This is called MiniPack and demonstrates a complete application,
with its own main form, displaying the size of its executable in the caption. The
name comes from the fact I compile this program with runtime packages,
obtaining the following executable sizes:

• 17,408 bytes in Delphi 7
• 16,384 bytes in Delphi 2005
• 15,872 bytes in Delphi 2006 and 2007
• 16,384 bytes in Delphi 2009
• 17,920 bytes in Delphi 2010

This is certainly quite good, however it tells us very little about the effect of dis-
tributing a full blown application, using multiple units and built without
runtime packages.

As a further example in the ExeSizeTest folder I've taken an existing program I
wrote in Delphi 2009 for showing a ClientDataSet with Unicode strings. By
using the ClientDataSet component and a DBGrid control, the program pulls in
a fair amount of the VCL and RTL, including the database portion.

The increase in size for such a program is very significant:

• In Delphi 2009 it compiles to 1,025,024 bytes (about 1MB)
• In Delphi 2010 it takes 1,552,384 bytes (a little over 1.5MB)

If you are distributing internal applications, it won't be a big deal, but if your
program is distributed in large numbers over the Internet, possibly with fre-
quent updates, this increase might affect you in a significant way.

What can be done to reduce it? Cutting off Extended RTTI will decrease the
size of your compiled program, but won't affect the library files. In the specific
example (which has a single form with limited code, so it is not very significant)
adding the $RTTI directive shown earlier will trim only 1Kb from the execut-
able, down to 1,551,360.

Weak and Strong Types Linking

What else could you do to reduce the size of the program, other then resorting
to using Run Time Packages? There is actually something you can do, even if its
effect won't be big, it will be noticeable.

Marco Cantù, Delphi 2010 Handbook

70 - Chapter 3: Extended RTTI and Attributes

When evaluating the RTTI information available in the executable file, consider
that what the compiler adds, the linker might remove. By default, classes and
method not compiled in the program will not get the Extended RTTI (which
would be quite useless), as they don't get the basic RTTI either. At the opposite,
if you want all Extended RTTI to be included and working, you need to link in
even classes and methods you don't explicitly refer to in your code.

There are two new compiler settings you can use to control the information
being linked into the executable. The first, which is fully documented, is the
$WeakLinkRTTI directive. By turning it on, for types not used in the program,
both the type itself and its RTTI information will be removed from the final
executable. The previous program, even without the $RTTI directive, is
reduced down to 1,414,144.

At the opposite, you can force the including of all type and their Extended RTTI
using the undocumented $StrongLinkTypes directive. The effect on the pro-
gram is dramatic, with almost a two fold increase to the already large program
size, up to 2,807,296.

The following list summarizes the effect of this linker options on this program:

• Delphi 2009: 1,025,024 bytes
• Delphi 2010 (default settings) 1,552,384 bytes
• Delphi 2010 (with $WeakLinkRTTI) 1,414,144 bytes
• Delphi 2010 (with $StrongLinkTypes) 2,807,296 bytes

The Rtti Unit
If the generation of extended RTTI for all types is the first pillar for the new
RTTI of Delphi 2010, the second pillar is the ability to navigate this information
in a much easier and higher level way, thanks to the new Rtti unit. The third
pillar, as we'll see, is the support for custom attributes. But let me proceed one
step at a time.

Traditionally, Delphi applications could (and still can) use the functions of the
TypInfo unit to access the “published” run time type information. This unit
defines several low-level data structures and functions (all based on pointers
and records) with a couple of higher level routines to make things a little easier.

Marco Cantù, Delphi 2010 Handbook

Chapter 3: Extended RTTI and Attributes - 71

The new Rtti unit, instead, makes it very easy to work with the extended RTTI,
providing a set of classes with proper methods and properties. To access the
various objects, the entry point is the TRttiContext record structure, which
has four methods to look for the available types:
function GetType (ATypeInfo: Pointer): TRttiType; overload;
function GetType (AClass: TClass): TRttiType; overload;
function GetTypes: TArray<TRttiType>;
function FindType (const AQualifiedName: string): TRttiType;

As you can see you can pass a class, a PTypeInfo pointer obtained from a type,
a qualified name (the name of the type decorated with the unit name, as in
“System.TObject”), or retrieve the entire list of types, defined as an array of Rtti
types: TArray<TRttiType>19.

This last call is what I've done in the following listing, part of the TypesList
example:
procedure TFormTypesList.btnTypesListClick(Sender: TObject);
var
 aContext: TRttiContext;
 theTypes: TArray<TRttiType>;
 aType: TRttiType;
begin
 ListBox1.Clear;
 theTypes := aContext.GetTypes;
 for aType in theTypes do
 if aType.IsInstance then
 ListBox1.Items.Add(aType.QualifiedName);
 ListBox1.Sorted := True;
end;

The GetTypes method returns the complete list of data types, but the program
filters only the types representing classes (instances in the jargon used by the
Rtti unit). There are about a dozen other classes representing types in the unit.

The individual objects in the types list are of classes which inherit from the
TRttiType base class. Specifically, we can look for the TRttiInstanceType
class type, as in the following modified snippet:
 for aType in theTypes do
 if aType is TRttiInstanceType then
 ListBox1.Items.Add(aType.QualifiedName);

19 The notation used here is the instantiation of a generic class, in this case a generic dy-
namic array. Generics were introduced in Delphi 2009 and are used significantly in the
Rtti unit, as we'll see in some examples. The topic is too complex to introduce in a foot-
note, so all I can do is refer you to the specific chapter on generics in my “Delphi 2009
Handbook”.

Marco Cantù, Delphi 2010 Handbook

72 - Chapter 3: Extended RTTI and Attributes

In the following list you can see the entire inheritance graph for the classes that
derive from the abstract TRttiObject class and are defined in the Rtti unit:
TRttiObject (abstract)
 TRttiNamedObject
 TRttiType
 TRttiStructuredType (abstract)
 TRttiRecordType
 TRttiInstanceType
 TRttiInterfaceType
 TRttiOrdinalType
 TRttiEnumerationType
 TRttiInt64Type
 TRttiMethodType
 TRttiClassRefType
 TRttiSetType
 TRttiStringType
 TRttiAnsiStringType
 TRttiFloatType
 TRttiArrayType
 TRttiDynamicArrayType
 TRttiPointerType
 TRttiProcedureType
 TRttiMember
 TRttiField
 TRttiProperty
 TRttiInstanceProperty
 TRttiMethod
 TRttiParameter
 TRttiPackage
 TRttiManagedField

Each of these classes provides specific information about the given type. As an
example, only a TRttiInterfaceType offers a way to access to the interface
GUID. Notice, on the other hand, that there is no Rtti object to access indexed
properties (like the Strings[] of a TStringList).

Rtti Objects Lifetime Management and the
TRttiContext record

If you look at the source code of the btnTypesListClick method listed
earlier, there is something that looks quite wrong. The GetTypes call returns
an array of types, but the code doesn't free these internal objects. The reason is
that the TRttiContext record structure becomes the effective of owner for all
of the Rtti objects that are being created. When the record is disposed (that is,
when it goes out of scope), an internal interface is cleared invoking its own
destructor that clears all of the Rtti objects that were created through it.

Marco Cantù, Delphi 2010 Handbook

Chapter 3: Extended RTTI and Attributes - 73

The TRttiContext record actually has a dual role. On one side it controls the
lifetime of the Rtti objects (as I just explained), on the other hand it caches Rtti
information that is quite expensive to recreate with a search. That's why you
might want to keep reference to the TRttiContext record alive for an exten-
ded period, allowing you to keep accessing the Rtti objects it owns without
having to recreate them (again, the expensive operation).

Internally the TRttiContext record uses a global pool of type TRttiPool,
which uses a critical section to make its access thread safe20. So, to be more pre-
cise, the Rtti pool is shared among TRttiContext records, so the pooled Rtti
objects are kept around while at least one TRttiContext record is in memory.
To quote the comment in the unit:
{... working with RTTI objects without at least one context being
alive is an error. Keeping at least one context alive should keep
the Pool variable valid.}

In other words, you have to avoid caching and keeping Rtti objects around after
you've released the Rtti context. This is an example that leads to an memory
access violation (again part of the TypesList example):
function GetThisType (aClass: TClass): TRttiType;
var
 aContext: TRttiContext;
begin
 Result := aContext.GetType(aClass);
end;

procedure TFormTypesList.Button1Click(Sender: TObject);
var
 aType: TRttiType;
begin
 aType := GetThisType (TForm);
 ShowMessage (aType.QualifiedName);
end;

To summarize, the Rtti objects are managed by the context and you should not
keep them around. The context in turn is a record, so it is disposed of automat-
ically. You might see code that uses the TRttiContext in the following way:
context := TRttiContext.Create;
try
 // use the context
finally
 context.Free;
end;

20 There are exceptions to the thread-safety of the Rtti pooling mechanism, described in
some detail in the comments available in the Rtti unit itself.

Marco Cantù, Delphi 2010 Handbook

74 - Chapter 3: Extended RTTI and Attributes

The pseudo-constructor and pseudo-destructor set the internal interface, that
manages the actual data structures used behind the scenes, to nil cleaning up
the pooling mechanism. However, as this operation is automatic for a local type
such as a record, this is not needed, unless somewhere you refer to the context
record using a pointer. For more information about the internals of the
TRttiContext record you can refer to the following blog post by Berry Kelly:
http://blog.barrkel.com/2010/01/
 delphi-2010-rtti-contexts-how-they-work.html

A Tree of Classes (and Class Information)
The most relevant types you might want to inspect at run time are certainly the
so-called structured types, that is instances, interfaces, and records. Focusing
on instances, we can refer to the relationship among classes, by following the
BaseType information available for instance types.

This is what I've done in the TypeList example, which can build a tree of the
classes in a TreeView control, using the following recursive method:
function TFormTypesList.AddTypeToTree (
 atype: TRttiType): TTreeNode;
var
 ParentNode: TTreeNode;
begin
 // already there?
 Result := GetNodeFromTree (atype.name);

 if Result = nil then
 begin
 if atype.BaseType = nil then
 // add root node
 ParentNode := nil
 else
 // add the base class if not there
 ParentNode := AddTypeToTree (atype.BaseType);
 // now add the child class
 Result := TreeView1.Items.AddChild (ParentNode, atype.Name);
 end;
end;

At the beginning the method uses the GetNodeFromTree function to check if a
type with the given name is already present in the tree, eventually returning the
corresponding node. The next step is to look for or add the base class type to
the tree, so that at the end the method can add the current node as a sub-node
(or using nil as base node if it has no base class, as happens for TObject).

Marco Cantù, Delphi 2010 Handbook

Chapter 3: Extended RTTI and Attributes - 75

This AddTypeToTree method is invoked for each type representing an
instance, with a loop similar to that we have already seen. Notice that we could
have added some type information to each tree node, but in doing so we would
have risked keeping the reference to these Rtti objects around after the context
and the corresponding pooling mechanism would have deleted them. As an
example, we can see the type of the demo form in this portion of the types tree:

Accessing types is certainly an interesting starting point, but what is relevant
and specifically new is the ability to learn about further details of these types,
including their members. As you click on one of the types (here the TTimer
class) the program displays a list of properties, methods, and fields of the type:

Marco Cantù, Delphi 2010 Handbook

76 - Chapter 3: Extended RTTI and Attributes

The unit of this secondary form, which can probably be adapted and expanded
to be used as a generic type browser in other applications, has a method called
ShowTypeInformation that walks through each property, method, and field of
the given type, adding them to three separate list boxes with the indication of
their visibility (pri for private, pro for protected, pub for public, and pbl for
published, as returned by the VisibilityToken function):
procedure ShowTypeInformation (aType: TRttiType);
var
 FormTypeInfo: TFormTypeInfo;
 aProperty: TRttiProperty;
 aMethod: TRttiMethod;
 aField: TRttiField;
begin
 FormTypeInfo := TFormTypeInfo.Create(nil);
 try
 FormTypeInfo.Caption := FormTypeInfo.Caption +
 ' - ' + aType.QualifiedName;
 for aProperty in atype.GetProperties do
 FormTypeInfo.ListProperties.Items.Add (aProperty.Name +
 ': ' + aProperty.PropertyType.Name + ' ' +
 VisibilityToken (aProperty.Visibility));
 for aMethod in atype.GetMethods do
 FormTypeInfo.ListMethods.Items.Add (aMethod.Name + ' ' +
 VisibilityToken (aMethod.Visibility));
 for aField in aType.GetFields do
 FormTypeInfo.ListFields.Items.Add (aField.Name + ': ' +
 aField.FieldType.Name + ' ' +
 VisibilityToken (aField.Visibility));
 FormTypeInfo.ShowModal;
 finally
 FormTypeInfo.Free;
 end;
end;

You could go ahead and extract further information from the types of these
properties, get parameter lists of the methods and check the return type, and
more. Here I don't want to build a complete RTTI browser but only give you a
feeling of what can be achieved.

RTTI for Packages
Beside the methods you can use to access a type or the list of types, the record
TRttiContext has another very interesting method, GetPackages, which
returns a list of the run-time packages used by the current application. If you
execute this method in an application compiled with no run time packages, all
you get is the executable file itself. But if you execute it in an application com-

Marco Cantù, Delphi 2010 Handbook

Chapter 3: Extended RTTI and Attributes - 77

piled with run time packages, you'll get a list of those packages. From that
point, you can delve into the types made available by each of the packages.
Notice that in this case the types list is much larger, as RTL and VCL types not
used by the application are not removed by the smart linker.

In the TypesList application, clicking on the btnTypesList button you'll get
the list of instance types in the list box, and also the total number of types in the
status bar. When the program is compiled statically, you'll get 300 instance
types, while if you turn on run time packages that numbers becomes 800. Still,
this is not the complete list of all classes available in the Delphi libraries, as
you'll generally not include every available package, but only a limited set.

If you use run time packages, you can also retrieve the list of units for each of
the packages (and the executable file), by using code like:
procedure TFormTypesList.btnPackagesClick(Sender: TObject);
var
 aContext: TRttiContext;
 aPackage: TRttiPackage;
 aType: TRttiType;
begin
 ListBox1.Clear;
 ListBox1.Sorted := False;
 for aPackage in aContext.GetPackages do
 begin
 ListBox1.Items.Add('PACKAGE ' + aPackage.Name);
 for aType in aPackage.GetTypes do
 if aType.IsInstance then
 begin
 ListBox1.Items.Add(' - ' + aType.QualifiedName);
 end;
 end;
end;

With this code you'll get the list of instance types for each package, starting
with the executable, as you can see in the following image.

Marco Cantù, Delphi 2010 Handbook

78 - Chapter 3: Extended RTTI and Attributes

The TValue Structure
The new extended RTTI not only lets you browse the internal structure of a
program but it also provides specific information, including property and field
values. While the TypInfo unit provided the GetPropValue function to access
a generic property and retrieve a variant type with its value, the new Rtti unit
uses a different structure for holding an untyped element, the TValue record.

This record can store almost any possible Delphi data type and does so by keep-
ing track of the original data representation, by holding both a data and a
format. What it can do is read and write data in the given format. What it can-
not do is convert from one format to another. So even if a TValue has an
AsString and an AsInteger method, you can use the former only if the data
is representing is indeed a string, the second only if you originally assigned an
integer to it. For example, in this case you can use the AsInteger method and
if you call the IsOrdinal method it will return True:
var
 v1: TValue;
begin
 v1 := 100;
 if v1.IsOrdinal then
 Log (IntToStr (v1.AsInteger));

However, you cannot use the AsString method, which would raise an invalid
typecast exception:
var
 v1: TValue;
begin
 v1 := 100;
 Log (v1.AsString);

If you need a string representation, though, you can use the ToString method,
which has a large case statement trying to accommodate most data types:
var
 v1: TValue;
begin
 v1 := 100;
 Log (v1.ToString);

You can probably get a better understanding, by reading the words of Barry
Kelly, Delphi R&D member who worked on RTTI for the Delphi 2010 compiler:

TValue is the type used to marshal values to and from RTTI-based
calls to methods, and reads and writes of fields and properties.

Marco Cantù, Delphi 2010 Handbook

Chapter 3: Extended RTTI and Attributes - 79

It's somewhat like Variant but far more tuned to the Delphi type sys-
tem; for example, instances can be stored directly, as well as sets,
class references, etc. It's also more strictly typed, and doesn't do (for
example) silent string to number conversions.

Now that you better understand its role, let's look at the actual capabilities of
the TValue record. It has a set of higher level methods for assigning and
extracting the actual values, plus a set of low-level pointer based ones. I'll con-
centrate on the first group.

For assigning values, TValue defines several Implicit operators, allowing you
to perform a direct assignment as in the code snippets above:
 class operator Implicit(const Value: string): TValue;
 class operator Implicit(Value: Integer): TValue;
 class operator Implicit(Value: Extended): TValue;
 class operator Implicit(Value: Int64): TValue;
 class operator Implicit(Value: TObject): TValue;
 class operator Implicit(Value: TClass): TValue;
 class operator Implicit(Value: Boolean): TValue;

What all these operators do is call the From generic class method:
 class function From<T>(const Value: T): TValue; static;

When you call these class functions you need to specify the data type and also
pass a value of that type, like the following code replacing the assignment of the
value 100 of the previous code snippets:
 v1 := TValue.From<Integer>(100);

This is a sort of universal technique for moving any data type into a TValue.
Once the data has been assigned, you can use several methods to test its type:
 property Kind: TTypeKind read GetTypeKind;
 function IsObject: Boolean;
 function IsClass: Boolean;
 function IsOrdinal: Boolean;
 function IsType<T>: Boolean; overload;
 function IsArray: Boolean;

Notice that the generic IsType can be used for almost any data type.

There are corresponding method for extracting the data, but again you can use
only the method compatible with the actual data stored in the TValue, as no
conversion is taking place:
 function AsObject: TObject;
 function AsClass: TClass;
 function AsOrdinal: Int64;
 function AsType<T>: T;
 function AsInteger: Integer;

Marco Cantù, Delphi 2010 Handbook

80 - Chapter 3: Extended RTTI and Attributes

 function AsBoolean: Boolean;
 function AsExtended: Extended;
 function AsInt64: Int64;
 function AsInterface: IInterface;
 function AsString: string;
 function AsVariant: Variant;
 function AsCurrency: Currency;

Some of these methods double with a Try version that returns False, rather
than raising an exception, in case of an incompatible data type. There are also
some limited conversion methods, the most relevant of which are the generic
Cast and the ToString function I've already used in the code:
 function Cast<T>: TValue; overload;
 function ToString: string;

Reading a Property with TValue
The importance of TValue lies in the fact that this is the structure used when
accessing properties and field values using the extended RTTI and the Rtti unit
in Delphi 2010. As an actual example of the use of TValue, we can use this
record type to access both a published property and a private field of a TButton
object, as in the following code (part of the RttiAccess demo):
procedure TForm39.btnReadValuesClick(Sender: TObject);
var
 context: TRttiContext;
 aType: TRttiType;
 aProperty: TRttiProperty;
 aValue: TValue;
 aField: TRttiField;
begin
 aType := context.GetType(TButton);
 aProperty := aType.GetProperty('Caption');
 aValue := aProperty.GetValue(Sender);
 ShowMessage (aValue.AsString);

 aField := aType.GetField('FDesignInfo');
 aValue := aField.GetValue(Sender);
 ShowMessage (IntToStr (aValue.AsInteger));
end;

Invoking Methods
Not only does the new extended RTTI lets you access values and fields, but it
also provides a simplified way for calling methods. In this case you have to

Marco Cantù, Delphi 2010 Handbook

Chapter 3: Extended RTTI and Attributes - 81

define a TValue element for each parameter of the method. There is a global
Invoke function which you can call for executing a method:
function Invoke(CodeAddress: Pointer; const Args: TArray<TValue>;
 CallingConvention: TCallConv; AResultType: PTypeInfo): TValue;

As a better alternative, there is a simplified Invoke overloaded method in the
TRttiMethod class:
 function Invoke(Instance: TObject;
 const Args: array of TValue): TValue; overload;

An example of invoking a method using this second simplified form is part of
the RttiAccess demo and listed below:
procedure TForm39.btnInvokeClick(Sender: TObject);
var
 context: TRttiContext;
 aType: TRttiType;
 aMethod: TRttiMethod;
 theValues: array of TValue;
begin
 aType := context.GetType(TButton);
 aMethod := aType.GetMethod('FlipChildren');
 SetLength (theValues, 1);
 theValues[0] := True;
 aMethod.Invoke(self, theValues);
end;

Low-Level TValue
The TValue structure includes a few helpers that make it easy to assign or
extract values of various data types to or from it. In some situations, however, it
is nice to be able to copy the raw bytes of the TValue data into a specific data
structure. This can be done using the Make and GetRawData methods, as in the
following snippet that saves an integer value inside a (newly created) TValue
record:
var
 aValue: TValue;
 intValue: Integer;
begin
 intValue := 100;
 TValue.Make(intValue, TypeInfo(Integer), aValue);

Of course, this is not needed as I could have used a higher level approach. At
times, though, you won't have the alternative or, in some cases, the higher level
approach would be more complicated than the low-level code.

Marco Cantù, Delphi 2010 Handbook

82 - Chapter 3: Extended RTTI and Attributes

As an example, consider the method (part of the RttiAccess application, like the
code snippet above), used to read the value of a set property, the Anchors
property of a button. The ToString method of the TValue record lets you dis-
play a readable output, but if you need to read the actual numerical value (in
this case a Byte) you can write the two lines at the end:
var
 context: TRttiContext;
 aType: TRttiType;
 aSetType: TRttiSetType;
 aProperty: TRttiProperty;
 aValue: TValue;
 b: Byte;
begin
 aType := context.GetType(TButton);
 aProperty := aType.GetProperty('Anchors');
 aSetType := aProperty.PropertyType.AsSet;
 Log ('Type: ' + aSetType.ToString);

 aValue := aProperty.GetValue(Sender);
 Log ('Anchors: ' + aValue.ToString);

 // extract numerical value
 aValue.ExtractRawData(@b);
 Log ('Anchors: ' + IntToStr (b));
end;

The output of this method is:
Type: TAnchors
Anchors: [akLeft,akTop]
Anchors: 3

In most cases the higher level approach would work, but in specific circum-
stances it simply won't. Trying to get the numerical value of the set by using the
GetOrdinal method of TValue, for example, will raise an exception because
the set is not an ordinal value. If you want to skip similar exceptions and just
read (or write) the data, you'll need to use the low-level calls.

Custom Attributes
The first part of this chapter gave you a good grasp of the extended RTTI gener-
ated by the Delphi 2010 compiler and of the RTTI access capabilities
introduced by the new Rtti unit. In the second part of the chapter we can finally
focus on one of the key reasons this entire architecture was introduced: the

Marco Cantù, Delphi 2010 Handbook

Chapter 3: Extended RTTI and Attributes - 83

possibility to define custom attributes and extend the compiler-generated RTTI
in specific ways. We'll look at this technology from a rather abstract perspect-
ive, and later focus on the reasons this is an important step forward for Delphi,
by looking at practical examples.

What is an Attribute?
An attribute (in Delphi or .NET terms) or an annotation (in Java Jargon) is a
comment or indication that you can add to your source code, applying it to a
type, a field, a method, or a property) and the compiler will embed in the pro-
gram. This is generally indicated with square brackets as in:
type
 [MyAttribute]
 TMyClass = class
 ...

By reading this information at design time in a development tool or at run time
in the final application, a program can change its behavior depending on the
values it finds.

Generally attributes are not used to change the actual core capabilities of a class
of objects, but rather to let these classes specify further mechanisms they can
participate in. Declaring a class as serializable doesn't affect its code in any
way, but lets the serialization code know that it can operate on that class and
how (in case you provide further information along with the attribute, or fur-
ther attributes marking the class fields or properties).

This is exactly how the existing and limited RTTI was used inside Delphi. Prop-
erties marked as published could show up in the object inspector, be streamed
to a DFM file, and be accessed at run time. Attributes open up this mechanism
to become much more flexible and powerful. They are also much more complex
to use, and easy to misuse, as are any powerful language features. I mean, don't
throw away all the good things you know about Object Oriented Programming
to embrace this new model, but complement one with the other.

As an example, an employee class will still be represented in a hierarchy as a
derived class from a person class; an employee object will still have an ID for
his or her badge; but you can “mark” or “annotate” the employee class as class
that can be mapped to a database table or displayed by a specific runtime form.

Marco Cantù, Delphi 2010 Handbook

84 - Chapter 3: Extended RTTI and Attributes

So we have inheritance (is-a), ownership (has-a), and annotations (marked-as)
as three separate mechanism you can use when designing an application.

After you've seen the compiler features supporting custom attributes in Delphi
2010 and looked at some practical examples, the abstract idea I just mentioned
should become more understandable, or at least that's my hope!

Attribute Classes and Attribute Declarations
How do you define a new attribute class (or attribute category)? You have to
inherit from the new TCustomAttribute class available in the System unit:
type
 SimpleAttribute = class(TCustomAttribute)
 end;

The class name you give to the attribute class will become the symbol to use in
the source code, with the optional exclusion of the Attribute postfix. So if you
name your class SimpleAttribute you'll be able to use in the code an attrib-
ute called Simple or SimpleAttribute. Anyway this is the reason the classic
initial T for Delphi classes is generally not used in case of attributes.

Now that we have defined a custom attribute, we can apply it to most of the
symbols of our program: types, methods, properties, fields, and parameters.
The syntax used for applying attributes is the attribute name within square
brackets:
type
 [Simple]
 TMyClass = class(TObject)
 public
 [Simple]
 procedure One;

In this case I've applied the Simple attribute to the class as a whole and to a
method. Beside a name, attribute can support one or more parameters. The
parameters passed to an attribute must match those indicated in the con-
structor of the attribute class, if any.
type
 ValueAttribute = class(TCustomAttribute)
 private
 FValue: Integer;
 public
 constructor Create(N: Integer);
 property Value: Integer read FValue;
 end;

Marco Cantù, Delphi 2010 Handbook

Chapter 3: Extended RTTI and Attributes - 85

This is how you can apply this attribute with one parameter:
type
 [Value(22)]
 TMyClass = class(TObject)
 public
 [Value(0)]
 procedure Two;

The attribute values, passed to its constructor, must be constant expressions, as
they are resolved at compile time. That's why you are limited to just a few data
types: ordinal values, strings, sets, and class references. On the positive side,
you can have multiple overloaded constructors with different parameters.

Notice you can apply multiple attributes to the same symbol, as I've done in the
RttiAttrib example, which summarizes the code snippets of this section:
type
 [Simple][Value(22)]
 TMyClass = class(TObject)
 public
 [Simple]
 procedure One;
 [Value(0)]
 procedure Two;
 end;

What if you try to use an attribute that is not defined (maybe because of a miss-
ing uses statement)? Unluckily you get a very misleading warning message:
[DCC Warning] RttiAttribMainForm.pas(44): W1025
 Unsupported language feature: 'custom attribute'

The fact this is a warning implies the attribute will be ignored, so you have to
watch out for those warnings or even better treat the “unsupported language
feature” warning like an error (something you can do in the Hints and Warn-
ings page of the Project Options dialog box):
[DCC Error] RttiAttribMainForm.pas(38):
 E1025 Unsupported language feature: 'custom attribute'

Finally, compared to other implementations of the same concept, there is cur-
rently no way to limit the scope of attributes, like declaring that an attribute can
be applied to a type but not to a method. What is available in the editor,
instead, is full support for attributes in the rename refactoring21. Not only you
can change the name of the attribute class, but the system will pick up when the
attribute is used both in its full name and without the final “attribute” portion.

21 Attributes refactoring was first mentioned by Malcolm Groves on his blog at
http://www.malcolmgroves.com/blog/?p=554

Marco Cantù, Delphi 2010 Handbook

86 - Chapter 3: Extended RTTI and Attributes

Browsing Attributes
Now this code would seems totally useless if there wasn't a way to discover
which attributes are defined, and possibly inject a different behavior to an
object because of these attributes. Let me start focusing on the first part. The
classes of the Rtti unit let you figure out which symbols have associated attrib-
utes. This is code, extracted from the RttiAttrib example shows the list of the
attributes for the current class:
procedure TMyClass.One;
var
 context: TRttiContext;
 attributes: TArray<TCustomAttribute>;
 attrib: TCustomAttribute;
begin
 attributes := context.GetType(ClassType).GetAttributes;
 for attrib in attributes do
 Form39.Log(attrib.ClassName);

Running this code will print out:
SimpleAttribute
ValueAttribute

You can extend it by adding the following code to the for-in loop code to
extract the specific value of the given attributes type:
 if attrib is ValueAttribute then
 Form39.Log(' -' + IntToStr
 (ValueAttribute(attrib).Value));

What about fetching the methods with a given attribute, or with any attribute?
You cannot filter the methods up front, but have to go through each of them,
check their attributes, and see if it is relevant for you. To help in this process,
I've written a function that checks if a method supports a given attribute:
type
 TCustomAttributeClass = class of TCustomAttribute;

function HasAttribute (aMethod: TRttiMethod;
 attribClass: TCustomAttributeClass): Boolean;
var
 attributes: TArray<TCustomAttribute>;
 attrib: TCustomAttribute;
begin
 Result := False;
 attributes := aMethod.GetAttributes;
 for attrib in attributes do
 if attrib.InheritsFrom (attribClass) then
 Exit (True);
end;

Marco Cantù, Delphi 2010 Handbook

Chapter 3: Extended RTTI and Attributes - 87

The HasAttribute function is called by the RttiAttr program while checking
for a given attribute or any of them:
var
 context: TRttiContext;
 aType: TRttiType;
 aMethod: TRttiMethod;
begin
 aType := context.GetType(TMyClass);

 for aMethod in aType.GetMethods do
 if HasAttribute (aMethod, SimpleAttribute) then
 Log (aMethod.name);

 for aMethod in aType.GetMethods do
 if HasAttribute (aMethod, TCustomAttribute) then
 Log (aMethod.name);

The effect is to list methods marked with the given attributes, as described by
further Log calls I've omitted from the listing above:
Methods marked with [Simple] attribute
One

Methods marked with any attribute
One
Two

Rather than simply describing attributes, what you generally do is add some
independent behavior determined by the attributes of a class, rather than its
actual code. As an example, I can inject a specific behavior in the previous
code: The goal could be calling all methods of a class marked with a given
attribute, considering them as parameterless methods:
procedure TForm39.btnInvokeIfZeroClick(Sender: TObject);
var
 context: TRttiContext;
 aType: TRttiType;
 aMethod: TRttiMethod;
 aTarget: TMyClass;
 zeroParams: array of TValue;
begin
 aTarget := TMyClass.Create;
 try
 aType := context.GetType(aTarget.ClassType);
 for aMethod in aType.GetMethods do
 if HasAttribute (aMethod, SimpleAttribute) then
 aMethod.Invoke(aTarget, zeroParams);
 finally
 aTarget.Free;
 end;
end;

Marco Cantù, Delphi 2010 Handbook

88 - Chapter 3: Extended RTTI and Attributes

What this code snippet does is create an object, grab its type, check for a given
attribute, and invoke each method that has the Simple attribute. Rather than
inheriting from a base class, implementing an interface, or writing specific code
to perform the request, all we have to do to get the new behavior is mark one of
more methods with a given attribute. Not that this example makes the use of
attributes extremely obvious: for some common patterns in using attributes
and some actual case studies you can refer to the final part of this chapter.

RTTI Case Studies
Now that I've covered the foundations of RTTI and the use of attributes it is
worth looking into some real world situations in which using these technique
will prove useful. There are many scenarios in which a more flexible RTTI and
the ability to customize it through attributes is relevant, but I have no room for
a long list of situations. What I'll do instead is guide you in the step-by-step
development of two simple but significant examples.

The first demo program will showcase the use of attributes to identify specific
information within a class. In particular, we want to be able to inspect an object
of a class that declares to be part of the an architecture and have a description
and a unique ID referring to the object itself. This might come handy in several
situations, like describing objects stored in a collection (either a generic or tra-
ditional one).

The second demo will be an example of streaming, specifically streaming a
class to an XML file. I'll start from the classic approach of using the published
RTTI, move to the new extended RTTI, and finally show how you can use
attributes to customize the code and make it more flexible.

Attributes for ID and Description
If you want to have a couple of methods shared among many objects, the most
classic approach was to define a base class with virtual methods and inherit the
various objects from the base class, overriding the virtual methods. This is nice,
but poses a lot of restrictions in terms of the classes which can participate in the
architecture, as you have a fixed base class.

Marco Cantù, Delphi 2010 Handbook

Chapter 3: Extended RTTI and Attributes - 89

A standard technique to overcome this situation is to use an interface rather
than a common base class. Multiple classes implementing the interface (but
with no common ancestor class) can provide an implementation of the inter-
face methods, which act very similarly to virtual methods.

A totally different style (with both advantages and disadvantages) is the use of
attributes to mark participating classes and given methods (or properties). This
opens up more flexibility, doesn't involve interfaces, but is based on a compar-
atively slow and error-prone run-time information look up, rather than a
compile-time resolution. This means I'm not advocating this coding style over
interfaces as a better approach, only as one that might be worth evaluating and
interesting to use in some circumstances.

The Description Attribute Class

For this demo, I've defined an attribute with a setting indicating the element is
it being applied to. I could have used three different attributes, but prefer to
avoid polluting the attributes name space. This is the attribute class definition:
type
 TDescriptionAttrKind = (dakClass, dakDescription, dakId);

 DescriptionAttribute = class (TCustomAttribute)
 private
 fDak: TDescriptionAttrKind;
 public
 constructor Create (aDak: TDescriptionAttrKind = dakClass);
 property Kind: TDescriptionAttrKind read fDak;
 end;

Notice the use of the constructor with a default value for its only parameter, to
let you use the attribute with no parameters.

The Sample Classes

Next I wrote two sample classes that use the attribute. Each class is marked
with the attribute and has two methods marked with the same attribute cus-
tomized with the different kinds. The first (TPerson) has the description
mapped to the GetName function and uses its TObject.GetHashCode method
to provide a (temporary) ID, re-declaring the method to apply the attribute to it
(the method code is simply a call to the inherited version):
type
 [Description]
 TPerson = class

Marco Cantù, Delphi 2010 Handbook

90 - Chapter 3: Extended RTTI and Attributes

 private
 FBirthDate: TDate;
 FName: string;
 FCountry: string;
 procedure SetBirthDate(const Value: TDate);
 procedure SetCountry(const Value: string);
 procedure SetName(const Value: string);
 public
 [Description (dakDescription)]
 function GetName: string;
 [Description (dakID)]
 function GetStringCode: Integer;
 published
 property Name: string read GetName write SetName;
 property BirthDate: TDate
 read FBirthDate write SetBirthDate;
 property Country: string read FCountry write SetCountry;
 end;

The second class (TCompany) is even simpler as it has its own values for the ID
and the description:
type
 [Description]
 TCompany = class
 private
 FName: string;
 FCountry: string;
 FID: string;
 procedure SetName(const Value: string);
 procedure SetID(const Value: string);
 public
 [Description (dakDescription)]
 function GetName: string;
 [Description (dakID)]
 function GetID: string;
 published
 property Name: string read GetName write SetName;
 property Country: string read FCountry write FCountry;
 property ID: string read FID write SetID;
 end;

Even if there are similarities among the two classes they are totally unrelated in
terms of hierarchy, common interface, or anything like that. What they share is
the use of the same attribute.

The Sample Project and Attributes Navigation

The shared use of the attribute is used to display information about objects
added to a list, declared in the main form of the program as:
 fObjectsList: TObjectList<TObject>;

Marco Cantù, Delphi 2010 Handbook

Chapter 3: Extended RTTI and Attributes - 91

This list is created and initialized as the program starts:
procedure TFormDescrAttr.FormCreate(Sender: TObject);
var
 aPerson: TPerson;
 aCompany: TCompany;
begin
 fObjectsList := TObjectList<TObject>.Create;

 // add a person
 aPerson := TPerson.Create;
 aPerson.Name := 'Wiley';
 aPerson.Country := 'Desert';
 aPerson.BirthDate := Date - 1000;
 fObjectsList.Add(aPerson);

 // add a company
 aCompany := TCompany.Create;
 aCompany.Name := 'ACME Inc.';
 aCompany.ID := IntToStr (GetTickCount);
 aCompany.Country := 'Worldwide';
 fObjectsList.Add(aCompany);

 // add an unrelated object
 fObjectsList.Add(TStringList.Create);

To display information about the objects (namely the ID and the description, if
available) the program uses attributes discovery via RTTI. First, it uses a helper
function to determine if the class is marked with the specific attribute22:
function TypeHasDescription (aType: TRttiType): Boolean;
var
 attrib: TCustomAttribute;
begin
 for attrib in aType.GetAttributes do
 begin
 if (attrib is DescriptionAttribute) then
 Exit (True);
 end;
 Result := False;
end;

If this is the case, the program proceeds by getting each attribute of each meth-
ods, with a nested loop, and checking if this is the attribute we are looking for:
 if TypeHasDescription (aType) then
 begin
 for aMethod in aType.GetMethods do
 for attrib in aMethod.GetAttributes do
 if attrib is DescriptionAttribute then
 ...

22 In this case you need to check for the full class name, DescriptionAttribute, and
not only “Description”, which is the symbol you can use when applying the attribute.

Marco Cantù, Delphi 2010 Handbook

92 - Chapter 3: Extended RTTI and Attributes

At the core of the loop, the methods marked with attributes are invoked to read
the results in two temporary strings (later added to the user interface):
 if attrib is DescriptionAttribute then
 case DescriptionAttribute(attrib).Kind of
 dakClass: ; // ignore
 dakDescription:
 strDescr := aMethod.Invoke(anObject, []).ToString;
 dakId:
 strID := aMethod.Invoke(anObject, []).ToString;

What the program fails to do is to check if an attribute is duplicated (that is, if
there are multiple methods marked with the same attribute, a situation in
which you might want to raise an exception). Summing up all of the snippets of
the previous page, this is the complete code of the UpdateList method:
procedure TFormDescrAttr.UpdateList;
var
 anObject: TObject;
 context: TRttiContext;
 aType: TRttiType;
 attrib: TCustomAttribute;
 aMethod: TRttiMethod;
 strDescr, strID: string;
begin
 for anObject in fObjectsList do
 begin
 aType := context.GetType(anObject.ClassInfo);
 if TypeHasDescription (aType) then
 begin
 for aMethod in aType.GetMethods do
 for attrib in aMethod.GetAttributes do
 if attrib is DescriptionAttribute then
 case DescriptionAttribute(attrib).Kind of
 dakClass: ; // ignore
 dakDescription:
 // should check if duplicate attribute
 strDescr := aMethod.Invoke(
 anObject, []).ToString;
 dakId:
 strID := aMethod.Invoke(
 anObject, []).ToString;
 end;
 // done looking for attributes
 // should check if we found anything
 with ListView1.Items.Add do
 begin
 Caption := strID;
 SubItems.Add(strDescr);
 end;
 end;
 end;
 // else ignore the object, could raise an exception
end;

Marco Cantù, Delphi 2010 Handbook

Chapter 3: Extended RTTI and Attributes - 93

If this program produces rather uninteresting output, shown below, the way it
is done is relevant, as I've marked some classes and two methods of those
classes with an attribute, and have been able to process these classes with an
external algorithm. In other words, the classes themselves need no specific
base class, no interface implementation nor any internal code to be part of the
architecture, but only need to declare they want to get involved. The full
responsibility for managing the classes is in some external code.

XML Streaming
One interesting and very ample case for RTTI is creating an “external” image of
an object, for saving its status to a file or sending it over the wire to another
application. Traditionally, the Delphi approach to this problem has been
streaming the published properties of an object, the same approach used when
creating DFM files. Now the RTTI lets you save the actual data of the object, its
fields, rather than the external interface. This is more powerful, although it can
lead to extra complexity, for example in the management of the data of internal
objects. Again, the demo acts as a simple showcase of the technique and doesn't
delve into all of its implications.

This examples comes in three versions, compiled in a single project for simpli-
city. The first is the traditional Delphi approach based on published properties,
the second uses the extended RTTI and fields, the third uses attributes to cus-
tomize the data mapping.

The Trivial XML Writer Class

To help with the generation of the XML, I've based the XmlPersist demo on an
extended version of a TTrivialXmlWriter class I originally wrote in my
Delphi 2009 Handbook to demonstrate the use of the TTextWriter class.

Marco Cantù, Delphi 2010 Handbook

94 - Chapter 3: Extended RTTI and Attributes

Here I don't want to cover it again. Suffice to say that the class can keep track of
the XML nodes it opens, thanks to a stack of strings, and close the XML nodes
in a LIFO (Last In, First Out) order.23

To the original class I've added some limited formatting code and three meth-
ods for saving an object, based on the three different approaches I'm going to
explore in this section. This is the complete class declaration:
type
 TTrivialXmlWriter = class
 private
 fWriter: TTextWriter;
 fNodes: TStack<string>;
 fOwnsTextWriter: Boolean;
 public
 constructor Create (aWriter: TTextWriter); overload;
 constructor Create (aStream: TStream); overload;
 destructor Destroy; override;
 procedure WriteStartElement (const sName: string);
 procedure WriteEndElement (fIndent: Boolean = False);
 procedure WriteString (const sValue: string);
 procedure WriteObjectPublished (AnObj: TObject);
 procedure WriteObjectRtti (AnObj: TObject);
 procedure WriteObjectAttrib (AnObj: TObject);
 function Indentation: string;
 end;

To get an idea of the code, this is the WriteStartElement method, which uses
the Indentation function for leaving twice as much spaces as the current
number of nodes on the internal stack:
procedure TTrivialXmlWriter.WriteStartElement(
 const sName: string);
begin
 fWriter.Write (Indentation + '<' + sName + '>');
 fNodes.Push (sname);
end;

You'll find the complete code of the class in the project source code.

Classic RTTI-Based Streaming

After this introduction covering the support class, let me start from the very
beginning, that is saving an object in an XML-based format using the classic
RTTI for published properties.

23 The source code of the TTrivialXmlWriter class of Delphi 2009 Handbook can be found
at http://www.marcocantu.com/code/dh2009/ReaderWriter.htm

Marco Cantù, Delphi 2010 Handbook

Chapter 3: Extended RTTI and Attributes - 95

The code of the WriteObjectPublished method is quite complex and
requires a bit of explanation. It is based on the TypInfo unit and uses the low-
level version of the old RTTI to be able to get the list of published properties for
a given object (the AnObj parameter), with code like:
 nProps := GetTypeData(AnObj.ClassInfo)^.PropCount;
 GetMem(PropList, nProps * SizeOf(Pointer));
 GetPropInfos(AnObj.ClassInfo, PropList);
 for i := 0 to nProps - 1 do
 ...

What this does is ask for the number of properties, allocate a data structure of
the proper size, and fill the data structure with information about the published
properties. In case you are wondering could you write this low-level code? Well
you've just found a very good reason why the new RTTI was introduced. For
each property, the program extracts the value of properties of numeric and
string types, while it extracts any sub-object and acts recursively on it:
strPropName := UTF8ToString (PropList[i].Name);
case PropList[i].PropType^.Kind of
 tkInteger, tkEnumeration, tkString, tkUString, ...:
 begin
 WriteStartElement (strPropName);
 WriteString (GetPropValue(AnObj, strPropName));
 WriteEndElement;
 end;
 tkClass:
 begin
 internalObject := GetObjectProp(AnObj, strPropName);
 // recurse in subclass
 WriteStartElement (strPropName);
 WriteObjectPublished (internalObject as TPersistent);
 WriteEndElement (True);
 end;
end;

There is some extra complexity, but for the sake of the example and to give you
an idea of the traditional approach, that should be enough.

To demonstrate the effect of the program I've written two classes (TCompany
and TPerson) adapted from the previous example. This time, however, the
company can have a person assigned to an extra property, called Boss. In the
real world this would be more complex, but for this example it is a reasonable
assumption. These are the published properties of the two classes:
type
 TPerson = class (TPersistent)
 ...
 published
 property Name: string read FName write FName;

Marco Cantù, Delphi 2010 Handbook

96 - Chapter 3: Extended RTTI and Attributes

 property Country: string read FCountry write FCountry;
 end;

 TCompany = class (TPersistent)
 ...
 published
 property Name: string read FName write FName;
 property Country: string read FCountry write FCountry;
 property ID: string read FID write FID;
 property Boss: TPerson read FPerson write FPerson;
 end;

The main form of the program has a button used to create and connect two
objects of these two classes and saving them to an XML stream, which is later
displayed. The streaming section has the following code:
 ss := TStringStream.Create;
 xmlWri := TTrivialXmlWriter.Create (ss);
 xmlWri.WriteStartElement('company');
 xmlWri.WriteObjectPublished(aCompany);
 xmlWri.WriteEndElement;

The result is an XML file like:
<company>
 <Name>ACME Inc.</Name>
 <Country>Worldwide</Country>
 <ID>29088851</ID>
 <Boss>
 <Name>Wiley</Name>
 <Country>Desert</Country>
 </Boss>
</company>

Streaming Fields With the New RTTI

Now that Delphi 2010 provides us with a much higher-level RTTI, I can convert
the program to use this new RTTI for accessing the published properties. What
I'm going to do, instead, is to use it for saving the internal representation of the
object, that is, its private data fields. Not only am I doing something more
hard-core, but I'm doing it with much higher-level code. The complete code of
the WriteObjectRtti method is the following:
procedure TTrivialXmlWriter.WriteObjectRtti(AnObj: TObject);
var
 aContext: TRttiContext;
 aType: TRttiType;
 aField: TRttiField;
begin
 aType := aContext.GetType (anObj.ClassType);
 for aField in aType.GetFields do
 begin

Marco Cantù, Delphi 2010 Handbook

Chapter 3: Extended RTTI and Attributes - 97

 if aField.FieldType.IsInstance then
 begin
 WriteStartElement (aField.Name);
 WriteObjectRtti (aField.GetValue(anObj).AsObject);
 WriteEndElement (True);
 end
 else
 begin
 WriteStartElement (aField.Name);
 WriteString (aField.GetValue(anObj).ToString);
 WriteEndElement;
 end;
 end;
end;

The resulting XML is somewhat similar, but somehow less clean as field names
are generally less readable than property names:
<company>
 <FName>ACME Inc.</FName>
 <FCountry>Worldwide</FCountry>
 <FID>29470148</FID>
 <FPerson>
 <FName>Wiley</FName>
 <FCountry>Desert</FCountry>
 </FPerson>
</company>

Another big difference, though, is that in this case the classes didn't need to
inherit from the TPersistent class or be compiled with any special option.

Using Attributes to Customize Streaming

Beside the problem with the tag names, there is another issue I haven't men-
tioned. Using XML tag names which are actually compiled symbols is far from
a good idea. Also, in the code there is no way to exclude some properties24 or
fields from XML-base streaming. These are issues we can address using attrib-
utes, although the drawback will be having to use them quite heavily in the
declaration of our classes, a coding style I don't like much. For the new version
of the code, I've defined an attribute constructor with an optional parameter:
type
 xmlAttribute = class (TCustomAttribute)
 private
 fTag: string;
 public

24 Delphi properties streaming can be controlled using the stored directive, which can be
read using the TypInfo unit. Still, this solution is far from simple and clean, even if the
DFM streaming mechanism uses it effectively.

