
,

"'/

''''
 ' , ..
,\

, H;; , \

Developer
Connection

Recommended Title

The Definitive Guide

O'REILLY® Matt Seu bu,.

lVJ

.'
. '

_
..

Macintosh

O'REILLY®

AppleScript: The Definitive Guide
If you want to know all about AppleScript-the how, where, and why of using it--dig

into AfJfJleScrifJt: The Definitive Guide. It doesn't make the mistake that other books do: it

isn't about scripting this or that paI1icular application, and it doesn't assume that learning

AppleScript is easy or obvious. Instead, the book teaches and documents the language

in a clear and rigorous manner, just as you'd expect with any programming or scripting language.

The book covers AppleScript 1.9.2 and the new Script Editor, released as part of the new version of

Mac OS X Panther. Experienced AppleScripters will love having the most definitive, up-to-date

AppleScript language reference available.

Kot since Danny Goodman's classic AppleScript book has a more complete tome on the language

been published. llere's what early reviewers of the book had to say:

"Having worked with AppleScript for more than 12 years, I honestly thought I knew it inside

out. Matt's book proved me wronglt does a bang-on job of telling you how to get the most

out of AppleScript."

-Mark Alldritt, President, Late Night Software Ltd., Script Debugger Developer

"Matt Neuburg knows AppleScript's ins and outs thoroughly, and is not afraid to point oul

prublems and how tu work around them, as well as its strengths. This book will be of great

interest both to programmers coming to AppleScript from other languages and to scripters

who are already adept atAppleScript but puzzled by its

,ma1 y oddities." Developer

Connection-Paul Berkowitz

Recommended Title
AppleScript.- The Definitive Guide teaches not only how the

Apple Computer, Inc. boldly combined open
AppleScript language works, but also how to use it in all sorts source technologies with its own program

of contexts-in everyday scripts to process automation, as ming efforts to create Mac as x, one of the

most versatile and stable operating systems \\'ell as in AppleScript Studio, in Cocoa, in CGI scripts, and in
now available. In the same spirit, Apple has

combination with Perl and Ruby. Once you know the ins and
joined forces with O'Reilly & Associates,

outs of AppleScript, there's a lot you can do with it, and this Inc. to bring you an indispensable collec

book unlocks the secrets of AppleScript. Regardless of their 	 tion of technical publications. The ADC logo

indicates that the book has been technicallylevel of experience, AppleScripters everywhere will turn to
reviewed by Apple engineers and is recom

this book again and again. mended by the Apple Developer Connection.

http://wwwapp/e.com/deve/oper

Visit O'Reilly on the Web at www.oreil/y.com US $39.95
I S B N 0 -5 9 6 - 0 05 57-1 CAN $61.95

90000

6

http:www.oreil/y.com
http://wwwapp/e.com/deve/oper

AppleScript
The Definitive Guide

Other Macintosh resources from O'Reilly

Related titles AppleWorks 6: The Missing

Manual

Learning Cocoa with

Objective-C

Learning Unix for Mac OS X
Mac OS X for Unix Geeks

Mac OS X Hacks

Mac OS X Hints

Mac OS X in a Nutshell

Mac OS X: The Missing

Manual

Office X for Macintosh: The

Missing Manual

Switching to the Mac: The

Missing Manual

Building Cocoa Applications:

A Step-by-Step Guide

Mac OS X Unwired

Macintosh Books mac. oreilly. com is a complete catalog of O'Reilly's books on the

Resource Center Apple Macintosh and related technologies, including sample

chapters and code examples.

A popular watering hole for Macintosh developers and power

users, the Mac DevCenter focuses on pure Mac OS X and its re

lated technologies, including Cocoa, Java, AppleScript, and

Apache, to name just a few. It's also keenly interested in all the

spokes of the digital hub, with special attention paid to digital

photography, digital video, MP3 music, and QuickTime.

Conferences O'Reilly & Associates brings diverse innovators together to nur

ture the ideas that spark revolutionary industries. We specialize

in documenting the latest tools and systems, translating the in

novator's knowledge into useful skills for those in the trenches.

Visit conferences. oreilly. com for our upcoming events.

Safari Bookshelf <safari .oreilly.com) is the premier online refer
ence library for programmers and IT professionals. Conduct

searches across more than 1,000 books. Subscribers can zero in

on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim
ply flip to the page you need. Try it today with a free trial.

AppleScript
The Definitive Guide

Matt Neuburg

O'REILLye
Beijing • Cambridge· Farnham· Koln • Paris· Sebastopol • Taipei • Tokyo

AppleScript: The Definitive Guide
by Matt Neuburg

Copyright © 2004 O'Reilly &: Associates, Inc. All rights reserved.
Printed in the United States of America.

Published by O'Reilly &: Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly &: Associates books may be purchased for educational, business, or sales promotional
use. Online editions are also available for most titles (safari .oreilly.com) . For more information,
contact our corporatelinstitutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor:

Production Editor:

(over Designer:

Interior Designer:

Printing History:

Chuck Toporek

Genevieve d'Entremont

Ellie Volckhausen

Melanie Wang

November 2003: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered
trademarks of O'Reilly &: Associates, Inc. AppleScript: The Definitive Guide, the image of a Boston
terrier, and related trade dress are trademarks of O'Reilly &: Associates, Inc.

Apple Computer, Inc., boldly combined open source technologies with its own programming
efforts to create Mac OS X, one of the most versatile and stable operating systems now available.
In the same spirit, Apple has joined forces with O'Reilly &: Associates, Inc., to bring you an
indispensable collection of technical publications. The ADC logo indicates that the book has been
technically reviewed by Apple engineers and is recommended by the Apple Developer
Connection.

Apple, the Apple logo, AppleScript, AppleScript Studio, AppleTalk, AppleWorks, Aqua, Carbon,
Cocoa, ColorSync, Finder, FireWire, iBook, iMac, Inkwell, iPod, .Mac, Mac, Mac logo,
Macintosh, PowerBook, QuickTime, QuickTime logo, Rendezvous, and Sherlock are trademarks
of Apple Computer, Inc., registered in the U.S. and other countries. The "keyboard" Apple logo
(.) is used with permission of Apple Computer, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O'Reilly &: Associates,
Inc. was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 0-596-00557-1
[M]

Table of Contents

Preface . xi

Part I. AppleScript Overview

1. Ways to Use AppleScript . 3
The Nature and Purpose of AppleScript 3
Is This Application Scriptable? 5
Calculation and Repetition 6
Reduction
Customization
Combining Specialties

8
10
10

2. Places to Use AppleScript . 16
Script Editor 17
Scripting Environment
Internally Scriptable Application
Script Runner
Automatic Location
Application
Unix

22
23
28
29
31
37

3. The AppleScript Experience . 39
The Problem 39
A Day in the Life
Conclusions, Lessons, and Advice

41
62

v

4. Basic Concepts . 6S
Apple Event 65
The Open Scripting Architecture 73
Script
Compiling and Decompiling
Script Text File
Applet and Droplet
Scripting Addition
Dictionary
Scriptable, Recordable, Attachable

Part II. The AppleScript Language

77
80
86
88
89
90
92

S. Introducing AppleScript . 97
A "Little Language" 97
Extensibility and Its Perils 98
The "English-likeness" Monster 99
Object-likeness 101
LISP-likeness 102
The Learning Curve 103

6. Syntactic Ground of Being . 104
Lines
Result
Comments
Abbreviations and Synonyms
Blocks
The

104
106
109
110
111
112

7. Variables . 113
Assignment and Retrieval

Declaration and Definition of Variables
Variable Names
Scoping of Variables
Script Properties
Lifetime of Variables

vi I Table of Contents

113
115
117
120
131
137

8. Handlers 140
Returned Value
Parameters
Syntax of Defining and Calling a Handler
Pass By Reference
Scoping of Handlers
Handlers as Values

14 1
143
145
148
15 0
155

9. Script Objects 159
Scoping of Script Objects 160
Top-Level Entities
Script Obj ect's Run Handler
Handler Calls
Script Obj ects as Values
Compiled Script Files as Script Objects
Inheritance

162
164
164
166
172
178

10. Objects .. 184
Class 185
Target
Get
It
Me
Properties and Elements
Element Specifiers
Properties of Multiple References
Object String Specifier

185
191
192
194
195
197
204
204

11. References... 206
References as Incantations 207
Creating a Reference 209
Identifying References 210
Dereferencing a Reference
Creating References to Local Variables
Reference as Parameter

211
215
215

12. Control .. 218
Branching
Looping

218
220

Table of Contents I vii

Tell
Using Terms From
With
Considering/Ignoring
Errors
Second-Level Evaluation

228
229
232
234
236
242

13. Datatypes . 243
Boolean 243
Integer, Real, and Number 244
Date 245
String 247
Unicode Text 249
Styled Text 25 1
File 25 1
Alias 25 3
Application 255
Machine 255
Data 25 6
List 256
Record 261

14. Coercions . 264
Implicit Coercion 264
Explicit Coercion
Boolean Coercions
String, Number and Date Coercions
File Coercions
List Coercions
Unit Conversions

265
267
268
268
269
270

15. Operators . 272
Arithmetic Operators 272
Boolean Operators 274
Comparison Operators
Containment Operators
Concatenation Operator
Parentheses
Who Performs an Operation

viii I Table of Contents

275
277
279
281
282

16. Global Properties . 285
Strings 286
Numbers
Miscellaneous

287
288

17. Constants.. 289

18. Commands 292
Application Commands
Logging Commands

Part III. AppleScript In Action

292
293

19. Dictionaries 297
Resolution of Terminology 298
Resolution Difficulties 301
What's in a Dictionary 309
The 'aeut' Resource 320
Inadequacies of the Dictionary 321

20. Scripting Additions 332
Pros and Cons of Scripting Additions 332
Scripting Additions and Speed 333
Classic Scripting Additions
Loading Scripting Additions
Standard Scripting Addition Commands

334
335
336

21. Scriptable Applications 349
Targeting Scriptable Applications 349
Some Scriptable Applications 353

22. Unscriptable Applications 356
Getting Started with Accessibility 357
GUI Scripting Examples 35 8

23. Unix 362
Do Shell Script
Osascript

362
365

Table of Contents I ix

24. Writing Applications . 370
��� 3m
Digital Hub Scripting 377
Folder Actions 377
CGI Application 379
AppleScript Studio 382

Part IV. Appendixes

A. The 'aeut' Resource . 405

B. Tools and Resources . 424

Index . 431

x I Table of Contents

Preface

From a technological and historical perspective, AppleScript is one of the greatest
innovations and distinguishing features of the Mac as. The System provides not
only a mechanism for applications to communicate with one another, ordering one
another about, getting information from one another, and generally collaborating to
avail themselves of one another's strengths and abilities, but also a way for ordinary
users to take advantage of this mechanism programmatically. The user can write and
execute code in the AppleScript language as a way of automating the behavior of
applications, reducing many steps to one, throwing the burden of repetition and cal
culation onto the computer, and combining the powers of multiple applications into
a seamless united workflow. AppleScript is a labor-saving device that lets ordinary
users program the computer for themselves; and, after all, labor-saving and program
ming are just what computers are all about.

Although AppleScript was long treated by Apple itself as something of an unwanted,
troublesome step-child-and has even (according to apocryphal legend) at times
come perilously near being tossed onto the scrapheap-it has lately prospered, and is
now perhaps entering a kind of Golden Age. AppleScript has been embraced and
acknowledged and is starting to take its rightful place in the firmament of Apple 's
star technologies . It is noticed on Apple's own web pages as a major aspect of Mac
as x (for example, see http://www.apple.com/macosx/overview/). The Script Editor
has been rewritten as a Cocoa application. Scripts may be run from a System-wide
menu. More and more of Apple's own new applications are scriptable . Integration
with Unix scripting has been provided. AppleScript can even be used to drive appli
cations that are not technically scriptable at all. And users can actually write a genu
ine application with a full-fledged Aqua user interface-windows, menus, buttons,
text fields, scrolling lists, and more-using AppleScript as their programming lan
guage, thanks to the astounding AppleScript Studio . And it all comes for free as part
of Mac as X.

In this context, with interest in AppleScript waxing anew, the need for a complete
explanatory manual and reference is greater than ever. In that spirit, this book is
offered. It is hoped that it will prove helpful to AppleScript's beginning and veteran

xi

users alike . No prior knowledge of AppleScript is assumed, nor any previous pro
gramming experience, so that the complete beginner can use this book to learn
AppleScript from the ground up; at the same time, the book aims at such a degree of
technical depth and completeness as will satisfy the needs of those who wish only to
consult it to check some point of syntax, or to gain a firmer understanding of such
advanced arcana as how the scoping rules operate, how terminology is resolved, or
what an Apple event really is.

The Scope of This Book
What should be the scope of a book about AppleScript? This is a tricky problem, and
one that earlier books , in my view, have not always dealt with satisfactorily. The
trouble is that AppleScript is really two subjects . First, there is what one may call
AppleScript itself, a "little language, " not particularly useful or powerful on its own,
but ready to talk to scriptable applications and to take advantage of their utility and
power. Second, there is AppleScript as extended and implemented by particular
scriptable applications : how to use AppleScript to talk to the Finder, how to use
AppleScript to talk to Adobe Photoshop, how to use AppleScript to talk to
QuarkXPress, and so forth.

On the whole, this book makes no attempt to treat this second aspect of Apple
Script. This may be surprising to readers accustomed to some earlier books , but I
believe it to be the right decision nonetheless . AppleScript as implemented by partic
ular applications is a massive, encyclopedic subject. It would be easy to write an
entire book of techniques, tricks, and tips for scripting just one major application.
And the scope of any attempt to do this for every scriptable application would be
open-ended, since it is impossible to know what scriptable applications the reader
has or might acquire , and since new applications, any of which might be scriptable,
are being developed all the time. Also, such treatment is largely unnecessary. Every
scriptable application includes a dictionary telling the user about how it extends the
language; and the user can employ this, together with trial and error, and possibly
examples from documentation and the Internet, to obtain pretty fair mastery over
the art of scripting that application. There might even be books on the exact subject
the reader is interested in. (Thus, for example, it is far better that the reader should
consult Ethan Wilde's book Adobe Illustrator Scripting with Visual Basic and Apple
Script than that the present book should attempt to compress a treatment of the
same material into some reduced and undoubtedly inadequate form.)

My choice, therefore, i s between concisely teaching the reader to fish and giving the
reader a large pile of possibly quite unnecessary fish. Readers who know anything of
my work (or anything about fish) will know instantly which choice I would make!
Rather than trying to encompass the details of scripting every application, my approach
in this book has been to explain the AppleScript language itself, and to describe how a
dictionary works and what a user can and can't learn from it, providing examples from

xii I Preface

across the range of applications that I actually use, so that the reader will be mentally
equipped and educated and able independently to study and experiment with scripting
any application.

Besides, books about the first aspect of AppleScript-about AppleScript itself-have
been surprisingly few and far between. It is here that the need exists. The fact is that I
have never seen the AppleScript language taught, explained, and documented in
what I would regard as a clear, rigorous, and helpful way. Considering how long
AppleScript has been around, it is hard to explain this lack. It may have partly to do
with the lack of clear explanation from Apple itself. After all, Apple wrote Apple
Script, and only the folks at Apple have access to AppleScript 's inner workings . Yet
the only Apple manual of AppleScript, the AppleScript Language Guide, generally
lacks explanatory depth.

There is a kind of unspoken myth-we may call it the "ease of use" myth-that tries
to give the impression that AppleScript is so easy and intuitive that it doesn' t really
need explanation. Apple possibly didn't want users to see AppleScript as a full
fledged programming language, with all the precision, complexity, and sophistica
tion that this entails, because that would be something that users would have to
learn, exercising those parts of their brain to which a Macintosh, with its windows
and icons and colorful buttons, isn't supposed to appeal. Instead, AppleScript is sup
posed to be so simple, so thin, so easy, so English-like, so intuitive, that there is
hardly anything to learn in the first place; just pick up an application and its dictio
nary and presto, you're ready to script it.

Nothing could be further from the truth. First you must learn the language; only
then will a dictionary make sense and be useful. AppleScript is not a mere veneer, an
intuitive and obvious "glue" for hooking together the terms from an application's
dictionary into sentences that will script that application as the user desires. On the
contrary, it's a real programming language-a really interesting programming lan
guage (not least because it's fairly cranky, opaque, quirky, and oddly designed) . To
conceal this fact from the potential user of AppleScript does that user no favor what
ever. Every day I see on the Internet users who are starting AppleScript, who seem to
imagine that they're j ust going to "pick it up "-that their AppleScript code will
somehow just write itself. Well, it won't . A beginning user who expects to cut to the
chase, to pick up an application's dictionary and just start scripting, is likely to give
up in frustration. As Socrates said of virtue, AppleScript isn't j ust something we all
somehow are born knowing; it must be learned, and therefore it must be taught.
There is nothing about AppleScript that makes it any less susceptible to scrutiny,
careful description, and ordered, Euclidean explanation than any other language.

In this light, I have written the AppleScript book that I have for so long myself
wished to read. Also, I have always found myself rather confused about Apple
Script-I could use it with reasonable effectiveness, but I was always somewhat hazy
on the details-so writing this book has been an opportunity for me to dispel my

Preface I xiii

own confusion. The result is a reasoned, rigorous, step-by-step presentation of the
AppleScript language, intended for instruction and for reference, a studious, patient,
detailed, ordered exposition and compendium of the facts . This book presents
AppleScript as a programmer, a student, a thinker would learn it. In short, it's just
what I 've always wanted! This book has helped me tremendously: before I wrote it, I
didn' t really quite understand AppleScript; now I believe I do. I hope reading it will
do the same for you.

Versions
Things change. All things change. And software often changes faster than the ability
of printed books to keep up with it. It may therefore be useful for the reader to know
what versions of software I was looking at when I wrote this book. The first draft was
written using Mac as x 10. 2. 6 ("Jaguar") and AppleScript 1. 9. 1. While polishing
the final draft I had access to a preview version of Mac as x 10. 3 ("Panther") , with
AppleScript 1. 9. 2 and Script Editor 2. 0 v41, and the book treats these as the stan
dard. Screen shots were redone using Panther. There may be further changes in Pan
ther, and possibly even in AppleScript, by the time the book goes to print, but if so, i t
seems unlikely that these will affect the book's content; still, the reader should be
alert to the possibility of slight discrepancies between what I describe and the now
current state of things .

The book is written entirely from the perspective of Mac as X. This is a deliberate
design decision. There is an important sense in which Mac as 9 really is frozen, if
not downright moribund: very few new applications of any importance are being
written for it, it is not likely to evolve further to any significant extent, and Apple has
begun to produce computers which won't even boot in it. If you are not using Mac
as x, this book might still be useful to you, but please keep in mind that it isn ' t
geared primarily to your situation.

How This Book Is Organized
This book is divided into four sections :

Part I, AppleScript Overview
Part I consists of general introductory material, explaining what AppleScript is, moti
vating the reader with examples of various ways and means for putting AppleScript
to use, and defining fundamental terms that the reader will need to understand.

Chapter 1, Ways to Use AppleScript
Provides some motivational guidelines and real-life examples intended to answer
such big existential questions as what AppleScript is good for and why you
would want to use it anyway.

xiv I Preface

Chapter 2, Places to Use AppleScript
Surveys the various areas of the computer where AppleScript can be employed
for example, by running a script in the Script Editor, by calling into AppleScript
from some application's internal scripting language, or by way of a Unix script
ing language like Perl.

Chapter 3, The AppleScript Experience
A brief hands-on tutorial or walk-though, illustrating what it's like to plan and
implement a task using AppleScript in real life .

Chapter 4 , Basic Concepts
An explanation of the technologies underlying AppleScript and a glossary of fun
damental terms . This is where the technical discussion starts . If you already
know something about AppleScript and don't need to be motivated to use or
learn it, you might skim or skip the first three chapters, but you should defi
nitely read this one, since the rest of the book depends upon it.

Part II, The AppleScript Language
Part II develops AppleScript as a programming language. Learners should read the
chapters in order; experienced users may employ this section as a linguistic reference.

Chapter 5 , Introducing AppleScript
A subj ective description of what AppleScript is like as a language, just to give
you a sense of what you're getting into .

Chapter 6, Syntactic Ground of Being
Describes some fundamental externals of the language, such as lines and
comments .

Chapter 7 , Variables
Discusses aspects of variables, such as how to assign and declare them , and how
scoping and persistence work.

Chapter 8, Handlers
Discusses handlers (subroutines)-in particular, such matters as how to declare
and call them , how their scoping works, and how they operate as values .

Chapter 9, Script Objects
Discusses script obj ects (scripts within scripts) , including how to refer to them,
how their scoping works, how to load and save them dynamically, and how
inheritance works.

Taken together, Chapters 6 through 9 comprise a survey of the constituent parts of
an AppleScript program.

Chapter 10, Objects
Describes how obj ects and their attributes (properties and elements) are referred
to .

Preface I xv

Chapter 11, References
Describes how the way in which objects and their attributes are referred to can
be encapsulated into a value.

Chapter 12, Control

Surveys the linguistic structures for determining the flow of an AppleScript pro
gram, such as branching, looping, and error handling.

Chapter 13, Datatypes
A guide to the built-in classes of variable value (such as integers, strings, lists ,
and records) and how they work.

Chapter 14, Coercions
Explains how one datatype may be turned into another datatype explicitly or
implicitly.

Chapter 15, Operators

Catalogues the various ways to test and combine values, such as addition, com
parison, and concatenation.

Chapter 16, Global Properties
Catalogues some built-in variables, such as pi. (You didn' t know pi was a vari
able, did you?)

Chapter 17, Constants
Catalogues some built-in enumerations and classes that behave as reserved
words.

Chapter 18, Commands
Catalogues those few built-in verbs not previously covered.

Part III, AppleScript in Action
Part III describes aspects of AppleScript in practice and in relation to the wider
world.

Chapter 19, Dictionaries
Talks about the mechanism whereby applications make themselves scriptable
through AppleScript by extending the AppleScript language, and explains how
terminology is resolved, how to read a dictionary, and what a dictionary is good
for and not good for .

Chapter 20, Scripting Additions
Talks about code resources that extend the AppleScript language without refer
ence to any particular application. It surveys the built-in scripting additions and
provides some additional technical details .

Chapter 21, Scriptable Applications
Explains how to drive applications with AppleScript, whether they are on the
same or a different computer, including certain kinds of web services. It also

xvi I Preface

mentions a few useful scriptable applications that come with Mac as x but that
the reader might not otherwise be aware of.

Chapter 22, Unscriptable Applications
Talks about how AppleScript can be used together with the System's Accessibil
ity API to automate the interface of applications that are not directly scriptable .

Chapter 23, Unix
Talks about how AppleScript can call the Unix shell command line and how
Unix scripting languages can call AppleScript.

Chapter 24, Writing Applications
Discusses ways to turn an AppleScript program into a standalone application ,
ranging from a simple applet to a full-fledged application with a true user inter
face written in AppleScript Studio .

Part IV, Appendixes
Appendix A, The 'aeut' Resource

Presents a listing of AppleScript's own hidden dictionary, where the terms of the
language itself are embodied.

Appendix B , Tools and Resources
A list of references and further readings . If this book mentions an application
you've never heard of, or you want to know how to learn more about Apple
Script, this appendix is the place to come.

Conventions Used in This Book
The following conventions are used in this book:

Italic
Used for file and folder names, URLs, and new terms when they are defined

Constant width

Used for code examples and the names of variables, handlers , and commands

Constant width italic
Used for placeholders in code, where the programmer would supply the actual
name of something

Constant width bold
Used in code examples, for user input from the command line; often seen in con
junction with $, which symbolizes the shell prompt

- - code comment in italic

Used in code examples , for my comments to the reader about the code or its
effect

Preface I xvii

-- code comment in bold
Used in code examples, to represent the result (output) of executing the line

vertical bar I
Used in syntax templates to indicate alternatives

[square brackets]

Used in syntax templates to indicate that something is optional

This character indicates a line of code that continues; these lines will be unbro
ken in your code but were too long to fit on the printed pages of this book.

" .. , [B" This icon represents a tip relating to the nearby text .
...
,,� .. ; ..

" ",\

This icon represents a warning relating to the nearby text.

How to Contact Us
The book-writing process is long and arduous, and the examples have been tested
and retested. However, mistakes do creep in from time to time. If you find any errors
in the text or code examples, please write to :

O 'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international/local)
707-829-0104 (fax)

We have a web page for the book, where we list any additional information. You can
access this page at:

http://www.oreilly.comicataiog/appiescpttdg/

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, software, Resource Centers ,
and the O'Reilly Network, see our web site at:

http://www.oreilly.com

xviii I Preface

Acknowledgments
In a completely just world, Mark Alldritt of Late Night Software would probably
have his name on the cover of this book. In fact, he really ought to have written the
book himself, since in all probability no one outside of Apple knows more about
AppleScript than he does . I have benefited from his knowledge in three ways : he
wrote Script Debugger, without which much of AppleScript's behavior would have
remained opaque to me; he provided untiring assistance and advice while I was writ
ing; and he performed a thorough and valuable technical review of the first draft.

Paul Berkowitz also acted as technical reviewer, a task which he performed with bril
liance and insight, combining a long and thoughtful experience of AppleScript with
diligence and critical perspicacity. He corrected many errors of fact, and gave excel
lent advice from the perspective of a model reader. Those who find this book useful
should know that much of the credit is his . Chuck Sholdt also made several helpful
suggestions and provided much-needed encouragement.

All the members of the AppleScript team at Apple who were present at Apple 's 2003
WWDC were extremely generous with their time despite the many other demands
upon it. Some of them provided important technical advice that has greatly increased
the book's accuracy.

It remains only to add that the responsibility where I have not taken or understood
the advice of my technical reviewers must rest with me.

My editor, Chuck Toporek, did all the right things . He assigned me the book, he
monitored the signals emerging from Apple, he enabled me to attend Apple's 2003
WWDC and put me in touch with the AppleScript team, and he displayed forbear
ance, confidence, and patience while I was writing, leaving me to wrestle with prob
lems of form and content on my own, never criticizing an early draft that he knew I
would eventually rip to shreds myself, while at the same time providing encourage
ment when needed and advice when requested. Having as copyeditor my oId friend
Nancy Kotary made this stage of the process a pleasure instead of a trial; she brought
to the task her characteristic combination of sound judgement, sharp eyes, and a
kind heart, and a number of passages read more clearly thanks to her intervention.
Genevieve d'Entremont oversaw the production in a thoroughly professional man
ner. My thanks to them and to all at O'Reilly &: Associates who participated in the
making of this book.

Preface I xix

PART I

AppleScript Overview

Part I introduces AppleScript. What is it? How does it work? Where can I use it?
What can I do with it? These are the sorts of questions this part answers.

If you already have a notion of what AppleScript is and just want to get on with
studying the language, you can skip most of this section; but you should read
Chapter 4, because it contains fundamental information and definitions that are not
repeated later, and on which the rest of the book depends.

The chapters are :

Chapter 1, Ways to Use AppleScript

Chapter 2, Places to Use AppleScript

Chapter 3, The AppleScript Experience

Chapter 4, Basic Concepts

CHAPTER 1

Ways to Use AppleScript

If you've never used AppleScript before , you probably have two questions at the out
set. You might like to know: "What is AppleScript?" And you also might like to
know: "And why should I care, anyway?" This chapter gives general answers to both
questions, by focusing on the question : "What is AppleScript for?" The chapter clas
sifies the main kinds of use for AppleScript, and provides some examples showing
AppleScript being put to these various kinds of use.

The purpose of this chapter is as much motivational as informative . By demonstrat
ing AppleScript in action, in some typical real-life contexts , I hope to get you think
ing by extension about ways in which you might now or in the future want to use
AppleScript in your own life . If you can mentally formulate some appropriate tasks
you actually want to perform with AppleScript, you'll have more reason to learn it,
and you'll learn it more easily and more enj oyably.

The Nature and Purpose of AppleScript
As you know, you've got various applications on your computer, and you typically
make them do things by choosing menu items and clicking buttons and generally
wielding the mouse and keyboard in the usual way; and you get information from
them by reading it off the screen, or you can communicate information from one
application to another by copying and pasting.

With AppleScript, you can make applications do things, not with the mouse and
keyboard and screen, but programmatically-by writing and executing a little pro
gram that gives an application commands and fetches information from it. In the
chain of actions that you make the application perform, the program that you write
takes the place of your brain; the program's power to give commands to the applica
tion takes the place of your hands on the mouse and keyboard, and its power to ask
the application questions takes the place of your eyes reading the screen . Thus, you
can automate the sorts of things you're accustomed to making applications do man
ually. Instead of your doing something with the mouse, then reading the screen, then

3

thinking about what this means and what you should do next, and so forth, the com
puter does the doing, the reading, and the thinking. This means that your hands and
eyes and brain are freed from having to perform repetitive or tiresome activities bet
ter suited to the computer itself.

Suppose, for example, you've got a folder full of image files and you want to change
their names in a systematic way to imageOl.jpg, image02.jpg, and so forth. It isn ' t as
if you don't know how to do this. You select the first image file with the mouse,
press Return to start editing its name, type imageOl. j pg , and press Return again.
Now you select the next image file with mouse, and do it again. The business of
doing it again rapidly becomes tiresome and error-prone. You have to remember
where you are ("What was the number I assigned to the previous image file I
renamed?") , think what to do next ("What do I get when I add 1 to the previous
number?") , and do it (click, Return, type, Return) . It isn ' t long before you're making
mistakes clicking or typing, or your eyes are starting to go out of focus, or you are
just plain bored out of your skull .

How many files would there have to be before you'd regard this as a daunting or bor
ing or error-prone task? A thousand? A hundred? To me, the prospect of manually
renaming even ten files in this way seems an annoying waste of my time and brain
power. I 've got better things to do than repetitively to click and type and add I! With
AppleScript, you can just write a little program that accomplishes the same thing
automatically, and it doesn't matter how many files the folder contains-the pro
gram will do the job for you, and it won't make any mistakes.

And that, of course, is just a tiny example. When I was editing Mac Tech magazine,
AppleScript was an essential part of our workflow; we had massive tasks, tying
together several major applications such as Microsoft Word and QuarkXPress, with
information moving from one application and being fed into another and then being
formatted and prepared in all sorts of clever, complicated ways-and these tasks
were automated, freeing the human user from the burdens of tedium and accuracy
and casting those burdens onto the computer itself, thanks to AppleScript.

The name "AppleScript" denotes both the language in which you write the program
that automates your existing applications and the underlying System-level technol
ogy that supports and executes it. AppleScript is present as part of the System. You
get it for free, so you may as well take advantage of it. And you know it will be
present on any Mac OS computer, so if you write an AppleScript program that might
be useful to others , you can share it. Or, just the other way around, you can find lots
of AppleScript programs floating around on the Internet that might be useful to you.
There 's an entire community and culture of AppleScript users, sharing their work
and benefiting from one another's experience.

I don' t want to give the impression, however, that AppleScript lets you tell every
application programmatically to do everything it is capable of. That, alas, is not so. It
lets you tell some applications programmatically to do some of the things they are

4 I Chapter 1 : Ways to Use AppleScript

capable of. The way AppleScript works is by sending messages to the applications you
are automating; these messages are called Apple events. You cannot send just any old
Apple event to any old application. (Well, you can, but it might not have any effect.)
The application you're sending an Apple event to must recognize that Apple event
and must have a way of responding to it. Such an application is said to be scriptable.

Based on these considerations, we can now enunciate some general principles about
what AppleScript is good for :

• AppleScript is appropriate primarily when you have a scriptable application that
you want to automate .

• AppleScript i s good for expressing calculated and repetitive activity.

• AppleScript is a good means of reduction, combining multiple s teps into a single
operation.

• AppleScript is a way of customizing an application.

• AppleScript gives you the opportunity to combine specialties (you could also
think of this as divide and conquer): by automating more than one application,
you make them work together, letting each application do what it's good at and
uniting their several powers .

In general, if you're looking for ways to use AppleScript, my advice is to leave your
mental annoyance meter turned on. When the computer annoys you, that's a sign
that perhaps you should call upon AppleScript to help you . Does something feel
slow, repetitious, clumsy, boring, error-prone? Do you feel that a program isn ' t quite
doing what you want? Does a series of steps need to be reduced to one? Has the com
puter got you trained, like some sort of laboratory animal, to perform a sequence of
set tasks in a certain way? That's just not right. The computer should work for you
not the other way round! Maybe AppleScript can turn the tables.

Is This Application Scriptable?
Our first rule of thumb for when AppleScript is appropriate is that you should have a
scriptable application that you want to automate with it. That's because Apple
Script, although it is a genuine programming language with some interesting and
useful features, is intended for use with other applications, which are expected to
provide the real muscle . Thus AppleScript's numeric abilities are limited (it has no
built-in trigonometric or logarithmic functions) and its text processing facilities are
fairly rudimentary (it doesn' t support regular expressions and isn ' t even very good at
extracting substrings) . So, for example, if I wanted to remove a text file' s HTML
markup, or extract the headers and bodies of all the messages in an .mbox file, I'd be
far happier using Perl . On the other hand, AppleScript can drive Perl (and vice
versa), so in your AppleScript code you can take advantage of Perl 's powers (and vice
versa) ; we'll see several examples later in the book. Thus success might simply be a
matter of combining specialties appropriately.

Is This Application Scriptable? I 5

Using AppleScript with a scriptable application is not itself a panacea. First you need
a scriptable application that has the capabilities to do what you want. And even such
an application might not provide a way to script those particular capabilities. Still,
you can't worry about that if you don't know whether an application is scriptable in
the first place!

Here's the most reliable way to ascertain whether an application is scriptable. Start
up Apple' s Script E}iitor program. (It's in IApplicationsIAppleScript.) Choose File �
Open Dictionary. This shows you a list of applications on your computer that the
Script Editor thinks are scriptable. Initially, this list might omit some applications, so
you can press the Browse button to locate an application using the standard Open
dialog. If an application is dimmed here, it isn't scriptable. To double-check, choose
and open an application. If a Dictionary window appears , the application is proba
bly scriptable; but this could be a false positive. Make sure that the left side of the
Dictionary window lists commands other than the "required" commands open ,

print , and quit-that i t lists commands that actually do something. A s a rule of
thumb, the more items you see listed on the left side of the window, the more script
able the application is, though this really is a gross over-simplification. Later in the
book we'll go into much more detail about the Dictionary and what it tells you
(Chapter 19 and Appendix A) .

The scriptable applications I use with some regularity include many of those sup
plied by Apple as part of Mac OS X, such as Address Book, AppleWorks, iCal,
iTunes, Mail, Safari , TextEdit, Apple System Profiler, and the Finder. Then there are
important third-party programs like Microsoft Word and Excel, FileMaker Pro,
Internet Explorer, Interarchy, Mailsmith, BBEdit, StuffIt Deluxe, GraphicConverter,
and Frontier. You might also have QuarkXPress or Photoshop. Of course there are
many others.

It is sometimes possible to drive even a nonscriptable application, by using Apple
Script to simulate a "ghost" user who can physically choose menu items, push but
tons, and so forth. This approach should probably be used only as a last resort , but
it 's important to know about, so I'll demonstrate it later in this chapter, and there' s a
further chapter devoted to it (Chapter 22).

Calculation and Repetition
Computers are good at calculation and repetition-which happen to .be exactly the
things humans are not good at. Humans are liable to calculate inaccurately, and
repetitive activity can make them careless and bored. The whole idea of having a
computer is to have it take over in these situations.

Here's an example. Someone on the Internet writes : "I want to rename a whole lot of
image files based on the names of the folders they're in." One can just picture this

user's eyes glazing over at the thought of doing this by hand. This is just the sort of
thing a computer is for.

6 I Chapter 1 : Ways to Use AppleScript

The task would make a good droplet. A droplet is a kind of applet , which is a little
application you write with AppleScript, such that you can drop the icons of files and
folders onto the droplet's icon in order to process those files and folders in some
way. (See "Applet and Droplet" in Chapter 4, and "Applets " in Chapter 24.) So
here's the AppleScript code for a droplet where you drop a folder onto its icon and it
renames all the files in that folder as the name of the folder followed by a number:

on open folder List
repeat with a Folder in folder List

tell application " Finder"
if kind of a Folder is " Folder " then

my renameStuffIn (a Folder)
end if

end tell
end repeat

end open
on renameStuffIn (theFolder)

set ix to 0
tell application " F inder"

set folderName to name of the Folder
set allNames to name of every item of theFolder
repeat with aName in allNames

set this Item to item aName of the Folder
set ix to ix + 1
set newName to folderName & (ix as string)
try

set name of this Item to newName
end try

end repeat
end tell

end renameStuffIn

The parameter folder List is handed to us as a list of whatever is dropped onto the
droplet. We process each dropped item, starting with a sanity check to make sure it 's
really a folder. The actual renaming is done by extracting the names of the things in
the folder and cycling through those names .

Here's another example. The email client Mailsmith has a spam-reporting feature,
which submits a spam message to the SpamCop service (http://www.spamcop.net).
This service operates in three stages : the user submits the message, via email; Spam
Cop replies with an email message giving a URL; the user goes to that URL in a web
browser and presses a final Submit button . The Report to SpamCop feature in Mail
smith performs the first stage, and SpamCop performs the second; the problem is to
get from the second stage to the third. After a while, I have several email messages
from SpamCop, each containing a URL; I now need to go to all of those URLs in my
browser. To do so, I run the following script:

tell application "Mailsmit h "
s e t allMessages to every mes sage o f incoming mail �

whose s ubject begins with " SpamCop has accepted"
repeat with aMessage in allMessages

set theBody to get contents of content of aMes s age

Calculation and Repetition I 7

set theParas to every paragraph of theBody
repeat with aPara in theParas

if a Para begins with '' http : //spamcop . net/ s c '' then
open location aPara
exit repeat

end if
end repeat

end repeat
end tell

The script finds all messages that come from SpamCop, and in each of those it finds
the line that's the URL I'm supposed to go to and sends that URL to my web
browser with the magic open location command.

Reduction
A script is a means of reduction: it combines multiple steps into a single operation.
Instead of doing one thing, then another, then another, you do just one thing-run
the script. I particularly like using AppleScript for reduction. Having worked out a
series of steps to accomplish a task, I often realize that not only do I not want to have
to go through them all again later, but also I fear I won't even remember them again
later! My AppleScript program remembers the steps for me.

Here's an example . From time to time I have to reboot my computer into Mac as 9.
The drill is : open System Preferences, switch to the Startup Disk pane, click the Mac
as 9 System folder, hold the Option key, click Restart . Too much work! Too many
steps, too much waiting, too much hunting for the right thing to click on, too much
clicking. Here's the script that does it for me : '

try
do shell script ,

" bless -folderg ' Volumes/main/System Folder ' - setOF " ,
password " myPassword" with administrator privileges

tell application " System Events " to restart
end try

I 've got that script saved as an applet, which is a little application written with Apple
Script. To run the script in an applet, you just open the applet like any application .
So this applet is sitting right on my desktop, where I can't miss i t . To restart into
Mac as 9, I just double-click it. Now that's something I can remember.

Here's another example . A journal for which I occasionally write articles requires me
to submit those articles in XML format . It happens that the XML editor I use inserts
line breaks; the magazine doesn't want those. In practice the problem arises only
between < Body> tags . So this BBEdit script post-processes my XML output, removing
the line breaks between < Body> tags just before I send an article off to the magazine :

, This code is inspired by an original from Thomas Neveu; see http://www.nonamescriptware.com.

8 I Chapter 1 : Ways to Use AppleScript

tell application "BBEdit"
activate
repeat

find " < Body> ([\\s\\S J * ?) < /Body> " ,
searching in text 1 of text window 1 ,
options { search mode : grep , starting at top : false ,
wrap around : false, reverse : false, case sens itive : false , '
match words : false, extend selection : false} ,
with selecting match

if not found of the result then
exit repeat

end if
remove line breaks selection of text window 1

end repeat
end tell

There's nothing very complicated about that script, and I don' t use it very often, but
when I do use it, it's tremendously helpful. For one thing, it saves me from having to
remember the regular expression used to do the find. For another, it takes over the
repetition of finding, then removing line breaks, then finding again, then removing
line breaks again, and so forth. (Clearly the notions of reduction and repetition can
be closely allied.) The example may seem very specialized, but that's fine, because
the whole point of AppleScript is that you are the programmer and can write the
code that solves your own real-life problems . And it does illustrate some important
general principles, such as using a scriptable application to process text more power
fully than AppleScript alone can easily do it.

The next example is about URLs. Often, working in some application or other, one
sees a URL and wants to click on it and have the right thing happen : if it 's an http

URL, one's default browser should open and fetch it ; if it's an email address , one's
email program should create a new message to that address ; and so forth . In some
applications, such as a web browser, URLs are automatically clickable in this way;
but in other applications you sometimes have to deal with the URL manually. This
involves starting up the right helper program yourself, and then doing something
with the URL: in a browser, paste it and press Return; in an email program, make a
new message and paste it into the address field. With this AppleScript solution, I just
copy the URL and let the computer do the rest :

tell application " System Events "
set theProc to (get process 1 where i t is frontmost)
tell application " Finder"

activate
delay 1 - - give t ime for clip to convert from Classic
copy (the clipboard) to theUR L
ignoring application responses

try
open location theUR L

end try
end ignoring

end tell

Reduction I 9

set the frontmost of theProc to true
end tell

The switch to the Finder is to force the clipboard contents to convert themselves to a
usable form (and the delay is to give this time to happen) ; this seems to be needed
particularly when working in a Classic application. System Events is called upon at the
end to switch back to the application I was using at the outset. The heart of the script
is the magic open location command, which does the "right thing" with the URL.

Customization
It 's hard to write an application that meets everyone's desires and expectations; per
haps it's impossible . It's not just a matter of features ; it's a matter of psychology. The
software developer can't anticipate exactly how you'd like to use the software . By
making the software scriptable, the developer can greatly reduce this problem.
Instead of berating developers for not including that one menu item that would do
j ust what you want, you get to applaud them for making the application scriptable
and letting you implement the functionality yourself. If an application is scriptable,
there may be much less reason for you to complain that it can't do a certain thing;
quite possibly, by means of scripting, it can.

For example, Mailsmith can filter incoming email messages, and can perform vari
ous actions as part of this filtering process-but saving an email message to disk, as a
text file, is not one of them. Now, you could look at this as meaning that Mailsmith
can't save an email message to a file as part of a filter; but that's not really true,
because Mailsmith can be scripted to save a message to a file. I subscribe to a num
ber of mailing lists in digest form, and I like to save these as files to particular folders
on my hard drive . So I have a script (not shown here) that runs through every mes
sage in the "incoming mail" mailbox, looks to see if it belongs to a mailing list, and if
it does, saves it to the corresponding folder on disk and deletes it from the mailbox.

Some scriptable applications provide a means for customization at an even deeper
level, by letting you modify what happens when you choose one of the application's
own menu items or perform some other action in that application. For example, the
Finder can be set up with Folder Actions that take over when you do things such as
move a file into a certain folder. (See "Automatic Location" in Chapter 2 and "Folder
Actions" in Chapter 24.)

Combining Specialties
Different applications are good at different things . You typically don't perform every
task in a single application. Some applications do attempt to behave as "Swiss army
knives" and be all things to all people (for example, Microsoft Word, a word
processor, includes image-processing facilities) ; but on the whole, applications are

10 I (hapter l : Ways to Use AppleScript

specialized. Very often the point of using AppleScript is to get two or more applica
tions working together. By sharing data, each application can contribute its own par
ticular excellence to an operation's workflow.

Here's an example . In order to design the stop list for a web-based search engine, I
needed to know the most frequently used words in each web page on the · site . The
web pages were easily stripped of their HTML, but then the question was how to
count the occurrences of each word in a file and record the totals for the 30 most fre
quent words . The counting, I decided, could best be done with Ruby, a Unix script
ing language I 'm fond of. I wrote a little Ruby script that could be called from the
command line with a file 's pathname as argument :

! /usr/biniruby
class Histogram

def initialize
@tally = Hash . new(o)

end
def analyze (s)

s . split . each d o I word l
my word = word . downcase . gsub (! [Aa - zO- 9] / , '' '')
@tally[myword] = @tally [myword] + 1 if ! myword . empty ?

end
@tally . sort { I x , y l y [l] < =>X [l] }

end
end
analysis = Histogram . new . analyze (F ile . new(ARGV [o]) . read)

The hash of words and their frequencies has now been sorted by frequency and is sit
ting in the variable analysis . But what to do with this data? It was decided that the
most flexible approach would be to store it in an Excel worksheet for later retrieval,
manipulation, and analysis . So the Ruby script now goes on to hand the data over to
Excel, using AppleScript . Here's the second part of the same Ruby script :

counter = 1
oneline = " "
analysis [O . . 2 9] . each d o l entry l

end

oneline = one line + " set the value of cell 1 of " +
" row #{counter . to_s } to \ "#{entry [o] } \ " \ n "

oneline = o n e line + " set t h e value o f cell 2 o f " +
" row #{counter . to_s } to #{entrY [l] . to_s }\n "

counter = counter + 1

script = «DONE

DONE

tell application "Microsoft Excel "
activate
tell worksheet 1

#{oneline}
end tell

end tell

' osascript -ss - e ' #{ script } "

Combining Specialties I 1 1

The strategy here, typical when using Apple5cript from a Unix script, is to construct
the entire Apple5cript code as a string and then hand it over to osascript for execu
tion. (We'll come back to this in Chapter 23.) The script sets one cell at a time in the
Excel worksheet until a two-by-thirty range of cells is filled up, showing the thirty
most frequently used words and the number of times each occurs (Figure 1-1).

1 2 0
9 1
8 9
8 5�
64
56
52
52
40

-- -_ 3� 3 0
:- - - 3 0

-:::-:L - _ - 3 0 _
I _29�

27
2 6

-__ 26 __
24 -

--24
24
2 3
22

- 22
2 1

.. 1 0 20
20
20

-L : �
Figure 1 - 1 . Data communicated to Excel by Ruby

1 next wrap an Apple5cript frontend around this Ruby script. The reason is that
Apple5cript has the ability to present to the user a dialog from which to choose the
file to be analyzed. 50 it presents this dialog, transforms the pathname of the chosen
file to a Unix-type pathname, and calls the Ruby script with that pathname as
argument :

set thePath to POSIX path of (choose file)
tell application "Microsoft Excel " to Create New document
set s to " ruby -/Oesktop/histoChart . ruby ". & thePath & " " .
do shell script s

At this point someone has a great idea. (I hate when that happens.) It might be use
ful to include in this worksheet a graph of the data. 50 having called the Ruby script,
which has inserted the data into the Excel spreadsheet, the script proceeds to talk to
Excel directly. This is the second half of the Apple5cript code :

tell application "Microsoft Excel"
tell Worksheet 1

12 I Chapter 1 : Ways to Use AppleScript

Select Range "A1 : B30 "
set c to Create New Chart
set Type of c to xlBar
set HasTitle of c to true
set text of Characters of Chartlitle of c to "30 Most Frequent Words "
set Has Legend o f c t o false
ApplyData Labels c Type xlShowLabel without LegendKey
set numAxes to count Axes of c
repeat with ix from 1 to numAxes

set thisAxis to Axis ix of c
set HasMajorGridlines of thisAxis to false
set HasMinorGridlines of thisAxis to false
set HasTitle of thisAxis to false

end repeat
set Size of Font of Data Labels of Series 1 of c to 14
set Ha sAxis of c to { {false, false } , {false , false } }

e n d tell
end tell

First we select the range of cells where we know the Ruby script has just deposited
the data; then we generate and format a chart of that data (Figure 1-2) .

�·are
im- from
� tw � drives
� 10

an
new
this system
app'le
uP<lates have
It
or v.ou be

is
with
as

macintosh on
for
that in

a

30 Most Frequent Words

and
to
of

P9

Figure 1 -2 . Excel chart generated with AppleScript code

the

Let's sum up the example. We start with AppleScript . The script puts up a dialog
where we choose a file (because that's something AppleScript is good at) . The script
takes the pathname of that file and calls the Ruby script. The Ruby script makes a
histogram of word usage in the file (because that's something Ruby is good at) . The

Combining Specialties I 1 3

Ruby script then constructs and calls some AppleScript code to store the first 30
rows of the histogram in Excel (because storing and dealing with this kind of data is
something Excel is good at) . The Ruby script ends, and it's now back to Apple
Script; here, we tell Excel to graph the data (because that's something else Excel is
good at) .

There are many other ways to solve the given problem, but the virtue of this
approach is that it was easy to assemble using the tools , knowledge, and resources I
had on hand. Ruby and Excel and AppleScript were all right there waiting to be used,
so I used them. Furthermore the pieces of the problem were solved one at a time, in
the order shown, without knowing precisely what else I might want to do. Apple
Script thus acts as a kind of flexible glue, allowing me to assemble code modules into
a workflow that performs some larger task.

An interesting variation on the theme of combining specialities arises when one of
the specialized applications isn't on your computer. This is possible because Apple
Script can send messages to remote applications . Details on the different ways this
can be done appear later in this book (Chapter 21). For this example, we'll have the
remote application be a web service . AppleScript supplies a built-in way to talk to
any web service that implements an XML-RPC or SOAP interface.

" ..
,,��,' .

A good clearinghouse for finding SOAP-enabled web services is http://
www.xmethods.net.

L--_��."

Sometimes, in sending an email message, I want to append a random quotation to
the end of the message instead of my normal signature . I happen not to have a ran
dom quotation generator on my computer-and I don't need one, because there are
several on the web . I ' ll just choose one of them for this example.

The script starts by creating a new outgoing email message, using Mailsmith. Then it
goes out on the Web and uses SOAP to fetch today's random quote from a random
quotation web service; it formats the results and inserts them into the email message .

•
tell application "Mailsmith "

s et m to make new message window
set use s ignature of m to false

end tell
set sig to " "
try

tell application ,
.. http : //www . swanandmokashi . com/HomePage/WebServices/QuoteOfTheDay . asmx"

set returnValue to call soap ,
{method name : ,

" GetQuote" , '
method namespace uri : ,

.. http : //www . swanandmokashi . com .. . '
SOAPAction : ,

.. http : //www . swanandmokashi . com/GetQuote .. }

14 I Chapter 1 : Ways to Use AppleScript

end tell
set s ig to return & , , -

set s ig to sig & return & quoteoftheday of returnValue
set sig to sig & return & " "

set s ig to sig & author of returnValue & return
end try
tell application "Mailsmith"

copy sig to after text of m
select insertion point before character 1 of m

end tell

In this example, the call soap command takes a record of three items . That's the
material in curly braces ; an AppleScript record is a list of paired names and values
(Chapter 13) . To learn what the values of those items needed to be, I consulted the
web service 's documentation (see http://www.swanandmokashi.com/HomePagei
WebServicesIQuoteOfTheDay.asmx?op=GetQuote). The result arrives into the vari
able returnValue as another record, consisting of two items called quoteoftheday and
author. The script extracts the two items, formats them into a nice string, and
appends them to the email message back in Mailsmith. If anything goes wrong, it
goes wrong inside a try block, so there's no harm done : an empty string is appended
to the message. The selection point is then set to the start of the message, ready for
me to type. Figure 1-3 shows the result of running the script .

untilled message

I O u •• Slgn.lUr.: ! SI.nd;ud
� [r-' ----------,I ·su�cc I

t 1:"''' : : To �. l ee
Bee

hI

I
No great advance has ever been made in science , politi c s , or rel igion , witholJ1: controversy .

-- lyman Beecher

Figure 1 -3 . Mail message with a quotation supplied by a web service

For another example of combining specialties , see the section " Internally Scriptable
Application" in Chapter 2. In the example there , the tasks of database and mail cli
ent are assigned to two different applications , FileMaker Pro and Mailsmith, so that
each program can do what it does best; the two applications are able to share data,
so that for purposes of a particular task-sending an email message to someone in
the database-they cooperate and act as one.

Combining Specialties I 15

CHAPTER 2

Places to Use AppleScript

In the previous chapter you learned about the kinds of thing you can do with Apple
Script. But where can you do these things? You're going to write and run some
AppleScript code; where are you going to write it, and where are you going to run it?
This chapter answers these questions, by surveying the many areas of your computer
where AppleScript is available to you.

We've seen that the main reason for using AppleScript is in order to drive a script
able application. AppleScript does this by sending messages, which are actually
Apple events , to the scriptable application. So the scriptable application is the
receiver (or target) of these messages; AppleScript, and by extension the host envi
ronment where AppleScript code is being run, is the sender. So this chapter is about
the various kinds of environment you might use as a sender.

As you will see in more detail in Chapter 4, there are three stages in the life of an
AppleScript program:

1. The AppleScript code starts life as text.

2. Then that text is compiled into a different form, one that humans can't read but
that AppleScript can execute . The compiled code can optionally be saved at this
point, as a compiled script file.

3. Finally, the compiled code is executed, or run.

We are really concerned in this chapter only with the last stage-the kinds of place
where compiled AppleScript code can be executed-though it happens that many
such places can also compile AppleScript code, transforming it from raw text into
executable form.

(In general I have had to make up some descriptive terms in order to taxonomize the
kinds of sender described in this chapter, but I define those terms immediately, and I
don't think this makes the taxonomy any less helpful. The example scripts in this
chapter are for the most part deliberately simple and somewhat contrived; they are

1 6

not intended to provide any serious illustration of the actual uses to which Apple
Script might be put. That, after all , was the task of the previous chapter.)

Script Editor
By script editor I don' t mean just Apple's Script Editor application-though that is in
fact an example of a script editor. I mean a dedicated application intended as a gen
eral environment for the user to create, edit, compile , develop, and run AppleScript
code. Typically such a program will have the following features :

• A script can be edited within a convenient interface .

• There i s a facility for displaying the dictionary of any scriptable application, so
that the programmer can learn something about how to speak to that application .

• If a target application is recordable, user actions in that application can be
recorded into a script.

• A script may be compiled.

• A compiled script is formatted ("pretty-printed") according to AppleScript's
internal settings for fonts, syntax-coloring, and so forth.

• A compiled script can be run.

• When a script is run, if it yields a result , that result can be displayed.

• A script can be saved in any of the standard formats : as text, as a compiled
script, or as an applet .

• A script can use any installed OSA language, not just AppleScript .

(Terms in that list that may be strange to you are explained in Chapter 4. That's
where I ' ll formally introduce dictionaries, explain what it means for an application to
be recordable, describe the standard AppleScript file formats , and talk about the
OSA, or Open Scripting Architecture.)

Apple Computer provides a script-editing application of this kind, called (logically
enough) Script Editor. It 's free, and is part of the default installation of Mac OS X. It
is located in IApplicationslAppleScript.

Figure 2-1 shows a very short script being edited in Script Editor. The script has been
compiled using the Compile button, which appears at the center of the toolbar at the
top of the window; thus the script is "pretty-printed" with syntax coloring. The
script has also been run, using the Run button in the toolbar; the result is shown in
the lower half of the window. The script asks the Finder for the names of all
mounted volumes . Technically, the response is a list of strings ; the curly braces indi
cate a list, and the double quotes indicate strings (Chapter 13).
The lower pane of the window consists of three tabs; the second tab, the Result tab , is
showing in Figure 2-1. Another tab, Event Log, keeps a record of all outgoing

Script Editor I 1 7

Clear H i story Show Script
Result '-4-CTi=lm::;:e:-=+- ,
{"p;;ma· ,-·main·,-;;x�· 06 : 09: 5 7 I

._ •. _ . . .•. !,;. •. " .L.

Record SlOP Run Compi le

Untitled

AppleScript <No sele.cted element>
tell appllcation "Finder"

get name of every disk
end tel l
I

Result H istory

{ Iepuma lt , "ma inli , "xxxII' , tf.se-cond'�, 'iextra't ,
"SecretSha rer" , "Network"}

DescriPtion , Result I Event [.09-

Figure 2-1 . Scrip t Editor

commands and incoming replies-that is, of all lines of AppleScript that equate to
Apple events sent to other applications, and the replies returned by those applica
tions. The Event Log is operative only if the Event Log tab is selected when a script is
run; but another window (not shown) , the Event Log History window, can be set to
operate even when not open. The first tab, Description, is a place where the user can
enter a comment to be stored with the script. At the top of the window is a popup
menu where the user can choose the installed OSA language to be used for compiling
and running the script, and another popup menu for navigating among handlers (sub
routines) within the script. Also shown is the Result History window, which logs the
result of every execution of every script. Both the Event Log History window and the
Result History window are particularly useful while developing and testing a script.

The Script Editor offers some helpful shortcuts for entering commonly used text such
as control structures (Chapter 12) and built-in commands. One is the contextual
menu that appears when you Control-click in the window; it gives access to various
utility scripts . The Script Editor is itself scriptable, and these utility scripts drive it to
modify the text appearing in the script window. You can modify these scripts , and
can add utility scripts of your own; they live in lLibrarylScriptslScript Editor Scripts.
Another text-entry shortcut is the Script Assistant; when this feature is turned on, the
Script Editor performs auto completion as you type, and you can accept or choose
among its offerings with the Edit � Complete menu item (default shortcut FS) .

Figure 2-2 shows an application's dictionary as displayed by the Script Editor-in
this case, the dictionary of the Finder, the application targeted by the example script

18 I Chapter 2: Places to Use AppleScript

in Figure 2-1. The window behaves as a kind of browser. The classes and events (the
nouns and verbs constituting the application's vocabulary) are clumped into groups
on the left ; when a particular class or event is selected, the information for it is dis
played on the right. Here, the information for the disk class is displayed. (Dictionar
ies, and how to interpret the information about them displayed in a window such as
this, are the subject of Chapter 19.)

8 0 0
... Standard Suite !
II>- Fi nder Basics
.. Finder items

.... Containers and folders
T elasse>

I container
desktop-object

folde r

trash-objoct

"' Flles
.... Window duses
" Legacy suile
... Type Definitions

I I Class di�: A disk
, Plural form:

disks
EieIlk.'1lts :

@} Finder

Item by numeric Index. by IlJIITle
container by numeric index . by name
folder by numeric Indo<. by name. by ID m file by numeric index. by name W
alias file by numeric index. by name l[
application file by numeric index. by namo. by ID 1; document file by numeric Inda, . by name

1 Internet location flle by nlllneric iL1de�. b)' name m
• cll ppl ng by numeric Index. by name l:B package by numeric Index. by name

Properties:
<Inheritance> container Irlol -- inherits some of its properties from

the container dass
capacity double integer [rlo[•• the total number of bytes (free or used)

on the disk
free space double integer [ria l -- the number of free bytes left on the I , � I � ejectable bootean [rio] •• can the media be ejected (floppies, CD's, and � i so onp � local volume boolean [rial -- Is the media a local volume (as opposed •

to a file server)? !1 I startup boolean trio] -- Is this disk the boot disk? A

Figure 2-2. A dictionary in Script Editor

Another free script editing program is Smile . It provides an excellent working envi
ronment, including splendid text-editing and navigation facilities, full scriptability,
and some remarkable features to help you in developing scripts , including:

• Execution of selected text

• Automatic persistence of variables and readily accessible global context

• Translation to raw four-letter codes

• Display of AppleScript's own dictionary

• Terminology-searching through all relevant dictionaries with a single command

• Integrated facilities for constructing and saving custom dialogs and for graphics
display

(Four-letter codes, and AppleScript's dictionary, are discussed in Chapter 19.)