Marco Cantù, Delphi 2010 Handbook

98 - Chapter 3: Extended RTTI and Attributes

 constructor Create (strTag: string = '');
 property TagName: string read fTag;
 end;

The attributes-based streaming code is a variation of the last version based on
the extended RTTI. The only difference is that now the program calls the
CheckXmlAttr helper function to verify if the field has the xml attribute and
the (optional) tag name decoration:
procedure TTrivialXmlWriter.WriteObjectAttrib(AnObj: TObject);
var
 aContext: TRttiContext;
 aType: TRttiType;
 aField: TRttiField;
 strTagName: string;
begin
 aType := aContext.GetType (anObj.ClassType);
 for aField in aType.GetFields do
 begin
 if CheckXmlAttr (aField, strTagName) then
 begin
 if aField.FieldType.IsInstance then
 begin
 WriteStartElement (strTagName);
 WriteObjectAttrib (aField.GetValue(anObj).AsObject);
 WriteEndElement (True);
 end
 else
 begin
 WriteStartElement (strTagName);
 WriteString (aField.GetValue(anObj).ToString);
 WriteEndElement;
 end;
 end;
 end;
end;

The most relevant code is in the CheckXmlAttr helper function:
function CheckXmlAttr (aField: TRttiField;
 var strTag: string): Boolean;
var
 attrib: TCustomAttribute;
begin
 Result := False;
 for attrib in aField.GetAttributes do
 if attrib is XmlAttribute then
 begin
 strTag := xmlAttribute(attrib).TagName;
 if strTag = '' then // default value
 strTag := aField.Name;
 Exit (True);
 end;
end;

Marco Cantù, Delphi 2010 Handbook

Chapter 3: Extended RTTI and Attributes - 99

Fields without the XML attribute are ignored and the tag used in the XML out-
put is customizable. To demonstrate this, the program has the following classes
(this time I've omitted the published properties from the listing, as they are not
relevant):
type
 TAttrPerson = class
 private
 [xml ('Name')]
 FName: string;
 [xml]
 FCountry: string;
 ...

 TAttrCompany = class
 private
 [xml ('CompanyName')]
 FName: string;
 [xml ('Country')]
 FCountry: string;
 FID: string; // omitted
 [xml ('TheBoss')]
 FPerson: TAttrPerson;
 ...

With these declarations, the XML output will look like the following (notice the
tag name, the fact the ID is omitted, and the (bad looking) default name for the
FCountry field):
<company>
 <CompanyName>ACME Inc.</CompanyName>
 <Country>Worldwide</Country>
 <TheBoss>
 <Name>Wiley</Name>
 <FCountry>Desert</FCountry>
 </TheBoss>
</company>

The difference here is we can be very flexible about which fields to include and
how to name them in the XML, something the previous versions didn't allow.

Even if this is just a very skeletal implementation, I think that giving you the
opportunity to see the final version being created step by step starting with the
classic RTTI has given you a good feeling of the differences among the various
techniques. What is important to keep in mind, in fact, is that is it not a given
that using attributes will be always the best solution! On the other hand, it
should be clear that RTTI and attributes add a lot of power and flexibility in any
scenario in which you need to inspect the structure of an unknown object at run
time.

Marco Cantù, Delphi 2010 Handbook

100 - Chapter 3: Extended RTTI and Attributes

What's Next
For its long term viability, Delphi must provide new language features that can
be used as a renewed foundation for the development of modern frameworks.
The growth of framework-based code is quite significant both in the Java world
and in the .NET environment, and missing the language features that are at the
foundations of these frameworks was quite a negative point for Delphi. Now
with generics and anonymous methods introduced in Delphi 2009 and attrib-
utes added to Delphi 2010 the gap is reducing significantly. So I hope that the
next few years will see the start of new Delphi frameworks or the port to Delphi
of existing open source frameworks used by other environments. Both Embar-
cadero Technologies as a company and the Delphi community at large should
push for this goal.

That's why the current chapter is probably the most relevant (and also one of
the longest) of the entire book. In it I've fully delved into the new Extended
RTTI of Delphi 2010 and its Attribute support. There are some other new com-
piler features that are worth exploring, which is what I'll do in the first part of
the next chapter.

The second part of Chapter 4 focuses on changes to the Run Time Library
(RTL, for short). In Chapter 5 I'll start exploring new features of the Visual
Component Library (VCL, for short).

Marco Cantù, Delphi 2010 Handbook

Chapter 3: Extended RTTI and Attributes - 101

Marco Cantù, Delphi 2010 Handbook

102 - Chapter 3: Extended RTTI and Attributes

Marco Cantù, Delphi 2010 Handbook

Chapter 4: More on the Compiler and the RTL - 103

Chapter 4: More
On The Compiler

And The RTL

If Extended RTTI and attribute support are the most significant new features of
the Delphi 2010 compiler, there are three other important enhancements: the
ability to access the object behind an interface reference, delayed loading of
DLL functions, and class constructors. I'll look at these features in the first part
of this chapter. The second part of the chapter will focus on the RTL and the
new IOUtils unit, which defines classes for files and folders.

New Compiler Features
While it is possible for third-parties to provide custom components or extend
the IDE, the compiler is the core capability that only the R&D Team can extend.
That's why each change at the compiler level is worth special consideration.

Marco Cantù, Delphi 2010 Handbook

104 - Chapter 4: More on the Compiler and the RTL

Version
First of all, in case you need to have some code specifically tied to Delphi 2010,
consider that while the IDE version number is 14, the compiler version number
(dating back to the original Turbo Pascal) is 21. The corresponding compiler
define is VER210, so you can have code that compiles only for this version with:
{$IFDEF VER210}

Extracting Objects from Interface References
It was the case for many versions of Delphi, that when you assign an object to
an interface variable, there was no way to access the original object. At times,
Delphi developers would add a GetObject method to their interfaces to per-
form the operation, but that is quite an odd design.

For the first time since interfaces were introduced, Delphi 2010 adds support
for casting interface references back to the original object to which they have
been assigned. There are three separate operations you can use:

• You can write an is test to verify that an object of the given type can can
indeed be extracted from the interface reference:

intfVar is TMyObject.

• You can write an as cast to perform the type cast, raising an exception in
case of an error:

intfVar as TMyObject.

• You can write a hard type cast to perform the same conversion, returning a
nil pointer in case of an error:

TMyObject(intfVar)

In every case, the type cast operation works only if the interface was originally
obtained from a Delphi object, and not from a COM server. Note also that you
can not only cast to the exact class of the original object, but also to one of its
base classes (following standard class compatibility rules for derived classes).

As an example, consider having the following simple interface and implement-
ation class (part of the ObjFromIntf project):
type
 ITestIntf = interface (IInterface)
 ['{2A77A244-DC85-46BE-B98E-A9392EF2A7A7}']
 procedure DoSomething;
 end;

Marco Cantù, Delphi 2010 Handbook

Chapter 4: More on the Compiler and the RTL - 105

 TTestImpl = class (TInterfacedObject, ITestIntf)
 public
 procedure DoSomething;
 procedure DoSomethingElse; // not in interface
 destructor Destroy; override;
 end;

With these definitions you can now define an interface variable, assign an
object to it, and use it also to invoke the method not in the interface, with the
new cast:
var
 intf: ITestIntf;
begin
 intf := TTestImpl.Create;
 intf.DoSomething;
 (intf as TTestImpl).DoSomethingElse;

You can also write the code in the following way, using an is test and a direct
cast, and you can always cast to a base class of the actual class of the object:
var
 intf: ITestIntf;
 original: TObject;
begin
 intf := TTestImpl.Create;
 intf.DoSomething;
 if intf is TObject then
 original := TObject (intf);
 (original as TTestImpl).DoSomethingElse;

Considering that a direct cast returns nil if not successful, you could also write
the code as follows (without the previous is test):
 original := TObject (intf);
 if Assigned (original) then
 (original as TTestImpl).DoSomethingElse;

Notice that assigning the object extracted from the interface to a variable
exposes you to reference counting issues: when the interface is set to nil or
goes out of scope, the object is actually deleted and the variable referring to it
will become invalid. You'll find the code highlighting the problem in the
btnRefCountIssueClick event handler of the example.

Technically, the three operations (as cast, direct conversion, is test) are imple-
mented by three new global routines of the System unit:
function _IntfAsClass(const Intf: IInterface;
 Parent: TClass): TObject;
function _SafeIntfAsClass(const Intf: IInterface;
 Parent: TClass): TObject;
function _IntfIsClass(const Intf: IInterface;
 Parent: TClass): Boolean;

Marco Cantù, Delphi 2010 Handbook

106 - Chapter 4: More on the Compiler and the RTL

Class Constructors (and Destructors)
Class constructors are a new feature that has been borrowed from the .NET
environment and were already available in Delphi for .NET. A class constructor
has nothing to to with a standard constructor (or instance constructor): It is
merely code used to initialize the class itself once (generally class data or other
global settings) before the class is used.

In other words, a class constructor is an alternative to the unit initialization
code. In case both exist (in a unit), the class constructor will be executed first.
At the opposite, you can define a class destructor that will be executed after the
finalization code.

A significant difference, however, is that while the unit initialization code is
invariably executed if the unit is compiled in the program, the class constructor
and destructor are linked only if the class is actually used. This means that the
use of class constructor is much more linker friendly than the use of initializa-
tion code. With class constructors and destructors, if the type is not linked the
initialization code is not part of the program and not executed; in the tradi-
tional case the opposite is true, the initialization code might even cause the
linker to bring in some of the class code, even if it is never actually used25.

In terms of code, you can write the following (taken from the ClassCtor demo):
type
 TTestClass = class
 public
 class var
 StartTime: TDateTime;
 EndTime: TDateTime;
 public
 class constructor Create;
 class destructor Destroy;
 end;

The class has two class data fields, initialized by the class constructor, and
modified by a class destructor, while the initialization and finalization
sections of the unit uses these data fields:
class constructor TTestClass.Create;
begin
 StartTime := Now;
end;

25 In practical terms, this happens in Delphi 2010 for the new gesturing framework, which
is not compiled into the executable if not used.

Marco Cantù, Delphi 2010 Handbook

Chapter 4: More on the Compiler and the RTL - 107

class destructor TTestClass.Destroy;
begin
 EndTime := Now;
end;

initialization
 ShowMessage (TimeToStr (TTestClass.StartTime));

finalization
 ShowMessage (TimeToStr (TTestClass.EndTime));

What happens is that the start up sequence works as expected, with the class
data already available as you show the information. When closing, instead, the
ShowMessage call is executed before the value is assigned by the class
destructor, which is executed at the very end.

Notice that you can give the class constructor and destructor any name,
although Create and Destroy would be very good defaults. You cannot, how-
ever, define multiple class constructors or destructors. If you try, the compiler
will issue the following error message:
[DCC Error] ClassCtorMainForm.pas(34): E2359 Multiple class
constructors in class TTestClass: Create and Foo

There are a few RTL classes that already take advantage of this new language
feature, like the Exception class that defines both a class constructor (with the
code below) and a class destructor:
class constructor Exception.Create;
begin
 InitExceptions;
end;

The InitExceptions procedure was previously called in the initialization sec-
tion of the SysUtils unit. In general, I think that using class constructors and
destructors is better than using unit initialization and termination. In most
cases, this is only syntactic sugar, so I won't go back and change existing code.
However, if you face the risk of initializing data structures you'll never used
(because no class of that type is ever created) moving to class constructors will
provide a definitive advantage.

Class Constructors for Generic Classes

A very interesting case arises when you define a class constructor for a generic
class. In fact, one such constructor is generated by the compiler and called for
each generic class instance, that is, for each actual type defined using the gen-
eric template. This is quite interesting, because it would be quite complex to

Marco Cantù, Delphi 2010 Handbook

108 - Chapter 4: More on the Compiler and the RTL

execute initialization code for each actual instance of the generic class you are
going to create in your program without class constructor.

As an example, consider a generic class with some class data. You'll get an
instance of this class data for each generic class instance. If you need to assign
an initial value to this class data, you cannot use the unit initialization code, as
in the unit defining the generic class you don't know which actual classes you
are going to need.

The following is a bare bones example of a generic class with a class constructor
used to initialize the DataSize class field, taken from the GenericClassCtor
example:
type
 TGenericWithClassCtor <T> = class
 private
 FData: T;
 procedure SetData(const Value: T);
 public
 class constructor Create;
 property Data: T read FData write SetData;
 class var
 DataSize: Integer;
 end;

This is the code of the generic class constructor, which uses an internal string
list (see the full source code for implementation details) for keeping track of
which class constructors are actually called:
class constructor TGenericWithClassCtor<T>.Create;
begin
 DataSize := SizeOf (T);
 ListSequence.Add(ClassName);
end;

The demo program creates and uses a couple of instances of the generic class,
and also declares the data type for a third, which is removed by the linker:
var
 genInt: TGenericWithClassCtor <SmallInt>;
 genStr: TGenericWithClassCtor <string>;
type
 TGenDouble = TGenericWithClassCtor <Double>;

If you ask the program to show the contents of the ListSequence string list,
you'll see only the types that have actually been initialized:
TGenericWithClassCtor<System.SmallInt>
TGenericWithClassCtor<System.string>

However, if you create generic instances based on the same data type in differ-
ent units, the linker might not work as expected and you'll have multiple calls

Marco Cantù, Delphi 2010 Handbook

Chapter 4: More on the Compiler and the RTL - 109

to the same generic class constructor26 (or, to be more precise, two generic class
constructors for the same type). I've added a procedure called Useless in the
secondary unit of this example that, when uncommented, will highlight the
problem, with an initialization sequence like:
TGenericWithClassCtor<System.string>
TGenericWithClassCtor<System.SmallInt>
TGenericWithClassCtor<System.string>

Delayed Loading of DLL Functions
In the Windows operating system, there are two ways to invoke an API function
of the Windows SDK (or any other DLL): you can let the application loader
resolve all references to external functions or you can write specific code that
looks for a function and executes it if available. The former code is easier to
write, as all you need is the external function declaration, but if the library or
even just one of the functions you want to call is not available (a frequent case if
your program has to work on multiple versions of the operating system), your
program will not be able to start. Dynamic loading allows for more flexibility,
but implies loading the library manually, using the GetProcAddress API for
finding the function you want to call, and invoking it after casting the pointer to
the proper type. This kind of code is quite cumbersome, and recent versions of
Delphi started adding more and more of it into the VCL, to provide support for
Windows Vista (and now Windows 7) features from within applications that
still have to work on Windows XP or Windows 2000.

That's why it is good that the Delphi 2010 compiler and linker have added sup-
port for a feature now available at the operating system level and already used
by some C++ compilers, the delayed loading of functions until the time they are
called. The aim of this declaration is not to avoid the implicit loading of the
DLL, which takes place anyway, but to allow the delayed binding of that specific
function within the DLL.

You basically write the code in a way that's very similar to the classic execution
of DLL function, but the function address is resolved the first time the function

26 It is not easy to address a similar problem. To avoid a repeated initialization, you might
want to check if the class constructor has already been executed. In general, though, this
problem is part of a more comprehensive limitation of generic classes and the linkers in-
ability to optimize them.

Marco Cantù, Delphi 2010 Handbook

110 - Chapter 4: More on the Compiler and the RTL

is called and not at load time. This means that if the function is not available
you get a run-time exception, EExternalException27. However, you can gen-
erally verify the current version of the operating system or the version of the
specific library you are calling, and decide in advance whether you want to
make the call or not.

From the Delphi perspective, the only difference is in the declaration of the
external function. Rather than writing (as you can see in the Windows unit):
function MessageBox;
 external user32 name 'MessageBoxW';

You can now write (again, from an actual example in the Windows unit):
function WindowFromPhysicalPoint;
 external user32
 name 'WindowFromPhysicalPoint' delayed;

At run time, considering that the API has been added to Vista (that is, Windows
6.0) for the first time, you might want to write code like the following taken
from the DelayedLoading example:
 if CheckWin32Version (6, 0) then
 begin
 hwnd := WindowFromPhysicalPoint (aPoint);

This is nowhere near the amount of code you had to write in previous versions
of Delphi to obtain the same behavior. Needless to say that the VCL source code
has been significantly updated to use this feature wherever possible, and with
the addition of many core API functions that were previously omitted to avoid
incompatibilities with older versions of the operating system.

Another relevant observation is that you can use the same mechanism when
building your own DLLs and calling them in Delphi, providing a single execut-
able that can bind to multiple versions of the same DLL as long as you use
delayed loading for the new functions. Unluckily, the same doesn't apply to
packages, but the new Extended RTTI offers enough capabilities for working
with packages dynamically that we can also be quite happy about the Delphi
2010 improvements in that area.

27 If you want something more specific and easier to handle at a global level than an excep-
tion, you can hook into the error mechanism for the delayed loading call, as explained by
Allen Bauer in his blog post: http://blogs.embarcadero.com/abauer/2009/08/29/38896

Marco Cantù, Delphi 2010 Handbook

Chapter 4: More on the Compiler and the RTL - 111

Scoped Enumerators
Although it was introduced in Delphi 2009, scoped enumerations have been
hidden enough and I failed to cover them in my “Delphi 2009 Handbook”, so
I'm sure it makes sense to cover them here. Traditionally in Delphi the values
of an enumeration become global constants you can use freely in your code.
This could not be changed, for backward compatibility. The Delphi compiler,
however, has a new directive, $SCOPEDENUMS, that changes the behavior of
enumerations making it compulsory to refer to them with a type prefix28.

Having an absolute name to refer to enumerated values removes the risk of a
conflict, could let you avoid using the initial prefix of the enumerated values as
a way to differentiate with other enumerations, and makes the code more read-
able, even if much longer to write. Too bad that Code Completion doesn't seem
to recognize scoped enumerations, so you actually need to enter the entire type
and value manually.

As an example, the IOUtils unit (see later in this chapter) defined this type:
{$SCOPEDENUMS ON}
type
 TSearchOption = (soTopDirectoryOnly, soAllDirectories);

This means you cannot refer to the second values as soAllDirectories, but
you have to refer to the it with its complete name:
TSearchOption.soAllDirectories

This probably sounds quite odd to most Delphi developers, but I guess we'll
have to get used to it, whether you like it or not.

The With Statement Now Preserves Read
Only Properties

Beside the various extensions covered so far, the compiler in Delphi 2010 has a
relevant fix... which can affect existing programs that exploited this unwanted
opportunity as if it were a feature. In short, if you have a with statement refer-
ring to a read-only record property, you cannot modify the record members any
more. Again, this is a reasonable fix, but it might affect existing code (and did
affect the source of some third party controls). Here is an example, which is the

28 This is exactly how C# invariably works.

Marco Cantù, Delphi 2010 Handbook

112 - Chapter 4: More on the Compiler and the RTL

ReadOnlyRecord project in the book's source code. Suppose you have a record
like the following (the effect is the same for a packed record):
type
 TMyPoint = record
 X: Integer;
 Y: Integer;
 end;

Suppose you have a class that uses this record as value of a read-only property:
type
 TMyFixedRect = class
 private
 fBottomRight: TMyPoint;
 fTopLeft: TMyPoint;
 public
 constructor Create (a, b, c, d: Integer);
 property TopLeft: TMyPoint read fTopLeft;
 property BottomRight: TMyPoint read fBottomRight;
 end;

Any code that tries to access the individual element of the read-only record
property would not compile in Delphi 2009, nor it does in Delphi 2010:
var
 aRect: TMyFixedRect;
begin
 aRect := TMyFixedRect.Create(10, 10, 100, 100);
 aRect.TopLeft.X := 20;

However, the following code would have worked in Delphi 2009:
 with aRect.TopLeft do
 X := 20;

In Delphi 2010, this causes a compiler error:
[DCC Error] ReadOnlyRecordMainForm.pas(51):
 E2064 Left side cannot be assigned to

Of course, if you extract the record and modify it, you are modifying a copy, so
the original read-only value is not affected, as another code snippet of the demo
program demonstrates:
 aPoint := aRect.TopLeft;
 aPoint.X := 20;
 ShowMessage (IntToStr (aRect.TopLeft.X));

Apparently this change was made because similar code in the context of generic
records caused significant problems. While it is a positive change (making the
code more robust and clean) it has the drawback of not being backward com-
patible: Existing Delphi code might fail to compile, although the workaround
would probably be reasonably simple.

Marco Cantù, Delphi 2010 Handbook

Chapter 4: More on the Compiler and the RTL - 113

New Run Time Library Features
Every time the Delphi compiler gets updated, there are extensions of the Run
Time Library (RTL) that go along with them. In this release, for example, the
System unit defines new types like the TVisibilityClasses enumeration
and the TCustomAttribute class, which complement the Extended RTTI sup-
port. There are other trends in the RTL that are worth exploring, beside looking
at specific new features and a few brand new units.

RTL Trends
There are a few relevant trends in the Delphi product that show up in the RTL.
The first is certainly the cross-platform trend. In dozens and dozens of
places of the RTL units source code you'll see along with LINUX conditional
compilation statements (which were never removed from the Kylix29 days)
some new MACOSX conditional compilation statements. Support for these two
platforms is expected in a future version of Delphi. As an example, consider the
following definition for the sLineBreak global constant:
const
 sLineBreak = {$IFDEF LINUX} AnsiChar(#10) {$ENDIF}
 {$IFDEF MSWINDOWS} AnsiString(#13#10) {$ENDIF}
 {$IFDEF MACOSX} AnsiChar(#10) {$ENDIF};

Another trend is the focus on efficient code. There are countless new inlined
functions at the RTL level. Again, as an example, in the DateUtils unit (for pro-
cessing date and time values) 27 existing functions have been marked inline in
Delphi 2010.

A third trend is localization support: This has been improved by using the
operating system UILocale property and the complete language-country
names (like fr-FR) to determine which localized resource DLL to use.

29 Kylix was a version of Delphi for Linux. Not only the compiler could produce Linux ex-
ecutables (limited to the Intel platform), but the entire IDE could run under Linux as
host operating system. Despite three versions, Kylix never caught on, also because of
some instability of the IDE. That's probably one of the reasons why Embarcadero men-
tioned its future cross-platform versions of Delphi will use the Windows IDE and let de-
velopers cross-compile to other operating systems.

Marco Cantù, Delphi 2010 Handbook

114 - Chapter 4: More on the Compiler and the RTL

A fourth trend is the slow conversion to code based on generics in the RTL.
For example, in the System unit there is now the declaration of a generic typed
dynamic array, TArray<T>:
type
 TArray<T> = array of T;

Browsing Existing Units
Beside compiler-related features and trend-setting features, there are many
other extensions to the RTL, some of which are worth mentioning:

• The TStringBuilder class has a new Clear method, that removes any
data in the current buffer.

• In the Types unit there a new global function called PtInCircle, that
clones the existing PtInRect function.

• As already mentioned in Chapter 2, the TThread class has a new static class
method to help with naming threads, NameThreadForDebugging.

• Also, the Resume and Suspend methods of the TThread class are now deprec-
ated30. In case you initially create the thread in a suspended state, you should use
the new Start method instead of Resume.
• The TCustomIniFile class has been extended with a new method,

ReadSubSections, to improve compatibility with registry access using the
class TRegIniFile.

• The TRegistry class, in turn, has improved error management, with the
new properties LastError and LastErrorMsg. Of course, the methods of
the class now extensively check for errors, making it much more robust to
work with.

There are a couple of other new features that are interesting to notice, as they
have quite an ironic spin.

30 The Resume method was deprecated because it was found to be unsafe, leading to
memory corruption under certain circumstances. As I learned from Mason Wheeler,
“Basic idea is that Resume un-suspends the thread, and then changes one of the
thread's fields, but if you resume and then the thread terminates and frees itself imme-
diately, before the Resume method reaches that point, you're overwriting freed
memory which may have been re-allocated already in a high-traffic environment.”

Marco Cantù, Delphi 2010 Handbook

Chapter 4: More on the Compiler and the RTL - 115

The first is that the SysUtils unit has a new data type, which can be considered
as a Boolean value with a spin. Called TUncertainState and used by the Dir-
ect2D unit, it is a scoped enumeration31 defined as:
type
 TUncertainState = (Maybe, Yes, No);

The second side note is that Douglas Adams fans should look to the implement-
ation of the GetHashCode_Class function... which uses 42 as return value in
given circumstances, rather than causing an exception as it did in the past. I
wonder if 42 is just a random non-zero value, of if there is any reason it was
picked... other then being the “Answer to the Ultimate Question of Life, the
Universe, and Everything”32.

Collections and Containers
Another set of RTL updates relates to collections and containers. The TList
class defines a new sorting method, called SortList, which takes an anonym-
ous method as parameter. So in case of a TList storing numbers (as in the
btnSortListAnonClick event handler of the RtlLists example, you can write:
var
 aList: TList;
begin
 ...
 aList.SortList (
 function (Item1, Item2: Pointer): Integer
 begin
 if Integer(Item1) > Integer (Item2) then
 Result := 1
 else if Integer(Item1) < Integer (Item2) then
 Result := -1
 else
 Result := 0;
 end);

The TList class has also three other new methods that let you find the position
of an element (or extract it or remove it) starting from the end of the list rather
than the beginning. Actually the three methods, listed below, have a
TDirection parameter that lets you specify the standard (FromBegin) or
reverse (FromEnd) sequence:

31 Scoped enumerations were introduced in first part of this chapter.

32 According to Douglas Adams in “The Hitchhiker's Guide to the Galaxy”.

Marco Cantù, Delphi 2010 Handbook

116 - Chapter 4: More on the Compiler and the RTL

 function ExtractItem(Item: Pointer;
 Direction: TDirection): Pointer;
 function IndexOfItem(Item: Pointer;
 Direction: TDirection): Integer;
 function RemoveItem(Item: Pointer;
 Direction: TDirection): Integer;

The RtlLists project has an example of the usage of IndexOfItem, in which the
program adds 50 consecutive numbers and then repeats the number one, and
you can search for the two occurrences of the value one from the beginning or
from the end:
var
 aList: TList;
 I: Integer;
begin
 ...
 for I := 1 to 50 do
 aList.Add(Pointer (I));
 aList.Add (Pointer (1));
 Log ('IndexOf: ' + IntToStr (
 aList.IndexOf(Pointer (1))));
 Log ('IndexOfItem (FromEnd): ' + IntToStr (
 aList.IndexOfItem(Pointer (1), FromEnd)));

This produces, not surprisingly, the following output:
IndexOf: 0
IndexOfItem (FromEnd): 50

The same three methods are available also in the inherited TObjectList,
TClassList, and TComponentList classes, defined in the Contnrs unit.

These new methods are not part of the generic version of the TList class,
TList<T>, which already had a LastIndexOf method since it was introduced
in Delphi 200933. The generic TList<T>, however, has its own four new meth-
ods, two for moving items and two for accessing the first and last ones:
 procedure Exchange(Index1, Index2: Integer);
 procedure Move(CurIndex, NewIndex: Integer);
 function First: T;
 function Last: T;

33 I find it quite odd that the method names of these two strictly related classes, TList and
TList<T> are not kept in sync as much as possible. Porting code from TList code to
the generic version of the container is harder than it should be.

Marco Cantù, Delphi 2010 Handbook

Chapter 4: More on the Compiler and the RTL - 117

Discovering New Units
In Delphi 2010, the RTL not only has some new capabilities, but also four
brand new units. We have already covered one of them, the Rtti unit, in
Chapter 3. Here come the other three new RTL units (I'll list new Windows API
translation headers in a specific section in the next chapter).

The IOUtils unit defines a nice set of classes for managing the file system,
TDirectory, TPath, and TFile, and will be covered in a following section.

The TimeSpan unit defines the TTimeSpan record, similar to the corres-
ponding .NET data structure, and used to express a time difference rather than
an absolute time value. The time is stored inside a TTimeSpan in terms of tens
of thousandths of a millisecond, that is ten thousands ticks correspond to one
millisecond. Compared to a TDateTime, which represent the time using the
decimal part of a floating point number, a TTimeSpan is way more accurate.

The Diagnostics unit defines a handy TStopWatch record, which can be used
to time an algorithm in a rather precise way, as it uses system ticks and calls the
QueryPerformanceCounter API to convert ticks to milliseconds in an accur-
ate way. To enable the higher quality measurement, you have to turn on the
class property IsHighResolution.

Using the TStopWatch Class

Here is a usage test (from the StopWatchTest example):
var
 sw: TStopWatch;
begin
 sw := TStopwatch.Create;

 sw.Start;
 // code you want to time
 sw.Stop;

 // read elapsed time
 sw.ElapsedMilliseconds
 sw.ElapsedTicks

The first line initializes the frequency counter (depending on the high resolu-
tion setting) and zeros the stop watch (as local records are not initialized to
zero), the second starts it. As an alternative you can call the combined
StartNew constructor.

Marco Cantù, Delphi 2010 Handbook

118 - Chapter 4: More on the Compiler and the RTL

Notice you can Start and Stop the Stop Watch many times in a session: Each
time interval will be added. However, you can get the current elapsed time (in
ticks, milliseconds, or the new and just introduced TTimeSpan structure) also
while the Stop Watch is running. With this in mind you can trim the code to:
var
 sw: TStopWatch;
begin
 sw := TStopwatch.StartNew;
 // code you want to time
 sw.ElapsedTicks

The Input/Output Utilities Unit
One of the most interesting additions to the Delphi 2010 Run Time Library, not
tied to compiler changes or other new features, is the IOUtils unit. This unit has
three records mostly defining class methods, which are compatible with the
corresponding .NET classes:

• TDirectory matches System.IO.Directory
• TPath matches System.IO.Path
• TFile matches System.IO.File

While it is quite obvious that TDirectory is for browsing folder and finding its
files and sub-folders, it might not be so clear what is the difference between a
TPath and TFile. The former is used for manipulating file name and directory
names, with methods for extracting the drive, file name with no path, extension
and the like, but also for manipulating UNC paths. The TFile record, instead,
lets you check the file time stamps and attributes, but also manipulate a file,
writing to it or copying it.

As usual, it can be worth looking at an example. The IoFilesInFolder program
can extract all of the sub-folders of a given file and it can grab all of the files
with a given extension available under that folder.

The program starts by filling an edit box with the Documents folder of the cur-
rent user. I used the ShGetFolderPath API of the ShlObj unit (and not that of

Marco Cantù, Delphi 2010 Handbook

Chapter 4: More on the Compiler and the RTL - 119

the SHFolder unit, available for compatibility with very old versions of Win-
dows34), to get the folder path:
procedure TFormIoFiles.FormCreate(Sender: TObject);
var
 szBufferW: string;
begin
 SetLength (szBufferW, MAX_PATH);
 OleCheck (SHGetFolderPath (Handle,
 CSIDL_MYDOCUMENTS, 0, 0, PChar(szBufferW)));
 edBaseFolder.Text := string (szBufferW);
end;

Extracting Subfolders
Of course, you can change that initial folder name to something more appropri-
ate. The program can fill a list box with the list of the folders under that
directory, by using the GetDirectories method of TDirectory with the
TSearchOption.soAllDirectories35 parameter and enumerating the array
of strings that it returns:
procedure TFormIoFiles.btnSubfoldersClick(Sender: TObject);
var
 pathList: TStringDynArray;
 strPath: string;
begin
 if TDirectory.Exists (edBaseFolder.Text) then
 begin
 ListBox1.Items.Clear;
 pathList := TDirectory.GetDirectories(edBaseFolder.Text,
 TSearchOption.soAllDirectories, nil);
 for strPath in pathList do
 ListBox1.Items.Add (strPath);
 end;
end;

Searching Files
A second button of the program lets you get all of the files of those folders, by
scanning each directory with a GetFiles call based on a given mask. You can

34 I blogged about the problem of writing this SHGetFolderPath call at
http://blog.marcocantu.com/blog/SHGetFolderPath_Default_User.html

35 The IOUtils uses scoped enumerators, as covered earlier in this chapter, so you have to
prefix the enumerated values with the type name.

Marco Cantù, Delphi 2010 Handbook

120 - Chapter 4: More on the Compiler and the RTL

have more complex filtering by passing an anonymous method of type
TFilterPredicate to an overloaded version of GetFiles.

This example uses the simpler mask-based filtering and populates an internal
string list. The elements of this string list are then copied to the user interface
after removing the full path, keeping only the file name. As you call the
GetDirectories method you get only the sub-folders, but not the current one.
This is why the program searches in the current folder first and then looks into
each sub-folder:
procedure TFormIoFiles.btnPasFilesClick(Sender: TObject);
var
 pathList, filesList: TStringDynArray;
 strPath, strFile: string;
begin
 if TDirectory.Exists (edBaseFolder.Text) then
 begin
 // clean up
 ListBox1.Items.Clear;

 // search in the given folder
 filesList := TDirectory.GetFiles (edBaseFolder.Text, '*.pas');
 for strFile in filesList do
 sFilesList.Add(strFile);

 // search in all subfolders
 pathList := TDirectory.GetDirectories(edBaseFolder.Text,
 TSearchOption.soAllDirectories, nil);
 for strPath in pathList do
 begin
 filesList := TDirectory.GetFiles (strPath, '*.pas');
 for strFile in filesList do
 sFilesList.Add(strFile);
 end;

 // now copy the file names only (no path) to a listbox
 for strFile in sFilesList do
 ListBox1.Items.Add (TPath.GetFileName(strFile));
 end;
end;

In the final lines, the GetFileName function of TPath is used to extract the file
name from the full path of the file. This is equivalent to using the good old
ExtractFileName global function. The TPath record has a few other interest-
ing methods, which go beyond what was already available in Delphi, including
a GetTempFileName, a GetRandomFileName, a method for merging paths, a
few to check if they are valid or contain illegal characters, and much more.

Marco Cantù, Delphi 2010 Handbook

Chapter 4: More on the Compiler and the RTL - 121

Filtering Sub-folders
There are two problems with the two methods above. First, they have very lim-
ited filtering capabilities. When you browse folders for a Delphi file, you'll
bump into __history folders created for backing up the source code files or
sub-folders used by version control systems, which generally start with a
period. Also, you can search for one file extension, but not for two at the same
time. A second problem is that a search into many sub-folders can be quite
slow, so you might want to think of spawning a separate thread to keep the user
interface responsive (and provide some clue about the progress).

Using a thread can be a good idea, but both issues can also be fixed using an
anonymous method of type TFilterPredicate36. This version of the
btnSubfoldersClick method solves the first problem:
procedure TFormIoFiles.btnFilterFoldersClick(Sender: TObject);
var
 pathList: TStringDynArray;
 strPath: string;
begin
 pathList := TDirectory.GetDirectories(edBaseFolder.Text,
 TSearchOption.soAllDirectories,
 function (const Path: string;
 const SearchRec: TSearchRec): Boolean
 begin
 Result := not (SearchRec.Name = '__history') and
 not (SearchRec.Name[1] = '.');
 end);
 for strPath in pathList do
 ListBox1.Items.Add (strPath);
end;

The final version differs only in the anonymous method and addresses both
issues:
 pathList := TDirectory.GetDirectories(edBaseFolder.Text,
 TSearchOption.soAllDirectories,
 function (const Path: string;
 const SearchRec: TSearchRec): Boolean
 begin
 Result := not (SearchRec.Name = '__history') and
 not (SearchRec.Name[1] = '.');
 Inc (nTotal);
 if Result then
 Inc (nFound);

36 If you don't like the embedded anonymous methods definition syntax, you can create a
separate function and pass it as a parameter, although this partially defeats the notion of
using anonymous methods (that is, their ability to capture the execution context).

Marco Cantù, Delphi 2010 Handbook

122 - Chapter 4: More on the Compiler and the RTL

 StatusBar1.SimpleText := Format (
 'Folders %d/%d', [nFound, nTotal]);
 Application.ProcessMessages;
 end);

Filtering Files
In a very similar fashion, we can write a filter looking for both Pascal source
code files (.pas) and Delphi project files (.dpr). At the core of the new
method, which again parses folders removing __history and folders starting
with a period, there is the following GetFiles call with a filter predicate:
 filesList := TDirectory.GetFiles (strPath, '*.*',
 function (const Path: string;
 const SearchRec: TSearchRec): Boolean
 var
 strExt: string;
 begin
 strExt := TPath.GetExtension(SearchRec.Name);
 Result := (strExt = '.pas') or (strExt = '.dpr');
 Inc (nTotal);
 if Result then
 Inc (nFound);
 StatusBar1.SimpleText := Format (
 'Files %d/%d', nFound, nTotal]);
 Application.ProcessMessages;
 end);

The three record structures in the IOUtils unit have many more features than
I've covered and are certainly worth a second look. File operations in Delphi
used to be low level, unless you used a third-party library. In Delphi 2009, the
development team fixed text file manipulation with the new TStreamReader
and TStreamWriter classes, now in Delphi 2010 there is also a higher level
approach for manipulating folders, paths, file names and properties.

What's Next
Over the last two chapters I focused on new features of the compiler and the
RTL, the core foundations of all Delphi applications. Most programs written
with Delphi, however, also have a user interface built using the VCL and inter-
act with the operating system. In the next three chapters I'll focus on new VCL
features and on the support for the latest version of the OS, Windows 7.

Marco Cantù, Delphi 2010 Handbook

Chapter 4: More on the Compiler and the RTL - 123

Marco Cantù, Delphi 2010 Handbook

124 - Chapter 4: More on the Compiler and the RTL

Marco Cantù, Delphi 2010 Handbook

Chapter 5: The VCL and Windows 7 - 125

Chapter 5: The
VCL And

Windows 7

If Delphi's Run Time Library lets you perform some basic operations, it is the
Visual Component Library (VCL) that provides the core interaction with the
Windows operating system and lets you create the user interface of your pro-
grams. In Delphi 2010 the VCL was updated to support the latest version of the
operating system, Windows 7.

In this chapter I'll explore new features of Windows 7, the available support in
the VCL, and other new VCL extensions. I'll also show you how to program
against Windows 7 in areas for which the VCL has no explicit support.

Marco Cantù, Delphi 2010 Handbook

126 - Chapter 5: The VCL and Windows 7

Tech Overview of Windows 7
A lot can be said about Windows 7 and I certainly have no room for a full evalu-
ation of this new operating system. My aim in this short section is only to give
you some technical information about changes compared to Windows Vista.

For of all, notice that the version of the operating system is not 7 (as you might
expect) but 6.1. This can be easily verified by using the Delphi global variables
Win32MajorVersion and Win32MinorVersion.

If you need to check if the version of Windows your program is running onto is
at least Windows Vista or Windows 7, you can use the CheckWin32Version
function as follows37:
 if CheckWin32Version(6) then
 Log ('Running at least on Vista');
 if CheckWin32Version(6, 1) then
 Log ('Running on 7');

Beside many improvements, in terms of a reduced memory footprint and a
more functional user interface, Windows 7 has a significant number of new
API38 functions. It is relevant to notice that these new APIs come in two forms:
C-language functions and COM interfaces. That is, the Windows API is being
extended in a very traditional way, that doesn't require programming to be with
.NET. On the contrary, Delphi offers complete support for all of the new fea-
tures of the operating system.

To a very large extent, Windows 7 is very similar to Windows Vista, having the
same driver model, the same User Account Control and Windows Resource
Protection mechanism, the same desktop windows management, the same
Glass theme activated by default, and much more. Still, there are areas in which
there are distinct differences, from the behavior of Taskbar buttons to the
introduction of Libraries, from an extended version of DirectX to new graphical

37 This code is part of the GetOSVersion example, updated from the original version of the
demo in my Delphi 2007 Handbook.

38 The Windows API, or Application Programming Interface, is the collection of all of the
functions of the operating system that an application can call. The Windows API is huge
and offers countless operations, built around the three libraries that still constitute the
core of the operating system (from the Windows 1.0 days), Kernel, User and GDI. The
Windows API is fully documented in the SDK help that ships with Delphi and is also on
the MSDN web site, http://msdn.microsoft.com/en-us/library/default.aspx.

Marco Cantù, Delphi 2010 Handbook

Chapter 5: The VCL and Windows 7 - 127

processing components, from gestures and touch support to an inertia pro-
cessor, from a sensors platform to federated search support.

While some of these new features are well integrated into the VCL in Delphi
2010, others require using the API directly, something that should n0t cause
any great problem to Delphi developers. I'll delve into some of these new fea-
tures of the operating system throughout this chapter and the next.

It might be worth starting by providing a summary of the support already avail-
able for Vista (and hence also for Windows 7, for those migrating to it directly
from Windows XP) in the last two versions of Delphi. Details of these features
were covered in my two most recent Delphi Handbooks.

Delphi Support for Windows Vista
Starting with Delphi 2007, the Delphi R&D team has been putting considerable
effort into supporting new versions of the operating system in the VCL. This is
a change from the past, as in the name of compatibility with older versions of
the operating system, Delphi 2006 still didn't provide explicit support for many
features of Windows XP like new control styles.

Needless to say that in some cases taking advantage of new features of Vista
might mean that your application will not run as expected on Windows XP or
Windows 200039. Here is a very condensed summary of recent Delphi features
specifically focused on supporting Windows Vista:

• The DefaultFont property of the Application object has been added to
simplify the support for the new system font, Segoe UI, in Vista applications.
This font is used by default by all forms of your application (if their
ParentFont property is set to True). There is also a similar MessageFont
property in the Screen Global object, used for the font of some of the mes-
sage dialogs.

• In Windows Vista traditional Delphi applications had problems displaying
the preview of minimized application in the Windows Flip (or Taskbar pre-
views), Windows Flip 3D, and the Alt-Tab window. To overcome this issue,
the Application object has a new MainFontOnTaskbar property that
enables the display of the main form, rather than the application hidden

39 Support for Windows 95 and 98 at target platforms for Delphi applications was dropped
in Delphi 2009, with the advent of Unicode. Platforms with very limited Unicode support
couldn't be supported any more.

Marco Cantù, Delphi 2010 Handbook

128 - Chapter 5: The VCL and Windows 7

window, in the Taskbar. As I'll discuss in the next section, this is no longer
needed in Windows 7.

• Forms have a new GlassFrame property that let's you easily extend the
glass frame of windows into their client area. Many components have been
extended to support being painted over the glass surface, although you
might have to enable their DoubleBuffered property to get correct output.

• Vista Task dialogs are supported by Delphi in two different ways. There is a
new specific TaskDialog component, with extended features, and a simple
TaskMessageDlg function that gets automatically called in place of
MessageDlg when you set the global UseLatestCommonDialogs to True.

• The new Vista Open and Save dialog boxes (implemented by the
IFileOpenDialog and IFileSaveDialog interfaces) are directly mapped
by the new FileOpenDialog and FileSaveDialog components, but also the
standard OpenDialog and SaveDialog component uses the new style when
the global UseLatestCommonDialogs is set.

• Themes can now be enabled through a project options setting, which also
activates them at design time. Themes are more relevant than in the past
and many new user interface features in Vista (and Windows 7) are available
only to themed applications.

• The new TreeView style with small triangles replacing the plus and minus
symbols is enabled by default in the VCL.

• Button controls have been enhanced with support for the command link and
split button styles.

• Label controls support the glowing style when painted on a glass surface.
• Several styles already available since Windows XP but not part of the VCL

for a long time have recently been implemented. These new VCL features
include extensions to edit boxes (text hints, numbers filtering, and align-
ments), grouping support for the ListView control, and RichEdit version 2
support.

• Progress bars have been extended to support the newest options, including
status information (affecting the progress bar color), smooth movements,
and smooth reverse movements. Some of these features were already in
Windows XP, while others are specific to Vista.

• ShellResources is a new Delphi component that helps you overcome the lack
of the standard system animations in Vista and beyond. If you are using an
Animate common control with the standard animations that were available
in older versions of Windows, your program won't work any more as those
animations are no longer part of the operating system. As an easy fix, add

Marco Cantù, Delphi 2010 Handbook

Chapter 5: The VCL and Windows 7 - 129

this component anywhere in your program (or simply include its unit) to
compile resources corresponding to the animations that used to be in the
operating system into your own application.

As you can see from this list, which is far from complete and detailed, recent
versions of Delphi provide a significant amount of support for new features of
the recent versions of the Windows operating system. This has been a signific-
ant change as in the past backward compatibility with Windows 9x has limited
the support for similar extensions.

Delphi 2010 pushes this support one step forward, with new specific compon-
ents, new API declarations (also thanks to delayed loading40), and the Object
Pascal version of many new COM interfaces. Before delving into this topic,
however, let me focus on changes between Vista and Windows 7 that affect
some of the features discussed earlier and covered in my previous books.

Notable Differences Between Vista and
Windows 7

Having covered in summary new features of recent version of Delphi that let
you better support Windows Vista and Windows 7, I have to underline the fact
that Windows 7 adds a few extra features that make existing / old Delphi
applications more compatible with the new operating system. There are a
couple of these differences worth mentioning.

The first relates with the preview of the application main form available in
Windows Flip (the task bar preview), Windows Flip 3D, or even the plain list of
windows you obtain using Alt+Tab keys. In Vista, a traditional Delphi applica-
tion would have been represented by its icon when it was minimized and
displayed in any of these views41.

The fix came to the VCL in Delphi 2007 with the MainFormOnTaskbar prop-
erty of the TApplication class. In Windows 7, however, a traditional Delphi
application would show properly in the various previews, even when minim-
ized. This basically means that the MainFormOnTaskbar property becomes

40 Delayed loading of DLL functions was covered in Chapter 4.

41 This feature of Vista and the problems it poses, along with possible solutions is discussed
in details in my Delphi 2007 Handbook. The same is true for the Windows Resource Pro-
tection problems covered next.

Marco Cantù, Delphi 2010 Handbook

130 - Chapter 5: The VCL and Windows 7

much less relevant, although it will still affect the title displayed for the applica-
tion in the taskbar. With older versions of Delphi, or in case the property is set
to False, the title will match the Title property of the Application global
object; on the other hand, if MainFormOnTaskbar is set to True, the title is the
Caption of the main form.

Another relevant change relates to the behavior of Windows Resource Protec-
tion and the Virtual Storage (the area created for each user to host their
document and configuration files that old “non-themed” applications save in
Program Files sub-folders or in the Windows folder). Windows 7 expands the
virtual storage area to include the root of the C: drive42.

As an example, the FileAccess program discussed in my “Delphi 2007 Hand-
book” tried to save a file to the root of the C: drive with the code:
procedure TFormFile.btnSaveRootClick(Sender: TObject);
begin
 Memo1.Lines.SaveToFile ('C:\SomeText.txt');
end;

In Vista this code used to fail with an error both for a themed and a non-
themed application, in Windows 7 the themed application succeeds and saves
the file to the basic folder of the virtual store area, which on my computer (for
my account) is:
C:\Users\Marco\AppData\Local\VirtualStore

The full source code of the program is available in the FileAccess folder. Notice
there are two similar applications, compiled with and without a manifest (that
is, themed or non-themed).

By the way, compared to the version written for Delphi 2007, I had to update
the RunAsAdmin procedure I originally borrowed from Fredrik Haglund, to
support wide strings and the call of the 'wide' version of ShellExecuteEx.

This is the code used to ask for elevation of the child process:
procedure RunAsAdmin(hWnd: HWND; aFile: string;
 aParameters: string);
var
 sei: TShellExecuteInfo;
begin
 FillChar(sei, SizeOf(sei), 0);
 sei.cbSize := sizeof(sei);

42 I've noticed that in same circumstances this helps BDE applications to behave better on
Windows 7 than on Windows Vista, but you still have to redefine the NET dir and... get
rid of the BDE as soon as you can! Just a personal opinion, of course.

Marco Cantù, Delphi 2010 Handbook

Chapter 5: The VCL and Windows 7 - 131

 sei.Wnd := hWnd;
 sei.fMask := SEE_MASK_FLAG_DDEWAIT or
 SEE_MASK_FLAG_NO_UI;
 sei.lpVerb := 'runas';
 sei.lpFile := PChar(aFile);
 sei.lpParameters := PChar(aParameters);
 sei.nShow := SW_SHOWNORMAL;

 if not ShellExecuteEx(@sei) then
 RaiseLastOSError;
end;

Delphi 2010 Windows API Units
As I mentioned earlier, Delphi 2010 piggy backs on the support available in
Delphi 2009 for Windows Vista, completing it with specific extra features.
Before getting to new VCL components supporting Windows 7, it is worth look-
ing at the first level of the Windows SDK support, that is Windows API import
units and COM interface declarations.

Beside brand new units, there are also quite a few that have been extended in
significant ways, with the inclusion of many new APIs or COM interfaces.

New API Header Units
Several new RTL units have been added to Delphi 2010 to provide the Pascal
language translation of the header files of new libraries of the Windows SDK.
These new libraries include DirectX support and several others.

Although I don't have room to delve into them in detail, here is a partial list of
the new API header units, partially coming from third parties (and available
with the MPL open-source license) and partially introduced by the Delphi R&D
team for the new version of the product:

• There are new headers for interfacing .NET from unmanaged code, spe-
cifically hooking into mscoree.dll. These are provided in the Cor unit, along
with two support units, CorError and CorHdr.

Marco Cantù, Delphi 2010 Handbook

132 - Chapter 5: The VCL and Windows 7

• DirectX support headers developed by Project JEDI43 are now included in
the core Windows units, comprising:

Direct3D Direct3D8 Direct3D9

DirectDraw DirectInput DirectMusic

DirectPlay8 DirectSetup DirectShow9

DirectSound DxDiag DXFile

DXTypes DX7toDX8 D3DX8

D3DX9

• Other DirectX header types, related with technologies introduced in
Windows Vista and Windows 7 and partially wrapped by the VCL are avail-
able the following new units:

D2D1, core elements for Direct2D support, some of which are covered
later in the section “Direct2D”.

DxgiFormat, headers for the core DirectX Graphics Infrastructure44.

WMF9, Windows Media Format 9 API (conversion provided by Henri
Gourvest).

Manipulations, hosts the interface for the inertia manipulation
engine of Windows 7, used for moving things around your screen in a
more realistic way (there is an example of the use of the manipulation
and the inertia processors in the next chapter).

Wincodec provides headers for interfacing windowscodecs.dll and is
used to enable support for TWICImage, covered later in this chapter in
the section “Using Windows Imaging Component”.

• The definition of the IObjectArray and IObjectCollection interfaces
(used among others by some of the Shell APIs) is now available in the new
ObjectArray unit.

43 The Joint Endeavour of Delphi Innovators (Project JEDI, http://www.delphi-jedi.org) is
one of the most well known and active Delphi open source initiatives, which started off
by translating API headers not found in the product. Offering access to the DirectX API
was part of this task. Most of the work on the DirectX headers has been done by Alexey
Barkovoy, but other contributors are listed in the units themselves.

44 See among other sources http://en.wikipedia.org/wiki/DirectX_Graphics_Infrastruc-
ture and http://msdn.microsoft.com/en-us/library/bb205075(VS.85).aspx

Marco Cantù, Delphi 2010 Handbook

Chapter 5: The VCL and Windows 7 - 133

• Windows Search45 support is provided by the interfaces to the structured
query interfaces located in the units StructuredQuery and StructuredQuery-
Condition.

• There are other new headers for tablet support, including TpcShrd,
RtsCom, and MsInkAut.

Extended Windows API Headers
Some of the existing library files, starting with the base Windows unit, have
also been augmented with new functions. Some of these API functions were
simply missing, while others were operating-system version dependent, and
have now been implemented using the new delayed directive46.

Some noteworthy additions to Windows unit include APIs that have been
around for some time, but were not previously available in the core Delphi
interface unit for the Windows API:
function GetLongPathName(lpszShortPath: PWideChar;
 lpszLongPath: PWideChar; cchBuffer: DWORD): DWORD; stdcall;
function GetProcessHandleCount(hProcess: THandle;
 var pdwHandleCount: DWORD): BOOL; stdcall;
function GetProcessId(Process: THandle): DWORD; stdcall;
function GetComputerNameEx(NameType: TComputerNameFormat;
 lpBuffer: PWideChar; var nSize: DWORD): BOOL; stdcall;

Two interesting new functions (part of the SDK since a service pack of Win-
dows XP) are SetDllDirectory and GetDllDirectory, which you can use to
determine and change the folder from which an application will load its
dynamic libraries and Delphi run-time packages.

There are about new 10 “timer queue” support functions, starting with:
function CreateTimerQueue: THandle; stdcall;

There are also various touch input support functions and data structures, ges-
ture support, devices integration, physical points support and the like.

45 For a reference to the Windows Search SDK you can refer to
http://msdn.microsoft.com/en-us/library/aa965362(VS.85).aspx

46 Delayed functions are used to avoid the standard DLL load time binding, which might
prevent an application to run on an alder version of the operating system even for a
single extra API call. This was described in the section “Delayed Loading of DLL Func-
tions” of Chapter 4.

Marco Cantù, Delphi 2010 Handbook

134 - Chapter 5: The VCL and Windows 7

Most of the API functions that are specific to Windows Vista or Windows 7 are
declared as delayed, including:
// Vista desktop management
CreateDesktopEx
GetIconInfoEx
SetProcessDPIAware

// Vista logical cursors
GetPhysicalCursorPos and SetPhysicalCursorPos
LogicalToPhysicalPoint and PhysicalToLogicalPoint
WindowFromPhysicalPoint

// Vista power management
RegisterPowerSettingNotification
UnregisterPowerSettingNotification

// Vista clipboard notifications
AddClipboardFormatListener
RemoveClipboardFormatListener
GetUpdatedClipboardFormats

// Windows 7 display management
CalculatePopupWindowPosition
GetWindowDisplayAffinity and SetWindowDisplayAffinity

// Windows 7 touch support
GetTouchInputInfo
IsTouchWindow
CloseTouchInputHandle
RegisterTouchWindow and UnregisterTouchWindow

// Windows 7 gestures support
GetGestureInfo and CloseGestureInfoHandle
GetGestureExtraArgs
SetGestureConfig and GetGestureConfig

The companion Messages unit has the definition for new messages (includ-
ing wm_Gesture, wm_Touch, wm_ClipboardUpdate, and a few wm_XButton
ones) and their related data structures.

The DwmApi unit has been largely extended and rewritten using delayed
loading rather than custom dynamic loading. There are also some new func-
tions added for Windows 7. This unit interfaces the Desktop Windows
Manager47 library first introduced in Vista.

The ShlObj unit has been largely extended, providing the definition of dozens
of new interfaces, some of which were already part of previous versions of Win-

47 See http://msdn.microsoft.com/en-us/library/aa969540.aspx for a detailed introduc-
tion to the Desktop Windows Manager API.

Marco Cantù, Delphi 2010 Handbook

Chapter 5: The VCL and Windows 7 - 135

dows, while others have been added for Windows Vista and Windows 7. The
latter include the ITaskbar and the IShellLibrary interfaces I'll demon-
strate later in this chapter in the section “Working with Taskbar Buttons in
Windows 7”. To have an idea of how many more interfaces are covered, con-
sider this unit has grown from 4,000 lines to over 14,000 lines (or from 185 Kb
of source code to over 667 Kb). Also the ShellAPI unit sees a significant revi-
sion, incorporating new and missing API functions and interfaces.

The WinSpool unit (hosting the Win32 printer API Interface) is now almost
twice as large and supports many newer capabilities of the operating system.

Finally, the mxsml unit has extended support for version 6 of the Microsoft
XML DOM engine. I'll cover the changes in XML support in Delphi 2010 in
Chapter 8.

Windows 7 Support
Having looked at a rather long list of changes in terms of low-level API support,
it is worth considering which new features of Windows 7 we can program
against using some of these new APIs. Later I'll move to features specifically
supported by the VCL, with ready-to-use components, including the Direct2D
support and more.

Two of the new features of Windows 7 that are most visible to users are the
changes to taskbar buttons (which can provide status information about the
running application and direct commands to interact with it) and the introduc-
tion of libraries (a new way to collect and manage files and folders).

Working with Taskbar Buttons in Windows 7
One of the most noticeable new features of the Windows 7 user interface is the
new role of taskbar buttons, the graphic generally positioned at the bottom of
the screen and showing the various applications that are currently running. In
Windows 7 you can mix running applications with regularly used ones: You pin
a program to the taskbar and its icon will remain there even when the applica-
tion is not running.

Marco Cantù, Delphi 2010 Handbook

136 - Chapter 5: The VCL and Windows 7

These new taskbar buttons provide several ways to interact with an application.
When the program is closed, you can see recent documents opened with it and
see a menu with custom operations. When the program is running you can see
a preview of its main windows (fully customizable), see status information, add
extra buttons and commands, see the progress of a slow operation, and much
more. I will not explore all of the features of taskbar buttons in Windows 7
here, while building an example called Win7Taskbar. I'll cover only the most
common taskbar features48, while showing you how to use the related COM
interfaces, which are part of the Windows Shell API.

The TaskList Interfaces

The ShlObj unit in Delphi 2010 defines the interfaces you can use to interact
with the taskbar elements. There are actually four of these interfaces, each
extending the previous one:
ITaskbarList = interface(IUnknown)
ITaskbarList2 = interface(ITaskbarList)
ITaskbarList3 = interface(ITaskbarList2)
ITaskbarList4 = interface(ITaskbarList3)

What you can do is to ask the system for an object implementing taskbar sup-
port and extract the various interfaces from it. As a helper you can use across
projects, I've defined the following data structure:
type
 TTaskBarSupport = class
 public
 TaskbarList: ITaskbarList;
 TaskbarList2: ITaskbarList2;
 TaskbarList3: ITaskbarList3;
 public
 constructor Create;
 procedure InitTaskbarSupport;
 end;

The core of this class is in the method that creates the first COM objects and
extracts its various interfaces49:
procedure TTaskBarSupport.InitTaskbarSupport;
begin
 TaskbarList := CreateComObject(CLSID_TaskbarList)
 as ITaskbarList;

48 For more examples and Delphi components you can use to simplify your interaction with
the Windows 7 taskbar (also using older versions of Delphi) see Daniel Wischnewski blog
on www.gumpi.com and (in particular) the post: http://www.gumpi.com/Blog/2009/
09/27/DelphiControlsForWindows7StateUpdate.aspx

Marco Cantù, Delphi 2010 Handbook

Chapter 5: The VCL and Windows 7 - 137

 TaskbarList.HrInit;
 Supports(TaskbarList, IID_ITaskbarList2, TaskbarList2);
 Supports(TaskbarList, IID_ITaskbarList3, TaskbarList3);
end;

The TaskbarSupportUnit unit that defines this data structure creates a global
instance of the class (called TaskBarSupport) in its initialization section, so it
can be used directly within any program that includes the unit.

A Progress in the Taskbar

Now that we have a way to access to the taskbar interfaces, we can
start implementing one of the new Windows 7 taskbar features,
namely the display of progress bar information within a taskbar
button, as you can see here on the right. This display is enabled by calling the
ITaskbarList3.SetProgressState method, while the actual progress is set
by calling ITaskbarList3.SetProgressValue. At the end you have to
restore the progress state of the taskbar button to normal.

To make the user interface more intuitive, I've also added a ProgressBar com-
ponent to the main form, moving it in sync with the taskbar button:
procedure TWin7TaskForm.btnProgressClick(Sender: TObject);
var
 I: Integer;
 FormHandle: THandle;
begin
 FormHandle := GetTaskBarEntryHandle;
 TaskbarSupport.TaskbarList3.SetProgressState(
 FormHandle, TBPF_NORMAL);
 for I := 1 to 100 do
 begin
 ProgressBar1.Position := I;
 TaskbarSupport.TaskbarList3.SetProgressValue(
 FormHandle, I, 100);
 Application.ProcessMessages;
 Sleep (100);
 end;
 TaskbarSupport.TaskbarList3.SetProgressState(
 FormHandle, TBPF_NOPROGRESS);
end;

49 Notice that the class ID of the COM object you pass to the CreateComObject function
(in this case CLSID_TaskbarList) matches the interface ID of the interface the object
implements (in this case IID_ITaskbarList). I find this approach confusing, as it
doesn't follow standard COM development guidelines, but you can easily get used to it.

Marco Cantù, Delphi 2010 Handbook

138 - Chapter 5: The VCL and Windows 7

Notice that each of the calls requires the handle of the form visible in the
taskbar. This can be either the main form or the application hidden form,
depending on the VCL configuration:
function GetTaskBarEntryHandle: THandle;
begin
 if not Application.MainFormOnTaskBar then
 Result := Application.Handle
 else
 Result := Application.MainForm.Handle;
end;

When trying this feature notice that if the application is not active, the progress
bar in the taskbar icon will have a more contrasted color... and be more visible.

Overlay Icons

A second taskbar button feature you can work
with is overlay icons. These are small icons you
can add on top of the icon in the taskbar button
(that is the form icon, by default). Here on the right you can see the original
icon and a couple of overlay elements. These elements, in my demo program,
are extracted from an ImageList using the following code:
procedure TWin7TaskForm.btnOverlayIconClick(
 Sender: TObject);
var
 anIcon: TIcon;
begin
 anIcon := TIcon.Create;
 try
 ImageList1.GetIcon(Random(3), anIcon);
 TaskbarSupport.TaskbarList3.SetOverlayIcon(
 GetTaskBarEntryHandle, anIcon.Handle,
 PChar('MyIcon'));
 finally
 anIcon.Free;
 end;
end;

The ITaskbarList3.SetOverlayIcon method requires the form handle, the
handle of the icon, and a description for accessibility purposes as parameters.
To remove the current overlay icon, pass 0 for the icon handle, as the program
does in the btnNoOverlayClick method.

Marco Cantù, Delphi 2010 Handbook

Chapter 5: The VCL and Windows 7 - 139

Task Buttons

The last feature I want to demonstrate in the Win7Taskbar example is the sup-
port for task buttons. These are small buttons that get displayed along with the
miniature of the application's main form as you move the mouse over the
taskbar entry. You can associate code with the click event on those buttons, by
handling the wm_SysCommand message. Before I get to the code of the program,
though, it is worth showing you a picture of task buttons.

Below you can see a regular version of the miniature view of the demo program
compared to a version with three task buttons activated:

Now that you have seen what the user interface for taskbar buttons looks like,
we can see how to activate it in your Delphi code. What you have to do is create
an array of TThumbButton elements, give each of them an id, the number of an
element from an ImageList, set a few masks and flags, and provide a hint. At
the end you'll pass this array (technically the address of its first element) as
parameter to the ITaskbarList3.ThumbBarAddButtons method after
assigning the ImageList to the taskbar button:
procedure TWin7TaskForm.btnTaskButtonsClick(Sender: TObject);
var
 Buttons: array of TThumbButton;
 I: Integer;
begin
 SetLength(Buttons, 3);
 for I := 0 to 2 do
 begin
 Buttons[I].iId := I;
 Buttons[I].iBitmap := I;
 Buttons[I].dwMask := THB_FLAGS or THB_BITMAP or THB_TOOLTIP;
 Buttons[I].dwFlags := THBF_ENABLED or

Marco Cantù, Delphi 2010 Handbook

140 - Chapter 5: The VCL and Windows 7

 THBF_NOBACKGROUND or THBF_DISMISSONCLICK;
 StrCopy (Buttons[I].szTip,
 PChar('button ' + IntToStr (I)));
 end;
 TaskbarSupport.TaskbarList3.ThumbBarSetImageList(
 GetTaskBarEntryHandle, ImageList1.Handle);
 TaskbarSupport.TaskbarList3.ThumbBarAddButtons(
 GetTaskBarEntryHandle, Length(Buttons), @Buttons[0]);
end;

Working with Libraries
Another specific new feature of Windows 7 is the definition of libraries. These
are collections of files and folders groups under a custom name and easier to
reach even if they reside in different areas of your hard drive, external drive,
network drive, and so on.

I don't want to delve into the behavior of libraries in Windows 7 here or the
reason for using them (although I have to say that I like the idea a lot), but
focus on how you can interact with the libraries from a Delphi application. The
two most relevant interfaces to use, both declared in the ShlObj unit, are
IShellLibrary and IShellItem. You might also want to use some of the
default folder constants declared in the KnownFolders unit.

Before looking at these interfaces, though, lets look at how libraries appear in a
classic OpenDialog and a new FileOpenDialog. To demonstrate this the
Win7Libraries example has both components and
two buttons to active them. In case of the tradi-
tional dialog box, the program disables the
UseLatestCommonDialog global variable to dis-
able the automatic redirection of the old common
dialog box to the newer version.

In the classic OpenDialog, libraries are just a side
icon, as you can see here on the right. In the
newer FileOpenDialog, instead, the navigational
tree includes libraries and the ability to expand
their details, as you can see in the next image.

Marco Cantù, Delphi 2010 Handbook

Chapter 5: The VCL and Windows 7 - 141

There are several ways to interact with libraries and their information. First of
all, you can query the system for the file defining the library:
var
 pch: PChar;
begin
 OleCheck(SHGetKnownFolderPath (
 FOLDERID_DocumentsLibrary, 0, 0, pch));
 Memo1.Lines.Add('SHGetKnownFolderPath: ' + pch);

In this case the name of the file physically hosting the library information,
returned by the code snippet above, would be:
SHGetKnownFolderPath: C:\Users\Marco\AppData\Roaming\Microsoft\
 Windows\Libraries\Documents.library-ms

If you want to access to more details of the given library, you can use the
SHGetKnownFolderItem function, which fills a pointer with an IShellItem
interface:
var
 item: IShellItem;
 pch: PChar;
 pnt: Pointer;
begin
 OleCheck(SHGetKnownFolderItem(
 FOLDERID_DocumentsLibrary, 0, 0, IShellItem, pnt));
 item := IShellItem (pnt);
 item.GetDisplayName(SIGDN_NORMALDISPLAY, pch);
 Memo1.Lines.Add('SHGetKnownFolderItem.GetDisplayName: ' + pch);

The output in this case would be:
SHGetKnownFolderItem.GetDisplayName: Documents

To access the actual library and manipulate it, we need to perform a further
step and ask the system for a COM object implementing the IShellLibrary
interface that we'll later initialize with the proper IShellItem element:

Marco Cantù, Delphi 2010 Handbook

142 - Chapter 5: The VCL and Windows 7

var
 aLibrary: IShellLibrary;
 Obj: IInterface;
 item: IShellItem;
 pch: PChar;
 pnt: Pointer;
begin
 OleCheck(SHGetKnownFolderItem(
 FOLDERID_DocumentsLibrary, 0, 0, IShellItem, pnt));
 item := IShellItem (pnt);
 aLibrary := CreateComObject(CLSID_ShellLibrary) as IShellLibrary;
 aLibrary.LoadLibraryFromItem(item, PropSys.GPS_READWRITE);

Now that we have the library interface tied to the IShellItem for the given
folder, we can use it, for example to extract the list of elements it contains:
var
 ...
 anArray: IObjectArray;
 nItems: Cardinal;
 I: Integer;
begin
 ...
 aLibrary.GetFolders(LFF_FORCEFILESYSTEM, IObjectArray, anArray);
 anArray.GetCount (nItems);
 for I := 0 to nItems - 1 do
 begin
 anArray.GetAt(I, IShellItem, item);
 item.GetDisplayName(SIGDN_NORMALDISPLAY, pch);
 Memo1.Lines.Add('Library item: ' + pch);
 end;

In the specific case this produces the list of the folders in library:
Library item: My Documents
Library item: Public Documents

Other operations you can accomplish on a library include adding and removing
folders, getting and changing the default save folder for the library, reading and
changing the folder type (music, documents, and the like), and extracting or
changing the library icon.

The demo program has a further feature it might be worth exploring. It let's
you open and display the XML file that defines the library, using this code:
procedure TForm1.btnLibraryXmlClick(Sender: TObject);
var
 pch: PChar;
begin
 OleCheck(SHGetKnownFolderPath (
 FOLDERID_DocumentsLibrary, 0, 0, pch));
 Memo1.Lines.LoadFromFile(pch);
end;

Marco Cantù, Delphi 2010 Handbook

Chapter 5: The VCL and Windows 7 - 143

The result is something like the following, not exactly a readable description
even if it uses the XML format:
<?xml version="1.0" encoding="UTF-8"?>
<libraryDescription
 xmlns="schemas.microsoft.com/windows/2009/library">
 <isLibraryPinned>true</isLibraryPinned>
 <iconReference>imageres.dll,-1002</iconReference>
 <searchConnectorDescriptionList>
 <searchConnectorDescription>
 <isDefaultSaveLocation>true</isDefaultSaveLocation>
 <simpleLocation>
 <url>knownfolder:{FDD39AD0-...}</url>
 <serialized> ...binary data... </serialized>
 </simpleLocation>
 </searchConnectorDescription>
 <searchConnectorDescription>
 <isDefaultNonOwnerSaveLocation>true
 </isDefaultNonOwnerSaveLocation>
 <simpleLocation>
 <url>knownfolder:{ED4824AF-...}</url>
 <serialized> ...binary data... </serialized>
 </simpleLocation>
 </searchConnectorDescription>
 </searchConnectorDescriptionList>
</libraryDescription>

The folders of this library are all standard ones, so they are listed using known
folders GUIDs (the two elements in bold). I doubt you want to process such a
file manually, so using the API discussed earlier seems the best approach.

DirectX for Forms
The DirectX libraries have been part of the Windows API for a long time, but
have always been regarded as a separate user interface model, mostly good for
games or high-performance 3D graphics. In Windows 7 for the first time, some
of the features of DirectX can be used by standard applications, as happens in
the .NET Framework when using the Windows Presentation Foundation, WPF.

Windows Vista introduced a new infrastructure for DirectX called Windows
Display Driver Model (WDDM), which lets multiple applications share the ser-
vices of the Graphical Processing Unit (so that DirectX can also be used by non
full-screen applications). This feature was actually used in Vista by the Desktop
Windows Manager to display Flip3D and the Aero Glass effect. A further big

Marco Cantù, Delphi 2010 Handbook

144 - Chapter 5: The VCL and Windows 7

change comes with Windows 7, which makes available a new set of DirectX
APIs that you can use to let standard applications display 2D and 3D graphic,
text, and images in a much faster way. Microsoft has promised to make Dir-
ect2D available also as a Vista update50.

One of the changes, for example, is the ability to use one of the Direct2D librar-
ies for painting a standard form or visual component. You can even mix
standard GDI output (based on the TCanvas class in the VCL) and the new Dir-
ect2D output (for which you can use the new TDirect2DCanvas class), as we'll
see in practice in the next section.

Direct2D
The native VCL support for Direct2D is based on an abstraction of the existing
TCanvas class. The Graphics unit defines a new base class, called
TCustomCanvas, from which TCanvas now inherits along with the new
TDirect2DCanvas class (which in turn is defined in the new Direct2D unit).
For compatibility purposes, most of the existing methods of TCanvas also still
work with the new Direct2D class.

There are a few extra methods, but you access most of the specific Direct2D
features by using the RenderTarget interface (of type ID2D1RenderTarget).
This acts like a Handle for the TCanvas, but it is a COM interface providing
ready to use methods rather than being a handle you can pass to specific API
functions. Other low-level features are accessible using the D2DFactory and
DWriteFactory methods of the TDirect2DCanvas class.

This is why if you look at the methods of the TDirect2DCanvas class, it will
seem there is very little on top of traditional GDI programming. However, if
you look at the methods of the ID2D1RenderTarget interface, you'll see the
huge changes. For example, drawing methods include DrawBitmap, DrawLine,
DrawRectangle, DrawRoundedRectangle, DrawEllipse, DrawGeometry,
DrawText, DrawTextLayout, and DrawGlyphRun. Most of these drawing
methods output only the border of the corresponding shape or element, while a
similar set of filling methods use the brush to color the surface of the element.

50 Direct2D support for Vista is available as part of a platform update at http://support.mi-
crosoft.com/kb/971644. Notice also that there is no expectation to have this feature also
available on Windows XP, as the underlying driver technology was much different.

Marco Cantù, Delphi 2010 Handbook

Chapter 5: The VCL and Windows 7 - 145

The interface also supports transformations, layers, anti-aliasing, DPI settings,
and status snapshots.

A lot of the power of Direct2D comes from the much more powerful graphic
resources, including pens, brushes and fonts. As we'll see there is full support
for gradients and other complex schemes. The Direct2D unit defines several
new graphic objects, which don't inherit from their GDI counterparts or have
common ancestors (as it happens for the Canvas). The Direct2D resources are
managed by specific classes inheriting from TDirect2DGraphicsObject51,
which often have constructors taking the corresponding GDI resource as para-
meter. Direct2D resource classes include TDirect2DBrush, TDirect2DPen,
and TDirect2DFont.

Most other features, from colors to points, use new specific classes rather than
the traditional ones, typically because their definition changes considerably.
Points and all coordinates in Direct2D are based on floating point numbers,
rather the integral ones. This is a huge difference. Again, there are helper func-
tions for creating these new objects and conversions function for converting
from their GDI counterparts. We'll see a few examples in the following demos.

Direct2D for a Form or a Canvas

It is now time to start looking at a first simple example of Direct2D, called
D2DIntro. All you have to do to start experimenting with this technology is to
create a Direct2D painting surface in the OnPaint event handler of a form:
procedure TD2DForm.FormPaint(Sender: TObject);
var
 d2dCanvas: TDirect2DCanvas;
 I: Integer;
begin
 d2dCanvas := TDirect2DCanvas.Create(Canvas, ClientRect);
 d2dCanvas.Brush.Assign(Canvas.Brush);
 d2dCanvas.BeginDraw;
 try
 d2dCanvas.Brush.Color := clRed;
 d2dCanvas.Pen.Color := clBlue;
 for I := 1 to 10 do
 begin

51 One of the advantages of using these Direct2D resources is that they are owned by their
painting canvas and are disposed automatically when this is released. This makes it easi-
er to manage these resources and much more difficult to incur in resource memory leaks
(which are quite dangerous in the GDI world). On the other hand remember that when
you create a graphic resource for a Direct2DCanvas you cannot use it in another one.

Marco Cantù, Delphi 2010 Handbook

146 - Chapter 5: The VCL and Windows 7

 d2dCanvas.Brush.Handle.SetOpacity(0.1 * I);
 d2dCanvas.Ellipse(10 + I * 20, 10 + I * 20,
 500 - I * 20, 500 - I * 20);
 end;
 finally
 d2dCanvas.EndDraw;
 d2dCanvas.Free;
 end;
end;

The TDirect2DCanvas object is created passing the GDI canvas as parameter,
which is only one of the available options as I'll cover next. You can keep that
object around or create a new one each time. What it important, though, is that
all output operations take place between the BeginDraw and EndDraw calls52.

The program draws a series of concentric circles, using the Ellipse method,
changing each time the opacity (or transparency) of the brush, which has a
value between 0 and 1. This is one of the many features of the ID2D1Brush
object (accessible with the Handle of the TDirect2DBrush object). Here can
see the visual effect, although the black and white version in the printed book
makes the effect less clear than the full color version of the PDF.

52 This coding style allows all drawing commands to be completed “off-screen” and then
displayed, to avoid “flicker” and other unwanted effects. For slow operations, though,
you'll see only the final result... after some delay.

Marco Cantù, Delphi 2010 Handbook

Chapter 5: The VCL and Windows 7 - 147

This first demo program has a second feature. By selecting the local menu you
can switch from painting on the GDI canvas to painting directly on the form.
The menu items set the local fUseCanvas field, used to determine which of the
constructors to call:
procedure TD2DForm.FormPaint(Sender: TObject);
var
 d2dCanvas: TDirect2DCanvas;
begin
 if fUseCanvas then
 d2dCanvas := TDirect2DCanvas.Create(
 Canvas, ClientRect)
 else
 d2dCanvas := TDirect2DCanvas.Create(Handle);
 d2dCanvas.BeginDraw;
 ... // as in previous listing

Depending on which of the TDirect2DCanvas you call, the VCL will initialize
the underlying ID2D1HwndRenderTarget interface in different ways. If you
pass the Canvas (or the Handle to the Canvas device context) and an rectan-
gular area, Delphi will call the CreateDCRenderTarget function that let's you
merge Direct2D and GDI calls over the same output surface. If you pass the
form Handle, instead, the VCL ends up calling CreateHwndRenderTarget,
which creates a specialized and optimized Direct2D output surface.

The notable difference, in the demo program, is that the native Direct2D sur-
face will have a dark background, and the opaque brush will be merged with
that, rather than the form color. You can change this by cleaning up the back-
ground by calling the Clear method of the underlying interface:
 d2dCanvas.RenderTarget.Clear(D2D1ColorF (clWhite));

Notice in this statement the conversion of a standard VCL color to its counter-
part as a D2D1ColorF type.

Mixed Canvases

As I just mentioned, by creating a Direct2D surface tied to a Canvas (and its
device context) you can merge output calls from both techniques while produ-
cing the output. This is also interesting as a way to figure out the differences in
those output operations.

As an example consider the following painting code, which produces two circles
on the left and right of the forms with two lines crossing over them (actually the
GDI circle hides the Direct2D lines, but that's not the point of the demo as it
depends on the specific brush being used):

Marco Cantù, Delphi 2010 Handbook

148 - Chapter 5: The VCL and Windows 7

uses
 Direct2D, D2D1;

procedure TformMix.FormPaint (Sender: TObject);
var
 d2dCanvas: TDirect2DCanvas;
begin
 d2dCanvas := Tdirect2DCanvas.Create (Canvas,
 Rect (0, 0, Width, Height));
 d2dCanvas.BeginDraw;
 try
 d2dCanvas.Brush.Color := clWhite;
 d2dCanvas.Pen.Color := clBlack;
 d2dCanvas.RenderTarget.Clear (D2D1ColorF (clWhite));
 d2dCanvas.Ellipse (100, 100, Width div 2, Height - 100);
 d2dCanvas.DrawLine (D2D1PointF (100, 100),
 D2D1PointF (Width - 100, Height - 100));
 finally
 d2dCanvas.EndDraw;
 d2dCanvas.Free;
 end;
 Canvas.Ellipse (Width div 2, 100, Width - 100, Height - 100);
 Canvas.MoveTo (110, 110);
 Canvas.LineTo (Width - 90, Height - 90);
end;

While you draw a circle in the same exact way, drawing lines with the two
approaches is different as the Direct2D surface has a DrawLine method taking
D2D1PointF parameters (which in turn use floating point coordinates). The
canvas, instead, uses the classic MoveTo and LineTo calls.

The most significant difference, however, is in the output. By using anti-ali-
asing techniques, the Direct2D output is much smoother. Here is the central
portion of the output image captured and zoomed to highlight the effect:

If it wasn't for the fact that this feature is currently available only in Windows 7
(with promises to port it back to Vista) I'd certainly switch to it if only for the

Marco Cantù, Delphi 2010 Handbook

Chapter 5: The VCL and Windows 7 - 149

nicer and cleaner output effect. Another good reason, though is the extra fea-
tures you gain, like the gradient brushes demonstrated next53.

Gradients to the Max (With no Canvas)
There are many more features of Direct2D than I have time to demonstrate in
this chapter. So I'll try to show a few more intriguing capabilities in the coming
example, called D2DGradients. This program uses a different approach, as it
creates and keeps around the Direct2DCanvas object, rather than creating a
new one for each paint operation. In practice, the form has a private field
declared as:
 private
 d2dCanvas: TDirect2DCanvas;

This field gets initialized as the window itself is created, modified when the
form is re-sized, and used by the painting code. Here is the creating and resiz-
ing code:
procedure TFormGradients.CreateWnd;
begin
 inherited;
 d2dCanvas := TDirect2DCanvas.Create(Handle);
end;

procedure TFormGradients.FormResize(Sender: TObject);
begin
 if Assigned (d2dCanvas) then
 (d2dCanvas.RenderTarget as ID2D1HwndRenderTarget).
 Resize(D2D1SizeU(ClientWidth, ClientHeight));
end;

The resize method is specific to the interface used if the render target is created
from a windows handle. Notice that the program also checks for Direct2D sup-
port before starting, proving a specific error message:
procedure TFormGradients.FormCreate(Sender: TObject);
begin
 if not TDirect2DCanvas.Supported then
 raise Exception.Create('Direct2D not supported!');
end;

53 For a rather complete comparison of GDI and Direct2D, including optimization of each
technique, you can see the DirectX developer blog post at:
http://blogs.msdn.com/directx/archive/2009/09/29/comparing-direct2d-and-gdi.aspx

Marco Cantù, Delphi 2010 Handbook

150 - Chapter 5: The VCL and Windows 7

Now that I've described the basic structure, let me focus on the actual painting
code. The first thing the program does is paint the entire surface of the form
with a gradient brush:
procedure TFormGradients.FormPaint(Sender: TObject);
var
 gradColors: array of TColor;
 Center: TD2D1Point2F;
begin
 d2dCanvas.BeginDraw;
 try
 // define the gradient colors
 SetLength (gradColors, 4);
 gradColors [0] := clBlue;
 gradColors [1] := clAqua;
 gradColors [2] := clNavy;
 gradColors [3] := clFuchsia;

 // create the gradient brush, using colors and points
 Center := D2D1PointF (100, 100);
 d2dCanvas.Brush.Handle :=
 d2dCanvas.CreateBrush (gradColors, Center,
 D2D1PointF (300, 200), 900, 900);

 // paint the entire form with the gradient brush
 d2dCanvas.Rectangle(0, 0, ClientWidth + 50, ClientHeight + 50);

This prints the background with gradients ranging from various tones of blue to
magenta54. Next step is to write text painted with a slightly different gradient
brush, based on the same colors. This new brush is assigned to the font, while
the canvas brush is cleared to avoid seeing a rectangle around the text:
 // define a font with a gradient brush
 d2dCanvas.Font.Size := 60;
 d2dCanvas.Font.Brush.Handle :=
 d2dCanvas.CreateBrush (gradColors, Center,
 D2D1PointF (300, 300), 600, 600);;
 d2dCanvas.Font.Style := [fsBold];
 d2dCanvas.Brush.Style := bsClear;

 // output some text with the current font
 strText := 'Delphi 2010';
 d2dCanvas.TextOut(200, 100, strText);

A gradient text over a gradient background starts looking interesting (and quite
hard to accomplish in GDI terms), but there is more.

54 I won't try to show the output of this code here, as a gray-scale print won't be adequate.
If you are interested you can have a look at my blog post:
http://blog.marcocantu.com/blog/direct2d_delphi2010.html

Marco Cantù, Delphi 2010 Handbook

Chapter 5: The VCL and Windows 7 - 151

The program uses a transformation matrix for rotating the text while dimming
its colors (by changing the opacity):
var
 matrix: TD2DMatrix3x2F;
begin
 ...
 for I := 1 to 10 do
 begin
 D2D1MakeRotateMatrix (I * 6, D2D1PointF(50, 50), @matrix);
 d2dCanvas.RenderTarget.SetTransform(matrix);
 d2dCanvas.Font.Brush.Handle.SetOpacity(1 - I * 0.1);
 d2dCanvas.TextOut(200, 100, strText);
 end;

There is a little more code to get the original transformation matrix and reas-
sign it at the end, but the three code snippets just displayed sum up the code of
the OnPaint event handler of this example.

For another example of Direct2D in Delphi, you can refer to the following post
by Pawel Glowacki, who translated one of the Microsoft SDK demos (the
Advanced Path Geometries Demo) in Delphi:
http://blogs.embarcadero.com/pawelglowacki/2009/12/08/38861

DirectWrite
We have seen that we can use the basic text drawing functions of Direct2D
most like the GDI ones, but support for the precise display of text has much
improved compared to the past. The new interfaces for managing font families,
text layouts, text formats, and the like are collectively known as DirectWrite.

In Delphi you can access to the various DirectWrite objects using the factory
object returned by the DWriteFactory global function of the Direct2D unit
(which creates and initializes a singleton behind the scenes, implementing the
IDWriteFactory interface). You can use this interface, defined in the usual
D2D1 unit, to create most of the core formatting objects. The list is extremely
long and it would be somewhat pointless to show it here.

Instead, I'd rather focus on a simple example, which uses a TDirect2DCanvas
and a few DirectWrite objects to draw a couple of strings on the form. The spe-
cific local variables used by the FormPaint method of the main form of the
DWrite example are:
 idwtFormat: IDWriteTextFormat;
 idwtLayout: IDWriteTextLayout;

Marco Cantù, Delphi 2010 Handbook

152 - Chapter 5: The VCL and Windows 7

 matrix: DWRITE_MATRIX;

The first operation is the creation of a text format, obtained by passing the
interface to be initialized to the CreateTextFormat method. The parameters
are the font name, the (missing) font family, a series of constant display para-
meters, the size 35, a locale, and the object to be initialized:
 DWriteFactory.CreateTextFormat('Arial', nil,
 DWRITE_FONT_WEIGHT_LIGHT, DWRITE_FONT_STYLE_NORMAL,
 DWRITE_FONT_STRETCH_SEMI_CONDENSED,
 35, 'en-US', idwtFormat);

The program passes this text format to the DrawText method of the
RenderTarget low-level object, along with the text to display, its length, the
output rectangle, and a brush:
 strText := 'Hello, Delphi';
 d2dCanvas.RenderTarget.DrawText (PChar(strText),
 Length (strText), idwtFormat,
 Rect (10, 10, 500, 200), d2dCanvas.Brush.Handle);

In the code above I pass a TRect to the DrawText function where it would
expect a D2D1_RECT_F structure. This is possible because the latter data struc-
ture has an Implicit conversion operator55 defined as:
 class operator Implicit(AValue: TRect): D2D_RECT_F;

There are similar conversion operators for other rectangle data structures and a
couple of point data structures of the D2D1 unit.

The second output operation done by the program in the FormPaint event
handler uses the same technique, but with a bold, oblique, and expanded text
format. Two new calls align the text to the center and set very tight line spacing
(the value 28):
 strText := 'This is a DirectWrite oblique example';
 DWriteFactory.CreateTextFormat('Arial', nil,
 DWRITE_FONT_WEIGHT_EXTRA_BOLD, DWRITE_FONT_STYLE_OBLIQUE,
 DWRITE_FONT_STRETCH_EXTRA_EXPANDED, 35, 'en-US', idwtFormat);

 idwtFormat.SetTextAlignment(DWRITE_TEXT_ALIGNMENT_CENTER);
 idwtFormat.SetLineSpacing(
 DWRITE_LINE_SPACING_METHOD_UNIFORM, 28, 0);

 d2dCanvas.RenderTarget.DrawText (PChar(strText),
 Length (strText), idwtFormat,
 Rect (10, 110, 500, 200), d2dCanvas.Brush.Handle);

55 For more details on operators overloading in general and conversion operators in partic-
ular you can refer to my Delphi 2007 Handbook.

Marco Cantù, Delphi 2010 Handbook

Chapter 5: The VCL and Windows 7 - 153

The static output of the form should look like the following image:

Using the Windows Imaging
Component

Another new graphic-related feature of the VCL is its support for the Windows
Imaging Component (WIC). This is a Microsoft framework for working with
images and their metadata, which supports several image formats and can be
extended with new image formats by software and hardware vendors (like
digital camera makers). Not only can the WIC can display images, but it has
also a lot of image processing capabilities built into it and independent from
the actual image format.

The WIC is available in Windows 7 and in Vista, but it is also possible to install
it on Windows XP56, making it available on a broader base than some of the
technologies discussed earlier in this chapter. By default, WIC has the following
built-in image formats (here listed with the corresponding mime types):

• BMP (Windows Bitmap Format), BMP Specification v5
• GIF (Graphics Interchange Format 89a), GIF Specification 89a/89m
• ICO (Icon Format)
• JPEG (Joint Photographic Experts Group), JFIF Specification 1.02
• PNG (Portable Network Graphics), PNG Specification 1.2
• TIFF (Tagged Image File Format), TIFF Specification 6.0
• Windows Media Photo, HD Photo Specification 1.0

56 For the installation of the Windows Imaging Component in Windows XP you can see cor-
responding page of the Microsoft download site at http://www.microsoft.com/
downloads/details.aspx?FamilyID=8e011506-6307-445b-b950-215def45ddd8 or type in
your browser the shortened version http://bit.ly/aQn45N

Marco Cantù, Delphi 2010 Handbook

154 - Chapter 5: The VCL and Windows 7

Delphi 2010 support for the Windows Imaging Component is based on the new
TWICImage class, a TGraphic descendant defined in the Graphics unit like the
classic TMetafile and TBitmap VCL classes. The image formats handled by
this component are all those mentioned earlier, as you can see in the enumera-
tion underlying the ImageFormat property:
 TWICImageFormat = (wifBmp, wifPng, wifJpeg,
 wifGif, wifTiff, wifWMPhoto, wifOther);

However, the TImage component registers only the TIFF graphic format (or to
be more precise, file extensions) for use with the TWICImage class, as you can
see from the following VCL code snippet:
constructor TFileFormatsList.Create;
begin
 inherited Create;
 Add('wmf', SVMetafiles, 0, TMetafile);
 Add('emf', SVEnhMetafiles, 0, TMetafile);
 Add('ico', SVIcons, 0, TIcon);
 Add('tiff', SVTIFFImages, 0, TWICImage);
 Add('tif', SVTIFFImages, 0, TWICImage);
 Add('bmp', SVBitmaps, 0, TBitmap);
end;

Including specific units, like the JPEG unit, the VCL registers more formats:
initialization
 TPicture.RegisterFileFormat('jpeg', sJPEGImageFile, TJPEGImage);
 Tpicture.RegisterFileFormat('jpg', sJPEGImageFile, TJPEGImage);

This means that in Delphi 2010, when running on a version of Windows with
WIC support, you can manage the JPG files using this last component. All you
have to do is to declare the following:
 TPicture.RegisterFileFormat ('jpg', 'JPEG Image', TWICImage);

This is code you'll find in the TiffViewer example, which let's you open in an
Image component a TIFF or a JPEG file in an Image component using the
TWICImage class. You don't have to do anything special to gain this support, as
all you have to do is to open the file (Image1.Picture.LoadFromFile) and
the Image component will use the support class registered for the file format.

WIC Transformations
Again, there is very little you have to do to use TIFF support... just open a file in
the Image component. However, it is important to notice that there are two
sides to the WIC. One is loading and saving files with given formats. The

Marco Cantù, Delphi 2010 Handbook

Chapter 5: The VCL and Windows 7 - 155

second side is the ability to process the images. To accomplish this you have to
access to the IWICImagingFactory interface, available through the
ImagingFactory property of the TWICImage class. This COM factory lets you
create specific COM objects that expose given interfaces:

• the IWICFormatConverter interface to converter formats
• the IWICBitmapScaler interfaces for the scaling bitmap
• the IWICBitmapClipper interfaces for bitmap clipping support
• the IWICBitmapFlipRotator interfaces to flip and rotate images
• the IWICColorTransform and IWICColorContext interfaces that can be

used for color management

Again, there is a plethora of methods and options, much more than I can cover
in this section. What I'll do, instead, is to show you a practical example of how a
Delphi application can manipulate images. The first part of the code extracts
information from the image currently loaded in the TWICImage object, using
the IWICBitmap interface:
var
 wicImg: TWICImage;
 iBmpSource: IWICBitmapSource;
 puiWidth, puiHeight: UINT;
begin
 if Image1.Picture.Graphic is TWICImage then
 begin
 wicImg := TWICImage (Image1.Picture.Graphic);
 iBmpSource := wicImg.Handle as IWICBitmapSource;
 iBmpSource.GetPixelFormat(pPixelFormat);
 iBmpSource.GetSize(puiWidth, puiHeight);
 Log ('Original: ' + IntToStr (puiWidth)
 + '/' + IntToStr (puiHeight));

This outputs the width and and height of the bitmap. The second step is to
extract the flip/rotator interface, assign it to the source bitmap, ask for a given
operation (in this case a 90 degree rotation), and again display the width and
height of the rotated image:
var
 iFlipRot: IWICBitmapFlipRotator;
 iBmpSource: IWICBitmapSource;
 puiWidth2, puiHeight2: UINT;
begin
 ...
 wicImg.ImagingFactory.CreateBitmapFlipRotator(iFlipRot);
 iFlipRot.Initialize (iBmpSource, WICBitmapTransformRotate90);
 iFlipRot.GetSize(puiWidth2, puiHeight2);
 Log ('Rotated: ' + IntToStr (puiWidth2) + '/' +
 IntToStr (puiHeight2));

Marco Cantù, Delphi 2010 Handbook

156 - Chapter 5: The VCL and Windows 7

Finally we have to extract the rotated bitmap (passing the correct dimensions
for the rectangle of the source image) and assign it as the source of the
TWICImage object:
var
 wicBitmap: IWICBitmap;
begin
 wicImg.ImagingFactory.CreateBitmapFromSourceRect(
 iFlipRot, 0, 0, puiWidth2, puiHeight2, wicBitmap);
 if Assigned (wicBitmap) then
 wicImg.Handle := wicBitmap;
 Image1.Repaint;

You can see a sample result in the image below. Consider that you can do sim-
ilar transformation for each file format, but need to load them in the
TWICImage object first. In this case I've loaded and rotated a sample TIF image
(the test page of a FAX), which is included along with the source code of the
example:

Other New VCL Features
Not all new VCL features are advances at the operating system and SDK level
related with Windows 7. The library has seen countless small improvements.
I'm going to focus on them in the remaining portion of this chapter. Let me
start with some noteworthy but simpler changes (this is not an exhaustive list,
as I picked what I felt most relevant), while I'll later focus on improved prop-
erty editors and changes in multi-language support. Here is a list of these
notable changes:

• All grids (DrawGrid, StringGrid, DBGrid, and also the grid-descendant
ValueEditor control) now support themes. See Chapter 7 for an actual

Marco Cantù, Delphi 2010 Handbook

Chapter 5: The VCL and Windows 7 - 157

example featuring a DBGrid. Grids and the ValueEditor also support gradi-
ents and other graphical enhancements.

• The ProgressBar components now supports 32-bit values for the properties
Position, Min, and Max. Older Windows platforms won't support them,
though.

• The Assign method of a TBitmap image can take also a TIcon parameter,
letting you convert an icon into bitmap.

• The two buttons (of class TEditButton) on the sides of the ButtonedEdit
component (introduced in Delphi 2009) now support individual hints.

• When using the CategoryButtons control (the one used in the Delphi IDE for
the Tools Palette) you can enable in-place editing for the categories. The
component has seen also several other improvement and fixes.

• The CheckListBox component has a new CheckAll method.
• The SpeedButton control can now be properly painted over a Glass surface.
• The global Screen object has a new CaptionFont property, that works

together the MessageFont property, introduced in Delphi 2009 and used to
determine the font of some of the message dialogs.

Property Editors for Actions and Dates
Beside the changes in VCL components, Delphi 2010 has a couple of very inter-
esting additions in terms of changes to property editors, which spawn across
multiple components. Every time you have a TDate property, you can now use
a MonthCalendar to pick a value at design time:

Marco Cantù, Delphi 2010 Handbook

158 - Chapter 5: The VCL and Windows 7

A much more useful update was made to the editor of the Action property. In
the past you could only pick one of the available actions from a drop down list,
now you can also define a new (custom) action or a new standard action in one
of the available categories:

This feature57 is available only if the current form (or current designer) hosts or
is connected with an ActionList or ActionManager component.

Input Language and Language Libraries
In Delphi 2010 there have been a couple of significant changes for developers
who build international applications. The first is that the Windows
wm_InputLangChange message now triggers an internal component message,
cm_InputLangChange, which is broadcasted to all windowed controls. You can
intercept and process this message in a TWinControl descendant, by adding a
message handler method like:
 procedure CMInputLangChange(var Message: TMessage);
 message CM_INPUTLANGCHANGE;

57 The new Action property editor was first mentioned on his blog by Chris Bensen at:
http://chrisbensen.blogspot.com/2009/08/rad-studio-2010-actions.html

Marco Cantù, Delphi 2010 Handbook

Chapter 5: The VCL and Windows 7 - 159

The second change relates to the way the VCL loads localized resource files in
the LoadResourceModule function of the System unit. This is used, in particu-
lar, with resource files generated by the Internal Translation Manager
(activated with the Project | Languages menu). In the past Delphi would use
either a local override in the system registry or use the current locale specified
in the Regional Settings of the Control Panel. In Delphi 2010, instead, the VCL
still looks for the local override in the system registry, but, in case this is not
set, it uses the default user UI language (unless the program is running on an
old version of Windows, in which case the classic behavior is respected).

The default user UI language is the active language58 of the operating system,
determined in the VCL by calling the GetUserDefaultUILanguage API. In
other words, by changing the Regional Settings of the Control Panel you will no
longer affect the resources being loaded for your application.