A commercial alternative i s Late Night Software's Script Debugger. Its primary advan
tage, as the name suggests, is that it provides a full-fledged AppleScript debugger,

Script Editor I 1 9

making it a genuine development environment. It is completely scriptable, provides
many shortcuts for entering and navigating code, and includes:

• A debugging environment with breakpoints, stepping, tracing, watchpoints ,
expression watching, live display and editing of variables, and browser windows
for display of complex variable values

• Sophisticated dictionary display, with incorporation of inherited attributes, hier
archical class charts , and display of actual attributes of running applications

• An event log with display of Apple events

Figure 2-3 shows a script that has been edited, compiled, and run in Script Debugger
(Version 3.0.6) . At the top of the first window is a pane displaying the properties
associated with this script . (Properties are a kind of global variable, discussed in
Chapters 7 and 9.) The second window displays the result of the script, in a hierarchi
cal format. The first line states explicitly the type of the result-it's a list. The values
of the list 's items are displayed on subsequent lines, with icons indicating their types.

/ 8 0 6 � untitled 1 \

" Oesaiption. Libraries and Properties It\i.l lo .1 fII I Q Description I Cl Libraries I-� Properde. �
Variable I Property I Value
... result : l ist of 7 items

�
... p4r�nt !« scriPt AppleScr ipt»
... AppkScript : « scr ipt ""pp leScr ipb>

!

W "': ITJEillI ;!: 11 .. I
Record Stop Pause Run Sb!p k1to OUt

tel l app l i cation "F inder"

�
g et name of every d isk

end tel l

Mac � I Lin'" 4 Size: 5!f hyt .. I AppI.Script � I �-"

'"
Script: :Untitled 1 � t " ,

Forma!: . Browser : ; � Pretty Pnnt ,
Result
" r�sult

item 1

item 2
itE'm 3

item 4
item 5
item 6
ittm 7

Figure 2-3. Script Debugger

20 I Chapter 2: Places to Use AppleScript

, Valu e
! l ist of 7 items

!� " Puma "

!� "ma in"

:� "xxx "

!� "second "

:� "extr a "

l� "SecretSharer"

!� "Network "

[2] eom",1e

�
" �- - = �,d

.

�

I� fit

�;l;

Figure 2-4 shows the Finder's dictionary as shown in Script Debugger, in one of three
available views. In this particular view, the hierarchy of actual current Finder objects
is presented. Thus one can see directly that among the Finder's top-level elements
are its d isk obj ects . The listing for one disk object has been opened to show its
attributes (Chapter 10) ; among these one can see its various elements and their
counts , such as the fact that it has three folder objects, and its various properties ,
such as its name property, whose value is shown. In contrast to Figure 2-2, which is
an abstract display of facts about Finder disk objects in general, Figure 2-4 is a con
crete display of the Finder's actual disk obj ects at this moment; this a very powerful
and informative way to explore the repertory of things one can say to a scriptable
application .

..
8 0 e • �� Fi nder Dictionary

t Q Dictionary I col Object Model I (01xpIerv �
rUodat!l
Element(Property l Value � � items �)t 5 e lements

� contain.rs �l)t I e lement l i
" d isks �!)t 7 e lements

� d isk 1 lstartup d isk 1

� d isk 2 ld isk "ma in"

� d isk 3 l d isk "xxx "

� d isk 4 I d isk "second "

� d isk 5 \ d isk "extra "

... d isk 6 i d isk " SeeretSharer"

" it.ms �!)t 3 e lements

� item 1 lfolder "Retrospect Backups" of d isk "SecretSharer"

� item 2 lfolder "scratchSpace" of d isk "SecretSharE'r " i
� item 3 ! fO lder 'V irtualPC d isks " of d isk " SeeretShare r "

� cont-iliners �l)t 3 e lements

� fo ld"rs �!)t 3 e lements

� fil .. �l)t 0 e lements

� .il l iills fi l.s �!)t 0 e lement.

� iIIpp l icilit ion fi les �l)t 0 e lements

� documeont fi II'S �!)t 0 e lements

� __ location fL. �l)t 0 e lements

� c l ippings �!)t 0 e lements

� pachgl!s �l)t 0 e lements

".- l� " $eocri,tSharer "

displayed M_ l)t � " SeereISharer " .,
ndme �x�nsion !)t i)
�)(tpnsion hkkkn iLl:! fa lse ;-

1 M

Figure 2-4. A dictionary in Script Debugger

You don't have to feel confined to one particular script editor; compiled scripts are a
standard format, so any script editor can read the files of any other. (Though as of
this writing this is a bit less true than it used to be, because Apple has just intro
duced two new script formats , the script bundle and the application bundle, and the

Script Editor I 21

other editors have not yet caught up .) So if you find yourself wishing to switch
among script editors , it 's more or less effortless to do so. Some script editor program
will probably be the main way you'll work with AppleScript.

Scripting Environment
The term scripting environment is meant to denote a small class of applications dedi
cated primarily to letting the user edit and run scripts in some language other than
AppleScript, while secondarily providing a way to enter and run AppleScript code.

In the pre-Mac OS X world, a good example of such a program was HyperCard.
HyperCard's main purpose was to allow the user to construct an interface and to
associate scripts with the elements of this interface ; for example, one could write a
script to be run when a button was clicked. These scripts were usually in Hyper
Card's own internal scripting language, HyperTalk; but each script had a popup
menu allowing it, alternatively, to use other available languages such as AppleScript.
This was very handy because it meant you could use HyperTalk for the things
HyperTalk was good at (such as driving the HyperCard interface) and AppleScript
for the things AppleScript was good at (such as driving other scriptable applications) .

A similar program is UserLand Frontier. Frontier also has a much less expensive "lit
tle brother ," Radio UserLand; for our purposes the two programs are interchangeable.
Frontier is meant to store and run scripts in UserLand's own scripting language, User
Talk; but a Frontier script can use other available languages , including AppleScript.

(The reason HyperCard and Frontier can "see" and incorporate AppleScript is that
these are OSA-savvy applications : they can see and incorporate any OSA language,
and AppleScript is an OSA language. "The Open Scripting Architecture" in
Chapter 4 explains what this means .)

Figure 2-5 shows some AppleScript code being run in Radio UserLand. The Apple
Script code is in the middle window, the one whose language popup (at the bottom
of the window) is set to AppleScript. You should ignore the triangles at the left of
each line, which are a feature of Frontier's outline-based script editing environment .
In Figure 2-5, the UserTalk code in the bottom window calls the AppleScript code in
the middle window and displays the result in the top window. The purpose of this
arrangement is to show you how UserTalk and AppleScript can interact transpar
ently in Frontier.

There isn't usually much need for this interaction, however, because UserTalk all by
itself can drive scriptable applications through Apple events, just as AppleScript can.
To prove this, Figure 2-6 demonstrates UserTalk obtaining the same information
from the Finder (the name of every mounted volume) without any AppleScript at all.
The UserTalk code generates and sends to the Finder the very same Apple event that
AppleScript would generate and send; the Finder's experience is identical regardless
of whether the user employs AppleScript or UserTalk to communicate with it.

22 I Chapter 2: Places to Use AppleScript

{ 0 0 0 About Radio Userland
I Y { "Puma", " m a i n " , "xxx" , "se cond" , " extra" , "SecretSharer", "Network"}

O Q 0 work:space.appleScriptExample

"- I Debug I I Comp ile I �.
• te l l a p p l i c a t i o n " F i n d er"

• get t h e name of every d isk

� end t e l l

• 8 0J�) workspace.appleScriptExampleCal ler

f
• m sg(workspace .app leScri p t Exa m p l e())

• l App leSer ipt I
I UnrTalk

Figure 2-5. Radio UserLand

1 0 0 0 About Radio UserLand

I · { "Puma" , "ma i n " , "xxx" , "second" , "extra" , "Secre t S h a re r" , "Network"}

1 8 0 0 works pace.userTalkExample ,
...... 1 "

� wi t h o bj e c: t m o d e l , F i n d e r

• msg(get (d i sk [a l l] . name))
•

I UserTalk I ,&

Figure 2-6. How Radio UserLand expresses Apple events natively

Internally Scriptable Application

�

: �
" .

)
f�f

A number of applications are internally scriptable. By this I mean that the application
contains its own internal mechanism, possibly a proprietary language, for automating
just that application. When such an application is developed for Mac as, it some
times happens that its developers would like to provide it with a means of communi
cating with other applications . That means Apple events , and AppleScript is a
convenient way to send Apple events (convenient both for the developers and for the
end user) , so a typical approach is to let the internal scripting language treat text as
AppleScript code. Such applications are not very good places to develop your Apple
Script code, since you usually have no way to edit and test that code coherently inside

Internally Scriptable Application I 23

the application. A typical approach is to develop the code in a dedicated script edit
ing environment such as the Script Editor, and then copy it into the other application.

An example is Microsoft Word. Word comes with its own internal scripting lan
guage, Visual Basic for Applications (VBA) , whose purpose is to automate Word
itself. The Mac OS version of VBA also includes the MacScript function, which
accepts a string and compiles and runs it as AppleScript on the fly. For more about
using VBA in Word, see Steven Roman's Writing Word Macros (O'Reilly) .

Constructing your AppleScript code in VBA is rather a trying experience, because
you have to pass through VBA's rules about generating strings . Since AppleScript is a
line-based language, line breaks in the code must be expressed explicitly; the way to
do this in VBA is to call a function, Chr (13) . The calls to this function must be con
catenated with the rest of your string to form the AppleScript code. Quotation marks
are also a cause of concern and possible confusion.

Figure 2-7 shows a Word document and the Macro dialog; we are about to run the
CallAS Example macro . Figure 2-8 shows the result of running this macro . The macro
has placed the names of my disks at the insertion point. The way Word found out
the names of the disks was by constructing and running some AppleScript code.

r Documentl
0�u+. ��,��,�y,��,��, ����+WU+����

I've got seven disks. Their names are: I.

Macro name:

[calJASExample

ass ign K evstroke
attachMT
attachThinkRef
autonew
becomeOutline9
callAS[xam I�
caseLower

c<lseTitie
checkTirJe
doseAss i stant
cou ntPi x 2

MacJos

��� 6
"�ma"llIo!'¥aL ________ " "" ________ "_" __ "_" __ "_ T

Macros in: (All active templates and documents � 1
Description:

1
Figure 2-7. Microsoft Word

24 I Chapter 2: Places to Use AppleScript

(Run

(Cance l

(Step

(Edit)
(Create)
(Delete)
(Organizer . . .)

I've got seven disks. Their names are: Puma, main xxx
extl1.l SecretS harer, Network.

Seo 1 At 1 "

Figure 2-8. Word inserts the result of an AppleScript call

Here's the VBA code of the CallASExample macro :

Sub callASExample ()
s = "tell application " " F inder" " " + Chr (1 3)
s = s + "get t h e name o f every d i s k " + Chr (1 3)
s = s + " e n d tell"
Selection . lnsertAfter Text : =MacScript (s)

E n d Sub

Ln 1

The AppleScript code is assembled into the string variable s ; as promised, this is a
fairly hideous operation. The code is concatenated from literals representing each
line, separated by the Return characters generated by calling Chr (1 3) . In order to
express the double-quoted literal " F inder " inside a VBA string literal, the double
quotes must themselves be doubled, since this is how VBA "escapes" a quote charac
ter. Once the script text is assembled, it is handed to the MacScript function. This
returns a string, which is yet another problem: AppleScript is capable of returning a
variety of datatypes, but your script must limit itself to a result that can be expressed
as a string, possibly coercing or reformatting it somehow before returning it. Finally,
the VBA macro inserts that string result into the document.

A program that behaves similarly is the database application FileMaker Pro . It has
internal scripting facilities, and one of the things its internal scripting language can
do is take some text and execute it as AppleScript. This text can be static ; alterna
tively, it can be the contents of a field, and since field values in FileMaker can be
"calculated, " the text can be dynamically constructed. Here's an example that illus
trates both approaches .

Figure 2-9 shows two programs, FileMaker Pro and Mailsmith . The FileMaker win
dow (in front) shows a database of contacts . In this window is a "To" button ; press
ing this has just caused Mailsmith to create a new email message (in back) using the
email address from the current FileMaker record. So in this scenario FileMaker Pro is
the sender and Mailsmith is the target; FileMaker tells Mailsmith to create a new

. email message. using the value of a field in the current record as the addressee of this
new message . The idea is that AppleScript lets the two programs work together, each
doing what it does best : a database program is good for storing and finding

Internally Scriptable Application I 2S

information, whereas a mail client is good for constructing and sending mail mes
sages (see "Combining Specialties" in Chapter 1).

s e e @! untitled message
::t. Reclpte>nts r Options 1 Endosuru I NOles I �te Sent.! (\In . . .

From:®
!TO ;)
!'" --

Ent�

flnd .. .
I

matt@t idbits .com (matt n.uburg) n Use Slgnalllle:
Subject

... To ethan@Warner.com
ee

Sa� Onift :--�rid�}
(st.lnoard :)

r
\ e o o fm address book .. Bee c;u«ss , , (LayouUl) �

,-; "waC n ickname Neuburg , Ethan

i� · .'f emai l e t h a n @wa rner .com

2
Records:
82 fu l l name
Found: address 3
Unsort�d

' t .J
phone

,..

) :" I To: i-'I'
lOOI..(iiIll:I Browse �H 7-1' . 1 " 41

Figure 2-9. FileMaker talking to Mailsmith

Ii!
!�

The FileMaker script that's triggered by pressing the "To" button consists of two text
snippets executed as AppleScript. Figure 2-10 shows the first snippet, which is static
and has simply been typed directly into a dialog box.

Figure 2-11 shows how the second snippet is generated dynamically through a calcu
lated field. Some literal text is combined with the value of the expa n s ion field to con
struct the string that will be executed as AppleScript:

" tell application " "Mailsmith " " to tell message window 1
to make new to_recipient at end with properties
{ addres s : " " " & expansion & " " " } "

The challenges here are similar to those of the Microsoft Word example just preced
ing. In the AppleScript code, quotation marks must surround the string value drawn
from the expansion field; to indicate these in a string literal, they have to be
"escaped" by doubling them, and this happens to occur at the boundaries of two lit
erals , necessitating the bizarre triple-double-quotes toward the end of the text .

26 I Chapter 2: Places to Use AppleScript

Script Definition for -new message 10'

VIew : all bV <ategmV : } -neW tmlssage (0'

Control J : Pe.rform AppleScript rteU application "Maitsmith" activate m.t.ke new musa.ge. window
Pe.rform Script Pe,rform AppltScript r"MaiismithSe.tToj
Pause/Re.sume. Script Specify AppleScripI Exit Script , " .
Halt Script

If OField value (Specify field ...) f" Else
End If Script text ". " Loop

tel l a p p l icat ion "Mai l s m i t h " Exit loop ff
End Loop

activate

Allow U .. r Abort make new me, sage wi ndow

Set Error Capture end tel l

Navigation � � 1
Go t o layout
Go to Record/Request/Page

Co to Related Record [� Go to Porul Row

Co to field
Go to Next Field

Go to Previous Fh!.ld .. I� Enter Browse Mode .
(Cancel) 00 · t CJI!al' AfI) , Clear ,�.) :1 � 0:; �

Figure 2-1 0. Literal script text in FileMaker

(Current File ("fm addr . . . hi Operators View: (all by name i : J
nkknam.e

� � ill Abs (number) �' upan.lon '" Atan (number)
name 0 [:] > Average (field . ..)
address � < Case (t .. n. rosulll l, IOSI2 , ,esultZ , d.fa
phone -: W [] >! Choos. (1051, rosultO [, resu ltl , resuIt2J .. .l ':' subject s .. Cos (number)
nlMSolgC!! y [2] 0 and .. Count (field . ,J ';

MallsmithSetTo '"
"te l l a p p l icat i o n Mai l s m i t h to tel l m e s s age w i n dow 1 to m a ke n ew to _rec i p i e n t at e n d
w i t h propert i e s {add r e s s : . ,' " & ex pan s ion & '}"

Calcul atIon res ult Is { T.ext : I
o Repeating field with a maximum of values
I!! Do not evaluate if all referenced fields are empty

Figure 2-1 1 . Calculated script text in FileMaker

(Storage Option s . . .)
(Cancel) (Ok)

4.

Internally Scriptable Application 27

Script Runner
By script runner I mean an application that accepts compiled script files and runs
them. It typically has no facilities for editing or compiling scripts; you create and
compile the scripts in a dedicated editor such as the Script Editor, and save the script
as a compiled script file. Usually the file must then be placed in a particular location
where the script runner program can find it. The script runner program typically pro
vides some sort of interface for selecting a compiled script; when you select one, the
script runner causes it to be executed. Since the script is compiled beforehand, a
time-consuming step (compilation) is skipped, and execution thus typically pro
ceeds considerably faster in a script runner than it does in an internally scriptable
application where the code must be compiled on the fly.

An extreme example of a script runner is the Script Menu provided by Apple . It 's
extreme because a script runner is all it is; it has no other purpose, and it has no
other interface apart from the menu of scripts. If you don't see the Script Menu in
your menu bar (it appears as a black scrolled s-shaped icon) , Script Menu isn' t run
ning on your machine; you can start it up by running IApplicationslAppleScriptllnstali
Script Menu. The menu items in the Script Menu represent the folders and script files
inside ILibrarylScripts and -ILibraryIScripts; you can toggle the visibility of the menu
items representing ILibrarylScripts with the Show/Hide Library Scripts menu item.
To add an item to the menu, put a compiled script file inside one of these directo
ries . The menu is global, but if you create a folder -ILibrarylScriptslApplicationsl
AppName (where for "AppName" you supply the name of some application) , then
scripts in it will appear in the Script Menu only when AppName is the frontmost
application: To run a script, choose the corresponding menu item from the menu.
Many of the scripts in the Script Menu are worth studying as examples of scripting
techniques . (Some of them are shell scripts or Perl scripts; in general these are out
side the scope of this b00k, but it's nice that the Script Menu can run them as well .)

As an alternative to the Script Menu, you might want to use some sort of launcher.
This term covers various kinds of utility that can be used to open things (folders ,
applications, files) ; such a utility may have other powers as well , but the important
thing here is that it can run a compiled script file. A launcher will give you an inter
face, such as a keyboard shortcut or a "dock" with clickable icons, that you can asso
ciate with an action; these would then be ways to run a script. Furthermore,
launchers often make it possible for you to specify that a particular keyboard short
cut or dock should be active only in a particular application. Some examples of
launchers are iKey (http://www.scriptso!tware.com/ikey/), Keyboard Maestro (http://
www.keyboardmaestro.com). and DragThing (http://www.dragthing.com) .

• A similar utility is FastScripts: http://www. red-sweater.com/RedSweater/FSFeatures.html. An alternative that
uses contextual menus is http://ranchero.com/bigcat/.

28 I Chapter 2: Places to Use AppleScript

There are also various applications that are script runners in a secondary sense; they
are intended for something else entirely, but they also act as script runners . Typi
cally the point is to give you a convenient way to customize the application itself.
The Script Editor is an example. Recall that the Script Editor provides a contextual
menu that lists the contents of the lLibrarylScriptslScript Editor Scripts folder. These
contents are compiled scripts, and choosing an item from the contextual menu exe
cutes the corresponding script. Script Editor is thus a script runner. Of course the
compiled scripts that appear in the Script Editor's contextual menu can do anything
you like, but the primary purpose of this menu is as a repository for scripts that tar
get Script Editor itself, like the ones that are already there .

Another example is BBEdit, which has a Scripts menu in the menu bar. Again, what
ever compiled scripts you place in a particular location (in this case it's the Scripts
folder in the BBEdit Support folder) will appear as menu items in this menu and can
be run by choosing the corresponding menu item. Furthermore , you can assign key
board shortcuts to these menu items, which makes it even more convenient to access
these scripts (as in a launcher) . BBEdit is quite heavily scriptable , so this is a very
convenient way to store and run scripted actions that customize BBEdit.

(This convention, where a scriptable application has a Scripts menu so you can easily
access scripts that drive that application, is an excellent one, and in my view is not suffi
ciently widespread. Some other applications that work this way are Script Debugger,
Smile, Microsoft Entourage, Mailsmith, Tex-Edit Plus, and various Adobe applications .)

BBEdit can also run scripts in other ways . Two more folders , Startup Items and
Shutdown Items, are repositories for scripts that BBEdit will run automatically when
you launch it and when you quit it. And scripts that you put in the Menu Scripts
folder will be run before and after you choose from any of BBEdit's built-in menus.
Thus BBEdit, by functioning as a script runner, lays itself open to a considerable
amount of automation and customization by the user.

It isn't uncommon, when applications work this way, for the developers to "seed"
the Scripts menu by including some sample scripts in it by default . These can be
worth studying as examples of how to drive the application with AppleScript. Some
applications go even further, and actually incorporate scripts as normal menu
items-that is to say, the application is scriptable and uses its own scriptability to
implement some of the functionality present by default in the menu bar. Mail 's
Import Mailboxes menu item is said to work this way, and in Canto Cumulus more
than a dozen standard menu commands are actually scripts.

Automatic location
An automatic location can be thought of as a highly specialized type of script runner:
it 's a place where you can put a compiled script to have it run automatically when
certain events take place .

Automatic Location I 29

On Mac as x, if you want a script to run automatically when you start up, you
could save it as an applet and list it in the Startup Items tab of the Accounts pane, in
System Preferences . A compiled script wouldn't do here, though; it would be
opened, not executed, because Startup Items is not a script runner.

A primary example of an automatic location on Mac as x is the Finder, where you
can associate scripts with particular folders by means of folder actions. Folder actions
are a mechanism whereby scripts run if certain things happen, in the Finder, to the
folder to which they are attached: that folder's window is opened, closed, or moved,
or something is put into or removed from that folder. Naturally you don' t have to
respond when all of those things happen; your script will contain a specific handler
for each type of action you want to respond to. (See http://www.apple.com/
applescript/folder _actions!.)

.

Folder actions are described at length in Chapter 24, but here's a quick explanation
of how to set one up. Create -/Lihrary/Scripts/Folder Action Scripts if it doesn't exist
already. Create a script and save it as a compiled script file in that folder. Now go to
a folder in the Finder and in its contextual menu choose Enable Folder Actions and
then Attach a Folder Action, and in the Open dialog select your script . You can also
manage the relationships between folders and scripts with the Folder Actions Setup
application, which is in /Applications/AppleScript.

In this example, we'll make a folder automatically decode any .hqx files as they are
put into it. Here's the script:

on adding folder items to ff after receiving L
tell application " F inder"

repeat with f in L
set n to the name of f
if n ends with " . hqx" then

tell application " Stuff It Expander" to expand f
end if

end repeat
end tell
tell application " System Events "

i f process " Stuff I t Expander" exists then
tell application " Stuff It Expander" to quit

end if
end tell

end adding folder items to

The handler, on adding folder items to, is automatically called when files are put
into the folder to which this script is attached. The script runs when any file is put
into that folder, but it has no effect except upon .hqx files . We examine the name of
each file that is being added; if it ends in .hqx, we call StuffIt Expander to decode it .
This leaves StuffIt Expander running, so at the end we look to see if StuffIt Expander
is running, and if it is, we quit it. The folder thus functions as a kind of magic
decoder drop box for .hqx files .

30 I Chapter 2: Places to Use AppleScript

Appl ication
By application I mean here an application you write yourself. There are various ways
to incorporate use of AppleScript into an application, and various reasons why you
might do so.

Let's start with an applet. An applet is just a compiled script saved with a tiny appli
cation framework wrapped around it; you can make one in any script editor applica
tion. I can think of three main reasons for saving a script as an applet:

• You want to be able to run the script from the Finder, by double-clicking it.

• You want your script to process files and folders when you drop their icons onto
the script's icon; an applet that does is this called a droplet.

• You want to be able to run the script from some other environment that can
launch things but isn't a script runner.

We have already seen that if you want a script to be a Startup Item, so that it runs
automatically at startup, it has to be an applet. As another example, consider the
toolbar and sidebar at the top and left side of a Finder window. You can put any item
you like in these places; clicking an item opens it, in the sense of launching it, as if
from the Finder. So items in the toolbar or sidebar cannot be mere compiled scripts if
you want to run them; they must be applets (or droplets-dropping a file or folder
onto a toolbar or sidebar droplet works just fine). Apple supplies a number of exam
ples at http://www.apple.com/applescript/toolbarl.

Moving up the ladder of complexity and sophistication, we arrive at another way you
can create an application using AppleScript-with AppleScript Studio. AppleScript
Studio itself isn't exactly an application; it's an aspect of two applications, Xcode
(formerly known as Project Builder) and Interface Builder. AppleScript Studio allows
you to use AppleScript as the underlying programming language inside what is effec
tively a Cocoa application, instead of the standard language, Objective-Co Thus you
can combine all the power of Mac OS X-native windows and interface widgets with
your knowledge of AppleScript to write a genuine application. Even more amazing,
it's free. AppleScript Studio doesn't give you AppleScript access to everything that
Cocoa can do, not by a long chalk; but if you have some AppleScript code and you
want to wrap an interface around it, AppleScript Studio can be an easy and rapid
way to do so. The result will look and act like an ordinary Cocoa application; it
might not even be possible for users to tell that you wrote it with AppleScript.

" �, [B" You must install the Developer Tools in order to get these applica-

��, tions. Always use the latest version; to obtain it, sign up for ADC
, :" membership (it's free at the lowest level; see http://connect.apple.com)

, and download it from Apple.

Application I 31

If you've never seen AppleScript Studio you might be wondering what I'm talking
about, so here's a simple example of what it's like. (There's another example in
Chapter 24.)

We'll write an application that displays the names of your hard disks as the rows of
a Table View widget. You start up Xcode and make a new project, designating it an
AppleScript Application, and when the project window appears, find the
MainMenu.nib listing and double-click it. You are now in Interface Builder, where
you design your interface. Figure 2-12 shows me dragging a Table View into the
main window; this is where the names of the disks will be displayed.

,..e-nA--------Wi�w ri=�;;:;;::;-=;.:m---==--v __

Figure 2-12. Making an interface in AppleScript Studio

..
,.
..
L

Browser

-
....
-
.....

After resizing the Table View and the window, I set the Table View to have just one
column, and give the column a heading "Your Disks". Then I name the column
disks; to do so, I select the column, press 00-7 to bring up the AppleScript pane of
the Info palette, and type "disks" as the column's name. Now it's just a question of
seeing that some code runs to populate the table. There are many places to put this
code; since I'm already looking at the column's AppleScript info, I decide to put it in
the column's awake from nib handler, which runs as the window comes into exist
ence. Figure 2-13 shows me ticking the checkboxes that specify this handler.

I then press the Edit Script button at the bottom of the Info palette, and am thrown
back into Xcode, where my script window opens with the awake from nib handler
already created, waiting for me to add my code to it. Here it is:

on awake from nib theObject
tell application " F inder" to set L to (name of every disk)
set ds to make new data source at end of data sources
set tv to table view 1 of scroll view 1 of window 1

32 I Chapter 2: Places to Use AppleScript

b o o ,
I
-I
•

-- --
NSTableColumn Info

(AppleScnpt

I Name: I di sits

Event Handlers
"'�Nib

� awake from nib
..

:Script
� IistMvDisks.applescript

I �)

; Index: 1

(New Script) (Edit Script)
"

Figure 2-13. Creating a handler in AppleScript Studio

\

i
,

/f.,

set col to make new data column at end of data columns of ds �

with properties { name : " disks "}
repeat with aName in L

set aRow to make new data row at end of data rows of ds
set contents of data cell " disks " of aRow to aName

end repeat
set data source of tv to ds

end awake from nib

The first line of this script gathers the information from the Finder; the rest of the
script is devoted to dealing with the interface. The script creates a kind of object
called a datasource, populates it with the disk names gathered from the Finder, and
attaches it to the Table View. The Table View automatically displays the contents of
its data source. I can now build and run my application. Figure 2-14 shows what the
application's window looks like when the application starts up; as expected, the
names of my hard disks are displayed.

Another way you might find yourself incorporating AppleScript into an application
you write yourself is when you're writing the application in some other program
ming language but want to avail yourself secondarily of AppleScript's special abili
ties. Typically this is because you need your application to function as a sender and
have it drive some other application as a target.

In REALbasic the way you incorporate AppleScript is to write and compile your
AppleScript code elsewhere, and then save it as a compiled script and import this com
piled script into your REALbasic project. (As of this writing, REALbasic can't read
compiled script files saved by the Script Editor; until this is fixed, you need to save the
compiled script in the older format, with the script data in the resource fork. Script
Debugger can save the file this way.) Your REALbasic code can then call the compiled
script. The script must have a run handler if you want to pass any parameters. Every
parameter must be a string or an integer, and the result can only be a string.

Application I 33

.8 66 Window

Your Dish
Puma
main
xxx

second
extra

SecretSharer
Network
Servers

Figure 2-14. A Cocoa application written with AppleScript Studio

To illustrate, we'll write the REALbasic equivalent of the AppleScript Studio applica
tion developed a moment ago. First we create our AppleScript code and save it as a
compiled script:

on run { }
tell application " F inder"

name of every disk
end tell

end run

We drag the compiled script file into the REALbasic project window; now we can
call the script using the name under which we saved it, which happens to be
finderTest. Now, in REALbasic, we drag a ListBox into the main window and put
this REALbasic code into its Open event handler:

Sub Open ()
dim L as string
dim i,u as integer
L = finderTest ()
me . columnAlignment (o) = 2
u = count Fields (L,", ")
for i = 1 to u

me . addRow nth Field (L,", ",i)
next

End Sub

That handler is called automatically as the application starts up and the window
opens. The call to finderTest() runs our AppleScript code; what's returned is like
what was returned in the Microsoft Word example earlier, a string consisting of the
disk names separated by a comma and a space. We parse that string to populate the

34 I Chapter 2: Places to Use AppleScript

ListBox. When we compile and build the application, the finderTest file is incorpo
rated into it and no one ever knows we used AppleScript. Figure 2-15 shows the
application running.

6 0 f) Untitled

Yourpi�ks
Puma
main
xxx

second
extra

SecretSharer
Network
Servers

Figure 2-15. A REALbasic application using AppleScript

In Cocoa/Objective-C you have a choice of techniques for incorporating AppleScript
through the NSAppleScript class. You can start with a string and compile and exe
cute it, or you can start with a compiled script and execute that.

I'll illustrate both techniques. Our application's interface looks just like the Apple
Script Studio and REALbasic examples: it's a one-column NSTableView in a win
dow. Our controller class, instantiated in the nib, is the NSTableView's datasource.
It has one instance variable, an NSArray called diskList. Here's the Objective-C code
for the controller class:

- (int) n umberOfRowslnTableView : (NSTableView*)tv {
if (!dis kList) return 0;
return [di sk List count];

- (id) tableView : (NSTableView*)tv
objectValueForTableColumn : (NSTableColumn*) c row : (int) r {
return [dis kList objectAtlndex : r];

- (void) awakeFromNib {
NSAppleScript* scpt;
NSAppleEventDescriptor* result;
NSDictionary* error;
NSString* s ;
NSMutableArray* arr = [NSMutableArray array];
s = @"tell application \ " F inder\ " to get name of every d i sk " ;
scpt = [[NSAppleScript alloc] initWithSource : s];

Application I 3S

}

result = [scpt executeAndReturnError : &error]j
if ([result descriptorType] == ' utxt ')

[arr addObject : [result stringValue]]j
else if ([result descriptorType] == ' list ') {

int i,u = [result numberOfltems]j
for (i=lj i<=uj i++)

[arr addObject : [[result descriptorAtlndex : i] stringValue]]j
}
dis kList = [[NSArray arrayWithArray : arr] retain]j

The first two methods simply deal with the interface; they are the datasource rou
tines that populate the NSTableView from the diskList array. The awakeFromNib

method is where the action is. As the application starts up, our controller class will
be instantiated and this awakeFromNib method will be called; its job is to populate the
diskList array. We create our AppleScript code as a string, use this string to create a
new NSAppleScript instance, and tell that instance to compile and execute the string.
(At this point there should be some error checking, but I've optimistically omitted it.)
The result is an NSAppleEventDescriptor, and now the question is what to do with
it. To parse it properly, we should look to see what type it is: if it's just text (there
was only one disk so the result is simply its name), we append that text to a local
array; if it's a list, then we cycle through the items of that list, appending the text
from each of those to our local array. The main trick here is to realize that list indexes
in an Apple event are I-based! Now we have an array of the names of the disks; we
copy that array into diskList, and the datasource routines take care of displaying it
in the NSTableView.

The other way to do this, probably faster to execute, would be to compile the Apple
Script code beforehand and incorporate the compiled script file into the project,
rather as one does in REALbasic. Let's suppose the compiled script is called
askFinder.scpt. (Now the problem is the other way around from the REALbasic
example; if the script is to be saved with Script Debugger, you must be sure to spec
ify that the script data should be in the data fork. The old-style compiled script using
the resource fork won't work.) I'm sure you know how it goes:

tell application " F inder"
return name of every disk

end tell

We add askFinder.scpt to our project, so it will be built into the application. The

awakeFromNib code, after the declarations, now starts out a little differently, because
we're initializing the NSAppleScript instance from a file, not an NSString:

s = [[NSBundle mainBundle] pathForResource : @"askF inder" ofType : @" scpt "]j
NSURL* urI = [NSURL fileUR LWithPath : s]j
scpt = [[NSAppleScript alloc] initWithContentsOfURL : urI error : &error]j

The rest is as before. The built Cocoa application running looks absolutely identical
to Figure 2-14.

36 I Chapter 2: Places to Use AppleScript

Unix
By the term Unix I mean the command line and other shell-related environments
such as Perl and Ruby scripts. Here the important word to know is osascript. This
verb is your key to leaping the gulf between Unix and AppleScript. You should read
the relevant manpages. (Further details are provided in Chapter 23.)

osascript can exeCute a compiled script file or can compile and execute a string. The
option -e signals that it's a string, not a script file, and of course if you're going to
type a literal string, this raises all the usual problems of escaped characters. In the
Terminal you can usually bypass these problems by single-quoting the string.

The following little conversation in the Terminal illustrates the difference in the for
matting of the output depending on whether you supply the -ss flag. I generally pre
fer this because it does a better job of showing you what sort of reply you've really
got. The curly braces and the double quotes show clearly that it's a list of strings:

$ osascript -e ' tell app " Finder" to get name of every disk '
xxx, main, second, extra
$ osascript -ss - e 'tell app " Finder" to get name of every disk '
{ " xxx " J " main " J " secondll J " extra " }

In a Perl script it's rather easy to tie oneself in knots escaping characters appropri
ately so as to construct the correct string and hand it off to osascript. The difficul
ties are even worse than in the Microsoft Word example earlier in this chapter,
because two environments, Perl and the shell, are going to munge this string before it
gets to AppleScript. This line of Perl shows what I mean:

$s = 'osascript -e "tell app "" Finder"" to get name of every disk '" j

The Perl backtick operator hands its contents over to the shell for execution, but first
there's a round of variable interpolation within Perl; during that round, the escaped
backslashes are mutated into single backslashes, and these single backslashes cor
rectly escape the double quotes around "Finder" in the string that the shell receives
as the argument to osascript. (Obviously I could have single-quoted that string and
avoided the backslashes, but that wouldn't have illustrated the problem so well.)

A more humane approach-and much more common because it allows you to con
struct multilined, legibly formatted AppleScript code easily-is to take advantage of
your language's "here document" facility and do your variable interpolation there.
You then hand the AppleScript code to the shell, single-quoted. By way of illustra
tion, here's a rather silly Perl program intended to be run in the Terminal; it asks the
user for the number of a disk and then fetches the name of that disk:

#!/usr/bin/perl
$s = «" END 5"·

-
,

tell application " F inder"
count disks

end tell
END_S

Unix I 37

chomp ($numDisks = 'osascript - s s -e ' $s") ;
print " You have $numDis ks disks,\ n " ,

" Which one would you like to know t he name of?\ n " ,
"Type a number between 1 a n d $numDisks : " ;

while (<» {
chomp;
last if $_ < 1 I I $_ > $numDisks;
$ss = «" END_55" ;

END 55

tell application " F inder"
get name of disk $_

end tell

print 'osascript - s s - e ' $ss",
"Type a number between 1 and $numDisks : " ;

Observe that the result of osascript has an extra return character appended to it,
which has to be chomped if that isn't what we wanted. Here's the game in action,
played in the Terminal:

$. Idisker . pl
You have 7 disks .
Which one would you like to know the name of?
Type a number between 1 and 7 : 3
"xxx"

Type a number between 1 and 7 : 4
" s econd "
Type a number between 1 and 7 : bye

Communication in the reverse direction, calling the shell from AppleScript, is han
dled through the do shell script command, which is dealt with in Chapter 23.

38 I Chapter 2: Places to Use AppleScript

CHAPTER 3

The AppleScript Experience

This chapter illustrates informally the process of developing AppleScript code. The
idea is to help the beginner gain a sense of what it's like to work with AppleScript, as
well as to present some typical stages in the development of an AppleScript-based
solution. My approach is to demonstrate by example, letting you look over my
sho\llder as I tackle a genuine problem in my real life. This chapter doesn't actually
teach any AppleScript; that comes later. But the procedures and thought processes
exemplified here are quite typical of my own approach to writing AppleScript code,

and probably that of many other experienced users as well; as such, the neophyte
may benefit by witnessing them. Besides, if you've never programmed with Apple
Script before, you're probably curious about what you're getting yourself into.

Think of this chapter, then, as a nonprogrammer's introduction to the art of Apple
Script development. It's the art that's important here. The particular problem I'll
solve in this chapter will probably have no relevance whatever to your own life. But
the way I approach the problem, the things I do and experience as I work on it, con
tain useful lessons. At the end of the chapter we'll extract some general principles on
how to approach a task with AppleScript.

The Problem
I have just completed, working in Adobe FrameMaker, the manuscript for a book
about AppleScript. This manuscript is now to be submitted to my publisher. My
publisher can take submissions in FrameMaker, which is what the production office
uses in-house; and there is a checklist enumerating certain details of the form the
manuscript should take. Looking over this checklist, I find an entry from the illustra
tion department informing me that I'm supposed to follow certain rules about the
naming of the files that contain the illustrations, and that I'm to submit a list of illus
trations providing the number, name, and caption of each figure. Table 3-1 presents
the example the illustration department provides.

39

Table 3-1. How the O'Reilly illustration department wants figure files named

Fig. No. Filename Caption (or desaiption)

1-1 wfL0101.eps Overview of the Windows NT operating system environment.

1-2 wfL0102.eps Name space presented by the Object Manager.

1-3 wfL0103.eps Filter drivers in the driver hierarchy.

2-1 wfL0201.eps Local File System.

2-2 wfL0202.eps Hierarchical name space for directories and files.

As the example shows, the illustration department would like each illustration file
named according to its place in the book. Each name starts with some letters identi
fying the book, followed by an underscore. Then there are two digits signifying the
number of the chapter in which the figure appears. Then there are two more digits
signifying the relative position of the figure within the chapter. Finally, there's the
suffix indicating what kind of file it is. The illustration department would also like
me to attach a list that looks like the table, associating figure numbers, filenames,
and captions.

Naturally, as I've been writing the book, I haven't done any of that. It wouldn't have
made sense, because I didn't know, as I wrote the book, exactly how many chapters
there would be and what order they would be in, and exactly what illustrations there
would be and what order they would be in. I've been cutting and pasting and rear
ranging right up until the last moment. My illustration files simply have whatever
names I gave them at the time of creation; these names are generally pretty meaning
less, and in the Finder they appear in alphabetical order, which is not at all the order
in which they appear in the book. For example, here are the names of the illustration
files for Chapter 2, as they appear in the Finder:

fileMakerl. eps

fileMaker2. eps

fileMaker3.eps

ib.eps

ib2.eps

ib3.eps

radio.eps

radio2.eps

RB.eps

scriptDebugger. eps

scriptDebuggerDict.eps

scriptEditor3.eps

scriptEditorDict.eps

word3.eps

word4.eps

40 I Chapter 3: The AppleScript Experience

Now, however, the last moment has arrived. So it's time for me to grapple with the
illustration department's requirements. The problem, therefore, is to rename these
files in accordance with the chapter in which they appear and the order in which they
appear within it. Clearly I'm going to have to work in two places at once. In
FrameMaker, I need to look at each illustration in order, and see what file on disk it
corresponds to. In the Finder, I need to change the name of that file. Then, back in
FrameMaker, I need to change the reference for each illustration, so that it points to
the correct file under its new name.

This promises to be a massively painful, tedious, and error-prone task-not some
thing I'm looking forward to. Then I get an idea. Adobe FrameMaker is scriptable; in
fact, it's extraordinarily scriptable. And so is the Finder. Perhaps this task can be
automated using AppleScript.

A Day in the Life
Although I know that FrameMaker is scriptable, I have no idea how to script it. I
haven't the slightest notion how to talk to FrameMaker, using AppleScript, about the
illustrations in my manuscript. So the first thing I need to do is to try to find this out.

(aught in the Web of Words

My starting place, as with any new AppleScript programming task, is the dictionary
of the application I'm going to be talking to. The dictionary is where an application
lists the nouns and verbs I can use in speaking to it with AppleScript. To see
FrameMaker's dictionary, I start up Apple's Script Editor, open the Library window,
add FrameMaker to the library, and double-click its icon in the Library window. The
dictionary opens, as shown in Figure 3- 1 .

This is a massive and, to the untrained eye (or even to the trained eye) , largely
incomprehensible document. What are we looking for here? Basically, I'd like to
know whether FrameMaker gives me a way to talk about illustrations. To find out, I
open each of the headings on the left, and under each heading I open the Classes
subheading. A class is basically a noun, the name of a type of thing in the world of
the application we're talking to. So what I'm trying to find out is what things
FrameMaker knows about, so that I can guess which of those things is likely to be
most useful for the problem I'm facing. In particular, I'd like to find a class that
stands a chance of being what FrameMaker thinks my illustrations are.

The fact is, however, that I don't see anything that looks promising. The trouble is
that I don't really understand what an illustration is, in FrameMaker's terms. I know
that to add an illustration to a FrameMaker document, using the template my pub
lisher has set up, I begin by inserting a table. And sure enough, there is a table class
in the FrameMaker dictionary. But then, to make the reference to an illustration file,

A Day in the Life I 41

"'8 08 0 .If! FrameMaker.7,O :t

"Text Suite
Core Suite: Suite thaI applies to all applicaJions �

IJJ.Qulckdnw Graphics Suitt

... Tabl� Suit� Qu" .liilsj il fil' 2D B disk Q[�[Ibt fih: ml.!S ��ig whm Y�.nW_21.Ym!LsajnL.
... MIsc.tlliilneous SUlnd�rds Plural form:
.. FramtMaker Suite all

... FrameM"olker AncJllary obltc. pmp<,nles: : POSIX path string Irlol _. the POSJX path of the file

CIa.\1 application; A Macintosh application
Pturalform:

applications
Elements:

book by numeric index, by name, as a range of elemem$, sadsfytng a test. before/after another eiemtnt
. document by numeric index, by name, as a range ot dementJ, satisfying a test. before/after another dement

Proponles:
<Inheritance> base class .. All properties and elements of the given dass are inherited

by this dass.

fl
clipboard all" 01 anything .- The clipboard.

�I
frontmost boolean [rtol .. Is this the (rontmost app/k;.lllon?
name string [rloJ �� Name of this apPIiaJtiM.
version string [rlol .- The version of the application.
user electfon reference �� The selection of the currently active document.
selection reference: The selection of the currentI)' actiVe document, This Is the same as

user selection.
selection class no sek!ction/text/graphic obJectltabie range Irlo] .. The class of the

H selection of the currently active document. ..
auto backup boolean .. If TRUE, then automatic backup Is enabled.

� auto save boolean .. If TRUE, then automatic save Is enabled.

...,.,."

Figure 3-1. FrameMaker dictionary

I choose the Import File menu item, and it is not at all clear to me what kind of entity
I generate as a result.

At this point an idea strikes me. Perhaps I should start with an existing illustration
and see if I can find a way to ask FrameMaker, "What's this?" In fact, very near the
start of FrameMaker's dictionary--:-and you can see this in Figure 3-1-there's a list
ing called selection. This suggests that perhaps if I select an illustration manually in
FrameMaker and then use AppleScript to ask FrameMaker for its selection, I will
learn what sort of thing an illustration is.

The word selection is listed as a property of the application class. A property is a
feature of a class that you can refer to with the word of followed by an instance of
the class. For example, if you have a reference to a paragraph and the paragraph class
has a font property, you can refer to the "font of" this paragraph. However, the
application class is special; it's the ultimate reference, and you don't need any "of"
to talk about its properties when you're already talking to that application.

To talk to an application in AppleScript, you embed your code in a tell block, like
this:

tell application " F rameMaker 7.0"

end tell

Whatever I say inside that block will be addressed to the named application, which
in this case is FrameMaker. The way you ask for the value of a thing in AppleScript is

42 Chapter 3: The AppleScript Experience

with the verb get. So, in FrameMaker, I manually select an illustration; then, in
Script Editor, I make a new script window and enter this code:

tell application " FrameMaker 7.0"
get selection

end tell

I run that code, and the result comes back in the lower part of the script window, in
the Result tab (I've reformatted the result here to emphasize its structure):

inset 1
of anchored frame 43

of document " extra : a pplescriptBook : ch02places .fm"
of application " FrameMaker 7.0"

Wow! All of a sudden I'm getting someplace. I now have a chain of ofs showing the
classes needed to refer to an illustration. So it turns out there's a class called inset,

and that an inset belongs to another class called anchored frame. I certainly would
never have thought of any of that on my own; even with the help of the dictionary I
would never have realized that these were the classes I needed. Now that I know, of
course, I see that these classes are indeed listed in the FrameMaker dictionary.

In particular, looking at the dictionary listing for the inset class, I see that it has a
property inset file, which is described as follows:

inset file alias - - The file where the graphic originated

This could be just what I'm after-the link between an illustration in FrameMaker
and the illustration file on disk. To find out, I'll ask for the inset file property of
the same illustration I just selected a moment ago. So I make a new script and enter
some new code and run it. Everything here is based on the reply I just received from
AppleScript a moment ago; however, for convenience and clarity I've reversed the
order of everything, and I'm using nested tell blocks instead of the word of. (Tell
blocks and the word of are almost the same thing, except that they work in the
opposite order.)

tell application " FrameMaker 7.0 "
tell document "extra : applescriptBook : ch02places.fm "

tell anchored frame 43
get inset file of inset 1

end tell
end tell

end tell

And here's the answer that comes back:

" extra : applescriptBook : figures : ch02 : fileMakerl.eps "

Perfect! This is sensational. I've started with a way of referring to an illustration
inside FrameMaker, and I've ended up with the pathname of the corresponding illus
tration file on disk-the very file I'm going to want to rename. Clearly I'm on the
right track. I set this script aside and move on to the next part of the problem.

A Day in the Life I 43

One for All and All for One

I now have some idea of how I'm going to refer to an illustration in FrameMaker and
how I'm going to mediate between that reference and the path name of the file on
disk that the illustration comes from. So, having solved this piece of the puzzle for
one illustration, I move on to the problem of generalizing. I'm going to want to do
this for every illustration in the document. How, using AppleScript, am I going to
talk about every illustration?

In the previous code, I specified a particular illustration by talking about "anchored
frame 43." This sort of reference is not a property; it specifies an element. An ele
ment is very like a property, except that with a property there is just one of a thing;
with an element, there can be many things of a certain class, and you have to say
which one you want. So if the class that represents my illustrations is the anchored

frame class, perhaps the way I'm going to solve the problem is by cycling through the
anchored frame elements of my document-that is, by talking about "anchored
frame 1," then "anchored frame 2," and so on. I'm a little surprised, however, by
how the numbers are working here. I don't have 43 illustrations in this document, so
why am I talking about "anchored frame 43"? However, I press on regardless; we'll
cross that bridge when we come to it.

Let's see if I can list the inset files for all the illustrations in the document. To do so,
I'll start by gathering up a list of all the anchored frame elements; if FrameMaker will
let me, I should be able to do that using the word every. Let's try it:

tell application " F rameMaker 7.0"
tell document " extra : applescriptBook : ch02places.fm "

get every anchored frame
end tell

end tell

Here's the response:

{anchored frame 1 of document " extra : applescriptBook : ch02places.fm"
of application " F rameMaker 7.0" ,

anchored frame 2 of document " extra : applescriptBook : cho2places.fm"
of application " FrameMaker 7.0" ,

anchored frame 3 of document " extra : applescriptBook : ch02places.fm"
of application " FrameMaker 7.0" ,

I've left out most of it, but you get the idea. This seems to be working nicely so far.
What I've gotten back is a list-that's what the curly braces around the response
mean-and each item of this list, separated by commas, is a reference to one of the
anchored frames in the document. So I should be able to run through this list and
ask each anchored frame for the inset file property of its "inset 1" element, just as I
did with anchored frame 43 earlier.

44 I Chapter 3: The AppleScript Experience

The way you run through a list in AppleScript is with a repeat block. I'll start by
making a variable all Frames to store the list in-in AppleScript, you define the value
of a variable using the verb set-and then I'll see if I can run through it:

tell application " FrameMaker 7.0"
tell document " extra : applescriptBook : ch02places.fm"

set allFrames to get every anchored frame
repeat with oneFrame in allFrames
end repeat

end tell
end tell

That code runs, which is good. First I've made a variable allFrames to hold the list;
then I've made another variable oneFrame to represent each item of that list as I run
through it. But the code doesn't do anything, because I haven't said yet what I want
to do with o neFrame; there is no code inside the repeat block.

What I'll do now is create yet another variable, allPaths, to hold my file paths. I'll
start this variable as an empty list, which in AppleScript is symbolized by empty
curly braces; every time I get a file path, I'll append it to the list, which you do in
AppleScript with the verb set end of. So here's my code:

tell application " FrameMaker 7.0"
tell document " extra : applescriptBook : cho2places.fm"

set all Paths to { }
set allFrames to get every anchored frame
repeat with one Frame in all Frames

set end of allPaths to inset file of inset 1 of oneFrame
end repeat

end tell
end tell

I run this code, and ... it doesn't work! I get an error message:

FrameMaker 7.0 got an error : Can ' t get inset file of inset 1 of anchored frame 1
of document " extra : applescriptBook : ch02places.fm " .

I don't really know what this error message means. That sort of thing happens a lot
when you're working with AppleScript; stuff goes wrong, but you don't get a very
helpful error message explaining why. However, I do see that we didn't get far in the
list; right at the start, with anchored frame 1, we had a problem. Now, we know that
this is going to work for anchored frame 43, so maybe the problem is related to the
mystery of the numbering of the anchored frames. Maybe I've got two kinds of
anchored frame: those that represent illustrations and those that don't, which appar
ently is the same thing as saying those that have an inset file and those that don't.

Since I believe this code should work when I get up to anchored frame 43, I'd like to
ignore the problem with anchored frame 1 and any other anchored frames that may
not be relevant here. There's an easy way to do this: I'll wrap the code in a try block.
A try block is AppleScript's form of error-handling. I expect I'll still get an error, but
now the code won't stop; it will shrug off the error and keep going. In this way I

A Day in the Life I 45

hope to cycle far enough through the list of anchored frames that I get to the ones
where I don't get an error. Here's the code now:

tell application " FrameMaker 7 . 0 "
tell document " extra : applescriptBook : ch02places . fm "

set allPaths to {}
set allFrames to get every anchored frame
repeat with one Frame in allFrames

try
set end of allPaths to inset file of inset 1 of one Frame

end try
end repeat

end tell
end tell

I run that code, and there's no error. However, I'm not getting much of a result,
either; here's what I get:

" extra : applescriptBook : figures : ch02 : RB . ep s "

That's the pathname of an illustration file, all right, but it's not what I was expect
ing; I wanted a list of all the pathnames of all the illustration files. Oh, wait, I see
what I did wrong. I constructed the list, as the variable allPaths, but I forgot to ask
for that list as the final result of the script. The result that you see in the Result pane
of the Script Editor after you run a script is the value of the last command that was
executed. So the way to display, as your result, the value of a variable you're inter
ested in is to say the name of that variable as the last executable line of your code.
Let's try again, like this:

tell application " FrameMaker 7 . 0 "
tell document " extra : applescriptBook : ch02places . fm "

set allPaths to {}
set all Frames to get every anchored frame
repeat with oneFrame in allFrames

try
set end of allPaths to inset file of inset 1 of oneFrame

end try
end repeat

end tell
end tell
allPaths

And here's the result:

{II II , 11 11, 11 11
J

11 11 , 11 11
J

,

" extra : applescriptBook : figures : ch02 : fileMakerl . eps " ,
" extra : applescriptBook : figures : ch02 : fileMaker2 . eps " ,
" extra : applescriptBook : figures : ch02 : fileMaker3 . eps " ,
" extra : applescriptBook : figures : ch02 : ib . eps " ,
" extra : applescriptBook : figures : cho2 : ib2 . eps " ,
" extra : applescriptBook : figures : ch02 : scriptEditor3 . eps " ,
" extra : applescriptBook : figures : ch02 : scriptEditorDict . eps " ,
" extra : applescriptBook : figures : ch02 : scriptDebugger . eps " ,
" extra : applescriptBook : figures : ch02 : scriptDebuggerDict . eps " ,
" extra : applescriptBook : figures : ch02 : radio . eps " ,

46 I Chapter 3: The AppleScript Experience

" extra : applescriptBook : figures : ch02 : radio2.eps " ,
" extra : applescriptBook : figures : ch02 : word3.eps " ,
" extra : applescriptBook : figures : ch02 : word4.eps " ,
" extra : applescriptBook : figures : ch02 : ib3.ep s " ,
" extra : applescriptBook : figures : cho2 : RB.eps " }

Well, that's pretty good. I have no idea what those first six items are, the ones that
just show up as empty strings (symbolized by empty pairs of quotation marks). But
in my final code I guess I could just ignore the empty strings, so that's not really a
problem. And then we've got 15 pathnames, which is exactly right because the chap
ter has 15 illustrations.

But there's a problem. A really big problem. The pathnames are in the wrong order.

Remember, our entire purpose is to rename these files in accordance with the order
in which they appear in the document. But this is not the order in which they appear
in the document. I don't know what order it is, but I do know that the first illustra
tion in the document is scriptEditor3. eps . This is a disaster. Our efforts so far have
probably not been a total waste, but there's no denying that we're completely stuck.
The "every anchored frame" strategy is a failure.

Seek and Ye Shall Find

At this point I'm exhausted and frustrated, so I do something else for a while and
brainstorm subconsciously about the problem to see if I can come up with a new
angle. Instead of gathering up all anchored frame references as FrameMaker under
stands them, we want to run forward through the document itself looking for
anchored frames, just as a user would. Hmm ... as a user would

This gives me an idea. How would I, as a user, run through the illustrations in a
FrameMaker document? 1'd use the Find dialog. Perhaps FrameMaker lets me do the
same thing with AppleScript. Yes, by golly; looking in the dictionary, I discover
there's a find command. Here's the dictionary entry:

find : Find text, objects, or properties in a Frame document.
find text/text having paragraph tag/text having character tag/marker/

marker having type/marker containing text/variable/variable having name/
anchored frame/table/table having tag/footnote/xref/xref having format/
unresolved xref / autohyphen - - The type of object or property to be found.
[wi th value string] -- The value of the text, tag, type,format, or name being found.
[with properties a list of list] -- The properties of the text to be found.

Most text properties will work here. Finding both value and properties
is unlikely to work, and some combinations of properties don't work
well together.

in reference -- The document in which to find.
[using use case/whole word/use wildcards/backwards/no wrap/

find next] - - The options to be applied to the find.
Resul t : reference -- to the object that was found.

The words "anchored frame" in the first paragraph leap right off the screen at me. I
can find an anchored frame! I create a new script window in Script Editor, and try it.

A Day in the Life I 47

tell application " FrameMaker 7 . 0 "
find anchored frame

end tell

No, when I run that it generates an error. What's gone wrong? Oh, I see: I've left out
the in parameter. I have to tell FrameMaker what document to look in.

tell application " FrameMaker 7 . 0 "
find anchored frame in document "extra : applescriptBook : ch02places . fm "

end tell

It works! The first illustration is selected, and the result is a reference to it, just as the
dictionary promises:

anchored frame 48 of document " extra : applescriptBook : ch02places . fm "
of application " FrameMaker 7 . 0 "

So now it begins to look like I can use find repeatedly to get a succession of references
to the anchored frames in the document in the order in which they actually appear. To
test this idea, I'll just make an artificial loop by using the repeat command without
worrying for now about how many times I would have to loop in real life:

tell application " FrameMaker 7 . 0 "
set allPaths to { }
repeat 5 times

set one Frame to find anchored frame ,
in document " extra : applescriptBook : ch02places . fm "

set end of allPaths to inset file of inset 1 of one Frame
end repeat

end tell
allPaths

Here's the result:

{ " extra : applescriptBook : figures : ch02 : Script Editor3 . eps " ,
" extra : applescriptBook : figures : ch02 : Script Editor3 . eps " ,
" extra : applescriptBook : figures : ch02 : scriptEditor3 . eps " ,
" extra : applescriptBook : figures : ch02 : script Editor3 . eps " ,
" extra : applescriptBook : figures : ch02 : script Editor3 . eps " }

Oops. We're not moving forward through the document; we're just finding the same
illustration repeatedly. In FrameMaker itself, hitting the Find button over and over
keeps finding the next match, which is what we want; in Apple5cript, though, it
appears that giving the find command over and over keeps finding the same match.
But wait; the find command has a using parameter where I can specify find next.

Let's try that:

tell application " FrameMaker 7 . 0 "
set allPaths to { }
repeat 5 times

set one Frame to find anchored frame ,
in document " extra : applescriptBook : ch02places . fm " us ing find next

set end of allPaths to inset file of inset 1 of oneFrame
end repeat

end tell
allPaths

48 I Chapter 3: The AppleScript Experience

Darn it; this generates the same result. I guess "find next" simply means to find for
wards as opposed to backwards. The trouble is I'm not finding forwards. It appears
that once I've selected something, finding again just finds that same thing again. All
right, then, maybe if I can just somehow move the selection point forward a little
after finding an illustration, I'll be able to find the next illustration instead of the cur
rent one. So now I have to figure out how to move the selection point forward. I start
by selecting some text, and then comes a long round of experimentation, of which
I'll spare you the details, at the end of which I come up with this:

tell application " FrameMaker 7 . 0 "
select insertion point after selection

end tell

This works just fine when the selection is some text. Unfortunately, as I soon dis
cover, when the selection is an illustration, I get an error message. This is so frustrat
ing! Just when I thought I had the problem solved, I'm completely blocked again,
simply because I don't know how to move the selection off an illustration.