We could discuss which strategy is more flexible as both have merit, but my
point here is that this is an important change that it not mentioned in the
Delphi documentation and could easily get overlooked by developers. The
LoadResourceModule function of the VCL, responsible for this behavior, has
been completely rewritten in Delphi 2010, with a different effect depending on
which version of Windows under which you are running your application. I
won't delve into the Translation Editor and its behavior here, nor delve into the
detailed effects of this change, but only warn you about the existence of this
change59.

Minor Incompatibilities with “Growing”
Enumerations

The last thing I want to mention about the VCL is a very subtle change that
might prevent some existing programs from compiling. Some of the enumera-
tions used by the VCL, which have not been modified in a long time, have been
extended with new values.

58 All recent version of Windows can be installed with a multilingual support that lets you
switch the operating system language at run time, rather than reinstalling a new lan-
guage-specific version of the operating system.

59 Thanks to Jaakko Salmenius of Sisulizer for bringing this to attention in a Delphi forum.

Marco Cantù, Delphi 2010 Handbook

160 - Chapter 5: The VCL and Windows 7

One of them is TShiftState, which now supports touch and pen operations
and is defined as:
TShiftState = set of (ssShift, ssAlt, ssCtrl, ssLeft,
 ssRight, ssMiddle, ssDouble, ssTouch, ssPen);

Another enumeration that has a new extra value is TControlState. The prob-
lem arises as you convert one of the enumerated values to its numeric
counterpart using a direct cast (rather than the Ord function). In Delphi 2009 a
TControlState value is stored in a Word, in Delphi 2010 in a Cardinal. So,
following this example, the classic Delphi code below doesn't compile in Delphi
2010:
var
 w: Word;
begin
 w := Word (ControlState)

You can easily update it to:
var
 c: Cardinal;
begin
 c := Cardinal (ControlState);

These changes have an extremely limited effect, as in general it would be
recommended to use the Ord function and store the value in an Integer. How-
ever there are many custom controls that use such a low-level coding style, and
those might get affected and fail with a compiler error. As I've bumped into two
such situations, there are certainly few around, so I felt worth mentioning the
issue... since when you realize the problem the fix becomes almost trivial.

What's Next
In this chapter I've delved into new features of Windows 7, changes to the VCL
to address those new capabilities, and other general change to the Delphi com-
ponent library. One of the most relevant new features of the VCL, partially
related with Windows 7, is the support for touch and gestures, which is covered
in the next chapter. After that I'll move to changes and new features to the
database part of the VCL.

Marco Cantù, Delphi 2010 Handbook

Chapter 5: The VCL and Windows 7 - 161

www.DelphiDeveloperDays.com
Featuring Marco Cantù and Cary Jensen

Marco Cantù and Cary Jensen jointly offer Delphi Developer Days, multi-day live
events with both joint sessions, presented by Marco and Cary together, as well as
simultaneous tracks, where Cary and Marco break out into separate rooms to
present individual topics.

All attendees receive very detailed course books, which cover all topics presented
by Marco and Cary plus all of the source code. Attendance is limited to keep the
event intimate so that you’ll have the opportunity to ask them about any of the topics
that they covered, as well explore other Delphi questions that you might have.
Whether you are using the latest version of Delphi, or are developing with an older
version, you will come away with loads of information that will improve your develop-
ment and make you more productive.

Delphi Developer Days Tour Schedule for 2010
• Washington DC/BWI Airport Area: May 11-12, 2010

• Chicago Area: May 14-15, 2010

• Los Angeles Area: May 17-18, 2010

• London, UK: May 26-27, 2010

• Frankfurt, Germany: May 31 - June 1, 2010

Future Dates for Delphi Developer Days
Marco and Cary plan to add new tour dates in the future. To be notified of addi-
tional dates, visit http://www.DelphiDeveloperDays.com/NotifyMe.html.

www.DelphiDeveloperDays.com brought to you by:

Marco Cantù, Delphi 2010 Handbook

162 - Chapter 5: The VCL and Windows 7

Marco Cantù, Delphi 2010 Handbook

Chapter 6: Touch and Gestures - 163

Chapter 6: Touch
And Gestures

With mouses and keyboards being part of the computers landscape since the
Nineties, experimental user interfaces have been focused mostly on script
recognition (starting with the Apple Newton, the Graffiti input system of Palm
hand computers, and including tablet PC support in Windows) and voice recog-
nition. These experiments have never reached a critical mass or affected
everyday computer users.

Over the last couple of years, however, a slow revolution has started outside of
the PC realm. The two most prominent and known examples are the Wii con-
trollers (which receive input from three-dimensional spatial movement) and
the touch support of the iPhone (which lets you move a finger across the screen
to issue a command).

Many people are now expecting that this user interface revolution will soon hit
desktop PCs. Among the companies backing this idea there is Microsoft, which
added extensive support for touch in Windows 7, and Embarcadero Technolo-
gies, which is pushing touch and gesture support in Delphi 2010.

There are many other elements beyond touch, including for example the Sensor
and Location API that is also part of Windows 7 (which you can use in Delphi

Marco Cantù, Delphi 2010 Handbook

164 - Chapter 6: Touch and Gestures

by directly interfacing to it). In this chapter, though, I'll cover only touch and
gestures, focusing specifically on gestures as touch support requires specific
hardware that is still hardly popular. I'll also cover related VCL features, like
the new TouchKeyboard control.

From Single Touch to Multi-Touch
Touch screens have been around for several years now and have been popular
in kiosk applications, vertical-market tasks like restaurant ordering systems,
and to a more limited extent in tablet PCs. The classic touch screen can inter-
cept the position of your finger on the surface, but returns only one given
coordinate. This makes it quite a rough approximation of the position as your
finger, unlike a dedicated pen with a more fine tip, will generally touch multiple
screen pixels at a time60.

In technical terms, a classic touch screen behaves like a mouse sending mouse
down and mouse up Windows messages to the operating system (and hence to
the application). This is what is now generally called a single-touch system.

Newer touch screens, in fact, can intercept multiple pressure points at the same
time, and send them all in parallel to the system. These multi-touch61 systems
bring two different advantages.

First, if you press your big finger over the screen, the driver will reduce the
points in proximity to a single one but with a better resolution, so it would be
easier to figure out your intended operation. Also, any movement you make
with your finger on the screen is interpreted in more precise way, making it
easier to perform gestures.

Second, you can select two or more on-screen elements at the same time, by
using two or more fingers. There are currently systems being sold which are

60 If you've ever tried using the small buttons of a Windows CE device with your fingers in-
stead of the specific pen you probably know what I mean. I consider it a dreadful experi-
ence, but having to use the pen to select a contact and make a phone call wile you are
walking is even less natural that trying to hit the name with your finger, or even your fin-
gernail to be more precise!

61 As odd as it might sound, the term “multi-touch” is actually a trademark of Apple Inc. as
listed on http://www.apple.com/legal/trademark/appletmlist.html.

Marco Cantù, Delphi 2010 Handbook

Chapter 6: Touch and Gestures - 165

capable of intercepting up to ten touch positions (and although it would be
quite odd for a single user to need more, multi-user systems like Microsoft Sur-
face can benefit from more than ten touch points). You can also move two or
more fingers on the screen to manipulate the objects you are touching. A classic
example is stretching a picture by dragging away the opposite borders with two
fingers.

For multi-touch you need support both at the operating system level and at the
hardware level. At the operating system level, Windows 7 introduces specific
system messages, like wm_touch. This message carries a wealth of information
about the input activities of the user, computes the touch to single coordinates
plus a couple of key shift states of the traditional mouse messages.

At the hardware level, you need multi-touch hardware with drivers specifically
tailored for Windows 7 (as older touch support drivers will simply mimic the
traditional mouse messages, as in single touch devices).

Another way to think about touch versus the mouse (and its derivatives) is to
consider that in the first case the system works with absolute positions, while in
the second it is relative movements that matter. When you touch a screen (or
optionally a touch pad with full touch support), you are indicating a specific
location. With the mouse (and some movement oriented touch pads) you move
it from the current position to a new one, but it is the relative movement that
matters. In fact, if you lift the mouse and lower it down in a different place, the
effect is like it didn't move!

Touch Hardware
You might think that touch hardware comes in the form of touch screens you
add to your existing PC. This is hardly the case, although some multi-touch
monitors are starting to appear. In most current offers, touch screens are part
of a single computing device, either a touch screen laptop computer or an all-
in-one desktop (or wall-mounted) device.

Here I won't provide a complete overview of touch-enabled hardware, but focus
only on Windows 7 enabled devices62. These includes portable computers (not-

62 You can find a very comprehensive history and board review of available touch hard-
ware, beyond Windows, in an article at http://medlibrary.org/medwiki/Multi-touch.

Marco Cantù, Delphi 2010 Handbook

166 - Chapter 6: Touch and Gestures

ably from Dell and HP), all-in-one devices (mostly from HP), and computers
with multi-touch touch pads (like those from Acer and Dell):

• A typical touch-enabled laptop (with a rather small screen is) HP's TouchS-
mart tx2z and Dell's Latitude XT2, but also machines from Lenovo and Acer.

• All in one systems from HP include HP TouchSmart 300 and 600, Dell's
Inspiron One 19 Touch, and Sony's Vaio L.

• If you are looking for an external touch monitor to be attached to an existing
PC, you can refer to the Dell's SX2210T 21.5"W Multi-Touch Monitor.

• If you are looking for a simpler solution, consider multi-touch internal touch
pads, like the one in Dell's Inspiron Mini 10. I tried it and it looks interest-
ing. Many recent laptop computers offer a similar solution.

Multi-Touch Pads
Speaking of multi-touch pads, I'm convinced they should probably be favored
above touch screens, not just because of the reduced cost. Adding a large multi-
touch touch pad to an existing computer would be a very good solution for
moving to multi-touch. A touch pad works better than a touch screen for stand-
ard PC users, as touching the screen is very ineffective both in terms of arm
fatigue and in terms of covering what you are looking at with your hand.

I noticed, in particular, the nice looking Bamboo Touch device from Wacom
(and even bought one), but this device comes up very short in terms of Win-
dows 7 support, as its driver maps multi-touch interaction to traditional mouse
operations and the driver uses relative movements rather than absolute posi-
tions. It is not that the device won't be capable, but the driver falls quite short.
Actually Microsoft itself is not pushing this class of hardware, favoring touch
screens, but I'd argue this is OK for special purpose PCs, but not for main-
stream office users.

The Theory Behind Gestures
As I mentioned in the introduction of the chapter, the main topic is touch sup-
port but with the specific focus on gestures.

But what is a gesture? It is basically a movement of the input device following a
specific path and within a given time. The path of a gesture is not absolute in its

Marco Cantù, Delphi 2010 Handbook

Chapter 6: Touch and Gestures - 167

extension, but is represented by a vector of points which can generally be scaled
at will. This means you can make a more ample or compact gesture and they'll
still both be recognized. In other words, a gesture is represented by a sequence
of points and some further parameters that are passed to an engine capable to
recognizing a gesture against a given gestures catalog.

What is very relevant to notice up front is that I intentionally used the vague
term of “input device”, as gestures can be issued not only by moving a finger
over a touch screen but also by moving the mouse over a standard flat surface.

In other words, while multi-touch support requires specific hardware and oper-
ating system support, gestures support can work on any version of Windows
and with any input device (except a keyboard, of course, but including the
single touch pads that most laptops have these days).

Towards a Touch-Based UI
Supporting touch-based interfaces is not just a matter of using larger buttons
and virtual touch keyboards, but often requires a significant redesign of the
program user interface. Every input operation should account for more impre-
cise input, keyboard actions should be minimized (using auto complete
features like many cellphones do, for example), and you should move away
from the traditional user interface whenever required.

A very good example of an innovative approach is the use of gestures, as I
covered in the first part of the chapter. When you have a touch screen, perform-
ing a gesture will generally be much easier than selecting a toolbar button.
However, for regular PC users, pressing a shortcut key will remain faster than
both the mouse and the touch operation.

In other words, while in the past we had to balance the needs to mouse users
and keyboard users, now we have a third category (touch or interactive users)
to take into account in general purpose applications. Of course, if the program
is not for the PC but for a dedicated computer, it might not have a mouse or a
keyboard and this solves part of the problem. But with the introduction of
touch screen in regular PCs, we'll have to face the problem of different users
having different input preferences when based on the same hardware.

Marco Cantù, Delphi 2010 Handbook

168 - Chapter 6: Touch and Gestures

The Gesture Manager of the VCL
In Delphi 2010 the VCL adds to its core features a gesture management archi-
tecture. This is built into the TControl hierarchy, with the new OnGesture
event surfacing in all visual components. However, the actual gesture manage-
ment code can be selectively compiled into the VCL or not, thus avoiding the
extra overhead63 in case you are not interested in using gestures support.

The core class of this architecture is the new GestureManager component. It
can be used to handle gestures performed with touch hardware, pen and tablet
input or even traditional mouse input. The GestureManager defines a set of
standard and predefined gestures, but you can add custom gestures directly at
the application level or by installing packages that register gestures.

The GestureManager also handles special “interactive” gestures that require
touch hardware. These special gestures include panning, zooming, rotating,
two finger taps, and press and tap operations.

As you enable gestures for a given control (by hooking the GestureManager
component to it), any gesture performed over the control64 will fire the
OnGesture event of the control, unless there is a specific action tied to it.

A Basic Gesture Example
Rather than describing the complete VCL gesturing architecture in theory, let
us start by building a very simple first example I've called Gestures01. The pro-
gram has a form with a panel and a memo control, plus the GestureManager
component. This last component doesn't have specific setting, as its editor let's
you add custom gestures to it, something we will focus on later.

The management of gestures takes place in the Touch property of the target
control, for example the form. This property is slightly a misnomer, as it
handles all touch and gesture related operations, through its sub-properties. If

63 The gestures overhead is about 300KB to 400KB in executable size, which is why it was
worth taking additional measures to avoid it when not needed.

64 Performing a gesture over the control means making the proper mouse or finger move-
ment starting over the control. If you move over other controls while performing the ges-
tures, it won't matter. What is relevant is the starting position.

Marco Cantù, Delphi 2010 Handbook

Chapter 6: Touch and Gestures - 169

you expand the Touch property (which is
of type TTouchManager) for a control, you
should see something similar to the image
on the right, with the Gestures sub-prop-
erty disabled as the GestureManager sub-
property is not assigned.

As soon as you connect a GestureManager
control, the interface of the Object
Inspector for the property changes consid-
erably, with the collections of available
gestures (by default the Standard ones)
listed under the Gestures property, as
you can see in the second image here on
the right.

In the Object Inspector you can also
expand the Standard gestures node, and
enable or disable individual gestures for
the control, as depicted in the third image of the sequence.

Each element of this collection of gestures (a TGestureCollectionItem ele-
ment) has a name, a graphical representation, and (optionally) the action to
which it is tied. We'll get to using
actions for gestures in a second
example. For now, we can just enable all
of the gestures for the form (and the
panel). This is done more easily in the
gestures collections editor rather than
in the Object Inspector, as you have but-
tons to select and deselect all standard
actions. The gestures collections editor
is visible here on the right.

In this editor you can see the gesture
name and graphical description, its
internal identifier (a constant) and a
graphical animated preview of the ges-
ture itself, with the start point in gray
and the movement highlighted by a blue

Marco Cantù, Delphi 2010 Handbook

170 - Chapter 6: Touch and Gestures

point. You can see an enlarged version of this preview in a gesture test window
by double clicking on one of the entries:

Also notice that as the editor caption points out, you are picking the gestures
for a given target control (in this case Form1), not at the GestureManager com-
ponent level. The manager has all possible gestures for the entire application,
each form or control picks only those it is capable of handling.

Now, having selected all of the standard gestures for the form and the panel, we
can write some code for their generic OnGesture event handler. For the panel I
simply log the fact the event was intercepted to the memo, nothing more:
procedure TForm1.Panel1Gesture(Sender: TObject;
 const EventInfo: TGestureEventInfo; var Handled: Boolean);
begin
 Log ('Panel Gesture');
end;

I added this event handler to let you figure out how gestures are associated with
the controls underneath, and what matters most is the starting position of the
gesture as I mentioned in an earlier note.

For gestures performed on the form, instead, I want to list some of the gesture
information, notably their name and ID. The name is extracted from the collec-
tion of the corresponding component, which might not exist in case there is no
match. Here is the code:

Marco Cantù, Delphi 2010 Handbook

Chapter 6: Touch and Gestures - 171

procedure TForm1.FormGesture(Sender: TObject;
 const EventInfo: TGestureEventInfo; var Handled: Boolean);
var
 nGesture: Integer;
 gestureItem: TCustomGestureCollectionItem;
begin
 nGesture := EventInfo.GestureID;
 gestureItem := GestureManager1.FindGesture(self, nGesture);
 if Assigned (gestureItem) then
 Log (Format ('Gesture: %s [%d]', [gestureItem.Name, nGesture]))
 else
 Log (Format ('Unrecognized gesture [%d]', [nGesture]));
 Handled := True;
end;

The output of the program is a list of gestures performed on the form, with a
simple indication for those originating on the panel:

The Standard Gestures
In the previous example we have enabled all of the standard gestures to the
form and the panel, but so far I haven't given you any indication of which of
these are predefined gestures. You can find a complete list with a graphical rep-
resentation of each gesture in the help page:
help://embarcadero.rs2010/rad/TStandardGesture_Enum.html

Here I've listed all of the standard gestures logically grouped (the grouping is
mine), providing only a few of those images:

• Gestures with a single movement: Left, Right, Up, and Down.

Marco Cantù, Delphi 2010 Handbook

172 - Chapter 6: Touch and Gestures

• Gestures with two perpendicular movements: UpLeft,
UpRight, DownLeft, DownRight, LeftUp, LeftDown,
RightUp, and RightDown. There are also versions requiring
one side to be twice as long of the other: UpLeftLong,
UpRightLong, DownLeftLong, and DownRightLong (depic-
ted here on the side).

• Gestures requiring two opposite movements: UpDown, DownUp, LeftRight,
RightLeft and a repeated left and right movement, Scratchout.

• Gestures mapped to geometrical shapes: Triangle, Square,
Circle, and DoubleCircle.

• Gestures with special circular movements: SemiCircleLeft,
SemiCircleRight, Curlicue, DoubleCurlicue (shown here).

• Gestures corresponding to two perpendicular diagonal
movements: ChevronUp, ChevronDown, ChevronLeft, and
ChevronRight; plus one in which the upwards movement is twice as long
than the downwards one, Check (shown earlier in the Test Gesture pane).

Gestures and Actions
Although you could use the OnGesture event handler to figure out which ges-
ture the user performed and connect a specific operation, the gesture
architecture of the VCL does well at tying gestures to actions. The idea is that
you can issue the same command using a menu item, pressing a button, press-
ing a shortcut key, or performing a gesture, and the simplest way to achieve this
is to hook the menu item, button, shortcut, and gesture to a single action.

I think this approach adds to the already powerful ActionManager architectures
of Delphi, and its simplified ActionList sibling, making it even more the natural
core element of most Delphi GUIs.

In this example, called EditGestures, I have added to the main form an Action-
List component with a couple of standard edit actions, plus a custom one:
object ActionList1: TActionList
 object EditCut1: TEditCut
 Category = 'Edit'
 Caption = 'Cu&t'
 end
 object EditPaste1: TEditPaste
 Category = 'Edit'
 Caption = '&Paste'
 end

Marco Cantù, Delphi 2010 Handbook

Chapter 6: Touch and Gestures - 173

 object EditClear1: TAction
 Category = 'Edit'
 Caption = 'EditClear1'
 OnExecute = EditClear1Execute
 end
end

The OnExecute method of the custom action clears the edit box content:
procedure TFormEditGest.EditClear1Execute(Sender: TObject);
begin
 if (ActiveControl is TCustomEdit) then
 TCustomEdit(ActiveControl).Clear;
end;

Now while these actions can be activated using
the shortcut commands, the program has no
menu to execute them, but the form adds gesture
support, connecting three gestures to the actions,
as you can see in the image of the Object Inspector
here on the right.

To have a clearer view of the actions connected to
the active gestures for a control, what you can do
is copy the properties of the GestureManager
component, which will list the gestures binding for each control connected to it
(in this case only the form, the owner)65. For each active gesture you can see the
corresponding action:
 object GestureManager1: TGestureManager
 GestureData = <
 item
 Control = Owner
 Collection = <
 item
 Action = EditPaste1
 GestureID = sgiCheck
 end
 item
 Action = EditCut1
 GestureID = sgiChevronUp
 end

65 Notice that gesture selection is defined for each control but not stored with the control,
but in the centralized GestureManager. This happens mostly because the controls can
pull-in gesture data from the GestureManager, but are unaware of the gestures-related
code. Were the controls aware of gestures, any application would have to link the gesture
related code. As the design decision was to keep gesture support outside of compiled ap-
plications that don't use it, this idea of keeping gesture data outside of the control was a
necessary consequence.

Marco Cantù, Delphi 2010 Handbook

174 - Chapter 6: Touch and Gestures

 item
 Action = EditClear1
 GestureID = sgiScratchout
 end>
 end>
 end

As you can see I've hooked the Paste action with the Check gesture, the Cut
action with the ChevronUp (^), and the custom Clear action with the
Scratchout gesture. Now, there is very little I can show you about the program
in an image, so you'll have to test it for yourself66.

There is one more thing the program does, it logs gesture operations and action
requests, to help you better understand the flow of events. The program
handles the OnGesture event of the form, which will be triggered only for ges-
tures that are not recognized or not managed. That is, if the gesture has a
corresponding action, the OnGesture event will not fire. The second hook is in
the OnExecute event of the action list, which simply logs the action name. This
is invariably called before performing the actual action.

Custom Gestures
Although the list of predefined gestures is quite rich, there might be specific
mouse movements that make sense for your application and for specific actions
you want users to perform. In this cases, you can add custom gestures to the
GestureManager component.

Even if you don't plan on adding custom gestures to your application, it is
worth looking at the details of this process, as it explains you what “matching a
gesture” exactly means and which parameters you can fine-tune to improve
matching.

While doing so, we'll also take advantage of some gestures-related components:

• The GestureListView can be used to show a summary of the active gestures.
• The GesturePreview lets you show and test a gesture.
• The GestureRecorder lets your users define their own custom gestures (this

one I won't demonstrate, as I consider it of limited practical use67).

66 Or see the project video, listed at http://www.marcocantu.com/dh2010/videos.htm

67 An interesting case for custom gestures is to use it as a security measure: ask a user to
make a gestures and then use that to recognize the user instead of asking for a password.

Marco Cantù, Delphi 2010 Handbook

Chapter 6: Touch and Gestures - 175

Let me start with the definition of a custom gesture. Place the GestureManager
component on a form at design time and double click on it. This opens the Cus-
tom Gestures editor, featuring a list of custom gestures for the component. Of
course, at the start of the process it will be empty.

Here you can see the Custom Gestures editor after I added a custom action
(shaped like an 8), which I've defined in the CustomGestureTest example:

Now you can press the Create button to define a brand new gesture. This will
open up the Custom Gesture Designer pane, in which you can graphically
design your gesture (by dragging the mouse over the design surface) and also
change some more global settings like the sensitivity or remove and insert spe-
cific points.

On the side of the gesture design surface, in fact, you can see the list of points
that make up the gesture. This is very important, as this is the actual represent-
ation of the gesture itself: an array of points.

What is important, though, is that these points are not considered as absolute
values, but what matters is their relative position. In practice, this means you
can match the gesture both with an exaggerated or tight movement, but this
movement has to be proportional to the original sequence of points.

Marco Cantù, Delphi 2010 Handbook

176 - Chapter 6: Touch and Gestures

Of course, a perfect match will be almost impossible, and this is where the
Sensitivity factor comes into play. It determines the distance from each of the
original points within which the gesture replay points must fall. This is both a
variation in the distance or distortion from the original sequence, and also a
distance of following the points in terms of speed. If you move too fast, too few
points will be recorded and they won't fit in the area of the original ones.

I've recorded an image of the designer with a figure 7 shaped gesture below:

Again, this is not easy to describe in words and you can probably figure out a lot
of details by experimenting directly with the Custom Gesture Designer68.

Notice that this 7-shaped gesture conflicts with two others, as you can figure
out in detail by clicking on the last icon above the designer. This opens up a list

68 In particular, the gesture engine will use the sensitivity to rotate the gesture in case the
gesture was drawn at a bit of an angle and it compares the angles between the gesture
and the one drawn. Note also the unidirectional check box which let's you perform the
gesture also reversed.

Marco Cantù, Delphi 2010 Handbook

Chapter 6: Touch and Gestures - 177

of conflicting gestures, showing the likeness
of a conflict for each, as you can see on the
side.

Now that we have added a couple of custom
gestures to the GestureManager, we can fig-
ure out how they are saved in the program. If
you look into the DFM file for the form, or
copy the GestureManager component from
the form and paste it in an editor, you'll see
the actual data for the gesture. This includes
the list of custom actions with their parameters and their list of points, plus the
usual list of gestures enabled for each connected visual control, which includes
both standard and custom gestures (the -1 gesture tied to Action1, in this case):
object GestureManager1: TGestureManager
 CustomGestures = <
 item
 Deviation = 34
 ErrorMargin = 46
 GestureID = -1
 Name = 'eight'
 Points = {... actual binary data ...}
 end
 item
 Deviation = 20
 ErrorMargin = 20
 GestureID = -2
 Name = 'Seven'
 end>
 GestureData = <
 item
 Control = Panel1
 Collection = <
 item
 GestureID = sgiLeft
 end
 ...
 item
 Action = Action1
 GestureID = -1
 end>
 end
end

Rather than be saved internally in the DFM, custom gestures can also be saved
to an external file and referenced from the GestureManager, which can help
you share the same gesture from multiple applications and edit them without
having to recompile the program.

Marco Cantù, Delphi 2010 Handbook

178 - Chapter 6: Touch and Gestures

Having looked at the definition of the custom gestures and their storage, we
can continue writing the code for this test application. The main form of the
CustomGestureTest program has a large panel used to test the gestures, the
GestureManager, plus a GestureListView and a GesturePreview.

The panel handles both custom and
standard gestures, as you can see by
exploring the sub-properties of its Touch
property, which includes the two separ-
ate lists, as you can see here on the side.

The panel manages a few gestures in its
OnGesture event handler, while a couple
of them are hooked to simple corres-
ponding actions (PasteAction and
Action1):
procedure TCustomGestureForm.Panel1Gesture(Sender: TObject;
 const EventInfo: TGestureEventInfo; var Handled: Boolean);
begin
 case EventInfo.GestureID of
 sgiLeft: Panel1.Caption := 'Left';
 sgiRight: Panel1.Caption := 'Right';
 sgiUp: Panel1.Caption := 'Up';
 sgiDown: Panel1.Caption := 'Down';
 sgiCheck: Close;
 else
 Panel1.Caption := IntToStr (EventInfo.GestureID);
 end;
end;

Another component of the demo is the list of gestures, with a very limited pre-
view. This is offered by the ready-to-use GestureListView control. As you drop
it on a form at design time and connect it to
the GestureManager, you'll automatically
see its list of custom gestures, as you can see
here for the example. As you run the applic-
ation, you'll also see the same (limited) list
at run time.

There are two ways to add standard gestures
to the GestureListView control. One is to
add individual gestures to the list, by calling for example:
 GestureListView1.AddGesture(sgiLeft);

Marco Cantù, Delphi 2010 Handbook

Chapter 6: Touch and Gestures - 179

Another is to add all of the gestures handled by a given target control, like in
this case the panel:
GestureListView1.AddGestures(Panel1);

Of course, if you call both (as I do in the demo program) and don't clear the list,
you'll get duplicated entries. I've left those in the demo on purpose, but in the
real world you'll probably want to call the ClearGestureList method before
adding the list of gestures of a given control.

The last component of the demo program is a GesturePreview, which lets the
user preview entries of the connected GestureListView control, hooked to the
GestureProvider property:
object GesturePreview1: TGesturePreview
 Width = 250
 GestureProvider = GestureListView1
end

The output of the final program looks like the following69:

Database Gestures
In trying to build a practical example of the use of gestures, I've decided to cre-
ate a simple database application based on a DBGrid. My goal is to let users
perform simple gestures (like up, down, left, and right) to move around the
data set (performing the first, last, previous, and next actions, respectively).

69 Again, it is very difficult to show the behavior of such an interactive application in an im-
age: a video for this project is available on the book web site.

Marco Cantù, Delphi 2010 Handbook

180 - Chapter 6: Touch and Gestures

First, I created a simple application with a DBGrid, a DataSource, and a Client-
DataSet connected one to the other:
 object ClientDataSet1: TClientDataSet
 FileName = '...\CodeGear Shared\Data\customer.cds'
 end
 object DataSource1: TDataSource
 DataSet = ClientDataSet1
 end
 object DBGrid1: TDBGrid
 DataSource = DataSource1
 Options = [dgTitles, dgIndicator, dgColLines,
 dgRowLines, dgRowSelect, dgConfirmDelete]
 end

Next I've added a GestureManager component, an ActionList component, and
an ImageList component to the form. Remember you have to connect the
ImageList to the Images property of the ActionList if you want to add the pre-
defined images for the standard actions to the program.

Now you can enable gestures for the DBGrid as usual, and customize the stand-
ard gestures by enabling them and creating the proper standard actions in
place70 in the Object
Inspector, as highlighted
in this image.

What I have done to
obtain this image was to
expand the list of Stand-
ard gestures, enable one
(Left) with the check
box, click on the drop
down combo box, pick
the New Standard
Action menu item, nav-
igate to a given category
(Dataset), and select the
action I was interested
in (TDataSetFirst).

70 This technique was already mentioned in the section “Property Editors for Actions and
Dates” of Chapter 5.

Marco Cantù, Delphi 2010 Handbook

Chapter 6: Touch and Gestures - 181

I ended up picking 5 actions, four movements plus one to close the application:
object GestureManager1: TGestureManager
 GestureData = <
 item
 Control = DBGrid1
 Collection = <
 item
 Action = DataSetPrior1
 GestureID = sgiLeft
 end
 item
 Action = DataSetNext1
 GestureID = sgiRight
 end
 item
 Action = DataSetFirst1
 GestureID = sgiUp
 end
 item
 Action = DataSetLast1
 GestureID = sgiDown
 end
 item
 Action = FileExit1
 GestureID = sgiCheck
 end>
 end>
end

Next I added a Toolbar control to the
application, created five buttons, hooked
the existing actions to the toolbar but-
tons (using the Object Inspector as in
the image here on the right).

To let users perform the actions on the
toolbar area as well, I also added the
same gestures of the DBGrid to the
form. With the toolbar not having ges-
ture support, the corresponding
operations will be sent to the control or window behind it.

Finally, I added an Open call for the ClientDataSet control in the OnCreate
event handler of the form, and I had a running application with basically no
Delphi code behind it. Run the program, perform a “down” gesture, and the
DBGrid will jump to the last record, as shown in the image of the next page.

Marco Cantù, Delphi 2010 Handbook

182 - Chapter 6: Touch and Gestures

This program has a significant problem, though. As you perform any gesture
over the grid, it also receives regular mouse messages and selects the record
under a mouse click. So if you do a “right” gesture, you'll click and select the
record under the mouse and also perform the gesture and move to the next
record. This is not very intuitive. If you perform the gestures in the thin toolbar
area, everything works as expected.

For a touch enabled application, though, we might want to disable the standard
“click-to-select” grid operation, to force users to perform gestures (or use tool-
bar buttons) to move around the data. This can be achieved by disabling the
mouse operations on the grid.

The simplest way to do this is to subclass the grid (using an interceptor class)
and return False from the Focused virtual method, indirectly called at the
beginning of each mouse operation. This is the code (available in the DataGes-
tures example, but commented out in the source) you can use:
type
 TDBGrid = class (DBGrids.TDBGrid)
 public
 function Focused: Boolean; override;
 end;

function TDBGrid.Focused: Boolean;
begin
 Result := False;
end;

Marco Cantù, Delphi 2010 Handbook

Chapter 6: Touch and Gestures - 183

Touch Keyboard
When you are creating applications for kiosks and other devices which don't
have a keyboard attached, it is nice to show one on screen and let users type by
selecting these keys with their input device (possibly their finger, as using a vir-
tual keyboard with the mouse is far from a nice experience).

The VCL in Delphi 2010 includes a framework for creating virtual keyboards,
based on the new TouchKeyboard component and the two related units, Key-
board and KeyboardTypes. If you drop the TouchKeyboard component on a
form at design time you'll see something like in the following image:

Of course, what you'll see depends on your active keyboard at the operating sys-
tem level. What I've shown here is the output when I set the keyboard to “en-
US”. If I keep my standard settings, I'll generally see an Italian keyboard:

Marco Cantù, Delphi 2010 Handbook

184 - Chapter 6: Touch and Gestures

Notice that while punctuation characters are
indeed replaced by the corresponding elements in
Italian, special purpose keys (like Esc, Caps, Del)
are not modified. The issue is that the captions of
these keys are not defined at the operating sys-
tem, so the only option is to override the defaults
at the TouchKeyboard component level, using its
KeyCaptions property you can use to change
individual captions, as shown here.

Another key property of the component is its ability to display a numeric
keypad (like the one on the right) rather than a full keyboard, by changing the
value of the Layout property (a string, not an enumera-
tion, to allow future expansion and custom keyboard
layouts) from Standard to Keypad71.

Regardless of the layout, the effect of using this virtual
keyboard is to send input to the control currently having
the input focus, like a physical keyboard. Of course, this
means that the button representing keys won't get the
focus when pressed, preserving the current input focus. You can see this effect
in the basic KeyboardTest application (here when holding the Shift key):

71 You can create custom layouts, as Chris Bensen started explaining on his blog in the post
http://chrisbensen.blogspot.com/2009/12/hacking-ttouchkeyboard-part-i.html and in
the following 3 parts, showing also how to create a custom layout from an XML repres-
entation of the keyboard.

Marco Cantù, Delphi 2010 Handbook

Chapter 6: Touch and Gestures - 185

The program also has a button that I've used to make a few experiments and try
to find a workaround to an annoying VCL problem. As soon as I run a standard
VCL application (including Delphi itself) it will reset my current keyboard to
the default one. So whatever my keyboard setting a Delphi application will start
with the Italian keyboard72.

In the button I've made two experiments, as you can see I the code below:
procedure TKeyboardForm.btnTestClick(Sender: TObject);
var
 code: UINT;
begin
 LoadKeyboardLayout ('00000409', KLF_ACTIVATE);

 code := MapVirtualKey(43, MAPVK_VSC_TO_VK);
 ShowMessage (IntToStr (code));
end;

First, I write the code need to force a different keyboard, specifically the 'en-
US' keyboard, which has the keyboard layout code '00000409'. Loading and
activating this layout broadcasts a wm_InputLanguageChange, which the
TouchKeyboard component handles updating its layout. As an alternative you
can call the ActivateKeyboardLayout function and Redraw the touch key-
board after letting the application process update messages:
 ActivateKeyboardLayout(67699721 {en-US}, 0);
 Application.ProcessMessages;
 TouchKeyboard1.Redraw;

Second, I use the same code of the TouchKeyboard component for converting a
virtual key into an actual character code, as an experiment. I used this code to
figure out the VCL issue described earlier.

Overall the TouchKeyboard component can be handy in a kiosk or similar
application, while in other occasions you might want to hide it and display it on
request. Of course, you'll always need to have it on screen only while the user
has to input some data, or you can prepare a standard “keyboard entry form”
with a single edit box and a keyboard you show every time there is an input
request (like when the actual edit in the main form received the focus). I've not
created a demo program showing a similar situation, but it shouldn't be terribly
difficult to create one.

72 The situation is actually worse, as running a Delphi program changes the active keyboard
at the operating system setting, that is for each running application. Quite annoying, al-
though few people use multiple settings.

Marco Cantù, Delphi 2010 Handbook

186 - Chapter 6: Touch and Gestures

Multi-Touch Support
As I detailed in the section “From Single Touch to Multi-Touch”, Windows 7
and Delphi 2010 have specific support for multi-touch hardware, basically in
the form of a new Windows message (wm_touch) and support for handling it at
the VCL level. Considering the current limited crop of multi-touch enabled
hardware, though, this support should probably be restricted to specific applic-
ations for quite some time. This is why the coverage of native touch, or
wm_touch, in this chapter is restricted to this section and based on an example
I've borrowed from Chris Bensen73.

Before we get specifically to wm_touch, consider that some information about
touch-based requests is also surfaced in traditional mouse events. Pressing on
the screen (or touchpad) with your finger results in a VCL mouse down event,
carrying over information about the source. This is provided in the
ShiftState parameter of mouse events, as the TShiftState enumeration
has been extended with two new elements, touch and pen. The enumeration in
Delphi 2010 has the following values:
 TShiftState = set of (ssShift, ssAlt, ssCtrl,
 ssLeft, ssRight, ssMiddle, ssDouble, ssTouch, ssPen);

This is relevant because you might want to handle touch operations like mouse
operations, providing limited extra information. On the other hand, if you are
specifically handling touch operations, you might want to disable any mouse
request coming from a touch source, or you'll handle the request twice (the first
time as a native touch request, and the second time as a mouse operation ori-
ginating from the touch request).

Handling wm_touch
The wm_touch message is a raw, low-level Windows message, providing a sig-
nificant amount of information about the user input (unlike a mouse message).
Considering the limited data a Windows message can carry, this is actually not
a precise description.

73 Chris is a Delphi R&D member who worked on touch support in Delphi 2010. His blog is
at http://chrisbensen.blogspot.com/. I got permission from him to quote the source code
of this demo application in my book.

Marco Cantù, Delphi 2010 Handbook

Chapter 6: Touch and Gestures - 187

What you receive in the message's LParam is the handle of a touch information
data structure you can retrieve by calling the GetTouchInputInfo API func-
tion. Before you call this function, you must allocate the proper amount of
memory for the array of touch points, using the number of points that is carried
in the WParam of the message. At the end, you must release the touch informa-
tion data structure by calling the CloseTouchInputHandle API function.

Here is how the standard wm_Touch handling code looks like:
// in the TMyForm class declaration
procedure WMTouch(var Message: TMessage); message wm_Touch;

procedure TMyForm.WMTouch(var Message: TMessage);
var
 TouchInputs: array of TTouchInput;
 TouchInput: TTouchInput;
begin
 SetLength (TouchInputs, Message.WParam);
 GetTouchInputInfo (Message.LParam, Message.WParam,
 @TouchInputs[0], SizeOf(TTouchInput));
 for TouchInput in TouchInputs do
 ...
 CloseTouchInputHandle(Message.LParam);
end;

Each TouchInput element of the array is a record with the information about
the touch position (x and y) in “hundredths of a pixel of physical screen
coordinates”74, a handle to the input device, an ID of the touch point (which
remains the same over time while the user keeps pressing or moving a finger),
several flags indicating the current operation for the touch point (up, down,
move, and so on), the time stamp of the operation, the horizontal and vertical
size of the touch or contact area:
type
 TOUCHINPUT = record
 x: Integer;
 y: Integer;
 hSource: THandle;
 dwID: DWORD;
 dwFlags: DWORD;
 dwMask: DWORD;
 dwTime: DWORD;
 dwExtraInfo: ULONG_PTR;
 cxContact: DWORD;
 cyContact: DWORD;
 end;

74 According to Microsoft's SDK documentation for the data structure at:
http://msdn.microsoft.com/en-us/library/dd317334.aspx

Marco Cantù, Delphi 2010 Handbook

188 - Chapter 6: Touch and Gestures

To manage and interpret the x and y coordinates, you might want to call the
PhysicalToLogicalPoint Windows API function to convert the physical
screen location to the logical coordinates the application understands.

To receive this information, as mentioned, you need to have multi-touch
enabled hardware, but the application must also register individual windows to
receive touch messages by calling the RegisterTouchWindow API function.
You'll make this call after the form handle has been created, for example in an
overridden version of the CreateWnd method:
procedure TMyForm.FormCreate (Sender: TObject);
begin
 inherited;
 RegisterTouchWindow(Handle, 0);
end;

Remember to also unregister the window for touch, once you've finished with
it, by calling the symmetric API function UnregisterTouchWindow75.

Chris Bensen's TouchMove Demo
To demonstrate touch support in Delphi 2010, along with Direct2D support
(that I covered in the last chapter) and inertia manipulations (that I'll cover in
the next section), Chris Bensen wrote a very nice demo called TouchMove,
which I decided to refer to in this section. I won't cover other elements of the
demo, only how it manages touch76. The demo handles a number of touch
points at the same time, creating for each a “glow spot” element or using an
existing one if the touch operation was performed on active spot.

For doing any point-based manipulation, the code uses a support function
(TouchPointToPoint) to convert the coordinates of the touch points from
hundredths of a pixel to pixels and from device-based points to logical points:
function TouchPointToPoint(const TouchPoint: TTouchInput): TPoint;
begin
 Result := Point(TouchPoint.X div 100, TouchPoint.Y div 100);
 PhysicalToLogicalPoint(Handle, Result);
end;

75 Unregistering touch windows on termination is nice, but doesn't seem to be required. Ac-
cording to MDSN documentation, you should call UnregisterTouchWindow to indic-
ate that a window “no longer requires touch input”. That's all.

76 For the links to his four-part description of the TouchMove demo see Chris' summary
post see http://chrisbensen.blogspot.com/2009/11/touch-demo.html

Marco Cantù, Delphi 2010 Handbook

Chapter 6: Touch and Gestures - 189

The core of the program is in his wm_touch message handler.
procedure TTouchForm.WMTouch(var Message: TMessage);
var
 TouchInputs: array of TTouchInput;
 TouchInput: TTouchInput;
 Handled: Boolean;
 Point: TPoint;
 TouchMessage: TTouchMessage;
begin
 Handled := False;
 SetLength(TouchInputs, Message.WParam);
 GetTouchInputInfo(Message.LParam, Message.WParam,
 @TouchInputs[0], SizeOf(TTouchInput));
 try
 for TouchInput in TouchInputs do
 begin
 Point := TouchPointToPoint(TouchInput);
 if (TouchInput.dwFlags and TOUCHEVENTF_MOVE) <> 0 then
 TouchMessage := tmMove
 else if (TouchInput.dwFlags and TOUCHEVENTF_UP) <> 0 then
 TouchMessage := tmUp
 else if (TouchInput.dwFlags and TOUCHEVENTF_DOWN) <> 0 then
 TouchMessage := tmDown;
 ProcessTouchMessages(Point, TouchInput.dwID, TouchMessage);
 end;
 Handled := True;
 finally
 if Handled then
 CloseTouchInputHandle(Message.LParam)
 else
 inherited;
 end;
end;

As you can see in the WMTouch method, the code grabs information about the
touch operations picking a value out of the TTouchMessage enumeration,
which is later passed to the ProcessTouchMessages method. The goal is to
use the same processing function, as for mouse operations (which are pro-
cessed only if they didn't originate from a touch action, to avoid any double
processing), as for example in the OnMouseDown handler:
procedure TTouchForm.FormMouseDown(Sender: TObject;
 Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
begin
 if ssTouch in Shift then
 Exit;
 FMouseDown := True;
 ProcessTouchMessages(Point(X, Y), 0, tmDown);
end;

In this case there is no need to convert the coordinates, as they are exactly what
the program expects. Finally, the ProcessTouchMessages method looks for

Marco Cantù, Delphi 2010 Handbook

190 - Chapter 6: Touch and Gestures

an existing glow spot with the given ID or one at the given location, and if none
is found creates a new one:
function TTouchForm.ProcessTouchMessages(const APoint: TPoint;
 ID: Integer; TouchMessage: TTouchMessage): TGlowSpot;
var
 Spot: TGlowSpot;
begin
 Result := nil;

 Spot := FindSpot(ID); // find by ID
 if Spot = nil then
 begin
 Spot := FindSpot(APoint); // find by location
 if Spot <> nil then
 Spot.ID := ID;
 end;

 if Spot = nil then // create a new one
 begin
 Spot := TGlowSpot.Create(Self);
 Spot.ID := ID;
 FSpots.Add(Spot);
 end;

 Spot.DoTouch(APoint, ID, TouchMessage);
 Result := Spot;
end;

Again, there is much more to this demo, of which I didn't display any images as
they are very hard to capture on paper. The complete source code of Touch-
Move example is included in the book source code and it is also available at the
original download location:
http://cc.embarcadero.com/item/27469

Inertia Manipulation (with no
Touch)

The demo by Chris Bensen makes a very interesting use of the Manipulations
and Inertia engine that's built into Windows 7 and surfaced in corresponding
Delphi API interface units. This engine is based on COM, and is ready to use
from Delphi applications. All you have to do is to figure out how, and most of
the available demos are quite complex. So I've decided to write a program spe-
cifically focused on using the Inertia support, with no touch, no Direct2D, and

Marco Cantù, Delphi 2010 Handbook

Chapter 6: Touch and Gestures - 191

no other features that would distract you. All this program does is show a ball
(a colored circle) and lets you move, throw it... and see it bounce.

At the core of the InertiaBall example there is a TBall class representing a
single object (I haven't extended the application to handle multiple objects at
once to keep it as simple as possible). Internally this class uses the inertia pro-
cessor and the manipulation processor provided by Windows 7, and
implements a specific manipulations interface, used as a callback to notify
changes in the position of the object.

• The manipulation processor lets you interact with a physical object rep-
resented on the screen in a more realistic way and gives access to its status.
For example, by asking the manipulation processor to change the position of
an object we'll be able to ask for the current speed of the object.

• The inertia processor lets you implement a realistic behavior for an
object, like keep it moving at its current speed, slowed down by its natural
inertia, or let it bounce against the borders of a surface.

For more information on these two COM objects available in Windows 7 and
their interfaces (available in Delphi 2010 in the Manipulations unit), you can
refer to the API documentation on the MSDN site at:
http://msdn.microsoft.com/en-us/library/dd372613.aspx

After this short introduction, this is the declaration of the class representing a
bouncing ball:
uses
 Manipulations;
type
 TBall = class (TInterfacedObject, _IManipulationEvents)
 private
 FInertia: IInertiaProcessor;
 FManipulator: IManipulationProcessor;

As the program creates an object of this class (which happens as the main form
is itself created), it creates the two COM objects, sets the interface of the object
as a response to the COM object events (handling the _IManipulationEvents
interface), and initializes a few properties of the inertia manipulator:
constructor TBall.Create (aForm: TForm);
begin
 inherited Create;
 ID := 1;
 FCompleted := True;
 FInertia := CreateComObject(CLSID_IInertiaProcessor)
 as IInertiaProcessor;
 FManipulator := CreateComObject(CLSID_IManipulationProcessor)
 as IManipulationProcessor;

Marco Cantù, Delphi 2010 Handbook

192 - Chapter 6: Touch and Gestures

 InterfaceConnect(FInertia, _IManipulationEvents,
 Self, FInertiaCookie);
 InterfaceConnect(FManipulator, _IManipulationEvents,
 Self, FManipulatorCookie);

 FInertia.put_DesiredDeceleration(0.001);
 FInertia.put_BoundaryLeft(200);
 FInertia.put_BoundaryTop(200);
 FInertia.put_BoundaryRight(aForm.Width - 200);
 FInertia.put_BoundaryBottom(aForm.Height - 200);
 FInertia.put_ElasticMarginLeft(100);
 FInertia.put_ElasticMarginTop(100);
 FInertia.put_ElasticMarginRight(100);
 FInertia.put_ElasticMarginBottom(100);
end;

As you can see the movements boundary (called Boundary in the image) is set
at 200 pixels within the border of the form. However, half of this area (100
pixels all around) is actually used as an elastic, bouncing area (called Elastic
Margin in the image). Outside of this margin (which is external to the bound-
ary) there is an area the object will never reach77, which is 100 pixels wide. The
three areas are depicted in the image of the next page, which is an actual image
of the program from which I've removed the bouncing ball.

77 The object will never reach the area after you throw it, but the program doesn't prevent
you from dragging it to this external area...

Marco Cantù, Delphi 2010 Handbook

Chapter 6: Touch and Gestures - 193

As I mentioned, the TBall object is created in the middle of the form as the
program starts (after tweaking the division by zero system exception78):
procedure TInertiaForm.FormCreate(Sender: TObject);
begin
 // disable div by 0 exceptions for the inertia processor
 Set8087CW($133F);

 aBall := TBall.Create (self);
 aBall.X := Width div 2;
 aBall.Y := Height div 2;
 aBall.Radius := 20;
 aBall.Color := clRed;
 aBall.ID := 1;
end;

The ball is painted on the screen along with the two focus rectangles in the
OnPaint event handler of the form:
procedure TInertiaForm.FormPaint(Sender: TObject);
begin
 aBall.Paint(Canvas);
 DrawFocusRect(Canvas.Handle,
 Rect (100, 100, Width-100, Height-100));
 DrawFocusRect(Canvas.Handle,
 Rect (200, 200, Width-200, Height-200));
end;

The actual painting of the ball is quite trivial:
procedure TBall.Paint(Canvas: TCanvas);
begin
 Canvas.Brush.Color := self.Color;
 Canvas.Ellipse(x-Radius, y-radius, x+radius, y+radius);
end;

Things start getting interesting as you move the mouse. In this case rather than
changing the ball position directly, the program changes it via the manipulation
processor, which will notify the ball using the callback events of the
_IManipulationEvents interface. The three manipulation operations take
place as the user presses the mouse button, moves the mouse, and releases it.
Each of these three events at the form level calls a corresponding event of the
ball object, which calls a corresponding method of the manipulation processor.
It is worth following each of them, to understand the temporal sequence (as it
took me a while to figure it out).

78 If you don't disable the div by zero exception, the inertia processor will indeed throw
them quite often, as you can easily figure out by commenting out that line of code and
running the program. How did I find out? By looking at the Inertia processing demos
from MSDN, after hitting way too many errors with my code.

Marco Cantù, Delphi 2010 Handbook

194 - Chapter 6: Touch and Gestures

The first operation is a mouse down at the form, ball, and manipulation man-
ager level:
procedure TInertiaForm.FormMouseDown(Sender: TObject;
 Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
begin
 aBall.MouseDown(X, Y);
 Invalidate;
 FMouseDown := True;
end;

procedure TBall.MouseDown(X, Y: Integer);
begin
 FManipulator.ProcessDown(ID, X, Y);
end;

The program will receive several mouse move events:
procedure TInertiaForm.FormMouseMove(Sender: TObject;
 Shift: TShiftState; X, Y: Integer);
begin
 if FMouseDown then
 begin
 aBall.MouseMove(X, Y);
 Invalidate;
 end;
end;

procedure TBall.MouseMove(X, Y: Integer);
begin
 FManipulator.ProcessMove(ID, X, Y);
end;

The last (and most important) operation is the mouse up. At the end of this
manipulation, in fact, the program starts the inertia processor:
procedure TInertiaForm.FormMouseUp(Sender: TObject;
 Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
begin
 aBall.MouseUp (X, Y);
 FMouseDown := False;
 Invalidate;
 Timer1.Enabled := True;
end;

procedure TBall.MouseUp(X, Y: Integer);
var
 vx, vy: Single;
begin
 FManipulator.ProcessUp(ID, X, Y);

 FManipulator.GetVelocityX(Vx);
 FManipulator.GetVelocityY(Vy);
 FInertia.put_InitialVelocityX(Vx);
 FInertia.put_InitialVelocityY(Vy);

Marco Cantù, Delphi 2010 Handbook

Chapter 6: Touch and Gestures - 195

 FInertia.put_InitialOriginX(X);
 FInertia.put_InitialOriginY(Y);

 FCompleted := False;
end;

The inertia processor doesn't do much on its own. You have to ask it often to
process its status (which is clearly time dependent), for example using a timer:
procedure TInertiaForm.Timer1Timer(Sender: TObject);
begin
 aBall.ProcessInertia;
 Invalidate;
end;

procedure TBall.ProcessInertia;
begin
 if not FCompleted then
 FInertia.Process(FCompleted);
end;

Each time the manipulation or inertia processors compute a new position for
the object, they notify it via the ManipulationDelta method of the
_IManipulationEvents interface:
function TBall.ManipulationDelta(X, Y,
 translationDeltaX, translationDeltaY,
 scaleDelta, expansionDelta, rotationDelta,
 cumulativeTranslationX, cumulativeTranslationY,
 cumulativeScale, cumulativeExpansion,
 cumulativeRotation: Single): HRESULT;
begin
 self.X := Round (X);
 self.Y := Round (Y);
 Result := S_OK;
end;

Notice that all manipulations and inertia information uses Single coordinates
for much better precision79, which is why these examples are better built using
the Direct2D output and its floating point coordinates, but again I wanted to
keep this as simple as possible, so I used a traditional GDI painting surface.

The result cannot be easily depicted in a static image, although you can see one
in the next page, and can be appreciated much better by running the program80.

79 In a first tentative attempt, I added to the current X position the translationDeltaX,
but rounding this value it soon got down to zero, practically stopping the operation well
before it was done.

80 Or by looking at the project video, again available on the book web site.

Marco Cantù, Delphi 2010 Handbook

196 - Chapter 6: Touch and Gestures

What's Next
This chapter ends the section of the book covering the VCL and Windows 7. We
have discussed many new Windows 7 APIs, some of the corresponding new
VCL controls, and other new features of the VCL which are only partially
related to Windows 7 and will also work perfectly on older versions of Win-
dows, like gestures.

In the last two chapters of the book, I'll focus on Database support, mostly in
multi-tier and Web applications based on the REST protocol. The main focus of
the two chapters, in fact, is to cover new extensions of the DataSnap engine,
although there is also some coverage of the dbExpress framework and of other
data access technologies that Delphi 2010 provides.

Marco Cantù, Delphi 2010 Handbook

Chapter 6: Touch and Gestures - 197

Marco Cantù, Delphi 2010 Handbook

198 - Chapter 6: Touch and Gestures

Marco Cantù, Delphi 2010 Handbook

Chapter 7: Database Access and DataSnap - 199

Chapter 7:
Database Access

And DataSnap

The development of database-oriented applications, with stand-alone,
client/server, or multi-tier architectures, has always been one Delphi's strong
features. It is not surprising that this version brings incremental new features
to the database area of the product.

While Delphi 2007 introduced a new generation of dbExpress (called dbEx-
press IV) and Delphi 2009 brought us a new generation of DataSnap (often
referred to as DataSnap 2009), Delphi 2010 provides incremental features in
both areas. Specifically regarding the DataSnap multi-tier model, this version
completes the new architecture that we could say was only partially available in
Delphi 2009. New features include HTTP support, callbacks, filtering with
compression and encryption, and REST interfaces.

Notice that if you've never used these two technologies (dbExpress and Data-
Snap) you won't find introductory material here, but mostly a focus on what's

Marco Cantù, Delphi 2010 Handbook

200 - Chapter 7: Database Access and DataSnap

new in Delphi 2010. Consider also that DataSnap and the complete versions of
dbExpress, with all new drivers and connectivity to remote databases, are avail-
able only in the Enterprise and Architect versions of Delphi.

However, before I cover these two main features, let me touch on a few other
interesting new elements of Delphi's database architecture.

New Field Types and Other Core
Database Extensions

Although the enhancements to the overall Delphi database architecture can be
considered as minor, the new features that have been introduced will have a
very significant impact for some developers. For example, for managing float-
ing point numbers with a limited representation and time stamp offsets, there
are specific TField-derived classes that you can now use:
 TSingleField = class(TNumericField)
 TSQLTimeStampOffsetField = class(TSQLTimeStampField)

Support for time stamp offset processing is now also available in the new
TSQLTimeStampOffset class that's been added to the SqlTimSt unit.

Matching these two new field types, plus the TObjectField types now used by
DataSnap, there are three new elements in the TFieldType enumeration:
ftTimeStampOffset, ftObject, and ftSingle.

Also, in the TField class you can convert the value of the current element
using some new As properties:
property AsSQLTimeStampOffset: TSQLTimeStampOffset ...
property AsSingle: Single ...
property AsLargeInt: Largeint ...

Corresponding As properties have been added to the TParam class. Given the
new field classes introduced in Delphi 2010, the hierarchy of the TField
classes defined in the DB unit becomes even bigger.

To help you get a full picture, I've provided a complete class tree in the follow-
ing page (with new classes introduced in Delphi 2010 marked in bold).

Marco Cantù, Delphi 2010 Handbook

Chapter 7: Database Access and DataSnap - 201

TField
 TStringField
 TWideStringField
 TGuidField
 TNumericField
 TIntegerField
 TAutoIncField
 TSmallintField
 TShortintField
 TByteField
 TWordField
 TLongWordField
 TUnsignedAutoIncField
 TLargeintField // Int64
 TFloatField
 TCurrencyField
 TExtendedField
 TBCDField
 TFMTBCDField
 TSingleField
 TBooleanField
 TDateTimeField
 TDateField
 TTimeField
 TSQLTimeStampField
 TSQLTimeStampOffsetField
 TBinaryField
 TBytesField
 TVarBytesField
 TBlobField
 TMemoField
 TWideMemoField // widestring memo
 TGraphicField
 TObjectField
 TADTField // Abstract Data Type
 TArrayField
 TDataSetField
 TReferenceField
 TVariantField
 TInterfaceField
 TIDispatchField
 TAggregateField

There are some other changes focused on very specific needs, like local depend-
ent string formatting for date and time functions, the remapping of 64-bit
integers to the Int64 rather than BCD, and other similar changes probably not
worth covering in detail.

Marco Cantù, Delphi 2010 Handbook

202 - Chapter 7: Database Access and DataSnap

Themes Support and Other DBGrid Extensions
Even with the stronger themes support
already in the VCL for a couple of ver-
sions (introduced in Delphi 7, but much
expanded in Delphi 2007), not all of the
visual controls got full themes support.
A notable absence was in the VCL grids,
both the plain ones (StringGrid and
DrawGrid) and the data-aware version
(DBGrid). This has now been addressed.

In the image on the side you can see the
same application (DbxMulti2010, the
new version of a simple dbExpress
demo I used in previous books) with
and without themes enabled. The differ-
ence is quite striking, as with minimal
user interface changes the output looks
more modern.

In case you don't want to use this new
user interface style and still have the
application themed, you can use the
DrawingStyle property, which is set to
gdsThemed by default but can be
switched back to gdsClassic or the
alternative gdsGradient. Along with the new gradient style, the grid controls
have a GradientStartColor and a GradientEndColor property.

As an aside, the DBGrid control has two new options, dgTitleClick and
dgTitleHotTrack. The dgTitleClick option lets you control whether the
user can click on the title (eventually disabling the corresponding graphical
effect). When this option is disabled, the OnTitleClick event won't fire, of
course. Now the problem is that if you create a brand new application the
dgTitleClick option is enabled by default. While for an existing application
opened in Delphi 2010, it will be set to False as it was not in among the flags in
the original DFM file. I guess they could have entered an option with the

Marco Cantù, Delphi 2010 Handbook

Chapter 7: Database Access and DataSnap - 203

opposite meaning (disable title click) to preserve compatibility, but it would
have looked quite awkward81.

DBGrid In-place Editor Issues
The problem with any version of the DrawingStyle property is that as the
DBGrid displays the in-place editor, it draws a thick black border around it. In
effect, that's not a black border but the win-
dow background color, which is managed in
a different way from the past. You can see
the effect in the image here on the right.

How can we fix the problem82? The issue is
rooted deep in the internal painting code,
which is extremely complex. There wasn't a
single specific fix that caused this unwanted effect, but a set of changes related
with themes support. The problem occurs for any themed application, as the
issue shows up regardless of the value of the DrawingStyle property. We can-
not even handle the OnDrawDataCell event of the DBGrid, as for cells under
the in-place editor it doesn't get called. So we have to resort to a changing the
internal behavior of the DBGrid and its TCustomGrid ancestor class.

I noticed that if we let the Paint method of the TCustomGrid class paint the
specific cell in the same way it does for any other cell, the problem disappears.
For a test, you can copy the Grids unit to a project; inside that Paint method
you'll find the internal DrawCells subroutine (starting at line 2150); locate the
test which determines if standard painting code is executed (at line 2186);
you'll see the following:
if not (gdFocused in DrawState) or not (goEditing in Options) or
 not FEditorMode or (csDesigning in ComponentState) then

If you comment out this code, the grid behavior will get back to normal. How-
ever, I don't particularly like changing VCL units, so I tried looking for an
alternative fix. The idea is that if we make the test above succeed, standard

81 The problems with the dgTitleClick option were first reported by Bob Swart on his blog at
http://www.bobswart.nl/Weblog/Blog.aspx?RootId=5:3791

82 I reported this bug (or significant change in behavior) on Quality Central and it is avail-
able at http://qc.embarcadero.com/wc/qcmain.aspx?d=80209

Marco Cantù, Delphi 2010 Handbook

204 - Chapter 7: Database Access and DataSnap

painting will take place also for the cell showing the in-place editor, and its
background (visible only for the portion around the editor) will change from
black to white or whatever is the correct color.

Armed with the idea and considering that code is called inside the Paint
method, I decided to override it. As it is a virtual function, you cannot use a
class helper, but you can use an interposer class83. In this case, I've written a
new unit with the following interface:
unit DbGridFix;

interface

uses
 DBGrids;

type
 TDBGrid = class (DbGrids.TDBGrid)
 protected
 procedure Paint; override;
 end;

As long as the unit is included after the DBGrids unit in any form that uses a
DBGrid component, the compiler will refer to this version of the TDBGrid class
rather than the official one. This means at design time you'll be using a stand-
ard DBGrid, while at run time the component is fully replaced by the version
defined in the DbGridFix unit.

Inside the Paint method what we can do is to temporarily change the value of
the FEditorMode field, which determines the different behavior for the
repainting of the area behind the in-place editor. This field is not used any-
where else in the painting code, so we should not cause any other problems.
However, if we set the EditorMode property, this will cause side effects
(including a asking for a repaint of the cell, which will then triggers another
repaint going on forever).

The solution would be to change the field, rather than property, but how can we
accomplish this? In the past, considering it is a private field, we'd have to use
some low-level hacks (accessing to a specific memory location), while now we

83 An interposer class is a class with the same name of the class it inherits from. By adding
its unit after the unit of its base class in a uses statement, the program will use the modi-
fied version of the class rather than the original. Interposer classes are not a terribly neat
technique, rather a hack. But they can be very handy, indeed! Historically, the name of
the technique was given in the first article that described it, which appeared many years
ago in “The Delphi Magazine”.

Marco Cantù, Delphi 2010 Handbook

Chapter 7: Database Access and DataSnap - 205

can use the extended RTTI to access the private field). Still a low level tech-
niques, but neater and more flexible in case of future internal changes in the
class structure.

Here is the complete code of the Paint method, which stores the current value
of the field (directly using its TValue) and restores it at the end:
uses
 Rtti;

procedure TDBGrid.Paint;
var
 oldEditorMode: TValue;
 context: TRttiCOntext;
 editorModeField: TRttiField;
begin
 editorModeField := context.GetType(TDbGrid).
 GetField('FEditorMode');

 if Assigned (editorModeField) then
 begin
 oldEditorMode := editorModeField.GetValue(self);
 editorModeField.SetValue(self, TValue.From(False));
 end;

 // now paint
 inherited;

 if Assigned (editorModeField) then
 editorModeField.SetValue(self, oldEditorMode);
end;

At the core the method calls the base class version of the method, as managing
the actual painting of the grid would be daunting (that is, doing a copy and
paste of hundreds of lines of source code). The effect of this fix is to get back
the white area around the in-place editor, shown here, as was standard in past
versions of Delphi:

Marco Cantù, Delphi 2010 Handbook

206 - Chapter 7: Database Access and DataSnap

Midas DLL Now With Source
A significant change “behind the scenes” in Delphi
2010 is the availability of the source code of midas.dll.
This library, which is either deployed along with your
application or compiled into the Midaslib unit and
bound to your executable, is the engine behind the
ClientDataSet component. In fact, even if there is the
full Delphi source code of this component, its actual
data processing code is inside the DLL, that the com-
ponent invokes frequently.

It happened over the last few years that developers
spotted a couple of bugs in the DLL, which were very
hard to find and fix given the source code was not
available. Following complaints by the Delphi com-
munity, Embarcadero has finally decided to release
the source code to the public, along with the VCL
source code84.

In my installation, the library source code is in:
C:\Program Files\Embarcadero\
 RAD Studio\7.0\source\db\midas

The drawback, though, is that this library is not writ-
ten in Delphi, but it is a C++ library. If you look at the
code, you'll easily realize that it is far from easy to
navigate and study it. Once opened in C++Builder, the
project structure looks like the one of the entire side
of this page.

The main header files are talchemy.h and
alchemy.h, which define the data set classes. The
class structure is very simple, but the code is far from
trivial and is almost 1.5 MB. Other header files and
core implementations apparently come straight out of
the Borland Database Engine, with references to the
IDAPIxx.DLL, headers like bdetypes.h, and the like.

84 Just one example of the improved community relations with Embarcadero.

Marco Cantù, Delphi 2010 Handbook

Chapter 7: Database Access and DataSnap - 207

BDE in-memory tables were probably a precursor of the ClientDataSet com-
ponent, so this should be no surprise.

I didn't do much exploration of the Midas.dll source code, but I took a little
time to configure the build environment and compile it:

As you can see, the library has over 400,000 lines of source code, and although
the resulting DLL is slightly bigger than the one that ships with Delphi 2010, it
seems to behave in the same way.

Overall, the fact that this source code is available is very interesting, even if
very few Delphi developers would probably work on it directly. What is relevant
is that some Delphi and C++ experts would have a chance to debug the library
and make the component faster. For any Delphi users, having the source code
of a core component provides a big guarantee in case a critical bug arises, as
you don't have to wait for Embarcadero to fix it. In practice this already has
happened with previous informal fixes (mostly done by Andreas Hausladen85)
now embedded in the current version of the library.

From a theoretical perspective, it would be much better to have a new Client-
DataSet component rewritten at a higher level in Delphi and based on the
internal memory manager, but given this would take quite some effort and it
could easily cause incompatibilities with existing code, the current option to
make available the Midas DLL source code written in C++ is a good solution.

85 Again, Andreas blog is at http://andy.jgknet.de.

Marco Cantù, Delphi 2010 Handbook

208 - Chapter 7: Database Access and DataSnap

ADO 2.8 Support
Another change that's very specific to a given set of data access components is
the upgrade to the latest version of the ADO library, to support version 2.8. As
you can see in the ADOInt unit, the library versions are declared as:
 ADODBMajorVersion = 2;
 ADODBMinorVersion = 8;

There are many other changes in the unit, with the declaration of newer
internal interfaces and some new constants. There is no significant change in
the way these interfaces are called by the ADODataSet component, but you'll be
able to more easily call into the newer interfaces from your code.

There is actually a change in the ADODataSet code, a relevant revision (or bug
fix, if you want to call it that way) of the ParseSQL of the TParameters used to
extract parameters from an SQL statement.

dbExpress in Delphi 2010
In Delphi 2010 there are limited changes to the dbExpress core architecture,
with most updates tied to specific drivers. This is due to the support for new
databases (particularly Firebird, the open source spin-off of Interbase), new
versions of existing databases, and changes in the way programs access the
database (like in case of Microsoft SQL Server). The following sections have
more details.

The Firebird Driver
Firebird is an open source database, developed by the Firebird Foundation,
that originates from the version of Interbase that Borland released (even if only
temporarily) as open source. Given the relationship with Interbase (the data-
base distributed with Delphi since the early days of the product) and the fact
that deployment of Firebird is free, it should come to no surprise that this data-
base server is quite popular among Delphi developers. In the early days, the
two database were highly compatible, and developers often used drivers and

Marco Cantù, Delphi 2010 Handbook

Chapter 7: Database Access and DataSnap - 209

components for Interbase to connect to Firebird, but over the years differences
and incompatibilities started to emerge.

Despite this tight relationship, both Borland and the Firebird Foundation
offered limited help in using the two together, because of previous discussions
and misunderstandings among specific people on the different sides. It was
only after the acquisition by Embarcadero Technologies that tensions cooled
off, and the company started planning full support for both Interbase and Fire-
bird in its database management line of tools and in its development tools.

For the first time since the Firebird project was started, Delphi 2010 has official
and specific support for the database, in the form of a dbExpress driver. This is
not like using the Interbase with different parameters, but it is, to all effects, a
specific driver supporting the still popular Firebird 1.5 and the newer Firebird
2.1.1. The new driver has a specific DLL, relies on the Firebird client library
(fbclient.dll) rather than the Interbase one (gds32.dll), although its entry point
(getSQLDriverINTERBASE) is shared.

This is an example of the configuration of a SQLConnection component with
the Firebird driver and one of the default databases:
object SQLConnection1: TSQLConnection
 ConnectionName = 'FBCONNECTION'
 DriverName = 'Firebird'
 GetDriverFunc = 'getSQLDriverINTERBASE'
 LibraryName = 'dbxfb.dll'
 Params.Strings = (
 'drivername=Firebird'
 'database=localhost:C:/Program Files/Firebird/
 Firebird2.1/examples/empbuild/employee.fdb'
 ...)
 VendorLib = 'fbclient.dll'
end

The unit you have to include in the project to manage the specific parameters is
DBXFirebird. This unit is generally automatically included in forms and data
modules with an SQLConnection component referring to the Firebird connec-
tion. In case you want to perform operations on metadata, the units to include
start with the DBXFirebirdMetaData unit.

I haven't done extensive testing with using this driver against Firebird, but I've
made a few experiments and it seems quite solid so far. The DbxMulti2010
example already mentioned earlier for the themed DBGrid issues is in fact a
Firebird application with the configuration listed above. I didn't have to make
any other changes to convert it from Interbase to Firebird.

Marco Cantù, Delphi 2010 Handbook

210 - Chapter 7: Database Access and DataSnap

Updated dbExpress Drivers: Interbase,
MySQL, Oracle

As in most new versions of Delphi, some of the drivers have been tested and
updated to work with the latest version of the respective database server:

• The Interbase driver has been updated to Interbase 2009, including its
To-Go version (the DLL-based version)

• The MySQL driver has been updated to MySQL 5.1 (notice that the
MySQL client library, libmysql.dll, must match the server version or
you'll see an exception)

• The Oracle driver has been updated to Oracle 11g.

The SQL Server Driver
The Microsoft SQL Server driver has been updated, specifically to support MS
SQL Server 2008, but this also implies an architectural change. While in the
past the driver relied on the OLDDB driver (installed along with the MS Data
Access Components, or MSDAC), the new driver uses the native client. The
“Microsoft SQL Server 2008 Native Client” can be freely downloaded from the
Microsoft web site as part of the “Microsoft SQL Server 2008 Feature Pack,
August 2008” or individually in the same page that hosts the Feature pack (just
scroll down to about half of the page). The URL86 is:
http://www.microsoft.com/downloads/details.aspx?
 FamilyId=C6C3E9EF-BA29-4A43-8D69-A2BED18FE73C

The architectural change in the dbExpress driver was required because the OLE
DB support for SQL Server is frozen at SQL Server 2000 in terms of features,
while the “native client” fully supports version 2005, version 2008, and future
ones. This includes, for example, support for new data types such as date,
time, datatime2, datetimeoffset, and the like.

In addition to the latest driver, with support for the SQL Server 2008 client lib-
rary (sqlncli10.dll), there is a separate backward compatible dbExpress driver
for SQL Server 2005. The key elements of the two configurations (extracted
from the default dbxdrivers.ini file) are listed below:

86 If you have to type it, you can also use the shorter version http://bit.ly/5OuiEP

Marco Cantù, Delphi 2010 Handbook

Chapter 7: Database Access and DataSnap - 211

[MSSQL] // Native Client for MS SQL Server 2008
LibraryName=dbxmss.dll
VendorLib=sqlncli10.dll

[MSSQL9] // SQL Native Client 2005
LibraryName=dbxmss9.dll
VendorLib=sqlncli.dll

Notice that the new dbExpress driver for MS SQL also includes support for
Multiple Active Results Sets (also known by the MARS acronym).

DataSnap Updates
We have seen that dbExpress has seen enhancements in several drivers, but
nothing has changed in terms of its architecture, the components you use, or
their core features. After its debut in Delphi 2007, the dbExpress IV architec-
ture is becoming quite stable.

This is not the case with DataSnap, Delphi's three-tier architecture, which has
been extensively modified in Delphi 2009 and sees the completion of that pro-
ject in Delphi 2010.

Overview of DataSnap in Delphi 2009
Originally based on a COM architecture, in Delphi 2009 the DataSnap frame-
work was rewritten in terms of connectivity (now based on native sockets) and
overall architecture, removing all dependencies from COM.

On the server side, in Delphi 2009 you could use three components87:

• DSServer, the main server configuration component, which is needed to
wire all the other DataSnap components together.

• DSServerClass, a component needed for each class you want to expose.
This component is not the class you make available, but acts as a class fact-
ory to create objects of the class you want to call from a remote client. In
other words, the DSServerClass component will refer to the class that has
the public interface.

87 This description is extracted from my “Delphi 2009 Handbook”, which has more details
and specific examples I'm not going to repeat here.

Marco Cantù, Delphi 2010 Handbook

212 - Chapter 7: Database Access and DataSnap

• DSTCPServerTransport, a component that defines the transport pro-
tocol to be used (this is the only protocol directly available in Delphi 2009)
and its configuration, such as which TCP/IP port to use.

On the client side, you still use the ClientDataSet component for caching the
remote data, but the way you connect to the server has changed from the past.
The components involved are:

• SQLConnection, generally used for dbExpress connections, has a Data-
Snap driver you can configure with the proper TCP/IP port.

• DSProviderConnection, used to refer to the server class, with the
ServerClassName property. This is the actual class you want to work with,
not the DSServerClass object. This DSProviderConnection can be referenced
by the RemoteServer property of the ClientDataSet.

• SqlServerMethod, used to invoke a server side method directly (as if it
was a stored procedure in a database).

Overview of DataSnap in Delphi 2010
Given this new foundation, in Delphi 2010 there have been several extensions.
The most significant is probably the addition of a new connectivity option,
HTTP, which can be used instead of sockets or alongside with them.

Along with HTTP support, which still relies on dbExpress for client connectiv-
ity, DataSnap in Delphi 2010 also has REST support, which lets you create
clients in any language which can send an HTTP request and process the res-
ulting JSON data structure. We'll explore REST support in the next chapter.

Beside HTTP and REST connectivity, new features of DataSnap include the fil-
tering system, support for callbacks, and passing objects using the JSON
marshaling layer. There are also a couple of very nice wizards to start the devel-
opment of a new standalone DataSnap application or one hooked to an HTTP
server (based on the classic Delphi WebBroker framework). Now that you
should have an idea of the key elements, I can start getting to the actual details,
starting with HTTP support.

Marco Cantù, Delphi 2010 Handbook

Chapter 7: Database Access and DataSnap - 213

DataSnap over HTTP
As a first example of DataSnap based on the new HTTP connectivity, I've exten-
ded the First3Tier2009 demo that I built for the Delphi 2009 Handbook88. In
the server I replaced the TCP/IP transport component with the DSHTTPSer-
vice component, configured as:
object DSHTTPService1: TDSHTTPService
 RESTContext = 'rest'
 Server = DSServer1
 Filters = <>
 HttpPort = 8090
 Active = False
end

The Active property of the component is set to True when the server main
form is created. That's the only change I had to make.

Notice I could have kept the TCP/IP connection along side the HTTP one: it
might make sense to use the direct TCP/IP connection for internal clients run-
ning within the company (inside the firewall and in a protected Intranet or
under a VPN), and open up the HTTP port for external connections coming
from the Internet. I'll cover some more scenarios and configuration options
later in this chapter.

For now, having migrated the server let me focus on the client. In this case,
what we have to do is update the SQLConnection component configuration,
which becomes the following:
object SQLConnection1: TSQLConnection
 DriverName = 'Datasnap'
 LoginPrompt = False
 Params.Strings = (
 'Port=8090'
 'CommunicationProtocol=http'
 'DriverUnit=DBXDataSnap')
end

That's it. All I had to do was change the configuration of the DataSnap driver,
typing http instead of tcp/ip and enter the correct port number, matching the
one I'd configured on the server.

88 Full source code of the example is available in the code section of my web site at:
http://www.marcocantu.com/code/dh2009/First3Tier2009_Server.htm and
http://www.marcocantu.com/code/dh2009/First3Tier2009_Client.htm.

Marco Cantù, Delphi 2010 Handbook

214 - Chapter 7: Database Access and DataSnap

A DataSnap HTTP Server with the Wizard
For that first demo I've taken an existing DataSnap application and moved it
from a TCP/IP connection to an HTTP connection. It is even easier to create a
new application with the DataSnap Wizard and ask for either or both con-
nectivity options. If you select the DataSnap Server in the DataSnap page of the
New Item dialog box (or Object Repository) you'll get the following options:

You can pick three different application architectures, one or both communica-
tion protocols (optionally asking for HTTP Authentication) and add a ready to
use server method class based on a DataSnap Server Module, a plain Data
Module, or a plain TPersistent ancestor. Depending on the options you pick,
you can have a variety of structures for your DataSnap server. In each case, the
wizard will generate a data module with the core DataSnap server components,
plus the modules you ask for.

Lets suppose I pick a Console Application, HTTP with Authentication, and a
server method class based on a TPersistent ancestor with the sample meth-
ods. The wizard will generate two units and a project file, available in the
DSnapHttpConsole project with the original unit names suggested by the Data-
Snap Server Wizard.

Marco Cantù, Delphi 2010 Handbook

Chapter 7: Database Access and DataSnap - 215

The main project file for the console application, has a single call (protected by
an exception handler) to a RunDSServer function:
 try
 RunDSServer;
 except
 on E: Exception do
 Writeln(E.ClassName, ': ', E.Message);
 end

The ServerContainerUnit1 unit is a data module hosting the DSServer,
DSServerClass, and DSHTTPService components already used in the previous
example, plus the DSHTTPServiceAuthenticationManager component I asked
for in the Wizard.
object ServerContainer1: TServerContainer1
 object DSServer1: TDSServer
 AutoStart = True
 HideDSAdmin = False
 end
 object DSHTTPService1: TDSHTTPService
 Server = DSServer1
 DSHostname = 'localhost'
 AuthenticationManager =
 DSHTTPServiceAuthenticationManager1
 HttpPort = 8090
 end
 object DSHTTPServiceAuthenticationManager1:
 TDSHTTPServiceAuthenticationManager
 end
 object DSServerClass1: TDSServerClass
 OnGetClass = DSServerClass1GetClass
 Server = DSServer1
 LifeCycle = 'Session'
 end
end

Beside the port and host name configuration, notice the OnGetClass event
handler of the DSServerClass is defined there and implemented by the Wizard.

In the server class configuration above, I let the DSServerClass component use
the default value of the LifeCycle property, Session, but this is totally ignored
and behaves like a TCP/IP server when the Invocation life cycle is used. This
means a new server class object is created for each client request, which should
not be surprising given the use of HTTP. The HTTP connection is a stateless
connection, which means a new connection to the server is established for each
client request (with some very limited exceptions).

In case of a console application, the ServerContainerUnit1 unit also implements
the RunDSServer global function, which creates the data module and starts the

Marco Cantù, Delphi 2010 Handbook

216 - Chapter 7: Database Access and DataSnap

DSServer. The code waits until the Esc key is pressed to terminate the console
application:
var
 LModule: TServerContainer1;
 LInputRecord: TInputRecord;
begin
 LModule := TServerContainer1.Create(nil);
 try
 LModule.DSServer1.Start;
 try
 while True do
 begin
 ... check for Esc key

The ServerMethodsUnit1 unit has the target class (automatically connected to
the DSServerClass component of the main unit, as mentioned earlier) with the
sample method:
type
{$METHODINFO ON}
 TServerMethods1 = class(TPersistent)
 public
 function EchoString(Value: string): string;
 end;
{$METHODINFO OFF}

This is all the code generated for the server. We can try to compile and run it as
it is, but how do we test it without creating a client application? Turns out we
can use the Data Explorer pane of the Delphi IDE.

Testing the Connection in Data Explorer
It is interesting to notice that in the Data Explorer window of the Delphi 2010
IDE you can configure and test the client connection quite easily. It is actually
easier to test the connection in this pane than setting up an SQLConnection
component manually.

To try this out, simply run the
server (possibly as a stand
alone application using the
Run Without Debugging com-
mand), move to the Data
Explorer, pick the DataSnap
driver, and add a new connec-
tion. Now open the

Marco Cantù, Delphi 2010 Handbook

Chapter 7: Database Access and DataSnap - 217

connection configuration and enter the settings for your server (including host
and port), as shown here. Test the connection to see if it is OK and the server is
running.

Now you can check the connection
features in the Data Explorer pane.
The DataSnap connection will have no
tables, but will have a set of proced-
ures corresponding to the methods
exposed by the server, which include
the administrative methods and the
specific ones provided by your server
class (or classes). With this example
you'll see the list on the side of this
page.

Now you can even select the given
server method, open its parameters,
set their Value property (in this case
the parameter itself is called Value,
causing some confusion), and even
execute it from the IDE by using the
right mouse button in the pane with
the stored procedure parameters, dis-
played below. Here the result data set,
which has a single element with the return value (the parameter echoed from
the server back to the client), is displayed.

Marco Cantù, Delphi 2010 Handbook

218 - Chapter 7: Database Access and DataSnap

HTTP Authentication
In this application I asked the Wizard to add support for HTTP authentication,
but haven't actually used it so far. What you have to do is handle the
HTTPAuthenticate event of the DSHTTPServiceAuthenticationManager com-
ponent. In this event handler you receive the user name and the password, but
also more information about the incoming request (so you could have a differ-
ent authentication strategy depending on the request). In this very simple case
I've used the simplest possible implementation, a fixed user name and pass-
word (no, it is not my real password!):
procedure TServerContainer1.
 DSHTTPServiceAuthenticationManager1HTTPAuthenticate(
 Sender: TObject;
 const Protocol, Context, User, Password: string;
 var valid: Boolean);
begin
 valid := (User = 'marco') and (password = '123');
end;

Notice that the authentication request comes in for every single HTTP request,
as the protocol is inherently stateless. Now if you compile and run the server
with authentication support and connect from the Data Explorer DataSnap
driver, you'll see an error like:

All you have to do it enter the user name and password in the Authentication
section of the connection configuration (displayed earlier in the section “Test-
ing the Connection in Data Explorer”).

Building a Client Application the RAD Way

There isn't a wizard to build DataSnap client applications, but once you have
configured the connection in Data Explorer, you can take advantage of its drag-
and-drop capabilities.

For example, if you drag the connection defined earlier and called “FIRST” over
the form, you'll get the following:

Marco Cantù, Delphi 2010 Handbook

Chapter 7: Database Access and DataSnap - 219

object FIRST: TSQLConnection
 ConnectionName = 'FIRST'
 DriverName = 'DATASNAP'
 LoginPrompt = False
 Params.Strings = (
 'drivername=DATASNAP'
 'port=8090'
 'communicationprotocol=http'
 'hostname=localhost'
 'DSAuthenticationUser=marco'
 'DSAuthenticationPassword=123')
end

The interesting thing is that the config-
uration of the communication protocol
is easier in the connection editor than
it is in the Object Inspector. In the
former, in fact, you have the various
options (http or tcp/ip) in a combo
box, while in the Object Inspector you
have to type in the value, as you can see
here on the right.

Notice also that the properties used for
the user name and the password: these are not the Username and Password
properties, but the DSAuthUser property (stored in the Params as DSAu-
thenticationUser) and the DSAUthPassword property (stored as
DSAuthenticationPassword).

Once you have the SQLConnection component in place, we can think of turning
it on. This won't work at design time, nor if you call the Open method of the
connection at run time. In this second case you'll get the error:

The error indicates that the communication protocol has not been registered,
and you can do this by adding a reference to the DSHTTPLayer unit:
uses
 DSHTTPLayer;

Marco Cantù, Delphi 2010 Handbook

220 - Chapter 7: Database Access and DataSnap

Now we can do another drag-and-drop operation for calling the only method of
the server. If you open the list of procedures and drag the one you want to call,
the forms will have an SQLDataSet component configured as a stored proced-
ure:
object TServerMethods1_EchoString: TSQLDataSet
 CommandText = 'TServerMethods1.EchoString'
 CommandType = ctStoredProc
 SQLConnection = FIRST
end

If you try to call it, however, it will fail, as the remote server won't recognize a
request referring to a stored procedure. What you have to do is manually
change the CommandType to ctServerMethod. When you do so, however, the
value of the CommandText property (which is correct) will be reset. So you
should copy the CommandText, change the CommandType, and then paste the
CommandText back89.

Overall, you'll get the component configured as follows, including its input and
output parameters:
object TServerMethods1_EchoString: TSQLDataSet
 CommandText = 'TServerMethods1.EchoString'
 CommandType = ctServerMethod
 DbxCommandType = 'DataSnap.ServerMethod'
 MaxBlobSize = -1
 Params = <
 item
 DataType = ftWideString
 Precision = 2000
 Name = 'Value'
 ParamType = ptInput
 end
 item
 DataType = ftWideString
 Precision = 2000
 Name = 'ReturnParameter'
 ParamType = ptResult
 Size = 2000
 end>
 SQLConnection = FIRST
end

Now all you have to write is the code for setting the input parameter, execute
the server method, and retrieve the result:

89 The fact that the text of the command is lost as you change the command types makes
sense when changing from a table to a query, but when switching between two named
objects (like in this case) it could have been preserved. I won't say this is a bug, though:
better fix the drag-and-drop behavior!

Marco Cantù, Delphi 2010 Handbook

Chapter 7: Database Access and DataSnap - 221

procedure TConsoleClientForm.btnCallEchoClick(Sender: TObject);
begin
 TServerMethods1_EchoString.ParamByName('Value').
 AsString := 'Hello ' + TimeToStr (Now);

 TserverMethods1_EchoString.ExecSQL;

 ShowMessage (TServerMethods1_EchoString.
 ParamByName('ReturnParameter').AsString);
end;

As an alternative, you can avoid dragging the procedure and adding the data set
altogether, by using the “Generate DataSnap client classes” command of the
SQLConnection component to generate the client proxy classes for the server. I
did that and saved the new unit as ClientProxy. Now you can refer to the unit
and replace the component and the call above with the creation of an instance
of the proxy and its use:
uses
 ClientProxy;

procedure TConsoleClientForm.btnProxyClick(Sender: TObject);
begin
 with TServerMethods1Client.Create(FIRST.DBXConnection) do
 try
 ShowMessage (EchoString('Hello ' + TimeToStr (Now)));
 finally
 Free;
 end;
end;

This last part of the application was not exactly based on a visual development
style, but it was certainly worth mentioning it as a relevant alternative for call-
ing server methods.

DataSnap WebBroker Integration
Building an application to run on the server (whether a standalone VCL pro-
gram, a service, or a console application) is only one of the options for
deploying DataSnap servers in Delphi 2010 or, to be more precise, to offer
HTTP connectivity to DataSnap servers.

The alternative option is to create and deploy Web server extensions, based on
Delphi's classic WebBroker architecture.

Marco Cantù, Delphi 2010 Handbook

222 - Chapter 7: Database Access and DataSnap

Overview of the WebBroker Architecture
This overview is meant as a short introduction of a technology that
has existed since Delphi 390, for those who never used it or used it only
occasionally. If you already used WebBroker you can certainly skip it.

The WebBroker technology, available in Delphi since the early days of the
product, is a framework to let you create Web server extensions that can be
deployed as CGI applications, ISAPI libraries, and (even if unofficially) Apache
modules. There is a fourth option, which is the use of a debug tool, called Web
App Debugger as a replacement for a web server while developing and debug-
ging the application.

A WebBroker application is built around a WebModule designer, which has an
object holding the web request received from the client and the web response,
plus a collection of actions tied to the incoming URLs. This TWebModule
derives from TCustomWebDispatcher, which provides support for all the
input and output of your programs and defines the Request and Response
properties.

These properties are defined using a base abstract class (TWebRequest and
TWebResponse), but an application initializes them using a specific object
(such as the TISAPIRequest and TISAPIResponse subclasses for an ISAPI
library). These classes make available all the information passed to the server,
so you have a single approach to accessing all the information.

The key advantage of this approach is that the code written with WebBroker is
independent of the type of application (CGI, ISAPI, Apache module); you'll be
able to move from one to the other, modifying the project file or switching to
another one, but you won't need to modify the code written in a WebModule.

To write the application code, you can use the Actions editor in the WebModule
to define a series of actions (stored in the Actions array property) depending
on the path name of the request. This path name is the portion of request URL
that comes after the program name and before the parameters.

By providing different actions, your application can easily respond to requests
with different path names, and you can assign a different producer component
or call a different OnAction event handler for each and every possible path

90 As a historical reference you can see http://edn.embarcadero.com/article/10134

Marco Cantù, Delphi 2010 Handbook

Chapter 7: Database Access and DataSnap - 223

name. In the OnAction event handler, you write the code to specify the
response to a given request, as in the following code snippet, which returns
some plain HTML:
procedure TWebModule1.WebModule1WebActionItem1Action (
 Sender: TObject; Request: TWebRequest;
 Response: TWebResponse; var Handled: Boolean);
begin
 Response.Content :=
 '<html><head><title>Hello Page</title></head><body>' +
 '<h1>Hello</h1>' +
 '<hr><p><i>Page generated by Marco</i></p>' +
 '</body></html>';
end;

As debugging web applications is often difficult, Delphi offers a specific Web
App Debugger program. This program, which is activated by the corresponding
item on the Tools menu, is a web server that waits for requests on a port you
can set up (8081 by default). When a request arrives, the program can forward
it to a stand-alone executable using a socket connection.

Using this tool you can run the web server application from within the Delphi
IDE, set all the breakpoints you need, and then debug the program as you
would a plain executable file.

The Web App Debugger also does a good job of logging all the received requests
and the responses returned to the browser, letting you inspect the data flow at
the HTTP protocol level.

The DataSnap WebBroker Wizard
Creating DataSnap applications based on the WebBroker architecture is reas-
onably simple thanks to another new Wizard added to the Delphi 2010 IDE, the
DataSnap WebBroker Application wizard.

Differently from the DataSnap Application Wizard, this one won't let you pick a
TCP/IP connection and offers you the application types supported by
WebBroker as options, rather than the development of full-blown, console, or
service applications. You can see the Wizard form in the next page.

Marco Cantù, Delphi 2010 Handbook

224 - Chapter 7: Database Access and DataSnap

To build an example I've picked the Web App Debugger executable option and
given a name to its class91. The Wizard generates a unit with the target Server
Methods class (again a DataSnap Module, a Data Module or a TPersistent
descendant), plus a Web Module hosting the DSServer and DSServerClass
components.

The web module has one extra new component, DSHTTPWebDispatcher,
which provides the conduit between WebBroker and DataSnap, by hooking to
the web dispatch mechanism and intercepting the incoming requests that start
with a given path name. The component has these default settings:
object DSHTTPWebDispatcher1: TDSHTTPWebDispatcher
 RESTContext = 'rest'
 Server = DSServer1
 DSHostname = 'localhost'
 DSPort = 211
 WebDispatch.MethodType = mtAny
 WebDispatch.PathInfo = 'datasnap*'
end

The key property here is the PathInfo intercepted by this dispatcher, anything
starting with datasnap. The REST information is relevant, but I'll focus on that
topic in the next chapter. Finally, the DataSnap host and port configurations
are used only in case of a gateway, covered in a later section.

91 This class name is a registration name (nothing to do with a Delphi class) provided by
the program and used along with the application name to refer to the module in a URL.
This name is saved in a registration line inside the initialization section main form unit,
in a call to the constructor of the TWebAppSockObjectFactory class.

Marco Cantù, Delphi 2010 Handbook

Chapter 7: Database Access and DataSnap - 225

Using this Wizard I've built the DSnapWebAppDebug project, which registers
the 'dsnap1http' class name (we'll see its URL as we move to the client-side
project). The project has an empty and useless main form, like any Web App
Debugger application, a web module, and a data module.

The web module has a DSHTTPWebDispatcher component with the default
settings I've just listed, a DSServer component and a DSServerClass, connected
to the sample target data module. The web module also has a default action
(that is an action matching any path not configured in a dispatcher) defined as:
object WebModule2: TWebModule2
 Actions = <
 item
 Default = True
 Name = 'DefaultHandler'
 PathInfo = '/'
 OnAction = WebModule2DefaultHandlerAction
 end>

The code of this event handler is quite trivial:
procedure TWebModule2.WebModule2DefaultHandlerAction (
 Sender: TObject; Request: TWebRequest;
 Response: TWebResponse; var Handled: Boolean);
begin
 Response.Content := '<html><heading/><body>' +
 'DataSnap Server</body></html>';
end;

Rather than changing this HTML92 in code, you can return the content of a local
HTML file, in my code 'main.html', to be used as a standard response. This way
you can customize the default page returned by the server without having to
recompile the application. This is the updated OnAction event handler for the
default action:
var
 strRead: TStreamReader;
begin
 strRead := TStreamReader.Create('main.html');
 Response.Content := strRead.ReadToEnd;
 strRead.Free;

You can add actions to this web module, like any WebBroker application.

The third unit of the project is a data module, which has a Firebird dbExpress
connection (but you can use any other supported target database). The three

92 Oddly enough the code generated by the Wizard uses a heading tag rather than HTML's
head tag. Not a big deal, as you are supposed to replace it with your own HTML anyway.

Marco Cantù, Delphi 2010 Handbook

226 - Chapter 7: Database Access and DataSnap

components in this data module are (a connection, a data set, and a provider),
listed here with only their key properties:
 object FBCONNECTION: TSQLConnection
 ConnectionName = 'FBCONNECTION'
 DriverName = 'Firebird'
 end
 object CUSTOMER: TSQLDataSet
 CommandText = 'CUSTOMER'
 CommandType = ctTable
 SQLConnection = FBCONNECTION
 end
 object DataSetProvider1: TDataSetProvider
 DataSet = CUSTOMER
 end

The program has also two methods, the sample EchoString (which in this case
doubles the string passed as parameter) and a GetDataSet method returning a
data set:
 public
 function EchoString(Value: string): string;
 function GetDataSet: TDataset;

Once you compile this application, you not only have to run it but also activate
the Web App Debugger (from the Tools menu of the Delphi IDE), which acts as
the web server which will redirect the calls to the application.

Once you open the Web App Debugger you can start its service and it will sug-
gest the URL of the ServerInfo application, which will list all programs that
you've registered for the Web App Debugger. This lets you easily find the URL

Marco Cantù, Delphi 2010 Handbook

Chapter 7: Database Access and DataSnap - 227

of the given project. However, if you know how this is defined, it won't be diffi-
cult to get it manually:
http://localhost:8081/dsnapwebappdebug.dsnap1http

First comes the server and the port, followed by the application name dot the
registered class name I mentioned earlier. If you type this URL in a browser
you'll see the static HTML file returned by the program.

Although you could possibly try to invoke specific features of the server, there
is very little you can do with the HTTP interface, which remains basically a pro-
prietary interface. To be able to refer to the server methods from a browser
you'll need to use the new REST support of DataSnap, covered in the next
chapter.

A Client for the Web Server
Now that we have built a DataSnap server deployed as a web server extension,
we have to change a few things in how a client application refers to it. The SQL-
Connection component, in fact, won't refer to the server using host name and
port, but using the server base URL:
object SQLConnection1: TSQLConnection
 DriverName = 'Datasnap'
 LoginPrompt = False
 Params.Strings = (
 'URLPath=http://localhost:8081/' +
 'DSnapWebAppDebug.dsnap1http'
 'CommunicationProtocol=http')
end

Again, you'll also need to add the DSHTTPLayer unit to the client application.
This time beside calling the EchoString method on the server, the client
application reads the remote data set into a local ClientDataSet component,
showing the data in a DBGrid. Nothing new for those who have used DataSnap
in Delphi 2009, but slightly different from past versions of this technology.