Turning the Tables

At this point I remember that every illustration is embedded in a table. According to
FrameMaker's dictionary, the find command has an option to find a table. Perhaps
this will work better if I start by dealing with tables instead of anchored frames. So I
try this:

tell application " FrameMaker 7 . 0 "
find table in document " extra : applescriptBook : ch02places . fm "
select insertion point after selection

end tell

Gee, there's no error. Could it be that this is actually working? To find out, I'll try to
cycle through several tables, collecting references to them to see if I'm finding differ
ent ones:

tell application " FrameMaker 7 . 0 "
set allTables to { }
repeat 5 times

set oneTable to find table �

in document " extra : applescriptBook : ch02places . fm "
set e n d of allTables to oneTable
select insertion point after selection

end repeat
end tell
allTables

Here's the result:

{table 5 2 of document " extra : applescriptBook : ch02places . fm "
of application " FrameMaker 7 . 0 " ,

table 5 3 of document " extra : applescriptBook : ch02places . fm "
of application " FrameMaker 7 . 0 " ,

table 5 1 of document " extra : applescriptBook : ch02places . fm "

A Day in the Life I 49

of application " FrameMaker 7 . 0 " ,
table 5 4 of document " extra : applescriptBook : ch02places . fm "

of application " FrameMaker 7 . 0 " ,
table 5 5 o f document " extra : applescriptBook : ch02places . fm "

of application " FrameMaker 7 . 0 " }

That's great. The numbers are once again mystifying; I have no idea why
FrameMaker thinks there are at least 55 tables in this document, and of course it is
numbering them in a different order than they appear in the document, just as it did
with anchored frames. But the important thing is that those are five different tables.
That means I really can cycle through the tables of the document this way.

Now I need to prove to myself that having found a table I can get to the anchored
frame-the illustration-inside it. This could be tricky, but surely there's a way.
Examining the table class listing in the dictionary, I see that a table has cell ele
ments. Well, for a table representing an illustration, that should be simple enough;
there's only one cell. Let's see:

tell application " F rameMaker 7 . 0 "
tell document " extra : a pplescriptBook : ch02places . fm"

tell table 5 5
get cell 1

end tell
end tell

end tell

Yes, that runs without error. Now, what's inside a cell? Looking in the cell class list
ing in the dictionary, I see that it has various possible elements, including paragraph,

word, and text. Let's try paragraph :

tell application " FrameMaker 7 . 0 "
tell document " extra : applescriptBook : ch02places . fm "

tell table 5 5
tell cell 1

get paragraph 1
end tell

end tell
end tell

end tell

Yes, that too runs without error. But can I get from this paragraph to the anchored
frame, the actual illustration? There's only one way to find out-try it:

tell application " FrameMaker 7 . 0 "
tell document " extra : applescriptBook : ch02places . fm"

tell table 5 5
tell cell 1

tell paragraph 1
get anchored frame 1

end tell
end tell

end tell
end tell

end tell

so I Chapter 3: The AppleScript Experience

Here's the result:

anchored frame 5 2 of document " extra : applescriptBook : ch02places . fm "
of application " FrameMaker 7 . 0 "

Son of a gun, i t worked. Starting with a reference to a table, I've found a way to refer
to the anchored frame inside it. But in that case-dare I say it?-the problem is
essentially solved. I know that in principle I can cycle through all the tables in a doc
ument, in the order in which they appear. I know that in principle I can get from a
reference to a table to a reference to an anchored frame. I know that, given an
anchored frame, I can obtain the pathname for the file on disk that is the source of
the illustration. So I should be able to put these abilities all together and get the path
names for the illustration files, in the order in which the illustrations appear in the
document.

Let's try it. I'll start things off at the top of the document by selecting the first para
graph. Then I'll cycle through the tables. As I come to each table, I'll get the
anchored frame, and from there I'll get the pathname to its source file and append it
to a list. I'll continue my policy of cycling some arbitrary number of times, because I
don't want to worry yet about the real question of how many times to do it; I just
want to prove to myself that I can do it.

The first thing is to learn how to select the first paragraph. This turns out to be some
what tricky. I try this, but it doesn't work:

tell application " FrameMaker 7 . 0 "
tell document " extra : applescriptBook : ch02places . fm "

select paragraph 1
end tell

end tell

By once again using my trick of selecting the first paragraph manually and then ask
ing FrameMaker for its selection, so as to learn how it thinks of a paragraph, I
finally come up with this:

tell application " FrameMaker 7 . 0 "
tell document " extra : applescriptBook : ch02places . fm "

select paragraph 1 of text flow 1
end tell

end tell

Now I'm ready to put it all together:

tell application " FrameMaker 7 . 0 "
tell document "extra : a pplescriptBook : cho2places . fm "

set allPaths to { }
select paragraph 1 of text flow 1
repeat 5 times

set oneTable to find table in it
set end of allPaths to inset file of inset 1 �

of anchored frame 1 of paragraph 1 of cell 1 of oneTable
select insertion point after selection

end repeat

A Day in the Life I 51

end tell
end tell
allPaths

A change you'll notice here is the use of the word it. In Apple5cript, that's how you
refer to a thing when you're already inside a tell block addressing that thing. This is
needed because the find command requires a reference to a document, but all the
other commands are already being addressed to that document.

Here's the result:

{ " extra : applescriptBook : figures : ch02 : script Editor3 . eps " ,
" extra : applescriptBook : figures : ch02 : scriptEditorDict . eps " ,
" extra : applescriptBook : figures : ch02 : scriptDebugger . eps " ,
" extra : applescriptBook : figures : ch02 : scriptDebuggerDict . eps " ,
" extra : applescriptBook : figures : ch02 : radio . eps " }

That's the right answer: those are the pathnames to the first five illustrations in the
document, in the order in which they appear. For the first time since starting to work
on the problem, I now believe I'm going to be able to solve it.

Refiner's Fire

Now let's make a few refinements. First, it occurs to me that I'm doing something
rather stupid here; I'm finding every table. That's going be troublesome, because
some tables are illustrations but some are just ordinary tables. I want to find illustra
tion tables only. I know that in my FrameMaker template these are tables whose tag
(or style name) is "Figure". The find command, according to FrameMaker's dictio
nary, lets me find a table having tag. So that's the way I should find my tables. After
a short struggle to understand the syntax of this command, I come up with the fol
lowing new version of my script:

tell application " FrameMaker 7 . 0 "
tell document " extra : applescriptBook : ch02places . fm"

set allPaths to { }
select paragraph 1 of text flow 1
repeat 5 times

set oneTable to find table having tag with value " F igure " in it
set end of allPaths to inset file of inset 1 ,

of anchored frame 1 of paragraph 1 of cell 1 of oneTable
select insertion point after selection

end repeat
end tell

end tell
allPaths

The result is just the same, so I haven't wrecked the successes I've already had
(known in the programming business as a "regression"), and I believe I've elimi
nated some possible false positives from the find.

Next, let's worry about how to know how many times to loop. By changing "5
times" to "20 times", which is more times than the number of illustrations in the

S2 I Chapter 3: The AppleSaipt Experience

document, and then running the script again, I discover that when I get to the end of
the document the search wraps around and starts from the top once more. I try to fix
this by adding the option using no wrap to the find, but it doesn't help. Therefore I'd
like to know beforehand exactly how many times to loop.

Now, I know from the dictionary that a table has a table tag property. Apple5cript
has a construct (called a "boolean test specifier") that allows me to specify particular
objects of a class in terms of the value of one of that class's properties; not every
scriptable application implements this construct when you'd like it to, but the only
way to find out whether FrameMaker does in this case is to try it, so I do. After some
stumbling about, I realize that a document has a text flow element that I have to
refer to before I can refer to a table, and I come up with this:

tell application " FrameMaker 7 . 0 "
tell document " extra : applescriptBook : ch02places . fm "

tell text flow 1
get tables whose table tag is " F igure"

end tell
end tell

end tell

That works. But I don't really want this entire list; I just want to know how many
items it contains. In Apple5cript, the size of a list can be obtained with the count

command:

tell application " FrameMaker 7 . 0 "
tell document " extra : applescriptBook : ch02places . fm "

tell text flow 1
count (get tables whose table tag is " Figure ")

end tell
end tell

end tell

The result is 15 . That's correct. 50 I should be able to use this approach before start
ing my loop in order to know just how many times to loop. Here's my new version of
the script:

tell application " FrameMaker 7 . 0 "
tell document " extra : applescriptBook : ch02places . fm "

tell text flow 1
set howMany to count (get tables whose table tag is " F igure ")

end tell
set allPaths to { }
select paragraph 1 o f text flow 1
repeat howMany times

set oneTable to find table having tag with value " F igure " in it
set end of allPaths to inset file of inset 1 ,

of anchored frame 1 of paragraph 1 of cell 1 of oneTable
select insertion point after selection

end repeat
end tell

end tell
allPaths

A Day in the Life I S3

And here's the result; it's absolutely perfect, the correct names of the correct illustra
tions in the correct order:

{ " extra : applescriptBook : figures : ch02 : scriptEditor3 .eps " ,
" extra : applescriptBook : figures : ch02 : scriptEditorDict . eps " ,
" extra : applescriptBook : figures : ch02 : scriptDebugger . eps " ,
" extra : applescriptBook : figures : ch02 : scriptDebuggerDict . eps " ,
" extra : applescriptBook : figures : ch02 : radio . eps " ,
" extra : applescriptBook : figures : ch02 : radio2 . eps " ,
" extra : applescriptBook : figures : ch02 : word3 . eps " ,
" extra : applescriptBook : figures : ch02 : word4 . eps " ,
" extra : applescriptBook : figures : ch02 : fileMakerl . eps " ,
" extra : applescriptBook : figures : ch02 : fileMaker2 . eps " ,
" extra : applescriptBook : figures : ch02 : fileMaker3 . eps " ,
" extra : applescriptBook : figures : ch02 : ib . eps " ,
" extra : applescriptBook : figures : ch02 : ib2 . eps " ,
" extra : applescriptBook : figures : ch02 : ib3 . eps " ,
" extra : applescriptBook : figures : ch02 : RB . eps " }

Naming of Parts

Let's now turn our attention to the business of deriving the new name of each illus
tration. This will involve the chapter number. How can we learn this number?

It happens that in the FrameMaker template I'm using, every chapter document has
exactly one paragraph whose tag (paragraph style) is "ChapterLabel," and that the
text of this paragraph is the chapter number. So if FrameMaker gives me a way to
refer to this paragraph, I should be home free. The dictionary tells me that the
paragraph class has a paragraph tag property. Using the same sort of boolean test
specifier construct I used a moment ago to find only those tables with a particular
table tag, I try to find just those paragraphs that have this particular paragraph tag,
expecting there to be just one:

tell application " FrameMaker 7 . 0 "
tell document " extra : applescriptBook : ch02places . fm "

tell text flow 1
get paragraphs whose paragraph tag is "Chapter Label"

end tell
end tell

end tell

This doesn't give me an error, but the result is not quite what I expected :

{ O R }

I guess the problem is that the paragraph itself is empty; the chapter number is gen
erated automatically through FrameMaker's autonumbering feature, and doesn't
really count as its text. The dictionary lists a couple of paragraph properties that look
promising here:

autoNum string string - - The automatic numbering format string.
paragraph number string - - The formatted string representation of the paragraph number.

54 I Chapter 3: The AppleScript Experience

The second one looks like what I'm after, so I try it:

tell application " F rameMaker 7 . 0 "
tell document " extra : applescriptBook : ch02places . fm "

tell text flow 1
get paragraph number of paragraphs ,

whose paragraph tag is " ChapterLabel"
end tell

end tell
end tell

The result is this:

{ " Chapter 2 " }

That's the right answer! It's a list because I asked for all such paragraphs, but it's a
list of just one item because there is only one such paragraph, and the string "Chapter

2 " provides the chapter number for this chapter. Now, of course, I need to extract
just the " 2 " from this string, but that's easy, because AppleScript understands the
concept of a word:

tell application " FrameMaker 7 . 0 "
tell document " extra : applescriptBook : ch02places . fm "

tell text flow 1
set chapNum to (get paragraph number of paragraphs ,

whose paragraph tag is "ChapterLabel ")
end tell

end tell
end tell
set chapNum to word - 1 of item 1 of chapNum
chapNum

The element item 1 extracts the single string "Chapter 2" from the list, and the ele
ment word - 1 extracts the last word of that. The result is " 2 " , which is perfect.

I want this number formatted to have two digits. Now, this is a piece of functionality
I'm going to need more than once, so I write a little handler (a subroutine). The idea
of a handler is that repeated or encapsulated functionality can be given a name and
moved off to another location; this makes your code cleaner. This handler's job is to
accept a string and pad it with zero at the front until it is two characters long. Hav
ing written the handler, I add some code to call the handler and test it, twice, because
I want to make sure it works for a string that is either one or two characters long.

on pad (s)
repeat while length of s < 2

set s to (" 0 " & s)
end repeat
return s

end pad
log pad (" 2 ")
log pad (" 22 ")

A Day i n the Life I ss

The pad handler makes use of concatenation (via the ampersand operator) to assem
ble the desired string. Those last two lines do two things:

• The pad command calls the pad handler that appears earlier in the code.

• The log command puts the result of the pad command into the Event Log His
tory window. The Event Log History window must be opened manually before
running the script.

Logging like this is a good approach when you want to test more than one thing in a
single running of a script. The result looks good:

(*02*)
(*22*)

Those parentheses and asterisks are comment delimiters; I don't quite understand
why the log window uses them, but it doesn't matter.

Another problem is that the new name of each illustration is going to be based partly
on its old name. I need to break up the illustration file's pathname into its compo
nents, and I need to break up the last component, the actual name of the file, into
the name itself and the file-type suffix, because the only part of the path name I want
to change is the name itself.

The typical Apple5cript way to break up a string into fields based on some delimiter
is to set a special variable called text item delimiters to that delimiter and then ask
for the string's text items . So I'll do that twice, once with colon as the delimiter and
again with period as the delimiter. Once again, I'll make this a handler, just because
it makes the script so much neater. I'll have the handler return both results, the list of
pathname components together with the list of filename components, combined as a
single list. That way, when I call this handler, I will have all the pieces and can reas
semble them the way I want:

on bust (s)
set text item delimiters t o " : "
set pathParts to text items of s
set text item delimiters to " . "
set nameParts to text items of last item of pathParts
return { pathPart s , nameParts}

end bust
bust (" disk : folder : folder : file . suffix")

The result shows that the right thing is happening:

{ { " disk " , " folder" , " folder " , " file . s uffix " } , { " file " , " s uffix " } }

Now I'm ready to practice renaming an illustration file. I'll write a handler that takes
two numbers and the current pathname of the illustration file and generates the new
pathname for that file:

on pad (s)
repeat while length o f s < 2

set s to (" 0 " & s)
e n d repeat

S6 I Chapter 3: The AppleScript Experience

return s
end pad
on bust (s)

set text item delimiters t o " . "
set pathParts to text items of s
set text item delimiters to " . "
set nameParts to text items of last item of path Parts
return { pathPart s , nameParts}

end bust
on rename (nl , n 2 , oldPath)

set both Lists to bust (oldPath)
s et extension to l a st item of item 2 of both Lists
set path Part to items 1 thru - 2 of item 1 of both Lists
set newFileName to " a s_" & pad(nl) & pad (n 2)
set newFileName to newFileName & " . " & extension
set text item delimiters to " : "
return (pathPart as string) & " : " & newFileName

end rename
rename (" 2 " , " 3 " , " d is k : folder : folder : oldName . eps ")

The expression as string when applied to a list, as in the very last line of the rename

handler, assembles the items of the list, together with the text item delimiters

between each pair of items, into a single string. And here's the result:

" d is k : folder : folder : as_0203 . eps "

Got it right the first time! It's hard to believe, but I am now ready for a practice run
using an actual FrameMaker document.

Practice Makes Perfect

If I've learned one thing about programming over the years it's to practice before
doing anything drastic. I'm going to run through the document and pretend to
change the illustration names. Instead of really changing them, I'll log a note telling
myself what I would have changed the name to if this had been the real thing. So,
putting it all together, here's my practice script:

on pad (s)
repeat while length of s < 2

set s to (" 0 " & s)
end repeat
return s

end pad
on bust (s)

set text i tem delimiters t o " : "
set pathParts to text items of s
set text i tem delimiters to " . "
set nameParts to text items of last item of pathParts
return { pathPart s , nameParts}

end bust
on rename (nl , n2, oldPath)

set both Lists to bust (oldPath)
s et extension to l a st item of item 2 of bothLists
set pathPart to items 1 thru - 2 of item 1 of both Lists

A Day in the Life I 57

set newFileName to " as_" & pad (n1) & pad (n 2)
s et newFileName to newFileName & " . " & extension
set text item delimiters to " : "
return (pathPart as string) & " : " & newFileName

end rename
tell application " FrameMaker 7 . 0 "

tell document " extra : applescriptBook : ch02places . fm "
tell text flow 1

set howMany to count (get tables whose table tag is " F igure ")
set chapNum t o (get paragraph number o f paragraphs �

whose paragraph tag is "ChapterLabel ")
end tell
set chapNum to word -1 of item 1 of chapNum
set allPaths to { }
select paragraph 1 of text flow 1
set counter to 1
repeat howMany times

set oneTable to find table having tag with value " F igure" in it
set this F ile to inset file of inset 1 �

of anchored frame 1 of paragraph 1 of cell 1 of oneTable
set newName to �

my rename (chapNum, (counter as string) , this File)
log "I found " & this File
log " I ' m thinking of changing it to " & newName
select insertion point after selection
set counter to counter + 1

end repeat
end tell

end tell

Observe that I have put in the variable counter, which starts at 1 and is incremented
in every loop; this is how I know how many times I've done the find, and therefore
tells me the number of the current illustration. I must admit that it took me a couple
of tries to get this script to run. When I first tried to run it, I got an error at the point
where I call the rename handler. This was because I had forgotten to put the magic
word my before it; this word tells AppleScript that even though I'm talking to
FrameMaker I want to call a handler in my own script. And then, after I made that
change and ran the script again, I got another error: it appeared that the rename han
dler was called but was now choking. The reason was that the variable counter was a
number, and the rename handler was passing this on to the pad handler, which was
expecting a string. The phrase counter as string converts the number to a string for
purposes of passing it to the rename handler.

Here are the relevant entries of the resulting log:

(* 1 found extra : applescriptBook : figures : ch02 : scriptEditor3 . eps*)
(* I ' m thinking of changing it to

extra : applescriptBook : figures : ch02 : as_0201 . eps*)
(* 1 found extra : applescriptBook : figures : ch02 : scriptEditorDict . eps*)
(* I ' m thinking of changing it to

extra : applescriptBook : figures : ch02 : as_0202 . eps*)
(* 1 found extra : applescriptBook : figures : ch02 : scriptDebugger . eps*)

58 I Chapter 3: The AppleScript Experience

(*1 ' m thinking of changing it to
extra : applescriptBook : figures : cho2 : as_o203 . eps*)

(*1 found extra : applescriptBook : figures : cho2 : scriptDebuggerDict . eps*)
(*1 ' m thinking of changing it to

extra : applescriptBook : figures : cho2 : as_o204 . eps*)
(*1 found extra : applescriptBook : figures : cho2 : radio . eps*)
(*1 ' m thinking of changing it to

extra : applescriptBook : figures : cho2 : as_o2os . eps*)
(*1 found extra : applescriptBook : figures : cho2 : radio2 . eps*)
(*1 ' m thinking of changing it to

extra : applescriptBook : figures : cho2 : a s_o206 . eps*)
(*1 found extra : applescriptBook : figures : cho2 : word3 . eps*)
(*1 ' m thinking of changing it to

extra : applescriptBook : figures : cho2 : as_o207 . eps*)
(*1 found extra : applescriptBook : figures : cho2 : word4 . eps*)
(*1 ' m thinking of changing it to

extra : applescriptBook : figures : cho2 : as_o208 . eps*)
(*1 found extra : applescriptBook : figures : cho2 : fileMakerl . eps*)
(*1 ' m thinking of changing it to

extra : applescriptBook : figures : cho2 : as_o209 . eps*)
(*1 found extra : applescriptBook : figures : cho2 : fileMaker2 . eps*)
(*1 ' m thinking of changing it to

extra : applescriptBook : figures : cho2 : as_o21o . eps*)
(*1 found extra : applescriptBook : figures : cho2 : fileMaker3 . eps*)
(*1 ' m thinking of changing it to

extra : applescriptBook : figures : cho2 : as_o211 . eps*)
(*1 found extra : applescriptBook : figures : cho2 : ib . eps*)
(*1 ' m thinking of changing it to

extra : applescriptBook : figures : cho2 : as_o212 . eps*)
(*1 found extra : applescriptBook : figures : cho2 : ib2 . eps*)
(*1 ' m thinking of changing it to

extra : applescriptBook : figures : cho2 : as_o213 . eps*)
(*1 found extra : applescriptBook : figures : cho2 : ib3 . eps*)
(*1 ' m thinking of changing it to

extra : applescriptBook : figures : cho2 : as_o214 . eps*)
(*1 found extra : applescriptBook : figures : cho2 : RB . eps*)
(*1 ' m thinking of changing it to

extra : applescriptBook : figures : cho2 : as_o21s . eps*)

That looks as good as I could wish.

Finder's Keepers

I must not change only the file reference of each illustration within FrameMaker; I
must change also the name of the actual illustration file. This involves speaking to
the Finder. As a test, I create a file and run a little code to make sure I know how to
tell the Finder how to change the name of a file.

tell application " F inder"
set name of file " xxx : Users : mattneub : Desktop : testing . txt " to " itWorked "

end tell

A Day in the Life I S9

This works, and now we are ready to run our original script for real. Before doing so,
we make sure we have backup copies of everything involved, in case something goes
wrong. Even with backups, it's a scary business making such possibly disastrous
changes, both in a FrameMaker document and on disk, so I start by running the
script against a document that has just one illustration-in fact, I run it against this
very chapter, Chapter 3.

To make the script work for real, I change it in two places. First, at the start I add
another little handler to extract the final component from a pathname, so that I can
obtain the new name that the Finder is to give to the illustration file:

on j u stNarne (s)
set text i tern delimiters t o " : "
return last text item of s

end j u stName

Second, I replace the two "log" lines from the previous version with this:

set newShortName to my j u stName (newName)
tell application " F inder" �

to set name of file thisFile to newShortName
set inset file of in set 1 �

of anchored frame 1 of paragraph 1 of cell 1 of oneTable �

to newName

The first two lines are simply a rewrite of the Finder file-renaming code we just tested
a moment ago, with the values coming from variables in the script instead of being
hardcoded as literal strings. The second line actually changes the name of the illus
tration file on disk. Observe that we can talk to the Finder even inside code where we
are already talking to FrameMaker. The last line is the only one that makes an actual
change in the FrameMaker document-the crucial change, the one we came here to
make, altering the illustration's file reference to match the new pathname of the illus
tration file. I run the script against Chapter 3 and it works: the illustration file's name
is changed, and the illustration's file reference in the FrameMaker document is
changed to match.

I 've Got a Little List

Recall that one of our purposes is to generate the figure list requested by the illustra
tion department, as shown in Table 3-1 . I already know the chapter number, the
illustration number, and the illustration file's name. The only missing piece of infor
mation is the illustration's caption. The FrameMaker dictionary shows that a table
has a title property that looks like what I want. A quick test against a specific table
shows that it is:

tell application " FrameMaker 7 . 0 "
set theTitle to (get title of table 46 of document �

" extra : applescriptBook : ch03handson . fm")
end tell

60 I Chapter 3: The AppleScript Experience

This works, but because of the way the template is constructed, it includes an
unwanted return character at the start of the result. To eliminate this, I use an Apple
Script expression that extracts all but the first character of a string:

tell application " FrameMaker 7 . 0 "
set theTitle to text from character 2 to - 1 of �

(get title of table 46 of document �

"extra : a pplescriptBook : ch03handson . fm ")
end tell

That works; the result is this:

" FrameMaker dictionary "

That is indeed the caption of the first illustration of this chapter. AppleScript can
write to a file, so all I need now is a handler that appends to a file, nicely formatted, a
line containing the information for the illustration currently being processed. Here,
then, is the final version of the script, including this handler and a call to it:

on pad (s)
repeat while length of s < 2

set s to (" 0 " & s)
end repeat
return s

end pad
on bust (s)

set text item delimiters t o " : "
set path Parts to text items of s
set text item delimiters to " . "
set nameParts to text items of last item of pathParts
return { pathPart s , nameParts}

end bust
on rename (n1 , n 2 , oldPath)

set both Lists to bust (oldPath)
s et extension to l a st item of item 2 of both Lists
set path Part to items 1 thru - 2 of item 1 of both Lists
set newFileName to " a s_" & pad (n1) & pad (n 2)
s et newFileName to newFileName & " . " & extension
set text item delimiters to " : "
return (pathPart as string) & " : " & newFileName

end rename
on j u stName (s)

set text item delimiters t o " . "
return last text item of s

end j ustName
on writelnfo (n1 , n 2 , theName , theTitle)

set s to return & n1 & " - " & n2 & tab & theName & tab & theTitle & return
set f to open for access file " xxx : Users : mattneub : figs " with write permis sion
write s to f starting at (get eof of f)
close access f

end writelnfo
tell application " FrameMaker 7 . 0 "

tell document " extra : applescriptBook : ch03handson . fm "
tell text flow 1

A Day in the Life I 61

set howMany to count (get tables whose table tag is " Figure ")
set chapNum t o (get paragraph number of paragraphs ,

whose paragraph tag is "ChapterLabel ")
end tell
set chapNum to word - 1 of item 1 of chapNum
set allPaths to { }
select paragraph 1 of text flow 1
set counter to 1
repeat howMany times

set oneTable to find table having tag with value " Figure " in it
set thisFile to inset file of in set 1 ,

of anchored frame 1 of paragraph 1 of cell 1 of oneTable
set newName to my rename (chapNum, (counter a s string) , this File)
set newShortName to my justName (newName)
tell application " Finder" to set name of file this F ile to newShortName
set inset file of inset 1 ,

of anchored frame 1 of paragraph 1 of cell 1 of oneTable ,
to newName

set the Title to text from character 2 to - 1 of (get title of oneTable)
my writelnfo (chapNum, (counter as string) , newShortName , theTitle)
select insertion point after selection
set counter to counter + 1

end repeat
end tell

end tell

There is just one thing I don't like about that script, namely this line:

tell document " extra : applescriptBook : cho3handson . fm "

That line hardcodes the pathname of the document file. This works, but it means
that I have to change the script manually for each file I process. That's not so terri
ble, since only about eight chapters of this book have any illustrations at all, but it
would be nice not to have to do it at all, if only because it seems a possible source of
error. Nevertheless , I think we can save this matter for some future round of refine
ments, and for now at least, consider the problem solved.

Conclusions, Lessons, and Advice
You'll no doubt have noticed that most of my time and effort working on this prob
lem was spent wrestling with the particular scriptable application I was trying to auto
mate. In general, that's how it is with AppleScript. AppleScript itself is a very small
language; it is extended in different ways by different scriptable applications. Trying
to work out what a particular scriptable application will let you say and how it will
respond when you say it constitutes much of the battle of working with AppleScript.

Another feature of the struggle is that AppleScript's error messages aren't very help
ful, and it lacks a debugging environment (unless you use Script Debugger as your
script editor application) , so it's important to proceed with caution and patience.
When you try to execute a script, all you really know is that it worked or it didn't; if
it didn't, finding out why isn't easy. You can see that I developed my final script

62 I Chapter 3: The AppleScript Experience

slowly and in stages, testing each piece as I went along. I knew that the pieces
worked before I put them into place; that way I could be pretty confident that I knew
what the script as a whole would do.

Here, to conclude, are a few apophthegms to live by, derived from the foregoing. I
hope you'll find this advice helpful in your own AppleScript adventures :

Use the dictionary.
The biggest problem you face as you approach driving a scriptable application is
that you don't know the application's "object model"-what sorts of thing it
thinks of itself as knowing about, what it calls these things, and how the things
relate to one another. In this regard, nouns (classes) are much more important
than verbs (events). Most scriptable applications, especially if they are scriptable
in a deep and powerful way, have lots of nouns and relatively few verbs. Notice
how I did almost everything in the script with the basic built-in verbs get , set ,

and count ; even select is fairly standard. The only unusual verb I ended up using
was find. I spent almost all of the time worrying about the nouns. The biggest
problem in AppleScript is referring to the thing you want to talk about, in the
manner that your scriptable application expects and accepts.

Don't expect too much from the dictionary.
Try to think of other ways to learn how to construct the desired reference.
FrameMaker's dictionary let us down quite severely on several occasions; I was
much more successful in asking for the selection and letting FrameMaker
describe a thing in its own terms than in trying to construct a reference from
scratch based on the dictionary. In fact, although I didn't say anything about it
at the time because the matter is rather technical, FrameMaker's dictionary is
massively faulty; although I learned by experiment that an anchored frame can
be an element of a paragraph or of a document, the dictionary doesn't say this at
all. Had it done so, I would have had a much easier time.

Think outside the box.
When FrameMaker wouldn't just hand me references to every anchored frame in
the order in which they occur in the document, I was frustrated but I didn't give
up; I tried to think of another way. The find command looks broken to me, but I
didn't worry about this; I figured out how to move the selection point forward to
work around the problem. If you waste your time and energy bewailing things
that you feel are broken or quirky or inadequate in AppleScript or in some par
ticular scriptable application, you won't get any work done. Face reality and
tighten your belt another notch.

Start small.
Look at how much of the time was taken up testing very short snippets of code
over and over just to learn how to construct a reference or to see what some
operation would do. Part of the problem here is that you don't know until you
try it what an application will permit you to do; the dictionary can't really tell
you. Another part of the problem is that AppleScript has no built-in facilities for

Conclusions, Lessons, and Advice I 63

debugging. Therefore you need to develop the program one line at a time, build
ing it up from individual lines that you already know work (because you've
tested them). Don't try to write an entire program in AppleScript and then fig
ure out why it didn't work; you'll never manage it. By the time you put the
whole program together, you should be like a lawyer cross-examining a witness
in court: ideally, you should never ask a question to which you don't already
know the answer.

Test every step.
When you don't know the answer to some question your code is asking in the
course of your script, find out. Use the result of running a script. Use logging.
You want to know at every step, as you develop a script, whether what's hap
pening is what you want and expect.

Don't be ashamed to experiment.

Don't be ashamed to guess! A lot of AppleScript code development is guess
work. As Aristotle said, it is a mark of wisdom to ask from a subject only so
much precision as that subject admits of.

Solve the single case before expanding to "every."
Solve the single case before expanding to a loop. Solve an artificial loop before
worrying about the boundary cases (that is, before figuring out how to know
exactly how many times to loop).

Don't try to understand AppleScript's mysterious error messages.
The important thing isn't what went wrong but where it went wrong. Knowing
where the problem is will usually suffice, because you know where you need to
make a change, even if you're just guessing when you make it. If you think the
error isn't important, use error-handling (a try block) to ignore it, so that it
won't stop your code from executing.

Write a practice script before writing the final version of the script.
AppleScript has the power to do very far-reaching things, such as deleting files
and wrecking your document. You want to be very sure things are working
before you throw the switch that says, "This is not a drill."

Know the language.
It's true that in the course of development I did a lot of guessing about
FrameMaker's object model; but I didn't guess about the language itself. I
couldn't have written this program at all if I hadn't known already what my and
it mean, and how to use tell and of, and how to form a boolean test specifier,
and what the difference is between a property and an element. AppleScript may
look like English, and that might make you think you already know AppleScript
because you already know English. If you think that, you're wrong. AppleScript
is a rule-based programming language like any other. It is rigorous, choosy, and
precise. This book can't teach you to write that one special script you'd like to
write, but it can and does teach you the language.·

64 I Chapter 3: The AppleScript Experience

CHAPTER 4

Basic Concepts

This chapter explains how AppleScript works. Its purpose is to provide you with a
mental picture of what's really going on when you use AppleScript. It also acts as a
kind of glossary, defining the basic terms and concepts needed for an understanding
of AppleScript, but the concepts are presented in an expository order rather than
alphabetically.

All subsequent chapters will presuppose some familiarity with the terms and con
cepts presented in this chapter. You don't have to grasp everything immediately, and
you don't need to read every section with equal care. But you should at least skim
this chapter in order to get your conceptual bearings. You can always come back
later and reread a section if you need a refresher on the details.

Apple Event
Apple events lie at the heart of what AppleScript is and why you're going to use it,
and having a sense of what they are will be of tremendous help to you in your Apple
Script adventures.

Apple events are the Macintosh's system-level way of letting one running application
communicate with another. Such communication is called interapplication communi
cation. Apple events were introduced in 199 1 as part of System 7. I refer to the two
parties in an interapplication communication as the sender (the application that
sends the message) and the target (the application that receives the message); I find
this clearer and more instructive than the more technical terms "client" and "server."

An Apple event is an astonishingly powerful thing. Hermes-like, it crosses borders.
Two completely independent applications are talking to each other. What's more,
Apple events work across a network, including the Internet, so these two applica
tions can be on different computers. Or it can be the opposite; an application can
send an Apple event to itself. (Why would it want to do that? You'll find out, in the
section "Recordable," later in this chapter.)

65

Moreover, the range of what may be expressed in an Apple event is remarkably
broad. Apple events actually have a kind of grammar: there are (so to speak) verbs
and nouns and modifiers, and these are so cleverly and flexibly devised that single
Apple events can be constructed to say surprisingly complicated things, such as
(speaking to a word processing program), "Look at the text of your first window and
give me a reference to every line of it whose second word begins with the letter t," or
(speaking to an email program), "Look in the mailbox where the incoming mail is,
find the first mail message with a subject that starts with the word 'applescript', and
move it into the 'AppleScript' mailbox."

Command, Query, and Reply

An interapplication communication can be thought of as either a command or a
query . There is no real technical distinction here; either way it's the same kind of
message. But as human beings we naturally tend to feel that these are broadly the
reasons for sending an interapplication communication: either we tell the target to
do something or we ask the target a question. In either case, there will be a reply . The
reply to an Apple event is itself an Apple event.

You might think that if an interapplication communication is a command, there
wouldn't need to be a reply. But that's not so. Apple events tend to use the reply to
hand back useful information; for example, you saw in Chapter 3 that telling
FrameMaker to find , which sounds like a command, also nets us a reference to what
was found. What's more, even if the sender couldn't care less about the content of
the reply, the reply itself is still important. Remember, these two applications are
running independently, so they have to be coordinated somehow if they are to inter
act coherently. The sender, having sent a command to the target, typically doesn't
want to proceed to its own next step until the target has finished obeying that com
mand. The reply informs the sender that the command has been carried out (or not,
if an error has occurred).

When two independently running applications communicate with each other, things
can go wrong. The sender sends a message to the target, and then what? The target
application might try to obey the message, and crash. It might obey the message, but
require a great deal of time to do so. It might be busy or otherwise not in a position
to receive the message. The sender needs a way to hedge his bets in order to cope
with such possibilities. Apple events provide some bet-hedging mechanisms.

• The sender may attach to the message a timeout value, a statement of how long
he is willing to wait for an answer. If a reply doesn't come back within the speci
fied time, the sender receives a reply anyway-a reply saying that, for one rea
son or another, no reply came back in time. This can permit the sender to
proceed to the next step. (Meanwhile the target is probably still performing his
time-consuming task, blissfully unaware that the sender has lost interest.)

66 I Chapter 4: Basic Concepts

• The sender may specify that he isn't interested in the reply at all: he doesn't care
about its value (which impiies that this is a command, not a query); he doesn't
care to know even whether there is a reply, or whether the command was car
ried out. In this case the sender does not wait; the message is sent, and the
sender immediately proceeds to the next step of his own process. The sender will
never find out in any direct way what became of the Apple event. This devil
may-care approach is rather rarely used, but there are times when it comes in
very handy.

Scriptability

Not just any old Apple event can be sent to any old application. Well, it can, but the
result could easily be an error message instead of the desired result. The target appli
cation needs to have been written in the first place in such a way that the particular
Apple event you send is one to which it is prepared to respond. Such an application
defines internally a repertory of Apple events that it understands. The application is
then said to be scriptable.

A given scriptable application's repertory of acceptable Apple events doesn't neces
sarily resemble that of any other scriptable application. This presents something of a
problem for the sender, since every possible target application is picky in a different
way about what can be said to it. This problem washes over into AppleScript, and is
in fact one of the single greatest challenges facing the AppleScript programmer. (You
already saw this in Chapter 3.)

The knowledge of what Apple events a scriptable application can respond to, and
what it will do in response to them, is an implicit fact built into its workings, not an
explicit fact written somehow on its face. How, then, is it possible to know what a
scriptable application's repertory is? Some secondary device is clearly needed to
expose this information. In the AppleScript world, this device is the application's dic
tionary, which is a kind of built-in public document describing the application's rep
ertory. There is a section about dictionaries later in this chapter, and an entire
chapter devoted to them later in the book (Chapter 19) .

The Life of an Apple Event

There's obviously more to the story of interapplication communications than just the
sender application and the target application. For example, earlier it was said that
the sender normally receives a reply even if the target isn't even listening. How is that
possible? It's possible because the System itself functions as the intermediary through
which all interapplication communications happen. The sender doesn't speak
directly to the target, but to the System. It is the System that is responsible for pass
ing the message on to the target, and for letting the sender know how things went.

Apple Event I 67

Figure 4-1 shows in more detail the process whereby an Apple event is sent and a
reply is returned.

Info about
Apple event

se�er sY5i.
em aevt\oapp

o core\getd

core\move t ::�. .
.

1 .I"·.
· · ·
n
· · · · .. Apple event

Error info arid result info
"r-----.....;,.;.;

Figure 4-1. Life of an Apple event

Target

1. The sender application (on the left of the figure) constructs the Apple event. The
Apple event is rather like a letter inside an envelope that you post in the mail. It
has information about how it is to be directed-who the target application is,
and whether the sender intends to wait around for the reply, and if so, what the
timeout value is. This information is intended for the System, and is rather like
the stuff that goes on the outside of the envelope. Then there is the content-the
details as to what kind of Apple event this is and the particular data that it
involves. This information is intended for the target application, and is rather
like the letter that's inside the envelope.

2 . The sender application calls the System (in the middle of the figure) and hands it
the Apple event. The System, rather like the postal service, examines the Apple
event and looks at the information about how it is to be directed. Using this
information, the System tries to locate the target application. Let's presume that
it succeeds in doing this.

3. The target application (on the right of the figure) is portrayed as having a reper
tory of Apple events to which it is prepared to respond. These Apple events are
listed using pairs of four-letter codes. (Apple events really are identified by pairs
of four-letter codes, as explained in Chapter 19, and the Apple events listed in
the diagram are genuine, common Apple events.)

4. The System calls the target application, handing it the Apple event supplied by
the sender. The System also attaches to this Apple event a reply Apple event. It is
rather is if, when the post office delivers a letter to you, it were to provide a

68 I Chapter 4: Basic Concepts

stamped addressed envelope for you to put your reply into. The System holds
out this reply event to the target application, but doesn't let go of it.

5 . The target application does whatever the Apple event tells it to do, and puts the
result into the reply event. There are two parts to this result. First, the target
application must return a value signifying whether or not things succeeded. Sec
ond, the target application may put into the reply any other information to be
returned. If there was an error, it can put in a text message describing the prob
lem. If things succeeded and a result is expected, it can put in that result.

6. The target application now signs off, and the System is left holding the reply
Apple event (which, as we said, it never let go of). The System now delivers the
reply Apple event to the sender application, and the story ends.

What an Apple Event looks like

By now the reader is probably eager to see an Apple event. What does one look like?
Actually, an Apple event was never meant for human eyes. It is meant to be machine
constructible and machine-parsable. It doesn't really even have, in a strict sense, any
appearance at all. Nevertheless, as a kind of linguistic shortcut for expressing and
understanding Apple events, there is a textual format called AEPrint that shows you
what an Apple event looks like. Example 4-1 displays, in AEPrint format, the second
of the two Apple events I mentioned earlier, the one addressed to a mail program.

Example 4-1 . A raw Apple event

core\move{
insh : insl{

kobj : obj

} ,

form : ' name ' ,
want : ' Mbox ' ,
seld : " appleScript " ,
from : ' null ' ()

kpos : ' end
} ,
- - - - : obj {

form : ' indx ' ,
want : ' cobj , ,
seld : l ,
from : obj {

form : ' test ' ,
want : ' msg "
from : obj {

form : ' prop ' ,
wa nt : ' prop ' ,
seld : ' unBX ' ,
from : ' null ' ()

} ,
seld : cmpd{

relo : ' bgwt ' ,

Apple Event I 69

Example 4-1 . A raw Apple event (continued)

}

obj l : obj {
form : ' prop ' ,
want : ' prop ' ,
seld : ' subj , ,
from : exmn ($$)

} ,
obj 2 : " applescript "

Go and Catch an Apple Event

We have seen that the System plays the central role of postman whenever an Apple
event is sent. Now imagine that Apple events are secret messages, and that we are
international spies who would like to get a look at them when they are sent. In effect,
we would like to waylay the postman, bonk him over the head, snatch the letter out
of his hand, and glance at its contents. It turns out that there is a way to do this.

Here's how. First, open the Console; that's where any Apple events are going to be
reported to us. Next, go into the Terminal and enter the following:

$ setenv AEDebug 1
$ setenv AEDebugSends 1
$ setenv AEDebugReceives 1

Or, in bash (the default shell in Panther), you'd say:

$ export AEDebug=l
$ export AEDebugSends=l
$ export AEDebugReceives=l

This turns on the environment settings that cause Apple events to be intercepted and
reported. These settings will apply only within this shell session, and only with respect
to applications that are launched from within this process. So, let's launch one:

$ open IApplications/Safari;app

Now any Apple events sent to Safari will be logged. Let's send one:

$ open http : //www . apple . com

(I'm assuming here that Safari is your default browser.) This causes two things to
happen. First, within the Terminal, the process started by the open command sends
an Apple event, and this fact is reported within the Terminal. Second, Safari receives
this Apple event, and this fact is reported within the Console. The two Apple events
are exactly the same event, so there's no point examining both of them-here it is as
it's reported in the Console, when Safari receives it:

AE2000 (5 56) : Received an event :
- - - - - - 00 start of event 00 - - - - -
{ 1 } ' aevt ' : GURL/GURL {

70 I Chapter 4: Basic Concepts

return id : 3 8666240 (ox24eoooo)
transaction id : 0 (oxo)

interaction level : 112 (Ox70)
reply required : 0 (Oxo)

target :
{ 1 } ' ps n ' : 8 bytes {

{ OXO, Ox3eOOOl } (open)

optional attributes :
< empty record >

event data :
{ 1 } ' aevt ' : - 1 items {

key ' - - - - ' -

{ 1 } ' TEXT ' : 20 bytes {
.. htt p : //www . apple . com ..

- - - - - - 00 end of event 00 - - - - - -

This is quite a bit more verbose than simple AEPrint format, and more informative. I
won't analyze it for you, but you can see immediately that the first half is informa
tion about the Apple event (its identifier, its target, whether a reply is expected, that
sort of thing) and the second half is the content of the Apple event (the actual URL
that Safari was asked to open).

Let's do another. In the Terminal, say this:

$ osascript -e ' tell app " Finder" to get disks '

(The osascript command was mentioned under "Unix" in Chapter 2, and is for
mally discussed in Chapter 23.) This causes the Terminal to spew out large amounts
of information. The bulk of this information has to do with the fact that we've just
asked the Terminal to compile and run a line of AppleScript, and may be ignored
here. The important thing for our purposes is the Apple event that is ultimately sent
to the Finder. You'll see it, along with the Finder's reply, at the very end of the out
put. Here it is:

AE2000 (811) : Sending an event :
- - - - - -00 start of event 00- - - - -
{ 1 } ' aevt ' : core/getd {

return id : 5 3 149700 (OX32b0004)
transaction id : 0 (Oxo)

interaction level : 64 (ox40)
reply required : 1 (OX1)

target :
{ 2 } ' ps n ' : 8 bytes {

{ Oxo, oxcOOOl } (F inder)
}

optional attributes :
{ 1 } ' reco ' : - 1 items {

key ' cs ig ' -

Apple Event I 71

{ 1 } ' magn ' : 4 bytes {
6 5 5 361 (OX10000)

}

event data :
{ 1 } ' aevt ' : - 1 items {

key ' - - - - ' -

{ 1 } ' obj ' : - 4 items {
key ' form ' -

{ 1 } ' enum ' : 4 bytes {
' indx '

key ' want ' -
{ 1 } ' type ' : 4 bytes {

' cdis '
}

key ' seld ' -
{ 1 } ' abso ' : 4 bytes {

' a ll '
}

key ' from ' -
{ 4 } ' null ' : null descriptor

- - - - - - 00 end of event 00- - - - - -

Without going into the details of this Apple event, you can once again recognize its
two main constituent parts.

What All This Has to Do with AppleScript

A raw Apple event, as portrayed in the preceding sections, is not by any means com
pletely incomprehensible to a human being. Nevertheless, you'll surely admit that if
raw format were the only available way of expressing Apple events, your attitude
would probably be: "In that case, forget it." And rightly so. Raw Apple events are
meant primarily for computers to construct and to read, not for humans.

But Apple wants ordinary users to be able to take direct advantage of Apple events.
They want Apple events to be human-readable and human-writable. And that's why
there's AppleScript. The very same Apple event seen in Example 4- 1 can be con
structed and presented in a different textual form, one which looks rather more
familiar, intuitive, and accessible to a human being:

move item 1 of (every message of incoming mail �

whose subject begins with " applescript ") �

to end of mailbox " appleScript "

That's AppleScript. One of the chief purposes of AppleScript-perhaps the chief pur
pose-is to provide an English-like way of expressing Apple events.

72 I Chapter 4: Basic Concepts

The Open Scripting Architecture
In 1992-93, the founders of AppleScript had to decide where the language should
live. They could have made AppleScript the internal language of a single application,
like HyperCard's HyperTalk; the user would then compile and run AppleScript code
entirely from within this one application. But this approach was unacceptable. Rather,
they wanted AppleScript to be available everywhere. Thus the language would have to
be part of the System. In creating a place within the System to put it, they generalized
this place to be somewhere that not only AppleScript but any scripting language could
live in. The resulting structure is the Open Scripting Architecture (OSA).

Components

Under the OSA, a scripting language is implemented by a something called a compo
nent. (Components were not invented specially for the OSA; they existed already in
connection with QuickTime.) Think of a component as a piece of self-contained
functionality made available at system level so that any program can hook up to it
and use it. One thing that's special about components is that they can be installed
and un installed dynamically. So an OSA-savvy program doesn't necessarily think in
terms of any particular scripting language; it asks the System-in particular, the
Component Manager-what scripting languages are presently installed, and if it
wants to use one, the Component Manager provides access to it.

Since components are installed dynamically, this installation must actually take
place while the computer is running. AppleScript is installed as the computer starts
up and simply left in place, so that it's always available. You may recall that under
Mac OS 9 there was an extension called AppleScript (in the Extensions folder of the
System Folder). Its job was to install AppleScript as a component under the OSA as
the computer started up. On Mac as x, the same function is performed by
AppleScript.component, which is in ISystemlLibrarylComponents ; this type of file is
called a component file.

A nice consequence of this architecture is that Apple can easily release upgrades to
AppleScript, and the user can easily install them, with no effect on any other part of
the System. AppleScript itself has a version number, which refers to the version num
ber of the component that is installed to implement it; you can find out what this is
by running the following one-word script in the Script Editor:

version

At the time of this writing, the result is " 1 . 9 . 2 " .

Components are special in another way, too: when a program is given access to a
component by the Component Manager, it gets, in effect, its own private copy of
that component, with its own persistent storage. This means, among other things,
that multip1e programs can use a component without interfering with one another.

The Open Scripting Architecture I 73

This has important consequences for how the AppleScript language behaves, and
we'll come back to it.

Other Scripting Languages

The Open Scripting Architecture is meant to accommodate scripting languages in
general; but AppleScript is the only one supplied by Apple. In fact, AppleScript is
designated the default scripting component, the one that is used when no particular
scripting component is specified. Still, there can be other scripting languages. So
where are they?

There have never been many other OSA scripting languages, perhaps because devel
opers have not felt much need to supply them. I know of just four:

• UserLand Frontier (under Mac OS 9 and before) installed its internal scripting
language, UserTalk, as an OSA component dynamically whenever Frontier was
runnmg.

• CE Software's QuicKeys (under Mac OS 9 and before) installed its scripting lan
guage, QuicKeys Script, as an OSA component at startup, by means of an
extension.

• Late Night Software's JavaScriptOSA installs JavaScript as a system-wide script
ing language at startup, by means of a component file.

• Late Night Software's Script Debugger installs a debuggable version of Apple-
Script, called AppleScript Debugger, at startup, by means of a component file.

JavaScriptOSA is free, so you might like to look into it. A cool feature of it is that it
adds classes to the J avaScript language that allow Apple events to be expressed. Thus
it can be used where you would use AppleScript, and for the same purposes. Java
Script has some nice linguistic features (such as powerful string handling and object
orientation), so it makes an interesting alternative to AppleScript. To learn more, see
http://latenightsw.com/freewarelJavaScriptOSAlindex. html .

If you were to download JavaScriptOSA and copy it to ILibrarylComponents and
then log out and log in, JavaScript would be present as a scripting language on your
machine. You would observe this in the Script Editor, where "JavaScript" would
appear in the scripting languages popup at the top of the window. You would be
able to write, compile, and run scripts written in JavaScript from within the Script
Editor. This illustrates the dynamic and generalized nature of the Open Scripting
Architecture.

Talking to a Scripting Component

There are two approaches that a program can take when it wants to gain access to a
scripting component. An OSA-savvy program like the Script Editor wants to be able
to access any scripting component at all, indiscriminately. For this purpose, the OSA

74 I Chapter 4: Basic Concepts

supplies a special component called the Generic Scripting Component (GSC). The
program asks the Component Manager to let it talk to the GSC, and after that the
GSC routes communications between the program and the appropriate scripting
component such as AppleScript. Alternatively, a program might ask the Component
Manager for direct access to one particular scripting component; such a program
would not implement OSA scripting in a general way, but rather would be accessing
just that one scripting language. Either way, once a program is in communication
with the appropriate scripting component, the program can do scripting in that
scripting language.

Now comes the really interesting part. The program itself doesn't do any of the
work, and doesn't need to have any knowledge of the scripting language; that's the
job of the component. For example, earlier we said, in the Terminal:

$ osascript -e ' tell app " Finder" to get disks '

The phrase ' tell app "Finder" to get disks ' is an AppleScript expression; and when
we gave this command in the Terminal, it was obeyed-references to all mounted
volumes were displayed in the Terminal. But the Terminal doesn't know Apple
Script. The shell, to which we're talking in the Terminal, doesn't know AppleScript.
And the osascript program, which we call from the shell, doesn't know AppleScript
either. So who does know it? The AppleScript scripting component, of course.

Figure 4-2 diagrams a typical chain of events by which a program turns text into a
runnable script, runs it, and is able to display the result, under the OSA.

Compile an;;;.d ru;.;;;"::...-_.,

.. , Result (as text)? . •

Sender Scripting component

Figure 4-2. The OSA in action

1. The program asks the Component Manager to put it in touch with the scripting
component.

2. The program obtains some text and hands it to the scripting component with
instructions to compile and run it. If any of the expressions in this script are

The Open Scripting Architecture I 7S

equivalents of Apple events, those Apple events will be generated and sent, and
we will then be in the world of Figure 4- 1 .

3. The program asks the scripting component for the result as text; the scripting
component complies.

Figure 4-2 is how a script-editing application such as the Script Editor works. The
Script Editor does not know any AppleScript. It merely serves as a front end to the
AppleScript scripting component, where all the work of compiling and running
scripts actually takes place. (There are some additional details having to do with how
scripts are compiled, saved, and decompiled, and we will get to them in the course of
this chapter.)

Maintenance of State

Step 3 in the discussion of Figure 4-2 contains a very remarkable statement: the pro
gram "asks the scripting component for the result." The startling implication is that
the scripting component has a memory! We say that components maintain state. In
fact, the component to which a program gets a connection is like an instance in the
world of object-oriented programming: state is maintained individually for each con
nection. This is one of the things that makes components special.

Here's an analogy to help you visualize what's going on. Imagine the AppleScript
scripting component as a kind of little universe, a universe where the knowledge of
AppleScript resides. And imagine that this universe can make copies of itself. When a
program asks the Component Manager for access to the AppleScript scripting com
ponent, as at the top of Figure 4-2, it isn't simply given a telephone line to the one
master copy of the AppleScript universe sitting in the System; instead, it's as if the
Component Manager makes a copy of the AppleScript universe and gives the pro
gram a telephone line to that copy. The program now has its own private AppleScript
universe. This private copy of the AppleScript universe is technically an instance of
the AppleScript scripting component.

The AppleScript scripting component instance can maintain state without getting
confused at some global level, because it isn't operating at a global level. It's operat
ing at a local level-local to the program that summoned it. Suppose we have two
different programs, each of which gets a connection to the AppleScript scripting
component and asks it to compile and execute a script. The AppleScript component
does not get all flustered and say, "Oh, gosh, two different programs are trying to get
me to do two different things at once!" Rather, there are in effect at that moment two
different AppleScript component instances, the one that the first program is talking
to and the one that the second program is talking to. Each program asks its own
instance of the AppleScript component to compile and execute its script, and there is
no conflict or confusion at all.

So each instance of the AppleScript scripting component maintains state. In terms of
our analogy, each AppleScript universe remembers what goes on in it. Thus a

76 I Chapter 4: Basic Concepts

program is able to return again and again to its same AppleScript universe and refer
back to things that happened earlier. Thus, in the middle section of Figure 4-2 , let's
introduce a pause. Let's say the program hands the text to the AppleScript compo
nent and asks it just to compile it. The AppleScript component succeeds, reports this
success, and stops. Now let some time pass. Then the program comes back to the
AppleScript component and says: "Say, remember that script I had you compile a lit
tle while ago? Now I'd like you to run it." The AppleScript component can do this.
The program does not hand the compiled version of the script over to the Apple
Script component to be run; the program doesn't have the compiled version of the
script. The AppleScript component still has it. When it compiles a script, the Apple
Script component remembers the compiled version. Thus, when the program comes
back and asks that the compiled script be run, there is no overhead of handing across
a lot of compiled code, and the AppleScript component is ready to rock and roll (as a
computer scientist would say) with no further ado.

The internal memory of an AppleScript scripting component instance will not per
sist forever. The lifetime of one of these instances can be no longer than that of the
application that summoned it. When that application quits, any of these little com
ponent universes that it may have created must also fade away, and all the stuff that
a component instance has been remembering trickles away like the air escaping from
a deflating balloon.

So if a program asks the AppleScript scripting component to compile a script and
then wants the compiled version to persist somehow after the program quits, it must
take special steps to obtain the compiled version from the AppleScript component
and save it in some way. This in fact is just what a program such as the Script Editor
does when you save a compiled script. I'll talk more about that later in this chapter.

Script
A number of terms that are common in connection with AppleScript are used in a
somewhat bewildering variety of senses. The word "script" is particularly liable to be
tossed loosely about. This is unfortunate, especially since some of the meanings of
"script" are important and rather technical. It's not a word one can do completely
without, and so it is all the more crucial that its meaning not be blurred. This sec
tion tries to clarify the main ways in which the word "script" is used.

Script as Drive

To "script" an application is to automate it, to drive it, to target it. People say, "I'd
like to script the Finder to rename some files automatically." There is an implication
that the Finder already has the power to do things to files, and that we are merely
taking advantage of this power by dictating programmatically a sequence of actions
that Finder should take.

Script I 77

This sense of "script" is formalized in the way some sources define a "scripting lan
guage." This quotation comes from the ECMAScript Language Specification (http://
www.ecma-international.org/publications/standards/ECMA-262.htm) :

A scripting language is a programming language that is used to manipulate, custom
ise, and automate the facilities of an existing system. In such systems, useful function
ality is already available through a user interface, and the scripting language is a
mechanism for exposing that functionality to program control. In this way, the exist
ing system is said to provide a host environment of objects and facilities, which com
pletes the capabilities of the scripting language.

That is a perfect description of AppleScript. It has few powers of its own; it is meant
primarily for controlling the powers of existing applications.

Script as Program

The preceding quotation from ECMA continues:

A scripting language is intended for use by both professional and nonprofessional pro
grammers. To accommodate non-professional programmers, some aspects of the lan
guage may be somewhat less strict.

This leap is common enough, but in my view it is unwarranted. Most languages that
are commonly referred to as scripting languages are full-fledged programming lan
guages, and make no particular concession to informality or inexperience. There is
arguably nothing easy, and certainly nothing simplistic, about Tel, Perl, or Scheme.
As far as ease of use is concerned, any distinction between a scripting language and a
programming language is a distinction without a difference.

Unfortunately this false distinction has played a major role in the history of Apple
Script. To this day, Apple's main web page on AppleScript (http://www.apple.com/
applescriptl) leaps through extraordinary verbal hoops to avoid the word "program,"
which never appears. AppleScript can make "script files," it can "think," it can
"automate," it's something you "use." The term "script" has ended up as an accept
able synonym for the politically incorrect "program." You do not program with
AppleScript; you script with it. What you write are not programs; they're scripts.
You're not a programmer; you're a scripter. This, I feel, is silly. AppleScript is a pro
gramming language (and, I happen to think, not a particularly easy one) . You are a
programmer, and you will write programs with AppleScript.

Script as Script Object

There is a rigorous sense in which it is right to speak of an AppleScript program as a
script. To understand what that sense is, you need first to be aware that many Apple
Script programs that you write or read will contain the term script used to demar
cate part of their code. Here's an example:

script myScript
display dialog " Hello from " & (get my name) & " ! "

78 I Chapter 4: Basic Concepts

end script
run myScript - - dialog says: Hello from myScript l

Such a section of code is often called a script object, but the AppleScript language
itself calls it a script.

Now, the interesting thing is that an AppleScript program as a whole is itself a script
object. This may sound confusing, but in fact it's quite a cool and sophisticated
aspect of AppleScript. Thus it is reasonable to speak of an AppleScript program as a
whole as a script, not as a way of avoiding the fact that it is a program, but as a way
of expressing its ontological status within the world of AppleScript. As you'll learn
later, a script as a whole and a script object within a script have exactly the same
ontological status. The script-as-a-whole does have some special features of its own,
because it is the ultimate container of any other script objects; it is the top-level
script object. But it is not different in kind from script objects that it may contain. So
it is a "script," as any script object that it contains is also a "script." We'll fully
explore the details of script objects later in the book, especially in Chapter 9 .

Script as Scripting Component Operand

In a completely technical and rigorous sense, the term "script" refers to a unit of
operation between a frontend program that asks for some AppleScript code to be
compiled or executed and the scripting component that does the actual work. When
such a program sends the scripting component a bunch of text for compilation, as in
Figure 4-2 , that bunch of text is assigned an identifying number. This number points
to the code that is being remembered by the scripting component, and is called its
script ID . It is by this arrangement that the frontend program and the scripting com
ponent can continue to talk about the script while it persists over time, as described
earlier in this chapter ("Maintenance of State"). The code itself, the thing being
remembered by the scripting component, is thus technically a script, because that's
what the scripting component itself calls it. A script is a kind of entity that the script
ing component holds on to and can perform various operations on, such as compil
ing it or executing it.

Script as File

The individual code file is an important and meaningful unit in AppleScript. Unlike
some programming environments, where multiple files are assembled through a
"make" or some other build process into a complete program, with AppleScript the
individual file is the complete program. An AppleScript program and the file contain
ing it are thus coterminous. But, as we have just seen, an AppleScript program is a
script. Therefore it is natural to speak of the file in which your code is saved as itself
a script. The script file icon in the Finder seems to represent the script. One says,
"Double-click the script to open it in the Script Editor." The Script Editor itself
speaks of saving your code as a script.