The key components I've added to the main form of the client application to
fetch the data set from the server are a SQLConnection, a DSProviderConnec-
tion referring to the server class, and a ClientDataSet pointing to a specific
provider:
object SQLConnection1: TSQLConnection
 DriverName = 'Datasnap'
 Params.Strings = (
 'URLPath=http://localhost:8081/' +

Marco Cantù, Delphi 2010 Handbook

228 - Chapter 7: Database Access and DataSnap

 'DSnapWebAppDebug.dsnap1http'
 'CommunicationProtocol=http')
 end
 object DSProviderConnection1: TDSProviderConnection
 ServerClassName = 'TServerMethods1'
 SQLConnection = SQLConnection1
 end
 object ClientDataSet1: TClientDataSet
 ProviderName = 'DataSetProvider1'
 RemoteServer = DSProviderConnection1
 end
 object DataSource1: TDataSource
 DataSet = ClientDataSet1
 end
 object DBGrid1: TDBGrid
 DataSource = DataSource1
 end

To fetch the data from the server there is no specific code, but a request to open
the ClientDataSet as the program starts. The client application has some actual
code used to call the Server Methods, but this is exactly like the earlier code.

Overall, we have deployed our DataSnap server as a Web Server extension, and
after the development could move to a CGI, ISAPI DLL93, or Apache Module
project. Still, the client is nothing but a Delphi client which uses the DataSnap
driver of dbExpress, much like the earlier HTTP DataSnap servers or the
TCP/IP based ones.

Filtering Connections
One of the most relevant requests developers had for DataSnap was the ability
to compress and encode the data stream. The former helps with performance,
while the second makes sniffing the data moved over the wire a little more dif-
ficult. In Delphi 2010 DataSnap introduces more than this, as it features a
filtering architecture you can use to hook any filter to the input and output
streams. Even more, the server publishes information about the filters it used,
so that the client can decode the stream in a proper way (but can also connect
to multiple different servers with the same basic code).

93 For an example of deployment of a DataSnap WebBroker application in IIS, you can
refer to the following blog entry by Delphi R&D member Jim Tierney:
http://blogs.embarcadero.com/jimtierney/2009/08/20/31502

Marco Cantù, Delphi 2010 Handbook

Chapter 7: Database Access and DataSnap - 229

Using ZlibCompression
Let me start by showing you how to use the only filter94 the ships with Delphi,
the compression filter. First, I've built a sample DataSnap WebBroker server,
using the Web App Debugger support, and built a corresponding client. They
can be found in the DSnapFilterDemo folder. The reason for picking the Web
App Debugger is you can easily monitor the HTTP data. For example, the
response of the method call passing the string 'This is my name' looks like:
HTTP/1.1 200 200 OK
Connection: close
Content-Type: text/html
Content-Length: 57

{"result":[{"rows":[0]},{"data":[17,À/This is my name]}]}

As a second step, I've added the ZlibCompression transport filter to the
server side application (more precisely to the DSHTTPWebDispatcher compon-
ent of the DataSnap server). Just edit the Filters collection of this component,
add an entry, and configure it in the Object Inspector:

The DSHTTPWebDispatcher component will have the following configuration:
 object DSHTTPWebDispatcher1: TDSHTTPWebDispatcher
 RESTContext = 'rest'
 Server = DSServer1
 Filters = <
 item
 FilterId = 'ZLibCompression'
 end>
 WebDispatch.MethodType = mtAny
 WebDispatch.PathInfo = 'datasnap*'
 end

94 Rumors say that more filters were ready to ship, but Embarcadero's legal department got
worried about shipping strong encryption software, so they were removed at the very last
minute.

Marco Cantù, Delphi 2010 Handbook

230 - Chapter 7: Database Access and DataSnap

Remember that you can also apply filters to a DSTCPServerTransport compon-
ent, in the case of a socket-based DataSnap server. Now if you fire up the client
application, you'll see an error like the following:

As the error message indicates, the exception is due to the fact that the client
request doesn't recognize the filter, which was not compiled and registered into
the client application.

What you need to do is to add the compression filter unit to the client program
(beside the DataSnap HTTP client support unit every DataSnap client based on
HTTP must declare):
uses
 DSHttpLayer, DbxCompressionFilter;

Now the client program works again, with the compressed stream. The HTTP
data for the simple response becomes the following unreadable text:
HTTP/1.1 200 200 OK
Connection: close
Content-Type: text/html
Content-Length: 61

x#«V*J-.Í)Q²Š®V*Ê//#2
 bkuª•R#K##Cs#ú!#™Å

 @”[©—˜›#[#[#

There is actually no real compression in this very short response (the Content-
Length is about the same), but there is when the amount of data is bigger. Now
this data looks unreadable, but a simple Unzip request will reveal the content.

What we might need is to encode or encrypt the content. How do we accom-
plish this? In more general terms, if ZLibCompression is the only available
DataSnap filter, how do we implement a custom one?

Marco Cantù, Delphi 2010 Handbook

Chapter 7: Database Access and DataSnap - 231

Creating Custom Filters
To add a custom filter to the DataSnap connection layer, what you have to do is:

• Create a package featuring a transport filter class that inherits from the
TTransportFilter class

• Implement the ProcessInput and ProcessOutput virtual methods of this
class

• Register the transport filter and install the package with the filter in the
Delphi IDE.

The DSnapFilterDemo folder contains the DSnapFilter01 package with a trivial
MIME encoding filter. The class of the filter is defined as:
uses
 DBXTransport, IdCoderMIME;

type
 TMimeFilter = class (TTransportFilter)
 public
 function ProcessInput(const Data: TBytes): TBytes; override;
 function ProcessOutput(const Data: TBytes): TBytes; override;
 function Id: string; override;
 end;

The code of these three methods is not particularly complex. The Id function
returns a unique identifier for the filter (passed also to the client in the stream):
function TMimeFilter.Id: string;
begin
 Result := 'Cantools.MimeFilter';
end;

The ProcessInput and ProcessOutput methods process the bytes stream
using Indy's TIdEncoderMIME and TIdDecoderMIME support classes:
function TMimeFilter.ProcessInput(const Data: TBytes): TBytes;
var
 strEncoded: string;
begin
 strEncoded := TIdEncoderMIME.EncodeBytes(Data);
 Result := BytesOf(strEncoded);
end;

function TMimeFilter.ProcessOutput(const Data: TBytes): TBytes;
var
 strEncoded: string;
begin
 strEncoded := StringOf (Data);
 Result := TIdDecoderMIME.DecodeBytes(strEncoded);
end;

Marco Cantù, Delphi 2010 Handbook

232 - Chapter 7: Database Access and DataSnap

The unit also performs the registration (and de-registration) of the filter, some-
thing both the server and the client must do.
initialization
 TTransportFilterFactory.RegisterFilter(TMimeFilter);
finalization
 TTransportFilterFactory.UnregisterFilter(TMimeFilter);

Also the package needs the registration
code to let you see the new transport
filter at design time and pick it from
the list of filters in the Object Inspector
(displayed here no the right side) while
configuring the Filters collection of the
DSHTTPWebDispatcher component. The settings of this component now
become the following (this is the code in the final version of the demo):
object DSHTTPWebDispatcher1: TDSHTTPWebDispatcher
 RESTContext = 'rest'
 Server = DSServer1
 Filters = <
 item
 FilterId = 'Cantools.MimeFilter'
 end>
 WebDispatch.MethodType = mtAny
 WebDispatch.PathInfo = 'datasnap*'
end

Notice that you can have multiple filter processing the data stream. The client
will apply them in the reverse sequence of the server. Keep also in mind that in
this case both the client and the server applications must include the filter unit,
which in the example is the DSnapFilter64 unit. With this specific filter, the
HTTP data packet when receiving the response of the server method becomes:
HTTP/1.1 200 200 OK
Connection: close
Content-Type: text/html
Content-Length: 76

eyJyZXN1bHQiOlt7InJvd3MiOlswXX0seyJkYXRhIjpbMTcswC9UaGlzIGlzIG15IG5
hbWVdfV19

A MIME-encoded data stream provides just a little bit of data garbling, but it
isn't in any way a secure mechanism. If you are interested in real encryption fil-
ters for DataSnap, you can refer to the hash and cipher filters part of the
“DataSnap Filters Compendium” that Daniele Teti put together and you can
find on Google Code at:
http://code.google.com/p/dsfc/

Marco Cantù, Delphi 2010 Handbook

Chapter 7: Database Access and DataSnap - 233

JSON and Object Marshaling
There is another new feature in Delphi 2010 that makes a huge difference in
the architecture: the types of parameters for server methods now include
TJSONValue and descendant types. What is relevant here is not the ability to
pass individual values (integers, strings), but the fact you can use this approach
to pass complex data structures.

While DataSnap still doesn't allow you to pass Delphi objects to and from
server methods, what you can do is transform Delphi objects into an equivalent
JSON representation and than back into actual objects. This technique is called
marshaling and is worth investigating in detail. But before we get to that, let
me start covering one of the foundations, that is the JSON representation.

Introducing JSON
The acronym JSON stands for JavaScript Object Notation. This is a text-based
notation used to represent JavaScript objects95, so that they can be made per-
sistent or transferred from one application to another (or from one computer to
another). While a few years ago the consensus was for using XML as a notation
to represent complex data structures, in the last few years JSON has gained
popularity because it is more compact, more tied to programming language
concepts, and very easy to parse in JavaScript browser based applications... and
by most other programming languages due to a growing set of libraries and
tools.

You can learn more about JSON by reading the RFC 4627 specification of the
IEFT (Internet Engineering Task Force) or looking at the official JSON home
page:
http://www.ietf.org/rfc/rfc4627.txt
http://json.org

95 More precisely, it is a subset of JavaScript's object literal notation. In JavaScript, the use
of double quotes around the pair name is not required for valid variable names.

Marco Cantù, Delphi 2010 Handbook

234 - Chapter 7: Database Access and DataSnap

You can also keep reading for a short introduction, as JSON is relatively simple
to understand, with 4 primitive types and two structures. The primitive types
are numbers, strings, Booleans96 (true or false) and the null value.

 The two JSON data structures are:

• JSON Objects - Collections of name and value pairs, enclosed in curly braces
and separated by commas (while the two elements of each pair are divided
by a colon); collections represent records or objects

• JSON Arrays - Lists of values within square brackets and separated by com-
mas; lists represent arrays or collections

Here are simple examples of the two notations, an object with two pairs (all
strings including pair names are indicated by double quotes) and a list of two
values, a number and a string:
{
 "Name":"Marco",
 "Value":100
}

[22,"foo"]

Of course, you can combine these constructs at will, so you can use objects and
arrays as values of a pair and as elements of an array:
{
 "Me": {
 "FirstName":"Marco",
 "LastName":"Cantù",
 "Wife": "Lella",
 "Kids": [{"Name":"Benedetta", "Age":10},
 {"Name":"Jacopo", "Age":6}
]
 }
}

JSON in Delphi 2010
While there have been a few JSON libraries for Delphi in the past, the first edi-
tion with native support is Delphi 2010. The native JSON support has been
made available through a series of classes defined in the DBXJSON unit, which
(despite the name) can be used even in applications that don’t relate to the
dbExpress framework.

96 As we'll see later, Delphi treats JSON Boolean values as two special values: true and false.

Marco Cantù, Delphi 2010 Handbook

Chapter 7: Database Access and DataSnap - 235

The DBXJSON unit defines classes that you can use to work with the various
JSON data types (individual values of different types, arrays, pairs, and
objects) all inheriting from TJSONValue:

• Primitive values include TJSONNull, TJSONFalse, TJSONTrue,
TJSONString and TJSONNumber.

• Data structures include TJSONObject (and the internal TJSONPair) and
TJSONArray.

Here is a simple code fragment, extracted from the JsonTests project, used to
demonstrate the output of the different primitive types. Notice that each tem-
porary object you create must be manually freed, hence the idea of adding the
LogAndFree private support method:
procedure TFormJson.LogAndFree (jValue: TJSONValue);
begin
 try
 Log (jValue.ClassName + ' > ' + jValue.ToString);
 finally
 jvalue.Free;
 end;
end;

procedure TFormJson.btnValuesClick(Sender: TObject);
begin
 LogAndFree (TJSONNumber.Create(22));
 LogAndFree (TJSONString.Create('sample text'));
 LogAndFree (TJSONTrue.Create);
 LogAndFree (TJSONFalse.Create);
 LogAndFree (TJSONNull.Create);
end;

This is the corresponding output:
TJSONNumber > 22
TJSONString > "sample text"
TJSONTrue > true
TJSONFalse > false
TJSONNull > null

It is equally simple to use the other classes of the DBXJSON unit for creating
arrays and objects. An array is a structure to which you can add any value
(including arrays and objects):
procedure TFormJson.btnSimpleArrayClick(Sender: TObject);
var
 jList: TJSONArray;
begin
 jList := TJSONArray.Create;
 jList.Add(22);
 jList.Add('foo');
 jList.Add(TJSonArray.Create (TJSONTrue.Create));

Marco Cantù, Delphi 2010 Handbook

236 - Chapter 7: Database Access and DataSnap

 (jList.Get (2) as TJSonArray).Add (100);
 Log (jList.ToString);
 jList.Free;
end;

The JSON output shows the two nested arrays as follows:
[22,"foo",[true,100]]

Note that the JSON containers (arrays and objects) own their internal ele-
ments, so that you can free the container to clean up the memory for the entire
group of JSON values.

When you have an object, the only element you can add to it is a pair, but the
value of the pair can be just any JSON value, including a nested object:
procedure TFormJson.btnSimpleObjectClick(Sender: TObject);
var
 jsonObj, subObject: TJSONObject;
begin
 jsonObj := TJSONObject.Create;
 jsonObj.AddPair(TJSONPair.Create ('Name', 'Marco'));
 jsonObj.AddPair(TJSONPair.Create ('Value',
 TJSONNumber.Create(100)));

 subObject := TJSONObject.Create(
 TJSONPair.Create ('Subvalue', 'one'));
 jsonObj.AddPair(TJSONPair.Create ('Object', subObject));

 Log (jsonObj.ToString);
 jsonObj.Free;
end;

The JSON representation of this object (with a little manual formatting to
improve readability) is the following:
{
 "Name":"Marco",
 "Value":100,
 "Object": {
 "Subvalue":"one"
 }
}

Parsing JSON
Creating JSON data structures using the DBXJSON classes and generating the
corresponding JSON representation is interesting, but it is even more interest-
ing to know you can do the reverse, that is parse a string with a JSON
representation to create the corresponding in memory objects.

Marco Cantù, Delphi 2010 Handbook

Chapter 7: Database Access and DataSnap - 237

Once you have a JSON string, you can pass it to the ParseJSONValue class
method of the TJSONObject, which returns a TJSONValue object97. In cases
where we know the evaluation returns a JSON object we have to cast it back to
the proper type. The ParseJSONValue class method doesn't accept a string as
parameter, but requires an array of bytes with an ASCII encoding. So we need
to take the string and encode it using the TEncoding class, that is by calling
TEncoding.ASCII.GetBytes.

Overall, the initial portion of the btnParseObjClick (still part of the main
form of the JsonTests example) is the following:
var
 strParam: string;
 jsonObj: TJSONObject;
begin
 strParam := '{"value":3}';
 jsonObj := TJSONObject.ParseJSONValue(
 TEncoding.ASCII.GetBytes(strParam), 0) as TJSONObject;

The remaining code outputs the entire object (getting back the original JSON
representation, if nothing went wrong), the last (and only) name/value pair and
frees the TJSONObject object (again, it is easy to cause memory leaks with this
type of code):
 Log (jsonObj.ToString);
 Log (jsonObj.Get (jsonObj.Size - 1).ToString);
 jsonObj.Free;

Streaming Objects to JSON
Now if it is this easy to create a TJSONObject and add data to it, it would be
very nice to create the JSON representation of any Delphi object. This is pos-
sible in Delphi 2010 thanks to the JSON marshaling and de-marshaling
support that is defined in the DBXJSONReflect unit.

This unit defines an open and extensible marshaling architecture, and provides
a specific implementation based on the internal TJSONConverter class. So, by
default, you create a JSON marshaller by passing the JSON converted to it:
jMarshal := TJSONMarshal.Create(TJSONConverter.Create);

97 If you find it confusing that you have to use a TJSONObject class method to parse any
JSON value and return a TJSONValue (which might be an object, an array, a primitive
value) you are not alone. It seems quite a random pick to me. I think I'd preferred a glob-
al function or a class method of the TJSONValue class.

Marco Cantù, Delphi 2010 Handbook

238 - Chapter 7: Database Access and DataSnap

The marshaling engine will own the converter and free it when it is done by
default. You can register more converters to support different formats, includ-
ing XML and others. The engine behind the marshaling support is the new
Extended RTTI, which I covered in detail in Chapter 3. RTTI is used for saving
an image of the objects (including all of the fields) and for re-creating a type
given its name. The overall implementation is relatively complex and I don't
really want to delve into the details, but only focus on a practical example.

Let's suppose we have a class like this one defined in the JsonMarshal project
(notice I'm using private data and no published properties and the class is not a
TPersistent class):
type
 TMyData = class
 private
 theName: String;
 theValue: Integer;
 public
 constructor Create (const aName: string);
 function ToString: string; override;
 property Value: Integer read theValue write theValue;
 end;

We can now write some code to create an object of this class, create the mar-
shaller, marshal it to a TJSONValue, and add the result to a Memo control:
 theData := TMyData.Create('john');
 theData.Value := 99;
 jMarshal := TJSONMarshal.Create(TJSONConverter.Create);
 jValue := jMarshal.Marshal(theData);
 Memo1.Lines.Text := jValue.ToString;

In the actual code this takes place within three nested try-finally blocks (omit-
ted here), each freeing the object created in the given step in reverse order:
 jValue.Free;
 jMarshal.Free;
 theData.Free;

At the end of the operation the Memo control will have the JSON representa-
tion of the object created by converting the original Delphi object into its
TJSONObject equivalent:
{
 "type":"JsonMarshal_MainForm.TMyData",
 "id":1,
 "fields": {
 "theName":"john",
 "theValue":99
 }
}

Marco Cantù, Delphi 2010 Handbook

Chapter 7: Database Access and DataSnap - 239

To check if the operation was performed successfully, other than looking at the
output you can check the HasWarnings function of the TJSONMarshal class,
with code like the following in which the jtfield local variable used by the
for-each loop is of type TTransientField:
if jMarshal.HasWarnings then
begin
 Memo1.Lines.Add(sLineBreak + 'TJSONMarshal warnings: ');
 for jtfield in jMarshal.Warnings do
 Memo1.Lines.Add (jtfield.FieldName + ': ' + jtfield.TypeName);

This JSON representation can now be read into a TJSONValue and this can be
re-converted into the original Delphi object, by creating an object of the quali-
fied type indicated at the very beginning. The code is more or less the reverse of
what we have just seen:
 jValue := TJSONObject.ParseJSONValue(
 TEncoding.ASCII.GetBytes (Memo1.Lines.Text), 0);
 jUnmarshal := TJSONUnMarshal.Create;
 anObject := jUnmarshal.Unmarshal(jValue);

We can now use this object like a native Delphi object:
 ShowMessage ('Class: ' + anObject.ClassName +
 sLineBreak + anObject.ToString);

The output of this operation is visible in the next page. Notice that I edited the
text of the memo to recreate an object with slightly different data. At the end,
remember to free all temporary objects (possibly in finally blocks):

Marco Cantù, Delphi 2010 Handbook

240 - Chapter 7: Database Access and DataSnap

 anObject.Free;
 jUnmarshal.Free;
 jValue.Free;

Using JSON Converters and Reverters
The JSON marshaling support works great for basic types, but when data struc-
tures become complex, you might want to customize the actual information
that is saved. This is possible thanks to the ability of installing custom convert-
ers and reverters which you can register for given classes and fields. The
converters and reverters are implemented using anonymous methods98.

Suppose, as an example taken from the same JsonMarshal demo, that you have
a class like the following:
type
 TDataWithList = class
 private
 theName: String;
 theList: TStringList;
 public
 constructor Create (const aName: string); overload;
 constructor Create; overload;
 function ToString: string; override;
 destructor Destroy; override;
 end;

The constructors and destructors create and free the internal string list object.
Notice that we need a parameter-less constructor as this is the one that will be
invoked when the object is created through RTTI support. The constructor with
the parameter, instead, initializes the string list with random numeric values.

Now if we write code similar to the previous portion of the example to create a
JSON representation of the class, we'll get something like:
{
 "type":"JsonMarshal_MainForm.TDataWithList",
 "id":1,
 "fields": {
 "theName":"john",
 "theList": {
 "type":"Classes.TStringList",
 "id":2,
 "fields": {
 "FCount":10,
 "FCapacity":12,

98 For detail on anonymous methods see my “Delphi 2009 Handbook”.

Marco Cantù, Delphi 2010 Handbook

Chapter 7: Database Access and DataSnap - 241

 "FSorted":false,
 "FDuplicates":"dupIgnore",
 "FCaseSensitive":false,
 "FOwnsObject":false,
 "FDelimiter":"",
 "FLineBreak":"",
 "FQuoteChar":"",
 "FNameValueSeparator":"",
 "FStrictDelimiter":false,
 "FUpdateCount":0
 }
 }
 }
}

Sorry for the long listing, not terribly interesting, but I wanted to underline that
there are all sorts of various private fields in the TStringList object, includ-
ing many internal ones that make little sense (like the Capacity), but there is a
significant omission: the elements of the string list are missing!

Not only will recreating this object cause an exception... but you'll even be
unable to get back the actual data. The solution, as anticipated, is to customize
the JSON output by defining a custom converter. You can convert a data struc-
ture to any TJSONValue or map it to one that the marshaling layer can manage.

In this case I've decided to convert the TStringList object into an array of
strings, which is how a TListOfStrings is defined. This is the complete code
for the marshaling operation:
procedure TFormJson.btnMarshalConverterClick(Sender: TObject);
var
 theData: TDataWithList;
 jMarshal: TJSONMarshal;
 jValue: TJSONValue;
begin
 theData := TDataWithList.Create('john');
 try
 jMarshal := TJSONMarshal.Create(TJSONConverter.Create);
 try
 jMarshal.RegisterConverter(TDataWithList, 'theList',
 function (Data: TObject; Field: string): TListOfStrings
 var
 I: Integer;
 sList: TStringList;
 begin
 sList := TDataWithList(Data).theList;
 SetLength (Result, sList.Count);
 for I := 0 to sList.Count - 1 do
 Result[I] := sList[I];
 end);

 jValue := jMarshal.Marshal(theData);

Marco Cantù, Delphi 2010 Handbook

242 - Chapter 7: Database Access and DataSnap

 try
 Memo1.Lines.Text := jValue.ToString;
 finally
 jValue.Free;
 end;
 finally
 jMarshal.Free;
 end;
 finally
 theData.Free;
 end;
end;

Now the JSON representation for our object becomes:
{
 "type":"JsonMarshal_MainForm.TDataWithList",
 "id":1,
 "fields": {
 "theName":"john",
 "theList":["588","31","656","489","693",
 "631","742","816","166","977"]
 }
}

The opposite operation is performed by registering a reverter, another anonym-
ous method, which will receive the array of strings and populate the
TStringList object. Again, this is the complete de-marshaling code
procedure TFormJson.btnUnmarshalReverterClick(Sender: TObject);
var
 jUnmarshal: TJSONUnMarshal;
 jValue: TJSONValue;
 anObject: TObject;
begin
 jValue := TJSONObject.ParseJSONValue(
 TEncoding.ASCII.GetBytes (Memo1.Lines.Text), 0);
 try
 jUnmarshal := TJSONUnMarshal.Create;
 try
 jUnmarshal.RegisterReverter(TDataWithList, 'theList',
 procedure (Data: TObject; Field: string;
 Args: TListOfStrings)
 var
 I: Integer;
 sList: TStringList;
 begin
 sList := TDataWithList(Data).theList;
 for I := 0 to Length(Args) - 1 do
 sList.Add (Args[I]);
 end);
 anObject := jUnmarshal.Unmarshal(jValue);
 try
 ShowMessage ('Class: ' + anObject.ClassName +
 sLineBreak + anObject.ToString);

Marco Cantù, Delphi 2010 Handbook

Chapter 7: Database Access and DataSnap - 243

 finally
 anObject.Free;
 end;
 finally
 jUnmarshal.Free;
 end;
 finally
 jValue.Free;
 end;
end;

JSON Values and Marshaling in DataSnap
Server Methods

Now that we know how to create a JSON value for different types and convert
this representation to and from Delphi objects, we can apply it to a DataSnap
server, defining methods that receive or return JSON-based parameters and
Delphi objects (using marshaling).

The Server and the Client Applications

The server class used by this example (a TCP/IP based DataSnap server target-
ing a TPersistent class and called DSnapJson) is the following:
type
{$METHODINFO ON}
 TDSnapJsonMethods = class(TPersistent)
 public
 function SimpleValue: TJSONValue;
 function GetList (nElem: Integer): TJSONArray;
 function GetData (const strName: string): TJSONValue;
 end;
{$METHODINFO OFF}

The TJSONValue returned by the SimpleValue method is a plain value, while
the TJSONValue returned by the GetData method is a marshaled instance of
the TMyData class. This is the class I used in the earlier section “Streaming
Objects to JSON” and it is defined in a separate unit, as I'll also need to compile
the class in the client application, to be able to de-marshal the JSON data and
rebuild the object. The third method returns a specific JSON data structure, an
array or TJSONArray.

The client side application is a plain VCL program, which has an SQLConnec-
tion component hooked to the server. In this client project, I've created the
client proxy for the server methods, which looks like the following:

Marco Cantù, Delphi 2010 Handbook

244 - Chapter 7: Database Access and DataSnap

type
 TDSnapJsonMethodsClient = class
 private
 FDBXConnection: TDBXConnection;
 FInstanceOwner: Boolean;
 FSimpleValueCommand: TDBXCommand;
 FGetListCommand: TDBXCommand;
 FGetDataCommand: TDBXCommand;
 public
 constructor Create(ADBXConnection: TDBXConnection); overload;
 constructor Create(ADBXConnection: TDBXConnection;
 AInstanceOwner: Boolean); overload;
 destructor Destroy; override;
 function SimpleValue: TJSONValue;
 function GetList(nElem: Integer): TJSONArray;
 function GetData(strName: string): TJSONValue;
 end;

Memory Management for JSON Values

In the proxy class there is an option to control the ownership of the JSON
object instances (FInstanceOwner) being received from function calls, so that
when you call a method and receive a TJSONValue result you don't have to
remember to manually free it.

Likewise, when the server returns a JSON object it is DataSnap's responsibility
to free the objects it has returned. That means that we don't have to worry
about freeing TJSONValue or derived objects on the server as well.

What if you need to use these objects outside of the method that returned or
received it? You can use the Clone method of TJSONValue, to create a new
instance with the same value. For example on the server, if you need to return
an object you still need to keep around, you can create and return a clone to
that object, and the DataSnap infrastructure will take care of freeing the clone
whilst you are responsible for the original object.

Passing JSON Values Manually

Now that I have covered the server side and client side infrastructure, let me
focus on the method calls one by one. The first server method, SimpleValue,
returns a fixed and hand-crafted data structure, of type TJSONValue:
function TDSnapJsonMethods.SimpleValue: TJSONValue;
begin
 Result := TJSONObject.Create (
 TJSONPair.Create ('name', 'Marco'));
 (Result as TJSONObject).AddPair(
 TJSONPair.Create ('email', 'marco@marcocantu.com'));

Marco Cantù, Delphi 2010 Handbook

Chapter 7: Database Access and DataSnap - 245

The corresponding client calls (based on the proxy object) use the JSON Value
directly (remember, no need to destroy it):
procedure TFormJsonClient.btnValueClick(Sender: TObject);
var
 jValue: TJSONValue;
begin
 jValue := MethodsProxi.SimpleValue;
 Log (jValue.ToString);
end;

The result of this call is the JSON representation of the JSON data structure
created on the server:
{"name":"Marco","email":"marco@marcocantu.com"}

Returning an Array of Elements

The second method returns a list of elements (in this case a list of strings) in a
TJSONArray, that is created dynamically and returned:
function TDSnapJsonMethods.GetList(nElem: Integer): TJSONArray;
var
 I: Integer;
begin
 Result := TJSONArray.Create;
 for I := 1 to nElem do
 Result.Add('Item ' + IntTOStr (I));
end;

The client passes the number of elements of the list, using a plain data struc-
ture (I could have used a TJSONNumber to pass the value, but better use the
Integer type). This is a sample call, asking for an array with five elements:
procedure TFormJsonClient.btnArrayClick(Sender: TObject);
var
 jArray: TJSONArray;
begin
 jArray := MethodsProxi.GetList(5);
 Log (jArray.ToString);
end;

The output of this call is an array in its JSON representation:
["Item 1","Item 2","Item 3","Item 4","Item 5"]

Passing a Marshaled Delphi Object

The last method is the most interesting one, as it lets you move a Delphi object
from the server to the client. What we are moving, in fact, is the data of the
object, not the code of its methods. These objects, in fact, must be compiled

Marco Cantù, Delphi 2010 Handbook

246 - Chapter 7: Database Access and DataSnap

(with the same structure) both in the client and the server, and the new Exten-
ded RTTI must see same the class layout when it maps the object data to JSON
and the JSON to the object data.

Of course, this cannot be done directly, but requires the marshaling support
I've already covered in the previous section. In the server side code of the
GetData method notice that while the memory for the returned JSON value is
managed, you have to remember to free any temporary object and the marshal-
ing object:
function TDSnapJsonMethods.GetData(
 const strName: string): TJSONValue;
var
 myData: TMyData;
 jMarshal: TJSONMarshal;
begin
 myData := TMyData.Create(strName);
 try
 jMarshal := TJSONMarshal.Create(TJSONConverter.Create);
 try
 Result := jMarshal.Marshal(myData);
 finally
 jMarshal.Free;
 end;
 finally
 myData.Free;
 end;
end;

In case you want to pass complex data structures you'll have to register the
proper converters, as covered in the previous section about JSON. In the cor-
responding client call we have to de-marshal the JSON representation to obtain
the original Delphi object (provided the class is indeed compiled into the client
program):
procedure TFormJsonClient.btnMarshalClick(Sender: TObject);
var
 jValue: TJSONValue;
 jUnmarshal: TJSONUnMarshal;
 myData: TMyData;
begin
 jValue := MethodsProxi.GetData('joe');
 jUnmarshal := TJSONUnMarshal.Create;
 try
 myData := jUnmarshal.Unmarshal(jValue) as TMyData;
 try
 Log (myData.ToString);
 finally
 myData.Free;
 end;
 finally

Marco Cantù, Delphi 2010 Handbook

Chapter 7: Database Access and DataSnap - 247

 jUnmarshal.Free;
 end;
end;

Again, the marshaling support objects and the actual Delphi object you re-cre-
ate must be manually freed once you don't need them any more. The output
shouldn't be surprising (beside the fact you'll get a different value for each
object created on the server):
joe:444

Server Methods Callbacks
One of the problems with server methods is that they might take some time to
complete, thus blocking the client application which has no way to figure out if
there is any work in progress or the server is just stuck.

While covering DataSnap in my Delphi 2009 Handbook, I wrote an example
showing the advantage of encapsulating the client call in a thread, so that even
if the server takes time to respond and we don't know what is going on, at least
the user interface of the client application remains responsive. In the opposite
case, not using threads, the user interface freezes until we get a response (or a
time-out error). You'll find the source code of this threaded example in the
DsnapMethodsCallback example99, which extends the program written for
Delphi 2009.

What is new in DataSnap in Delphi 2010 is the ability to send information from
the server back to the client while it is waiting for a response. A callback in
DataSnap is not a mechanism to let the server call the client at will (also
because this would make very little sense in case of a stateless HTTP commu-
nication layer), but it is limited only to the execution of the server method100.

99 The example is somewhat complex, and has a client capable of starting a local instance of
the server with different session lifetime configurations. Here I won't describe all of the
features of the program in details but focus only on the specific issue, calling a slow serv-
er method.

100 In theory, one could write a very long or even infinite server method, which will let the
server keep calling the client indefinitely. I'm not convinced this is a great idea in gener-
al, compared to letting the client poll the server at regular intervals, but there might be
specific situations in which infinite server methods with a callback come in handy.

Marco Cantù, Delphi 2010 Handbook

248 - Chapter 7: Database Access and DataSnap

The Server Side Implementation of a Callback
Having clarified the scope, let us look at the actual implementation. On the
server, the server class is declared as:
type
{$MethodInfo ON}
 TSimpleServerClass = class(TPersistent)
 public
 function Echo (const Text: string): string;
 function SlowPrime (MaxValue: Integer): Integer;
 function SlowPrimeCallBack (MaxValue: Integer;
 aCallBack: TDBXCallback): Integer;
 end;
{$MethodInfo OFF}

As you can see there is the original SlowPrime function, which takes several
seconds to execute, and the SlowPrimeCallBack version with the callback
parameter. It is this new one I am focusing on here.

The server method receives as extra parameter, an object implementing the
TDBXCallback class and can use its Execute method to send information back
to the client while the original function call is still taking place. This is the
declaration of the virtual abstract method of the TDBXCallback class:
type
 TDBXCallback = class abstract
 public
 function Execute(const Arg: TJSONValue):
 TJSONValue; virtual; abstract;

As the server passes some data back to the client, it receives a return value. You
can use it as you like, but the general idea is to use the return value of the
Execute method of the callback to let the client application ask the server to
“stop the execution”. That is, while the server is processing, it can tell the client
it is progressing along and ask whether to continue or not.

This approach provides a nice way to let the user of the client application press
a Cancel button in case the operation is too slow, notify the server and ask the
server to stop the long operation. The standard implementation is to use the
TJSONFalse value to ask the server to stop.

This is also the approach used by the SlowPrimeCallBack function, which
checks for a TJSONFalse return value:
function TSimpleServerClass.SlowPrimeCallBack(
 MaxValue: Integer; aCallBack: TDBXCallback): Integer;
var
 I: Integer;

Marco Cantù, Delphi 2010 Handbook

Chapter 7: Database Access and DataSnap - 249

 jsonResult: TJSONValue;
 isFalse: Boolean;
begin
 // counts the prime numbers below the given value
 Result := 0;
 for I := 1 to MaxValue do
 begin
 if IsPrime (I) then
 Inc (Result);
 if (I mod 100) = 0 then
 begin
 jsonResult := aCallBack.Execute(TJSONNumber.Create(I));
 isFalse := jsonResult is TJSONFalse;
 jsonResult.Free;
 if isFalse then
 Break;
 end;
 end;
 aCallBack.Free;
end;

Every 100 cycles in the loop (calling back the client for every single cycle would
be overkill) the program calls the Execute method. Notice that both the call-
back object and the parameter returned by executing the callback must be freed
manually, or you'll experience a memory leak.

The code has an extra intermediate variable, isFalse, as I cannot break out of
the loop before freeing the TJSONValue object and I cannot check its value
after it has been destroyed.

The Client Side Implementation of a Callback
This is all you have to do on the server. On the client side, on the other hand,
you have to provide an actual implementation of the Execute method, provid-
ing an actual implementation for the virtual abstract class:
type
 TMyCallBack = class(TDBXCallback)
 private
 fLabel: TLabel;
 public
 constructor Create (aLabel: TLabel);
 function Execute(const Arg: TJSONValue):
 TJSONValue; override;
 end;

The actual code is in the Execute method, which updates a label displaying the
current status, lets the client application process Windows messages (thus
avoiding freezing the user interface even without using a thread), and returning

Marco Cantù, Delphi 2010 Handbook

250 - Chapter 7: Database Access and DataSnap

the indication whether the server can keep going (TJSONTrue) or should stop
(TJSONFalse):
function TmyCallBack.Execute(
 const Arg: TJSONValue): TJSONValue;
begin
 fLabel.Caption := Arg.ToString;
 Application.ProcessMessages;

 if fLabel.Tag = 0 then
 Result := TJSONTrue.Create
 else
 Result := TJSONFalse.Create;
end;

The main form use the label's Tag to communicate with the object implement-
ing the callback. This is set to zero before starting the call (see the coming
listing of the btnPrimesCallClick method) and set to one as the user clicks
on the label itself.

With this class available, all you have to do on the client side, when you call the
server method101, is to pass an instance of the callback implementation:
procedure TFormDsmcClient.btnPrimesCallClick(Sender: TObject);
begin
 if not Assigned (SimpleServer) then
 SimpleServer := TSimpleServerClassClient.Create (
 SQLConnection1.DBXConnection);
 lblPrimesCall.Tag := 0; // reset
 lblPrimesCall.Caption := IntToStr (
 SimpleServer.SlowPrimeCallback (SpinEdit3.Value,
 TMyCallBack.Create (lblPrimesCall)));
end;

Now we can run the program and test if it works. You can simply start the
server, start the client, and press the btnNewForm button to open an actual cli-
ent form with a connection.

From the client form you can call the slow server side method in a standard
blocking way (the btnPrimes button), use the callback (the btnPrimesCall
button), or within a thread (the btnPrimesTh button). In case of the call back,
you can click on the label next to the button to stop server side processing. The
server logs the request, so you can better understand what is going on.

101 In this application I'm using the DataSnap client proxy to call the server methods, as is
much better than relying on data set parameters for complex calls.

Marco Cantù, Delphi 2010 Handbook

Chapter 7: Database Access and DataSnap - 251

The server form is visible here on the right, while on the left there is the Main
client form along with the actual Client form of the client with the connection
and the button to call server methods.

What's Next
Now that we have explored DataSnap in some detail, there is one area of this
architecture that I mentioned and didn't delve into. This is the REST support
offered by DataSnap and tied to its JSON support.

If REST architectures are generally quite simple to understand, using REST in
Delphi opens up communication with many online services and the ability to
provide the back-end to JavaScript browser-based applications. Rather than
focusing exclusively on new features of Delphi 2010, in the last chapter of the
book I'll open up the coverage to one of the fastest growing areas of today's
technology, namely cloud and service-based architectures.

Marco Cantù, Delphi 2010 Handbook

252 - Chapter 7: Database Access and DataSnap

Marco Cantù, Delphi 2010 Handbook

Chapter 8: REST Web Services - 253

Chapter 8: REST
Web Services

Over the last few years, there has been a large expansion of and a significant
shift around web services. Promised as a new way for applications to interact
and exchange data, web services have long been synonymous with the SOAP
technology behind them, but have been quite slow to catch up with their prom-
ises. The recent expansion in web services, both as a way to interact with major
web sites and with remote applications, is mostly due to a competing techno-
logy called Representational State Transfer, generally referred to as REST.

In this chapter I'll introduce REST to you, focusing on how it is supported in
Delphi 2010 and opening up the coverage to the development of client REST
applications and to building REST servers in Delphi with a direct, manual
approach not based on DataSnap.

I'll also cover a few Delphi 2010 related topics, like the support for version 1.2
of the SOAP standard and improvements in the native XML processing sup-
port, and other topics tied to REST but not specifically to Delphi 2010, like
XML processing techniques and JavaScript development. I won't delve into the
JavaScript language by itself, but focus on the use of the jQuery library.

Marco Cantù, Delphi 2010 Handbook

254 - Chapter 8: REST Web Services

Why Web Services?
The rapidly emerging web services technology has the potential to change the
way the Internet works for businesses. Browsing web pages to enter orders is
fine for individuals (business-to-consumer applications) but not for companies
(business-to-business applications). If you want to buy a few books, going to a
book vendor's website and punching in your requests is probably fine. But if
you run a bookstore and want to place hundreds of orders a day, this is a far
from efficient approach, particularly if you have a program that helps you track
your sales and determine reorders. Grabbing the output of this program and re-
entering it into another application is ridiculous.

Web services are meant (or to be more precise were originally meant) to solve
this issue: The program used to track sales can automatically create a request
and send it to a web service, which can immediately return information about
the order. The next step might be to ask for a tracking number for the ship-
ment. At this point, your program can use another web service to track the
shipment until it is at its destination, so you can tell your customers how long
they have to wait. As the shipment arrives, your program can send a reminder
via SMS or pager or Twitter to the people with pending orders, issue a payment
with a bank web service, and… I could continue but I think I've given you the
idea. Web services are meant for computer interoperability, much as the Web
and e-mail let people interact.

The topic of web services is broad and involves many technologies and busi-
ness-related standards. As usual, I'll focus on the underlying Delphi
implementation and the technical side of web services, rather than discuss the
larger picture and business implications. Delphi for Win32 offers some rather
sophisticated support for web services, which originally came in the form of
SOAP, and can now easily be extended by means of HTTP components and
REST.

Web Service Technologies: SOAP vs. REST
The idea of a web service is rather abstract. When it comes to technologies,
there are currently two main solutions that are attracting developers. One is the
use of the SOAP standard (Simple Object Access Protocol, see the reference site

Marco Cantù, Delphi 2010 Handbook

Chapter 8: REST Web Services - 255

at http://www.w3.org/TR/soap/), another is the use of a REST (Represent-
ational State Transfer) approach, along with its variation XML-RPC (XML-
Remote Procedure Call).

What is relevant to notice is that both solutions generally use HTTP as the
transmission protocol (although they do provide alternatives) and use XML (or
JSON) for moving the data back and forth. By using standard HTTP, a web
server can handle the requests, and the related data packets can pass though
firewalls.

In this chapter I won't provide many details on SOAP (with the exclusion of
mentioning new features added to Delphi 2010), but focus extensively on
REST. I'll start by providing some theoretical foundations, show a simple
"hand-made" example of a server and a client, delve into the development of
REST clients for popular REST web services and focus on the REST server side
support available in Delphi 2010 as an extension of the DataSnap architecture.

XML and SOAP Updates
Before I start focusing on REST and companion technologies, let me cover a
couple of relevant Delphi 2010 updates that relate to Web Services in general.
The first is the improved support for XML processing, with updates in MS XML
DOM mapping and in the version of the native OpenXML library that ships
with the product. The second is the extension in SOAP support, specifically
compatibility with version 1.2.

XML Processing in Delphi 2010
Delphi's overall support for XML processing has not changed in any radical
way, with support for DOM102 manipulation taking place through the XMLDoc-
ument component. This component offers the standard DOM interface, a

102 DOM stands for Document Object Model and is a standard for navigating a document
represented as a tree of nodes. The DOM interface is a standard, even if very low-level
way, to access documents such as an XML document or the HTML data of a page inside a
browser.

Marco Cantù, Delphi 2010 Handbook

256 - Chapter 8: REST Web Services

higher level XML DOM, and interface binding through the XML Mapper tool.
This component can interface with multiple XML DOM engines, some of which
have seen significant improvements, as covered below.

Beside these important changes in the XML DOM libraries that are most used
in Delphi applications, there are also improvements in the XML Data Binding
wizard, which now handles the include element of schema files.

Microsoft XML DOM Version 6

The msxml unit interfacing Microsoft XML DOM (and available in the
source\Win32\rtl\win folder) now refers to version 6 of the XML engine
(msxml6.dll). Differently from the past103, the unit now includes almost all
interfaces, including the VB version of the SAX interface.

The unit with all interfaces is called msxml and its source code can be found
under the source\Win32\rtl\win folder and not the source\Win32\xml
folder, which hosts the DOM mappers, including the msxmldom unit for MS
XML DOM mapping from the XMLDocument component.

As this is the library used by the Delphi IDE, its improvements also relate to the
XML-related tool set of Delphi.

The Alternative Document Object Model

The Pascal native XML engine, written and maintained by Dieter Kohler, has
been upgraded to the much newer version 4.3 (it had remain at version 2.3.14
for many years). The new library has also a different name: from “Open XML”
it is now “Alternative Document Object Model”. Along side this change, the
vendor name in the XMLDocument component was updated to “ADOM XML
v4”, so you'll have to update any application using it.

This also implies a change in the unit structure, potentially causing incompat-
ibilities. In the past there was only one unit (xdom), now there is a dozen of
them (the main one being AdomCore_4_3). If you have delved into this library,
of course, you'll see some quite radical changes.

103 In the past you had to generate these interfaces by importing the type library, as I did
many times in the past for working with the SAX interface (covered by an example in
Mastering Delphi 2005). Note, by the way, that you have to use the VB version of the
SAX interface, because the C++ version is broken at the type library level.

Marco Cantù, Delphi 2010 Handbook

Chapter 8: REST Web Services - 257

Updating My LargeXml Application

To better figure out the effect of the XML-related changes, I've decided to
upgrade an XML-processing application I wrote for the Mastering Delphi book
series, called LargeXml, to Delphi 2010. This program uses both MSXML and
ADOM, and their SAX interfaces quite extensively.

In short, the application connects to a database, generates ClientDataSets with
a lot of data, and saves them to XML files with different techniques (direct
XmlData content of the component, XML mapper, manual creation of the XML
format). The second feature of the demo, which is the one I'll focus on here, is
to ability reopen these XML documents either in a DOM or by parsing them
and filling a second ClientDataSet. The original parsing style was SAX104.

The first think I had to do was to change the reference to OpenXML to ADOM
XML in one of the XmlDocument components:
object XMLDocument2: TXMLDocument
 DOMVendorDesc = 'ADOM XML v4'
end

Next I had to make quite a few changes in the uses statements, replacing:

• the xdom unit with the AdomCore_4_3 unit
• the oxmldom unit (for using the Open XML DOM with the XMLDocument

component) with the new adomxmldom interfacing ADOM
• the MSXML2_TLB interface unit with the ready to use msxml unit.

The other problem was that (at least in my installation) most of the units
related to XML support are not available in dcu format in the lib folder, so I
had to include their source code folder into the project Search path.

Next I had to fix the streaming code to support Unicode, for example changing
the TFileStream based code to use the TStreamWriter class introduced in
Delphi 2009. This is an example of the new coding style:
procedure TForm1.btnSaveXmlPacketClick(Sender: TObject);
var
 sWriter: TStreamWriter;
begin
 sWriter := TStreamWriter.Create ('data.xml', False {replace});
 try
 sWriter.Write (ClientDataSet1.XMLData);

104 SAX, or Simple API for XML, is an event driven parsing technology. For each element of
the XML file being parsed, the SAX engine will trigger an event (technically call a virtual
method) which is up to to program to process or discard.

Marco Cantù, Delphi 2010 Handbook

258 - Chapter 8: REST Web Services

 finally
 sWriter.free;
 end;
end;

The code for MS SAX support worked with basically no changes, as my original
code used the VBSAX interfaces obtained by importing the type library (prob-
ably of MS XML version 4 at the time). All I had to do was change the name of
the Set_documentLocator method to _Set_documentLocator, adding the
initial underscore.

For the code in the ADOM XML I didn't find any equivalent to the original
SAX-like support, so I basically had to rewrite that using the new signals-based
coding style. The core of the parsing code is the in ProcessSignal method of
the TXmlStandardHandler derived class, which provides the custom imple-
mentation for the parsing code.