Script I 79

Compi l ing and Decompi l ing
Before an AppleScript program can be run, it must be compiled. To compile some
thing means to transform it, behind the scenes, from text-the form in which a
human user is able to read and edit the code-to a form consisting of actual execut
able instructions intended for a machine.

Compiling

The nature of compiled code depends upon the nature of the engine that runs it. In
the case of a C program written for a Macintosh, the engine is the Macintosh's cen
tral processing unit (CPU); so the compiled code must consist of machine-language
instructions in accordance with the CPU chip'S specifications . Such machine
language instructions, indeed, are the only instructions your computer can really exe
cute, because the computer's ultimate "brain" is the CPU.

In the case of AppleScript, the engine is the AppleScript scripting component, and com
piled code does not consist of anything so low-level. AppleScript compiled code is byte
code : roughly, the nouns and verbs of the original text are translated into some sort of
compressed, coded equivalent (called tokens) . These tokens are meaningful only to the
AppleScript scripting component's run-engine. When it runs the code, the engine still
has to parse whatever tokens it meets along its path of execution, accumulating them
into chunks and translating these chunks further in order to execute them. It is usual to
describe a language that is compiled and executed in this way as being interpreted.

There isn't necessarily anything shameful about being an interpreted language. (After
all, Java is an interpreted language, and yet some people take it seriously.) Being an
interpreted language does mean that running AppleScript code is relatively slow,
since the compiled code must be processed further while being run before it can
really be run, and there is a heavy layer of operation (the runtime engine) between
the compiled code and the CPU. Whether you'll perceive this slowness depends on
the nature of the script and the speed of your computer; typically the observable bot
tleneck will be the time required for communicating with the target scriptable appli
cation and for that application to process commands and queries, not the overall
speed of the AppleScript runtime engine.

If running even a compiled script is slow, why bother to compile beforehand? Well,
for one thing, the nature of bytecode is such that it can be executed in linear fashion;
tokens are not interpreted until and unless execution reaches them, and they can be
interpreted by gathering them up in order. With raw text, on the other hand, you
could be saying anything at all-you could be saying nonsense-and AppleScript
would have to work very hard to find this out. By doing that hard work at compile
time, not at execution time, AppleScript makes execution faster. The AppleScript
compiler is what's called a single-pass compiler; this is a fairly simple-minded
approach to compilation, but it helps to ensure that your script has a certain level of

80 I Chapter 4: Basic Concepts

legality and overall consistency before runtime. (Of course, even a legal, successfully
compiled script could still choke at runtime, but this would be for a different kind of
reason; we'll see many examples in the course of the book.)

Also, the use of compilation makes AppleScript a better language. For instance, the
following AppleScript code is legal:

sayHowdy()
on sayHowdy()

display dialog "Howdy"
end sayHowdy

In this code, we call a handler, sayHowdy() , before we've defined it. If AppleScript
code were not compiled ahead of time, this would not be possible, because upon
encountering this reference to a handler it has not yet met, the runtime engine sim
ply wouldn't know what to do.

Oecompiling
In the Script Editor, an uncompiled script, or those regions of the script that have
been edited since the last compilation, will appear in a single font and size without
any automatic indentation. A compiled script is pretty-printed; different kinds of
word may appear in various colors, fonts, and sizes (depending upon your format
ting preferences), and there is automatic indentation in accordance with the script's
structure. This pretty-printing is performed by the AppleScript scripting component;
the Script Editor merely shows it to you, by asking the AppleScript component for
the compiled version in a form suitable for display to a human user.

The AppleScript scripting component, however, remembers the compiled script as
bytecode, not as human-readable text. In order to respond to the Script Editor's
request to supply the compiled script in human-readable form, the AppleScript
scripting component must transform the bytecode into text. This is called decompil
ing. So the pretty-printed text that you see when you compile your text in the Script
Editor is not merely a colorful version of your text; it's a completely different text,
supplied by decompiling the compiled script.

A curious consequence of this is that some of the words constituting your script may
differ before and after compilation. For example, suppose you type this code:

tell app "Finder" to get ref disk 1

It compiles, but in the process it is transformed into this:

tell application "Finder" to get a reference to disk 1

The reason is that some AppleScript terms have synonyms that are acceptable for
purposes of compilation, but the scripting component does not remember, in the
compiled bytecode, that you used one of these synonyms. It substitutes, at compile
time, a token signifying the canonical form of the term; thus, when it decompiles the
bytecode, what you see is the canonical form.

Compiling and Decompiling I 81

When AppleScript reformats your script in the course of pretty-printing it, it may
render it harder to read rather than easier. For example, AppleScript allows you to
break long lines into shorter lines through the use of a continuation character (�); at
compile time AppleScript will sometimes undo your attempts to use this feature,
removing your continuation characters or putting them somewhere else. If 1 compile
this code:

do shell script "echo 'hi'" �
pas sword "myPas sword"

AppleScript rebreaks it like this:

do shell script �

"echo 'hi'" pas sword "myPas sword"

This looks like a trivial annoyance, but if the line were longer it wouldn't be so triv
ial. The problem stems from the fact that the bytecode contains no information about
whitespace, so the new formatting imposed by the decompilation process may not
correspond to your original whitespace. Fortunately, the new version of the Script
Editor wraps long lines, which makes this much less of a problem than it used to be.

External Referents Needed at Compile Time
AppleScript is a little language, leaving it up to various external entities such as
scriptable applications (or scripting additions) to extend the language as needed.
When the time comes to compile a script, if it makes any use of such externally
defined extensions to the language, those external entities must be present, and
AppleScript must be able to locate them, so that it can ascertain whether the words
you're using in your code correspond to extensions to the language defined in these
external entities, and if so, how to translate them into bytecode.

To see what I mean, let's start with code like this:

get disk 1

If that's all your script says, it won't compile at all, because the notion "disk" used
as a class (which is how it's being used here) isn't part of the AppleScript language.
You can use this phrase only with reference to some external entity, such as a script
able application, that does define the notion "disk" used as a class, as part of its way
of extending the AppleScript language. Now, suppose we just make up such an
application:

tell application "NoSuchApp" to get disk 1

When you try to compile this, you're presented with a dialog listing every applica
tion, and posing the question: "Where is NoSuchApp?" AppleScript has realized that
although, in the AppleScript language proper, the notion "disk" is meaningless the
way you're using it, it might be meaningful in the context of this application
NoSuchApp. AppleScript therefore attempts to find the application. (I do not know
the exact steps used in the search.) But NoSuchApp can't be found, because there's

82 I Chapter 4: Basic Concepts

no such app. If you cannot at this moment provide AppleScript with a pointer to
NoSuchApp, the script will simply not compile.

Interestingly, you can nominate any application as NoSuchApp; it doesn't have to be
called NoSuchApp. This makes sense because the problem might merely be that the
name has changed or you've typed it wrong. For example, you could claim that
NoSuchApp is Address Book. However, having investigated Address Book's vocabu
lary, AppleScript concludes that Address Book doesn't know what a "disk" is, and
the script still won't compile.

Now suppose we try again, and this time, when AppleScript asks us about
NoSuchApp, we tell it that NoSuchApp is the Finder. The script now compiles suc
cessfully, because the Finder does know what a "disk" is; and in the compiled script
(that is to say, the decompiled script) the name "NoSuchApp" is changed to
"Finder".

To repeat: you cannot compile a script in the absence of the necessary external enti
ties. AppleScript will look for these entities, and will consult you for assistance if it
can't find them; but if neither AppleScript nor you can locate them, that's the end of
the story.

We'll return to the business of how AppleScript knows about particular applica
tions' privately defined vocabulary, later in this chapter ("Dictionary") and again
later in the book (Chapter 19).

Saving Compiled Scripts
Compilation takes some time-several seconds, in the case of a lengthy script. Thus,
with a script that will not change and that one intends to execute at some future
time, it would be nice, at runtime, to skip compilation altogether, avoiding any ini
tial delay and permitting the runtime engine to leap into action immediately. The
current instance of the AppleScript scripting component remembers the compiled
script and is ready to run it at a moment's notice; but the current instance of the
AppleScript scripting component goes out of existence when we quit the host appli
cation (such as the Script Editor). Therefore we would like a way for the compiled
script to outlive the current instance of the AppleScript scripting component. Apple
Script allows this; it is possible to save a script in its compiled form. The result is a
compiled script file (see "Script as File" earlier in this chapter) .

. ", Gil,' A saved compiled script file has extension .sept on Mac as x and is of
�:., type ' osas ' on previous systems. The Script Editor saves such a file

, :" with both features, and the resulting file can be opened, edited, and
, executed on both Mac as x and Mac as 9 (the latter only if the ver

sion of Script Editor is sufficiently recent). There is also a new "script
bundle" format with extension .septd, which is not backward
compatible to before Mac as x 10.3 ("Panther").

Compiling and Decompiling I 83

The reason for the caveat about the version of the Script Editor is that there are two
ways to save the compiled script data-in the resource fork or in the data fork. Early
versions of the Script Editor saved it as a resource. Recent versions of the Script Edi
tor save it in the data fork, and you don't have to go back very far in time before you
get to a version of the Script Editor that can't cope with this. So there are really three
compiled script file formats: the old format with the script data in the resource fork,
the new format with the script data in the data fork, and the really new format with
the script data, as a file inside a bundle. This is something to be careful of. We already
saw in Chapter 2 that REALbasic couldn't read the new formats and that Xcode's
NSAppleScript class couldn't read the old format.

In the Script Editor, when you save a script, you're offered a choice of format in
which to save it: you can save it as text (or "script text," depending what version of
the Script Editor you're using), or as a script (a compiled script file). The former
saves just the current text appearing in the window, even if not yet compiled. The
latter attempts to compile the script if it contains any uncompiled changes, and then,
if compilation was successful, saves the bytecode (also called the script data). You
can confirm this by getting a hex dump of a saved compiled script:

.

$ vis -otw -F 60 myScript.scpt
FasdUAS\0401.101.10\016\000\000\000\004\017\377\377\000\
\001\000\002\000\003\001\377\377\000\000\015\000\001\000\
r ... and so on ... J

Nothing legible here. It's bytecode, all right. But of course when you open this com
piled script in the Script Editor, it shows up legibly. The mechanism, as you have
surely guessed, is that the saved bytecode is handed to the AppleScript scripting
component, and then decompiled for display.

You cannot save as a compiled script file code that, for whatever reason, will not
compile. This seems tautological, but it can be surprising nevertheless, so it is worth
mentioning.

References to applications

When you open a compiled script file, and the saved bytecode is handed to the
AppleScript scripting component, and the scripting component decompiles the script
for display, the script faces issues with regard to any external information parallel to
what happens when it is compiled originally. If a compiled script targets a particular
application, that application must be located; if it cannot be located, the compiled
script can't be decompiled, and it can't be opened in the Script Editor.

Enough information about the application is stored with the compiled script to
enable the AppleScript scripting component to find it under most circumstances.
The compiled script contains an alias to the application; an alias is a very clever kind
of pointer, such that if you change the application's name, or move it to a different
folder on the same volume, the compiled script will continue to keep track of the

84 I Chapter 4: Basic Concepts

application, and will open with no problem in the Script Editor. But if you move the
application to a different volume, the compiled script may lose track of it, so that
when you try to open it in the Script Editor, you'll get the dialog asking you to locate
it. If you don't, the compiled script won't open. If you do, then the compiled script
will open; the script is now modified within the AppleScript scripting component, so
that the reference to the application points at it in its new location.' There's more
about this decompilation process, and about what happens if you lie to AppleScript
and nominate the wrong application as the missing application, in Chapter 19.

In many situations, you can hand a compiled script file over to some application for
execution without asking that the text of the script be displayed to you-that is,
without decompiling it. (See, for some examples, "Script Runner" in Chapter 2.) As
the compiled script executes, if it refers to externals, it may face some issues parallel
to those that it would face at compilation and dec om pilat ion time; but these issues
do not arise until execution is underway and code that targets an application is actu
ally encountered. If at that point the AppleScript scripting component can't find the
target application, what happens depends upon the context. Ideally we would like to
be presented with the dialog asking for the application, and this does usually hap
pen; but sometimes it doesn't. In the case of the Script Menu, for example, a script
that targets an application that can't be found will simply fail silently. Furthermore,
having helped the AppleScript scripting component find the application, you'd like
that information to be saved back into the script so that next time the script will run
without assistance. Again, sometimes this happens and sometimes it doesn't,
depending upon the context.

Run-only scripts

A compiled script can optionally be saved as run-only. Normally, a compiled script
actually contains two kinds of information:

• The tokens (by tee ode) needed to run the script

• Further information needed to decompile the script and display it to the user

For example, let's say you put a comment into your script. This comment is nothing
that the runtime can execute; that's what it means to be a comment. But clearly you
don't want this comment thrown away merely because you compile the script; the
bytecode retains it, so that when the script is decompiled, you can still read the com
ment. Similarly, the names of variables are intended entirely for humans; as far as
bytecode is concerned, it would be sufficient to assign them numbers, and that's
probably what AppleScript by tee ode does. But you don't want your variable names

• But this does not "dirty" the script file itself, so you can then close it, and it will not ask whether you want
to save it, and will not retain this knowledge of the application's new location; you'll have to go through the
whole rigmarole again the next time you open the script file. I regard this as the fault of AppleScript, which
apparently has no way to alert the Script Editor that the compiled script has changed.

Compiling and Decompiling I 85

to be lost, so they are saved as part of the bytecode, even though they aren't needed
for execution.

When you save a compiled script as run-only, the tokens needed merely to decom
pile the script and display it to the user are thrown away. This makes the compiled
script much smaller and probably causes it to run a bit faster, but the compiled script
can never again be displayed to the user. If you have not saved another copy, you will
never again be able to read or edit that script.

If a run-only script loses track of an external referent, such as an application, there is
no way to show the script where the referent is and recompile. In the case of an
application reference, the dialog asking where the application is will appear, the user
can then show AppleScript the application, and the script will then continue execut
ing; but this information cannot be saved back into the script, so the next time the
script runs, the dialog will appear again. Because of this you may want to think twice
before saving a script as run-only. You're probably saving it this way because you
want to keep it from prying eyes-you want to be able to send the script to other
people so they can use it, without their being able to read it. But you should weigh
against this the possibility that you will anger your users when the script doesn't
work properly and they can't do anything about it.

In my tests, it was possible at least sometimes to open a run-only
script within the Script Editor, though of course no text appeared. It
was then possible to press the Run button, but nothing would hap
pen. This entire situation is very confusing, and I regard it as a bug
(presumably in Script Editor); it should not be possible to open a run
only script in an editor at all.

Script Text File
The Script Editor offers the option to save a script as text (or "script text," depend
ing what version of the Script Editor you're using). A script text file is simply a text
file, such as can be opened by any word processor. No bytecode is saved into the file.
(But the Script Editor does also try to compile the script even when you save it as
text, which seems unnecessary.)

II .. 0',' A script text file consists of ordinary text in the default system en cod
�:, ing (usually MacRoman). It has file extension .appiescript on Mac as x

�,' �. and is of type 'TEXT' on Mac as 9 and earlier. The Script Editor saves
, such a file with both features, and it can be opened on both platforms.

A script text file can be opened with a dedicated editor such as the Script Editor. The
situation is then exactly as if you had just typed the code into the Script Editor: if the
code is valid and all external referents can be found, the code can be compiled and
run.

86 I Chapter 4: Basic Concepts

A script text file cannot generally be run from a script runner application, such as the
Script Menu, because the script is not compiled and the application is not prepared
to do the compilation for you.

Since a compiled script file can be decompiled and edited further, as well as exe
cuted directly, what's the good of a script text file? Apple's documentation implies
that it isn't much good, and calls it a "last resort" format; Apple's advice would seem
to be that a compiled script file is the standard and most readily usable and commu
nicable format, the format you would use when sending a script to someone else to
be run on another machine.

However, I'm not so sure that a compiled script is so very communicable, or that it is
better for such purposes than a script text file. There are various formats of com
piled script file, and the new ones aren't backward-compatible: a compiled script file
saved by the current version of the Script Editor can't be opened by some older ver
sions of the Script Editor, and a compiled script bundle isn't backward-compatible to
any system before Mac as x 10.3 ("Panther"). Plus, as mentioned in the previous
section, it is possible for a compiled script to face difficulties with regard to external
referents that it can't locate; if these external referents can't be located at all, the
script can't even be opened for editing, let alone executed. By contrast, a text file can
always be opened under any system and on any machine; AppleScript and the Script
Editor are present on every machine, so it is always possible, with valid code, to com
pile the script afresh.

Not infrequently I have seen AppleScript utterly confused about a reference to an
application when a compiled script is moved to a different computer. For example,
recently I downloaded from the Internet a compiled script that, when I tried to run
it, generated a mysterious error message and didn't work, so I opened it and found
references in it to an application that wasn't an application at all (it was just some file
buried deep in /usr/share/emacs). Clearly what had happened was that the compiled
script had lost track of the application it was supposed to be pointing at, but it was
so confused that it didn't even realize this, and instead of asking me for the applica
tion's location, had substituted for the name of this application the name of a com
pletely different file. The really devilish part of this situation was that there was no
way for me to learn the name of the application the script was really supposed to be
pointing to (since the name had been changed in the course of decompilation). Had
this script been text, there would have been no difficulty at all, because the name of
the application in the text would have been preserved, and I would have been able to
compile, save, and execute the script on my own machine without any problem.

(In this regard, a valuable feature of Late Night Software's Script Debugger is that
when it saves a compiled script file it also saves the original text into the file, as a
TEXT resource. In a pinch, therefore, the text can be recovered and used to help fix
problems with external referents.)

ScriptT ext File I 87

Applet and Droplet
An applet is a compiled script file format that functions as an executable. A dedi
cated editor such as the Script Editor offers the option to save a compiled script as an
applet (or "application," depending on your Script Editor version). When you open
an applet from the Finder, it launches as if it were an application and its code runs.
Furthermore, an applet is scriptable. In short, an applet is a simple, easy way for
someone who knows AppleScript to write a little application. This application has
just about no user interface to speak of (unless some is added by way of a scripting
addition). But the disadvantages of this can easily be outweighed by the simplicity of
writing one.

" ... [;],. An applet is an application. It is saved in Mac as x with file exten-

�:. sion .app, and in Mac as 9 it has file type 'APPL' and creator' aplt'.

�,' �. The Mac as x Script Editor saves the applet with both features.
• There is also a new "application bundle" format, also with file exten

sion .app, which is not backward-compatible with systems prior to
Mac as x 10.3 ("Panther").

A droplet is a form of applet; the difference is that a droplet does something when file
or folder icons are dragged-and-dropped onto its icon in the Finder. Typically it then
proceeds to process those files or folders in some way. Technically, a droplet is sim
ply an applet whose script contains an open handler for dealing with the drop.
Indeed, the very same script application can operate both as an applet (it does some
thing when it is opened by launching) and as a droplet (it does something when files
or folders are dragged-and.-dropped onto its icon). A droplet has a different creator
type from an applet (' dplt'), and it has a different icon, which looks like an applet's
icon with the addition of a downward arrow. The Script Editor makes this distinc
tion when you save the file, based on the presence or absence of an open handler.

Since opening an applet from the Finder launches it as an application, the applet
needs to be opened in some other way in order to edit its script. For example, you
can choose Open from the File menu within the Script Editor and select the applet,
or drop the applet's icon onto Script Editor's icon. If the applet's script was not
saved as run-only, the compiled script will then be decompiled and will be displayed
for further editing, exactly as if this were just an ordinary compiled script file. A run
ning applet may also display a menu item offering a chance to edit it. Thus, saving a
compiled script as an applet does not prevent you from continuing to edit and
develop the script-nor does it hide the script from prying eyes (for that, you must
also save the script as run-only).

An applet contains a very small amount of genuine executable code-just enough to
qualify it as a true application. This code, called the bootstrap code, is what initially
runs when the applet is launched. It summons a scripting component called the Script

88 I Chapter 4: Basic Concepts

Application Component. This component does the rest, handing the applet's com
piled script over to the AppleScript scripting component for execution, and taking
care of such things as putting up the applet's description window if there is one. The
applet also contains the other resources necessary to make it a scriptable application.

In earlier versions of the Mac OS 9 Script Editor there was an option to save as a Mac
OS X applet, but in my experiments a Mac OS X applet saved in this way wouldn't
open successfully in Mac OS X. The most recent version of the Mac OS 9 Script Edi
tor abolishes this distinction, and offers to save simply as an "application"; the
resulting applet runs under either Mac OS X or Mac OS 9.

In earlier versions of the Mac OS X Script Editor (such as version 1.9), an applet
could be set to "require Classic"; in this case the applet was saved as a Classic-only
application and the Get Info option to toggle between opening in Mac OS X and
opening in Classic was absent. An applet (but not an applet bundle) saved using the
current Script Editor in Mac OS X can be launched in a previous system.

For further details about how to make and write applets and droplets, as well as to
learn how to use AppleScript Studio to write more sophisticated applications with a
user interface, see Chapter 24.

Scripting Addition
A scripting addition is a code library, loaded by the AppleScript scripting component
instance, that implements vocabulary extending the AppleScript language. Behind
the scenes, communication with a scripting addition uses Apple events, just as does
communication with a scriptable application. The difference, from the AppleScript
programmer's point of view, is a linguistic one: the scripting addition's vocabulary is
available to scripts compiled and run on that machine with no need to target any
particular application. In other words, the extended vocabulary implemented by a
scripting addition appears to the programmer to be built into AppleScript itself.

Scripting additions are typically written in a compiled lower-level language such as
C. Their purpose is usually to bring to AppleScript some functionality that can be
implemented in this lower-level language (possibly by calling into the Macintosh
Toolbox) but is otherwise missing from AppleScript itself.

"", @" A scriPtingaddition on MacOS9is a resource file of type 'o s ax'.

��, On Mac as x it can also be a bundle with extension .osax. A script-
, :" ing addition is often referred to as an osax (plural osaxen). On Mac

. as 9, osaxen live in the System Folder, in its Scripting Additions
subfolder. On Mac as x the supplied osaxen live in ISysteml
LibrarylScriptingAdditions; the user may add osaxen to lLibraryl
ScriptingAdditions or to -/LibraryIScriptingAdditions, according to
the domain of their desired availability.

Scripting Addition I 89

AppleScript is a little language, and at a very early stage it was felt to be a bit too lit
tle; so certain sorely missed features were added by Apple itself, implemented
through scripting additions present on every machine. This got more confusing as
more such "official" scripting additions were added. In recent times the situation has
been simplified considerably by the incorporation of most of these scripting addi
tions into a single scripting addition called Standard Additions (or, on Mac as x,
StandardAdditions) .

Other developers are welcome to write scripting additions, and many have done so;
there is a large body of freeware, shareware, and commercial scripting additions avail
able. Typically the reason for writing a scripting addition rather than an application is
simply that its extensions to the language are present universally without launching or
targeting an application. On the other hand, this universal presence can be a prob
lem, because it is possible for vocabulary terms implemented in different scripting
additions to conflict with one another or with the vocabulary implemented by particu
lar applications or even AppleScript itself. This point is taken up again in Chapter 19.

Dictionary
A scriptable application defines a repertory of Apple events to which it is prepared to
respond, and to be scriptable with AppleScript, it must publish information about
this repertory, so that when a script targeting the application is compiled or decom
piled, the AppleScript scripting component can confirm that the English-like words
of its code really are defined by the application, and can translate between those
English-like words and the Apple event structures that will actually be used when
communicating with that application as the script runs. Such publication is per
formed through a dictionary. Not just scriptable applications must have a dictio
nary; scripting additions must have one too. And AppleScript itself has a dictionary
(displayed in Appendix A).

Physically, a dictionary may take one of two forms:

• In Mac as 9, and optionally on Mac as x (typically under Carbon), a dictio
nary is a resource of type 'aete'. The format of an 'aete' resource (' aete'
stands for Apple Event Terminology Extension) is formally defined in:

ISystemlLibrarylFrameworksl ApplicationServices . frameworkN ersionsl AI
FrameworkslAE.frameworkNersionslNHeaderslAEUserTermTypes.h

and is documented at http://developer.apple.com/documentation/maclIACIIAC-
308.html.

• In a Cocoa application, a dictionary is a set of XML (property list) text files inside
the application's package, with file extensions .scriptSuite and . scriptTerminology.
For the . scriptSuite and . scriptTerminology file formats, see:

http://developer.apple. coml documentationlCocoalConceptualiScriptabilitylT asksl
SuiteDefs. html

90 I Chapter 4: Basic Concepts

A new XML format, the . sdef file, is currently under development; it will repre
sent within a single file all the information in both a . scriptSuite file and a
. scriptTerminology file. You can learn more about it from the sdef manpages.

A dictionary may be published statically or dynamically. It is published statically if
AppleScript can read the dictionary right off the disk; it can do this with an 'aete'

resource. It is published dynamically if AppleScript must ask the running application
for its dictionary (which it does by sending the application an Apple event, of
course). A Cocoa application implements scriptability by publishing its dictionary
dynamically, because AppleScript can't read the . scriptSuite and . scriptTerminology
files directly. An advantage of the dynamic approach to dictionary publication is that
the dictionary may be dynamically constructed-that is , the application can actually
vary its own dictionary in response to particular circumstances. A disadvantage is
that the application must be running in order for AppleScript to acquire its dictio
nary (and so it must be launched merely in order for AppleScript to compile or
decompile a script that targets it) .

A dictionary contains two kinds of information :

Machine-readable information
The dictionary describes its repertory of Apple events in a manner intended pri
marily for the AppleScript scripting component, and not for a human user , since
the whole idea of AppleScript is to shield the user from having to gaze upon raw
Apple events. Still , you're allowed to look at it , and this can be useful if you need
to know what's going on behind the scenes when you talk to a particular appli
cation. An easy way to get a look at this part of the dictionary is to use Script
Debugger, which provides an option to show a dictionary in terms of Apple
events.

Human-readable information
The part of the dictionary specifically intended for human eyes lists the actual
English-like words you may use when targeting the application, along with com
ments that can contain additional information about what these words do and
how you are to use them. The comments are intended for human beings only,
but the listing of English-like terminology is also used by AppleScript when com
piling or decompiling, to translate between English-like words and Apple events.

A raw dictionary, in and of itself , is not intended to be particularly readable by a human
being. Under Mac as 9 and before, in fact, it can be quite a chore to inspect a raw dic
tionary; the best way is to use a dedicated 'aete' resource editor. A very good free one
is Gary McGath's EightyRez (http://www.panix.com/-gmcgath/EightyRez.html) . A
Cocoa application's dictionary is just text, and can be studied with the Property List
Editor (included with the Developer Tools) or with any word processor. For example,
take a look in ISystemlLibrarylFrameworkslFoundation.frameworkiResources at
NSCoreSuite.scriptSuite and NSCoreSuite.scriptTerminology. You might not understand
everything you're seeing, but you'll get a fair idea of what goes on in a dictionary.

Dictionary I 91

Usually, the way you look at a dictionary is through some utility that knows how to
parse it and present it in a human-readable fashion. A dedicated script editor is an
example of such a utility. That's because when you're writing a script you are likely
to want to study the dictionary of the application you're targeting, so that you know
what to say to it ; indeed, it may be said that nine-tenths of the art of programming
with AppleScript is figuring out what a targeted application expects and permits you
to say to it (as we saw in Chapter 3). You might think that this would be no art at all ,
since there's the dictionary giving you this information straight out. But it turns out
that a dictionary is a remarkably poor device for communicating to a human user the
information that is really needed. A dictionary can be well or badly written, and in
any case it doesn't really tell you how much of the AppleScript language the applica
tion implements, how well it implements it , and (most important) how you're sup
posed to combine the vocabulary listed in the dictionary into expressions that will
cause the application to do what you want. A great many trees will have to die so
that we can mull over the implications of this difficulty in Chapter 19.

Scriptable, Recordable, Attachable
These three adjectives refer to three levels on which an application can be scriptable.
They aren't really levels, but they seem to form a natural progression. That progres
sion seems to have diminishing returns, since very few scriptable applications are
also recordable, and very few scriptable applications are also attachable.

Scriptable

An application is scriptable by means of AppleScript if it defines a repertory of Apple
events to which it is prepared to respond, and publishes that repertory in a dictio
nary. So, the usual way to learn whether an application is scriptable is to try to open
its dictionary with an editor such as the Script Editor. If it has a dictionary, it's
scriptable.

(At least, that's how things are supposed to work. We're assuming here that all the
pieces of the mechanism are behaving properly. It's possible for an application to lie.
For example, it could publish a dictionary giving the impression that it responds to
Apple events it doesn't respond to. At the furthest extreme, an application could look
scriptable, in the sense that it publishes a dictionary, but not actually be scriptable.
Yes, I've seen applications that do that.)

Recordable

The idea of a scriptable application's being recordable is that the application can help
the user learn to drive it with AppleScript by constructing a script in reverse : the user
performs ordinary actions in the application, choosing from menu items, pushing

92 I Chapter 4: Basic Concepts

buttons , or whatever , and meanwhile these actions are translated into the code that
would be used to accomplish the same effect via AppleScript.

To try this out, start with a recordable application; here, we'll use BBEdit. Start it up.
Now use a dedicated script editor such as the Script Editor. In the Script Editor's
main window, there's a Record button. Press it. Now switch to BBEdit and type 3C-N
to make a new window. Now return to the Script Editor and press the Stop button.
You will notice that the following text has magically appeared in the Script Editor
window:

tell application "BBEdit"
activate
make new text window

end tell

That is the AppleScript code you would have to execute in order to cause the same
actions to occur through a script.

Recording is implemented partly by AppleScript and partly by the application. Press
ing the Record button in Script Editor signals to AppleScript that it should start
watching for recordable events. When it sees a recordable event, AppleScript decom
piles it and sends the decompiled text to Script Editor , which displays the text. The
only question is then what constitutes a recordable event. The answer turns out to be
surprisingly simple : it's any Apple event that an application sends to itself. In fact , an
application is allowed to send itself a "fake" Apple event just so that if recording hap
pens to be turned on, this Apple event will be detected and treated as the Apple
Script equivalent for whatever else is happening in the application.

An application can deal elegantly both with recordability and with scriptability by
being written in a factored style. A factored application is one that triggers its own
functionality (or at least some portion of it) by sending itself Apple events. For exam
ple, in BBEdit when you type 3C-N (or choose New from the File menu) , BBEdit
responds by sending itself the Apple event that commands a new text window to be
created; it then receives this Apple event and responds to it by creating a new text
window.' Under this architecture, it makes no difference to BBEdit whether a user
working inside BBEdit types 3C-N or whether a script tells it to "make new text win
dow," because ultimately BBEdit receives the same Apple event in either case, with
out knowing or caring whether it came from itself or from a script. So in a factored
application, scriptability is built in at a deep level, and the user interface is wrapped
around that. A factored application has some advantages for the developer, making it
easier to continue modifying the application while maintaining scriptability; plus, of
course, it makes the application recordable "for free."

• Wittgenstein asked, "What is left over when I subtract the fact that my arm goes up, from the fact that I raise
my arm?" Now we know: an Apple event.

Scriptable, Recordable, Attachable I 93

There is no way to find out whether an application is recordable, if you don't know
in advance, other than by trying to record it. Very few applications are recordable on
Mac as X. As of this writing, there is some indication that the Finder may be record
able in Mac as x 10.3 ; if so, this should please users accustomed to the Finder's
recordability in Mac as 9 and before, who have missed this feature in earlier ver
sions of Mac as X.

Attachable

An attachable application gives the user the opportunity to interfere with certain
incoming Apple events by means of a script. This means that the user can customize
what happens when an Apple event arrives. If the application is scriptable, then the
user may be able to customize the effect of scripting the application. If the applica
tion is factored, then the user may be able to customize the effect of performing an
action within the user interface. The only applications I know that are strongly and
deeply attachable in this canonical sense are Script Debugger and Smile.

There are no standards for how attachability is to be implemented, however, and as a
result it is not entirely clear what constitutes attachability. Perhaps one should distin
guish between degrees of attach ability. For example, folder actions (see "Automatic
Location" in Chapter 2 and "Folder Actions" in Chapter 24) may be seen as a mild
form of attachability, since you are customizing what happens when certain events
take place in the Finder's user interface. On that definition, one could also call
BBEdit's factored menu implementation a form of attachability : when you choose a
menu item in BBEdit, if there is an appropriately named script in the BBEdit Support/
Menu Scripts folder, that script is called, so you can customize what happens in
response to the menu item.

94 I Chapter 4: Basic Concepts

PART II

The AppleScript language

Part II is the heart of the book; it describes the AppleScript programming language.

This part is intended for use both as a reference and as a source of instruction. The
order of exposition is pedagogical , and the chapters are meant to be read in order.

The chapters are :

Chapter 5, Introducing AppleScript

Chapter 6, Syntactic Ground of Being

Chapter 7, Variables

Chapter 8, Handlers

Chapter 9, Script Objects

Chapter 10, Objects

Chapter 1 1, References

Chapter 12, Control

Chapter l3 , Datatypes

Chapter 14, Coercions

Chapter 15, Operators

Chapter 16, Global Properties

Chapter 17, Constants

Chapter 18, Commands

CHAPTER 5

Introducing AppleScript

This chapter describes the AppleScript language in very general terms. What sort of
language is it? What is it like to learn and to use? The chapter is informal, opinion
ated, and personal. It is also nonessential, so readers who don't want to know my
thoughts about what AppleScript "feels like" and just want to get on with the facts
can skip this chapter.

Why include such a chapter at all? Simply because the AppleScript language itself
seems to call for some explanation. It's full of contradictions. Users frequently
express a certain degree of exasperation with AppleScript. Often, it seems to make
easy things hard and hard things all but impossible; a program that should take five
minutes to write takes an hour. Yet at the same time AppleScript has some remark
ably sophisticated features.

To learn a computer language is to sense, in some measure, the mental makeup of its
creator. I don't really know who invented AppleScript or what the reasoning process
was, but one definitely senses certain aims and ideas floating about in the back
ground. They are great ideas, but they don't always seem quite to fit together, and
there are some odd holes in how some of them have been implemented. It is this
combination of characteristics in this particular way that gives AppleScript its pecu
liar flavor. This chapter tries to describe that flavor.

A "Little Language"
The "little language" philosophy, as expressed in computer languages such as
LOGO, Smalltalk, and Scheme, comes in various forms; but the very words , "little
language," tell you most of what you need to know. Littleness can be a virtue in a
number of ways. A little computer language can fit in a small space and be run by a
small interpreter. A little computer language can be easy to learn. A computer lan
guage is a tool to make tools, so the initial tool itself can be quite minimal, provided
it has the power to make any other tools that may prove necessary.

97

All of these notions apply to AppleScript. AppleScript was to be easy for users to
learn, so the less there was of it , the better. AppleScript appeared at a time when the
idea of a computer with as much as four megabytes of random-access memory still
felt rather strange and extravagant. To minimize expenditure of resources of time
and space, it had to be compilable with just a single pass. In these days of hundreds
of megabytes of RAM and dozens of processes running simultaneously, it's easy to
forget that AppleScript comes from a day when running more than one application at
once on your Macintosh was a relatively new experience, and liable to tax the com
puter's resources to the utmost. At the time, AppleScript itself needed to be small
simply to stay out of the way of other applications. The first version of AppleScript
could load a scripting component instance and run a heavily recursive script in less
than 300K of RAM.

And after all , those other applications were the whole point. The purpose of Apple
Script was to tell other programs to do things. Thus AppleScript itself could afford to
be so minimal as to have next to no power of its own. AppleScript has minimal
string-munging and number-crunching facilities, but then AppleScript is not
intended for munging strings or crunching numbers-it's made for driving applica
tions, and they can munge the strings and crunch the numbers if need be.

So is AppleScript's littleness a virtue? Well, if you're used to a full-fledged scripting
language-Perl, for instance-AppleScript comes as something of a disappointment.
Perl has some hundreds of built-in functions; AppleScript has about a dozen. Perl has
built-in support for regular expressions and trigonometry ; AppleScript doesn't. The
"little language" philosophy seems very cute just until you actually need to get some
thing done. On the other hand if you don't try to misuse it , AppleScript seems quite
adequate, especially since it can avail itself directly of the power of Perl and other
built-in Unix tools. As I said in Chapter 1, success may simply be a question of com
bining specialities appropriately.

Extensibility and Its Perils
As part and parcel of its power to communicate with other applications, AppleScript
concedes to those applications an ability to extend the language. Such linguistic
extensions appear temporarily to be part of AppleScript, dnly for just so long as your
program is talking to the application that provides them. We thus have a language
that grows and shrinks and mutates depending on what application it is talking to.
For example, AppleScript itself knows nothing of a disk or a folder, but the Finder
does. So as long as your AppleScript code is talking to the Finder, it can talk about a
disk or a folder. The moment it is no longer talking to the Finder, it can't.

This architecture, as we saw in Chapter 4, has its practical consequences. An Apple
Script program that talks to a particular application becomes something of a nonen
tity in the absence of that application. If you send your friend a compiled script file

98 I Chapter 5: Introducing AppleScript

that talks to BBEdit and your friend doesn't have BBEdit, the result isn't just that
your friend can't run the script-your friend can't even read the script. Similarly ,
even if you know all about BBEdit and how it extends the AppleScript language, you
can't write and compile any AppleScript code that talks to BBEdit unless you have
BBEdit present on your machine at the time.

For the programmer, the main consequence of AppleScript's extensibility is that it is
not one language but many-as many as there are applications to which you might
wish to speak. We saw this consequence in action in Chapter 3 , where all my knowl
edge of AppleScript was as nothing compared to my ignorance of how to talk to
FrameMaker. Thus the AppleScript programmer, no matter how expert, remains
something of a perpetual neophyte. To learn to talk to a new scriptable application is
to learn a new language. Just the other day I had an email from an AppleScript-savvy
friend expressing an unwillingness to try a new application just because "I hate try
ing to figure out the scripting quirks of every app." AppleScript thus displays some
tendency to frighten its most devoted users from doing the very thing it was intended
to do.

The "English-likeness" Monster
As we have already seen, AppleScript is English-like. Its vocabulary appears to be
made up of English imperative verbs, nouns, prepositional phrases, and even an
occasional relative clause.

Whether this English-likeness is a good thing or not is debatable. It is probably
responsible for attracting users who would otherwise be frightened by the rigid
looking pseudo-mathematical terseness of a language like Perl , with its funny vari
able names, its braces and brackets and semicolons. Personally, though, I'm not fond
of AppleScript's English-likeness . For one thing, I feel it is misleading. It gives one
the sense that one just knows AppleScript because one knows English ; but that is not
so. It also gives one the sense that AppleScript is highly flexible and accepting of
commands expressed just however one cares to phrase them; and that is really not
so. This sense is reinforced by AppleScript's abundance of synonyms. For example,
instead of saying :

if x <= y

you can say :

if x is less than or equal to y

You are also allowed to use the word "the" wherever it feels natural. And nouns even
come with plurals:

get the first word of "hello there"
get the words of "hello there"

The "English-likeness" Monster I 99

Nevertheless, none of this is due to AppleScript's knowing any English. AppleScript
actually has no natural language intelligence at all. AppleScript is every bit as mathe
matically structured, rigid, and unforgiving as Perl or any other computer language.
If you step outside its rules by a tiny fraction of an inch, AppleScript slaps your hand
just as any computer language would. The trouble here, I suggest, is that it was
AppleScript's English-likeness that tempted you (subconsciously perhaps) to break
the rules in the first place.

For example, later in the book I will have to leap up and down and wave my arms
wildly to warn the reader not to confuse these two constructs :

get words 1 thru 4 of "now is the winter of our discontent"
get text from word 1 to word 4 of "now is the winter of our discontent"

The natural tendency to meld these two constructs (which do very different things)
into an illegal blend such as "get words 1 to 4" or "get text from words 1 thru 4" is
almost overwhelming. That's because in English these notions are too similar to one
another. If they were represented by harsh mathematical symbols, there would be no
danger of confusing them; but because they look like English, the part of one's brain
that speaks English takes over and tries to soften the boundaries between these
expressions in the same way that the boundary between them is soft in the world of
natural language.

It is often the case, too, that AppleScript vocabulary looks like a certain English part
of speech when it can't in fact be used as that part of speech would be. For example,
in the Finder there is an application file property called has scripting terminology,

which naturally leads one to try to say something like this :

if theApplication has scripting terminology

That won't compile; rather , you have to say this very un-English-like phrase :

if has scripting terminology of theApplication

Another problem with AppleScript's English-likeness is that with so many English
words floating around the language, it can be hard to think up a meaningful variable
name that isn't already in use for something else. The following lines of code are all
illegal :

set name to "Matt"
set feet to 7
set count to 9
set center to 1.5

The trouble here is that so much of the English language has been reserved for
AppleScript's personal use.

Then there is the fact that English is verbose. In most computer languages, you
would make a variable x take on the value 4 by saying something like this :

x = 4

1 00 I Chapter S: Introducing AppleScript

In AppleScript, you must say something wordy like one of these :

copy 4 to x
set x to 4

Doubtless not everyone would agree , but I find such expressions tedious to write and
hard to read. In my experience, the human mind and eye are very good at parsing
simple symbol-based equations and quasi-mathematical expressions, and I can't help
feeling that AppleScript would be much faster to write and easier to read at a glance
if it expressed itself in even a slightly more abstract notational style.

Object-likeness
In many computer languages, values are things that you talk about. In AppleScript,
values are things that you talk to. The following is a legal way to add 4 and 5 in
AppleScript :

tell 4
get it + 5

end tell

The use of tell (we are addressing the number 4), get (we are ordering the number 4
about) , and it (which means "whoever I am now addressing") shows the nature of
the idiom. It is not actually necessary to talk this way; one can add 4 and 5 by saying
something much simpler :

4 + 5

But this works because, behind the scenes, AppleScript is supplying the tell and the
get for you, to make your life simpler. In AppleScript, whether you know it or not,
you are always talking to some value and telling it to do something.

One might therefore suppose that AppleScript is an object-oriented language and
that all values in AppleScript are objects. Perhaps, one thinks, AppleScript will turn
out to be like Smalltalk , where "everything is an object." AppleScript also has cer
tain values that are explicitly called "objects," and refers to the datatypes of all val
ues as "classes." Plus, in a couple of areas AppleScript implements a kind of
"inheritance" between one object (or class) and another. All of these things add to
the impression that AppleScript might be object-oriented.

Personally, I remain doubtful as to whether AppleScript is really an object-oriented
or even an object-based language. Apple's own documentation says flatly that it is ,
but I've come to think of AppleScript as merely having values with certain object-like
aspects. Perhaps the reason for the object-likeness of AppleScript's values has some
thing to do with the fact that AppleScript is all about sending messages (Apple
events) to scriptable applications ("Apple Event" in Chapter 4). Having devised a
syntax for representing this message-sending architecture in an English-like way,
AppleScript's inventors seem to have generalized this syntax to pervade the language.

Object-likeness I 1 01

liSP-likeness
A number of features of AppleScript seem to suggest that someone on the original
AppleScript team was fond of LISP (or some LISP dialect such as Scheme). Since I ,
too, am fond of Scheme, I rather like these features.

For example, AppleScript has lists, which are ordered collections of any values what
ever. It provides certain primitive operations for dealing these lists, such as taking the
first element, taking everything but the first element, and joining two lists into one
(like Scheme's car, cdr, and cons). And AppleScript permits recursion (a subroutine
calling itself).

Thus, it is possible to write AppleScript code that bears an extraordinary resem
blance to Scheme code. To give an example, here's a little Scheme program that
defines a routine for removing the nth element from a list, and then tests it:

(define remvix
(lambda (ix 15)

(cond
«null? 15)

' ())
«; ix 1)

(cdr 15»
(else

(cons (car 15) (remvix (- ix 1) (cdr 15»»»)
(remvix 2 '(mannie moe jack»

And here's the same thing done in just the same style in AppleScript:

on remvix(ix, 15)
if 15 is {} then

return {}
else if ix is 1 then

return rest of Is
else

return {item 1 of Is} & remvix(ix - 1, rest of Is)
end if

end remvix
remvix(2, {"Mannie" , "Moe", "Jack"})

Even if you don't know any Scheme or any AppleScript, the structural and stylistic
similarity between these approaches is hard to miss; they are in fact move for move
identical , the only differences between them being matters of syntactic detail. To be
sure, I've stacked the deck by deliberately writing the AppleScript routine in a
Scheme-like style ; but the point is that AppleScript is capable of that style, and
invites it.

AppleScript also can generate closures (subroutines that remember their global envi
ronment). And there is a sense in which all the components of a script-variables,
handlers, and script objects-possess the same first-class status; for example, any of
them can be passed as a parameter to a subroutine. All of this has a markedly LISP
like flavor.

1 02 I Chapter 5: Introducing AppleScript

The Learning Curve
In case you're beginning to worry that AppleScript is hard, don't ; it isn't! Apple
Script is a straightforward computer language, and can be taught and learned in a
straightforward manner; if I didn't believe that, this book wouldn't exist. Apple
Script is extensible, so this book will tell you how to read a scriptable application's
dictionary , warn of possible pitfalls , and give plenty of examples. AppleScript is
English-like, so the book will teach a clean, concise style, and will wave a red flag
when an analogy with natural language threatens to mislead. AppleScript values are
object-like; this book tells you how to talk to them. AppleScript has some LISP-like
features ; this book elicits these features where they are relevant, but where they seem
too advanced you can always skip a section and return to it later on. If this book
occasionally comments on the odd way AppleScript does certain things, it is not to
frighten or frustrate the reader, but rather to gain the reader's trust. It's just my way
of saying, "Don't worry if this seems weird; it is weird."

So approach AppleScript without fear. It deserves respect, appreciation, and perhaps
a little wonder. After all , it's amazingly old. The Mac OS X revolution has let Apple
thoroughly modernize a System that was breaking under its own accumulated weight
of years; yet AppleScript remains, to all intents and purposes, its same old self. The
fact that AppleScript works at all in this brave new world of Unicode text and POSIX
paths is simply amazing. But it does, and until a new broom comes along to sweep it
clean, having to negotiate some accumulated quirks and cobwebs dating from the
creation seems a small price to pay.

The Learning Curve I 1 03

CHAPTER 6

Syntactic Ground of Being

This chapter is about the basic facts of AppleScript language syntax. These are the
facts you must know before you can read or write any AppleScript code at all.

Lines
AppleScript is a line-based language. There is no visible command terminator, such
as a semicolon; a command ends with and is separated from the next command by a
line break. For example:

set x to 1
copy x + 1 to y
display dialog y

In a script text file (or other text to be treated as AppleScript code) it doesn't matter
whether the line break character is the Macintosh line break (\r), the Unix line break
(\ n), or the Windows line break (\r\n) . Presuming the code is valid, AppleScript will
be able to compile it regardless ; all line breaks are expressed as Macintosh line
breaks on decompilation.

It is legal for a line to be completely blank. Extra whitespace (spaces, tab characters)
is legal and will be ignored.

Line Break Characters in Literal Strings

It is legal to type a line break in a literal string (that is , between matched pairs of dou
ble-quotes). This represents a line break character within the string. For example:

1 04

set pep to "Manny
Moe
Jack"
display dialog pep

Exactly what line break character is represented in this way depends upon the edit
ing environment. In the old Script Editor :

set pep to "Manny
Moe"
pep contains (ASCII character 13) -- true
pep contains (ASCII character 10) -- false

In the new Script Editor :

set pep to "Manny
Moe"
pep contains (ASCII character 13) -- false
pep contains (ASCII character 10) -- true

A returned string value containing a line break character will be displayed (in most
contexts) with a visible line break at that point. For example :

set pep to "Manny" & return & "Moe"

The result is displayed like this :

"Manny
Moe"

The same is true of a decompiled string literal containing an "escaped" return char
acter. (Escaped characters in string literals are discussed under "String" in
Chapter 13.) For example, if you type this :

set pep to "Manny\rMoe"

then when you compile you'll see this :

set pep to "Manny
Moe"

This is generally agreed to be annoying behavior on AppleScript's part. The line
break character represented by the keyword return is a Macintosh line break charac
ter (\r), which can confuse the display in a Unix context. This is purely a cosmetic
issue. For example (in the Terminal) :

$ osascript -e 'set pep to "Manny" a return a "Moe'"
Moeny
$ osascript -e 'set pep to "Manny" a (ASCII character 10) a "Moe'"
Manny
Moe

What happened in the first reply is that "Moe" overprinted "Man ny".

Continuation Character

Long lines can be broken into multiple lines by typing the continuation character.
This character appears as the "logical not" sign; it is MacRo man codepoint 194, Uni
code (and WinLatin 1 and ISOLatin 1) codepoint 172. This character is usually typed

Lines I 1 05

on Macintosh as Option-l (that's option-ell) ; but as a convenience, in a script editing
application, typing Option-Return enters both the logical-not character and a return
character, and is the usual way of continuing a line.

For example :

set a to ,
1

It is a compile-time error for anything to follow the continuation character on the
same line other than whitespace.

It is a compile-time error for the line following the continuation character to be
blank, unless what precedes the continuation character is a complete command, as
in this very silly example :

set a to 1 ,

set b to 2

A continuation character inside a literal string is interpreted as a literal logical-not
character. To break a long literal string into multiple code lines for legibility without
introducing unwanted return characters into the string, you must concatenate multi
ple literal strings :

set s to "one very long line " & ,
"deserves another"

Under some circumstances, AppleScript will move or remove your continuation
characters at compile time. There's nothing you can do about this; it's an effect of
the decompilation process. See "Decompiling" in Chapter 4 .

. ', @" In this book'long lines are manuallYbroken for legibility. Continua

��, tion characters are inserted to indicate such breaks, without regard for
, :" whether AppleScript would move or remove these continuation char

, acters in a compiled version of the script .

Result
At runtime, every line of AppleScript code that actually executes an expression-that
is, it isn't blank, a comment, or mere flow control (looping and branching)-gener
ates a result. This result is some sort of value; the particular value depends upon
what the line does and what values it does it with.

The line need not be a "complete sentence" ; any valid AppleScript expression consti
tutes a valid line, even if it does nothing (that is, even if it doesn't have what a com
puter science person would call "side effects"). For example, this is a valid line of
AppleScript code, and it has a value (can you guess what it is?) :

A line's result may be captured in two ways : explicitly or implicitly.

1 06 I Chapter 6: Syntactic Ground of Being

Explicit Result

The result of a line after it is executed may be captured explicitly by using the key
word result in the next line that is executed. For example :

5
display dialog result -- 5

One sees this technique used typically after fetching a value in a context of interap
plication communication. For example, this is a fairly common style of coding :

tell application "Finder"
get the name of every folder

end tell
set L to the result

Here's another example :

tell application "Finder"
count folders

end tell
set c to the result

The reason why people use this technique appears to be twofold. First, it may be a
habit left over from HyperTalk, where this sort of thing was pretty much standard
practice. Second, there seems to be a sense that a line is more legible and understand
able if it consists of a single command. This technique is never actually necessary,
though. If you want to capture the result of a command, you can do it in the same
line :

tell application "Finder"
set L to (get the name of every folder)
set c to count folders

end tell

Furthermore, there is an argument to be made that use of result is a bad idea, since
you may not know what it represents as well as you think you do. For example :

set L to {"Mannie", "Moe"}
set end of L to "Jack"

After these two lines, L is {"Mann ie", "Moe", "Jack"}, but result is "Jack". If you were
expecting result to be the same as L, you'll be wrong, and code that depends upon
this assumption won't work. That's a simple example; for more complicated code, the
chances increase that you may be mistaken about what resu lt represents. The prob
lem is simply that you are dependent upon AppleScript's rules about what a state
ment's result is. But there is no need to be dependent upon these, or even to bother
knowing what result a line generates, because it is never necessary to use result .

Also, result is volatile. It changes after the execution of every expression. If you get
into the bad habit of not capturing values when they are generated, because you
intend to pick them up later using result, you are just asking for trouble when
another expression is executed in the meantime and the value you needed has been

Result I 1 07

lost. This can easily happen, because you might insert a line in the course of develop
ing your code; this kind of mistake is very difficult to debug.

Implicit Result

The result of a line's execution is captured implicitly if it is the last line executed in a
handler or script. This means that in theory there is no need to return a value explic
itly from a handler or script using return . For example, instead of this :

on add(x , y)
return x + y

end add
display dialog add(l , 2)

it is possible to say this :

on add (x , y)
x + y

end add
display dialog add(l, 2)

This technique suffers from the same drawbacks as using result . The keyword
return has the great advantage that you know exactly what you're returning (because
that's the value of whatever follows the word return) and when you're returning it
(because the handler exits the moment return is encountered). To rely on an implicit
result is to know neither of these things. A line's result, as we've seen, may not be
what you think it is. And the value returned by a handler or script is not the value of
its physical last line, but rather the value of whatever line happens to be executed
last ; where there is flow control (loops and branches), you might not know what line
this will be.

In actual fact, I do tend to use the implicit result in one particular context-when
developing or testing a script. A script editing program always displays the result
after executing a script. Thus you can see whether the script is working as expected,
by specifying the final result :

on add (x , y)
x + y

end add
set z to add(l, 2)
z

The last line here is just a way of causing the value of z to show up as the result of
the script after execution, to make sure it's being set as expected. Here it may be
argued that the use of the implicit result is actually the best approach, and here's
why. Suppose you return the result explicitly, like this:

on add (x , y)
x + y

end add
set z to add(l , 2)
return z

1 08 I Chapter 6: Syntactic Ground of Being

You now proceed with developing the script, adding code after this snippet, and are
very surprised when it doesn't work as expected. The reason is that you've acciden
tally left this line in the script :

return z

When that line is encountered, execution terminates ; the code that follows it is never
executed. You might think this sort of mistake unlikely, but I speak from extensive
experience. By contrast, the nice thing about this line :

z

is that it has no effect at all on the behavior of your script, even if subsequent code is
added later.

Comments
AppleScript permits two kinds of comment : single-line comments and delimited
comments. Everything including and after two successive hyphens on a line is a
single-line comment. For example :

set a to 1 -- this a comment on the same line as a command
-- this a comment on a line by itself

The comment delimiters are (* and *) . Everything between comment delimiters is a
comment. Such a comment may span multiple lines. This code contains three
stretches of text that are legally commented out with comment delimiters :

set a to 1 (* because we feel like it;
tomorrow we may not feel like setting a to 1 *)
(* in fact things could be very different tomorrow,
but I really can't speak to that issue just now *)
set b to 2 (* this seems a good idea too *)

A comment delimited with comment delimiters may not interrupt a command, nor
precede a command on the same line. Neither of these lines will compile :

set a to (* because we feel like it *) 1
(* here's a good idea *) set a to 1

Comment delimiters attempt to be "intelligent." Comments may be nested, in which
case the delimiters must match in pairs. The value of this is that you can easily com
ment out a stretch of script that already contains some comments :

(* outer comment
(* inner comment *)
rest of outer comment *)

A rather weird side effect of this "intelligence" is that quotation marks and vertical
bars inside comment delimiters must also match in pairs :

(* "this works fine" and so does Ithisl *)

Comments I 1 09

If you remove one quotation mark or one vertical bar from inside that comment, the
code won't compile.

Single-line comments attempt no such "intelligence" ; they simply cause the rest of
the line to be ignored, and they take precedence over everything. Thus if you insert
comment delimiters to comment out a block of code, you must be careful not to
place either delimiter within a single-line comment. This won't compile :

(* set a to 1 -- and why not? *)

That's because the closing comment delimiter is itself commented out as part of the
single-line comment, so the opening comment delimiter is unbalanced.

Abbreviations and Synonyms
Many AppleScript terms permit other terms to be substituted for them. For exam
ple, the following expressions are equivalent in pairs, assuming a and b are defined :

a is less than b
a (b

a is b
a = b

Some terms have a very large number of equivalents. For example, these expressions
amount to the same thing :

a :5 b
a (= b
a less than or equal b
a is less than or equal to b
a is not greater than b
a isn't greater than b
a does not come after b
a doesn't come after b

To add to the confusion, on decompilation, AppleScript might substitute one equiva
lent for another (see "Decompiling" in Chapter 4). So the code in the previous exam
ple compiles, but afterwards it looks like this :

a :5 b
a :5 b
a is less than or equal to b
a is less than or equal to b
a is not greater than b
a is not greater than b
a does not come after b
a does not come after b

I call terms that are functionally equivalent to one another synonyms . I call terms that
are replaced by other terms on decompilation abbreviations .

1 1 0 I Chapter 6: Syntactic Ground of Being

Code in this book is compiled before being pasted into the page, so you won't see
any abbreviations in the book's code examples (except, as here, with the explicit pur
pose of displaying an abbreviation). In fact, this book does not even list abbrevia
tions except where I find them particularly handy when typing code. For example, I
habitually type less-than-or-equal as <= even though in the compiled code what will
appear is �, so I tell you about this abbreviation (under "Comparison Operators" in
Chapter 15).

I don't tell you about all synonyms either, and on the whole I try not to use them. I
feel that it's good style, and makes your AppleScript code more legible, to adopt just
one synonym for each term and stick with it. In general my personal preference is the
shortest synonym, but not always; for example, of the following two expressions, I
prefer the second:

a ct. b
a is not b

And in a very small number of cases I do use two synonyms indiscriminately. For
example, I'm equally likely to use either of these expressions :

a = b
a is b

To sum up : wherever there are synonyms, I have a favorite (or, in a very small num
ber of cases, a couple of favorites). My favorites are the versions of each term that I
tell you about, and they are the ones I use in code.

Blocks
A block is one or more lines of code demarcated from its surroundings as having a
separate nature or purpose. A block is announced by a line stating what type of block
it is ; then comes the code of the block; and finally the block is terminated by a line
starting with the keyword end . Blocks can occur within blocks.

It's very easy to spot a block in AppleScript code, because at compile time the code
lines are indented from the announcement line and the termination line. For example :

myHandler()
on myHandler()

repeat 3 times
display dialog "Howdy"

end repeat
end myHandler

That code contains two blocks. One is announced with the on myHa ndler() line, and
is terminated by the end myHandler line; everything in between them is the code of
that block. That code consists of another block, announced with the repeat line and
terminated by the end repeat line; the line of code in between them is the code of
that block.

Blocks I 1 1 1

In this book I frequently refer to such blocks by their announcement keyword or
type ; for example, I might say "an on block" or "a repeat block".

The only blocks you can make in Apple5cript are those for which keywords are sup
plied; you cannot indent arbitrarily for clarity, as you can in UserTalk or C. 50 for
example in UserTalk you can say this :

local (x)
bundle

x : 4
msg (x)

The keyword bundle here does nothing except to allow some code to be indented for
clarity and to provide a further level of local scope. In Apple5cript the scoping issue
doesn't arise (as we shall see), but a way of indenting for clarity might still be nice.
To achieve it you would need to misuse an existing block type. For example :

local x
repeat 1 times

set x to 4
end repeat
display dialog x

The
Apple5cript allows you to use the word the before almost anything. This is pure syn
tactic sugar, and I never use it. For example, this is perfectly legal :

set the x to the 9
display dialog the (get the the the the x + the 1)

Now, really.

1 1 2 I Chapter 6: Syntactic Ground of Being

CHAPTER 7

Variables

This chapter describes the rules for declaration, typing, initialization, naming, scop
ing, and lifetime of variables in the AppleScript language .

A variable is a binding between a name and a value. You can think of it as a shoebox
with a label on it, into which something is placed for storage. The shoebox's label is
the variable's name; what's inside the shoebox is the variable's value. For example,
when we say :

set x to 5

it is as if we had a shoebox labeled "x" into which we place the number 5.

Assignment and Retrieval
To assign a value to a variable is to put something into the shoebox. If the variable
already has a value, that value is replaced. Assignment is performed with one of two
commands : set or copy, described here.

set

Syntax

set variableName to value

Description

Assigns value to variableName.

Example
set x to 5

There is a synonym using the word returning instead of set, with the parameters in reverse
order, like this: 5 returning x. But I have never seen this used.

1 1 3

copy

Syntax

copy value to variableName

Description

Assigns value to variableName.

Example
copy 5 to x

An abbreviation for copy is put; an abbreviation for to is into . Thus you could type put 5
into x, although it would still come out as copy 5 to x. This is doubtless to accommodate
HyperCard users, who were habituated to this syntax.

In these expressions, variableName can optionally be a list of variable names, allow
ing multiple assignments in one command. The value, too, will then be a list-a list
of the values to be assigned. The first item in the value list is assigned to the first item
in the variableName list, the second to the second, and so forth. If the value list is
longer than the variableName list, the extra values are not assigned to anything ; if the
value list is shorter than the variableName list, there is a runtime error. This remark
ably elegant feature is probably under-utilized by beginners. (For a parallel construc
tion involving assignment to a record, see "Record" in Chapter 13.) For example :

set {x , y, z} to {1, 2, 3}
z - - 3, and can you guess what x and y are?

It sounds from their descriptions as if set and copy must be completely interchange
able. In most cases, they are ; but with regard to four types of value-lists, records,
dates, and script objects-they are not. This point will be covered in subsequent
chapters. For other datatypes, you may use whichever command you prefer; I prefer
set .

There is no simple assignment operator, such as equals sign (=) . You cannot, for
example, perform an assignment like this :

x = 5

That is a comparison, and returns a boolean result revealing whether x is already 5.
The fact that such code is legal (and therefore does not cause a compile-time error)
but is not an assignment (as any mildly experienced programmer would expect) is a
frequent cause of bugs in my scripts. See "The "English-likeness" Monster" in
Chapter 5.

To retrieve the value of a variable (or fetch the va ue, or use the value, or whatever
you want to call it), simply use the variable's name 1 code. As with most computer
languages, there is no problem retrieving from and assi ning to the same variable in a
single statement :

set x to x + 1

1 1 4 I Chapter 7: Variables
,

There is no circularity, because first the value of x is retrieved, and 1 is added to that
value ; then the result of this addition is assigned to x, replacing the original value.

The result of a line consisting of just the name of a variable is the value of that vari
able . So, for example :

set x to 5
x

The result of that script is 5 . This can be useful when you want to employ the
implicit result of a script as a way of testing or debugging (see "Implicit Result" in
Chapter 6).

It is possible to retrieve a variable's value by using the get command:

set x to (get x) + 1

But no one ever talks this way in real life, and as far as I know this use of get with a
variable adds nothing. However, get with an object reference is another matter; see
"Get" in Chapter 10.

Declaration and Definition of Variables
There is no requirement in AppleScript that variables be declared explicitly. The rule
is basically that if you use a word that AppleScript doesn't understand, the word is
assumed to be the name of a variable . The following code, as a complete script, will
compile j ust fine :

set x to x + 1

Definition

The code in that last example, as a complete script, will compile, but it won't run; at
runtime, it generates an error. That's because x has never been assigned a value. The
error message reads : "The variable x is not defined. " The problem is not that the vari
able x has never been declared! There is no need to declare it. AppleScript under
stands (or assumes) that x is supposed to be a variable . Nor is the problem that you
are trying to assign to it. The problem is that you are trying to fetch its value, and it
has no value . An AppleScript variable is not defined until you first give it a value
explicitly. To continue our shoebox analogy, there is no "x" shoebox to fetch the
contents of, because you've never put anything into it.

This code both compiles and runs :

set x to 5
set x to x + 1

During execution of the first line, AppleScript observes that you're putting some
thing into the "x" shoebox, but there is no such shoebox as yet. No problem;

Declaration and Definition of Variables I 1 1 5

AppleScript creates the shoebox, labels it "x", and puts 5 into it. Now the second
line runs fine, because there is a shoebox "x" from which to fetch a value.

Once a variable has been defined in the course of running a script, it generally stays
defined until its scope finishes executing, as discussed later in the chapter. There is
no command explicitly letting you "undefine" a variable or assign the "undefined"
value to it . However, you can undefine a variable by assigning to it the result of a
command that has no result. This is typically an accident : you were expecting a com
mand to return a value, but it doesn't . Code for doing it on purpose appears under
"Returned Value" in Chapter 8.

There is no way to ask whether a variable's value is defined ; all you can do is fetch its
value and see if you get an error. It would then be up to your code to handle this
error ("Errors" in Chapter 12) ; otherwise your script will simply stop running at that
point.

Initialization

A variable is initialized (given its first value) when you explicitly assign it its first
value. There is no auto-initialization of variables in AppleScript, and there is no spe
cial syntax for initializing variables. A variable is undefined until you assign it a
value ; at that moment it is defined and initialized-the variable now exists, it has a
value, and it is possible to fetch that value.

The exception is a script property. A script property is a kind of global variable, and it
is declared and initialized in the same line of code. Script properties have some other
interesting features, which are discussed later in this chapter.

Typing

A variable in AppleScript has no fixed type. By this I mean simply that it is permissi
ble to assign any variable any value, any time. The following code is legal :

set x to 5
set x to 5 . 2
set x to "hello"
set x to string
set x to { llfee ll , "fie" , II fo ll , "fum"}
set x to (path to current user folder)

In that code, x becomes successively an integer, a real, a string, a class, a list, and an
alias . A defined variable (one that has a value) has a type, called its class ; this is sim
ply the class (datatype) of its current value, and it changes if a value of a different
class is assigned to it.

The various built-in datatypes, and the ways in which AppleScript lets you coerce
implicitly and explicitly from one to another, are discussed later in this book (Chap
ters 13 , 14, and 15) .

1 1 6 I Chapter 7: Variables

Explicit Declaration

Although it is not necessary to declare a variable, it is possible to declare a variable,
and there are three ways to do so:

• As a script property:

property x : 5
set x to x + 1

• As a global :

global x
set x to 5
set x to x + 1

• As a local :

local x
set x to 5
set x to x + 1

The meanings of these declarations are explained later in this chapter.

. ", �" It is almost always best to declare your variables . Your code will be

�:" easier to understand, and the scoping rules are simpler and clearer, if
, :" all your variables are declared. Unfortunately there is no way to have

• AppleScript to warn you when a variable is not declared.

Variable Names
The name of a variable must begin with a letter or underscore and must consist
entirely of alphanumeric characters or underscore . So a variable name must begin
with a character in the character set [a - zA-Z_l and must consist entirely of charac
ters in the character set [a - zA-Zo-9_1 .

Variable names are case-insensitive at compile time. That means the following code
will compile and run :

set myVar to 5
set myvar to myvar + 1

Apple5cript assumes that myvar in the second line is the same variable as myVar in the
first line . Furthermore, as a reflection of this assumption, Apple5cript rewrites the
variable names after compilation so that their case matches the first usage of the
name :

set myVar to 5
set myVar to myVar + 1

This suggests a trick that can help you spot undeclared variables : in your declara
tions, use an uppercase letter somewhere in every variable name; elsewhere, never
use an uppercase letter in a variable name. Then, after compilation, any variable

Variable Names I 1 1 7

name without an uppercase letter must be an undeclared variable. For example,
here 's some code that I typed following these rules, after compilation:

local myVar
set myVar to 5
set mybar to myVar + 1

In that code I have accidentally created and set the value of an unwanted variable
mybar in the last line . I meant to say myvar, but I mistyped it. This won't cause Apple
Script to generate any error, and the script will misbehave . The chances that I will
spot my mistake are increased by my use of the case trick.

Once a script has been compiled for the first time, its variable names are remem
bered as they appear at that moment. (Recall that AppleScript has a memory. See
"Maintenance of State" in Chapter 4.) Suppose you compile this script:

local avariable
set avariable to 7

You then change your mind and decide to use the inner capitalization trick, so you
edit the script to give the variable names inner capitalization :

local aVariable
set aVariable to 7

When you compile, you find your efforts are in vain; AppleScript removes the inner
capitalization!

local avariable
set avariable to 7

The reason is that when AppleScript first saw the variable name avariable-the first
occurrence during the first compilation of the script--.:.it had no capitalization, and
that's how the name is remembered from then on.

What's more, this rule washes over to other scripts that you edit during the same ses
sion ! To see this, start up your script editor program and compile this script :

set myvar to 7

Now open a new, different window and compile this script :

local myVar
set myVar to 7

Your variable names are changed in this second script! It ends up looking like this :

local myvar
set myvar to 7

This bizarre behavior is caused by the combination of two facts : variable names are
remembered at global level in the AppleScript scripting component, and there is just
one AppleScript scripting component instance per script editor session. (You did
reread " Maintenance of State" in Chapter 4, didn't you?) This instance is shared by

all the scripts you compile during that session, so the variable names in one script

1 1 8 I Chapter 7: Variables

affect the variable names in another. This phenomenon persists until you quit the
Script Editor program. Two different applications don't share the same AppleScript
scripting component instance, though, so your variable names in Script Editor do not
affect your variable names in Script Debugger at the same moment.

You can force an illegal variable name to be legal by surrounding it with vertical bars,
also known as "pipes" (I) . SO, for example :

set 1 1 1 to 2
if 1 1 1 is 2 t hen

display dialog "The laws of logic are suspended . "
end if

The laws of logic aren' t really suspended; 1 and 2 have not become the same num
ber. A variable named " I " has been assigned the value 2, that's all. This device is
good also for variable names in languages other than English :

set I monZero I to 0

or for spaces in a variable name :

set I my big long variable name with spaces l to 7

A variable name surrounded by pipes is case-sensitive . This script will compile, but it
won't run :

set I MyVar I to 5
set I MyVar I to I Myvar l + 1 - - error

The reason is that I Myvar I is not the same variable as I MyVar I and has never been
given a value, so its value can't be fetched. AppleScript will not touch the case of
names in pipes after compilation.

A variable name surrounded by pipes may include a backslash as an "escape" charac
ter. The legal escape expressions in this context are \n, \r, \t, \ I , and \ \ .

The real meaning o f pipes i s t o tell AppleScript t o suspend its compile-time parsing
rules and turn what's inside the pipes into a token. The main reason this is genu
inely useful is to avoid a conflict between a token name and a reserved word. For
example :

set l is l to " ought "

You couldn' t do that without the pipes, because is is a reserved word, a part of the
AppleScript language .

Now, you might say: "So what? I ' ll never need to worry about that; I j ust won' t use
any names that conflict with reserved words. " But even though you might not use
such names, some entity with which you need to communicate might do so. For
example, some unwary developer could use a reserved word as part of the vocabu
lary defined by a scriptable application (even though they're not supposed to), and
you would then need pipes in order to use that word to talk to the application . (See
" Resolution Difficulties" in Chapter 19 .)

Variable Names I 1 1 9

Scoping of Variables
The notion of scoping has to do with where an entity is visible . Your code consists of
regions ; these regions are each continuous, and some of them may be inside others,
but they do not partially intersect-given two regions, either one is entirely inside
the other or they are completely distinct. The region in which a variable is visible is
called its scope . A variable that is visible at a certain point is said to be in scope at that
point.

Scoping of variables in AppleScript is extraordinarily complicated (in my opinion) .
It 's also very important to understand, so don't skip this section.

How Scoping Is Meaningful

Before we can talk about the scoping of variables in particular, you must understand
the basic principles of AppleScript scoping in general . These are :

• The top level of all scope is the script as a whole.

• The regions of scope are handlers and script objects (and the top level) .

• A script object may contain a handler. A handler may contain a script object. A
script object may contain a script object. But a handler may not (directly) con
tain a handler.

Let's start with the first rule . Your script as a whole is itself the ultimate region of
scope, containing everything else . So, let's say that your script consists of j ust the fol
lowing code :

set x to 7

In terms of scope, where are we when this code executes? This is all the code there is,
and we're not in a handler or a script object, so we are at the top level of all scope,
the script as a whole.

Now I will illustrate the second and third rules, even though I have not yet explained
rigorously what a script object or a handler is; all you need to know is that in code a
script object is a block declared by the word script and a handler is a block declared
by the word on . This code, then, is legal:

on handlerOne ()
script scriptOne
end script

end handlerOne
script scriptTwo

on handlerTwo ()
end handlerTwo
script scriptThree
end script

end script

1 20 I Chapter 7: Variables

Everything you see in that code is inside the top-level script. Within the top-level
script are handlerOne and scriptTwo. Within handlerOne is scriptOne . Within
scriptTwo are handlerTwo and scriptThree.

Along with the top level, these handlers and script objects are the regions of scope.
Each region starts with the declaration of the handler or script object, and ends with
the corresponding end line . Into this code may be inserted further code, and every
line of this further code is in some definite region of scope.

The question we want to answer, then, is how variables in these various regions of
scope are visible to code within other regions of scope .

Explicit locals

An explicit local is a variable declared with the keyword loca l . It is legal to declare
more than one variable local in the same command, by separating them with com
mas . So:

local x
local y, z

In general, an explicit local is visible only within the scope where it is declared. (There
is one exception, which I ' ll mention in a moment .)

Different local variables in different scopes can thus have the same name without
trampling on one another. Suppose a script object starts like this :

script myScript
local x

The moment that local declaration for x is encountered, it means that from now on
when code in this script object's scope says x it means this local x and no other.
Other scopes may declare their own local x, they may declare a global x, they may
bang the floor and have a temper tantrum, but they absolutely will not be able to
have any effect upon myScript 's x, nor will anything myScript does with its x have any
effect upon them.

Here's an example of a local variable in action :

local x
set x to S
script myScript

display dialog x
end script
run myScript - - error

(The code inside a script object does not run when the script object is defined. To
run the code inside a script object, you tell that script object to run . This is formally
explained in Chapter 9. So in this example, first we define myScript, then we run it .)

That code compiles, but i t won't run; i t stops with a runtime error at the display
dialog x command, objecting that x is not defined. There is a variable called x and it

Scoping of Variables I 1 21

is defined, but it is declared local and therefore is visible only within its own scope .
In this case, that scope is the top-level script. The display d ialog x command is in a
different scope, that of the script object myScript . Therefore AppleScript takes this to
be a different x, and this different x has never been assigned a value.

Now let's do it the other way round:

on myHandler ()
local x
set x to 5

end myHandler
myHandler()
display dialog x - - error

(The code inside a handler does not run when the handler is defined. To run the
code inside a handler, you say its name followed by parentheses . This is formally
explained in Chapter 8. So in this example, first we define myHandler, then we run it .)

This code stops with a runtime error at the display dialog x command, objecting
that x is not defined. There is a variable x that has been defined, but that happened
inside the scope of the handler myHandler, where this x was declared local. The
display dialog x command is in a different scope, namely the top level. Therefore
AppleScript takes this to be a different x, and this different x has never been assigned
a value.

There is, however, this one great exception to the rule about the scope of local vari
ables : a script object defined in a handler can see the handler's local variables . For
example :

on myHandler ()
local x
set x to 5
script myScript

display dialog x
end script
run myScript

end myHandler
myHandler() - - 5

This remarkable exception to the local scoping rule will permit us to pass a handler
as a parameter to another handler and call it ("Handlers as Parameters" in
Chapter 8) . We will also combine it elegantly with a handler's ability to return a

script object ("Script Object as Handler Result" in Chapter 9).

Global Declarations: The Downward Effect

Our next topic will be variables declared with the keyword global . It is legal to
declare more than one variable global in the same command, by separating them
with a comma. So :

global x
global y, z

1 22 I Chapter 7: Variables

For clarity, I 'm going to discuss the effect of a global declaration in two stages. First
I'm going to explain what I call the downward effect of a global declaration. By this I
mean the effect a global declaration has on code in the same scope as the declara
tion, or a deeper scope within that scope .

Here's the rule. A variable declared global is visible subsequently in the same scope as
the declaration, and within all handlers and scripts defined subsequently in the same
scope, to an infinite depth .

For example, this code runs :

global x
set x to 5
on myHandler ()

display dialog x
end myHandler
myHandler() - - 5

The variable x is declared global ; it is then visible downward into the scope of
myHandler, because myHandler is defined subsequently in the same scope as x. (Do
you see why I call this the downward effect of the declaration?)

In that example, I proved that code inside myHandler could see x by having that code
fetch its value . But such code can equally well set its value :

global x
on myHandler ()

set x to 5
end myHandler
myHandler()
display dialog x - - 5

That's important. Code exposed to a variable by a global declaration is very power
ful . The code gains full access to the variable.

Let's prove that the downward visibility created by a global declaration operates to a
greater depth (it operates, as I said earlier, "to an infinite depth, " but I don't see how
to prove that) :

global x
on myHa ndler ()

script myScript
on mySecondHandler ()

set x to 5
end mySecondHandler

end script
myScript ' s mySecondHandler ()

end myHandler
myHandler()
display dialog x - - 5

The line where x is given a value appears in a handler within a script object within a
handler. Nevertheless that line can see the variable x declared global in the first line,
and the script runs successfully.

Scoping of Variables I 1 23

Now let's concentrate on the word "subsequently. " A variable not declared global
until after the definition of a script object or handler cannot be seen by code within
that script obj ect or handler. The following code does not work:

on myHandler ()
script myScript

on mySecondHandler ()
set x to 5

end mySecondHandler
end script
myScript ' s mySecondHandler ()

end myHandler
global x
myHandler()
display dialog x - - error

The variable x was not declared global until after the definition of the handler
myHandler. Therefore code within myHandler cannot see x . The line set x to 5 was
executed, but it failed to set the global variable x's value; therefore when we reach
the last line, the global variable x has no value and a runtime error occurs .

(You might now be wondering: "Okay, the line set x to 5 didn't set the value of the
global variable x, but it didn't cause a runtime error either; so what did it do?" I ' ll get
to that, I promise .)

Naturally, any downward scope may shield itself from the downward effect of a glo
bal declaration at a higher level, simply by declaring the same variable name as local
for its own scope. For example :

global x
set x to 5
script myScript

local x
on myHandler ()

set x to 10
end myHandler
myHandler()
set x to 20

end script
run myScript
display dialog x - - 10 (not 20)

The dialog displays 10, not 20 . The global x declaration in the first line has a down

ward effect on myScript and, within it, on myHandler. But myScript then shields itself
from this effect with a local x declaration. The variable x declared global in the first
line is thus visible at top level and at the third level in myHandler, but at the second
level in myScript it is not visible, and the x referred to there is a different x . When
myHandler sets x to 10, that is the same x as at the top level. When myScript then sets
x to 20, that's a different x and this has no effect on the value displayed in the last
line .

1 24 I Chapter 7: Variables

Global Declarations: The Upward Effect

We are now ready to talk about what a global variable really is. In the previous sec
tion, in talking about the downward effect of a global declaration, I was talking
about j ust the declaration; a global declaration can appear anywhere . But now we're
talking about the actual variable named by a global declaration-a global variable .
The rule is : a global variable actually exists at the top level .

However, it turns out that a global variable, even though it exists at top level, cannot
automatically be seen in every scope. In order for a global variable to be seen in a
scope other than top level, it must be explicitly declared.

There are two ways for a global variable to be declared so as to be visible in a scope
other than top level. One we have already seen: the top level may declare it, which
makes it visible subsequently downwards . The other way is for the deeper scope to
ask to see the global variable; it does this with a global declaration in its own scope.

The upward effect of declaring a variable global is to identify the declared variable with
the top-level global variable of the same name. This top-level global variable may or may
not exist already; if it doesn't exist, we may say that the declaration also creates it. (But
the global variable doesn't really exist until it is defined by being assigned a value.)

To illustrate :

on setX()
global x
set x to 5

end setX
on getX()

global x
display dialog x

end getX
setX ()
getX () - - 5

When setX runs, its declaration of x as global creates the global variable x at top level
(because no such global variable exists previously), and identifies this x with that x;

thus, in setting the value of x, it sets the global's value. Then when getX runs, i ts dec
laration of x as global identifies this x with the now existing global variable x at top
level. Thus, when it displays the value of x, it is the global's value that it displays .
Both setX and getX have access to the very same global variable x; and they have that
access because they each asked for it, with a global declaration.

It goes without saying (said he, saying it) that such a global declaration, by virtue of
its downward effects, also gives to all downward scopes the same powers over a top
level global that it gives its own scope (unless, of course, they deliberately shield
themselves from this power by means of a local declaration, as in the example at the
end of the previous section) . For example, this code works :

script myScript
global x

Scoping of Variables I 1 25

on myHandler ()
set x to 5

end myHandler
myHandler()

end script
on getX ()

global x
display dialog x

end
run myScript
getX() - - 5

By the time we come to the last line, the script object myScript has run, and its han
dler myHandler has executed the line set x to 5. Because there has been a higher
level global declaration of x, this x is that global x. (That's the downward effect of the
global declaration .) But this x is also the top-level global x. (That's the upward effect
of the global declaration.) Therefore, even though it contains no global declaration
within itself, myHandler is able to set the value of the top-level global x. Then when
getX runs, since it starts with a global declaration for x, it sees the same top-level
global variable, and displays its value.

Undeclared Variables

We come now to the question of undeclared variables . Say that at compile time, a
variable name is encountered, and this name has not been declared for this scope
that is, it has not been declared as local in this same scope, and it has not been
declared as global in the same or a higher scope. Now, a variable can only be local or
global. What will AppleScript do?

It turns out that there are two different answers, depending on where the code
occurs-at the top level, or elsewhere.

Undeclared variables at top level

Code at the top level of the script is special. (Technically, what I mean here is "code
at the top level of the run handler. " See "The Run Handler" in Chapter 8 .) Code at
the top level of the script doesn't need a global declaration in order to create, set, or
see a global variable. An undeclared variable name at top level is treated as global.
But lacking the explicit global declaration, it lacks the downward effect that an
explicit global declaration would have. We may call such a variable an implicit global .

So, for example:

set x to 5
on getX()

global x
display dialog x

end getX
getX () - - 5

1 26 I Chapter 7: Variables

In the first line, the previously undeclared x was created as a top-level global, implic
, itly, and given a value , When getX runs, it is able to access that value with a global

declaration, and can display it.

Now let's do the converse :

on setX()
global x
set x to 5

end setX
setX()
display dialog x - - 5

By the time we get to the last line, setX has run; it has created a top-level global vari
able x, and has set its value, In the last line, the previously undeclared x spoken of at
top level is an implicit global, so it is that same top-level global variable x, Thus the
value 5 is displayed,

But this code fails with a runtime error, unless the first line is uncommented :

- - global x
set x to 5
on getX ()

dis play dialog x
end getX
getX () - - error, unless you restore the global x declaration

The presence of the global x declaration has a downward effect, enabling code inside
the getX handler to see x without a global x declaration of its own. Without such an
explicit global x declaration anywhere, x is still global, but code in getX can't see it,

It is perfectly possible for code at the top level to shut off its own access to a global
variable, j ust as any other scope may do, by declaring a local variable of the same
name. For example :

local x
set x to 5
on setX ()

global x
set x to 10

end setX
setX()
display dialog x - - 5

This displays 5 , not 10. That's because there has been a declaration that the x spoken
of at top level is a local. It's true that setX set a top-level global to 10, but that's a dif

ferent variable ! The top-level code isn't accessing that variable; it closed off its access
to it, through the local declaration,

Undeclared variables not at top level

An undeclared variable name not at top level is treated exactly as if that variable had
been declared local in its scope. We may call such a variable an implicit local .

Scoping of Variables I 127

For example :

set x to 5
script myScript

set x to 10
end script
run myScript
display dialog x - - 5

The dialog displays 5 . You should now understand why. Each set x line creates a dif
ferent x-the first creates an implicit global at top level, the second creates an
implicit local in its own scope. Thus the x that is set to 10 is a different x from the x
that was set to 5 ; it is the x that was set to 5 that is displayed in the last line . There
was no runtime error; no one tried to access the value of an undefined variable. But
myScript 's x was wasted; it was set to 10 and then was immediately destroyed as it
went out of scope, with no effect on anything else in the code.

Declare your variables

Sounds like "eat your vegetables, " doesn't it? Well, it should. Each motto is good
advice, no matter how unpalatable it may seem at first . I strongly advise you (once
again) to declare all your variables--even your locals .

Now that you understand what happens when variables are not declared, you can
imagine the sorts of confusion that can arise . If you let yourself become lulled into a
false sense of security by the fact that there's no need to declare your variables, then
you can be surprised when some other scope tramples them.

For example, imagine that your script starts like this :

set x to 5

That's top-level code, so you've just implicitly declared x a global. This means that
any other handler or script object anywhere in this script can access your x and
change its value, j ust by saying this :

global x

This other code may not have intended to trample on your x ; perhaps it was trying to
establish a global of its own, possibly in order to communicate its value to code at a
lower level. But the damage is done, because of the upward effects of a global decla
ration. And to think you could have prevented this, just by declaring your x local to
start with.

In the case of script objects the problem is particularly insidious, because it is possi
ble to run a script object whose code you can't see, by loading it from a compiled
script file on disk. There will be more about that later (Chapter 9) , but here's a quick
example :

set x to 5
run (load script alias "myHardDrive : a Script File . scpt ")
display dialog x

128 I Chapter 7: Variables

The frightening fact is that x could now be anything! If the script in the file
aScriptFile. scpt happens for any reason to declare global x, it can freely change the
value of your x .

The converse i s also true. Pretend you have a large script and that this code occurs
somewhere within it :

on myHandler ()
set x to 5

end

Is x a local or a global here? You don't know! It depends upon the context . If x has
previously been declared global at a higher level, this x is global (by the downward
effect of that declaration) . If not, this x is local. But it is intolerable that you should
have to look elsewhere to learn the scope of x within myHa ndler ! All you have to do is
explicitly declare it global or local, right here in myHandler, and then you' ll know for
sure .

Free Variables

An entity defined outside a handler or script object but globally visible within it, and
not overshadowed by a declaration of the same name, is called a free variable with
respect to that handler or script object. For example :

global x , y, z
s cript myScript

property x 1
local y
yy
z

end script

Within myScript, x is explicitly defined as a property (as explained later in this chap
ter in "Script Properties") and y is explicitly defined as a local, so neither is a free
variable . The variable yy isn't explicitly defined within myScript, but it isn't defined
outside it either, so it is an implicit local and not a free variable . But the variable z is
globally visible within myScript (from the global declaration at the start of the code),
and the name is not redeclared within myScript, so z within myScript is a free vari
able, and is identified with the global z declared in the first line .

A free variable takes its value within the handler or script object at the time the code
runs, not at the time the handler or script object is defined. For example :

set x to 5
on myHandler()

global x
display dialog x

end myHandler
set x to 10
myHandler() - - 10 (not 5)

Scoping of Variables I 1 29

The dialog displays 10, not 5 . It doesn't matter that x had been set to 5 when
myHandler was defined; it only matters what its value is when the code inside
myHandler actually runs . By that time, x has been set to 10.

It is important here (as we saw earlier) that x has been declared global in code that
appears before the code where myHandler speaks of it. Free variables' values are deter
mined at runtime, but the identification of a variable as a free variable, and its associ
ation with some particular globally visible variable, is performed during compilation
(and AppleScript's compilation is single-pass, remember) . This way of resolving the
meaning of free variable names is called lexical scoping.

For example :

set x to 5
on myHa ndler ()

display dialog x
end myHandler
global x
myHandler () - - error

It's true that x is declared global before (temporally) myHandler runs . But that's not
good enough. We must declare x global before (physically) myHandler speaks of it;
otherwise, myHa ndler's x isn' t the global x, and the code fails with a runtime error
because myHandler's x isn't defined.

Redeclaration of locals and Globals

It is a compile-time error to redeclare an implicit global as local :

set x to 5
loca 1 x - - compile-time error

It is a compile-time error to redeclare an implicit local as global:

on getX()
display dialog x
global x - - compile-time error

end getX

It is a compile-time error to redeclare as local a variable declared global in the same
scope (except at top level) :

on getX()
global x
local x - - compile-time error

end getX

It is a compile-time error to redeclare as global a variable declared local in the same
scope (except at top level) :

on getX()
local x
globa 1 x - - compile-time error

end getX

1 30 I Chapter 7: Variables

At top level, it is not an error to declare a variable local and then declare it global in
the same scope. But it doesn't have any effect within the top-level scope either. For
example :

local x
global x
set x to 5
on setX()

set x to 10
end setX
on getX ()

dis play dialog x
end getX
setX ()
getX () - - 10
display dialog x - - 5

Once x is declared global, both setX and getX have automatic access to a top-level
global variable x. But the code in the top level does not have such access. There, x

has already been declared local; nothing can change this . Once a local, always a
local. The x that is set to 5 , and that is displayed at the end, is this local x, which is
different from the global x .

At top level, i t is not an error to declare a variable global and then declare it local in
the same scope. But access to the global variable is lost in the top-level scope . For
example :

global x
set x to 5
local x
on getX ()

display dialog x
end get X
getX () - - 5
display dialog x - - error

After the first two lines , there is a top-level global variable x and its value is 5 , and
code at a deeper level can access it; the subsequent local declaration has no effect on
this fact , even though it precedes the definition of the deeper-level code. But the top
level code has lost its access to this global variable, and can never recover it.

Script Properties
A script property (often just called a property) is a script-level global variable with ini
tialization. A script property must be declared, and an initial value must be supplied
as part of the declaration. The syntax is:

property propertyName : initial Value

For example :

property x 5

Script Properties I 1 3 1

The abbreviation for property is prop.

A property declaration can appear only at top level or at the top level of a script
object. For example :

property x : 5
script myScript

property y : 10
- - other stuff

end script
- - other stuff

A property is a variable, so its value can be set and fetched in the normal way. For
example :

property x : 10
display dialog x - - 10
set x to 5
display dialog x - - 5

Scoping of Properties

A property is a kind of global variable, and a property declaration has the same
downward effect as a global declaration :

property x : 10
script myScript

display dialog x
end script
on myHandler ()

display dialog x
end myHandler
run myScript -- 10
myHandler () -- 10

Both myScript and myHandler can see the property x, because the property declara
tion works like a global declaration with respect to its downward effects .

The big difference between a global variable and a script property is in the upward
effect of their declaration. A property's scope is confined to the script object where it is
declared. The property is automatically visible downwards, as if the property declara
tion had been a global declaration; but it is not automatically visible anywhere else .
Different script objects may declare a property by the same name, and these proper
ties will be separate variables.

For example :

property x : 5
script scriptOne

property x : 10
script scriptTwo

property x : 20
display dialog x

end script
display dialog x

1 32 I Chapter 7: Variables

run scriptTwo
end script
script scriptThree

property x : 30
display dialog x

end script
script script Four

display dialog x
end script
display dialog x - - 5
run scriptOne - - 10, 20
run scriptThree - - 30
run scriptFour -- 5

Every property x in that code is a separate variable. Observe that this separateness
would be impossible using global declarations, because each global x declaration at
any level would refer to the very same top-level global variable. Of course, locals pro
vide a similar separateness, but with locals you wouldn' t get the downward effect of
a property declaration (used by scriptFour to see the top-level x) . Thus we see that
the scoping effect of a property declaration is different from either a global declara
tion or a local declaration.

Furthermore a property, unlike a local, even in scopes where it isn' t visible automati
cally, is visible on demand wherever its script object is visible . To speak of a property
from outside the scope where it is visible automatically, you must employ a special
syntax: either you use the of operator (or the apostrophe-ess operator) and the name
of the script object, or you use the keyword its within a tell block addressed to the
script obj ect. You are then free both to fetch and to change the value of the property.

For example :

script myScript
property x 10

end script
on myHandler ()

set myScript ' s x to 20
end myHandler
display dialog x of myScript - - 10
myHandler ()
display dialog myScript ' s x - - 20
tell myScript

display dialog its x - - 20
end tell

A difficulty arises, though, when a script object has a property but wishes to speak of
a top-level property of the same name:

property x : 5
script myScript

property x : 10
display dialog x - - but I want to speak of the top-level x

end script
run myScript - - 10, alas

Script Properties I 133

The difficulty is that the top-level script is anonymous . Under normal circum
stances, it may be referred to at any level as parent . For example :

property x : 5
script outerScript

property x : 10
script innerScript

property x : 20
display dialog parent ' s x

end script
end script
run outerScript ' s innerScript - - 5 (not 1 0 or 20)

However, it is possible to subvert this by redefining a script obj ect's parent. (This
will be explained in "Inheritance" in Chapter 9.) For example :

property x : 5
script scriptOne

property x : 10
end script
script scriptTwo

property x : 20
property parent : scriptOne
display dialog parent ' s x

end script
run scriptTwo - - 10 (not 5)

To get around this, the surest method, and therefore the surest method for accessing
a top-level property in general, is to give the top level a name. This is done by assign
ing the value me to a global variable or property at top level. (For the formal explana
tion of me, see "Me" in Chapter 10.) So, for example :

property top Level : me
property x : 5
script scriptOne

property x : 10
end script
script scriptTwo

property x : 20
property parent : scriptOne
display dialog top Level ' s x

end script
run scriptTwo - - 5

Top-Level Properties Are Globals

There is no difference between a top-level global variable and a top-level property
(except that the property is initialized) . I will pause a moment to let this sink in.

One consequence of this is that in all the examples in the previous section where I

declared a top-level property, I could have used a top-level global instead. This

1 34 I Chapter 7: Variables

top-level global can be explicit (if I want the downward effects of the declaration)
or implicit . For example, I ' ll j ust repeat the last example in a different guise :

global top Level
script scriptOne

property x : 10
end script
script scriptTwo

property x : 20
property parent : scriptOne
display dialog topLevel ' s x

end script
set top Level to me
set x to 5
run scriptTwo - - 5

In that version of the code, top Level and x (at top level) are global variables, not
properties. This changes essentially nothing. scriptTwo still speaks of toplevel 's x,

regardless. There is a declaration of top Level as global, so that scriptTwo will be able
to see it (the downward effect of the declaration), and it is assigned the value me so
that scriptTwo can refer to the top level by name. x is an implicit global that comes
into existence when it is set in the next-to-Iast line . The really interesting part of the
example is this line :

display dialog topLevel ' s x

Here, scriptTwo can access the global variable x by referring to it in terms of the top
level's name, just as if x were a property. And it can do this even though there has
never been, and never will be, an explicit global declaration for x. This is because the
compiler is satisfied by the specification top Level ' 5 x ; it knows j ust where to look
for this x, and that 's all the compiler wants to know. At runtime, by the time
scriptTwo runs, the x in question has a value, and all is well.

The upward effect of a global declaration identifies the declared variable with a top
level property, j ust as it would with a top-level global variable. For example :

property x : 5
script outerScript

property x : 10
script innerScript

global x
display dialog x

end script
end script
run outerScript ' s innerScript - - 5

The global declaration of x in innerScript identifies x in this scope with the top-level
property of the same name. We thus have another way of jumping past the scope
where x is 10 to see the x at top level.

Script Properties I 135

Delayed Declaration of Properties

Because of the nature of Apple5cript's one-pass compiler, a property declaration may
appear anywhere in its scope, not just at the start. It still provides the initial value for
the variable at the start of its scope, not merely from the point where the declaration
appears .

So, for example, this script runs, and displays 10:

display dialog x
property x : 10

The property declaration is dealt with by the compiler, so before the script starts run
ning x already exists and has the value 10. Thus the first line of the script works even
though no definition of x precedes it. Even though it works, this is poor style and is
to be discouraged.

Redeclaration of Properties

It is not a compile-time error to redeclare a property as a local or a local as a prop
erty; but access to the property is lost within that scope. For example :

script myScript
property x : 4
display dialog x
local x
display dialog x

end script
run myScript - - 4, then error

The second attempt to display x fails because by that point x has been redeclared as
local, and this local has no value. But the downward effect of the property declara
tion remains, so the property remains accessible at a deeper scope. Thus :

script myScript
property x : 10
local x
set x to 20
on myHandler ()

display dialog x
end myHandler
myHandler ()
display dialog x

end script
run myScript - - 10, then 20

It is a compile-time error to redeclare as global a variable declared as a property in
the same scope :

property x : 10
global x - - compile-time error

136 I Chapter 7: Variables

It is not a compile-time error to do it the other way round, redeclaring a global as a
property. This is merely taken as a delayed declaration of the property, and the glo
bal declaration has no effect. So :

global x
set x to 10
script myScript

global x
set x to 5
property x : 20
display dialog x

end script
run myScript - - 5
display dialog x - - 10

Within myScript, x is a property throughout; the global declaration inside myScript

has no effect. The property x starts out with the value 20 before myScript runs, but
myScript then sets it to 5, and this is the value that is displayed in the first dialog. The
second dialog shows that the global x is unaffected. This code was written and exe
cuted on a closed course by a trained driver; please, do not attempt.

Lifetime of Variables
The lifetime of a variable means j ust what you think it means-how long the vari
able lives.

A local variable is born when it first is assigned a value, and dies when the scope in
which it was born stops executing. A variable that behaves this way is sometimes
called an automatic variable, because it comes into existence and goes out of exist
ence automatically. For example :

on myHandler ()
local x
set x to 5
display dialog x

end myHandler
myHandler() -- 5
display dialog x - - error

Well, you already knew what would happen when that code runs . But what I 'm say
ing now is something you can't see, and I can't quite prove, so you'll j ust have to
believe me : by the time we get to the last line of that example, the local x inside
myHandler isn't just unavailable, it's gone. It came into existence as myHandler was
executing, and it went out of existence when myHandler finished executing.

A top-level entity other than a local variable is persistent. This means that its name
and its value survives the execution of the script. This becomes interesting and rele
vant if you execute the same script twice .

Lifetime of Variables I 137

Here's a simple example. Create this script in a script editor program and run it :

property x : 5
set x to x + 1
display dialog x - - 6

Now run it again, without doing anything else . Here's what happens :

property x : 5
set x to x + 1
display dialog x - - 7

This amazing result is possible because AppleScript has a memory. (You did reread
"Maintenance of State" in Chapter 4, didn't you?) Your compiled script is in Apple
Script's memory. After the script is executed, AppleScript retains the compiled script,
and along with it, all the top-level entities that resulted from its execution . This
includes properties, so after the first execution of the script, AppleScript is remem
bering that the script has a property x and that its value is 6. Thus when you run the
script a second time and x is incremented, it becomes 7.

Now, at this point, you are saying: "But wait ! I can see x being initialized to 5 right in
the first line of the script. So what about that line? Are you saying that, the second
time the script is executed, AppleScript is ignoring that line?" Well, it's really just a
matter of what initialize means. It means to give a value to something that has no
value. The second time the script is executed, x has a value already, remembered
from the previous execution. So the property declaration has all the usual downward
effects of a property declaration; but the initialization part of it has no effect, because
x doesn't need initializing.

You can do the very same thing with a top-level global variable, but it's a little trick
ier because you need a way to initialize the global-to give it a value if it doesn't have
one, but not if it does . Obviously this won't do :

set x to 5
set x to x + 1
display dialog x - - 6

You can execute that over and over, and it just displays 6 over and over. The prob
lem is that set is not a mere initialization; it sets x regardless . Thus you keep reset
ting x to 5 each time you execute the script. This means that you probably don't
believe me when I say that the value of x is being remembered between executions .
To get around this, we have to use stealth (and some syntax that hasn't been dis
cussed yet-try blocks are explained in Chapter 12) :

try
set x to x + 1

on error
set x to 5
set x to x + 1

end try
display dialog x - - 6, then 7, and so forth

Run that repeatedly. Now do you believe me?

1 38 I Chapter 7: Variables

A script object defined at top level is a top-level entity, so it and all script objects
defined within it, and therefore all their properties, also persist after execution . For
example :

script outerScript
script innerScript

property x : 5
on increment ()

set x to x + 1
end increment

end script
tell innerScript to increment ()
display dialog innerScript ' s x

end script
run outerScript - - 6, then 7, and so forth

Now, nothing lives forever, so just how long does all this persistence persist? Well,
for one thing, it all comes to an end if you edit the script. That's because altering the
script means that the script must be recompiled, and at that point the contents of the
old compiled script, including the values of the top-level entities from the previous
execution, are thrown away from AppleScript's memory. That's why throughout this
section I 've been telling you to execute the script multiple times without doing any
thing else.

The really, really surprising part, though, is that this persistence can survive the sav
ing and reloading of the script in a script file. Unfortunately you can't see this if you
save or open the script file using the current Script Editor. It doesn' t work with
Smile, either. Smile has another way of implementing persistence between sessions.
So try it with the old version of the Script Editor (1 .9) , or with Script Debugger. Cre
ate and run this script several times :

property x : 5
set x to x + 1
display dialog x

Now save the script as a compiled script file, and quit, j ust to prove to yourself that
AppleScript's own memory of the value of x is well and truly erased. Now open the
compiled script file again and execute it. The incrementing of x picks up right where
it left off previously.

This mechanism is not automatic . AppleScript itself has no way to enforce file-level
persistence, because AppleScript itself doesn't deal in files. It is up the environment
that's talking to the AppleScript scripting component, after it asks AppleScript to run
the compiled script file, to save AppleScript's copy of the compiled script back into
the compiled script file after execution. If it doesn't do this, then the compiled script
file won' t contain the new values, and the values won' t persist. Fortunately most
environments, including applets, as well as script runners such as the Script Menu or
BBEdit's Scripts menu, are well-behaved in this regard. But as we've just seen, the
current version of Script Editor is not. This inconsistency can be troublesome.

Lifetime of Variables I 139

CHAPTER S

Handlers

A handler is a subroutine within a script. A handler is defined using a block of code
that starts with the keyword on, with syntax of this sort :

on handlerName ()
- - commands within the handler

end handlerName

A synonym for on is to .

. ". 5],' When typing a handler definition, don't bother to type the name of

�:., the handler a second time in the end line . Just type end for that line ;
, �. the compiler will fill in the name of the handler.

A handler definition contains the code to be executed when the handler runs, but
the mere presence of the definition does not itself cause such execution. A handler's
code is run when an executed line of code calls the handler, using a corresponding
syntax:

handlerName ()

The parentheses may not actually appear in the definition or the call; these are just
vague syntax templates to get the discussion started. I ' ll explain the syntax of han
dler definitions and calls later in this chapter.

A handler is an important form of flow control, and leads to better-behaved, better
organized, more reusable, and more legible code. With a handler, the same code can
be reused in different places in a script. Even if a handler is going to be called only
once in the course of a script, it's a useful device because it names a block of code,
and this name can be made informative as to the block's purpose.

Also, a handler can be called from elsewhere, so that only a specific part of a script or
script object is executed. We saw this earlier in demonstrating folder actions, under
"Automatic Location" in Chapter 2. The folder action script used as an example
there consisted of a handler called adding folder items to:

140

on adding folder items to ff after receiving

end adding folder items to

That script might have other handlers as well , but when files are added to the folder
to which the script is attached, it is the adding folder items to handler that will be
called. A handler thus serves as an entry point to execute part of a script. This is also
how script ability of an applet is implemented. We'll talk more about that in
Chapter 24.

Returned Value
When a handler is executed, it may return a value . By this we mean that it generates
a value which becomes the value of the call that executed the handler. We may speak
of the returned value as the result of the handler.

til .. , �" The term result is used here in a technical sense. A handler may do

�:. other things besides return a result, and these other things may be �,' :" quite significant in the world outside of the handler; technically these
, are not the result of calling the handler, but its side-effects. Thus, if you

call a handler that erases your hard drive and returns the number 1,
you might say in ordinary conversation, "The result of calling the han
dler was that my hard drive was erased," but technically you'd be
wrong: the result was 1; the erasure of your hard drive was a side
effect. (This shows that a side-effect can be much more important than
a result.)

For example :

on getRam ()
set bytes to system attribute " ram "
return bytes d iv (2 ' 20)

end get Ram

The handler getRam() returns the amount of RAM installed on the user's machine, in
megabytes . On my machine, it returns the number 384. This means that a call to
getRam() can presently be used wherever I would use the number 384; in effect, it is
the number 384. For example :

on getRam ()
set bytes to system attribute " ram "
return bytes div (2 ' 20)

end get Ram
display dialog "You have " & getRam () & "MB of RAM. Wow!"

The call to getRam() in the last line behaves exactly as the number 384 would behave
in this context : it is implicitly coerced to a string and concatenated with the other
two strings (as explained under "Concatenation Operator" in Chapter 15), and the
full resulting string is displayed to the user.

Returned Value I 141

The value returned by a handler is determined in one of two ways :

An explicit return

The handler, in the course of execution, encounters a line consisting of the key
word return , possibly followed by a value . At that point execution of the han
dler ceases , and the returned value is whatever follows the return keyword
(which could be nothing, in which case no value is returned) .

An implicit result
The handler finishes executing without ever encountering an explicit return. In
that case, the returned value is the result of the last-executed line of the handler.

,,�
_a'

..... For the same reason that I recommend that you not use the result

�:,. keyword (see "Result" in Chapter 6), I recommend that you not use a
, �:,. handler's ability to return an implicit result. If you're going to capture

• a handler's result, use an explicit return statement wherever the han
dler ends execution.

If a handler returns no value, there is no error; but in that case it is a runtime error to
attempt to use the call as if it had a value. The status of such a call is similar to that
of a variable that has never been assigned a value (see "Declaration and Definition of
Variables" in Chapter 7). So, for example, there's nothing wrong with this :

on noValue ()
return

end noValue
set x to noValue ()

After that, even if x was previously defined, it is now undefined. Thus an attempt to
fetch its value will generate a runtime error:

on noValue ()
return

end noValue
set x to 1
set x to noValue ()
set x to x + 1 - - error

The result of a handler is volatile. It is substituted for the call , but the call itself is not
storage (it isn't a variable) , so the result is then lost. If you wish to use the result of a
handler again later, it is up to you to capture it at the time you make the call. Of
course, you could just call the handler again; but there are good reasons why this
strategy might not be the right one :

• The handler might be such that, when called on different occasions, it yields dif
ferent results; if you wanted the particular result of a particular call, calling it
again won't do.

• The handler might do other things besides return a result (side-effects); to per
form these side-effects again might not be good, or might not make sense.

142 I Chapter 8 : Handlers

• Storing a result and using it later is far more efficient than calling the handler a
second time.

So, for example, this code works, but it is very poor code :

on getRam ()
set bytes to system attribute " ram "
return bytes div (2 ' 20)

end get Ram
set s to "You have " & getRam() & "MB of RAM. Wow! "
set s to s & getRam () & "MB is a lot!"
display dialog s

The handler is called twice to get the same unchanging result, which is very ineffi
cient. The right way would be more like this :

on getRam()
set bytes to system attribute " ram "
return bytes div (2 ' 20)

end get Ram
set myRam to getRam ()
set s to "You have " & myRam & "MB of RAM . Wow! "
set s to s & myRam & "MB is a lot!"
display dialog s

The second version calls the handler and immediately stores the result in a variable .
Now it suffices to fetch the value from the variable each time it is needed.

The result of a handler may be ignored if the caller doesn' t care about it (or knows
that no value will be returned) . In this case the handler is called entirely for its side
effects. Generally the call will appear as the only thing in the line :

eraseMyHardDi sk ()

Parameters
A parameter is a value passed to a handler as it is called. A handler is defined to take
a certain number of parameters ; this can be any number, whatever the author of the
handler feels is appropriate to what the handler does . (The details on the syntax of
defining and calling a handler that has parameters are addressed in the next section ;
right now we're just talking about what parameters are .)

For example, here 's a definition of a handler that takes two parameters , and a call to
that handler:

on add (x, y)
return x + y

end add
display dialog add (3 , 2)

In the last line, the handler is called with the two parameters it requires. The value 3

is passed as the first parameter; the value 2 is passed as the second parameter. In the
handler definition, names that effectively designate variables local to the handler

Parameters I 143

have been declared. When the handler is called, and before it actually starts execut
ing, these names are paired with the parameters that were passed, and the corre
sponding values are assigned. Thus, when add() is called on this occasion, it is as if it
had a local variable x which has been initialized to 3, and a local variable y which has
been initialized to 2.

Because the parameter names in the handler definition are local to the handler, they
are invisible outside it. That's good. Any parameter names may be used within the
handler without fear of confusion with other names outside the handler. For example :

on add (x, y)
return x + y

end add
set x to 2
set y to 3
display dialog add(y , x)

In that code, what matters to the handler is that the value 3 is passed as the first
parameter, and that the value 2 is passed as the second parameter. Thus, within the
handler, the value 3 is assigned to x and the value 2 is assigned to y. Those are
implicit locals; the handler knows nothing about the top-level names x and y (and
vice versa) .

A parameter name cannot be declared global within the handler, just as a local can
not be redeclared global (see "Redeclaration of Locals and Globals" in Chapter 7).

It is a runtime error to call a handler with fewer parameters than the definition of the
handler requires. There is no way to declare a parameter optional in AppleScript . On
the other hand, you really don't need a way to do this , because a parameter can be a
list or a record, which can have any number of items:

For example, here's a handler that calculates the area of a rectangle given the lengths
of the two sides . If you pass the length of only one side, the rectangle is assumed to
be a square :

on area(L)
set a to item 1 of L
if (count L) = 2 then

set b to item 2 of L
else

set b to item 1 of L
end if
return a * b

end area
area({ 3 , 4}) -- 12
area({ 3 }) -- 9

• All we need is a shift command and this would be Perl!

144 I Chapter 8: Handlers

Syntax of Defining and Cal ling a Handler
The parameters , if there are any, follow the name of the handler in both the defini
tion and the call . In the definition, you're saying how many parameters there are,
and supplying the names of the local variables to which they will be assigned; in the
call, you're supplying their values . There are four syntactic cases that must be distin
guished, depending on whether the handler has parameters and, if so, how they are
specified. (Personally, I think the third and fourth ways to define a handler are silly,
and I never use them. But you need to know about them anyway.)

It is not an error to refer to a handler by its name alone, with no paren
theses or parameters. This can be a useful thing to do, if you wish to
refer to the handler as a value (see "Handlers as Values," later in this
chapter); but it doesn't call the handler. If you refer to a handler by its
name alone, intending to call it, your script will misbehave in ways
that can be difficult to track down.

No Parameters

If a handler has no parameters, the name of the handler in the definition is followed
by empty parentheses :

on handlerWithNoParameters ()
-- code

end handlerWithNoParameters

The call consists of the name of the handler followed by empty parentheses :

handlerWithNoParameters ()

Unnamed Parameters

Unnamed parameters are sometimes referred to as positional parameters. This is
because the pairing between each parameter value passed and the local variable in
the handler that receives it is performed by looking at their respective positions : the
first parameter is assigned to the first variable, the second parameter is assigned to
second variable , and so forth.

If a handler has positional parameters, the name of the handler in the definition is
followed by one or more variable names in parentheses, separated by comma:

on handlerWithOneParameter(x)
- - code

end handlerWithOneParameter
on handlerWith FourParameters (a , b, c, d)

-- code
end handlerWithFourParameters

Syntax of Defining and Calling a Handler I 145

The call then consists of the name of the handler followed by parentheses containing
the parameter value or values, separated by comma:

handlerWithOneParameter (7)
handlerWith FourParameters (" hey" , " ho" , " hey" , " nonny no")

It is not an error to call a handler with more unnamed parameters' than the handler
requires, but the extra values are ignored.

Prepositional Parameters

Prepositional parameters are also called labeled parameters. Each parameter is pre
ceded by a preposition drawn from a fixed repertoire . The use of prepositional
parameters has two supposed advantages :

• The prepositions may give an indication of the purpose of each parameter.

• The prepositions are used to pair the parameter values with the variables in the
handler, so the parameters may be passed in any order.

The preposition names from which you get to choose are limited to those listed in
Table 8-1.

Table 8-1. The prepositions

above

against

apart from

around

aside from

at

below

beneath

beside

between

by

for

from

instead of

into

on

onto

out of

over

thru

under

In addition to the prepositions in Table 8-1 , there is also a preposition of. This is
used in a special way: if you use it, it must come first , and there must be more than
one parameter. This odd rule seems to be due to a mistake in the original design of
AppleScript . In AppleScript 1.0, the of parameter was intended as a way of distin
guishing the "direct object" (the handler's main parameter) . Then it was realized that
where there was just one parameter and it was the of parameter, an unresolvable
ambiguity with the of operator was introduced. So AppleScript 1.1 resolved the
ambiguity by forbidding of to be used that way. But no alternative way of distin
guishing the direct object was supplied, so in a sense this feature has been broken
ever since.

If a handler has prepositional parameters, the name of the handler in the definition is
followed by a preposition and a variable name, and then possibly another preposi
tion and another variable name, and so on.

146 I Chapter 8: Handlers

In the call , the name of the handler is followed by a preposition and a value, and
then possibly another preposition and another value, and so fonh. The prepositions
used must match those of the definition, but they may appear in any order, except
for of, which must be first if it appears at all.

Here are some examples of handlers with prepositional parameters and calls to them:

on first Letter from aWord
return character 1 of aWord

end first Letter
display dialog (first Letter from " hello")

on sum of x beside y
return x + y

end sum
display dialog (sum of 1 beside 2)

on stopping by woods on a5nowyEvening
return woods & a5nowyEvening

end stopping
display dialog (stopping on " horse" by " farm ")

I n the call, i f the value you wish t o pass i s a boolean, you may use with o r without (to
indicate true and false respectively) followed by the preposition. If you don't use
this syntax, AppleScript may use it for you when it compiles the script : any preposi
tional parameters for which you pass the literal value true or false will end up as
with or without followed by the preposition. Multiple with clauses or without clauses
can be j oined using a n d . This looks quite silly when the labels are prepositions, but
here goes:

on stopping by woods on a5nowyEvening
if woods and a5nowyEvening then

return " lovely , dark and deep"
else

return " ugly and shallow"
end if

end stopping
display dialog (stopping with on and by)
display dialog (stopping with by without on)

It is a runtime error for the call to omit any defined prepositional parameter. It is not
an error to toss some extra prepositional parameters into the call, but they are
ignored by the handler.

The real value of labeled parameter syntax emerges when targeting scriptable appli
cations. Application commands, unlike handlers in your scripts, can define their own
labels beyond the list of prepositions in Table 8-1. For an example, see the dictio
nary listing for FrameMaker's find command under "Seek and Ye Shall Find" in
Chapter 3, where the parameters are called with value , with properties , i n , and
using . It would be nice if handlers could do this too, but they can' t. The closest they
come is named parameters , described in the next section.

Syntax of Defining and Calling a Handler I 147

Named Parameters

Named parameters are a way to take advantage of labeled parameters while escaping
the circumscribed repertoire of built-in prepositions . You get to make up your own
names , though of course you mustn't use a word that' s already reserved by the lan
guage for something else.

,

You may combine named parameters with prepositional parameters ; if you do, the
named parameters must come after the prepositional parameters .

The syntax for defining named parameters is this :

on handlerName . . . given paramNamel:varNamel, paramName2:varName2,

The first ellipsis in that syntax schema is the definition for the prepositional parameters,
if there are any. The second ellipsis is for as many further named parameters as you like.

The call works just the same way: the keyword given must appear, it must appear after
all prepositional parameters if there are any, and the same colon-based syntax is used:

handlerName . . . given paramNamel:valuel, paramName2:value2, ...

As with prepositional parameters , boolean values can be passed using with or
without and the parameter name, and for these there is no need to say give n . Again ,
AppleScript will use this syntax for you i f you pass the literal value true or false .

Here are some examples o f handlers with named parameters, and calls t o them. For
the sake of simplicity, none of these handlers also take prepositional parameters .

on sum given theOne : x , theOther : y
return x + y

end sum
display dialog (sum given theOther : 2 , theOne : 3)

o n scout given loyal : loyal , trustworthy : trustworthy
if loyal and trustworthy then

return " eagle "
else

return " sparrow"
end if

end scout
display dialog (s cout with loyal and trustworthy)

The first example demonstrates that the order of parameters is free. The second
example demonstrates the use of with , and also shows that the parameter labels can
be the same as the local variable names.

Pass By Reference
Parameters passed to a handler, and the value returned from a handler, are normally
passed by value in AppleScript. This means that a copy of the value is made, and it is
the copy that arrives at the destination scope.

148 I Chapter 8: Handlers

But four datatypes-lists , records, dates , and script objects-when they are passed
as parameters to a handler, are passed by reference . This means that no copy is made ;
the handler's scope and the caller's scope both end up with access to the very same
value , rather as if it were a global. Any change made to the parameter by the handler
is also made back in the context of the caller. For example :

on extend (LL)
set end of LL to " J ack "

end extend
set L to { "Mannie " , "Moe " }
extend (L)
L -- {"Mannie", "Moe", "Jack"}

Notice that we didn't capture the value of the handler call extend() . The handler
extend was able to modify the list L directly . After the call, L has been changed in the
caller's context, even though the caller didn't change it.

It makes sense that lists , records, dates , and script objects can be passed by refer
ence, since these are the only mutable datatypes-the only datatypes whose values
can be modified in place, as opposed to being replaced wholesale . But it is a little
odd that they are passed by reference automatically. Passing by reference gives the
handler great power over the parameter, which the handler can misuse . To prevent
accidents, it is up to you to remember that list, record, date, and script object param
eters are passed by reference, and that things you do in a handler to such parameters
have an effect outside the handler.

What about values that are not lists, records, dates , or script objects? How can they
be passed by reference? The nearest thing to a solution, which unfortunately works
only when the variable in question is a global, is AppleScript's ability to pass (by
value) a reference to a variable (see Chapter 11). The syntax consists of the phrase a

reference to, followed by the name of a global. The handler must explicitly set the
contents of the reference whose variable value it wants to change.

For example:

on increment (y)
set contents of y to Y + 1

end increment
set x to 5
increment (a reference to x)
display dialog x - - 6

Since only a global can be passed by reference in this way, it could be argued that
one might as well use an actual global, and not bother passing anything at all :

on increment ()
global param
set param to param + 1

end increment
set param to 5
increment ()
display dialog param

Pass By Reference I 149

This approach, however, depends on both scopes knowing the name of the global, so
it lacks generality. Nevertheless, there are situations where a global is the best
approach, as when a script must maintain state between calls to different handlers ;
we'll see examples in Chapter 24.

You cannot return a handler's value by reference. Well, you can, but it's usually
pointless. It's true that this works :

on extend (L L)
s et e nd of L L to "Moe "
return L L

e n d extend
set L to { "Mannie " }
set L L L t o extend (L)
set end of L L L t o " J ack "
L -- {"Mannie", "Moe", "Jack"}

It 's clear that LLL has arrived by reference in the sense that changing it changes L. But
the only reason this works is that we're just returning from extend() the very same
reference that was passed in to start with ! And we could have obtained that refer
ence without calling the handler at all (in this case, simply by using set, as you'll see
in "List" in Chapter 13). This was never a value local to the handler. It makes no
sense to return by reference a value local to a handler, because by definition such a
value is destroyed when the handler finishes executing; there is nothing for the refer
ence to refer to.

Scoping of Handlers
A handler definition may appear only at the top level of a script or script obj ect.
(Therefore you can't nest handlers , except indirectly, by having a handler inside a
script object inside a handler.)