In this code the program handles three events (or signals). As it hits the start of
an XML node (TXmlStartElementSignal), the program adds the node to a
local stack (a string list) and when this is a new employee record it calls the
Insert method of the target ClientDataSet component. The program keeps
adding any textual elements (TXmlPCDATASignal) to the current text, which
might be divided among multiple nodes. When it hits the end of an XML node
(TXmlEndElementSignal), if it was reading an XML node at level 3 of nesting
the program adds the text that was read to the corresponding field of the Cli-
entDataSet, while if this is at the end of the record, it posts the data:
procedure TDataSaxHandler.ProcessSignal(const Signal: TXmlSignal);
var
 tagname: string;
begin
 if Signal is TXmlStartElementSignal then
 begin
 stack.Add (TXmlStartElementSignal(Signal).TagName);
 if TXmlStartElementSignal(Signal).TagName = 'employeeData' then
 Form1.clientdataset2.Insert;
 strCurrent := '';
 end
 else if Signal is TXmlEndElementSignal then
 begin
 if TXmlEndElementSignal(Signal).TagName = 'employeeData' then
 Form1.clientdataset2.Post;
 if stack.Count > 2 then
 begin
 Form1.ClientDataSet2.Edit;
 Form1.ClientDataSet2.FieldByName (
 TXmlEndElementSignal(Signal).TagName).
 AsString := strCurrent;

Marco Cantù, Delphi 2010 Handbook

Chapter 8: REST Web Services - 259

 end;
 stack.Delete (stack.Count - 1);
 end

 else if Signal is TXmlPCDATASignal then
 begin
 strCurrent := strCurrent + RemoveWhites(
 TXmlPCDATASignal(Signal).Data);
 end;
end;

Also the code to invoke this signal-based processing is slightly different from
the original code used to invoke the SAX engine. Its essence is:
reader:= TXmlStandardDocReader.Create (nil);
reader.NextHandler := TDataSaxHandler.Create (nil);

SourceStream := TFileStream.Create(Filename, fmOpenRead);
SysId := FilenameToUriWideStr(Filename, []);
inputSource := TXmlInputSource.Create(SourceStream,
 '', SysId, 4096, '', False, 0, 0, 0, 0, 1);
reader.Parse (inputSource);

Now if you've never used a SAX engine this code and description might seem a
little awkward, but I felt it relevant to mention the change and show some
demo code to everyone who used this XML library (maybe following my very
own advice!).

SOAP 1.2 Support
Even if I think REST interfaces are on the rise and SOAP its in decline, there
are significant environments (from governmental bodies to large companies)
who mandate the use of SOAP as a way to communicate with them. That's why
good quality SOAP support remains an important Delphi feature.

In the new version, Delphi adds support for the development of SOAP version
1.2 clients, which conform to the standard. You can now import newer WSDL
files and generate the Object Pascal interfaces for newer services. I have done
very limited testing of this aspect.

Note that SOAP support is now formally limited to the development of clients:
building SOAP servers in Delphi is still possible but the technology has been
deprecated. Finally, there is another minor but potentially interesting option,
which is support for HTTPS requests authenticated using an X509 certificate.
This is available using a new InvokeOption of the HTTPRIO component,
soPickFirstClientCertificate.

Marco Cantù, Delphi 2010 Handbook

260 - Chapter 8: REST Web Services

What is REST?
Even if the general idea of REST has been around for some time, the introduc-
tion of this formal name and the theory behind it are fairly recent. What is
relevant to mention up front is that there isn't a formal REST standard.

The term REST, an acronym for Representational State Transfer, was originally
coined by Roy Fielding in his Ph.D. dissertation in year 2000, and spread very
rapidly as a synonym for accessing data over the web using HTTP and URLs,
rather than relying on the SOAP standard.

The term REST was originally used to describe an architectural style which
described the relationship of a web browser with a server. The idea is that when
you access a web resource (either using a browser or a specific client applica-
tion) the server will send you a representation of the resource (an HTML page,
an image, some raw data…). The client receiving the representation is set in a
given state. As the client accesses further information or pages (maybe using a
link) its state will change, transferring from the previous one. In Roy Fielding's
words:

"Representational State Transfer is intended to evoke an image of how
a well-designed Web application behaves: a network of web pages (a
virtual state-machine), where the user progresses through an applica-
tion by selecting links (state transitions), resulting in the next page
(representing the next state of the application) being transferred to
the user and rendered for their use."

REST Architecture's Key Points
So, if REST is an architecture (or even better, an architectural style) it is clearly
not a standard, although it uses several existing standards like HTTP, URL,
plus many format types for the actual data.

While SOAP replies on HTTP and XML but builds on those, REST architectures
use HTTP and XML (or other formats) exactly as they are:

• REST uses URLs to identify a resource on a server (while SOAP uses a single
URL for many requests, detailed in the SOAP envelope). Notice the idea is to
use the URL to identify a resource not an operation on the resource.

Marco Cantù, Delphi 2010 Handbook

Chapter 8: REST Web Services - 261

• REST uses HTTP methods to indicate which operation to perform (retrieve
or HTTP GET, create or HTTP PUT, update or HTTP POST, and delete or
HTTP DELETE).

• REST uses HTTP parameters (both as query parameters and POST paramet-
ers) to provide further information to the server.

• REST relies on HTTP for authentication, encryption, security (with HTTPS).
• REST returns data as plain documents, using multiple mime formats (XML,

JSON, images, and many others).

There are quite a few architectural elements that are worth considering in this
kind of scenario. REST demands for systems to be:

• Client/server in nature (nothing directly to do with database RDBMS here).
• Inherently stateless.
• Cache-friendly (the same URL should return the same data if called twice in

sequence, unless the server side data changed), permitting proxy and cache
servers to be inserted between the client and the server. A corollary is that
all GET operations should have no side effect.

There is certainly much more to the theory of REST than this short section
covered, but I hope this got you started with the theory. The practical examples
coming next along with Delphi code should clarify the main concepts.

The REST Architecture and Delphi
Having said that there is no REST standard and that you need specific tools for
REST development, there are existing standards that REST relies upon and
that are worth introducing (an in-depth description of each could take an entire
book). The specific focus here is Delphi support for these technologies.

HTTP, Client and Server

The HyperText Transfer Protocol is the standard at the heart of the World Wide
Web, and needs no introduction. Granted, HTTP can be used by Web Browsers,
but also by any other application.

In Delphi applications the simplest way to write a client application that uses
HTTP is to rely on the Indy HTTP client component, or IdHttp. If you call the
Get method of this component, providing a URL as parameter, you can retrieve

Marco Cantù, Delphi 2010 Handbook

262 - Chapter 8: REST Web Services

the content of any Web page and many REST servers105. At times, you might
need to set other properties, providing authentication information or attach a
second component for SSL support (as we’ll see in some examples). The com-
ponent supports all HTTP methods, in addition to Get.

On the server side you can use multiple architectures for creating a web server
or web server extension in Delphi. For a stand-alone web server you can use the
IdHttpServer component, while for creating web server extensions (CGI applic-
ations, ISAPI, or Apache modules) you can use the WebBroker framework.
Another new option is given by the HTTP support within DataSnap in Delphi
2010. I partially covered that in the last chapter and will focus on it in this one.

XML

Extensible Markup Language is a commonly used format for data, although
many REST servers use alternative data structures like JSON (JavaScript
Object Notation) and at times even plain comma-delimited text files. Again,
XML is widely used and I don’t want to cover it in detail here.

In Delphi, you can process XML documents using the XMLDocument compon-
ent, as covered in the earlier section on Delphi XML updates. The
XMLDocument component is a wrapper around one of the available XML
DOM engines (the default one being Microsoft XML DOM). Once a document
is loaded you can navigate its node structure or query the document using
XPath (which is often the style I prefer).

XPath

XPath is a query language that lets you identify and process the nodes of an
XML document. The notation used by XPath resembles file system paths
(/root/node1/node2) with square brackets added to express conditions on
node attributes or subnodes (root/node1[@val=5]) or even complex expres-
sions. The result of an XPath statement can itself be an expression, like the
number of nodes matching a rule or the total value of a set of nodes.

105 Notice that to be on the safe side you should generally make IdHttp requests inside a
thread, as Indy uses blocking threads: the user interface of your program will be stuck
until the requests are returned (which take a long time in case of a slow web server or a
large data transfer). I won’t generally use threads in the demos in this chapter, that is
only for the sake of simplicity. I strongly recommend the use of threads in live applica-
tions.

Marco Cantù, Delphi 2010 Handbook

Chapter 8: REST Web Services - 263

In Delphi you can execute an XPath request by applying it to the DOM hosting
the document, if the specific DOM supports it. We’ll see an example of XPath in
the first REST client demo.

REST Clients Written in Delphi
There are countless examples of REST servers that you can find on the Web.
Even if the number of web services that uses REST on the Internet is high, most
actual web services require some developer token (as covered in some of the
coming demos), while only a handful offer totally free and open access. For a
much longer list of Delphi REST clients that I have written, you can refer to the
specific section of one of my web sites:
http://ajax.marcocantu.com/delphirest

You can also find more coverage of REST clients written in Delphi in the paper
on REST that I wrote for Embarcadero Technologies, which is based on the
material of this chapter:
http://www.embarcadero-info.com/in_action/
 radstudio/rest.html

In this chapter I'll cover only a few selected examples: a first demo of accessing
RSS feeds (which uses XML and XPath), two mapping demos (based on differ-
ent return types), and a translation example which used JSON.

A REST Client for RSS Feeds
The most widespread format for distributing information as XML is the use of
the RSS and ATOM feeds, mostly attached to blog and news sites, but equally
usable for any data source.

The interesting point about feeds is they provide the same information to client
applications that a user will generally access using a web browser. Feed inform-
ation is processed by these client applications, and at times even combined in a
summary of similar feeds, as happens on the Delphi Feeds site:
http://www.delphifeeds.com

Marco Cantù, Delphi 2010 Handbook

264 - Chapter 8: REST Web Services

That’s why, as a first example of a client application using REST, I wrote a very
simple RSS client106 looking into blogs at this site. Every time you access
dynamic XML data using an URL and you can change the URL to access differ-
ent data, you are using the REST approach. The RssClient program uses an
IdHttp component and an XMLDocument component. The first component is
used to grab the data from the Web and load it in the second component:
var
 strXml: string;
begin
 strXml := IdHTTP1.Get
 ('http://feeds.delphifeeds.com/delphifeeds');
 XMLDocument1.LoadFromXML(strXml);

The data extracted would look like the following (which I’ve somewhat simpli-
fied for readability), when displayed in an XML editor:

Processing the RSS Data with XPath

To extract the relevant information from this XML document the RssClient
program uses XPath expressions. For example it reads the title of the first blog
post (item) of the list uses the expression /rss/channel/item[1]/title.

106 A video of the development of this Delphi client application step-by-step and its final res-
ult is available on YouTube at http://www.youtube.com/watch?v=b4cmBrqVRIA and in
my blog at http://blog.marcocantu.com/blog/rest_delphi_client_videos.html.

Marco Cantù, Delphi 2010 Handbook

Chapter 8: REST Web Services - 265

This is done in a cycle along with the extraction of some other information,
formatted and displayed in a list box. Using XPath requires the use of a custom
interface of the Microsoft engine: hence the cast to IDOMNodeSelect.

Once it has the nodes it is interested in, the program looks for any child text
node, using a getChildNodes helper function I wrote for this purpose, and
adds the data to a list box. This is the complete code of the method executed
when the Update button of the program is pressed:
procedure TRssForm.btnUpdateClick(Sender: TObject);
var
 strXml, title, author, pubDate: string;
 I: Integer;
 IDomSel: IDOMNodeSelect;
 Node: IDOMNode;
begin
 strXml := IdHTTP1.Get
 ('http://feeds.delphifeeds.com/delphifeeds');
 XMLDocument1.LoadFromXML(strXml);
 XMLDocument1.Active := True;
 IDomSel := (XMLDocument1.DocumentElement.DOMNode
 as IDOMNodeSelect);
 for I := 1 to 15 do
 begin
 Node := IDomSel.selectNode(
 '/rss/channel/item[' + IntToStr (i) + ']/title');
 title := getChildNodes (Node);
 ...
 ListBox1.Items.Add(author + ': ' + title +
 ' [' + pubDate + ']');
 end;
end;

 The effect of running this program is visible here:

Marco Cantù, Delphi 2010 Handbook

266 - Chapter 8: REST Web Services

Of Maps and Locations
Access to location and map information can be very useful in multiple circum-
stances, as many applications have to do with addresses. In the recent years,
more and more mapping data has been made available on the web by many
large sites, including Google, Yahoo, and Microsoft.

Google Geocoding Service

The first service of this category I’m going to use is Google’s Geocoding service,
which lets you submit an address and retrieve its latitude and longitude:
http://maps.google.com/maps/geo?
 q=[address]&output=[format] &key=[key]

You can also type a similar URL in your browser for testing purposes, as you
can see here showing New York coordinates in a browser (in XML format):

The GeoLocation example107 I’ve built uses the addresses of the companies of
the classic Customer.cds sample database that comes with Delphi. As with
many similar services, this is free for limited usage (the program has extra calls
to the sleep procedure to slow it down and avoid hitting the maximum rate
per minute), but requires a registration for the specific service on:
http://code.google.com

107 A video with the output of both this and the next mapping example is available on You-
Tube at http://www.youtube.com/watch?v=C_saMKfP2wg and (again) also in my blog
at http://blog.marcocantu.com/blog/rest_delphi_client_videos.html

Marco Cantù, Delphi 2010 Handbook

Chapter 8: REST Web Services - 267

The demo program requires your devkey to be added to a GeoLocation.ini file
which must reside in the user's document folder and has the simple structure:
[googlemap]
devkey=

Resolving Customer Addresses

The program works in two steps. First, it looks for unique names of cities /
state / country, by scanning the ClientDataSet component and filling a string
list. This code is unrelated to REST, so I’ve omitted it from the book108.

The second step is to look up each city on the Google Geocoding service, filling
an in-memory ClientDataSet with the resulting information:

This time rather than asking for the XML version of the data, I resorted to a
simpler CSV format, which the program parses using a TStringList object.
Here is the actual Geocoding code:
procedure TFormMap.btnGeocodingClick(Sender: TObject);
var
 I: Integer;
 strResponse, str1, str2: string;
 sList:TStringList;
begin
 cdsTown.Active := False;
 cdsTown.CreateDataSet;
 cdsTown.Active := True;

108 Don't worry, it is in the book source code.

Marco Cantù, Delphi 2010 Handbook

268 - Chapter 8: REST Web Services

 sList := TStringList.Create;
 for I := 0 to sListCity.Count - 1 do
 begin
 ListBox1.ItemIndex := I;
 if Length (sListCity.Names[I]) > 2 then
 begin
 strResponse := IdHTTP1.Get(TIDUri.UrlEncode(
 'http://maps.google.com/maps/geo?q=' +
 (sListCity.Names[I]) + '&output=csv&key=' +
 googleMapKey));
 sList.LineBreak := ',';
 sList.Text := strResponse;
 str1 := sList[2];
 str2 := sList[3];
 cdsTown.AppendRecord([sListCity.Names[I],
 StrToFloat (str1), StrToFloat (str2),
 Length (sListCity.ValueFromIndex[I])]);
 Sleep (150);
 Application.ProcessMessages;
 end;
 end;
 sList.Free;
end;

Yahoo Maps

As a further step, we can try to access to the actual map corresponding to an
address. If Google Maps provide countless features, they are meant to be hos-
ted on web sites not on client applications109.

The new example, called YahooMaps uses Yahoo Map API to get an actual map
and show it in an Image control. Information about this REST API and the link
to obtain a free Yahoo Application ID are available at:
http://developer.yahoo.com/maps/

Again, to run the programs you’ll have to obtain this ID and store in a specific
INI file in the "user documents" folder called YahooMaps.ini. The map is
retrieved in two steps: a first HTTP call passes the address and receives the
URL of the map image, which is retrieved using a second HTTP call. Again, you
could simulate the two steps in a web browser, for debugging purposes.

While the program uses the same database and intermediate StringList of the
previous example, it also has a button that it uses to display the map or a hard-
coded city (San Jose, California), using the following method:

109 Although I do have an example of hosting a Google Map in a client program, its architec-
ture and code are quite complex and the example won’t fit in this chapter.

Marco Cantù, Delphi 2010 Handbook

Chapter 8: REST Web Services - 269

const
 BaseUrl = 'http://api.local.yahoo.com/MapsService/V1/';
procedure TFormMap.Button1Click(Sender: TObject);
var
 strResult: string;
 memStr: tFileStream;
begin
 strResult := IdHTTP1.Get(BaseUrl + 'mapImage?' +
 'appid=' + yahooAppid +
 '&city=SanJose,California');
 XMLDocument1.Active := False;
 XMLDocument1.XML.Text := strResult;
 XMLDocument1.Active := True;
 strResult := XMLDocument1.DocumentElement.NodeValue;
 XMLDocument1.Active := False;
 // now let's get the referred image
 memStr:= TFileStream.Create ('temp.png', fmCreate);
 IdHttp1.Get(strResult, memStr);
 memStr.Free;
 // load the image
 Image1.Picture.LoadFromFile('temp.png');
end;

The first HTTP Get request provides the actual query and returns an XML doc-
ument with the URL of the image of the actual map, which looks like:
<Result>
 http://gws.maps.yahoo.com/mapimage?MAPDATA=[...]&mvt=m
 &cltype=onnetwork&.intl=us&appid=[...]
 &oper=&_proxy=ydn,xml
</Result>

That’s why the program can extract the value of the only node with the code:
XMLDocument1.DocumentElement.NodeValue

Finally, the image is saved to a file and loaded into an Image control:

Marco Cantù, Delphi 2010 Handbook

270 - Chapter 8: REST Web Services

Beside the map of this specific city, the program can also fetch those of the
Customer.cds database of the previous example.

Google Translate API
Another simple and interesting example of a REST API provided by Google is
their translation service, called Google Translate REST API. The documenta-
tion is at:
http://code.google.com/apis/ajaxlanguage/documentation/

In this case there is no need for a signup key (and an INI file), but only provide
a referrer site (although everything seems to work even without that informa-
tion). You can ask for a translation in your Web Browser by entering an URL
like:
http://ajax.googleapis.com/ajax/services/language/
 translate?v=1.0&q=What%20a%20nice%20day&langpair=en|de

The output of this call is visible above (I have also listed the JSON result for
readability):
{
 "responseData":
 {
 "translatedText":"Was für ein schöner Tag"
 },
 "responseDetails": null,
 "responseStatus": 200
}

This example takes one step further compared to previous demos. Rather than
making the HTTP request, it uses a specific custom VCL component, invoked
with a class method (so you don’t need to place the component on a form, even
if you could). This support component makes the API very easy to use, and
encapsulates the HTTP call completely.

Marco Cantù, Delphi 2010 Handbook

Chapter 8: REST Web Services - 271

A Translation Component

The class of the component stores information about the request and encapsu-
lates an internal HTTP client component, as you can see in its declaration:
type
 TBabelGoogleRest = class (TComponent)
 protected
 Http1: TIdHttp;
 FFromLang: string;
 FToLang: string;
 FActiveInForm: Boolean;
 procedure SetFromLang(const Value: string);
 procedure SetToLang(const Value: string);
 public
 function DoTranslate (strIn: string): string; virtual;
 constructor Create(AOwner: TComponent); override;
 class function Translate (
 strIn, langIn, langOut: string): string;
 published
 property FromLang: string read FFromLang write SetFromLang;
 property ToLang: string read FToLang write SetToLang;
 end;

The actual processing (the REST call) is performed in the DoTranslate func-
tion, which uses the input and output languages set for the class:
function TBabelGoogleRest.DoTranslate(strIn: string): string;
var
 strUrl, strResult: string;
 nPosA, nPosB: Integer;
begin
 strUrl := Format (
 'http://ajax.googleapis.com/ajax/services/language/' +
 'translate?v=1.0&q=%s&langpair=%s',
 [TIdUri.ParamsEncode (strIn),
 FFromLang + '%7C' + FToLang]); // format hates %7
 strResult := Http1.Get(strUrl);
 Result := ResultFromJSONDirect (strResult);
end;

The result of the request to the given URL is in JSON format (as this is con-
sidered as a JavaScript API by Google). As I originally wrote this code for a past
version of Delphi, the program parsed the JSON string to extract the actual res-
ult using direct string manipulation:
function TBabelGoogleRest.ResultFromJSONDirect(
 const strJson: string): string;
var
 nPosA, nPosB: Integer;
begin
 nPosA := Pos ('"translatedText":', strJson);
 if nPosA = 0 then

Marco Cantù, Delphi 2010 Handbook

272 - Chapter 8: REST Web Services

 begin
 nPosA := Pos ('"responseDetails":', strJson);
 nPosA := nPosA + Length ('"responseDetails":');
 end
 else
 nPosA := nPosA + Length ('"translatedText":');

 nPosA := PosEx ('"', strJson, nPosA) + 1; // opening "
 nPosB := PosEx ('"', strJson, nPosA) - 1; // end "
 Result := Copy (strJson, nPosA, nPosB - nPosA + 1);
end;

As I moved the code to Delphi 2010, I tried using the using the new Delphi
JSON support to accomplish the same, in a cleaner way. This is implemented in
the alternative ResultFromJSON function, which actually highlights problems
of the native JSON parsing. First, you have to remove white spaces in the JSON
representation (but only outside of the quoted strings), or the parser will fail110.
The string cleaning up operation is performed by a RemoveWhites function:
function RemoveWhites(const str1: string): string;
var
 ch: char;
 inQuotes: Boolean;
begin
 Result := '';
 inQuotes := False;
 for ch in str1 do
 begin
 if ch = '"' then
 inQuotes := not inQuotes;
 if InQuotes or (ch <> ' ') then
 Result := Result + ch;
 end;
end;

After this step the program gets the value of the first pair (responseData) of the
JSON object, which is in turn an object, and read the string value of the first
pair (translatedText) of this sub-object:
function TBabelGoogleRest.ResultFromJSON(
 const strJson: string): string;
var
 strTemp: string;
 jObject, jResponseData: TJSONObject;
begin
 // parse JSON using Delphi 2010 support
 strTemp := RemoveWhites (strJson);

110 The inability of parsing JSON with spaces is a bug and I have reported it on Quality
Central with number 80262. The JSON RFC, in fact, specifically accounts for any white
space within the JSON symbols. Seems this is going to be solved as part of a hotfix,
which is still not available at the time I'm writing.

Marco Cantù, Delphi 2010 Handbook

Chapter 8: REST Web Services - 273

 jObject := TJSONObject.ParseJSONValue(
 TEncoding.ASCII.GetBytes(strTemp), 0) as TJSONObject;
 try
 if not Assigned (jObject) then
 Exit ('Error parsing ' + strTemp);

 // read value of first pair of object, as subobject
 jResponseData := jObject.Get(0).JsonValue as TJSONObject;

 // get value of only element of responseData
 Result := jResponseData.Get(0).JsonValue.Value;
 finally
 jObject.Free;
 end;
end;

At the time writing, this code fails111 for any Unicode string, which are a large
majority of those managed in the demo program, considering the number of
non-Latin languages Google Translation supports.

To perform the translation, the actual DoTranslate method can be invoked
directly after creating an instance of the object and setting its properties, it can
be called using the Translate class method. This function creates a temporary
object, sets its properties, and calls the DoTranslate function on it:
class function TBabelGoogleRest.Translate(const
 strIn, langIn, langOut: string): string;
var
 bg: TBabelGoogleRest;
begin
 bg := self.Create(nil);
 try
 bg.FromLang := langin;
 bg.ToLang := langout;
 Result := bg.DoTranslate(strIn);
 finally
 bg.Free;
 end;
end;

The main form of the demo program has a list box filled with all supported lan-
guages. The demo translates from English, but you can set it up in the opposite
direction as well. In theory, any two language token combination works, in
practice not always. Once you ask for a translation, the result is added to a log.

111 The ParseJSONValue method expects an array of bytes (representing characters) as
parameter and will return an empty object in case of a Unicode string in input (whatever
its content). If you convert the input to ANSI, any high character will not convert. If you
convert it to UTF8, it will treat individual bytes as characters, which will not work,
either. Again, it looks like this is going to be solved by a Delphi 2010 hotfix.

Marco Cantù, Delphi 2010 Handbook

274 - Chapter 8: REST Web Services

Here I’ve applied the call to the first group of languages (in alphabetic order),
using direct JSON result string processing and not Delphi's JSON parser:

Building a REST Server
Now that we have spent a considerable amount of time looking at a few REST
client applications written in Delphi, facing different permission requests and
using different data type formats, we are ready to start delving into the second
part of this chapter, focused on writing REST servers in Delphi 2010.

Just as building a REST client is more straightforward and requires less sup-
port from developer tools than building a SOAP client, the same can be said for
the server. It is true that a SOAP server is a web server with an extra compon-
ent for mapping requests to classes, but a REST server can be a plain web
server extension with little additional code.

In this section I'll introduce the development of REST servers using a simple
application built on top of the plain Web Broker architecture, something you
could have done since Delphi 4. In the remaining part of the chapter, I'll focus
on the development of REST servers based on the specific DataSnap extensions
available in Delphi 2010.

Marco Cantù, Delphi 2010 Handbook

Chapter 8: REST Web Services - 275

To build the Rest1 project I created a standard web server using the Web App
Debugger technology, already covered and used in the last chapter for some of
the HTTP DataSnap applications. The web program has four actions, a sample
Echo operation similar to the predefined DataSnap ones, and three database
oriented requests. Each of the actions of the web modules has a corresponding
OnAction event handler:
 Actions = <
 item
 Default = True
 Name = 'actionEcho'
 PathInfo = '/Echo'
 OnAction = actionEchoAction
 end
 item
 Name = 'actionCustomers'
 PathInfo = '/Customers'
 OnAction = actionCustomersAction
 end
 item
 Name = 'actionCustData'
 PathInfo = '/CustData'
 OnAction = actionCustDataAction
 end
 item
 Name = 'actionCustomer'
 PathInfo = '/Customer/*'
 OnAction = actionCustomerAction
 end>

An Echo Action
The actionEcho operation is a sample action mimicking the sample operation
of DataSnap servers (including the REST ones, as we'll see). This operation has
a parameter, passed with the in parameter name, and the response is sent back
using a simple XML fragment and the corresponding HTTP response type:
procedure TWebModule3.actionEchoAction(Sender: TObject;
 Request: TWebRequest; Response: TWebResponse;
 var Handled: Boolean);
var
 strInput: string;
begin
 strInput := Request.QueryFields.Values ['in'];
 if strInput = '' then
 strInput := 'Nothing to echo';
 strInput := strInput + '...' + Copy (
 strInput, Length (strInput) - 4, 5);
 Response.Content := '<result>' + strInput + '</result>';

Marco Cantù, Delphi 2010 Handbook

276 - Chapter 8: REST Web Services

 Response.ContentType := 'text/xml';
end;

How can you call this operation? From a web browser, after we run the pro-
gram and start the Web App Debugger, we can use the following URL:
http://localhost:8081/Rest1.rest1?in=hello%20world

The result will look like:
<result>hello world...world</result>

Nothing extraordinary but relatively simple. We can put the same URL in a
Delphi client application (the Rest1Client example), passing the text of an edit
box as parameter and encoding it:
const
 BaseUrl = 'http://localhost:8081/Rest1.rest1';

procedure TForm3.btnEchoClick(Sender: TObject);
var
 strInput, strResult: string;
begin
 strInput := TIdURI.ParamsEncode (edEcho.Text);
 strResult := IdHTTP1.Get(BaseUrl + '?in=' + strInput);
 lblEcho.Caption := DataFromTopTag (strResult);
end;

The DataFromTopTag support function (not listed here) removes the top and
any XML tags from the response.

Returning the XML Data of a ClientDataSet
The second action, actionCustData, is the simplest to implement, on both the
server and client side. All it does is return the entire data content of a Client-
DataSet component, using its XML representation. The server simply returns
that XML:
procedure TWebModule3.actionCustDataAction(
 Sender: TObject; Request: TWebRequest;
 Response: TWebResponse; var Handled: Boolean);
begin
 Response.Content := cdsCustomers.XMLData;
 Response.ContentType := 'text/xml';
end;

Using the corresponding URL you can see the entire XML data of the Client-
DataSet in a browser, like in the following page:

Marco Cantù, Delphi 2010 Handbook

Chapter 8: REST Web Services - 277

A Delphi client application can easily access that data:
procedure TForm3.btnCDSClick(Sender: TObject);
begin
 ClientDataSet1.Close;
 ClientDataSet1.XMLData := IdHTTP1.Get(BaseUrl + '/custdata');
 ClientDataSet1.Open;
end;

In this client application the ClientDataSet is connected with a DBGrid, so you
can immediately see the server side database in the client program, passed
through the REST call. You can see the result of the first two operations in the
top part of the form of the Rest1Client demo:

Implementing a client for this data access call in JavaScript or in a non-Delphi
client might not be trivial, because the XML of the ClientDataSet component is

Marco Cantù, Delphi 2010 Handbook

278 - Chapter 8: REST Web Services

quite specific. Also, returning the entire data structure for a large data set
might be excessive in terms of bandwidth. A more REST-oriented alternative
might be to return a list of available records and then individual records with
the data. This implies more processing both on the server and the client, but it
is certainly worth exploring.

Returning a List of Customers
The server action returning a list is called with the customers URL. In its server
code, the application scans the data set and returns an XML structure with the
company name and the customer ID for each customer record. With the URL:
http://localhost:8081/Rest1.rest1/customers

You'll see an XML result like:
<customers>
 <customer>
 <id>1221</id>
 <Company>Kauai Dive Shoppe</Company>
 </customer>
 <customer>
 <id>1231</id>
 <Company>Unisco</Company>
 </customer>
 ...

This XML code is generated using as a helper the TTrivialXmlWriter class as
a helper that I covered in Chapter 3, in the section “The Trivial XML Writer
Class” under the heading “XML Streaming”. This is a class that let's you write
to an XML stream or string, using the TTextWriter interface introduced in
Delphi 2009. It keeps track of the XML nodes you open so it can close them in
the reverse order, without specifying which tag you are closing.

In this specific case, the program uses a TStringWriter, as we are returning a
string. The server code scans the data set component from the first to the last
record and outputs the customer ID and company name:
procedure TWebModule3.actionCustomersAction(
 Sender: TObject; Request: TWebRequest;
 Response: TWebResponse; var Handled: Boolean);
var
 sw: TStringWriter;
 xmlw: TTrivialXmlWriter;
begin
 sw := TStringWriter.Create;
 try

Marco Cantù, Delphi 2010 Handbook

Chapter 8: REST Web Services - 279

 xmlw := TTrivialXmlWriter.Create (sw);
 try
 xmlw.WriteStartElement('customers');
 cdsCustomers.First;
 while not cdsCustomers.Eof do
 begin
 xmlw.WriteStartElement('customer');
 xmlw.WriteStartElement('id');
 xmlw.WriteString(cdsCustomers['CustNo']);
 xmlw.WriteEndElement;
 xmlw.WriteStartElement('Company');
 xmlw.WriteString(cdsCustomers['company']);
 xmlw.WriteEndElement;
 xmlw.WriteEndElement;
 cdsCustomers.Next;
 end;
 xmlw.WriteEndElement;
 finally
 xmlw.Free;
 end;
 Response.Content := sw.ToString;
 Response.ContentType := 'text/xml';
 finally
 sw.Free;
 end;
end;

The last action returns data for a specific customer, an individual record. The
PathInfo for this last action is different from the others. Rather than indicat-
ing a specific URL, in fact, it uses the notation '/Customer/*' to indicate any
URL starting with that portion. The standard approach with REST, in fact is to
use the URL path (and not its optional parameters) to refer to a given resource,
in this case a customer. Following this style, we can use the following URL to
refer to the first record:
http://localhost:8081/Rest1.rest1/customer/1221

This is the corresponding response in a web browser:

Marco Cantù, Delphi 2010 Handbook

280 - Chapter 8: REST Web Services

All we have to do in our last action (actionCustomer) is to extract the last part
of the URL and use it as a parameter:
const
 urlAction: AnsiString = '/Rest1.rest1/Customer/';
begin
 strCustId := Copy (Request.PathInfo,
 Length (urlAction) + 1, MaxInt);

Notice that the PathInfo property of the Request is an AnsiString, so we have
to use the same string type of the constant part we want to remove from the
path we receive112.

Now that we have the customer id, we can write out each field of the given
record, again using a TTrivialXmlWriter support object:
 xmlw.WriteStartElement('customer');
 cdsCustomers.Locate('custno', strCustId, []);
 for I := 0 to cdsCustomers.FieldCount - 1 do
 begin
 xmlw.WriteStartElement(cdsCustomers.Fields[I].FieldName);
 xmlw.WriteString(cdsCustomers.Fields[I].AsString);
 xmlw.WriteEndElement;
 end;
 xmlw.WriteEndElement;

Now that we have seen how the server can return the list of customers and indi-
vidual customer records, let's focus on the corresponding Delphi client
application. This time there is nothing specific to Delphi, so you could use other
development tools for the client.

The code for processing the list is rather complex only because I'm parsing the
resulting XML directly, rather than using an XMLDocument component and
DOM or XPath (as in the RSS Feeds client demo, for example). I populate a list
box from the resulting data with the displayed string having the id=name
format:
procedure TForm3.btnCustListClick(Sender: TObject);
var
 strListCust, strId, strName: string;
 nPos: Integer;
 nInit, nEnd: Integer;
begin
 ListCust.Clear;
 strListCust := IdHTTP1.Get(BaseUrl + '/customers');

112 Using ANSI strings for URL will not work properly with the new breed of “Non-Latin”
URLs, recently introduced by ICANN (http://www.icann.org/en/announcements/an-
nouncement-30oct09-en.ht). As an example of a Chinese language URL you can use
http://例子.测试/首页 (or the easier-to-type version, http://bit.ly/d2z7pp).

Marco Cantù, Delphi 2010 Handbook

Chapter 8: REST Web Services - 281

 nPos := Pos ('<customer><id>', strListCust);
 while nPos > 0 do
 begin
 nInit := nPos + 14; // Length <customer><id>
 nEnd := PosEx ('</id>', strListCust, nPos);
 strId := Copy (strListCust, nInit, nEnd - nInit);
 nPos := PosEx ('<company>', strListCust, nEnd);
 nInit := nPos + Length ('<company>');
 nEnd := PosEx ('</company>', strListCust, nPos);
 strName := Copy (strListCust, nInit, nEnd - nInit);
 ListCust.Items.Add (strId + '=' + strName);
 nPos := PosEx ('<customer><id>', strListCust, nEnd);
 end;
end;

When you have the list of the customers, you can use the ID of the selected item
to prepare the proper URL to grab its detailed data (which in this case is simply
displayed as is on a Memo:
procedure TForm3.ListCustDblClick(Sender: TObject);
var
 strCust: string;
begin
 strCust := ListCust.Items.Names [ListCust.ItemIndex];
 MemoCust.Lines.Text :=
 IdHTTP1.Get(BaseUrl + '/customer/' + strCust);
end;

Here is the bottom part of the simple user interface of the Rest1Client applica-
tion showing the list box with the customers and the raw XML data of the
selected one:

Building a DataSnap REST Server
As we have seen in the previous section, you can build REST servers in Delphi
using the WebBroker architecture. A second alternative is the use of the IdHT-
TPServer component. Further options are provided by third-party solutions. All
of these options were already available in past versions of Delphi and are cer-

Marco Cantù, Delphi 2010 Handbook

282 - Chapter 8: REST Web Services

tainly still possible today. The focus of the rather long remaining part of the
chapter, though, is the new REST support which is part of the DataSnap archi-
tecture in Delphi 2010.

To build a first simple DataSnap REST server113 in Delphi 2010 we can use the
DataSnap Wizard, as we did in the last chapter for building other DataSnap
servers. However, if you want to host your REST server as a web server, picking
the DataSnap WebBroker Application will probably be your best choice. The
DataSnap WebBroker architecture, in fact, lets you have more control over the
HTTP requests coming in and lets you integrate your REST data within your
WebBroker server.

As soon as you pick HTTP support in a DataSnap application or select a Data-
Snap WebBroker server, the resulting application will automatically include
support for REST.

We have already seen in the last chapters which units are generated by the
DataSnap WebBroker Wizard, here I'm only underlying a few specific elements
worth considering for a REST server.

The web module generated by the Wizard is the core element of the WebBroker
architecture. It can define multiple actions and has pre-processing and post-
processing events for any HTTP request. The Wizard adds a DSHTTPWebDis-
patcher component to the web module:
object DSHTTPWebDispatcher1: TDSHTTPWebDispatcher
 RESTContext = 'rest'
 Server = DSServer1
 WebDispatch.MethodType = mtAny
 WebDispatch.PathInfo = 'datasnap*'
end

This component intercepts any request with a URL starting with ‘datasnap’,
which are passed to the HTTP support of DataSnap. For requests starting with
‘datasnap’ and indicating a ‘rest’ path, the processing will be diverted to the
built-in REST engine114. In other words, the requests with a ‘datasnap/rest’
path are considered as REST requests.

113 A video of the development of this REST server application step-by-step is available on
YouTube at http://www.youtube.com/watch?v=TxFB8mjiGr8 and in my blog at
http://blog.marcocantu.com/blog/rest_delphi_server_videos.html. As for the past
videos mentioned in this chapter, I recorded this video for the Embarcadero white paper.

114 Notice that while you can change the 'rest' element of the path with anything you like,
you cannot remove it altogether. At the opposite, it seems impossible to change the
'datasnap' portion. If you try to do so, you'll see an error when you try to connect.

Marco Cantù, Delphi 2010 Handbook

Chapter 8: REST Web Services - 283

The web module provides also a default HTTP response for any other action,
simply returning some bare-bones HTML:
procedure TWebModule2.WebModule2DefaultHandlerAction(
 Sender: TObject; Request: TWebRequest;
 Response: TWebResponse; var Handled: Boolean);
begin
 Response.Content := '<html><heading/><body>' +
 'DataSnap Server</body></html>';
end;

This action is configured at design-time as:
 Actions = <
 item
 Default = True
 Name = 'DefaultHandler'
 PathInfo = '/'
 OnAction = WebModule2DefaultHandlerAction
 end>

At the core of the application, like any DataSnap REST application, there is the
server class, the class surfacing methods to be called remotely via REST. Notice
that REST support is in fact focused only on server methods, and doesn't let
you access the IAppServer interface exposed by the Dataset Provider compon-
ents.

The skeleton class that gets generated is very simple, and depends on the fact
that I asked for sample methods in the wizard. Here is the code, once again:
type
 TServerMethods1 = class(TDSServerModule)
 private
 { Private declarations }
 public
 function EchoString(Value: string): string;
 end;

The EchoString method by default simply returns the passed parameter you
are passing, but I’ve updated it slightly to repeat the tail of the string, as in a
real “echo”:
function TServerMethods1.EchoString(
 Value: string): string;
begin
 Result := Value + '...' +
 Copy (Value, 2, maxint) + '...' +
 Copy (Value, Length (Value) - 1, 2);
end;

Marco Cantù, Delphi 2010 Handbook

284 - Chapter 8: REST Web Services

Accessing the REST Server with a Browser
We can test this server to see if it works. After compiling and running the pro-
gram, remember to run the Web App Debugger (available in Delphi’s Tools
menu), and start it using the corresponding button. The Web App Debugger
runs on a specific port, by default 8081, so the URL will start with:
http://localhost:8081/

Next in the URL comes the application name and the Web App Debugger class
name (which in this case are identical), separated by a period:
FirstSimpleRestServer.FirstSimpleRestServer

If you open the combined URL in a Web browser you can check if the Web App
Debugger and the specific server are running. You should see something like:

This is the useless HTML returned by the program for the standard action. The
next step is to use the specific URL for the only request our REST server can
perform, calling the EchoString method of the TServerMethods1 class using
the ‘rest’ support of our ‘datasnap’ server. The URL is automatically combined
by adding the REST server prefix (/datasnap/rest, by default), the class
name, the method name, and the method parameters:
/datasnap/rest/TServerMethods1/EchoString/hello%20world

In the URL the %20 is just a replacement for a space, but you can actually type
a space in your browser. Now the complete URL becomes:
http://localhost:8081/FirstSimpleRestServer.FirstSimpleRestServer/
 datasnap/rest/TServerMethods1/EchoString/hello%20world

If you type it in a browser, you’ll see the following JSON response:

Marco Cantù, Delphi 2010 Handbook

Chapter 8: REST Web Services - 285

The response you get when calling a server method is invariably a JSON object
with a single pair called “result”. The value of this pair is always an array115,
with the actual value returned by the method (a simple data type, an object, an
actual array).

Notice that while doing this test we can use the Web App Debugger for figuring
out the actual HTTP requests and responses being transferred. The page above
is originated by a browser request:
GET /FirstSimpleRestServer.FirstSimpleRestServer/
 datasnap/rest/TServerMethods1/EchoString/hello%20world HTTP/1.1
Host: localhost:8081
Connection: keep-alive
User-Agent: Mozilla/5.0 (Windows; U; Windows NT 6.1;
 en-US) AppleWebKit/532.0 (KHTML, like Gecko)
 Chrome/3.0.195.27 Safari/532.0
Accept: application/xml,application/xhtml+xml,text/html;
 q=0.9,text/plain;q=0.8,image/png,*/*;q=0.5
Accept-Encoding: gzip,deflate,sdch
Cookie: LastProgID=
 FirstSimpleRestServer.FirstSimpleRestServer
Accept-Language: en-US,en;q=0.8
Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3

This request produces the following complete HTTP response:
HTTP/1.1 200 200 OK
Connection: close
Content-Type: TEXT/HTML
Content-Length: 44

{"result":["hello world...ello world...ld"]}

As I mentioned earlier, the easy access to this low-level information can be a
big bonus when debugging HTTP applications.

Returning Multiple Results
As mentioned earlier, the JSON result returned by the DataSnap REST support
is invariably an array. This is necessary because as you can have multiple input
parameters you can also have multiple output values, just use parameters
passed by reference (var) or output parameters (out).

115 The result is returned in a JSON array structure as in more complex situations you might
have further parameters passed by reference that the server method returns along with
its result. I'll cover this in a second method of the current server.

Marco Cantù, Delphi 2010 Handbook

286 - Chapter 8: REST Web Services

As an example, I've added to the server a method with a parameter passed by
reference and very simple code:
function TServerMethods1.TestParams(
 Value: string; var another: string): string;
begin
 Another := another + '*';
 Result := Value + another;
end;

Now if you call the server method from the browser with the URL:
http://localhost:8081/FirstSimpleRestServer.FirstSimpleRestServer/
 datasnap/rest/TServerMethods1/TestParams/first/second

You'll get the following result, with an actual array of values, starting with the
reference parameter(s) and ending with the function result:
{
 "result": [
 "second*",
 "firstsecond*"
]
}

There are further possible and complex scenarios, of course, but this explains
in practice why the JSON result uses an array and shows that server method
support is actually more sophisticated than it might appear at a first sight.

Calling the REST Server from a VCL Client
Now that we have built the server and made sure that it works, we can write a
Delphi client application to test it. We can use two different approaches. One is
to fall back to write a Delphi DataSnap client, using the specific transport layer
provided by REST. But it won’t make a lot of difference compared to using the
HTTP or TCP transport layers of DataSnap.

The second option, which is the one I’m going to follow, is to create a custom
REST client just like all of the various clients I built in the first part of this
chapter. This means, you could use any other language for building the client
application, as we are not relying on any specific Delphi support. To accomplish
this simply create a standard Delphi VCL application, add an IdHTTP compon-
ent to it to perform the actual REST request, an edit box for the input, and a
button with the code:
const
 strServerUrl = 'http://localhost:8081/' +
 'FirstSimpleRestServer.FirstSimpleRestServer/';

Marco Cantù, Delphi 2010 Handbook

Chapter 8: REST Web Services - 287

 strMethodUrl = 'datasnap/rest/TServerMethods1/EchoString/';

procedure TFormFirstRestClient.btnPlainCallClick(Sender: TObject);
var
 strParam: string;
begin
 strParam := edInput.Text;
 ShowMessage (IdHTTP1.Get(strServerUrl +
 strMethodUrl + strParam));
end;

This call builds a proper URL by concatenating the server address, the relative
path to reach the given method with the REST server, and the only parameter.
The call results in the following output:

Now what is more interesting is to extract the actual information from the
JSON data structure returned by the server. We could use a manual approach,
but I’d rather take advantage of the JSON support that is available in Delphi
2010 and made available through the DBXJSON unit.

The JSON data that our server returns is a string, but the REST server support
creates an object with a named value (or “pair”), and places the actual value in
an array. That’s why after parsing the result of the HTTP into a JSON data
structure, we need to navigate from the object to the pair it contains and from
the pair to the single element array it holds:
procedure TFormFirstRestClient.btnToJSONClick(
 Sender: TObject);
var
 strParam, strHttpResult, strResult: string;
 jValue: TJSONValue;
 jObj: TJSONObject;
 jPair: TJSONPair;
 jArray: TJSOnArray;

Marco Cantù, Delphi 2010 Handbook

288 - Chapter 8: REST Web Services

begin
 strParam := edInput.Text;
 strHttpResult := IdHTTP1.Get(strServerUrl +
 strMethodUrl + strParam);
 jValue := TJSONObject.ParseJSONValue(
 TEncoding.ASCII.GetBytes(strHttpResult), 0);
 if not Assigned (jValue) then
 begin
 ShowMessage ('Error in parsing ' + strHttpResult);
 Exit;
 end;

 try
 jObj := jValue as TJSONObject;
 // get the first and only JSON pair
 jPair := jObj.Get(0);
 // pair value is an array
 jArray := jPair.JsonValue as TJsonArray;
 // get the first and only element of array
 strResult := jArray.Get(0).Value;
 ShowMessage ('The response is: ' + strResult);
 finally
 jObj.Free;
 end;
end;

Again, the complexity is due to the data structure returned by the server, as in
other circumstances it would be much easier to parse the resulting JSON and
access to it.

Calling the REST Server From a jQuery Client
If all you need is to pass object data from a server side Delphi application to
another one, there could be many alternatives to using JSON. This choice
makes a lot of sense when you want to call the Delphi compiled server from a
JavaScript application running in the browser. This case is quite relevant
because AJAX (Asynchronous JavaScript calls done in the Web browser) was
and still is one of the driving forces behind the adoption of REST. Calling a cor-
responding SOAP server from a Browser based program is incredibly more
complicated.

So, how can we create an application mimicking the client I just wrote but run-
ning in the Web browser. I could have used many different approaches and
libraries, but my preference at this time is to use jQuery, an incredibly powerful
open source JavaScript library available at:
http://jquery.com

Marco Cantù, Delphi 2010 Handbook

Chapter 8: REST Web Services - 289

I don’t have time to delve into jQuery and its usage in this chapter, but I’ll at
least try to explain the jQuery code behind this specific example. First of all, the
HTML page includes jQuery and its JSON support:
<head>
 <title>jQuery and Delphi 2010 REST</title>
 <script src="http://jqueryjs.googlecode.com/
 files/jquery-1.3.2.min.js"
 type="text/javascript"></script>
 <script src="http://jquery-json.googlecode.com/
 files/jquery.json-2.2.min.js"
 type="text/javascript"></script>
</head>116

Second, the page has a very simple user interface, with some text, an input field
and a button (without any sophisticated CSS and added graphics, as I really
wanted to keep this focused):
<body>
 <h1>jQuery and Delphi 2010 REST</h1>

 <p>This example demonstrates basic use of jQuery calling
 a barebones Delphi 2010 REST server.</p>
 <p>Insert the text to "Echo":

 <input type="text" id="inputText" size="50"
 value="This is a message from jQuery">

 <input type="button" value="Echo" id="buttonEcho">

 <div id="result">Result goes here: </div>
</body>

If this is the skeleton, let us now look at the actual JavaScript code. What we
have to do is add an event handler to the button, read the input text, make the
REST call, and finally display the result. I’m going to use the simplest of jQuery
selectors, based on the objects ID, to access to the page objects as in:
$("#inputText")

This returns a jQuery object wrapping the input text DOM element. To define
an event handler we can pass an anonymous method parameter to the click()
function of the button. Two more calls are the REST call itself (using the global
getJSON) and the html() call to add the result to the HTML of the element.