A handler is visible to code in the scope where it is defined, even code that precedes
the definition (see " Compiling" in Chapter 4) . For example:

myHandler () -- Howdy
on myHandler()

display dialog " Howdy"
end myHandler

A handler is visible to scopes within the scope where it is defined. Remarkably, this
works even before the handler is defined. For example :

script x
myHandler()

end script
run x -- Howdy
on myHandler ()

display dialog " Howdy"
end myHandler

150 I Chapter 8: Handlers

A handler is visible on demand from outside the script object where it is defined.
Code that can see a script object can refer to its handlers , using essentially the same
two kinds of syntax by which it would refer to its properties (see "Scoping of Proper
ties" in Chapter 7). You don't need to use the word its to call a script obj ect's han
dler from within a tell block addressed to that script obj ect. This example illustrates
both kinds of syntax:

s cript x
on myHandler ()

display dialog " Howdy"
end myHandler

end script
x ' s myHandler () - - Howdy
tell x

myHandler () -- Howdy
end tell

The comparison between handlers and properties is apt. The scoping of handlers is
very similar to the scoping of properties. They are both top-level entities of a script or
script object; they are visible on demand wherever that script or script object is visi
ble; and they are automatically visible globally downwards .

Hand ler Ca l ls Within Script Objects

A handler call within a script object is subject to a special rule : a handler is not call
able from within a script object except by a name that is defined as a global within
that script object or its inheritance chain. (The inheritance chain is explained under
"Inheritance" in Chapter 9.) When I say "defined as a global" I mean that the name
is the name of a handler, a property, or a global variable .

This is not really a rule about scope; it's a rule about how handler calls work. But
this is the place to mention it, because your main interest in a handler's scope will be
for purposes of calling the handler. The rule actually has to do with the fact that a
script object is an object to which one can send messages. A handler call is such a
message, so it falls under the targeting rules for object messages . A message sent
from within an object, if no explicit target is given, is assumed to be targeting that
same obj ect. If a script object can't deal with a message, AppleScript looks up its
inheritance chain for a script object that can.

Because of this rule, the following code generates a runtime error :

script x
on myHandler ()

display dialog " Howdy"
end myHandler
s cript y

myHandler()
end s cript
run y

end s cript
run x -- error

Scoping of Handlers I 1 S1

That's because the call to myHandler is in a script object y, and there is no explicit tar
get, so the call is assumed to target the script object y; but myHandler is not a global
defined in y . Now, if we move the definition of myHandler to top level, the code
works just fine :

on myHa ndler ()
display dialog " Howdy"

end myHandler
script x

script y
myHandler ()

end script
run y

end script
run x -- Howdy

That's because when myHandler is not found in y, we look up the inheritance chain,
starting with y's parent . By default, the script as a whole is y's parent, and there we
do indeed find myHandler as the name of a global (in particular, of a handler) .

To show that this rule is not about scoping, I ' ll prove that myHandler, when defined
in x, is in fact visible from within y even though it is not directly callable from within
y . The proof involves treating a handler as a value, which isn't discussed until later in
this chapter, but you should be able to make sense of it :

script x
on myHandler ()

display dialog " Howdy"
end myHandler
script y

property localHandler myHandler
localHandler()

end script
run y

end s cript
run x -- Howdy

The key point is that this line works :

property localHandler : myHandler

That suffices to show that myHandler is visible from within y . The example also shows
how myHandler can be called from within y, by referring to it through a name that is
defined within y. Another technique is to specify explicitly the target for the call :

s cript x
on myHandler ()

display dialog " Howdy"
end myHandler
script y

x ' s myHandler ()
end script
run y

end script
run x -- Howdy

152 I Chapter 8: Handlers

Recursion

A handler i s visible from within itself. This means that recursion is possible : a han
dler may call itself.

Explaining the elegances and dangers of recursion is beyond the scope of this book.
The best way to learn about recursion is to learn a language like Scheme or LISP,
where recursion is the primary form of looping. In fact, in conj unction with lists ,
AppleScript's recursion allows some remarkably Scheme-like (or LISP-like) modes of
expression (see "LISP-likeness" in Chapter 5).

II .. �': The best way to learn Scheme is to read Harold Abelson et a!., Struc
'!:, ture and Interpretation of Computer Programs, 2nd Edition (MIT
,. I .. , � .. Press), the best computer book ever.written.

For example, here' s a recursive routine for filtering a list . We'll remove from the list
everything that isn' t a number:

on numbersOnly (L)
i f L = { } then return L
if {class of item 1 of L } is in {real , integer , number} then

return { item 1 of L } & numbersOnly (rest of L)
else

return numbersOnly (rest of L)
end if

end numbersOnly
numbersOnly ({ " hey " , 1, " ho" , 2, 3 }) -- {1, 2 , 3}

The Run Hand ler

Every script has a run handler. When I say "every script, " I mean either a script as a
whole or a script object. When a script or script object is run, what runs is its run
handler. This run handler may be implicit or explicit.

• If a script has any executable statements at its top level, the top level is the run
handler. The script then has an implicit run handler.

• If a script has no executable statements at its top level, the run handler may be
defined explicitly using the phrase on run . The script then has an explicit run
handler.

Here is a script with an implicit run handler :

sayHowdy()
on sayHowdy ()

display dialog " Howdy"
end sayHowdy

The executable statement that makes the run handler implicit is the first line, the
handler call . The handler definition that follows is not an executable statement and
is not relevant to the matter.

Scoping of Handlers I 153

Here is a script with an explicit run handler:

on run
sayHowdy()

end run
on sayHowdy ()

display dialog " Howdy"
end sayHowdy

You will observe that the on run statement lacks any parentheses . The run handler is
special and doesn't use parentheses . The effect of running this second script is
exactly the same as running the first script.

To tell a script object to run its run handler (whether implicit or explicit) , target the
script object with the run command. This may be done using either of two syntaxes :
the script object may be the run command's direct object, or the run command may
occur in the context of a tell block targeting the script obj ect.

This example illustrates both approaches :

script x

on run
display dialog " Howdy"

end run
end script
run x -- Howdy
tell x

run - - Howdy
end tell

Now we're going to talk about some special features of the run handler of a script
(not a script object) .

Variables defined implicitly in a script's top-level explicit run handler are implicit
globals . In this respect, the explicit run handler is like the top level. For example :

on run
set howdy to " Howdy"
s ayHowdy () - - Howdy

end run
on sayHowdy ()

global howdy
display dialog howdy

end sayHowdy

But in other respects an explicit run handler is not like the top level. It 's a handler, so
you can't define a handler directly within it. And scopes outside an explicit run han
dler are not somehow magically transposed to be within it, as if it really were the top
level. For example, this doesn't work:

on run
global howdy
set howdy to " Howdy "
sayHowdy()

end run

1 S4 I Chapter 8: Handlers

on sayHowdy ()
display dialog howdy -- error

end sayHowdy

Without its own global declaration for howdy, sayHowdy cannot see howdy any more ;
sayHowdy is not magically considered to be somehow inside the explicit run handler.

A script's explicit run handler may take parameters ; these must be expressed as a sin
gle list. This is useful only under very special circumstances, and prevents the script
from running at all under normal circumstances ! For example:

on run { howdy}
display dialog howdy

end run

That script is legal, but it won't run under normal circumstances because you have
no way to pass the required single parameter to the run handler. But there are some
contexts that give you a way to do it; for example, this is how you pass parameters to
AppleScript code inside a REALbasic program. We'll see in Chapter 9 how you can
pass parameters to a script's run handler.

Handlers as Values
A handler is a datatype in AppleScript. This means that a variable's value can be a
handler. In fact , a handler definition is in effect the declaration (and definition) of
such a variable. (That variable's status, as we have already seen, is essentially the
same as that of a property.) The variable's name is the name of the handler, and its
value is the handler's bytecode, its functionality.

A handler may thus be referred to like any other variable, and you can get and set its
value. For example :

on sayHowdy ()
display dialog " Howdy"

end sayHowdy
set sayHello to sayHowdy
sayHello () - - Howdy

In that example, we stored a handler as the value of a variable , and then called the
variable as if it were a handler! This works because the variable is a handler.

The value of a handler can also be set. No law says you have to set it to another han
dler. For example, you could do this :

on sayHowdy ()
display dialog " Howdy"

end sayHowdy
set sayHowdy to 9
display dialog sayHowdy - - 9

Handlers as Values I 1 SS

You can set one handler to the value of another, in effect substituting one entire
functionality for another. Of course, the functionality has to be defined somewhere
to begin with. For example :

on sayHowdy ()
display dialog " Howdy"

end sayHowdy
on sayHello ()

display dialog " Hello"
end sayHello
set sayHello to sayHowdy
sayHello () -- Howdy

Handlers as Parameters

At this point, you're probably thinking: "Wow! If I can store a handler as a variable, I
can pass it as a parameter to another handler! " However, this code fails with a run
time error:

on sayHowdy ()
display dialog " Howdy"

end sayHowdy
on doThis (what)

what ()
end doThis
dOThi s (sayHowdy) - - error

We did succeed in passing the handler sayHowdy as a parameter to doThis(), but now
we can't seem to call it ; AppleScript refuses to identify the what() in the handler call
with the what that arrived as a parameter. This is actually another case of the rule
("Handler Calls Within Script Objects , " earlier in this chapter) that an unqualified
handler call is a message directed to the current script obj ect; AppleScript looks at
the current script object, which is the script as a whole, for a global named what .

One obvious workaround is to use such a global :

on sayHowdy ()
display dialog " Howdy"

end sayHowdy
on doThis ()

global what
what()

end doTh is
set what to sayHowdy
doThis () -- Howdy

But globals are messy; we want a real solution. Here's one : we can pass instead of a
handler, a script object. This is actually very efficient because script objects are

1 S6 I Chapter 8: Handlers

passed by reference; and it works, because now we can use the run command instead
of a handler call :

script sayHowdy
display dialog " Howdy"

end script
on dOThis (what)

run what
end doThis
doThis (sayHowdy) - - Howdy

Alternatively, we can define a handler in a script object dynamically and then pass it .
This is more involved, but it permits both the script and the handler that receives it
as a parameter to be completely general :

script myScript
on doAnything ()
end doAnything
doAnything ()

end script
on dOThis (what)

run what
end doThis
on sayHowdy ()

display dialog " Howdy"
end sayHowdy
set myScript ' s doAnything to sayHowdy
doThi s (myScript) -- Howdy

Observe that we can actually redefine a handler within a script object, from the outside!

My favorite solution is to pass a handler as parameter to doThis , j ust as in our first
attempt, and to have a script object inside doThis waiting to receive it :

on sayHowdy ()
display dialog " Howdy"

end sayHowdy
on doThis (what)

script whatToDo
property theHandler : what
theHandler ()

end script
run whatToDo

end doThis
doThis (sayHowdy) - - Howdy

This is much like the technique used in "Handler Calls Within Script Obj ects , " ear
lier in this chapter. It also depends upon the remarkable rule ("Explicit Locals" in
Chapter 7) that a script object within a handler can see that handler's local variables .
Thanks t o this rule, our property initialization for theHandler can see the incoming
what parameter and store its value-the handler. Now we are able to call the handler
using the name theHandler , because this is the name of a global (a property) within
this same script obj ect.

Handlers as Values I 157

For a useful application of this technique, let's return to the earlier example where
we filtered a list to get only those members of the list that were numbers . The trou
ble with that routine is that it is not general ; we'd like a routine to filter a list on any
boolean criterion we care to provide. There are various ways to structure such a rou
tine, but the approach that I consider the most elegant is to have filter() be a han
dler containing a script obj ect, as in the preceding example . This handler accepts a
list and a criterion handler and filters the list according to the criterion:

on filter (L , crit)
script fil terer

property criterion : crit
on filter (L)

i f L = { } then return L
if criterion (item 1 of L) then

return { item 1 of L } & filter (rest of L)
else

return filter (rest of L)
end if

end filter
end script
return filterer ' s filter (L)

end filter
on isNumber(x)

return ({ class of x} is in {real, integer, number})
end is Number
filter ({ " hey" , 1, " ho" , 2, 3 } , isNumber)

I consider that example to be the height of the AppleScript programmer's art, so per
haps you'd like to pause a moment to admire it .

Handlers as Hand ler Results

A handler may be returned as the result of a handler. Since you can't define a han
dler directly within a handler, you might have to define it as a handler within a script
with the handler; but this is really no bother. So, for example :

on makeHandler ()
script x

on sayHowdy ()
display dialog "Howdy"

end sayHowdy
end script
return x ' s sayHowdy

end makeHandler
set y to makeHandler ()
yO

In and of itself, however, this is not tremendously useful; in real life, you're more
likely to return the entire script object rather than just one handler from it. We'll see
why in the next chapter.

1 58 I Chapter 8: Handlers

CHAPTER 9

Script Objects

A script object is a script within a script . In fact, a script really is a script obj ect, but it
also has a special status as the top-level script object-the script object that contains
all others . A script object is defined using a block of code that starts with the key
word vertical barsscript, with syntax of this sort :

script scriptName
- - commands within the script object

end script

" ",

..•. ' When typing a script definition, don't bother to type the full phrase

�:., ..
end script in the end line. Just type end for that line; the compiler will

, .. �. fill in the word script.

A script object may be defined anywhere-at top level, within a script object, or
within a handler. The mere presence of a script object definition does not itself cause
execution of any code within the script object. A script object 's code is run only on
demand. (Later sections of this chapter, such as "Top-Level Entities" and "Script
Obj ect's Run Handler, " discuss how to make such a demand.)

Like a script, a script object may contain script properties, handlers , script obj ects,
and code. A script object is a device for organization of code and data. Related han
dlers , script objects, and variables can be packaged in a single self-contained script
object. Also, a compiled script file can be accessed as a script object by a running
script ; thus a script object can function as a library of commonly needed code, or as
persistent storage for variable values .

Together with variables and handlers , script objects complete a script's " map of the
world. " Handlers and script objects are AppleScript's regions of scope. Global vari
ables, handlers , and script objects are the three types of persistent top-level attribute
of a script (or a script object) . Variables, handlers , script obj ects , and code constitute
the entire structure of a script.

1 59

Scoping of Script Objects
The way a script object is scoped differs depending on whether it is defined in a
script object (including a script as a whole) or in a handler. A script object not
defined in a handler is the base case, so we start with that .

A script object (not defined in a handler) i s visible to code in the scope where it i s
defined, even if that code precedes the definition of the script object. For example :

run myScript -- Howdy
script myScript

display dialog " Howdy"
end script

A script object (not defined in a handler) is visible to scopes within the scope where
it is defined, but not before the script object is defined. Thus the downward effect of
a script object definition is like the downward effect of a property declaration . For
example, this works :

run myScript -- Howdy
s cript myOtherScript

property x : " Howdy"
end s cript
script myScript

display dialog myOtherScript ' s x
end s cript

But this doesn't :

run myScript
script myScript

display dialog myOtherScript ' s x -- error

end s cript
script myOtherScript

property x : " Howdy "
end script

A script object's visibility is thus confined by default to the scope where it is defined.
But a script object defined in another script object is visible on demand wherever
that surrounding script object is visible ; we'll come to that in a moment ("Top-Level
Entities , " later in this chapter) .

Script Objects in Handlers

Within a handler, a script object definition must precede any reference to that script
object. This is because until the handler actually runs, nothing within the handler
definition happens-not even script object definitions . This rule is enforced by the
compiler.

160 I Chapter 9: Script Objects

For example, this doesn't compile :

on myHandler()
run myScript
script myScript - - compile-time error

display dialog " Howdy"
end s cript

end myHandler
myHandler()

A script object defined in a handler can't be seen outside that handler. Again, this is
because it doesn't exist except when the handler is executing.

A handler can return a script object, as we shall see later in this chapter.

Free Variables

Recall ("Free Variables" in Chapter 7) that an entity defined outside a handler or
script object but globally visible and not redefined within it (a free variable) takes its
value within the handler or script object at the time the code runs, not at the time the
handler or script object is defined. In Chapter 7 our example of a free variable was a
global variable . But it can also be a property, a handler, or a script object-in point
of fact, any of the possible top-level entities of a script or script obj ect .

Here's an example where the free variable is a property:

property x : 5
script myScript

display dialog x
end script
script myOtherScript

set x to 20
run myScript

end script
set x to 10
run myScript -- 10
run myOtherScript - - 20

Here's an example where the free variable is the name of a handler:

run myScript - - Hello
set sayHello to sayGet Lost
run myScript - - Get lost
on sayHello ()

display dialog " Hello"
end sayHello
on sayGet Lost ()

display dialog "Get lost "
end sayGet Lost
s cript myScript

sayHello()
end s cript

Seoping of Seript Objects I 1 61

Top-level Entities
There are three kinds of top-level entity in a script object-properties , handlers , and
script objects (see Chapters 7 and 8 for script properties and handlers) .

Accessing Top-Level Entities

Outside a script obj ect, its top-level entities are accessible on demand to any code that
can see the script obj ect. This means that they can be both fetched and set by such
code.

The syntax is as follows :

• Use the of operator (or the apostrophe-ess operator) to specify the top-level
entity in relation to its script object. For example :

s cript myScript
property x : " Howdy"
on sayHowdy ()

display dialog x
end sayHowdy
script innerScript

display dialog x
end script

end script
set x of myScript to " Hello"
myScript ' s sayHowdy () -- Hello
run innerScript of myScript -- Hello

• Alternatively, refer to the top-level entity within a tell block addressed to the
script object. This requires the use of the keyword its, except in the case of a
handler call. For example :

script myScript
property x : " Howdy"
on sayHowdy ()

display dialog x
end sayHowdy
script innerScript

display dialog x
end script

end script
tell myScript

set its x to " Hello"
sayHowdy ()
run its innerScript

end tell

In that last example, if you omit the keyword its from the line where you set x , you
set an implicit global x, not the property of myScript . If you omit the keyword its
from the line where you run innerScript, there is a runtime error, because no

innerScript is in scope.

162 I Chapter 9: Script Objects

(It makes no difference whether or not the keyword its appears before the call to
sayHowdy() . This special treatment of handler calls is discussed under "Handler Calls
Within Script Objects" in Chapter 8, and again later in this chapter.)

Persistence of Top-level Entities

A top-level entity of a script object is persistent as long as you don' t do something to
reinitialize it . Typically, the top-level entity you're most immediately concerned with
is a property. So, for example, the properties in this code persist and are incre
mented each time the script is run :

script myScript
property x : 5
s cript mylnnerScript

property x : 10
end script

end s cript
tell myScript

set its x to (it s x) + 1
tell its mylnnerScript

set its x to (its x) + 1
end tell

end tell
display dialog myScript ' s x
display dialog myScript ' s mylnnerScript ' s x

That code displays 6 and 11, then 7 and 12, and so forth, each time the script runs.

Script objects and handlers are top-level entities too, and they persist as well . Here 's
an example that illustrates this with a script obj ect:

s cript myScript
script myl nnerScript

display dialog " Hello"
end script
run mylnnerScript

end script
script myNastyScript

display dialog "Get lost"
end script
run myScript
set myScript ' s mylnnerScript to myNastyScript

That code displays Hello the first time, but then it displays Get lost every time after
that. The reason is that after the first time, mylnnerScript has been replaced by
myNastyScript , and this new version of myln nerScript persists .

As explained already under "Lifetime of Variables" in Chapter 7, if you edit a script
and then run it, it is recompiled, so at that point persistence comes to an end : the
script 's top-level entities are reinitialized, and this includes its script obj ects, the
script objects of those script objects, and so forth, along with all their top-level
entities .

Top-Level Entities I 1 63

When a script object is defined within a handler, it has no persistence. The script
object is created anew each time the handler runs .

Script Object's Run Handler
A script object has a run handler (see Chapter 8) , which is executed when the script
object is told to run. This run handler may be implicit or explicit.

To tell a script object to run its run handler, send the run message to it . You can do
this by making the script object the direct object of the run command, or by saying
run within a tell block targeting the script object.

If a script object's run handler is explicit , it is a handler, and rules about handlers
apply to it. For example, you can't define a handler in a script obj ect's explicit run
handler; outside code can't see a script object defined in a script object's explicit run
handler; and running a script object's explicit run handler reinitializes any script
objects defined within it.

This example demonstrates that a script object defined in a script obj ect's explicit
run handler has no persistence :

script myScript
on run

script mylnnerScript
property x : 10

end script
tell mylnnerScript

set its x to (its x) + 1
display dialog its x

end tell
end run

end s cript
run myScript -- 11

That code yields 11 every time it runs.

If a script object has no explicit run handler and has no executable
statements in its implicit run handler, telling it to run can have unpre
dictable consequences. For example, this would be a bad thing to do:

script myScript
end script
run myScript - - stack overflow

This is almost certainly a bug.

Handler Calls
A handler call is special, because it is a kind of message. (See "Handler Calls Within

Script Objects" in Chapter 8.) This message is directed to a particular target-a

164 I Chapter 9: Script Objects

script object. If no target is specified explicitly, the target is the script object in which
the handler call appears .

When a script object receives a handler call message, the handler is sought as a name
defined as a top-level entity within it (that is, not a free variable and not a local vari
able) . If there is no such name, the search passes to the script obj ect's parent; this is
the top-level script by default, though it can be changed ("Inheritance, " later in this
chapter) .

In this example, the handler call is directed implicitly; the call appears within
myScript so it is directed to myScript, which defines a handler by the right name :

s cript myScript
on myHandler ()

display dialog " Howdy"
end myHandler
myHandler ()

end script
run myScript - - Howdy

This example doesn' t work, because myHandler isn't defined in myScript :

script outerScript
on myHandler ()

display dialog " Howdy"
end myHandler
s cript myScript

myHandler()
end s cript

end script
run outerScript ' s myScript - - error

This example works, because we specify the correct target explicitly :

script outerScript
on myHandler()

display dialog " Howdy"
end myHandler
script myScript

outerScript ' s myHandler ()
end script

end script
run outerScript ' s myScript - - Howdy

This works even though myHandler isn't defined in myScript :

s cript myScript
myHandler()

end script
on myHandler ()

display dialog " Howdy"
end myHandler
run myScript - - Howdy

That works because myHa ndler is defined in myScript 's parent, the top-level script . To
prove that this explanation is correct, we'll pervert the inheritance chain so that

Handler Calls I 1 65

myScript's parent isn't the top-level script. This is not easy, because if we make
myScript's parent another script object, that script object's parent will be the top
level script. So we'll have to do something rather bizarre : we'll make myScript's par
ent something that isn't a script at all.

s cript myScript
property parent : 3
myHandler()

end script
on myHandler ()

display dialog " Howdy"
end myHandler
run myScript -- error

Script Objects as Values
A script object is a datatype in AppleScript. This means that a variable's value can be
a script object. In fact, a script object definition basically is such a variable , one
whose name is the name of the script object. You can refer to this variable , and get
and set its value, just as you would any other variable . Here, we fetch a script object
as a value and assign it to another variable :

script myScript
display dialog " Howdy"

end script
local x
set x to myScript
run x -- Howdy

You can also assign a new value to a script object. No law says that this new value
must be another script object; you're just replacing the value of a variable, as with
any other variable. So, you could do this if you wanted:

script my Script
display dialog " Howdy"

end script
set myScript to 9
display dialog myScript - - 9

You can assign a script object the value of another script object, in effect replacing its
functionality with new functionality. Of course, that new functionality must be
defined somewhere to begin with. For example :

script sayHowdy
display dialog " Howdy"

end s cript
script sayHello

display dialog " Hello"
end script
set sayHowdy to sayHello
run sayHowdy -- Hello

166 I Chapter 9: Script Objects

Set By Reference

When you use set (as opposed to copy) to set a variable to a value which is a script
obj ect, you set the variable by reference . This means that the script object is not cop
ied; the variable' s name becomes a new name for the script obj ect, in addition to any
existing names for the script object. This has two important implications :

• Setting a variable to a script object with set is extremely efficient, no matter how
big the script object may be.

• If a script object has more than one name, then whatever is done to it by way of
one name is accessible by way of its other names as well.

The second point is the vital one. Here's an example :

script sayHello
property greeting : " Hello"
display dialog greeting

end script
local x
set x to sayHello
set s ayHello ' s greeting to " Howdy"
display dialog x ' s greeting -- Howdy
run x - - Howdy

In that example, we changed a property of the script object sayHello; the same prop
erty of the script object x was changed to the same thing. That' s because sayHello

and x are merely two names for the same thing. And that's because we used set to set
x's value by reference to the script object that sayHello was already the name of.

When a script property is initialized to a value that is a script obj ect, it too is set by
reference. Let 's prove it :

script addend
property whatToAdd 0

end script
script adder

property z : addend
on add (x)

return x + (z ' s whatToAdd)
end add

end script
set addend ' s whatToAdd to 2
display dialog adder ' s add (3) - - 5

In that example, we changed a property of the script object addend , and this affected
the result of the handler add which refers to the same script object by way of the
property z .

Script Objects as Values I 1 67

Pass By Reference

A script object passed as a parameter to a handler is passed by reference (Chapter 8) .
Let's prove it:

script myScript
property x : 10

end script
on myHandler (s)

set s ' s x t o (s ' s x) + 1
end myHandler
display dialog myScript ' s x - - 10
myHandler (myScript)
display dialog myScript ' s x - - 11

In that example, myHandler never speaks explicitly of myScript ; yet after running
myHandler, we find that myScript 's property x has been changed. This is because in
passing myScript as a parameter to myHandler, we pass it by reference; myHa ndler has
access , and can do whatever it wishes, to myScript .

Script Object as Handler Result

The result of a handler can be a script object. Normally, this script object is a copy,
passed by value ; it could not be passed by reference, since after the handler finishes
executing there is no script object back in the handler for a reference to refer to .
(Actually, if the returned script object is the same script object that was passed in as
a parameter by reference , then it is returned by reference as well ; still, that fact isn't
terribly interesting, since at the time the script object was passed in, you must have
had a reference to it to begin with.)

For example:

on scriptMaker ()
script myScript

property x : " Howdy "
display dialog x

end script
return myScript

end scriptMaker
set myScript to scriptMaker ()
run myScript - - Howdy

In the last two lines , we acquire the script object returned by the handler
scriptMaker, and run it. Of course, if we didn't want to retain the script obj ect, these
two lines could be combined into one :

run scriptMaker () - - Howdy

1 68 I Chapter 9: Script Objects

A handler can customize a script object before returning it. So, for example :

on scriptMaker ()
s cript myScript

property x : " Howdy"
display dialog x

end script
set myScript ' s x to " Hello"
return myScript

end scriptMaker
set myScript to scriptMaker ()

. run myScript - - Hello

In that example, the handler scriptMaker not only created a script obj ect, it also
modified it, altering the value of a property, before returning it.

Obviously, instead of hardcoding the modification into the handler, we can pass the
modification to the handler as a parameter:

on scriptMaker (s)
script myScript

property x : " Howdy"
display dialog x

end script
set myScript ' s x to s
return myScript

end scriptMaker
set myScript to scriptMaker (" Hello ")
run myScript - - Hello

Recall from "Explicit Locals" in Chapter 7 that, contrary to the general rules of scop
ing, a script object defined inside a handler can see the handler's local variables . This
means that in the previous example we can save a step and initialize the property x

directly to the incoming parameter 5 :

o n scriptMaker (s)
script myScript

property x : s
display dialog x

end s cript
return myScript

end scriptMaker
set myScript to scriptMaker (" Hello ")
run myScript - - Hello

The real power of this technique emerges when we retain and reuse the resulting
script object. For example, here 's a new version of the general list-filtering routine we
wrote earlier ("Handlers as Parameters" in Chapter 8) . In that earlier version, we

Script Objects as Values I 1 69

passed a handler both a criterion handler and a list, and got back a filtered list . In
this version, we pass just a criterion handler, and get back a script obj ect:

on makeF ilterer(crit)
script fil terer

property criterion : crit
on filter (L)

i f L = { } then return L
if criterion (item 1 of L) then

return { item 1 of L } & filter (rest of L)
else

return filter (rest of L)
end if

end filter
end script
return filterer

end makeFilterer

The script object that we get back from ma keFilterer contains a filter handler that
has been customized to filter any list according to the criterion we passed in at the
start. This architecture is both elegant and efficient. Suppose you know you'll be fil
tering many lists on the same criterion. You can use ma keFilterer to produce a sin
gle script object whose filter handler filters on this criterion, store the script obj ect,
and call its filter handler repeatedly with different lists . For example :

on makeF ilterer(crit)
II . . . as before . . .

end makeFilterer
on iSNumber (x)

return ({ class of x} is in {real, integer, number})
e n d isNumber
set numbersOnly to makeFilterer (isNumber)
tell numbersOnly

filter ({ " hey " , 1 , " ho " , 2 , " h a " , 3 }) - - {1, 2 , 3}
filter ({ "Mannie " , 7 , "Moe " , 8 , " J ack" , 9 }) - - {7, 8, 9}

end tell

Closures

A closure is one of those delightfully LISPy things that have found their way into
AppleScript. It turns out that a script object carries with it a memory of certain
aspects of its context at the time it was defined, and maintains this memory even
though the script object may run at a different time and in a different place . In partic
ular, a script object returned from a handler maintains a memory of the values of its
own free variables.

For example, a script object inside a handler can see the handler's local variables . So
a handler's result can be a script object that incorporates the value of the handler's

' 70 I Chapter 9: Script Objects

local variables as its own free variables . This means we can modify an earlier exam
ple one more time to save yet another step :

on scriptMaker (s)
script myScript

display dialog s
end s cript
return myScript

end scriptMaker
set myScript to scriptMaker (" Hello ")
run myScript - - Hello

This is somewhat miraculous; in theory it shouldn't even be possible. The parameter
5 is local to the handler scriptMa ker, and goes out of scope-ceases to exist-when
scriptMa ker finishes executing. Nothing in myScript explicitly copies or stores the
value of this 5; we do not, as previously, initialize a property to it. Rather, there is
simply the name of a free variable 5 :

display dialog s

This 5 is never assigned a value; it simply appears , in a context where it can be identi
fied with a more global 5 (the parameter 5) , and so it gets its value that way. Yet in
the last line, myScript is successfully executed in a completely different context, a
context where there is no name 5 in scope. In essence, myScript "remembers" the
value of its free variable 5 even after it is returned from scriptMaker. myScript is not
just a script obj ect; it's a closure-a script object along with a surrounding global
context that defines the values of that script object's free variables.

Here's an example where the value of the free variable comes from a property of a
surrounding script :

on makeGreeting (s)
script outerScript

property greeting : s
s cript greet

display dialog greeting
end script

end s cript
return outerScript ' s greet

end makeGreeting
set greet to makeGreeting(" Howdy ")
run greet - - Howdy

In that example, ma keGreeting doesn't return QuterScript ; it returns just the inner
script object greet . That script object uses a free variable greeting whose value is
remembered from its original context as the value of QuterScript's property
greeting . In the last line, the script object greet runs even though there is no name
greeting in scope at that point.

In the section " Context ," later in this chapter, we explore further this ability of script
objects to remember their global context .

Script Objects as Values I 1 71

Constructors

Another use for a script object as a result of a handler is as a constructor. Here we
take advantage of the fact that when a handler is called, it initializes any script
objects defined within it. So a handler is a way to produce a copy of a script object
whose properties are at their initial value .

As an example, consider a script object whose job is to count something. It contains
a property, which maintains the count, and a handler that increments the count.
(This is using a sledgehammer to kill a fly, but it's a great example, so bear with me.)
A handler is used as a constructor to produce an instance of this script object with its
property set to zero . Each time we need to count something new, we call the handler
to get a new script object. So :

on newCounter ()
script aCounter

property c : 0
on increment ()

set c to c + 1
end increment

end script
return aCounter

end newCounter
- - and here's how to use it
set counterl to newCounter ()
counterl ' s increment ()
counterl ' s increment ()
counterl ' s increment ()
set counter2 to newCounter ()
counter2 ' s increment ()
counterl ' s increment ()
display dialog counterl ' s c - - 4
display dialog counter2 ' s c - - 1

Compiled Script Files as Script Objects
A script can read a compiled script file and incorporate its contents as a script object.
This provides a way for scripts in different files to refer to one another. You might
use this facility as a means of persistent storage, in combination with the fact that
top-level entities in scripts survive being saved as a compiled script file; or you might
use it as a way of building a library of commonly needed routines.

This facility depends upon three verbs, described here, that are not part of Apple
Script proper; they are implemented in a scripting addition (Chapter 4) that is stan
dard on all machines.

1 72 I Chapter 9: Script Objects

load script
Syntax

load script aliasOrFile
Description

Returns the top-level script of the compiled script file aliasOrFile as a script obj ect.

Example

set myScript to load script alias "myDis k : myFile"

run script
Syntax

run script aliasOrFile [with parameters list]

Description

Tells the top-level script of the compiled script file or text file aliasOrFile to run, option
ally handing it the list as the parameters for its explicit run handler, and returns the result .

Example

run script alias "myDisk : myFile"

store script
Syntax

store script scriptObject [in file path [replacing yes l no]]

Description

Saves scriptobject to disk as a compiled script file. Returns no value. If no further parame
ters are supplied, presents a Save File dialog; if the user cancels, a runtime error is raised. If
path is supplied, presents no Save File dialog, but if the file exists already, presents a dialog
asking how to proceed; if the user cancels, a runtime error is raised. If replacing is
supplied, this dialog is suppressed; if yes , the file is just saved, and if no , an error is raised if
the file exists . The filename extension determines the format of the resulting file: . sept (or
nothing) for a compiled script file, . septd for a script bundle, . app for an application bundle.

Example

store script sayHello in file "myDisk : myFile" replacing yes

(On aliases and file specifiers and the differences between them, see Chapter 13 . The
verb run s cript , instead of a file , can take a string, and it then functions as a kind of
second level of evaluation; see Chapter 12.)

When you save a script object with store script , the lines delimiting the definition
block (if any) are stripped, which makes sense . So, for example :

script sayHello
display dialog " Hello"

end script
store script s ayHello in file "myDisk : myFile" replacing yes

Compiled Script Files as Script Objects I 1 73

What is saved in myFile is the single line :

display dialog " Hello"

A compiled script file to be loaded with load script or run with run s cript could
originate from a store script command, or it could have been saved directly from a
script editor program. A text file to be run with run script could originate from any
word processor that can save as text.

The run script command permits a run handler to have parameters . (See "The Run
Handler" in Chapter 8.) For example, suppose you save this script as myScript. scpt:

on run {greeting}
display dialog greeting

end run

You can't run that script on its own, but you can run it by way of run script,

because this command can pass the needed parameter to the run handler:

run script file " myDisk : myScript . scpt " with parameters { " Hello " }

Library

A compiled script file may be used as a place to store commonly needed routines . A
file used in this way is called a library. A running script can then access the contents
of the library using load script. The library'S top-level entities, including its run
handler, are then available to the running script.

For example, suppose we have saved the handler ma keFil terer (from page 170) in a
compiled script file makeFilterer. scpt. We can then call ma keFilterer from another
script :

set s to load script file "myDi s k : makeFilterer . scpt "
on iSNumber(x)

return ({ class of x} is in {real , integer, number})
end is Number
tell s ' s makeF ilterer(isNumber) to filter ({ " hey" , 1, " ho " , 2, 3 })

That code assigns the entire script of the compiled script file makeFilterer. scpt t o a
variable s . Then the handler makeFilterer is accessed by way of s . Alternatively,
since the compiled script file 's top-level entities are available to us, we could have
extracted the handler ma keFilterer from the compiled script file makeFilterer. scpt
and assigned it to a variable :

set makeFilterer to makeFilterer of (load script file " myDisk : makeFilterer . scpt ")
o n iSNumber(x)

return ({class of x} is in {real , integer, number})
end i s Number
tell makeF ilterer(isNumber) to filter ({ " hey " , 1 , " ho " , 2, 3 })

The advantage o f a library i s that it makes code reusable and maintainable . I n this
example, makeFilterer is a very useful handler. We don't want to have to keep copying
and pasting it into different scripts . If its code lives in a library, it becomes accessible to

1 74 I Chapter 9: Script Objects

any script we write. Furthermore, as we improve makeFilterer in its library file, those
improvements are accessible to any script; a script that already calls makeFil terer by
way of load script simply inherits the improvements the next time it runs .

On the other hand, a library reduces portability. In this case, we cannot just copy a
script that calls ma keFilterer to another machine, or send it to a friend, because it
depends on another file , makeFilterer. scpt, and refers to it by a pathname that won' t
work on any other machine.

With Script Debugger, a trick for working around this problem is to load any library
files as part of your script property initialization:

property makeFilterer : makeFilterer of (load script file " myDisk : makeF ilterer . scpt ")
o n isNumber (x)

return ({ class of x} is in {real , integer, number })
e n d isNumber
tell makeFilterer (isNumber) to filter ({ " hey" , 1, " ho " , 2, 3 })

That code loads the compiled script file makeFilterer. scpt and initializes the property
makeFilterer to the bytecode of the script file's handler makeFilterer-but only
when the property makeFilterer needs initializing. After that, the handler is persis
tently stored as the value of the property makeFilterer. (Script Editor no longer per
forms this kind of persistent storage of properties ; that's why this trick won't work
with Script Editor. See "Lifetime of Variables" in Chapter 7.)

A script file created in this way with Script Debugger can be distributed to other
machines, and it will still run. It must not, however, be edited on another machine ! If
the user on another machine edits the script and tries to compile it, the script is
ruined : the value of the property makeFilterer is thrown away, AppleScript will try to
reinitialize it, the load script command will fail because the file it refers to doesn't
exist , and the script will no longer compile or run. In fact , the script is ruined if it is
so much as opened with Script Editor. Script Debugger also helps you in this situa
tion by allowing you to "flatten" a script so that it incorporates all library files on
which it depends, and so has no load script dependencies .

Data Storage

We can use store script to take advantage of the persistence of top-level script
object entity values ("Persistence of Top-Level Entities , " earlier in this chapter) . This
can be a way of storing data on disk separately from the script we 're actually run
ning. You might say: "Why bother? Persistent data can be stored in the script we're
actually running. " Well, that's true for such environments as Script Debugger, or an
applet; but it isn't true for the Script Editor. Besides, in any environment, persis
tence within a script comes to an end as soon as we edit and recompile the script .
Storing the data separately circumvents such limitations.

In this example, we start by ascertaining the user's favorite color. This will be kept in
a file myPrefs. The first thing we do is try to load this file . If we succeed, fine; if we

Compiled Script Files as Script Objects I 1 75

fail, we ask the user for her favorite color and store it in myPrefs. Either way, we now
know the user's favorite color, and we display it; and the information is now in the
file myPrefs, ready for the next time we run the script . (See "Persistence" in
Chapter 24 for a variant of this example using an application bundle .)

set thePath to "myDisk : myPrefs "
script myPrefs

property favoriteColor
end s cript
try

set myPrefs to load script file thePath
on error

set favoriteColor of myPrefs to text returned of �

(d isplay dialog " Favorite Color : " default a nswer �
" " buttons { "OK " } default button "OK ")

store script myPrefs in file thePath replacing yes
end try
display dialog "Your favorite color is " & favoriteColor of myPrefs

If you run that script, entering a favorite color when asked for it, and then open the
file myPrefs in a script editor program, you may be surprised to find that it doesn't
actually seem to contain your favorite color:

property favoriteColor : '' ''

Don't worry! The information is there; it simply isn't shown in the decompiled ver
sion of the script. The dec om piled version shows the actual bytecode, not the table
of persistent data stored internally with the script. '

I f you load a script a s a script object with the load script command, and top-level
entity values within this script object change, and you wish to write these changes
back to disk, it is up to you do so, with store script .

The r u n script command does not save the script, s o any changes i n the script'S top
level entity values do not persist.

Context

Recall from earlier in this chapter (" Closures") that a script object carries with it a
memory of its global context. This applies when a script object is saved with store

script and inserted into a different context with load script . As we've already said,
there's more to a compiled script file than meets the eye; there's the decompilable
bytecode, and there's the persistent data stored internally with the script. The persis
tent data isn't visible, but it is the context in which the script runs. The store script

command saves a context into the compiled script file that it creates ; the load script
command loads this context, and the run script command runs within it .

• The only way I know of to get a look at the persistent data stored internally with a script is to use Script
Debugger. Script Editor doesn't show it, and destroys it if you open and run the script directly.

1 76 I Chapter 9: Script Objects

The context comes into play when the script object refers to variables defined at a
higher level (free variables) . In particular:

• If a script object refers to a top-level global, then when the script object is loaded
into another context with load script , the fact of the global variable is remem
bered but its value must be supplied by a global variable with the same name in
the new context . No global declaration is needed.

• With load script , all other types of higher-level variable referred to in a script
object simply keep the value they had when the context was saved.

• With run script, all higher-level variables referred to in a script object keep the
value they had when the context was saved.

Suppose, for example, you run this script:

set thePath to " myDisk : myMessage"
global mes sage
set message to " Howdy"
script myMessage

display dialog message
end script
store script myMessage in file thePath replacing yes

The script object myMessage contains a reference to a top-level global (the variable
message) . That script object is saved into the file myMessage. Now we load
myMessage into a different script, like this :

set thePath to "myDisk : myMessage "
set mes sage to " Hello"
run (load script file thePath) - - Hello

The dialog appears , but it says Hello (not Howdy) . The reference to a global variable
message within myMessage adopts the value of the top-level global message in this
new context, even without an explicit global declaration. But if we load myMessage
into a context where there is no global message for it to identify its free variable
message with, we get an error:

set thePath to " myDis k : myMes sage"
run (load script file thePath) - - error

If we run the same myMessage with run script, on the other hand, it works even
without a global message in the new context, because the script object remembers the
global message from its original context :

set thePath to " myDisk : myMessage"
run script file thePath - - Howdy

Now we'll start all over again, generating a completely new myMessage file . This time
the free variable message is identified with a property :

set thePath to " myDisk : myMessage "
property message : "Get lost "
script myMessage

display dialog mes sage

Compiled Script Files as Script Objects I 1 77

end s cript
store script myMessage in file thePath replacing yes

Now, this works :

set thePath to " myDisk : myMessage"
run (load script file thePath) - - Get lost

The script object has conserved the original context for the free variable message

both the property message and its value . The same is true when the original context
involves a handler or script object. Suppose we generate myMessage like this :

set thePath to " myDisk : myMessage"
on sayHowdy ()

display dialog " Howdy"
end sayHowdy
script myMessage

sayHowdy ()
end script
store script myMessage in file thePath replacing yes

Then this works :

set thePath to "myDisk : myMessage"
run (load script file thePath) - - Howdy

We did not explicitly save the handler sayHowdy, but it was referred to in the script
object myMessage, so it was stored as part of myMessage's context, and is present
when we load myMessage into another script.

Inheritance
Script objects may be linked into a chain of inheritance. If one script object inherits
from another, the second is said to be the parent of the first . If a message is sent to a
script object and it doesn't know how to obey it, the message is passed along to its
parent to see whether i t can obey it. A message here is simply an attempt to access
any top-level entity.

To link two script obj ects explicitly into a chain of inheritance, initialize the parent

property of one to point to the other.

" .. 0,: The parent property may be set only through initialization. You can-

��::, .. not use copy or set to set it.

" 4,'

In this example, we explicitly arrange two script objects, mommy and baby, into an
inheritance chain (by initializing baby's parent property) . We can then tell baby to
execute a handler that it doesn't have, but which mommy does have . Here we go :

script mommy
on talk()

display dialog " How do you do ? "

1 78 I Chapter 9 : Script Objects

end talk
end script
script baby

property parent : mommy
end script
baby ' s talk () - - How do you do?

In that example, we told the child from outside to execute a handler that it doesn't
have but the parent does . The child can also tell itself to execute such a handler:

s cript mommy
on talk ()

display dialog " How do you do ? "
end talk

end script
script baby

property parent mommy
talk ()

end script
run baby - - How do you do?

Getting and setting properties works the same way. In this example, we get and set
the value of a property of baby that baby doesn't have :

script mommy
property address : " 123 Main Street "

end script
script baby

property parent : mommy
end script
display dialog baby ' s address - - 123 Main Street
set baby ' s address to " 234 Chestnut Street "
display dialog mommy ' s address - - 234 Chestnut Street

Again, the same thing can be done from code within the child; but now the name of
the property must be prefixed with the keyword my . Otherwise , since there is no
property declaration in scope for this name, the name is assumed to be the name of a
local variable. The keyword my says : "This is a top-level entity of the script object
running this code . " Thus, if AppleScript fails to find such a top-level entity in the
script object itself, it looks in the script obj ect's parent.

script mommy
property address : " 12 3 Main Street "

end script
script baby

property parent : mommy
on tellAddress ()

display dialog my address
end tellAddres s

end script
baby ' s tellAddress () - - 123 Main Street

Inheritance I 1 79

Similarly, we can refer to a script object that the child doesn't have but the parent
does :

s cript mommy
script talk

display dialog " How do you do ? "
e n d script

end script
script baby

property parent : mommy
end script
run baby ' s talk - - How do you do?

Again, if the child wants to do this , it must use my :

script mommy
script talk

display dialog " How do you do ? "
end script

end script
s cript baby

property parent mommy
run my talk

end s cript
run baby - - How do you do?

Polymorphism

When code refers to a top-level entity, the search for this top-level entity starts in the
script object to which the message that caused this code to run was originally sent.
This is called polymorphism . You may have to use the keyword my to get polymor
phism to operate (and it 's probably a good idea to use it in any case) .

An example will clarify:

s cript mommy
on tellWeight ()

display dialog my weight
end tell Weight

end script
script baby

property parent : mommy
property weight : "9 pound s "

e n d s cript
baby ' s tellWeight () - - 9 pounds

We ask baby to tell us its weight, but baby doesn't know how to do this , so the mes
sage is passed along to the parent, mommy . There is now an attempt to access my
weight . But mommy has no top-level entity called weight. However, the search for
weight starts with baby, because our original message was to baby (mommy is involved
only because of inheritance) . The property is found and the code works .

1 80 I Chapter 9: Script Objects

To see why my is important here, consider this code :

s cript mommy
property weight : " 120 pounds "
o n tellWeight ()

display dialog weight
end tellWeight

end script
script baby

property parent mommy
property weight "9 pounds "

end script
baby ' s tellWeight () -- 120 pounds

There is no my before the name weight , and mommy's declaration for the property
weight is in scope, so the name is simply identified with this property; polymor
phism never has a chance to operate .

The reason for the "poly" in the name "polymorphism" is that the response to the
parent's use of a term can take many different forms . A parent whose code is run
ning because of inheritance has no idea of this fact, so it has no idea what its own
code will do. For example :

s cript mommy
property weight : " 120 pound s "
o n tellWeight ()

display dialog my weight
end tellWeight

end script
s cript baby

property parent mommy
property weight "9 pounds "

end s cript
s cript baby2

property parent : mommy
property weight : " 8 pounds "

e n d script
mommy ' s tellWeight () -- 120 pounds
baby ' s tellWeight () - - 9 pounds
baby2 ' s tellWeight () - - 8 pounds

In that example , the parental phrase my weight gets three different interpretations,
depending solely on what script object was addressed originally.

Continue

A child can call an inherited handler by using the continue command. The syntax is
the keyword continue followed by a complete handler call (parameters and all) .

You might wonder why this is needed, since after all the child can just send a mes
sage directly to the parent by referring to the parent as parent . But there's a crucial
difference. If a message is sent to the parent by referring to it as parent, that's a new

Inheritance I 1 81

message with a new target. On the other hand, the continue command takes place in
the context of the current message and the current target; it passes the current flow
of control up the inheritance chain. Thus, the one breaks polymorphism, the other
does not.

This example demonstrates the difference :

script mommy
property weight : " 120 pound s "
on tellWeight ()

display dialog my weight
end tellWeight

end script
script baby

property parent : mommy
property weight : "9 pounds "
parent ' s tellWeight ()
continue tellWeight ()

end script
run baby - - 120 pounds, 9 pounds

The Impl icit Parent Chain

A script object without an explicitly specified parent has as its parent the script as a
whole .

We took advantage of this fact earlier (page 134) to refer to a top-level script prop
erty. Thus :

property x : 5
script myScript

property x : 10
display dialog my parent ' s x

end script
run myScript - - 5

But there' s a parent beyond that. The script as a whole has as its parent the Apple
Script scripting component. This appears to your code as a script object called
AppleScript .

The AppleScript script object has some properties that you can access . Normally you
do this without having to refer to AppleScript explicitly, because these properties are
globally in scope ; it's as if every script were surrounded by another invisible script
with property declarations for these properties. But in a context where a name over
shadows the name of one of these properties, it would be necessary to be explicit, in
order to jump past the current scope and up to the level of AppleScript :

set pi to 3
display dialog pi - - 3
display dialog AppleScript ' s pi - - 3 . 141592 . . •
display dialog parent ' s pi - - 3 . 141592 . . .

182 I Chapter 9: Script Objects

The AppleScript script object is also where the built-in verbs live . For example, when
you say:

get 3 + 4

the get command travels up the inheritance chain until it reaches the AppleScript
scripting component, which knows how to obey it.

The AppleScript scripting component has a parent too--the current application.
This is the host application that summoned the AppleScript scripting component to
begin with. The current application is the absolute top level, and can be referred to
in code as current a pplication . For example :

display dialog (get name of current application) - - Script Editor

To sum up :

script myScript
my parent - - «script», the anonymous top level
my parent ' s parent - - «script AppleScript»
my parent ' s parent ' s parent - - current application

end script
run myScript

Observe that scope-wise containment is not implicit parenthood:

script myScript
script myl nnerScript

my parent - - the anonymous top-level script, not myScript
end s cript
run mylnnerScript

end script
run myScript

Nor can a contained script object be made to have a containing script object as its
parent. AppleScript will balk if you try this :

script myScript
script myl nnerScript

property parent : myScript - - compile-time error
end s cript

end script

I think the reason for this restriction must be that the demands of parenthood would
conflict irresolvably with the rules of scoping.

Inheritance I 1 83

CHAPTER 1 0

Objects

Earlier chapters have quietly introduced the notion of sending messages to obj ects.
In "Handler Calls Within Script Objects" in Chapter 8, and in "Handler Calls" in
Chapter 9 , a script object was treated as "an object to which one can send mes
sages, " with a handler call being such a message. In "Script Object' s Run Handler" in
Chapter 9, we spoke of "sending the run message to a script object . " The object to
which a message is sent was called its "target. " The entire section "Inheritance" in
Chapter 9 depended upon the idea of a message being sent to a particular target. In
Chapter 7, and again more fully in Chapter 9, we described the use of the of opera
tor (or apostrophe-ess operator) or a tell block to specify a target and send it a mes
sage. It is now time to formalize these notions .

A message originates as an imperative verb, a command of some sort. But there is a
distinction to be drawn between a command and a message. The command is what
you say in code. The message is the communication of that command to some tar
get, which is supposed to obey the command. For example, count is a command, and
in a certain context it can cause the count message to be sent to the Finder, while in
some other context it can cause the count message to be sent to Mailsmith. An object
is anything that can be targeted by a message.

Sending a message to a target object is the fundamental activity of all AppleScript
code; everything that is said in AppleScript code involves some target object to which
some message is being sent. Furthermore, every value in AppleScript can act as such
a target. In this sense, every AppleScript value is an object. (See also "Object-like
ness" in Chapter 5.)

This chapter deals with notions of message and target: how you specify the target
object to which a message is to be sent, and how you go about actually sending it a
message, along with various related syntactic features. Some relevant syntactic fea
tures, such as the keywords its and my, have already appeared informally in earlier
chapters ; now they too will be properly explained. The last part of this chapter is
occupied with how objects may be related as attributes of one another called proper
ties and elements , and talks about how to refer to one such object in terms of another.

184

Class
Every value is of some fixed type. I often refer to this as its datatype, but the Apple
Script term for a value's type is its class. You can assign a value of any class to any
variable, but at any given moment a variable has only one value and that value has
only one class (so it is customary to speak of a variable 's class, meaning the class of
the value it has at that moment) .

You can inquire of any value what its class is, by asking for its cla s s . For example :

class of 7 - - integer
class of " howdy " - - string
class of { "Mannie " } - - list
class of class of 1975 - - class

As the last line shows, even something's clas s is a value and therefore has to have a
class , namely cla s s .

Target
At every moment in AppleScript code, you are speaking to some obj ect. That obj ect
is the target, to which, unless you specify otherwise, all messages will be sent. The
target can be implicit , or you can specify an explicit target. Knowing what object is
the target, and how to specify a desired target, is very important to your successful
use of AppleScript .

The implicit target is the current script or script object. In this code, the implicit tar
get of set is the script itself:

set x to 5

In this code, the implicit target of set is the script object myScript :

script myScript
set x to 5

end script

There are two ways to specify an explicit target . Not coincidentally, they bear a
strong resemblance to the two ways of accessing a script obj ect's top-level entities
(Chapter 9). You can specify an explicit target:

• With the of operator or its synonyms . A synonym for of is in. (I never use this .)
Another synonym, for most purposes , i s the apostrophe-ess operator: instead of
saying x of y, you can say y ' s x.

The of operator specifies the target for just a single expression, and overrides all
other targets, explicit or implicit .

• With a tell block. Instead of an actual block, one may apply tell to a single com
mand ("Tell" in Chapter 12), but this is still just a special case of a tell block.

In the context of a tell block, the object specified in the announcement is the
default target for everything you say. This can be overridden by specifying a

Target I 1 85

different target, using either an embedded tell block or an expression involving
the of operator.

Here's an example of a tell block used to specify a target :

tell application " F inder"
count folders

end tell

Here's the single-line version of that code :

tell application " Finder" to count folders

Both the count command and the word folders are within the context of a tell block
directed at the Finder. Thus the count message will be sent to the Finder, and the
Finder's folders will be counted.

(The tell block also makes a difference as to what the word folders means ; it is the
Finder that extends the AppleScript language to include this word. This , however, is
a separate matter from the target. We'll come back to this matter under "Tell" in
Chapter 12 , and in Chapter 19 .)

Here's an example of the of operator being used to specify a target :

using terms from application " F inder"
count folders of application " F inder"

end using terms from

Thanks to the of operator, the Finder is the target of the count command; it will be
sent the count message, and its folders will be counted.

(The u s ing terms from block, which I refer to in this book as a " terms block," is
present to allow the term folders to be interpreted correctly. This is also explained in
Chapter 12 and Chapter 19 .)

The Chain of Ofs and Tel ls

Obj ects , as we shall see in more detail later in this chapter, may be attributes of one
another. It is actually this relationship that is specified with the of operator. That is
why you can speak of a property my Prop of a script object myScript like this :

get myProp of myScript

The top-level entities of a script object, including its script properties, are attributes
of that script object. This relationship can be extended. For example, perhaps
myScript contains a top-level definition for a script object mylnnerScript that has a
script property called mylnnerProp; then you can say this :

get mylnnerProp of mylnnerScript of myScript

Thus we end up with a chain of ofs that is used to determine the target.

Since both tell and of perform the same function of determining the target, there is
a sense in which tell and of are interchangeable . Thus it is possible to replace the

1 86 I Chapter 1 0: Objects

chain of ofs by a chain of tells in the opposite order. This code is effectively identi
cal to the previous example :

tell myScript
tell it s mylnnerScript

get its myl nnerProp
end tell

end tell

In determining the target, AppleScript actually works its way up the chain of ofs and
then up the chain of tells until it assembles a complete target. (I am deliberately
waving my hands over what I mean by "a complete target, " but it means something
like an application, a script, or a value within your script .) Thus it makes no differ
ence whether you say this :

tell application " F inder"
count folders of folder 1

end tell

or this :

tell application " Finder"
tell folder 1

count folders
end tell

end tell

It is also perfectly possible for the of operator to appear in the announcement line of
a tell block. It makes no difference whether you say this :

tell application " F inder"
tell folder 1

tell file 1
get name

end tell
end tell

end tell

or this :

tell application " F inder"
tell file 1 of folder 1

get name
end tell

end tell

See Chapter 3 for an extensive practical demonstration of the interchangeability of of
with tell throughout the chain.

Multiple Assignments

Recall from Chapter 7 that it is possible to assign multiple values in a single com
mand by using a list :

set {x , y , z } to { l , 2 , 3 }

Target I 1 87

You can use this syntax to fetch multiple properties, using either tell or of:

tell application " F inder"
set {x , y} to { name , comment } of folder 1

end tell
{x , y} -- { "Mannie" , " howdy " }

That code fetches name of folder 1 and comment of folder 1 from the Finder in a
single command. You can use this construct to set multiple properties as well, but
only in a tell block (trying to do it with of will cause a runtime error) :

tell application " F inder"
tell folder "Mannie "

set { comment , name} to { " zowie " , " J a c k " }
e n d tell

end tell

Be careful of the order in which you list the properties when assigning to them. The
values are assigned from left to right. This wouldn't have worked:

tell application " F inder"
tell folder "Mannie"

set { name , comment} to { " J ack" , " zowie " } - - error

end tell
end tell

That would have set the name first, and afterwards there would no longer be a
folder "Mannie " to set the comment of, so the attempt to set the comment of folder

"Mannie" would have caused a runtime error.

Nesting Target Specifications

Once AppleScript has determined a complete target, it stops, ignoring any further ofs

or tells that make up the rest of the chain. Consider, for example, the following:

tell application "Mailsmith "
tell application " F inder"

count folders
end tell

end tell

Mailsmith is not in fact targeted in any way here; no message will be sent to it when
the code runs . AppleScript works its way outwards from the count command until it
reaches the Finder; now AppleScript has assembled a complete target, and stops. In
fact, if you try to write the same thing this way:

count folders of application " F inder" of application "Mailsmit h "

AppleScript literally throws away the mention o f Mailsmith after compilation:

count folders of application " F inder"

1 88 I Chapter 1 0: Objects

Direct Object

Most commands have a direct object, which can be expressed right after the verb.
Using of, you may include as much as you like of the target as the direct object of a
command-all of it, none of it, or anything in between . Whatever you don't include
in the direct object you can put in a tell .

So, in this example, the entire target appears as the direct object of the command :

using terms from application " F inder"
count folders of application " F inder"

end us ing terms from

In this example, some of the target appears as the direct object, and some of it
appears in a tell :

tell application " F inder"
count folders

end tell

And here, the whole target appears in a nest of tells, and none of it appears as the
direct object of the command:

tell application " F inder"
tell folders

count
end tell

end tell

The keyword it represents the target. (See "It ," later in this chapter.) You can
include it as the direct object of the command if it doesn't otherwise have one, but
this changes nothing:

tell application " F inder"
tell folders

count it
end tell

end tell

Nothing stops you from putting something else as the direct object of the com
mand-something that retargets it. For example :

tell application " Finder"
tell folders

count words of "hi there "
end tell

end tell

In that code, no message is sent to the Finder! The phrase word s of "h i there" is a
complete target (a value) . The tell blocks are ignored for purposes of this command.

Usually, you may use the word of to connect a command with its direct object . So
you could say this :

tell application " F inder"
count of folders

end tell

Target I 189

This usage of of is related to the special of that can mark the first parameter when
using prepositional parameters in a handler call (Chapter 8). The apostrophe-ess
operator is not a synonym for this usage.

Names in Scope

The rules for targeting do not override the scoping rules you have learned in the pre
vious three chapters . You can say this :

set x to 10
tell application " F inder"

get x

end tell

AppleScript knows that x is something meaningful in the context of the script itself,
so it doesn't send any message to the Finder asking about x. That's a good thing,
because the Finder doesn't know about anything called x. This is a thoroughly neces
sary mechanism, since without it a tell block would cut off access to the surrounding
context and you wouldn't be able to use names that are in scope while explicitly tar
geting something.

You can therefore quite freely mingle names defined in the current context with
names defined by the target. AppleScript is able to deal very nicely with this code :

set L to { "Mannie " , "Moe " , " J ack"}
tell application " F inder"

count folders
count L

end tell

The command count folders is sent to the Finder. The command count L is not;
AppleScript knows that L is something belonging to the current context, not to the
Finder, and the command is dealt with entirely within the script.

Here's another example with even more mingling:

set newname to " someFolder "
tell application " Finder"

set old name to name of folder 1
set name of folder 1 to newname

end tell
display dialog oldname

In that example, folder and name are part of messages sent to the Finder, but oldname

and newname are (implicit) globals within the script, and their values are set and
retrieved without involving the Finder. In this line :

set old name to name of folder 1

AppleScript actually does two things; first it sends this message to the Finder (see the
next section, "Get") :

get name of folder 1

1 90 I Chapter 1 0: Objects

Then it uses the result to set the value of oldname. The mental picture I want you to
have is one involving a clear division of labor: the Finder is sent messages telling it to
do things involving the Finder, and the script is sent messages telling it to do things
involving the script. The Finder does not somehow lay hands on any of your script 's
variables .

Thus, when it comes to terms you use that might be the names of entities in scope in
your script, Apple5cript must look in two places to resolve their meaning: in the tar
geted application, and in the script itself. This mechanism is actually quite subtle,
and is discussed further in the section "Resolution of Terminology" in Chapter 19.

Do keep in mind that handler calls are special . A handler call is a message and will be
sent to the target. This won't work:

on whatNumber ()
return 1

end what Number
tell application " F inder"

get folder whatNumber() - - error

end tell

The problem is that the Finder is sent the whatNumber message, but it knows of no
whatNumber command. We'll see how to get around this later in the chapter ("Me") .

Get
The default command is get . In other words, a sentence with no verb is assumed to
have get as its verb. So, for example:

tell application " F inder"
name of folder 1

end tell

The verb get is supplied here and is the actual message sent to the Finder. It 's exactly
as if you had said:

tell application " F inder"
get name of folder 1

end tell

One even sees code written like this :

tell application " Finder" to name of folder 1

AppleScript can also supply get in the middle of a line where needed. As we have
already seen, this code :

tell application " F inder"
set oldname to name of folder 1

end tell

Get I 1 91

is actually treated by AppleScript as if it said this :

tell application " F inder"
set old name to (get name of folder 1)

end tell

Do not imagine, however, that it makes no difference whether you ever say get , and
that you can blithely omit get for the rest of your life . On the contrary, it's probably
better to err in the other direction and say get whenever you mean get. There are no
prizes for obfuscated AppleScript, and you're most likely to confuse yourself (and
impress no one else) if you get into bad habits . More important, omission of get

from expressions of any complexity can cause runtime errors . For example, this :

tell application " F inder" to display dialog (name of folder 1) -- error

is not the same as this :

tell application " F inder" to dis play dialog (get name of folder 1)

I n the first example, name of folder 1 i s a reference t o a property; that's not some
thing that can be displayed by display dia log, so we get an error. In the second, the
get command fetches the value of that property, a string, and all is well .

It
The keyword it represents the target. This can be useful in helping you understand
who the target is. It can also be useful as an explicit target, in situations where Apple
Script would otherwise misinterpret your meaning. In situations where you would
say of it after a word, you may say its before that word instead.

This example shows it used while debugging, to make sure we understand who the
target is :

tell application " F inder"
tell folders

it -- every folder of application "Finder"
end tell

end tell

We have already seen ("Accessing Top-Level Entities" in Chapter 9) the need for it

when accessing a script object's top-level entities within a tell block addressed to the
script object. Without it , this code fails:

script myScript
property x : 5

end script
tell myScript

display dialog x -- error

end tell

1 92 I Chapter 1 0: Objects

There is no x in scope, so there's a runtime error. Similarly, if there were an x in
scope, AppleScript would identify this x with that x, rather than with myScript's

property x, unless we use it :

script myScript
property x : S

end script
set x to 10
tell myScript

display dialog its x -- 5,butl0i/weomitits
end tell

When targeting an application, however, there is generally no need for it used in this
way. That's because , unlike a script object, an application has a dictionary, so Apple
Script knows when you're saying the name of a property of that application. For
example, the Finder has a property home; there is no need for its to tell AppleScript
that we mean the Finder's home rather than a variable in scope :

set home to "Ojai "
tell a pplication " F inder"

get home -- folder "mattneub" of folder "Users" ...
end tell

In fact, here the problem is more likely to be how to refer to the variable home in the
context of a tell block targeting the Finder. The next section ("Me") discusses this .

However, it is needed when targeting an application with a tell block in order to dis
tinguish a property from a class , when (as often happens) these have the same name
("Properties and Elements , " later in this chapter) . The preceding example didn't dis
play this problem, because home is not the name of a class . But consider this example :

tell application " F inder"
tell folder 1

get container - - container, a class
end tell

end tell

This was not the desired result . To get the container property of a folder, we must
use its or (what amounts to the same thing) the of operator:

tell application " F inder"
tell folder 1

get its container - - folder "Desktop" of ...

end tell
get conta iner of folder 1 -- folder "Desktop" of ...

end tell

Another typical use of it when targeting an application appears toward the end of
the section "Turning the Tables" in Chapter 3. Here the find command requires an
in parameter specifying a document, but we are already in the context of a tell block
targeting that document . Since the in parameter is the same as the target, we can
express it as it .

I t I 1 93

Me
The keyword me represents the current script-the script or script object that is run
ning the code where the keyword me appears . Thus :

script myScript
me -- ccscript myScriptn

end script
run myScript
me -- ccscriptn, the anonymo us to p-level s cri pt
parent of me -- ccscript AppleScriptn

See also "The Implicit Parent Chain" in Chapter 9. In situations where you would
say of me after a word, you may say my before that word instead.

We saw the keyword me used earlier ("Inheritance" in Chapter 9) as a way to force
AppleScript to attempt to interpret a term as belonging to the current script object,
so that it will use the inheritance chain.

The keyword me can be useful in a tell block, to specify the current script as the tar
get instead of the tell block's target. For example, this doesn't work:

on reverseString (s)
set the text item delimiters t o " "
return (reverse of characters of s) a s string

end reverseString
tell application " F inder"

set name of folder 1 to reverseString (get name of folder 1) -- error
end tell

The problem is that when we come to the handler call reverseString () in the next
to-last line, the target is the Finder. So AppleScript passes it along to the Finder,
which doesn't know what to do with it. The target for reverseString needs to be me,

even though the target of everything else in that line should be the Finder. This is just
the kind of situation where me comes in handy:

set name of folder 1 to my reverseString (get name of folder 1)

But me won't also resolve a terminology clash between a name defined by the target
and a name within your script . In that case, you'll have to use pipes around the
name, to suppress its terminological interpretation in terms of the target. For
instance, returning to an earlier example, how can we refer to the global variable home
in the context of a tell block directed at the Finder, which has a property home? This
doesn't work:

set home to "Ojai "
tell application " Finder"

get my home - - error
end tell

The problem is not that my failed to retarget the message. It did retarget it! The prob
lem is that the term home is still being resolved in accordance with the Finder's

194 I Chapter 1 0: Objects

dictionary. So when the message arrives at our script, it doesn't speak of our variable
home, but of some mysterious property that our script doesn't know how to inter
pret. Use of pipes solves the problem:

set home to "Oja i "
tell application " F inder"

get I home I - - "Ojai"
end tell

There is no need for my, because the pipes cause AppleScript to take home as a name
in scope within the script, and so it targets the script for us .

You may also encounter a need to use pipes around the name of a handler call, but
now you must use me as well as the pipes . This is because a handler call is always
directed at the target unless you explicitly say otherwise . In this example, the only
way to call the script's entab() instead of Mailsmith's entab command is to put the
name in pipes and use me:

on enta b (s)
return " t a b " & s

end entab
tell application "Mailsmith "

tell mes sage window 1
my lentabl (" let ")

end tell
end tell

The pipes suppress the use of Mailsmith's terminology; the my routes the message to
your script instead of Mailsmith. If you use me but no pipes, the message is sent to
the script using Mailsmith's terminological encoding, and the script won't under
stand it; if you use pipes but no me, the message is sent to Mailsmith stripped of its
terminological encoding, and Mailsmith won't understand it.

Properties and Elements
Two objects may stand in a relationship where one is an attribute of the other. It is
this relationship of attribution that is specified by the chain of ofs and tells .
Attributes are defined in terms of classes . (The term "attribute" is of my own devis
ing, because the official AppleScript documentation lacks any comprehensive term
for "property or element . ")

For example, a list has a length attribute and an item attribute-these are facts about
any list because they are facts about the list class. That is what makes this code legal:

set L to { "Mannie " , "Moe " , " J ack " }
length of L - - 3
item 1 of L - - "Mannie"

Properties and Elements I 1 95

Recall this code from Chapter 3:

tell application " F rameMaker 7 . 0 "
tell document " extra : applescriptBook : ch02places . fm"

tell anchored frame 43
.

get inset file of inset 1
end tell

end tell
end tell

That code works because, in FrameMaker, the a pplication has a document attribute,
a document has an anchored frame attribute, an anchored frame has an inset attribute,
and an inset has an inset file attribute . As we saw in Chapter 3, working out the
chain of attributes so as to refer successfully to a desired object is a major part of
working with AppleScript. An application's dictionary is supposed to help you with
this, though it often falls short (Chapter 19) . AppleScript's own dictionary is not typ
ically visible, so this book describes the attributes of the built-in data types
(Chapter 13).

An attribute is either a property or an element. A property is an attribute that this
type of object has exactly one of. An element is an attribute that this type of object
may have any number of, and in order to refer to one (or more) you have to say
which one(s) you mean.

In the example about lists, length is a property; every list has a length, and that's the
end of that. But item is an element; a list might not have any items, and if it does
have some, it can have any number of them. To speak of an item or items we have to
say which one(s) we mean, as in item 1. Similarly, in the FrameMaker example,
inset file is a property but inset is an element.

A script object's top-level entities are effectively properties in this sense; that is why
they can be referred to using the of operator. This is a bit confusing, because the
word "property" is often used as shorthand for a script property, whereas script
properties, script objects , and handlers can all be top-level entities of a script object.
If there is ambiguity, we can call properties (of the sort under discussion in this sec
tion) object properties, to distinguish them from script properties . A script object can
not have elements .

Some properties are read-only. This means you can get but not set their value . For
example:

tell application " F inder"
get startup disk
set startup disk to disk " second " - - error

end tell

Elements in general are read-only; you can't say set folder 1 to However, you
can set an element's properties (except those that are read-only, of course) , and appli
cations often implement verbs permitting to you create and manipulate elements.

1 96 I Chapter 1 0: Objects

When you get a property or element, the value returned will be of some particular
class . If this is one of AppleScript's built-in datatypes, what you get will usually be a
copy. So, for example :

tell application " F inder"
set s to name of disk 1
set s to " yoho"

end tell

That code has no effect upon the name of the disk. A string came back and was
stored in the variable 5, and you then set the variable 5 to some other value, throw
ing away the string the Finder gave you.

But when the class of the returned value is an object type defined by and belonging
to the application you're targeting, the value will usually be a reference (Chapter 11) .
Such a reference is a complete target. You can send a message to i t , and you can get
an element or property of it. You are not in control of what this reference looks like,
and the way it looks may surprise you, but you shouldn't worry about that; it's a
valid reference and a complete target, and that's all you should care about. For
example:

tell application " F inder"
set d to disk of folder 1

end tell
-- startup disk of application "Finder"

What I may have expected to see as a result of asking for this property doesn't mat
ter; I must have faith that the Finder has given me a reference to what I asked for. To
justify this faith, I can proceed to target this reference :

tell application " Finder"
set d to disk of folder 1

end tell
get name of d - - "

xxx

"

That works . Since d is a complete reference to a Finder object, I can target it; in the
last line, the get message is sent to the Finder, and the name of the disk comes back.
The term name is understandable outside of a tell block targeting the Finder because
it is defined within AppleScript itself (see Chapter 19) .

Element Specifiers
To refer to a particular element, you must say which one you mean. To do this, you
use an element specifier (or just specifier for short) . A specifier has two components :
the name of a class and some way of picking out the right one(s) . AppleScript has
eight built-in forms of specifier; and these are the only ones you are allowed to use.
The next eight sections describe those eight specifier forms .

The variety of specifier forms makes a specifier quite an interesting and compli
cated part of an Apple event . If you look back at the raw Apple event shown as

Element Specifiers I 1 97

Example 4-1, you will see a repeated pattern involving four items called form, want,

seld, and from. That pattern denotes a specifier.

In real life it will rarely be open to you to use just whichever specifier form you
please. Given any particular application, object, and class of element, only certain
specifier forms will work, and experimentation is the best guide as to which ones
they are . An application's dictionary is supposed to help you here, but it might not
be accurate ("Defective Element Specifiers" in Chapter 19) .

Name

An element may have a name, which is some kind of string. To specify an element by
name, say the class followed by the name:

tell application " Finder" to get disk "main"

You may insert the keyword named between the class and the name, but I never do.

Typically, there is also a name property, so that you can learn, based on some other
element specifier, how to specify a particular element by name :

tell application " F inder" to get name of disk 2 -- "main "

Index

Elements may be ordered, and numbered in accordance with this ordering. The
number is an index. The first element has index 1, the next element has index 2 , and
so forth. The last element can be referred to by index -1, the next-to-last by index - 2 ,
and s o forth . (If you want to know just how many elements o f this class there are ,
you have to find out in some other way, such as count .)

To specify an element by index, say the class followed by the index number:

tell application " F inder" to get disk 2

You may insert the keyword index between the class and the number, but I never do.
Instead of a cardinal numeric value, you're allowed to say a wide variety of English
like ordinal numeric literals followed by the class name. So, for instance, you can say
such things as 1st disk, th ird disk, last disk, front disk, and back disk.

There is sometimes also an index property, so that you can learn, based on some
other element specifier, how to specify a particular element by index; but this is not
implemented anywhere near as often as one would like, and is sometimes buggy:

tell application " F inder" to get index of disk 2 - - 3,for heaven 's sake

• Well, okay, there are actually nine element specifiers. I don't tell you about middle (returns the middle ele
ment), because it is rarely used. Plus, a reference to a properry is actually a form of specifier, so that makes
ten.

1 98 I Chapter 1 0: Objects

ID
Elements may have a unique ID, which is often a number but needn't be . An ID has
the advantage of not changing. For example, in the Finder a folder's name can be
changed, and its index may change if its name changes or the number of folders in its
containing folder changes, but its ID would be constant, if it had one.

To specify an element by ID, say the class followed by the keyword id followed by
the ID value . This value will have been obtained at some earlier point, typically by
asking for an element's id property:

tell application "Mailsmith "
set theMailboxID to id of mailbox 3 - - 162, if yo u m ust kno w

get mailbox id theMailboxID
end tell

Some

A random element may be specified by saying some followed by the class :

tell application " F inder"
name of some disk -- "extra "
name of some disk - - "main"
name of some disk -- "main"

end tell

Every

It may be possible to get a list of every element of a class . To ask for such a list, say
the keyword every followed by the class; alternatively, you may be able to say just
the plural of the class :

tell application " F inder" to get every disk
tell application " F inder" to get disks

If asking for just one element would result in a reference, the result in this case is a
list of references .

Range

Elements may be ordered, and you may be able to obtain a list of contiguous ele
ments (a range) by giving the first and last index number you're interested in. It is
generally not important in what order you give these index numbers . To specify ele
ments by range, say the class in a plural form (or every and the class) followed by an
index number, the keyword thru (or through), and another index number. You can
say beginning or end instead of an index number:

get words 1 thru 4 of " now is the winter of our discontent "
get words beginning thru 4 of " now is the winter of our discontent "

Element Specifiers I 1 99

Alternatively you may be able to get a list of contiguous elements of a class where the
range is marked off by two element specifiers for some other class . In this case you say
the class in a plural form (or every and the class) followed by the keyword from, an
element specifier for the starting point, the keyword to, and an element specifier for
the ending point. Again, you can say beginning or end instead of an element specifier:

get words from character 12 to character 17 of " now is the winter "
get words from character 12 to character - 1 of " now is t h e winter"
get words from character 12 to end of " now is the winter"

There is a tendency to confuse or conflate these two forms, and to try to say some
thing like this :

get words 1 to 3 of " now is the winter of our discontent " -- error

You can't do that. "To" is not "thru" ! Keep these two constructions straight. Prac
tice them before going to bed.

Relative

Elements may be ordered, and it may be possible to refer to an element as the succes
sor or predecessor of another element. To ask for an element in this way, say the
name of the class , the keyword before or after, and an element specifier:

tell application "lex- Edit Plus "
tell window 1

get word after word 1
end tell

end tell

A synonym for before is in front of. Synonyms for after are beh ind and in back of.

In real life the main place this is used is in specifying something like an insertion
point. For example, in BBEdit all text has insertion point elements lying between
the characters. Thus you can say this:

tell application "BBEdit"
tell text of window 1

get insertion point before word 4
end tell

end tell

The main use of an insertion point in BBEdit is that you can set its contents prop
erty, to alter the text. So:

tell application " BBEdit "
tell text o f window 1

set pt to insertion point before word 4
set contents of pt to " great "

-end tell
end tell

200 I Chapter 10 : Objects

Before running that script, the text in BBEdit's window said, "This is a test . " After
running it, it said, "This is a great test . " If the in sertion point reference doesn't need
capturing, that whole script can be expressed as a single command :

tell application " BB Edit " to set contents of �

insertion point before word 4 of text 1 of window 1 to " great "

There is also a class called insertion location defined by some applications. You'll
see it in an application's dictionary referred to as a "location reference, " and you usu
ally can't get one directly; instead, you use it primarily in conjunction with the
duplicate, make, and move commands, after the keyword at or to .

A location reference is specified using before or after and an element specifier
(which yields wonderfully bizarre locutions such as at after); or using beginning of

or end of and a reference to an object, or just beginning or end alone; or using just an
element specifier.

Applications can be extraordinarily touchy' about how they respond to commands of
this form, with results differing from application to application . Here are some exam
ples, just to show the syntax in action; in each case I first show you some code and
then describe its effect:

tell application "TextEdit"
tell text of document 1

make new word at after word 2 with data " not "
end tell

end tell

That changes "this is a test" to "this is not a test " .

tell a pplication "Text Edit "
tell text o f document 1

duplicate word 1 to end
end tell

end tell

That changes "fair is foul and foul is " to "fair is foul and foul is fair" .

tell application "Text Edit "
tell text o f document 1

duplicate word 1 to beginning of word 3
end tell

end tell

That changes "wonder of s, miracle of miracles" to "wonder of wonders , miracle of
miracles" .

tell application "Text Edit "
tell text o f document 1

duplicate word 1 to word 7
end tell

end tell

• Non-lawyers may read "buggy".

Element Specifiers I 201

That changes "fair is foul and foul is foul" to "fair is foul and foul is fair" .

tell application " Script Debugger"
move window 2 to beginning

end tell

That brings the second window frontmost, and shows that this sort of locution is
good for manipulating more than just text.

Boolean Test

It may be possible to get a list of those elements that satisfy a boolean test (the dictio
nary, if it lists this possibility, will say simply "satisfying a test") . What you test may
be a property of the target, or it may be the target itself. The test may involve any
boolean operator (see " Comparison Operators" and "Containment Operators" in
Chapter 15) .

A boolean test also involves an index-based specifier : index, range, or every (or
some) . This is because the boolean test yields a list, and you can ask for the whole list
or for particular elements of it.

To specify elements by boolean test, say an index-based specifier and the keyword
where, followed by a property of that class or the word it, followed by a boolean
operator and any value that can function as that operator's second operand. In this
context the target is each element as it is tested. Thus, the word it means the ele
ment to be tested. You can use it optionally to make your test read more like
English. You can use whose instead of where, but this is mere syntactic sugar.

tell application " F inder" to get files where name begins with "

5

"

tell application " F inder" to get every file where name begins with "

5

"

tell application " F inder" to get files where name of it begins with "

5

"

tell application " F inder" to get files where its name begins with "

5

"

tell application " Finder" to get files whose name begins with "

5

"

Those are all equivalent . The index-based specifier is the every specifier, with file as
its class. Then comes where or whose . Now every file will be tested, and name means
the name property of the file being tested; the words of it or its are redundant but
harmless. The boolean operator is begins with, and its second operand is the string
liS" .

When a boolean test specifier tests the value of a boolean property, you can say it is

(or it is not) and the name of the property. This can make your expression more
English-like, assuming the property name is an adjective :

tell application " System Events "
get process 1 whose frontmost is true
get process 1 where it is frontmost

end tell

202 I Chapter 1 0: Objects

The two formulations shown are equivalent, but most people prefer the latter, as
being more English-like. Now let's have an example where you'd need it instead of a
property name after where or whose :

tell application "Text Edit"
tell text of document 1

get every word where it contains " t "
get words whose i t contains " t "

end tell
end tell

The two formulations shown are equivalent, but most people prefer the former, as
being more English-like . AppleScript has no equivalent for where it, such as "which"
or "that"; it doesn't let you be as English-like as all that .

That example works because when you ask TextEdit for words, you get a list of
strings; each string then functions as the first operand of contai n s . But this is by no
means how every application works . For example, in BBEdit, when you ask for words

you get a list of references . To obtain the text of each word you ask for its contents,

so you don't end up using it at all :

tell application " BB Edit"
tell text 1 of window 1

get every word whose contents contains " t "
e n d tell

end tell

Finally, here 's an example involving an index specifier other than every :

tell application " BBEdit"
tell text 1 of window 1

get word 1 whose contents contains " t "
end tell

end tell

The only downside to that sort of formulation is what happens when no elements
satisfy the test . When you use every, if no elements satisfy the text, you get an empty
list . But when you specify the index, if that index doesn't exist, you get an error.
(This is because you get an error if you ask for a nonexistent item of any"list .) This is
not much of a downside, since you can easily catch such an error and handle it
(Chapter 12) ; it 's just something to watch out for.

If the target application is willing, you may even be able to combine multiple bool
ean tests ("Boolean Operators" in Chapter 15) . This requires that you supply another
first operand for the second test, even if this is the same as the first operand of the
first test :

tell application "Tex- Edit Plus "
tell window 1

words where it begins with " t " and it ends with " t " -- { "test " }
e n d tell

end tell

Element Specifiers I 203

The boolean test, where it works, is a very powerful specifier; with a single Apple
event you're getting the target application to do a lot of thinking and testing for you.
The only problem is that you never know whether it will work; only experimenta
tion will show this .

AppleScript itself, most disappointingly, fails to implement boolean test specifiers for
its own lists . The two halves of this example are deliberately parallel, yet the second
half fails :

tell application " F inder"
get every disk whose name begins with "M" - - "main "

end tell
set pepBoys to { " Mannie " , "Moe" , " J a ck " }
tell pepBoys

get every item whose text begins with "M" -- error

end tell

As a workaround, use the list-filtering handler developed earlier in this book ("Script
Object as Handler Result" in Chapter 9).

Properties of Multiple References
When an element specifier would return a list of references, it may be possible to ask
for a property of this list as a shorthand for asking for that property of each element
of the list in turn.

For example, this works, and returns a list of strings, the names of each disk in turn :

tell application " F inder" to get name of every disk

Here's another example . Recall that when you ask BBEdit for a word, you get a refer
ence. If you just want to know the word itself-that is, its text-you ask for its
contents. You can combine these operations to get a list of words and translate them
into their contents :

tell application "BBEdit"
tell text 1 of window 1

get contents of every word whose contents contains " t o
e n d tell

end tell

Again, this a tremendously powerful construct where a single Apple event causes the
target application to do a lot of work for you. And again, you can't be certain this
construct will be implemented until you try it. If it isn't , the workaround is to obtain
the list of references and then cycle through it yourself, obtaining the desired prop
erty for each reference one at a time. That involves many Apple events, though, so
it's a poor substitute .

204 I Chapter 1 0: Objects

Object String Specifier
Objects of certain classes can be constructed in code using the name of the class fol
lowed by a string. Formally, this looks rather like an element specifier by name. But
the object isn't an element of anything, and the string isn't exactly a name. There is
no term for this construct in Apple's documentation, so I have coined the term object
string specifier to denote it.

For example, AppleScript's built-in file class works this way; you can make a file
object by using the word file followed by a string representing the pathname, as in
the following code :

get POSIX path of file "myDisk : myFile"

The string doesn't have to be a literal; a variable will work just as well :

set f to "myDisk : myFile"
get POSIX path of file f

AppleScript also uses an object string specifier to represent a file object when report
ing it as a value :

set f to "myDisk : myFile "
a reference to file f
- - file "myDisk : myFile" of ICscripb

AppleScript's application class works the same way; that is why I have been using
this form of address throughout this chapter:

tell application " BBEdit "

Built-in classes that use object string specifiers will be duly noted as doing so , in
Chapter 13.

Object String Specifier I 20S

CHAPTER 11

References

The notion of a reference has been informally used throughout the preceding chap
ters . In Chapter 3, an expression of this sort :

anchored frame 1 of document "extra : applescriptBook : ch02places . fm "
of a pplication " FrameMaker 7 . 0 "

was described as a reference; building such an expression was called "constructing a
reference, " a command whose result was an expression of that sort was said to
"return a reference, " and a list of such expressions was called "a list of references . "
Much talk o f the same sort appears in Chapter 10.

On the other hand, the word "reference" has also been used in another way. In vari
ous places we have referred to the setting and passing of values "by reference. " That
is not what this chapter is about. When you pass a list "by reference" as a parameter
to a handler, you do not pass a reference; you pass a list (in a certain way) . The iden
tity of the terminology is unfortunate but unavoidable.

This chapter is about references in the first sense . As you might suspect from this , a
reference is a complete chain of ofs, such as to specify a target. But this way of put
ting the matter makes it sound as if a reference is merely an expression, a stretch of
words in your code . In AppleScript, a reference is more than that : it's a value
embodying such an expression.

To see what I mean, let's imagine obtaining such a value in a way that's very com
mon-as a result returned by a scriptable application. For example, suppose you say
this :

tell application " F inder"
set x to (get folder 1)

end tell

Now, what's x? On my machine, it's the following:

folder "Mannie" of desktop of application " F inder"

What can this mean? A folder is a thing in the Finder's world. Surely the Finder can
not have literally handed this folder to our script. Rather, the Finder has handed us

206

some sort of means of access to this folder. That's a reference; x is a reference to a cer
tain folder in the Finder. References are an important feature of AppleScript, and
many values you'll encounter using AppleScript will be references .

References as Incantations
One very productive way to think of a reference is as an incantation. It's like frozen
speech. It encapsulates a bit of phraseology, a particular utterance . If a variable's
value is a reference, that value is something you can use to access the object it refers
to. What I mean by "use" is "say" : a reference is an encapsulation of the words you
would have to utter (in your code, of course) in order to access the obj ect. In a way, a
reference is like a miniature package of suspended evaluation; it's a little phrase that
isn' t evaluated until you use it. When you do use it, it works just as if you'd said the
phrase at that point in your code .

For example, consider this code:

tell application " Finder"
set x to (get folder 1)
display dialog (get name of x) - - Mannie

end tell

The dialog shows the name of the folder. Why does this work? As we have said, x is
this reference :

folder "Mannie " of desktop of application " F inder"

This means that using x is like using those words. Therefore, when you say this :

get name of x

it's just like saying this :

get name of folder "Mannie " of desktop of application " F inder"

A reference answers the "What would I have to say . . '?" question. What would I have
to say in order to speak of the Finder's folder 1? The Finder tells us one answer; I
could say this :

folder "Mannie " of desktop of application " F inder"

You may be disconcerted at first by that fact that this is not what you did say. You
said folder 1, referring to the folder by index number; the Finder said folder

"Mannie", referring to it by name. You didn't say of desktop; the Finder did. You
shouldn't worry about this . You just have to have faith, when an application gives
you a reference, that this reference will access the thing you asked for access to.

Pre-Resolution of Terminology

When the time comes to use a reference, you don't have to be in the context of a
tell . The reference is not only a complete target, it's a complete target whose

References as Incantations I 207

vocabulary has already been resolved according to the context in which the reference
was originally formed.

As a result, this works :

tell application " F inder"
set x to (get folder 1)

end tell
name of x - - "Mannie"

(We looked a little at this phenomenon in Chapter 10; now we are in a position to
discuss it properly.) How can this be? Look at just the last line of that code, in
isolation:

name of x

That line contains no folder; it contains no Finder! But that line causes a message to
be sent to the Finder asking for the name of a particular folder. The entire target:

folder "Mannie" of des ktop of application " F inder"

is frozen into x. So the effect of the last line of that code is exactly-I mean exactly
as if you had said this :

tell application " F inder"
get name of folder "Mannie" of desktop

end tell

The whole incantation involving the folder, the desktop, and the Finder is effectively
frozen into x, ready to use. The terms folder and desktop have already been resolved,
just as they would be in the context of a tell block targeting the Finder-because
they were frozen into x in just such a context.

Being Careful with References

Keep in mind that a reference is full of hidden power. You can send an Apple event
without realizing it, merely by using a reference . It's easy to be lulled into thinking
you'll always know when you're sending an Apple event to a target application,
because you'll see the chain of ofs and tells culminating in the name of the applica
tion. But with a reference, you won't see any of that; the whole chain is hidden inside
the reference.

The Event Log in the script editor application can be a big help here, because it
tracks Apple events . When you execute this code :

tell application " F inder"
set x to (get folder 1)

end tell
name of x - - "Mannie"

the event log says this :

tell application " F inder"
get folder 1

208 I Chapter 1 1 : References

get name of folder "Mannie" of desktop
end tell

That makes it very clear what's happening.

Another thing to bear in mind is that a reference is mere words, not a magic pointer.
Consider the following:

tell application " Finder"
set x to folder 1
display dialog (get name of x) -- Mannie
set name of x to "Moe"
display dialog (get name of x) - - error!

end tell

The reason for the error is perfectly clear if you imagine a reference as an incanta
tion. What's x during the first display d ia log command? It's this :

folder "Mannie " of des ktop of application " F inder"

And that's what it is during the second display d ialog command, too; the incanta
tion doesn't change . But at that point there is no folder "Mannie"-because we just
changed the name of that folder to "Moe" ! Our reference no longer works, because
the incantation no longer speaks of the thing we want to speak of. The speech is fro
zen, while the world has changed.

Creating a Reference
We've already seen that a reference might be handed to you by some application; but
you can also create one yourself. To do so, you use the a reference to operator. (An
abbreviation is ref, which is a lot easier to type.) For example :

set x to 100
set y to a reference to x

When you create a reference, the phrase you use is effectively what gets frozen into
the reference as an incantation :

tell application " Finder"
set x to a reference to folder 1

end tell
x - - folder 1 of application "Finder"

What you say is what you get. And what you say doesn't have to exist, either; it
doesn't even have to make sense ! As long as the compiler can resolve the terminol
ogy, it will compile your phrase . The fact that it's unusable doesn't matter; you're
not using it, you're just freezing it for later. Thus no error arises , no matter how silly
your phrase may be . Of course, later on if you do try to use it, you'll find out if it 's a
valid thing to say :

tell application " F inder"
set x to a reference to disk 99 of folder 1 of label " yoho"

end tell
get name of x -- error: Can't get name of disk 99 of folder 1 of label "yoho"

Creating a Reference I 209

Identifying References
Apple5cript goes to some lengths to hide the existence of references, making it
remarkably difficult to find out that a value is a reference . Properly speaking, a refer
ence is a class, a datatype like string or integer ("Class" in Chapter 10, and
Chapter 13) . If you ask a string about its class, it says string . If you ask an integer
about i ts class , it says integer. But if you ask a reference about its class, it will never
tell the truth and say reference .

set x to " hey "
set y to 9
tell application " F inder" to set z to folder 1
class of x - - string
class of y - - integer
class of z - - folder

Here are some tricks you can use to learn that a value is a reference. (I don't guaran
tee any of them, but they do seem mostly to work.)

The reference coercion trick
The only thing that can be coerced to a reference is a reference. If you try to
coerce anything else to a reference, you'll get a runtime error. 50 try to coerce a
value to a reference, and if there's no error, it is a reference. For example :

tell application " F inder" to set x to folder 1
x as reference - - no error; it's a ref erence

The editor result trick
If the script result, as shown in your script editor program, contains the word of,

it is a reference. For example :

tell application " Finder" to set x to folder 1
x - - folder "Mannie" of . . . ; it's a ref erence

The copy trick
A copy of a reference is the same reference. If you have two copies of something
and they both provide access to the same thing (you may have to devise a fur
ther test in order to decide this question) , they are both references . For example :

tell application " Finder"
set x to folder 1
copy x to y
index of x is index of y and container of x is container of y - - true

end tell

When I'm debugging or developing a script, I like the second method best; I look at
a variable's value and I can see right away whether it's likely to be a reference . If I 'm
writing code where the code itself needs to test whether something is a reference, I
like the first method best. Here's a general handler that returns a boolean value tell
ing whether its parameter is a reference :

on isRef(valueToTestAsRef)
try

valueToTestAsRef as reference

210 I Chapter 1 1 : References

return true
on error

return false
end try

end isRef
- - and here 's ho w to call it
tell application " F inder"

set x to folder 1
end tell
isRef (x) - - true
set x to " haha "
isRef (x) - - false

Dereferencing a Reference
Once you have a variable whose value is a reference, AppleScript behaves with con
fusing inconsistency when you try to use it. In some cases , you can't use the refer
ence without explicitly de referencing the variable; in other cases, AppleScript
dereferences it for you implicitly when you use it. AppleScript can behave both ways
with one and the same reference.

When AppleScript performs implicit de referencing, the reference is completely trans
parent : it acts precisely as if you were saying the incantation that's frozen inside it.
This is exactly the same phenomenon noted in the previous section-you can't learn
from a reference that it is a reference, because it acts as if it were the thing referred to .

tell application " F inder"
set x to folder 1

end tell
name of x -- Mannie
class of x -- folder
set name of x to "Moe "

None of that ought to be possible . A reference's class isn't folder, and a reference
doesn't have a name property that you can get and set. In this case, though, it hap
pens that the reference is a reference to a thing whose class is folder and that has a
name property. AppleScript dereferences the reference implicitly; it treats the refer
ence as if it were the thing referred to.

But in this example, an attempt to use the same reference transparently runs up
against a brick wall :

tell application " Finder"
set x to a reference to the name of folder 1

end tell
set x to "Moe "

If you were hoping that this would set the name of the Finder's folder 1 to "Moe",

you're doomed to disappointment. It didn't : you set the variable x to the string "Moe"

(and you lost your reference) .

Dereferencing a Reference I 2 1 1

The reason is that the transparency of references can't be permitted to destroy your
access to your own variables . Thus, when you perform an assignment, not to a prop
erty of a variable that's a reference but to the variable itself, AppleScript stops treating
the reference transparently. The assignment is an ordinary assignment to a variable :
what's inside the shoebox is thrown away and a new value is put into the shoebox.

Similarly, the boolean equality and inequality operators do not treat references trans
parently by dereferencing them ("Comparison Operators" in Chapter 15) . Here's a
simple example :

set x to 3
set y to a reference to x

x = y - - false
y = 3 - - false

There's no implicit de referencing here, and 3 is not the same a reference to x. With
other operators , though, AppleScript does dereference, which makes for some para
doxical-looking results :

set x to 3
set y to a reference to x

x = y - - false
x + 0 = y + 0 - - true
x is not less than y and x is not greater than y - - true

In situations where AppleScript doesn't implicitly dereference a reference for you,
you can dereference it yourself. The way you do this is with the contents of opera
tor. So, this code renames a folder in the Finder:

tell application " F inder"
set x to a reference to the name of folder 1

end tell
set contents of x to "Moe "

Here's another example :

set x to 10
set y to a reference to x

set contents of y to 20
x - - 20

Here's the equality example :

set x to 3
set y to a reference to x

x = contents of y - - true

The contents of operator works on any value . If the value isn't a reference, the result
of applying the contents of operator is simply the value itself. In this example, the
use of the contents of operator (twice) is essentially pointless; AppleScript basically
just throws it away, and you end up saying the very same thing you'd say if you sim
ply omitted the words contents of from the code :

set x to contents of "Mannie"
contents of x - - Mannie

212 I Chapter 1 1 : References

You can take advantage of this in dealing with the equality example . Let's say you
don't know which of x and y is a reference. That's okay; dereference them both,
since it does no harm:

set x to 3
set y to a reference to x

contents of x = contents of y - - true

However, this is not to imply that you can simply use the words contents of capri
ciously. They do mean something, after all! So, this will cause a runtime error:

set x to "Mannie "
set contents of x to "Moe " - - error

This is like saying set "Mannie" to "Moe", which doesn't work, because "Ma nn ie" is a
literal, not the name of a variable.

If a value is a reference to an object belonging to an application, the contents of

operator might get you another reference-or it might get you the same reference.
So, for example :

tell application " F inder"
set x to folder 1

end tell
x - - folder "Mannie" of desktop of application "Finder"
set x to contents of x

x - - folder "Mannie" of folder "Desktop" of folder "mattneub" of .,
folder "Users" of startup disk of application "Finder"

set x to contents of x

x - - folder "Mannie" of folder "Desktop" of folder "mattneub" of .,
folder "Users" of startup disk of application "Finder"

This is entirely up to the target application, and doesn't have any particular signifi
cance. In each case you're just telling the application to do a get whose direct object
is the very same "phrase" the application handed back to you previously. Whether
the application returns the same phrase or a different phrase referring to the same
object is entirely its own business.

A problem arises when you're targeting an application whose dictionary defines a
contents property for one of its object types . Applications shouldn't do this ; it's bad
behavior, because they're overlapping with a piece of AppleScript's own built-in
vocabulary. In the context of a tell directed at such an application, this raises the
question of whether the word contents will be seen as the contents of operator or
the application's contents property.

I 'm told that the problematic nature of the contents property is actu
ally an AppleScript bug.

An example of such an offender is BBEdit. BBEdit does something I consider very
good: when you ask for a text element such as a word, it gives you a reference rather

Dereferencing a Reference I 213

than a string. That's good, because it's then possible to access that element in its
context and do things to it. But then BBEdit does something bad: it defines the
contents property as your way of obtaining the actual string. (To be quite fair, the
fault lies partly with Apple5cript itself, which takes the lead by defining a contents

property for its selection - obj ect class .)

50, this works to obtain an actual string:

tell a pplication " BBEdit"
set w to contents of word 4 of window 1

end tell
w - - "test "

But this doesn't:

tell application " BB Edit "
set w to contents of (get word 4 of window 1)

e n d tell
w - - characters 11 thru 14 of text window 1 of application "BBEdit"

And therefore neither does this :

tell application " BBEdit "
set x t o word 4 o f window 1
set w to contents of x

end tell
w - - characters 11 thru 14 of text window 1 of application "BBEdit"

The only way to access BBEdit's contents property is within a single expression, as in
the first example. You can't apply it to a reference, as in the second two examples,
because Apple5cript sees that as dereferencing the reference .

The proper behavior would have been for the application to define some other term
for obtaining the contents of a thing. Mailsmith, for example, uses a content prop
erty of its message class to represent the body of the message. No confusion arises ;
Apple5cript doesn't know that this is the singular of contents . However, Mailsmith
then bollixes the user in other ways . The result of asking for the content property is a
record where the body text is in an item called contents (see "Pseudo-Classes" in
Chapter 19) . This accounts for the very odd verbiage we were forced to employ in
"Calculation and Repetition" in Chapter 1:

set theBody to get contents of content of aMessage

In that line, the contents of operator never appears ! First we get the content prop
erty of aMes sage, which is a record; then we get the contents item of that record. Fur
thermore, Mailsmith does also let you say contents (instead of content) as the name
of this property of the message class. 50 this code is possible:

tell application "Mailsmith"
set r to a reference to message 1 of incoming Mail

end tell
get contents of contents of contents of r

214 I Chapter 1 1 : References

In that code, every contents of is necessary in order to arrive at the desired string!
The third one dereferences the reference, the second one gets the contents property
of the message, and the first one gets the contents item of the resulting record.

Creating References to Local Variables
You can't make a reference to a local variable . Well, you can, but you won't be able
to use it. For example :

local x
set x to { l , 2 , 3 }
set y t o a reference t o x
get item 1 of y - - error

This does not mean, however, that the only things you can create references to are
top-level globals. You can make a reference to anything that isn' t a local, such as a
property:

script myScript
property x : 5
set y to a reference to x
set contents of y to x + 1
display dialog x

end script
run myScript - - 6

Reference as Parameter
You can pass a reference as a parameter to a handler, and it remains a reference. The
fact that the variable where the reference is stored may be a local is irrelevant; so is
the fact that the parameter is local to the handler.

So, for example :

local x
tell application " F inder"

set x to folder 1
end tell
on setName (theRef)

set name of theRef to " J ack"
end setName
setName (x)

In that code, x is a local, and theRef is too (because a handler parameter is local
within the handler) . But the code still works ; it changes the name of a folder in the
Finder.

But you can't pass a reference to a local, because you can't make a reference to a
local . Well, you can, but you can't use it as a reference. That's why the reference to

operator can't provide a general solution to the problem of passing by reference (see
Chapter 8) .

Reference as Parameter I 215

So, for example :

global x
local y
set x to 5
set y to 5
on doubleRef (theRef)

set contents of theRef to 2 * theRef
end doubleRef
doubleRef (a reference to x)
display dialog x - - 10
doubleRef (a reference to y) - - error

The difference between x and y in this code is purely that x is global while y is local.
Applying the contents of operator to x works; applying it to y causes an error.

The use of a reference as a parameter can permit a handler to perform dynamic tar
geting. As long as a handler doesn't use any vocabulary that depends on a specific
target, it can target an application whose identity is not known until runtime. In this
example, the same code in the same handler is able to target the Finder and Mail
smith indiscriminately:

on getNameOfAnything (theRef)
return name of theRef

end getNameOfAnything
tell application " F inder" to set x to folder 1
tell application "Mailsmith " to set y to mailbox 1
getNameOfAnything (x) - - "Mannie"
getNameOfAnything (y) -- " (drafts) "

A handler or script object can also return a reference . Of course, this cannot be a ref
erence to a local variable . It must be a reference to something that the handler or
script object can obtain a reference to. For example, it can be a reference to a
property:

script my5cript
property x : 3
return a reference to x

end script
set y to run myScript
set contents of y to 10
myScript ' s x -- 10

Or it can be a reference obtained from a scriptable application:

on get FolderByNumber (n)
local x
tell application " F inder"

set x to folder n
end tell
return x

end get FolderByNumber
get FolderByNumber (l) -- folder "Moe" of desktop of application " Finder"

216 I Chapter 1 1 : References

And it can be a reference to a parameter that is a reference or was passed by refer
ence. You can get some rather powerful effects that way:

on find ln List (what , L)
repeat with i from 1 to count L

if item i of L is what then
return (a reference to item i of L)

end if
end repeat
return

end findln List
local pep
set pep to { " Mannie " , "Moe " , " J ack " }
set contents o f findln List ("Moe " , pep) t o " Larry "
pep - - { "Mannie " , " Larry" , " Jack"}

That's quite similar to return-by-reference in C++ . The handler findl n List returns a
reference to a particular item of L; in this case, it returns the reference i tern 2 of

{"Mannie", "Moe", "J a ck"} . Thus we are now pointing at the desired item of the
original list and can change that item, in place .

Reference as Parameter I 2 1 7

CHAPTER 12

Control

This chapter describes the control structures of the AppleScript language. These are
not commands; rather, they dictate the flow of a script-how the next line or batch
of lines should be interpreted, what line should be executed next, that sort of thing.

It
"

,

"'-, ' When typing any block in this chapter, in the termination line just

��' " type the word end . AppleScript fills in the missing term after compila-
, ; �, tion . This saves time and is helpful for confirming that you have cor

, rectly structured your blocks. So, for example, don't type end if; j ust
type end .

, Branching
The "intelligent" behavior of a computer program depends upon its ability to make
choices at runtime. These choices generally take the form of evaluating some expres
sion and executing a particular set of lines of code depending on how the evaluation
turns out at that moment .

One major form of choice is branching. We have a line or block of code that can be
executed optionally. The computer evaluates a boolean expression, called a condi
tion . If the condition is true, the line or block of code is executed; if it isn't, the line
or block of code is skipped, and execution jumps to the line that follows it.

In AppleScript, branching control is performed with if. There are several forms of if
block .

It "
, @" When typing a multiline if block' don't bother to type the word then .

'!:, AppleScript will add it at compile time.
,� \

..

"

"
1\

The basic form is a block of code that is executed only if a condition is true . If the
condition is false, the block is skipped, and execution resumes after the end if line .

218

if condition then
- - wh at to do if con dition is true

end if

It is also permitted to supply a second block, to be executed if the condition is false .
One or the other of the two blocks will be executed.

if condition then
- - wh at to do if con dition is true

else
- - wh at to do if con dition is false

end if

Another syntax lets you specify multiple conditions. Apple5cript will execute the first
block whose condition is true, skipping the others . It is permitted to supply a final
block that will be executed if none of the conditions is true.

if conditionl then
- - wh at to do if con dition l is true

else if condition2 then
- - wh at to do if con dition 2 is true

- - . . . s ame for condition3, condition4, etc.
[else]

- - wh at to do if none of them is true
end if

So, for example :

set x to random number from 1 to 10
set guess to text returned of �

(display dialog " Pick a number from 1 to 10" default answer " ")
try

set guess to guess a s number
on error

return
end try
if guess < 1 or guess > 10 then

display dialog "I said from 1 to 10 ! "
else if guess < x then

display dialog "Too small . I was thinking of " & x
else if guess > x then

display dialog "Too big . I was thinking of " & x
else

display dialog " J ust right . "
end if

There's also a single-line form :

if condition then whatToDo

In the single-line form, whatToDo is any valid expression or single-line command (it
can even be another single-line if) .

Branching I 219

Looping
The other major form of choice is looping, which involves branching back to the start
of a block repeatedly. In AppleScript, looping is performed with repeat . There are
several varieties of repeat, but repeat blocks all take same basic form :

repeat whatKindOfRepeat
- - what to do
end repeat

The big question with a repeat block is how you're going to get out of it. Obviously
you don't want to repeat the repeat block forever, since this will be an infinite loop
and will cause the computer to hang. Usually you deal with this through the nature
of the whatKindOjRepeat, which typically provides a condition to be evaluated, as a
way of deciding whether to loop again, or some other form of instruction governing
how many times the block will be repeated.

There are also some special commands for hustling things along by leaping com
pletely out of the repeat block. They can be used with any form of repeat block. Here
they are :

return

This command leaves the repeat block by virtue of the fact that i t terminates exe
cution of the handler or script.

exit repeat

This command exits the innermost repeat block in which it occurs . Execution
resumes after the end repeat line .

Repeat Forever

A repeat block with no whatKindOjRepeat clause repeats unconditionally, whence for
ever. Obviously you don't really want it to repeat forever, so it's up to you to supply
a way out . I just told you two ways out. A third is to loop inside a try block and to
throw an error; this method is illustrated later in this chapter, in "Catch. "

repeat
display dialog " Prepare to loop forever . "
exit repeat

end repeat
display dialog " J ust kidding . "

Repeat While
A repeat block where whatKindOjRepeat is the keyword while followed by a boolean
expression tests the expression before each repetition. If the expression is true, the
block is executed. If the expression is false, the block is not executed and that's the end
of the loop; execution resumes after the end repeat line. The idea is that in the course
of looping something will eventually happen that will make the expression false.

220 I Chapter 12 : Control

set response to "Who ' s there ? "
repeat while response = "Who ' s there ? "

set response to button returned o f �

(display dialog " Knock knock ! " buttons { " Enough ! " , "Who ' s t here ? " })
end repeat

Repeat Until

A repeat block where whatKindOjRepeat is the keyword until followed by a boolean
expression tests the expression before each repetition. If the expression is false, the
block is executed. If the expression is true, the block is not executed and that's the
end of the loop; execution resumes after the end repeat line . This construct is techni
cally unnecessary, since the very same thing could have been achieved by reversing
the truth value of the condition of a repeat while block-that is to say, repeat until

i s exactly the same as repeat while not .

set response t o " "
repeat until response = " E nough ! "

set response to button returned of �

(display dialog " Knock knock ! " buttons { " Enough ! " , "Who ' s t here ? " })
end repeat

It " 0,' Those accustomed to the do . . . until construct in other, C-like lan-
�:, guages should observe that it is possible for an AppleScript repeat

'\.� \
.. , 4,' until block not to be executed even once.

Repeat With

The syntax of a repeat with announcement line is as follows :

repeat with variableName from startlnteger to endlnteger [by steplnteger]

Here's how a repeat with works :

1. When the repeat with line is encountered for the first time, s tartInteger and
endlnteger (and steplnteger, if supplied) are evaluated once and for all, and
coerced to integers if possible . (If it isn't possible , there 's a runtime error.)

2. If startInteger is larger than endlnteger (or smaller if steplnteger is negative) ,
that 's the end of the loop and execution resumes after the end repeat line .

3. The value startInteger is assigned to the variable variableName, which is cre
ated as a local if not in scope already.

It .. 0," This fact is an exception to the rule that implicitly declared variables at
��.

..

top level are global ("Undeclared Variables" in Chapter 7) .
" 41t

4 . The block is executed.

Looping I 221

5. The value 1 (or steplnteger if supplied) is added to the value that variableName
was assigned at the start of the previous repetition. If the resulting value is larger
than endlnteger (or smaller if steplnteger is negative) , that's the end of the loop
and execution resumes after the end repeat line . Otherwise, variableName is
assigned this new value, and the block is executed and this step repeats .

If you read the description carefully, you will realize that :

• There's no extra overhead involved if any of the integers in the repeat with line
are derived from handler calls or commands, since the evaluation is performed
only once. This is in contrast to repeat while and repeat until .

• After a repeat with i s all over, the variable variableName has the value i t had
when the last repetition terminated.

• Setting the variable variableName within a repeat with block affects the code that
executes subsequently within the block, but it has no effect on the test per
formed at the top of the next repetition or on what value variableName will take
on as the next repetition begins .

Here's a simple example of repeat with in action :

repeat with x from 3 to 1 by - 1
display dialog x

end repeat
display dialog " Blast off ! "

Repeat With . . . In

The syntax of a repeat with . . . in announcement line is as follows :

repeat with variableName in list

This construct is much like a repeat with, but the variable variableName is assigned
successively a reference to each item of the list .

When I say a reference, I mean it (see Chapter 11) ; nothing is copied from the list
into variableName . So, for example, in this loop:

repeat with x in {1, 2 , 3}

end repeat

the variable x takes on these successive values:

item 1 of { 1 , 2, 3 }
item 2 o f { 1 , 2 , 3 }
item 3 o f { 1 , 2 , 3 }

I n some contexts , the fact that variableName is a reference won't make a difference to
your code, because references are transparently dereferenced much of the time. For
example :

repeat with x in { 1 , 2 , 3 }
display dialog x - - 1 , 2 , 3

end repeat

222 I Chapter 12: Control

Here, the reference is implicitly dereferenced, and the value of each item is
retrieved from the list. But things are different, for example, when you use the
equality or inequality operator:

repeat with x in {l, 2 , 3}
if x

= 2 then
display dialog " 2 "

end if
end repeat

The dialog never appears . That's because x is never 2. The second time through the
loop, x is the reference item 2 of { 1 , 2, 3 } ; that's not the same thing as the integer
2, and AppleScript doesn't implicitly dereference the reference. The solution is to
dereference it explicitly:

repeat with x in { l , 2 , 3 }
i f contents o f x = 2 then

display dialog " 2 "
e n d if

end repeat

Here's another example; we'll retrieve each value and store it somewhere else :

set Ll to { l , 2 , 3 }
set L2 t o { }
repeat with x i n Ll

set end of L2 to x

end repeat

What do you think L2 is after that? If you said { 1 , 2, 3 } , you're wrong; it's this :

L2 - - { item 1 of {1, 2, 3} , item 2 of {1, 2, 3 } , item 3 of {1, 2, 3 } }

L2 i s not the same as L 1 . Ll i s a list of values; L2 i s a list of references . I f you want L2
to end up identical to L1 , you must dereference each reference :

set Ll to { l , 2 , 3 }
set L2 t o { }
repeat with x i n Ll

set end of L2 to contents of x

end repeat
L2 -- {1, 2, 3 }

When, as here, variableName i s a reference to an item of a list, you can use i t to assign
back into the original list:

set L to { l , 2, 3 }
repeat with x i n L

set contents of x to item x of { "Mannie " , "Moe " , " J ack " }
end repeat
L - - { "Mannie " , "Moe " , "Jack " }

A loop can alter the value of an item of the list before encountering i t , and it can
increase the size of the list . Thus :

set L to { l , 2 , 3 }
repeat with x in L

Looping I 223

set beginning of L to contents of x
end repeat
L -- {1, 1, 1, 1 , 2 , 3 }

Observe that this did not cause an infinite loop. AppleScript reads the size of the list
once, before the first repetition; you won't repeat more times than that.

It can be important to be cognizant of the details of the references in the list . Recall
the example from " Calculation and Repetition" in Chapter 1 where we renamed the
files in a folder, first gathering their names like this :

set allNames to name of every item of the Folder
repeat with aName in allNames

Why didn't we cycle through the items of the folder directly, like this?

repeat with an Item in the Folder

In the second formulation, the references in the list are to i tern 1 of folder . . . , i tern

2 of folder . . . , and so forth . But we're going to be changing the names of items in
this folder while we're cycling, and changing the name of an item may alter the way
the items are numbered. Thus we might not cycle through each item of the folder
after all. Remember, a reference is a frozen expression, not a magic pointer ("Being
Careful with References" in Chapter 11) .

We now turn to considerations of efficiency. Here is some code that makes BBEdit
capitalize every word that starts with "t" :

tell application " B B Edit"
repeat with w in every word of window 1

if contents of text of w begins with " t o then
change case w making raise case

end if
end repeat

end tell

It works, but we are sending at least twice as many Apple events as there are words
in the document. Let's try to shorten the list to just the words that start with "t" :

tell application " BBEdit"
repeat with w in (every word of window 1 ,

where contents of text of it begins with " t o)
change case w making raise case -

end repeat
end tell

This fails with a runtime error. To see why, we investigate the successive values of w,

and we learn something very interesting. It turns out that during the first repetition, w

is a reference to this :

item 1 of every word of window 1 of application " BBEdit " ,
whose contents of every text starts with " t o

224 Chapter 12: Control

We capitalize that word, and now we proceed to the next item, which is a reference
to this :

item 2 of every word of window 1 of a pplication " BB Edit " ,
whose contents of every text starts with " t "

This explains the runtime error. For example, i f a t the outset there were just two
words beginning with lowercase "t" , there is no such item as this , because we just
capitalized one of those words, so there 's now only one word in the window begin
ning with lowercase " t " ! As we can see, w is being set to these curious references of
the form i tern 2 of every word The expression every word . . . whose is thus being
evaluated afresh every time through the loop. This, in addition to breaking our code,
is a further source of inefficiency: we're making BBEdit perform this entire compli
cated boolean test each time through the loop, when it should suffice to perform it
once.

The cause is a very odd feature of how AppleScript behaves when you say something
like this :

tell some application
repeat with x in every . . .

When AppleScript sees this form of repeat with announcement line, i t responds by
sending an Apple event to the target application. You might expect that this would
be a request for a list of references; but it isn't . Instead, AppleScript merely asks the
target application how many such references there are; it sends a count command,
not a get command. Presumably AppleScript imagines it will be a lot more efficient
to ask for one little number than for a list of who knows how many references.

The solution is to use get yourself:

tell application " BB Edit "
repeat with w in (get every word of window 1 ,

where contents of text of it begins with " t ")
change case w making raise case

end repeat
end tell

That works fine, because w is now set to values like this :

item 1 of {characters 11 thru 12 of text window 1 of application " BB Edit " }

And it's a lot more efficient too .

The implication seems to be that you should probably use get in constructs of this
kind. In fact, if you don't use get, many applications won't be able to respond at all
to what you say in the loop . The Finder is a good example . Suppose we want to
gather the names of all folders . This doesn't run at all :

set L to { }
tell application " F inder"

repeat with f in every folder
set end of L to (get name of f) - - error

Looping I 225

end repeat
end tell

This works fine :

set L to { }
tell application " Finder"

repeat with f in (get every folder)
set end of L to (get name of f)

end repeat
end tell

The reason is that in the first form when you say get name of f , you're saying get

name of item 1 of every folder and so on, and the Finder interprets this to mean,
not the first item of a list of folders , but a list of the first items on disk inside each
folder! In the second form, you start by gathering references to each individual
folder; then you use each reference to ask for the name of that folder.

Repeat N Times

A repeat block where whatKindOfRepeat is an integer followed by the keyword times

repeats that number of times . The integer can be a variable.

repeat 3 t imes
display dialog "This is really boring . "

end repeat
display dialog "ZZzzzz "

An interesting use of this construct is to implement a workaround for AppleScript's
lack of a next repeat keyword. ' The problem is that you can short-circuit a repeat
block by exiting it completely, but you cannot, as in many languages, short-circuit it
by proceeding immediately to the next iteration. The workaround is to embed a one
time repeat block within your repeat block; an exit repeat within this one-time
repeat block works as a next repeat with respect to the outer repeat block. This
device doesn't accomplish anything you couldn't manage with an if block, but it can
prove more legible and maintainable .

For example:

set L to { "Mannie " , "Moe " , " J a c k " }
s et L2 to { }
repeat with aBoy in L

repeat 1 times
if a Boy does not start with O J " then exit repeat
set end of L2 to contents of aBoy

end repeat
end repeat
L2 - - { " Jack" }

For another useful misuse of this construct, see "Blocks" in Chapter 6 .

• This idea is suggested to me by Paul Berkowitz, who attributes it to Ray Robertson.

226 I Chapter 12 : Control

Being Carefu l with Loops

You probably think I 'm about to say, "Watch out for infinite loops . " You're wrong.
Quite frankly, I don't care if your loops go on till Doomsday. But I do care if they do
more work than they have to .

Keep in mind that Apple events are expensive, and some Apple events are very
expensive . While I 'm not a great believer in worrying about code optimization, you
should probably take a little elementary care with your loops to see that your Apple
events are as few and as simple as possible .

Observe, for instance, that the boolean expression at the top of a repeat while block
must be evaluated before every repetition of the block, and then once more in order
to decide not to repeat the block any further. This means that it should not contain
any commands whose result will not change during the repetition, since this would
be needless and wasteful overhead.

For example, it would be foolish to write this :

set x to 1
tell application " F inder"

set fl to folder "fl"
set f2 to folder "f2 "
repeat while « count items o f f l) < (count items o f f2))

make new folder at fl with properties { name : (" f" & x) }
set x t o x + 1

end repeat
end tell

That code sends the count message to the Finder six times when in fact we need only
send it twice :

set x to 1
tell application " F inder"

set fl to folder "fl"
set f2 to folder "f2 "
set cl t o count items of fl
set c2 to count items of f2
repeat while cl < c2

make new folder at fl with properties {name : (" f " & x) }
set x t o x + 1
set Cl to cl + 1

end repeat
end tell

The example itself is rather a silly way to perform this task, but the lesson it illus
trates is very real .