This is the complete code at the heart of this demo, a very compact but not
exactly readable JavaScript snippet:

116 I haven't made any attempt to optimize the HTML or JavaScript so that the examples re-
main as clear as possible.

Marco Cantù, Delphi 2010 Handbook

290 - Chapter 8: REST Web Services

$(document).ready(function() {
 $("#buttonEcho").click(function(e) {

$.getJSON("http://localhost:8081/"
 "FirstSimpleRestServer.FirstSimpleRestServer/"
 "datasnap/rest/TServerMethods1/EchoString/" +
 $("#inputText").val(),
 function(data) {

$("#result").html(data.result.join(''));
});

});
});

Just by opening an HTML file with the given code you can call the custom
server, but only if the browser permission settings allow an AJAX call from a
local file to a local REST server. In general, most browsers will only let you call
REST servers on the same site originating the HTML page.

In any case, Internet Explorer seems to work fine on this local file, after
enabling local scripts and asking for limited security (available since the file is
on the local machine, see the icons in the status bar):

On other web browsers, you need to let the server return both the HTML page
and the REST data, which is not a terribly big deal as our REST server is indeed
a web server. So, all I had to do for a “server side” solution (as far as the web
browser is concerned) is to add an action to the web server module (which I
hooked to the “/file” URL) and return the HTML file from it:
procedure TWebModule2.WebModule2WebActionItem1Action(
 Sender: TObject; Request: TWebRequest;
 Response: TWebResponse; var Handled: Boolean);

Marco Cantù, Delphi 2010 Handbook

Chapter 8: REST Web Services - 291

var
 strRead: TStreamReader;
begin
 strRead := TStreamReader.Create('jRestClient.html');
 try
 Response.Content := strRead.ReadToEnd;
 finally
 strRead.Free;
 end;
end;

Now we can refer to given server page with the /file URL, get the file with the
JavaScript code, and let it call our REST server:

 The difference between this and the previous image is not just that I’m using a
different browser, but that I’m pointing to a different URL. Rather than loading
a file, in this second case I’m using the server side REST application as a full
Web server, returning the HTML used for calling the same server via AJAX.

Returning and Updating Objects
with REST HTTP Methods

Now that we have explored the development of a very simple REST server with
Delphi 2010 DataSnap support, it is time to try to figure out the actual code we
can write on the server to make it more powerful. As we have seen, the server
returns JSON data, converting the result of your functions to this format. We
can pass an object as result and have its data converted. However, in most

Marco Cantù, Delphi 2010 Handbook

292 - Chapter 8: REST Web Services

practical situations, it would be better to take full control and create specific
JSON objects on the server side and return them. That is going to be one of the
goals of our next project.

The same project will also show how to process other HTTP methods beside the
Get method, letting us not only retrieve but also modify a server side object
from a simple Browser-based client written in JavaScript. Finally, in doing this
we’ll focus on URL management and figure out how to make them nicer and
more flexible.

Returning JSON Objects and Values

For this second project I’ve used the DataSnap WebBroker Wizard, picked the
Web App Debugger architecture (again), and decided to use a TPersistent
base class, as I don’t need a data module as target class for the REST calls. As
you need specific RTTI support, the rule is to inherit (at least) from
TPersistent and mark the class with the $METHODINFO directive, as in the
following generated code:
{$METHODINFO ON}
type
 TObjectsRest = class(TPersistent)
 public
 function PlainData (name: string): TJSONValue;
 function DataMarshal (name: string): TJSONObject;
 end;
{$METHODINFO OFF}

As you can see I’ve added a couple of functions to the class for returning either
a value or a full object117. Later I’ll add other methods to the class.

The data structure behind this application is a list of objects of a custom type
(which could have been written in a more object-oriented way, but I wanted to
keep it simple for the sake of the example):
type
 TMyData = class (TPersistent)
 public
 Name: String;
 Value: Integer;
 public
 constructor Create (const aName: string);
 end;

117 More correctly, all the data values of a full object.

Marco Cantù, Delphi 2010 Handbook

Chapter 8: REST Web Services - 293

The objects are kept in a dictionary, implemented using the generic container
class TObjectDictionary<TKey,TValue> defined in the Generics.Collections
unit since Delphi 2009. This global object is initialized when the program starts
with the addition of a couple of predefined objects. Notice that I use a specific
AddToDictionary procedure to add the objects, to make sure the object name
is in sync with the dictionary key and it has a random value if none is provided:
var
 DataDict: TObjectDictionary <string,TMyData>;

procedure AddToDictionary (const aName: string;
 nVal: Integer = -1);
var
 md: TMyData;
begin
 md := TMyData.Create (aName);
 if nVal <> -1 then
 md.Value := nVal;
 DataDict.Add(aName, md);
end;

initialization
 DataDict := TObjectDictionary <string,TMyData>.Create;
 AddToDictionary('Sample');

Having this data structure in place, we can now focus on the first two sample
methods used to return the JSON values. The first returns the value of the
given object (picking a default one if no parameter is passed to the function):
function TObjectsRest.PlainData(name: string): TJSONValue;
begin
 if Name = '' then
 name := 'Sample'; // default
 Result := TJSONNumber.Create(DataDict[name].Value);
end;

If we use an URL with or without the parameter (as in the following two lines):
/datasnap/rest/TObjectsRest/PlainData/Test
/datasnap/rest/TObjectsRest/PlainData

we will still get a JSON response, either for the specific object or a default one:
{"result":[8978]}

What if we want to return a complete object rather than a specific value? Our
REST server cannot return a TObject value, as the system has no way to con-
vert it automatically, but it can indeed use the new JSON marshaling support
for converting an existing object to the JSON format:
function TObjectsRest.DataMarshal(name: string): TJSONObject;
var
 jMarshal: TJSONMarshal;

Marco Cantù, Delphi 2010 Handbook

294 - Chapter 8: REST Web Services

begin
 jMarshal := TJSONMarshal.Create(TJSONConverter.Create);
 Result := jMarshal.Marshal(DataDict[name])
 as TJSONObject;
end;

This approach is mostly useful when you need to recreate the object in the
Delphi client application, while it is not particularly handy in the case where
the client is written in another language. The resulting JSON looks a little ugly:
{
 "result":[{
 "type":"ObjectsRestServer_Classes.TMyData",
 "id":1,
 "fields": {
 "Name":"Test",
 "Value":8068}
 }]
}

So, what would be the best option to return a JSON object? I think it would be
to create one on the server side, using the support classes. This is what I’ve
done in the MyData function:
function TObjectsRest.MyData(name: string): TJSONObject;
var
 md: TMyData;
begin
 md := DataDict[name];
 Result := TJSONObject.Create;
 Result.AddPair(TJSONPair.Create ('Name', md.Name));
 Result.AddPair(TJSONPair.Create (
 'Value', TJSONNumber.Create(md.Value)));
end;

As you can see I’ve created a TJSONObject and added two pairs (or properties)
for the name and the value. I could have used a dynamic name (that is, used the
name for the name part of the pair), but this would have made it harder to
retrieve the data on the client side. The result of this code should look like the
following cleaner JSON code:
{
 "result":[{
 "Name":"Test",
 "Value":8068
 }]
}

Marco Cantù, Delphi 2010 Handbook

Chapter 8: REST Web Services - 295

Listing Objects with a TJSONArray
Now having a list of objects, you might well need to access the list of objects.
Having a list with the names only (and no data) will be useful when building a
client side user interface.

For returning a list you can use a TJSONArray, which in this case will be an
array of strings I create using an enumerator on the Keys of the dictionary:
function TObjectsRest.List: TJSONArray;
var
 str: string;
begin
 Result := TJSONArray.Create;
 for str in DataDict.Keys do
 begin
 Result.Add(str);
 end;
end;

The result of this call is an array in JSON format, which in turned is passed (as
usual) in an array called result (hence the double nested array notation):
{
 "result":[
 ["Test","Sample"]
]
}

Now that we have a way to return a list of values and fetch the data of each indi-
vidual element, we can start building a user interface.

Sending the List to the jQuery Web Client at
Start-up

Rather than having to build the initial HTML with the list of values, to let the
user pick one, we can fully exploit the AJAX model.

The page on start up will have no data at all, only the HTML elements and the
JavaScript code. As soon as the page is loaded, even without user intervention,
it will ask the server for the actual data and populate the user interface.

As an example, on start up the program shows the value of the Sample object,
using the following HTML elements and AJAX call (executed when document
is ready, that is the DOM has finished loading):
<div>Sample: </div>

Marco Cantù, Delphi 2010 Handbook

296 - Chapter 8: REST Web Services

<script>
 var baseUrl =
 "/ObjectsRestServer.RestObjects/dataSnap" +
 "/rest/TObjectsRest/";

$(document).ready(function() {
$.getJSON(baseUrl + "MyData/Sample",
 function(data) {

strResult = data.result[0].Value;
$("#sample").html(strResult);

 });
</script>

The AJAX call to MyData passes the object name as a further URL parameter
and extracts from the result array the property/pair called Value, showing it in
an empty span HTML element. Something similar (but somewhat more com-
plex) happens for the list. Again, there is an AJAX call, but this time we have to
build the resulting HTML. The operation is performed in a separate
refreshList function called both automatically at start-up and manually by
the user:
<div>Current entries list:
 Refresh
 </div>

function refreshList()
{

$.getJSON(baseUrl + "list",
 function(data) {

var thearray = data.result[0];
var ratingMarkup = ["
"];
for (var i=0; i < thearray.length; i++) {
 ratingMarkup = ratingMarkup +

 "" + thearray[i] + "
";
}
$("#list").html(ratingMarkup);

 });
};

The code uses a for loop to scan the resulting array. I could have used the
$.each enumeration mechanism of jQuery, but this would have made the code
more complex to read. The for loop creates the HTML, which is later displayed
in the span place-holder with the given ID. In the next page you can see the
sample output with the value of the Sample object (the code shown earlier) plus
the list of the values returned in the JSON array.

As I mentioned earlier, the refreshList function is called at start-up (in the
ready event handler) and also connected with a corresponding link, so that the

Marco Cantù, Delphi 2010 Handbook

Chapter 8: REST Web Services - 297

user can later refresh the data of the list without having to refresh the entire
HTML page:
$(document).ready(function() {

refreshList();
$("#refresh").click(function(e) {
 refreshList();
});

There is actually a little more to the code generation. As soon as we have the
HTML for the list, which is a list of links, we need to hook code to those links so
that selecting each entry of the list the client application will load the corres-
ponding server side object. The user interface for the object data is made of two
input boxes, which will later use also for manipulating the object data. The
behavior is added to each anchor within the list container.

$("#list").find("a").click(function(e) {
 var wasclicked = $(this);
 $.getJSON(baseUrl + "MyData/" + $(this).html(),

function(data) {
 strResult = data.result[0].Value;
 $("#inputName").val(wasclicked.html());
 $("#inputValue").val(strResult);
});

 });

Notice the use of the $(this) call, which is more or less the Sender parameter
for a Delphi event. Its text is the html content of the element that was clicked,
which is the name of the element we have to pass to the server in the URL, with
the expression:
baseUrl + "MyData/" + $(this).html()

Marco Cantù, Delphi 2010 Handbook

298 - Chapter 8: REST Web Services

Now with this code in place we can see the effect of clicking on one of the ele-
ments of the list: A further AJAX call will reach our server asking for a given
value, and the returned value is displayed in two input text boxes:

As you can see above, the program let us retrieve a value, but has also three
buttons to perform the most common operations (the so called CRUD interface
– Create, Read, Update, Delete). This is supported in HTML using the 4 code
HTML methods, respectively PUT, GET, POST, and DELETE. How these are
supported by a Delphi 2010 REST server is the subject of the next section.

HTTP Methods: POST, PUT, and DELETE
Up to now we have seen only how to get data from our REST server, but what
about updating it? The generally agreed idea in REST is to avoid using specific
URLs for identifying the operations, but use an URL only to identify server side
objects (like MyData/Sample in our case) and use the HTTP methods to indic-
ate what do to.

Now if Delphi’s REST support simply mapped URLs to methods, we would
have been out of luck, Instead, it maps URLs plus the HTTP method to meth-

Marco Cantù, Delphi 2010 Handbook

Chapter 8: REST Web Services - 299

ods, using a rather simple scheme: the name of the operation is prepended to
the method name, using the following mapping:

GET get (default, can be omitted)

POST update

PUT accept

DELETE cancel

You can customize these mappings by dealing with the four corresponding
event handlers of the DSHTTPWebDispatcher component. If we decide to go
with the standard naming rules, to support the various operations we need to
define our server class as:
type
 TObjectsRest = class(TPersistent)
 public
 function List: TJSONArray;
 function MyData (name: string): TJSONObject;
 procedure updateMyData (name, value: string);
 procedure cancelMyData (name: string);
 procedure acceptMyData (name, value: string);
 end;

To get or delete an element we only need the name, while to create or update it
we need a second parameter with the data.

The implementation of the three new methods is rather simple and direct, also
because they don’t need to return a value (needless to say I should have
checked that parameters are not empty and that the server side object really
exists in the container):
procedure TObjectsRest.updateMyData (name, value: string);
begin
 DataDict[name].Value := StrToIntDef (Value, 0);
end;

procedure TObjectsRest.cancelMyData(name: string);
begin
 DataDict.Remove(name);
end;

procedure TObjectsRest.acceptMyData(name, value: string);
begin
 AddToDictionary (name, StrToIntDef (Value, 0));
end;

Marco Cantù, Delphi 2010 Handbook

300 - Chapter 8: REST Web Services

Editing Data with jQuery

Now that we have the CRUD operations available on the REST server, we can
complete our JavaScript client application with the code of the three editing
buttons (the image of the browser-based user interface was shown earlier).

While jQuery has specific support for the get operation (with different versions,
including the JSON-specific one we have used earlier) and some support for
post operations, for the other HTTP methods you have to use the lower level
(and slightly more complex) $.ajax call. This call has as a parameter a list of
paired values, up to a dozen that are possible. The more relevant parameters
are the type and the URL, while data lets you pass further POST parameters.

Posting our update is rather simple, and we can provide the data to our REST
server using the URL:
$("#buttonUpdate").click(function(e) {

$.ajax({
type: "POST",
url: baseUrl + "MyData/" +

 $("#inputName").val() + "/" +
 $("#inputValue").val(),

success: function(msg){
$("#log").html(msg);

}
});

});

Deleting is equally simple, as we need to create the URL with the reference to
the object we want to remove:

$("#buttonDelete").click(function(e) {
$.ajax({

type: "DELETE",
url: baseUrl + "MyData/" +

 $("#inputName").val(),
success: function(msg){

$("#log").html(msg);
}

});
});

It took me some more time to figure out how to implement PUT, as if you don’t
provide any data, some browsers (notably Chrome) will post the data as
“undefined” and this will make the HTTP input parsing of the REST server
crash with an error.

Marco Cantù, Delphi 2010 Handbook

Chapter 8: REST Web Services - 301

As we need to pass information (and we cannot pass more parameters than the
server requires, which will be equally flagged as an error), what we can do is
replace one of the URL elements with a corresponding data element:

$("#buttonNew").click(function(e) {
$.ajax({

type: 'PUT',
data: $("#inputValue").val(),
url: baseUrl + "MyData/" +

 $("#inputName").val(),
success: function(msg) { $("#log").html(msg); }

});
});

Notice that jQuery documentation specifically warns against using PUT in
browsers, as you might get mixed results. That might as well be the reason for
which a number of REST services (including those from Microsoft) tend to use
POST for both updating and creating server side objects. I prefer keeping the
two concepts separate, for clarity and consistency, whenever possible.

With the three extra methods added to our class and the proper AJAX calls, we
now have an example with a complete Browser-based user interface for creat-
ing and editing objects in our REST server. Here I've created a few objects:

Marco Cantù, Delphi 2010 Handbook

302 - Chapter 8: REST Web Services

Building a Database Oriented REST
Server

If the original idea behind DataSnap focused on moving data tables from a
middle-tier server to a client application, it might be quite odd at first to realize
that you cannot return a dataset from a REST server written in Delphi 2010.
Well, you cannot return it directly or as easily as you return its XML represent-
ation, but you can create a JSON result with all of the data of a Delphi dataset.
That’s the focus my last example.

The program is quite bare bones, as all it does is return the data of a complete
Dataset, with no metadata. It could be extended in several ways and lacks a pol-
ished user interface, but should get you started. The server class has only one
method, returning an entire dataset in a JSON array:
function TServerData.Data: TJSONArray;
var
 jRecord: TJSONObject;
 I: Integer;
begin
 ClientDataSet1.Open;
 Result := TJSonArray.Create;

 while not ClientDataSet1.EOF do
 begin
 jRecord := TJSONObject.Create;
 for I := 0 to ClientDataSet1.FieldCount - 1 do
 jRecord.AddPair(
 ClientDataSet1.Fields[I].FieldName,
 TJSONString.Create (ClientDataSet1.Fields[I].AsString));
 Result.AddElement(jRecord);
 ClientDataSet1.Next;
 end;
end;

This method is invoked by the client application after loading the page, build-
ing an HTML table dynamically, with the following jQuery code (you should
have become familiar with the coding style by now):
$(document).ready(function() {
 $.getJSON("/DataRestServer.RestDataServer/datasnap" +
 "/rest/TServerData/Data",

 function(data) {
var thearray = data.result[0];
var ratingMarkup = "<table border='1'>";
for (var i=0; i < thearray.length; i++) {
 ratingMarkup = ratingMarkup + "<tr><td>" +

Marco Cantù, Delphi 2010 Handbook

Chapter 8: REST Web Services - 303

thearray[i].Company + "</td><td>" +
thearray[i].City + "</td><td>" +
thearray[i].State + "</td><td>" +
thearray[i].Country + "</td></tr>";

}
ratingMarkup = ratingMarkup + "</table>";
$("#result").html(ratingMarkup);

 });
});

The bare-bones result is visible below in a web browser:

Can we improve it a little bit? The final version of the program adds some
metadata support to improve the final output.

On the server side, there is a second function returning an array of field names
from the dataset field definitions:
function TServerData.Meta: TJSONArray;
var
 jRecord: TJSONObject;
 I: Integer;
begin
 ClientDataSet1.Open;
 Result := TJSonArray.Create;
 for I := 0 to ClientDataSet1.FieldDefs.Count - 1 do
 Result.Add(ClientDataSet1.FieldDefs[I].Name);
end;

Marco Cantù, Delphi 2010 Handbook

304 - Chapter 8: REST Web Services

The client-side JavaScript has been expanded with a second call to the REST
server to get the metadata:
 $.getJSON("/DataRestServer.RestDataServer/datasnap/" +
 "rest/TServerData/Meta",

 function(data) {
theMetaArray = data.result[0];

This information is used to create the table header and to access the object
properties dynamically, with the notation:
object[“propertyname”]

In our case the existing code used to access to an object with the property sym-
bol:
thearray[i].Company

becomes the following code that reads the property by name, using the name of
the field stored in the metadata:
thearray[i][theMetaArray[j]].

This is the complete JavaScript code used to create the HTML markup118:
var ratingMarkup = "<table border='1'><tr>";

// header
for (var j=0; j < theMetaArray.length; j++) {
 ratingMarkup = ratingMarkup + "<th>" +
 theMetaArray[j] + "</th>";
};
ratingMarkup = ratingMarkup + "</tr>";

// content
for (var i=0; i < thearray.length; i++) {
 ratingMarkup = ratingMarkup + "<tr>";
 for (var j=0; j < theMetaArray.length; j++) {

ratingMarkup = ratingMarkup + "<td>" +
 thearray[i][theMetaArray[j]] + "</td>";
};

 ratingMarkup = ratingMarkup + "</tr>";
}
ratingMarkup = ratingMarkup + "</table>";

The output of this extended version becomes slightly nicer (and more flexible):

118 For concatenating script in JavaScript it is more common, and shorter, to use the += op-
erator, but here I've kept the code more “Pascal-like”, to make it easier for the average
reader of this book.

Marco Cantù, Delphi 2010 Handbook

Chapter 8: REST Web Services - 305

Again, this serves only as a starting point, and I didn’t use any of the jQuery
plug-ins, which would add significant capabilities to HTML tables, turning
them into powerful user interface grids, with sorting, filtering, and editing cap-
abilities.

REST Server Alternatives
After an introduction on building a REST server with the plain WebBroker
architecture, in this chapter I've delved into the development of REST applica-
tions in Delphi 2010 using the specific DataSnap support. With this support, as
we have seen, you can map server methods to URLs and handle the various

Marco Cantù, Delphi 2010 Handbook

306 - Chapter 8: REST Web Services

HTTP methods. I have also introduced the development of simple JavaScript
clients using the jQuery library.

Now the question becomes, is this the suggested way to implement a REST
server in Delphi? I think the current DataSnap REST mapping has a few limita-
tion, including a very rigid first part of the URL (a thing that can be worked
around), the inability to combine HTTP query parameters with URL elements
(the URL should refer to a resource in REST, but any additional parameter
should be passes as an HTTP parameter), and the availability of only one return
type, JSON (which is quite handy, but still having alternatives would be better).

On the positive side, this architecture integrates very well with DataSnap and
server side methods (making it well suited to provide a back-end to both Delphi
clients and browser-based applications with a single server side technology), it
is quite simple to use (and you don't have to work with any low-level techno-
logy, do your own URL parsing, and so on), and let's you stay focused on Delphi
code for your servers.

I do have a lot of investment in server side web and REST applications written
in Delphi, and in the recent years I've started playing with and introducing at
conferences a Delphi Web Application REST Framework119 (that is, DWARF),
which at this time is still not publicly available... simply because it is too
sketchy and unfinished to be published. I've seen other ongoing efforts to clone
Rails in Delphi and offer other REST server architectures.

I think that if you want to build a very large REST application architecture you
should roll out your own technology or use one of these prototypical architec-
tures. For a small to medium size effort, on the other hand, you can probably
benefit from the native DataSnap support. This is particularly true if you want
the REST access to go along with a native DataSnap HTTP access focused on
Delphi clients. In this case, in fact, you get the REST support for free as you
built your multi-tier Delphi architecture.

119 I mentioned my framework only once in my blog, but without providing much detail, as
you can see at http://blog.marcocantu.com/blog/web_dev_stacks_delphi.html

Marco Cantù, Delphi 2010 Handbook

Chapter 8: REST Web Services - 307

What's Next
As this is the end of the book there is no introduction to the following chapters,
but only a reminder of where to find extended information. As mentioned in
the introduction, refer to the book web page, my home page or my blog:
http://www.marcocantu.com/dh2010
http://www.marcocantu.com
http://blog.marcocantu.com

It is very likely you'll find corrections and updates to the book, and possibly
additional chapters in PDF format which you could buy online.

I hope you have enjoyed the book and it will help you use the extended power
of Delphi 2010 in a more effective way. If this is the case (but also if you found
errors, omissions, or just disliked the book) an email or online message of any
form is always welcome.

On to the next Delphi!

Marco Cantù, Delphi 2010 Handbook

308 - Chapter 8: REST Web Services

Marco Cantù, Delphi 2010 Handbook

Index - 309

Index

42...115
90 degree rotation....................................155
Acer...166
ActionList..................................158, 172, 180
ActionManager...172
Actions..222
ActivateKeyboardLayout..........................185
AddGesture...178
ADO 2.8..208
ADODataSet...208
Aero Glass...143
AJAX..288, 290, 295
Alexey Barkovoy.......................................132
Allen Bauer...110
Alternative Document Object Model.......256
Amazon...7
Andreano Lanusse......................................39
Andreas Hausladen............................39, 207
anonymous method..................................121
Apache..222
Apple Inc...164
Application..127
as...104
AsLargeInt...200
AsSingle...200
Attributes...82
Author..9

Background Compilation...........................38
Bamboo Touch..166
Barry Kelly..78
BeginDraw..146
Berry Kelly..74
blog...10
Bob Swart...203
Borland...5, 208
Borland Database Engine........................206
breakpoint..50
Build All..35
C#...111
Callback..249
Callbacks...247
Canvas...147
CaptionFont..157
Cary Jensen..10
CategoryButtons.......................................157
CGI..222
CheckListBox..157
CheckWin32Version.................................126
Chris Bensen..........9, 158, 184, 186, 188, 190
Chris Hesik...50
Class Constructors.................................106p.
class destructor..106
ClientDataSet...........37, 180p., 227, 257, 277
CloseTouchInputHandle..........................187

Marco Cantù, Delphi 2010 Handbook

310 - Index

Code Completion..33
Code Formatter...31
CodeGear..5
CommandType...220
Compiler...103
compiler version.......................................104
Component Editor Pane.............................37
Component Toolbar...................................39
conflicting gestures...................................177
CPU view..50
CreateComObject......................................137
CreateTextFormat.....................................152
cross-platform...113
Ctrl + <period>..23
Custom Gestures.......................................174
D2D1ColorF..147
Daniel Wischnewski.................................136
Daniele Teti..8, 232
Data Explorer...216
DataSnap. . .211, 214, 216, 218, 221, 223, 228,

250, 281, 292, 306
DataSnap Filters Compendium...............232
DataSource...180
dbExpress...199, 208
DBGrid.................157, 179pp., 202, 204, 227
dbxdrivers.ini...210
Debug Inspector...49
Debugger..47
Debugger Visualizers..................................53
Dee Elling...20
DefaultFont...127
delayed...110, 133p.
Delayed Loading.......................................109
DELETE..298p.
Dell..166
Delphi 2007 Handbook......6, 126, 129p., 152
Delphi 2009 Handbook......7, 71, 94, 111, 211,

213, 240, 247
Delphi Developer Days...............................10
Description Pane..36
Desktop Windows Manager.....................134
Desktop Windows Manager API..............134
Dieter Kohler..256
Direct2D.............................145, 148, 151, 195
Direct2DCanvas..149
Directive...

$METHODINFO.................................292
$RTTI..66, 70
$SCOPEDENUMS................................111
$StrongLinkTypes.................................70
$WeakLinkRTTI...................................70

Directory Groups.......................................30
DirectWrite..151
DirectX..132, 143
Document Object Model..........................255
DoubleBuffered..128
Douglas Adams...115
DrawBitmap..144
DrawingStyle...202p.
DrawText...144, 152
DSAuthUser..219
DSHTTPService.................................213, 215
DSHTTPServiceAuthenticationManager.218
DSHTTPWebDispatcher......224p., 229, 232,

282, 299
DSProviderConnection.....................212, 227
DSServer...211, 224
DSServerClass.....................211, 215p., 224p.
DSTCPServerTransport....................212, 230
DWriteFactory...151
editor bookmarks.......................................28
EditorMode..204
EExternalException..................................110
efficient code...113
Elastic Margin...192
Electronic Software Delivery......................21
email...10
Embarcadero Technologies..................5, 209
EndDraw...146
Essential Pascal..6
Event Log...49
Example..

ClassCtor...106
CustomGestureTest......................175, 178
D2DGradients.....................................149
D2DIntro...145
DataGestures.......................................182
DbxMulti2010............................202, 209
DebugVisual....................................54, 56
DelayedLoading...................................110
DSnapFilterDemo.......................229, 231
DSnapHttpConsole.............................214

Marco Cantù, Delphi 2010 Handbook

Index - 311

DSnapJson..243
DsnapMethodsCallback......................247
DSnapWebAppDebug.........................225
DWrite..151
EditGestures..172
FileAccess..130
First3Tier2009....................................213
GenericClassCtor.................................108
GeoLocation..266
Gestures01...168
GetOSVersion......................................126
InertiaBall..191
IoFilesInFolder....................................118
JsonMarshal...............................238, 240
JsonTests.....................................235, 237
KeyboardTest......................................184
LargeXml...257
MiniPack...69
MiniSize..68
MoveIP..48
NamedThreads...................................51p.
ObjFromIntf..104
ReadOnlyRecord..................................112
Rest1..275
Rest1Client................................276p., 281
RssClient...264
RtlLists..115p.
RttiAccess..80pp.
RttiAttr..87
RttiAttrib..85p.
RttiIntro..65
ShlObj..140
StopWatchTest.....................................117
TiffViewer..154
TouchMove..................................188, 190
TypeList...74
TypesList....................................71, 73, 77
Win7Libraries......................................140
Win7Taskbar................................136, 139
XmlPersist...93
YahooMaps...268

Execute..248p.
Extended RTTI...64
external viewer...54
F6 key...23
Fabrizio Schiavi..2

Facebook page..10
FileOpenDialog.................................128, 140
FileSaveDialog..128
Filter Wild Cards..24
Filtering..228
finalization..106
Find in Files...30
Firebird...208p., 225
Flip 3D...127, 129
Focused...182
Format Source..32
Fredrik Haglund.......................................130
Gallery..42
Generate DataSnap client classes.............221
Generic Classes...107
generics...114
Geocoding...266
Gesture Manager......................................168
GestureListView................................174, 178
GestureManager......168, 173, 175, 177p., 180
GesturePreview..............................174, 178p.
GestureProvider..179
GestureRecorder.......................................174
Gestures..166, 169
GET...262, 298p.
GetDirectories...119
GetFiles..119, 122
GetHashCode...89
GetPackages..76
GetProcAddress..109
GetTouchInputInfo...................................187
GetTypes..71p.
GetUserDefaultUILanguage.....................159
GlassFrame...128
Google..266, 270
Google groups...10
Gradients..149
GradientStartColor..................................202
Graphical Processing Unit........................143
Henri Gourvest...132
Holger Flick..9
HP...166
HTML...223, 225, 283p., 290, 296, 302, 304
HTTP.212pp., 221, 228, 232, 255, 260p., 285
HTTP Authentication...............................218
HTTP methods...292

Marco Cantù, Delphi 2010 Handbook

312 - Index

HTTPAuthenticate...................................218
HTTPRIO...259
IAppServer...283
ICANN..280
ID2D1Brush..146
ID2D1HwndRenderTarget.......................147
ID2D1RenderTarget.................................144
IDE..19
IDE Insight...23, 25
IdHTTP.....................................261, 264, 286
IdHTTPServer..................................262, 281
IDOMNodeSelect.....................................265
IDWriteFactory...151
IFileOpenDialog.......................................128
IFileSaveDialog...128
IInertiaProcessor......................................191
ImageFormat..154
ImageList..138, 180
IManipulationProcessor...........................191
Implicit...79
In-place Editor...203
Incremental Search....................................29
indent...28
inertia..191, 194
Inertia Manipulation................................190
InitExceptions..107
initialization...106
Input Language...158
Installation Folders....................................21
installation program..................................20
InstallAware..19
Instruction Pointer.....................................47
Int64...201
INTAIDEInsightItem.................................26
Integrated Development Environment......19
Interbase..208, 210
interfacing .NET..131
Internal Translation Manager..................159
Internet Engineering Task Force.............233
Internet Explorer.....................................290
interposer class..204
InvokeOption...259
IObjectArray...132
IOTADebuggerServices..............................55
IOTADebuggerVisualizer...........................57
IOTAIDEInsightService.............................25

IOTANotifier interface...............................26
IOTAThreadNotifier................................57p.
is...104
ISAPI..222
IShellItem..140pp.
IShellLibrary..................................135, 140p.
ITaskbar..135
ITaskbarList..136
IWICBitmap..155
IWICImagingFactory................................155
Jaakko Salmenius.....................................159
JavaScript.....................233, 288p., 300, 304
Jim Tierney..228
Joint Endeavour of Delphi Innovators.....132
jQuery...................288p., 295p., 300pp., 305
JSON.. .233p., 240pp., 244p., 270pp., 284p.,

287, 292p., 302
JSON Converters.....................................240
JSON marshaling.....................................293
KeyCaptions..184
Kylix..113
Layout...184
Lenovo..166
LifeCycle..215
Live Templates...33
LoadResourceModule...............................159
Local Variables...49
localization support..................................113
Location API...163
Lulu...7
MainFontOnTaskbar................................127
MainFormOnTaskbar...............................129
Malcolm Groves...85
manipulation...191
Manipulations..190
Map..268
Maps...268
Marco Breveglieri...9
Marco Cantù...9
Marshaling..237, 243
Mastering Delphi..9
Mastering Delphi 2005............................256
MDSN...188
MessageFont...157
Microsoft SQL Server...............................210
Microsoft XML DOM...............................256

Marco Cantù, Delphi 2010 Handbook

Index - 313

midas.dll...206
MonthCalendar...157
MSBUILD...34
MSDN...126, 191, 193
multi-threaded applications......................50
Multi-Touch......................................164, 186
Multiple Active Results Sets.....................211
MySQL..210
NameThreadForDebugging.......................52
New file dialog box.....................................43
New Items dialog box.................................42
Object Inspector...36
OnAction................................222p., 225, 275
OnDrawDataCell......................................203
OnExecute...174
OnGesture...................168, 170, 172, 174, 178
OnMouseDown...189
OnPaint......................................145, 151, 193
OnTitleClick...202
Open Tools API.....................................25, 55
Open XML..256
OpenDialog.......................................128, 140
Oracle..210
OutputDebugString....................................49
Overlay Icons..138
Packages...76
Paint...203
ParamStr..68
ParseJSONValue......................................237
PathInfo...280
Pawel Glowacki...151
Peter W A Wood...2
Peter Wood...8
PopupActionBar...42
POST...298p.
ProcessInput...231
ProcessOutput..231
ProgressBar.......................................137, 157
Project JEDI...132
Project Manager......................................34p.
Property Editor...157
PtInCircle..114
PTypeInfo...67
published..63
PUT...298p.
Quality Central...203

QueryPerformanceCounter.......................117
Recent Files...41
Regional Settings......................................159
RegisterTouchWindow.............................188
RemoteServer...212
RenderTarget....................................144, 152
Reopen..41
Representational State Transfer..............260
Request...222
Response..222
REST.....212, 253, 255, 260p., 263, 274, 281,

302, 305
Resume..114
RFC 4627..233
road map...5
Roy Fielding...260
RSS..263p.
RTTI...63
Run Time Type Information,.....................63
SaveDialog..128
SAX..257pp.
SAX interface..256
scoped enumerators...........................111, 119
Screen..37, 157
SDK documentation.................................187
Search for forms...22
search panes...29
ServerClassName......................................212
SetOverlayIcon...138
SetProgressState.......................................137
ShellExecuteEx...130
ShellResources...128
ShGetFolderPath...................................118p.
SHGetKnownFolderItem..........................141
ShiftState..186
Single..195
SOAP..254, 259
Sony..166
Sort By..35
SpeedButton..157
SQLConnection..............212p., 221, 227, 243
SQLDataSet..220
SqlServerMethod......................................212
square brackets..84
Standard...169
Standard Gestures.....................................171

Marco Cantù, Delphi 2010 Handbook

314 - Index

Stefan Van As...9
stored..97
Synchronize..53
Tab key...28
tablet support...133
TArray...71
TArray<T>..114
Taskbar Buttons..135
TaskDialog..128
TaskMessageDlg.......................................128
TCanvas..144
TControlState...160
TCP/IP..212
TCustomAttribute.........................84, 89, 113
TCustomGrid...203
TCustomIniFile...114
TDateTime..53
TDBXCallback..248
TDirect2DBrush....................................145p.
TDirect2DCanvas...............144, 147, 149, 151
TDirect2DFont..145
TDirect2DGraphicsObject........................145
TDirect2DPen...145
TDirectory...118
TEditButton..157
TEncoding..237
Terminate...52
TField...200
TFieldType...200
TFile..118
TFilterPredicate.....................................120p.
TGestureCollectionItem...........................169
The Delphi Magazine...............................204
Themes...128
Thread Status View.....................................51
Threads...50

freezing..51
thawing..51

ThumbBarAddButtons.............................139
TIdEncoderMIME....................................231
TIFF..153
TImage..154
timer queue...133
TJSONArray.....................235, 243, 245, 295
TJSONConverter......................................237
TJSONFalse.............................235, 248, 250

TJSONMarshal...239
TJSONNull...235
TJSONNumber.................................235, 245
TJSONObject.........................235, 237p., 294
TJSONPair...235
TJSONString..235
TJSONTrue......................................235, 250
TJSONValue....233, 235, 237pp., 241, 243p.,

249
TList...115
TObject...66
TObjectDictionary....................................293
TObjectList...90
Toolbar..181
ToolsAPI...55
TopStyle4..9
Touch..164, 168
Touch Hardware.......................................165
Touch Keyboard.......................................183
TouchInput...187
TouchKeyboard.................................183, 185
TPath...118, 120
Transformations.......................................154
Translate API...270
TreeView...128
TRegistry...114
TRttiContext...............................65, 71pp., 76
TRttiObject...72
TRttiType..71
TShiftState..160, 186
TSingleField...200
TSQLTimeStampOffsetField...................200
TStopWatch...117
TStreamReader...122
TStreamWriter...257
TStringBuilder..114
TStringList..241
TStringWriter...278
TTextWriter..93, 278
TThread...52, 114
TThumbButton...139
TTimeSpan...117p.
TTouchManager.......................................169
TTouchMessage..189
TTransportFilter.......................................231
TUncertainState..115

Marco Cantù, Delphi 2010 Handbook

Index - 315

TValue...78pp., 205
TVisibilityClasses................................66, 113
TWebAppSockObjectFactory...................224
TWebModule..222
TWebRequest...222
TWebResponse...222
TWICImage..................................132, 154pp.
Twitter account...10
TypInfo...70
UCS4Char...56, 58
unindent...28
unit...

ADOInt...208
AdomCore_4_3..................................256
Contnrs..116
Cor..131
D2D1..132, 151p.
DateUtils..113
DB...200
DBGrids..204
DBXFirebird.......................................209
DBXFirebirdMetaData.......................209
DBXJSON..............................234pp., 287
DBXJSONReflect................................237
Diagnostics...117
Direct2D................................115, 144, 151
Direct3D..132
DSHTTPLayer.............................219, 227
DwmApi...134
DxgiFormat...132
Generics.Collections...........................293
Graphics.......................................144, 154
Grids..203
IOUtils..............................111, 117pp., 122
JPEG..154
Keyboard...183
KnownFolders.....................................140
Manipulations..............................132, 191
Messages..134
MsInkAut...133
msxml..256
mxsml..135
ObjectArray...132
RtsCom..133
Rtti..............64, 70pp., 78, 80, 82, 86, 117
ShellAPI...135

SHFolder..119
ShlObj...........................118, 134, 136, 140
SqlTimSt...200
StructuredQuery..................................133
System..............66pp., 84, 105, 113p., 159
SysUtils...................................68, 107, 115
TimeSpan...117
ToolsAPI..25, 55
TpcShrd...133
Types..114
TypInfo......................................70, 78, 95
Wincodec...132
Windows................................68, 110, 133
WinSpool...135
WMF9..132

UnregisterTouchWindow.........................188
URL..260, 280
Use Unit Dialog..42
Use Units dialog box..................................22
UseLatestCommonDialog........................140
UseLatestCommonDialogs.......................128
User Account Control...............................126
value replacer...54
View Form..22
View Messages..43
View Units dialog box................................22
Virtual Storage..130
Wacom..166
Watches..49
Web App Debugger 223p., 226, 275p., 284p.,

292
Web Services..254
WebBroker...................212, 221pp., 282, 292
WebModule..222
Win32MajorVersion.................................126
Windows 7..........................126, 135, 165, 191
Windows API..126
Windows CE...164
Windows Display Driver Model...............143
Windows Imaging Component.........132, 153
Windows Presentation Foundation.........143
Windows Search.......................................133
Windows Search SDK...............................133
wm_ClipboardUpdate..............................134
wm_Gesture...134
wm_InputLangChange.............................158

Marco Cantù, Delphi 2010 Handbook

316 - Index

wm_InputLanguageChange.....................185
wm_SysCommand....................................139
wm_touch..........................134, 165, 186, 189
XML...................93, 99, 255, 259p., 262, 276
XmlData..257
XMLDocument.........255, 257, 262, 264, 280

XPath..262, 264
Yahoo..268
$RTTI...66
$StrongLinkTypes......................................70
$WeakLinkRTTI...70

Marco Cantù, Delphi 2010 Handbook

Index - 317

Advertisers Index
This is the list of third-party component vendors, database vendors, and part-
ners working with the Delphi community, who are advertising in this book.

• Developer Express, page 17 and 123
• Raize Software, page 45
• Steema Software, page 61
• Gnostice, page 101
• Delphi Developer Days, page 161
• Advantage Database Server, page 198

Marco Cantù, Delphi 2010 Handbook

318 - Index

Web Sites by Marco Cantù
Here is a partial list of the diverse and somewhat unrelated web sites I manage
(or don't manage enough, as some of them are quite old and static) in English
language:
http://www.marcocantu.com
http://blog.marcocantu.com
http://www.thedelphisearch.com
http://www.wintech-italia.com
http://dev.newswhat.com
http://delphi.newswhat.com
http://ajax.marcocantu.com
http://www.delphimentor.com
http://www.socialwebbook.com

Here are other sites in Italian language:
http://www.marcocantu.it
http://www.wintech-italia.it
http://shop.wintech-italia.com
http://www.delphiedintorni.it
http://www.piazzacavalli.net

Personal pages on community sites and micro-blogging sites:
http://twitter.com/marcocantu
http://www.facebook.com/marcocantu
http://www.linkedin.com/in/marcocantu
http://www.librarything.com/profile/MarcoCantu
http://marcocantu.myplaxo.com/

My online shops (where you can buy books, tools, and services) include:
http://sites.fastspring.com/wintechitalia
http://blog.marcocantu.com/bookstore.html
http://shop.wintech-italia.com (Italian)

Marco Cantù, Delphi 2010 Handbook

	Delphi 2010 handbook - Cover
	Marco Cantù - Delphi 2010 Handbook
	Introduction
	My Delphi Handbook Series
	The Delphi 2010 Handbook
	Editor and Tech Reviewers
	Author
	Contact Information

	Table of Contents
	Chapter 1: A Better IDE
	Installation
	Proxy Configuration
	Installation Folders
	First Impressions

	IDE Insight
	Filter Wild Cards
	Advanced: Customizing IDE Insight

	The Delphi 2010 Editor
	The Search Pane
	Searching with Directory Groups
	The Code Formatter
	Live Templates and Code Completion

	The Project Manager
	Build All and Active Project

	The Object Inspector
	The Description Pane
	The Component Editor Pane

	Other IDE Features
	Background Compilation
	The Return of the Component Toolbar
	Many More Recent Files
	Use Unit Dialog
	Updates to the Gallery
	View Messages

	What's Next

	Chapter 2: The Debugger
	Dragging the Instruction Pointer
	Small UI Changes
	Debugging Threads
	Debugger Visualizers
	Advanced: Visualizer Internals
	Building a Value Replacer for UCS4Char

	What's Next

	Chapter 3: Extended RTTI and Attributes
	Extended RTTI
	A First Example
	Compiler Generated Information
	Larger Executable Files
	Weak and Strong Types Linking

	The Rtti Unit
	Rtti Objects Lifetime Management and the TRttiContext record
	A Tree of Classes (and Class Information)
	RTTI for Packages

	The TValue Structure
	Reading a Property with TValue
	Invoking Methods
	Low-Level TValue

	Custom Attributes
	What is an Attribute?
	Attribute Classes and Attribute Declarations
	Browsing Attributes

	RTTI Case Studies
	Attributes for ID and Description
	The Description Attribute Class
	The Sample Classes

	XML Streaming
	The Trivial XML Writer Class
	Classic RTTI-Based Streaming
	Streaming Fields With the New RTTI
	Using Attributes to Customize Streaming

	What's Next

	Chapter 4: More on the Compiler and the RTL
	New Compiler Features
	Version
	Extracting Objects from Interface References
	Class Constructors (and Destructors)
	Class Constructors for Generic Classes

	Delayed Loading of DLL Functions
	Scoped Enumerators
	The With Statement Now Preserves ReadOnly Properties

	New Run Time Library Features
	RTL Trends
	Browsing Existing Units
	Collections and Containers
	Discovering New Units
	Using the TStopWatch Class

	The Input/Output Utilities Unit
	Extracting Subfolders
	Searching Files
	Filtering Sub-folders
	Filtering Files

	What's Next

	Chapter 5: The VCL and Windows 7
	Tech Overview of Windows 7
	Delphi Support for Windows Vista
	Notable Differences Between Vista andWindows 7

	Delphi 2010 Windows API Units
	New API Header Units
	Extended Windows API Headers

	Windows 7 Support
	Working with Taskbar Buttons in Windows 7
	The TaskList Interfaces
	A Progress in the Taskbar
	Overlay Icons
	Task Buttons

	Working with Libraries

	DirectX for Forms
	Direct2D
	Mixed Canvases

	Gradients to the Max (With no Canvas)
	DirectWrite

	Using the Windows ImagingComponent
	WIC Transformations

	Other New VCL Features
	Property Editors for Actions and Dates
	Input Language and Language Libraries
	Minor Incompatibilities with “Growing”Enumerations

	What's Next

	Chapter 6: Touch and Gestures
	From Single Touch to Multi-Touch
	Touch Hardware
	Multi-Touch Pads
	The Theory Behind Gestures
	Towards a Touch-Based UI

	The Gesture Manager of the VCL
	A Basic Gesture Example
	The Standard Gestures
	Gestures and Actions
	Custom Gestures
	Database Gestures

	Touch Keyboard
	Multi-Touch Support
	Handling wm_touch
	Chris Bensen's TouchMove Demo

	Inertia Manipulation (with noTouch)
	What's Next

	Chapter 7: Database Access and DataSnap
	New Field Types and Other CoreDatabase Extensions
	Themes Support and Other DBGrid Extensions
	DBGrid In-place Editor Issues
	Midas DLL Now With Source
	ADO 2.8 Support

	dbExpress in Delphi 2010
	The Firebird Driver
	Updated dbExpress Drivers: Interbase,MySQL, Oracle
	The SQL Server Driver

	DataSnap Updates
	Overview of DataSnap in Delphi 2009
	Overview of DataSnap in Delphi 2010

	DataSnap over HTTP
	A DataSnap HTTP Server with the Wizard
	Testing the Connection in Data Explorer
	HTTP Authentication

	DataSnap WebBroker Integration
	Overview of the WebBroker Architecture
	The DataSnap WebBroker Wizard
	A Client for the Web Server

	Filtering Connections
	Using ZlibCompression
	Creating Custom Filters

	JSON and Object Marshaling
	Introducing JSON
	JSON in Delphi 2010
	Parsing JSON
	Streaming Objects to JSON
	Using JSON Converters and Reverters
	JSON Values and Marshaling in DataSnapServer Methods
	The Server and the Client Applications
	Memory Management for JSON Values
	Passing JSON Values Manually
	Returning an Array of Elements
	Passing a Marshaled Delphi Object

	Server Methods Callbacks
	The Server Side Implementation of a Callback
	The Client Side Implementation of a Callback

	What's Next

	Chapter 8: REST Web Services
	Why Web Services?
	Web Service Technologies: SOAP vs. REST

	XML and SOAP Updates
	XML Processing in Delphi 2010
	Microsoft XML DOM Version 6
	The Alternative Document Object Model
	Updating My LargeXml Application

	SOAP 1.2 Support

	What is REST?
	REST Architecture's Key Points
	The REST Architecture and Delphi
	HTTP, Client and Server
	XML
	XPath

	REST Clients Written in Delphi
	A REST Client for RSS Feeds
	Processing the RSS Data with XPath

	Of Maps and Locations
	Google Geocoding Service
	Resolving Customer Addresses
	Yahoo Maps

	Google Translate API
	A Translation Component

	Building a REST Server
	An Echo Action
	Returning the XML Data of a ClientDataSet
	Returning a List of Customers

	Building a DataSnap REST Server
	Accessing the REST Server with a Browser
	Returning Multiple Results
	Calling the REST Server from a VCL Client
	Calling the REST Server From a jQuery Client

	Returning and Updating Objectswith REST HTTP Methods
	Returning JSON Objects and Values
	Listing Objects with a TJSONArray
	Sending the List to the jQuery Web Client atStart-up
	HTTP Methods: POST, PUT, and DELETE
	Editing Data with jQuery

	Building a Database Oriented RESTServer
	REST Server Alternatives
	What's Next

	Index
	Advertisers Index
	Web Sites by Marco Cantù