Our earlier example using BBEdit exposes the same issue . At first, you remember, we
said this :

tell application "BBEdit"
repeat with w in every word of window 1

looping I 227

if contents of text of w begins with " t " then
change case w making raise case

end if
end repeat

end tell

This sets w each time to a reference of this form:

item 1 of every word of window 1 of application " BBEdit "

That code sends BBEdit two Apple events for every word i n the window, one of
which asks BBEdit to evaluate the concept every word afresh each time ! If there are a
thousand words and just two beginning with "t" , that's a massive waste . The second
version of our code was much better:

tell application " BBEdit"
repeat with w in (get every word of window 1 �

where contents of text of it begins with " t ")
change case w making raise case

end repeat
end tell

If there are just two words beginning with "t" , that code will send just three Apple
events : one to gather the list of references to the two words, and then two more to
change their case .

Also, be alert for the possibility that you might not have to loop at all. The target
application might be smart enough do what you want with a single command. In the
earlier Finder example, there was actually no need to gather a reference to every
folder and then ask for the name of each; if that's all we wanted, it could have been
done like this :

tell application " Finder" to set L to name of every folder

See "Properties of Multiple References" in Chapter 10.

Tell
A tell block, like an if block, comes in two forms : a genuine block and a single-line
version. The block form is like this :

tell target
- - co de

end tell

The single-line version is like this :

tell target to command

A tell block performs two distinct functions :

• It determines (at runtime) the target of the commands in its code .

• It dictates (at compile time) the source that will be used for the resolution of the
terminology that appears in its code.

228 I Chapter 12 : Control

The fact that tell does both these things makes a certain sense . After all, if you're
going to be sending messages to the Finder, you're probably going to want to talk to
the Finder in the Finder's own language . Nevertheless, the two functions are dis
tinct, and it is possible to do either one without the other:

• To target an application without using its vocabulary, address it entirely by
means of of, without using tell :

get frontmost o f application " F inder"

That example compiles because the term frontmost is defined by AppleScript
itself; it runs because the Finder adopts the same term.

• To use an application's vocabulary without targeting it, supply a terms block:

using terms from application " F inder"
tell me to get folder 1

end using terms from

That example compiles, but at runtime there's an error because our script
doesn't understand the Finder's term folder.

On the determination of the target, see "Target" in Chapter 10. On the resolution of
vocabulary, see Chapter 19.

Using Terms From
A terms block (as I call it) has the following structure :

using terms from application
- - co de

end us ing terms from

A terms block dictates what application's dictionary AppleScript should get the
enclosed terminology from, without actually targeting that application. On the usual
principle that the innermost block takes precedence, if multiple terms blocks are
nested, only the innermost terms block containing a given line of code has any effect
on that line . Similarly, a terms block overrides the dictionary-seeking function of an
enclosing tell block. A terms block doesn't override an enclosed tell , but if an
enclosed tell would not permit AppleScript to obtain a dictionary that it needs, a
terms block may do so.

Thus, this will not compile :

tell application " F inder"
us ing terms from application "Mailsmith "

get name of folder 1 - - com pile -time error
end using terms from

end tell

Using Terms From I 229

The problem there is that AppleScript must seek folder in Mailsmith's dictionary,
and doesn't find it. But this will compile :

u sing terms from application " F inder"
tell application someVariable

get name of folder 1
end tell

end us ing terms from

AppleScript has no idea what someVariable will be at runtime, so it follows the
instructions of the terms block and thus is able at compile time to obtain a dictio
nary that resolves the enclosed terminology. This, however, does not guarantee that
the code will run. Perhaps someVariable will specify an application that knows what
a folder is ; perhaps not. Basically you're telling AppleScript to suspend judgment
and just believe that the Finder's notion of a folder will work here . You could be
lying. For example, this will compile, but it won't run :

tell application " F inder"
us ing terms from application "Mailsmith "

get mailbox 1
end using terms from

end tell

It will compile because the terms block adduces Mailsmith to make the notion
mailbox meaningful; but it won't run, because the Finder is the target, and when told
to get a mailbox the Finder has no idea what this means.

The chief use of a terms block is to allow compilation of a script targeting a remote
application . We have seen that AppleScript must be able to resolve all terminology at
compile time, and that normally it attempts to do this by using the dictionary of the
targeted application. When an application is on another computer, this might not be
possible at the time the script is compiled: the remote machine might be unavail
able, the remote application might not be running, or the script might specify the tar
get machine dynamically. A terms block lets you get past these hurdles by specifying
a local source for the terminology you're using.

In this example, I ' ll talk to my iBook in the next room using Rendezvous, having first
turned on Remote Apple Events on the iBook in the Sharing preferences panel :

set whatMachine to text returned of �

(d isplay dialog "Machine to connect to : " default answer " eppc : / / ")
- - I enter: eppc : lllittle-white-duck . local
tell application " F inder" of machine whatMachine

us ing terms from application " F inder"
get name of disk 1 - - "OmniumGatherum"

end using terms from
end tell

That script works equally well whether the tell block encloses the terms block or vice
versa. (For more examples , see "Remote Applications" in Chapter 2 1.)

In this next example, we demonstrate how the target can be treated as a variable
thanks to a terms block. There is no tell anywhere in this script, and the script has

230 I Chapter 12: Control

to determine the target entirely at runtime using a reference to the application, which
is passed as a parameter. The main hurdle is getting the script to compile, since
AppleScript must be able to resolve all terminology at compile time; we get over that
hurdle with terms blocks :

global doThis
on getMailbox (whatApp)

us ing terms from application "Mailsmith"
get name of mailbox 1 of whatApp

end using terms from
end get Mailbox
on get Folder (whatApp)

us ing terms from application " F inder"
get name of folder 1 of whatApp

end us ing terms from
end get Folder
on getTheRightThing (whatApp)

if whatApp is application " F inder" then
set doThis to get Folder

else if whatApp is a pplication "Mailsmith " then
set doThis to getMailbox

end if
tell whatApp to my doThis (whatApp)

end getTheRightThing
getTheRightThing (application "Mailsmit h ") -- (drafts)
getTheRightThing (application " Finder") -- "Mannie"

If you tell AppleScript to look for a dictionary in an application that is a web URL,
AppleScript won't actually look there, but will assume that this application is a
SOAP or XML-RPC server. We can use this as a trick to treat the target as a variable
when doing a SOAP call over the Internet. This example, based on a script distrib
uted by Apple, shows how to write a general SOAP-calling handler. The handler,
generalSOAP () , contains no hardcoded information at all, except the application
URL named in the terms block; this URL is a complete fake, and is intended only to
satisfy the compiler that it's okay to use the call soap command. The actual parame
ters supplied in the last line fetch the current Apple stock price over the Internet :

on generalSOAP (u , m, s , a , p)
us ing terms from application . . http : //www . apple . com/placebo ..

tell application u
call soap �

end tell

{method name : m , �

method namespace uri : s , �

parameters : p , �

SOAPAction : a }

end using terms from
end generalSOAP
generalSOAP ('' http : //services . xmethods . net : 8o/soap '' , �

" getQuote" , " urn : xmethod s - delayed -quotes " , �

' ' '' , { Symbol : "AAP L " }) - - 18 . 8

See also "XML-RPC and SOAP" in Chapter 2 1 .

Using Terms From I 231

With
A with block is used to modify Apple events sent within its code to target applica
tions, specifying certain external attributes of those Apple events . Two types of with
block are currently defined : a timeout block and a transaction block.

Timeout

Recall from "Apple Event" in Chapter 4 that during interapplication communica
tions, the sender of an Apple event may attach to that Apple event a specification of
how long it is willing to wait for a reply. This is the Apple event's timeout period. If
the target does not reply within the specified timeout period, for whatever reason
(the operation might be too lengthy, the target application might be otherwise
engaged, and so forth) , the System stops waiting for a reply and reports to the sender
that the Apple event timed out. This report arrives as an error; your script can han
dle this error and proceed (see "Errors ," later in this chapter) .

This entire mechanism is valuable because, among other things, it saves the sender
from hanging indefinitely while waiting for the target to reply; if the target takes too
long to reply, the sender is able to proceed nonetheless . Of course, the sender must
then do without any reply from the target; but the point is that a script can be writ
ten to take account of a problem of this kind, and reporting the problem to the user
and proceeding or terminating in good order is certainly preferable to hanging or
appearing to hang while waiting for a reply that is taking a long time to arrive and
that may, indeed, never come.

All Apple events sent to target applications have a default timeout value of one
minute. This is a good compromise between waiting sufficiently long for lengthy
operations to complete and waiting so long (or not having any timeout at all) that a
script can hang or appear to hang. If this value is acceptable to you, you don't need a
timeout block to change it.

To change the timeout value temporarily using a timeout block, use this syntax:

with timeout of integer second [s J
- - co de

end timeout

This affects only code within the block; afterwards, Apple events revert to the default
timeout value . To wait indefinitely, use an extremely large integer.

To illustrate, we' ll command the Finder to perform an operation so long that with
out a timeout specification it probably wouldn't have time to reply-we'll ask it to
cycle down the entire hierarchy looking for a certain kind of file :

with timeout of 100000 seconds
tell application " Finder"

get every application file of entire contents �

of disk 1 where its creator type is " aplt "

232 I Chapter 12 : Control

end tell
end t imeout

If we don't provide a timeout block, this code will time out before the Finder is fin
ished, and we'll get an error: "Finder got an error: AppleEvent timed out . " Even if
the Apple event times out, the Finder will still be cycling down the entire hierarchy,
and it will keep doing so until it finishes . So don't run that example unless you're not
planning on using the Finder for a while .

Transaction

A problem that can arise with interapplication communications is that a target appli
cation is promiscuous. While you're being a sender and talking to a target applica
tion, some other sender can come along and talk to it as well . If this happens in the
middle of a series of Apple events from you, it can alter the state of the target appli
cation, messing up what you're trying to accomplish.

The Apple event solution to this is the transaction . A transaction is a kind of permis
sion slip allowing you to unify multiple commands. You start by asking for this per
mission slip, and the target application returns a transaction ID of some sort. You
then continue sending the target application Apple events , showing it the transac
tion ID every time. When you're done, you tell the target that you're done (showing
it the transaction ID , of course) , and that transaction comes to an end. Not every
scriptable application implements transactions (would that they did) ; a commonly
used application that does is FileMaker Pro .

The target application itself is responsible for deciding how to implement the notion
of a transaction . All you care about is that state should be conserved throughout the
multiple commands of a single transaction . FileMaker's approach is to implement a
transaction as monopolization : once you've asked for the permission slip and
obtained the transaction ID, FileMaker will simply refuse to respond to any Apple
event that does not show the transaction ID, until you tell it the transaction is over,
at which point it returns to its normal state of promiscuity.

The way to obtain, show, and release the transaction ID is by wrapping your transac
tional communications in a transaction block, which looks like this :

with transaction
- - code

end transaction

All the actual business of dealing with the transaction ID is handled transparently for
you. The with transaction line causes an Apple event to be sent to the current target
asking for the transaction ID . Then all the application-targeted Apple eve°nts inside
the block are accompanied by this transaction ID . Finally, the end tra n s action line
sends the current target one last Apple event accompanied by the transaction ID, tell
ing it to leave transaction mode.

With I 233

In this example, we monopolize FileMaker Pro long enough to create a Find request
and perform it:

tell application " F ileMaker Pro "
with transaction

tell database 1
s how every record
set f to create new request
set cell " lastname " of f to " neuburg"
find

end tell
end transaction

end tell

There is one important thing to notice about that code : the transaction block is
inside the tell block. It is essential to structure your code this way; the application
with which you want to carry on a transaction must be the target when the with

transaction line is encountered, so that AppleScript knows where to send that first
Apple event asking for the transaction ID. Unfortunately, this means we run smack
dab into a bizarre terminology problem. It turns out that FileMaker Pro's dictionary
also implements the opening and closing transactional Apple events as the com
mands begin transaction and end transaction . This means that when you say end

transaction inside a tell block addressed to FileMaker Pro, i t is seen as FileMaker's
end transaction command, not as the end of the transaction block. The script then
won't compile . The workaround, which is terribly annoying, is to delete the word
transaction from the end tra nsaction line every time you are about to compile the
script .

You might worry about what happens if something goes wrong in the middle of the
transaction block. What if we say something that generates an error? We'll never
reach the end of the transaction block, and that means we' ll leave FileMaker Pro in a
transaction state, refusing to respond to Apple events. You're perfectly right to worry
about this ; you certainly don't want to leave FileMaker Pro in transaction mode. If
FileMaker Pro were to get into such a state, you couldn't even quit it, because the
Quit menu item is implemented with an Apple event-and FileMaker Pro won't lis
ten to that Apple event, because it doesn't supply the transaction ID ! It turns out,
though, that AppleScript solves this problem transparently. If an error is encoun
tered during a transaction block, AppleScript sends the target the Apple event that
ends the transaction. I suspect that the transaction block is wrapped in a sort of
invisible try block. In any case, it's really all very nicely implemented.

Considering/Ignoring
There are two kinds of considering/ignoring block . One is the " ignoring application
responses" block, which affects the nature of Apple events targeting an application.
The other affects the details of string comparisons .

234 I Chapter 1 2: Control

Ignoring Application Responses

Recall from "Apple Event" in Chapter 4 that during interapplication communica
tions, the sender of an Apple event may specify that it has no intention of waiting
around for a reply. It doesn't care what the result is; it doesn't care if there's an error.
It just wants to send the Apple event and be done with it, proceeding immediately to
its own next step . In AppleScript, here 's how to send such an Apple event:

ignoring application responses
- - code

end ignoring

Within the block, only Apple events sent to other applications are affected. Apple
events sent to scripting additions, for example, are sent in the normal way and
receive whatever replies they normally receive .

For an example, see "Reduction" in Chapter 1. The code that opens a URL from the
clipboard is wrapped in an "ignoring application responses" block because I want
the browser or mail client or whatever to open in the background and without my
waiting for it; thus I can get on immediately with what I was doing.

Inside an " ignoring application responses" block, it is possible to override the block
by embedding a "considering application responses" block. You might use this, for
example, to ignore application responses from one application but not another.

String Considerations

String considerations are features of strings that may optionally come into play when
performing a string comparison (see "Comparison Operators" and "Containment
Operators" in Chapter 15) . For example, string comparison may be case-sensitive or
case-insensitive . You use a considering/ignoring block to govern this behavior.

Until recently there was no mechanism for making string considerations visible to a
targeted application. This meant that string considerations could operate only within
AppleScript; a string comparison performed as part of a boolean test element speci
fier, for example, could not be affected by string considerations (see "Boolean Test"
in Chapter 10 and "Who Performs an Operation" in Chapter 15) . This limitation has
changed, but applications must be rewritten if they are to notice and take account of
string considerations. See also "String and Clipboard" in Chapter 20 on the offset

scripting addition command.

Here are the string considerations :

case

If ignored, uppercase and lowercase variants of the same letter are taken to be
equivalent . Ignored by default .

d iacriticals

If ignored, variants of the same letter with different accent marks (or no accent
mark) are taken to be equivalent. Considered by default .

Considering/Ignoring I 235

expan s ion

If ignored, ligatures are taken to be equivalent to their component characters .
Considered by default.

hyphens

If ignored, hyphens are taken not to exist. Considered by default .

punctuation

If ignored, word-boundary punctuation and quotation marks and apostrophes
are taken not to exist. Considered by default.

white space

If ignored, spaces, tabs, and line break characters are taken not to exist. Consid
ered by default.

Here's the syntax for writing a string consideration :

considering I ignoring considerations
[but ignoring I considering considerations]
- - code

end considering I ignoring

Each set of considerations is any number of string considerations separated by
comma; Apple5cript will rewrite the last comma as a n d . Entire string consideration
blocks may also be nested. 50, for example:

ignoring hyphens , expansion and punctuation
considering white s pace but ignoring case and diacriticals

" a _ II
=

IIA ! " _ _ true
end considering

end ignoring

Errors
An error is a message at runtime saying, in effect, that something bad has hap
pened and execution cannot continue . The sender of such a message is said to
throw an error. The message percolates up through the call chain looking for an
error-handling block surrounding the line currently being executed; such a block is
said to catch the error. If no block catches the error, it percolates all the way up to
Apple5cript, which puts up an error dialog, and the script terminates prematurely.

This entire mechanism is extremely nice, because it provides a target application, or
Apple5cript itself, with a way to signal that it's impossible to proceed and to inter
rupt the flow of code, while leaving it up to the caller whether and how to recover.
Your script can implement no error handling, in which case any runtime error will
bring the script to a grinding halt. Or your script can implement error handling in
certain areas where it expects an error might occur. It can recover from some errors
and re-throw others, allowing them to terminate the script. It can throw an error as a
way of controlling the flow of code.

236 I Chapter 12 : Control

An error can be a positive thing, and can be built into the structure of a command's
implementation. For example, display dialog throws an error if the user clicks the
Cancd button in the dialog. This is not intended to kill your script. The expectation
is that your script can just catch the error as a way of learning that the user has can
celled, and can then proceed in an appropriate manner.

I ' ll talk first about how to throw an error, then about how to catch one.

Throw

To throw an error, use the error command. It has five optional parameters :

error [messageString]
[n umber shortlnteger]
[partial result list]
[from anything]
[to clas s]

Here are their default values :

messageString
Nothing

n umber

- 2 700

partial result

The empty list

from

The currently executing script or script object

to

The class item

You can use any of the parameters when throwing an error, but in real life you are
likely to use only the first two . The others are present because this is also the struc
ture of an error message from an application, which can supply this further informa
tion to help explain what the problem was .

If you throw an uncaught error, it will trickle all the way up to AppleScript and will
be presented to the user as a dialog. The messageString is your chance to dictate
what appears in that dialog. You will probably want to say something meaningful
about what went wrong. For example :

error "Things fall apart , the centre cannot hold . "

Figure 12-1 shows how that error is presented to the user in the Script Editor.

If an error is thrown in an applet, the applet puts up a similar dialog, which also
offers a chance to edit the script. If this is a Stay Open applet ("Applet Options" in
Chapter 24), the error does not cause it to quit.

Errors I 237

AppleScrlpl. Error

Tlilngs at) �m. the centre ,;annot hold.

Figure 1 2-1 . An error dialog

If you don't supply any parameters at all to your error command, the error dialog
reads : "An error has occurred. " If you don't supply a messageString but you do sup
ply an error number-let's say it's 3 2-the dialog reads : "An error of type 32 has
occurred. "

An error number is not highly communicative to the user, unless the user is supplied
with a table of error numbers and their meanings; but it is certainly useful within
code, particularly when you're implementing internal error handling. If different
kinds of things can go wrong, you can use this number to signal which one did go
wrong. An example appears in the next section.

Catch

The only way to catch an error is for that error to be thrown within a try block; this
includes code that is ultimately called by code within a try block. The thrown error
percolates up through the calling chain, and if it eventually finds itself within a try
block, it may be caught.

There are two forms of try block. In the first, there is no actual error-handling code :

try
-- code

end try

This form of try block handles the error by ignoring it. If an error is caught any
where in the try block, the block terminates ; execution resumes after the end try,

and that's the end of the matter. Thus, you have no way to learn directly that an
error was caught (though you can learn indirectly, because some code may have been
skipped) . But at least the error didn't bring your script to a halt. Here 's an example :

set x to "Cancel"
try

set x to button returned of (display dialog " Press a button . ")
end try
display dialog "You pressed " & x

If the user presses the Cancel button, display dialog throws an error; without the try
block, this code would then never reach the last line .

238 I Chapter 12 : Control

In this next example, we use a try block as a form of flow control. We want to get the
name of every disk. (Ignore the fact that we could just ask the Finder for this infor
mation directly.) Instead of asking how many disks there are and looping that num
ber of times, we loop forever but inside a try block. When we exceed the number of
disks, the Finder throws an error and the loop ends.

set L to { }
set x t o 1
tell application " F inder"

try
repeat

set end of L to name of disk x
set x to x + 1

end repeat
end try

end tell

In the second form of try block, you supply some error-handling functionality:

try
-- code

on error [parameters]
- - error-handling code

end try

If an error is caught anywhere in the try part, the try part terminates; execution
resumes at the start of the error block. If no error is caught anywhere in the try part, the
error block is skipped. The parameters are exactly the same as those for an error com
mand, so your error block can capture and respond to any information that may have
been included when the error was thrown. You don't have to include any parameters
and you can include any subset of the parameters; thus you aren't forced to capture
information you don't care about. Parameter variable names are local to the error block.

In this example, we have a handler that returns one error code if the user cancels a
dialog and another if the user fails to enter the required information in that dialog:

on get FavoriteColor ()
try

set r to display dialog "What is your favorite color? " default an swer " "
on error

error number 1001
end try
set s to text returned of r
if s = " " then error number 1000
return s

end get FavoriteColor
set c to " "
repeat until c is not

try
set c to get FavoriteColor ()

on error number n
if n = 1000 then

display dialog "You didn ' t enter a color! " buttons "OK"

Errors I 239

else if n = 1001 then
display dialog "Why did you cancel? Tell me! " buttons "OK"

end if
end try

end repeat
display dialog "Aha , you like " & c & ", eh? "

This example illustrates how errors and error handling help with the distribution of
responsibilities. The handler getFavoriteCo!or() has just one job-to get the user's
favorite color. If something goes wrong, it signals this with an error; that's all. It's up
to the caller to decide how to proceed at that point. In this case, the caller is pre
pared for the possibility that two kinds of thing might go wrong, and has a different
dialog ready to show the user in each case. The caller is perfectly prepared to loop all
day until the user enters something in the dialog. But all of that is the caller's own
decision; the handler itself just performs the single task for which it was written. Dis
tribution of responsibilities makes for more reusable code, and the example shows
how throwing errors contributes to this.

A common technique in an error handler is to handle only those errors that are in
some sense yours, those that you expect and are prepared to deal with. Unexpected
errors are simply allowed to percolate on up to AppleScript, causing the script to ter
minate; this makes sense because they're unexpected and you're not prepared to deal
with them. There are two ways to accomplish this.

One way is to catch all errors and then rethrow any errors you aren't prepared to
handle. If you're going to do that, you should probably use all the parameters , both
in the on error line as you catch the error and in the error command as you rethrow
it; otherwise you might strip the error of some of its information, which might
reduce its value to the user (or to any code at some higher level that catches it).

In this example, we ask the user for the number of a disk to get the name of. If the
number is not the number of an existing disk, the Finder throws error number -1728 ,

so if we get an error and that's its number, we deliver a meaningful response. If we
get any other error-for example, the user enters text in the dialog that can't be
coerced to a number-we rethrow it.

set n to text returned of ,

try
(display dialog "What disk would you like the name of? " default answer " ")

tell application "Finder " to set x to name of disk (n a s integer)
display dialog x

on error e number n partial result p from f to t
if n = -1728 then

display dialog "I don ' t think that disk exists. " & e
else

error e number n partial res ult p from f to t
end if

end try

The other approach is to use a filtered error handler. In this approach, some of the
parameters in the on error line are not variable names but literals. AppleScript will

240 I Chapter 1 2: Control

call the error block only if all such literals are matched by the corresponding error

parameter value. Otherwise, the error percolates up the call chain, of its own accord.

Thus, we can rewrite the error block from the previous example as follows :

on error e number -1728
display dialog "I don ' t think that disk exists. " & e

end try

There's no way to list alternative literals; you can't write an error block that catches
errors with either of just two particular error numbers, for instance. A workaround is
to nest try blocks. Thus we can rewrite the second half of the earlier "favorite color"
example like this :

set c to " "
repeat until c i s not

try
try

set c to get FavoriteColor ()
on error number 1000

display dialog "You didn ' t enter a color! " buttons "OK"
end try

on error number 1001
display dialog "Why did you cancel? Tell me! " buttons "OK"

end try
end repeat
display dialog "Aha , you like " & c & " , eh? "

If you don't like the look of literally nested try blocks ("lexical nesting"), you can
nest them by means of the calling chain ("dynamic nesting") :

global c
set c to " "
on a s kUser()

try
set c to get FavoriteColor ()

on error number 1000
display dialog "You didn't enter a color! " buttons "OK"

end try
end a s kUser
repeat until c is not

try
a skUser ()

on error number 1001
display dialog "Why did you cancel? Tell me! " buttons "OK"

end try
end repeat
display dialog "Aha , you like " & c & ", eh? "

An expired timeout ("Timeout," earlier in this chapter) is an error like any other; this
example shows a way to handle it:

try
tell application " F inder"

activate
with timeout of 1 second

Errors I 241

display dialog " Pres s a button. " giving up after 2
end timeout

end tell
on error number -1712

activate
display dialog " Ha ha, not fast enough! "

end try

Second-Level Evaluation
By "second-level evaluation" I mean constructing and executing code at runtime.
AppleScript has no built-in way of performing second-level evaluation. However, you
can achieve much the same effect through the use of the run script scripting addi
tion command, which allows you to compile and run a string. (See "Compiled Script
Files as Script Objects" in Chapter 9.)

The use of run script is rather resource-expensive, because it requires that a com
pletely new instance of the AppleScript scripting component be generated and torn
down. It's also rather slow, because it takes time to compile the string. Finally, it's
rather clunky, because a string run in this way has no communication with its sur
roundings; indeed, because a new instance of the AppleScript scripting component is
generated, it has no surroundings at all. In other words, it isn't like a script object
that can "see" globals at the point where it is defined and run.

Nevertheless, there are things you can accomplish with run script that can be
accomplished in no other way. For example, all terminology must be resolved at
compile time, so the only way to construct completely dynamically, at runtime, a
command involving terminology is by means of run script .

In this example, we permit the user to enter part of a n expression t o b e evaluated by
saying it to the Finder:

set d to "window 1"
set p to "What F inder obj ect would you like the name of? "
set r to display dialog p default answer d
set s to text returned of r
set s to "tell app \ " F inder\" to get name of " & s
try

set res to run script s
display dialog res

on error
display dialog " Sorry, that didn ' t work. "

end try

For another example of run script used for second-level evaluation, see "Record
Properties" in Chapter 13.

242 I Chapter 1 2: Control

CHAPTER 13

Datatypes

A datatype is a classification of a value; every value is of one data type or another.
This is what AppleScript calls a class (see Chapter 10). For example, string is a
datatype, integer is a data type, and so forth. AppleScript provides a number of
native datatypes; this chapter describes them.

Scriptable applications can extend the language by providing additional datatypes.
For example, the Finder implements a folder datatype (or class). But such addi
tional datatypes are confined to the application that defines them; a value returned
by a scriptable application must be either a reference to an object belonging to that
application, or one of AppleScript's native datatypes.

Some values can be mutated from one datatype to another. Such a mutation is called
coercion. To put it more strictly: for some pairs of datatype, call them datatype 1 and
datatype 2, it is the case that at least some values of datatype 1 can be coerced to a
value of datatype 2. For example, the string "1" can be coerced to a number; when
that happens, you get the number 1. What coercions are possible, and how they are
performed, is explained in Chapters 14 and 15.

Boolean
A boolean is a datatype consisting of exactly two possible values, true and false .

class of true - - boolean
class of (1 < 2) -- boolean

The main use for a boolean is as a condition in a control statement, such as a repeat
while block (Chapter 12). For the operators that generate and combine booleans, see
Chapter 15.

243

Integer, Real, and Number
The integer and real datatypes are the numeric classes.

class of 1 -- integer
class of 1.1 - - real

A literal integer is a series of digits , possibly preceded by a minus sign. The maxi
mum integer is 536870911 , positive or negative, which, as everyone knows, is 229-l.

Any integer value outside this range is implicitly coerced to a real .

A literal real is a series of digits with a decimal point, possibly preceded by a minus
sign. You may also use "scientific notation" : that's a number followed by small or
capital e , possibly followed by a plus sign or a minus sign, followed by an integer;
AppleScript might rewrite a scientific notation number for you, but in any case it will
always be a real. For example :

le2 -- rewritten: 100.0
2.1e26 - - rewritten: 2.1E+26

You can't include a comma as a thousands separator in a literal number.

The class n umber is purely for purposes of coercion. In some situations you can use it to
ask AppleScript to coerce to whichever numeric data type, integer or real, is appropri
ate . This is nice because it saves you from having to worry about which is appropriate.

class of (" 1 " as number) - - integer
class of (" 1.1 " as number) - - real

However, number cannot be used in every situation where a numeric
coercion is possible. For example, true as integer is legal, but true a s
number is not. I regard this as a bug.

An integer is four bytes. A dictionary may occasionally mention a class small

integer, which is two bytes (ranging from -32768 to 32767) . You can create one by
coercion, but there should be little need to do so, since small integers are typically
used transparently; they evidently become integers before you get a look at them:

set x to 4 as small integer
class of x -- integer
class of (ASCI I n umber " a ") - - integer, even though dictionary says "small integer»

There is also a class double integer, which is eight bytes. This is sometimes used
when communicating with the System, and seems to be simply a real within the inte
ger range. Again, there should be little need to create one; a double integer in your
code is reported as a real . There are other rarely used numeric classes , transparently
coerced to integer or real before you get hold of them; these include fixed , extended

real, and so forth. For a full list, see Appendix A.

2 44 I Chapter 13 : Datatypes

Date
A date is a date-time. For the practical limits on the range of dates that can be
expressed, see the year property later in this section. AppleScript knows nothing of
time zones, and assumes the Gregorian calendar even for dates before its invention.

A literal date is an object string specifier (see Chapter 10). In constructing a date , you
may use any string value that can be interpreted as a date , a time, or a date-time;
AppleScript (or more probably the System) is quite liberal in what it will accept, pro
vided the string makes sense in terms of your date and time format settings in the
International pane of System Preferences. AppleScript will supply missing values
such as today's date (if you give only a time) or this year (if you don't give a year) or
midnight (if you give only a date).

AppleScript presents a literal date specifier in long date-time format in accordance
with your International settings. It does this even within your script, on decompila
tion, if you use a literal string in a date specifier:

date " 5/25/2003 " - - rewritten: date " Sunday, May 25 , 2003 12 : 00 : 00 AM"

If the expression " 5/25/2003 " isn't a date according to your International prefer
ences, this code won't compile. For example, if you have UK settings, you'd need to
type date "25/5/2003" .

Having obtained a date one way or another, you can then derive a new date from it
in two ways. One is by date arithmetic, which involves adding and subtracting sec
onds. (See Chapters 15 and 17 for some constants that can help you calculate the
desired number of seconds.) The other is to combine a new time part or date part
with the existing date; this is done by an odd syntax that treats a date specifier as a
property of another date :

date dateOrTimeString of date

For example:

set s to "2/25 "
set d to date s - - February 25, 2003 12:00:00 AM
set d2 to date " 10 : 30" of d -- February 25, 2003 10:30:00 AM
set d3 to date " 1/24" of d2 -- January 24, 2003 10:30:00 AM

Again, notice that this code will compile but not run on a machine with UK set
tings. Scripts that form dates dynamically by coercing from a string are thus not very
portable.

You can also alter a date in place by changing one of its properties. AppleScript (or
more probably the System) will compensate when you change a property in a calen
drically impossible way:

set s to "May 3 1 "
set d to date s
set month of d to June -- July 1, 2003 12:00:00 AM

Date I 245

When you use set (as opposed to copy) to set a variable to a value which is a date,
you set the variable by reference. This means that the date is not copied; the vari
able's name becomes a new name for the date, in addition to any names for the date
that may already exist. The same is true when a date is passed as a parameter to a
handler. This special treatment is in common between lists , records, dates , and script
objects. (See "Pass By Reference" in Chapter 8 and "Set By Reference" in Chapter 9.)

For example :

set s to " May 31"
set d to date s
set d2 to d
set month of d2 to June
d - - July 1, 2003 12:00:00 AM

Date Properties

The following are the properties of a date value :

year

A positive integer. You can't express BCE dates. The mathematical range limit
on the year seems to be 100-9999 .

month

day

time

A constant (not a string!) : J a n uary, February, and so on.

A positive integer.

An integer; the number of seconds since midnight represented by the date 's time
part.

weekday

A constant (not a string!) : Monday, Tuesday, and so on. In practice this property is
read-only; there's no penalty for setting it, but trying to set a date's weekday to a
weekday that isn't accurate for that date has no effect.

date string

short date string

t ime string
A string consisting of just the date or time part of the date-time. In practice these
properties are read-only; setting them results in a stack overflow (I 'd have to call
that a bug). They are formatted in accordance with your International prefer
ence pane settings.

The t ime string and date string are suitable for combining with an existing date to
form a new date, using the syntax we saw earlier. For example :

set s to "5/25/2003 "
set d1 to date s
set t to "4PM"

246 I Chapter 13 : Datatypes

set d2 to date t
set d3 to date (t ime string of d2) of dl - - May 25 , 2003 4:00:00 PM

String
A string is the basic text datatype. A literal string is delimited by double quotation
marks :

set s to " howdy"
class of s - - string

In typing a string literal, you may enter certain characters in "escaped" form; they are
listed in Table 13-1. These are the only "escaped" characters; other untypeable char
acters may be concatenated into the string by means of the ASCII chara cter script
ing addition command. (See "Concatenation Operator" in Chapter 15 and "String
and Clipboard" in Chapter 20.) After compilation, the tab , return, and linefeed char
acters are un-escaped and turned into whitespace : they remain intact, but you can no
longer see directly what characters they are, which is a pity.

Table 13-1. "Escaped" string literals

What to type ASCII equivalent Result

\" ASCII character 34 Quotation marks

\t ASCII character 9 Tab

\r ASCII character 13 Return

\n ASCII character 10 Linefeed

\\ ASCII character 92 Backslash

Don't confuse AppleScript's built-in string type and its native manipulations of this
type with how scriptable applications may implement their own string behavior.
When you ask an application to perform manipulations on text of its own, it may
behave differently from AppleScript. For example :

tell application "lex-Edit Plus "
set text of window 1 to " Now is the winter"
get word after character 3 of text of window 1 - - "is"

end tell
get word after character 3 of " Now is the winter" - - error

In the tell block, everything belongs to Tex-Edit Plus; you're speaking of Tex-Edit's
implementation of the text class, and you're dependent upon Tex-Edit's idea of a
word and a character and what can be done with them. In the last line, you're work
ing with a string and talking to AppleScript itself.

String I 247

String Properties

The following are the properties of a string. They are read-only.

length

The number of characters of the string. You can get this same information by
sending the count message to the string.

quoted form

A rendering of the string suitable for handing to the shell as an argument to a
command. The string is wrapped in single quotation marks and internal quota
tion marks are escaped.

You probably shouldn't look at the result of quoted form , because you might not
understand it; it's meant for the shell 's eyes, not yours, and an extra level of
(mis)representation is added by AppleScript as it shows you the string. For example :

quoted form of " life ' s a \ " bowl\" of cherries "
- - '" Ii fe' \\ ' ' s a \" bowl \" of cherries'"

That looks pretty dreadful, but it's right, as you'll discover if you hand it to the shell :

set s to quoted form of " life's a \ " bowl\" of cherries "
d o s hell script " echo " & s
- - " life's a \"bowl\" of cherries"

String Elements

The following are the elements of a string. Bear in mind that you can't set them; you
cannot alter a string in place ! Elements may be specified by index number, by range,
or with every .

character

word

A string representing a single character of the string.

A string representing a single word of the string. It has no spaces or other word
boundary punctuation.

paragraph

A string representing a single paragraph (or line) of the string. It has no line
breaks. AppleScript treats a return, a linefeed, or the one followed by the other
(CRLF) as a line break.

.

text

A run of text. Its purpose is to let you obtain a single string using a range ele
ment specifier; see "Range" in Chapter 10. So, for example :

words 1 thru 3 of " Now is the winter" - - {"Now" , "is " , "the"}
text from word 1 to word 3 of " Now is the winter" - - "Now is the"

text item

A "field" of text, where the field delimiter is AppleScript's text item delimiters

property.

248 I Chapter 13 : Datatypes

The text item property needs some explanation. There is a property of the Apple
Script script object (the parent of top-level script-see "The Implicit Parent Chain"
in Chapter 9) called text item delimiters. You can set this to any string you like .
(The documentation claims that the text item delimiters is a list of strings, but only
the first item of the list is effective .) That string is used to "split" a string into text
items. The number of text items a string has is always exactly one more than the
number of times it contains the text item delimiters string. For example:

set the text item delimiters to " : "
text items of "xxx : Users : mattneub "
- - {"xxx", "Users ", "mattneub"}
set the text item delimiters to "tt "
text items o f "Matt "
__ {liMa", II II}
set text item delimiters to " s "
set howMany t o (count text items of "Mis sissippi ") - 1
howMany -- 4, the number of s's in Mississippi

The value of the text item delimiters persists as long as this instance of the Apple
Script scripting component does. Since you might run more than one script in the
presence of this scripting component, any of which might set the text item

delimiters , it is wise to make no assumptions as to the value of the text item

delimiters . In other words, don't use it without setting it. Apple's documentation
makes a big deal of this , but it's really no different from any of the other AppleScript
properties , such as pi (see Chapter 16).

Unicode Text
Unicode text is text in UTF-16 encoding, as opposed to string, which has the Mac
Roman encoding. Unicode is the native system-level encoding of Mac OS X, so text
supplied by the System is often Unicode text rather than a string. For example:

tell application " F inder" to set x to (get name of disk 1)
c l a s s of x - - Unicode text

Similarly, some Mac OS X-native applications, such as TextEdit, return text values
as Unicode text. Unicode is capable of expressing tens of thousands of characters ,
and in its fullest form will express about a million, embracing every character of
every written language in history. Eventually we may expect that AppleScript will
become completely Unicode-savvy; all AppleScript text will be Unicode text, and the
old string type will fade into oblivion.

Unicode text is basically indistinguishable from a string; the differences between
them are handled transparently. Whatever you can do to a string, you can do to Uni
code text . If you get an element of a Unicode text value, the result is Unicode text . If
you concatenate Unicode text and a string, the result is Unicode text (though if you
concatenate a string and Unicode text, you get a string; this is troublesome and
might change in a future version of AppleScript) . You can explicitly coerce between a
string and Unicode text , and AppleScript implicitly coerces for you as appropriate .

Unicode Text I 249

Nevertheless, Unicode text is currently still a second-class citizen in AppleScript, and
can be hard to work with. You can't even type a Unicode text literal in AppleScript.
Well, you can, but AppleScript will render it as MacRo man when you compile the
script, so any characters outside the range of MacRoman are lost. And AppleScript's
supplied string manipulation commands, such as the scripting addition command
ASCII character, don't work outside the MacRo man range either.

One workaround is to construct a character as hex data (see "Data" later in this
chapter) and coerce it to Unicode text. So, for example, the following code yields a z
hacek (z), Unicode code point hex D17E:

set myZ to «data utxt017E •• as Unicode text

Another approach is to write the data out to a file and read it back in. This works
because AppleScript gives you a wide variety of ways to treat file data. Here's an
example (on reading and writing files , see Chapter 20):

set f to a reference to file "myDisk : myFile "
open for access f with write permission
write 382 to f a s small integer starting at 0
set s to read f as Unicode text from 0 to 1
close access f

After that, s is a z-hacek, because decimal 382 is hex D17E. There is also support for
exchanging data with a file as UTF-8; but there is no internal support for AppleScript
text in UTF-8 encoding, so if you read text as UTF-8, it is converted to UTF-16:

set f to a reference to file "myDisk : myFile "
open for access f with write permission
write "this is a test" to f as «class utf8» starting at 0
close access f
open for access f
set s to read f as «class utf8»
close access f
class of s - - Unicode text

Still another approach is to talk to the shell. This has the advantage that a good Unix
scripting language, such as Perl, will let you express string data more conveniently
than AppleScript will; it works because the do shell script scripting addition com
mand returns Unicode text by default. So, for example:

set p to " use utf8;\n "
set p to p & " print chr(oxo17E);"
set s to do shell script " perl -e " & quoted form of p

After that, s is a z-hacek. One must hope that some time soon these manipulations
will cease to be necessary.

An older class , international text , is less likely to arise on Mac OS X. It was a way
of representing text in accordance with a particular language and script (where
"script" means a writing system); each language-script combination had its own
rules (an encoding) for how particular sequences of bytes were mapped to characters

250 I Chapter 13 : Datatypes

(glyphs). The mess created by this multiplicity of encodings is the reason why Uni
code is a Good Thing.

Styled Text
A style is an attribute of text, such as its font and size, whether it's underlined, that
sort of thing. Apple5cript defines a styled text class , but you can' t manipulate it in
any interesting way; in fact, you can barely even detect that it exists, because if you
happen to encounter one and ask for its class , you're told it's a string . 50 you may as
well treat it as such.

The styled text class isn't much used; most applications that provide scriptable text
styling use a more sophisticated class that lets you access and manipulate the style
information. Nevertheless , you might encounter styled text from time to time, espe
cially when retrieving text data from the clipboard. You can detect that this has hap
pened by coercing the text to a record, like so:

tell application " Finder"
activate
set x to (the clipboard)

end tell
x as record
- - { .. class ktxtll: "test " , �
.. class ksty .. : .. data stylOOO100000000000DoooAOO100000000cOOOOOOOOOOOOII}

As you can see, the string is actually made up of text information and style informa
tion. But the text information is all that Apple5cript is normally willing to show you.

File
The built-in file class is Apple5cript's way of letting you refer to a file or folder on
disk. The literal form is an object string specifier using a pathname string:

file " xxx : Users : mattneub : "

Apple5cript pathname strings are Macintosh-type paths, where you start with a disk
name, and the delimiter between the disk name, folder names, and filename is a
colon. A pathname ending in a colon is a folder or a disk. A partial pathname, one
whose first element is not a disk, is taken to start inside the "current directory"; but
the interpretation of this notion is unreliable, and partial pathnames should be
avoided.

Alternatively, you can specify a file using a Unix-type (P05IX-type) path, where the
delimiters are slashes and an initial slash means the top level of the startup disk. To
do so, you must ask for a posix file instead of a file . Apple5cript presents this, on
decompilation or as a value, as a file specifier with the delimiters changed to colons.
50, for example, if I write this :

posix file "/Users/mattneubl"

File I 251

AppleScript changes it to this:

file " xxx : Users : mattneub : "

That l.ooks like an ordinary file object, but behind the scenes it isn't; it's a different
class , a file URL (class ' furl ') . This class pops up in various contexts , lurking behind
the file class . For example, the choose file name scripting addition is documented
as returning a file object, and appears to do so, but in reality it' s a file URL

Just to confuse matters still further, some dictionaries mention a file s pecification

class . For example, BBEdit's check syntax command requires a file specification

parameter. This is a deprecated, outmoded class (class' fss ') , which the file class
replaces transparently. So, this works, even though what you're forming is techni
cally a file object and not a file specification, and a file specification comes
back as part of the result:

tell application "BBEdit "
set r t o check syntax file " xxx : Users : mattneub : testing.html "
class of result_file of item 1 of r -- file specification

end tell

You can even form a file specification object using an object string specifier; but
don't . They can behave oddly; that's why they are deprecated. Stick to a file object
and let the transparency work for you.

A file object constructed in your script can't be assigned directly to a variable
(though, confusingly, a file URL can). Instead, you must assign a reference to the file
object, like this:

set x to a reference to file "xxx : Users : mattneub : testing.html"

A file specifier is not resolved until the script actually runs . This means that the file
on disk need not exist at compile time . At runtime, however, when the file specifier
is handed to some command, either the file must exist, or, if the command proposes
to create it, everything in the path must exist except for the last element, the file
you're about to create . Otherwise the command will generate a runtime error. We've
already met one command that accepts a file specifier to create a file-store script

(for example, see "Context" in Chapter 9).

Don't confuse the AppleScript file object with the file class as defined by some script
able application. For example, the Finder defines the file class with lots of elements
and properties not defined in AppleScript itself:

tell application " Finder"
get owner of file " xxx : Users : mattneub : myFile" -- mattneub

end tell

In that code, the owner property is defined by the Finder. The term file refers to the
Finder's file class; the Finder allows you to use a pathname as the name, just as it

252 I Chapter 1 3 : Datatypes

does for item and folder and other classes . In fact, you can't hand an AppleScript file
object to the Finder, as this example shows:

set f to a reference to file "xxx : Users : mattneub : myFile "
tell application " F inder"

get owner of f - - error
end tell

An AppleScript file object is a viable medium of communication where a scripting
addition or scriptable application doesn't define file objects of its own:

script x
display dialog " howdy"

end script
set f to a reference to file "xxx : Users : mattneub : myF ile "
store script x in f replacing yes
tell application " Script Editor" to open f

File Properties

You can obtain a POSIX path name by forming a file specification and asking for its
POSIX path . No element of the pathname need exist. For example:

POSIX path of file " a lice : in : wonderland" -- "/alice/in/wonderland"

That, however, is a misuse of this feature; if you want it to behave properly, you need
to behave properly. The POSIX path property does some useful things for you; for
example, here it supplies the Nolurnes directory before the name of a nonstartup
disk:

POSIX path of file "main : " -- "/Volumes/main!"

Again, it makes a difference whether you're talking to AppleScript or to some script
able application. The Finder's file class , for example, has no POSIX path property.

You can obtain a host of useful information about a file , such as its creation date,
whether it's invisible, whether it's a folder, how big it is, what application opens it,
and lots of other cool stuff, with the info for scripting addition command:

info for file " xxx : Users : mattneu b : someFile"

The result comes back as a record, which is easy to read and well-documented in the
StandardAdditions dictionary, so I won't go into details here . You can obtain a list of
the names of a folder's contents with the list folder scripting addition command.
There are also commands for reading and writing a file, and there's even some inter
face for letting the user choose a file (see Chapter 20).

Alias
An alias object is very much like a file object. You can form an alias specifier in j ust
the same way as you form a file specifier, and an alias object can often be used in

Alias I 253

the same places where a file object would be used. But there are some important
differences:

• The item on disk represented by an alias specifier must exist at compile time.

• A pathname string or a file object can be coerced to an alias . (But a file specifier
can't be coerced to an alias in the current Script Editor. I regard this as a bug,
since it works fine in the old Script Editor.)

• An alias can be assigned directly to a variable as its value.

• An alias is an alias . That means it has the wonderful ability of a Macintosh alias
to continue pointing to an item on disk even if the item is moved or renamed.

Alias objects are commonly used by scriptable applications as a way of returning a
pointer to an item on disk. For example:

tell application "BBEdit"
get file of window 1 - - alias "xxx:Users:mattneub:someFile"

end tell

In that code, the term file is merely the name of a window property, and has nothing
to do with the file class from the previous section. (Well, almost nothing. Its raw
four-letter code is the same as that of the file class. See Chapter 19.)

Again, don't be confused by classes belonging strictly to a particular scriptable appli
cation; the Finder's alias file class, for example, is not an alias .

There is a long-standing confusion in AppleScript about how to specify the file to
which a new document is to be saved. AppleScript's Core Suite ("Suites" in
Chapter 19) dictates that the save command takes an alias , and most applications'
dictionaries therefore say the same. But this is impossible, because an alias must exist
at compile time, and clearly it doesn't , since what you're trying to do is create it.
Since the dictionary is lying, you must experiment in order to find out what the
application really wants . For example:

tell application "GraphicConverter"
set s to " xxx : Users : mattneub : Desktop : j oconde "
save window 1 in alias s as PICT -- error

end tell

That code fails with a runtime error, because the file doesn't exist . If you write the
same code using a file specifier, it compiles and runs but the file isn't saved:

tell application "Graphic Converter"
set s to " xxx : Users : mattneub : Desktop : joconde "
save window 1 in file s as PICT -- no effect

end tell

After a great deal of banging around, you finally try this , and it works:

tell application "GraphicConverter"
set s to " xxx : Users : mattneub : Desktop : joconde "
save window 1 in s as PICT

end tell

254 I Chapter 13 : Datatypes

Apparently the reliable way is simply to hand a pathname string to GraphicCon
verter. Indeed, more recent applications' dictionaries explicitly ask for Unicode text,
implying that they expect a pathname. Even then you're not home free, because
there are two forms of pathname string. Only experimentation will reveal, for exam
ple, that TextEdit wants a POSIX-style path:

tell application "TextEdit "
save document 1 i n "/Users/mattneub/someFile"

end tell

Application
The application class is used primarily to specify a target. You construct an applica
tion object using an object string specifier-the word a pplication followed by a
string representing the application's name· or pathname. An abbreviation for
application is app .

On Mac as x, sometimes the application's name isn 't what you think i t is. The ten
dency is to glance at the Application menu at the upper left when the application is
frontmost, or to look at the application's name in the Dock, and imagine that this
shows you its real name; sometimes it doesn't. For example, Excel's name is "Excel "

i n both the Application menu and the Dock, but its real name i s "Microsoft Excel " .

If an application is targeted by a tell block, AppleScript must be able to find the
application in order to compile the script. You can use a full pathname instead of just
a name, to help it; but you shouldn't usually have to do this. (There is sometimes
good reason to use a full pathname, though, such as to distinguish two versions of
the same application on your machine.) If you get the name right, AppleScript
searches for the application, and it usually finds it remarkably quickly. See "External
Referents Needed at Compile Time" in Chapter 4 for what happens if you get the
name wrong.

AppleScript may launch the application at compile time if it isn't already running.
This is usually because otherwise it can't access the application's terminology
(because its dictionary is marked as dynamic). See "Dictionary" in Chapter 4.

See Chapter 19 for more on resolution of terminology, and on the use of the
application class to represent the top level of an application's object model.

Machine
The machine class is used to form a machine specifier, which appears in conj unction
with an application specifier in order to target an application running on another
computer. See "Remote Applications" in Chapter 21 for details.

Machine I 255

Data
The data class represents raw data, a stream of bytes. It's a catchall for situations
when results cannot be displayed in any other way. For example:

tell application " F inder"
activate
get (the clipboard)

end tell
-- {"data RECTOOOOOOOOOOB40075», �

"data PICTFA480000000000B40075001102FFOC--... and so on for pages and pages

What was on the clipboard was a picture, and the Script Editor has no way to dis
play it (though Script Debugger can); so it uses the data class and just shows you the
data. The first four letters of this data can be informative, because they represent a
resource type; clearly what's on the clipboard is a rectangle (probably the bounds of
the picture) and a picture in PICT format.

It is also possible to form a data object yourself, by typing just the sort of thing you
see here: the word data , a space, and then the resource type and the data, in
guillemets ((») . However, this is an advanced technique and shouldn't arise much in
real life (though an example of it was shown earlier in this chapter).

List
A list is a collection, corresponding roughly to what many other languages would call
an array-it's an ordered set of values. These values are its items. Each value can be
of any datatype (including a list).

A literal list is delimited by curly braces. Its contents can be literal values, variable
names, or any other expressions that AppleScript can evaluate meaningfully; they are
separated by commas. The literal empty list is just a pair of curly braces. So:

set empty to { }
set pep t o { "Mannie " , " Moe " }
set pep3 t o " J ack"
set pep to pep & { pep3} -- {"Mannie", "Moe", "Jack"}

You can assign a list of values to a literal list of variable names or other references as a
shorthand for performing multiple assignments. The assignments are performed pair
wise in order: item 1 to item 1, item 2 to item 2, and so on. If the list of values is too
long, the extra values are ignored; if it's too short, there's a runtime error. (See
"Assignment and Retrieval" in Chapter 7 and "Multiple Assignments" in Chapter 10.)
For example:

tell application " F inder"
set {oldname1 , oldname2} to { name of folder 1 , name of folder 2}
set {name of folder 1 , name of folder 2 } to { " f1 " , " f2 " }

end tell

256 I Chapter 1 3: Datatypes

When you use set (as opposed to copy) to set a variable to a value that is a list, you
set the variable by reference. This means that the list is not copied; the variable's
name becomes a new name for the list, in addition to any names for the list that may
already exist. The same is true when a list is passed as a parameter to a handler. This
special treatment is in common between lists , records, dates , and script objects. (See
"Pass By Reference" in Chapter 8 and "Set By Reference" in Chapter 9.) For example:

set L1 to {"Mannie " , "Moe " }
set L 2 t o L1
set end of L1 to " J ack"
item 3 of L2 -- "Jack"

Unlike a string, a list can be modified in place. You can replace individual items, and
you can add a new item to the beginning or end of a list. This is often a reason for
using a list , instead of a string, for an extended series of operations, and then coerc
ing to a string afterwards.

A list is stored internally as a data structure called a vector. This means that all the
items of the list are accessible with equal efficiency; if a list has 100 items, it doesn't
matter whether you refer to item 1 or item lOO-AppleScript can access the item
instantly. Under this vector implementation, setting an existing item of a list to a new
value is efficient, because all that happens is that the new value is copied to the loca
tion in memory where the old value used to be.

set L to { "Mannie " , " Moe " }
set item 1 o f L t o " Larry"
L -- {"Larry" , "Moe"}

Also, setting the beginning or end of a list (as a way of appending to the list) is effi
cient. The reason for this is that nothing moves in memory except the new value, and
the list is told it is one item longer than it was. So:

set L to { "Moe " }
set end of L t o " J ack"
set beginning of L to "Mannie "
L -- {"Mannie" , "Moe" , "Jack"}

On the other hand, the vector implementation means that there is no efficient way to
insert an item into the middle of an existing list, or to delete an item of a list, and
there are no built-in commands for these operations. You'll probably want to arm
yourself with a small arsenal of list utility handlers. For an item-deletion handler, see
"LISP-likeness" in Chapter 5. See "Script Object as Handler Result" in Chapter 9 for
a filter handler, and "Reference as Parameter" in Chapter 1 1 for a find-in-list han
dler. Here's an item-insertion handler:

on listlnsert (L , what , ix)
if ix = 1 then

return {what } & L
else

return { item 1 of L } & listlnsert (rest of L , what , ix - 1)
end if

List I 257

end listInsert
listlnsert ({ "Mannie " , " J ack" } , "Moe " , 2) -- {"Mannie", "Moe", "Jack"}

A surprising feature of Apple5cript lists is that they can recurse. This feature is actu
ally a natural consequence of the foregoing. We know that when you use set to
assign a list as a value, you set by reference; you create a pointer to the existing list.
We know that a list item can be a list. So if a list item is created using set , it's a
pointer to a list. Well then, it can be a pointer to the same list. For example:

set L to {"Mannie " , "Moe " , " J ack " }
set e n d o f L t o L
item 4 of item 4 of item 4 of item 4 of item 4 of item 4 of L
-- {"Mannie", "Moe", "Jack", {tlMannie", "Moe", "Jack", . . . }}

Where did all those items of items of items come from? And what are those ellipses at
the end of the result? We've formed a recursive list. The fourth item of L is a pointer
to L itself. So if we look at the fourth item of L, we dereference this pointer and
presto, we're looking at L. The fourth item of that is a pointer to L itself-and so
forth. In other words, this is not an infinite list in the sense that it genuinely goes infi
nitely deep or far in memory; if it were, flames would come out of your computer. It' s
just a data structure of four items that goes round and round in a tight little circle.

Multiple lists can mutually recurse:

set Ll to { "Mannie " , "Moe " , " J ack" }
set L2 to { "Curly " , " Larry " }
set end o f L l t o L2
set end of L2 to Ll
L2 -- "Curly", "Larry", {"Mannie", "Moe", "Jack",

{"Curly", "Larry", {"Mannie", "Moe", "Jack", . . . }}}}

I don't know of any practical use for this curious feature, and I wouldn't count on its
being supported in future versions.

Apple5cript contains a couple of built-in classes that are really just lists by another
name, along with some coercion rules. For example, bounding rectangle is a list of
four integers, rgb color is a list of three integers, and point is a list of two integers.
There may be others like this that I haven't stumbled upon.

List Properties
The following are the properties of a list. They are all read-only.

length

rest

The number of items in the list. You can get the same information by sending
the list the count message.

Everything in the list except its first item.

reverse

The list in reverse order.

258 I Chapter 13 : Datatypes

list Elements

The following are the elements of a list:

item

An item of the list, specified by index number, by range, or with every .

c1assname
An item whose class is c1assname, specified by index number, by range, or with
every . This is the closest thing a list has to a boolean test element specifier. For
example, you can't say:

item 2 of { 2 3 , " skiddoo " , " catch " , 2 2 } whose class is integer - - error

but you can say:

integer 2 of { 2 3 , " skiddoo " , " catch " , 2 2 } - - 22

However, this does not work if the class you're asking about is cla s s . This is a
known bug.

Speed of list Access

When you access an element or property of a list, it is much faster to target a refer
ence to the list, or the list as a script property, than to target the list directly. (Except
when you set the beginning of and end of a list, that is. These operations are fast in
any case because they have a special efficiency shortcut built in, as mentioned
already.) Here's an adaptation of Apple's own example illustrating this point. Let's
start with a version where we don't use a reference:

set L to { }
set total t o 0
set bignum to 5000
repeat with i from 1 to bignum

set end of L to i
end repeat
repeat with i from 1 to bignum

set total to total + (item i of L)
e n d repeat
total - - 12502500, and it takes about 22 seconds to run on my machine

Now here's a version where we use a reference:

set L to { }
set refL t o a reference t o L
set total to 0
set bignum to 5000
repeat with i from 1 to bignum

set end of L to i
end repeat
repeat with i from 1 to bignum

set total to total + (item i of refL)
e n d repeat
total - - 12502500, and it took less than a second

List I 259

That is an extraordinary speed difference. Now here's the really strange part : you
don't actually have to form a value that's a reference; you can get the same speed
bump by referring to the list as a script property:

set l to { }
set total t o a
set bignum to 5000
repeat with i from 1 to bignum

set end of l to i
end repeat
repeat with i from 1 to bignum

set total to total + (item i of my l)
end repeat
total - - 12502500, and it took less than a second

The key word in that code is my. Take it away, and the code takes 22 seconds to run;
put it back, and the code runs in less than a second.

Now suppose all of that code is part of a handler, where L is a local variable . You
can't take a reference to L, so you'd have to use the trick of making L a script prop
erty. Again, there is then no need to say a reference to explicitly; merely referring to
the script property is sufficient:

on myHandler ()
set l to { }
script myScript

property refl
end script
set total to a
set bignum to 5000
repeat with i from 1 to bignum

set end of l to i
end repeat
repeat with i from 1 to bignum

set total to total + (item i of myScript ' s refl)
e nd repeat
return total

end myHandler
myHandler() - - 12502500, and it took less than a second

I have no clear explanation for this behavior. It appears that when you access a prop
erty of a list by simply using the name of a variable whose value is that list, Apple
Script substitutes a copy of the literal value of the list; all that copying takes time
when the list is large and there are many repetitions . Whatever the cause, com
plaints by users that AppleScript is slow are often attributable to a failure to use these
techniques.

260 I Chapter 13: Datatypes

Record
A record is an unordered collection of name-value pairs. The values may be of any
type. A literal record looks like a literal list except that each item has a name. The
name is separated from the corresponding value with a colon. So:

set R to {who : "Matt " , town : "Oja i " }

There i s no such thing as an empty record. A record has no item elements, its items
cannot be referred to by index number, and you can't talk about the beginning or end

of a record.

You can assign a record of values to a literal record of variable names or other refer
ences as a shorthand for performing multiple assignment. The assignments are per
formed pairwise by name, independently. If the record of values includes names that
aren't in the record of variables, the extra values are ignored; if it's missing any
names that are in the record of variables , there's a runtime error. See "Assignment
and Retrieval" in Chapter 7 and "List," earlier in this chapter. For example:

local who, town
set {who : who, town : town } to {town : "Oj ai " , who : "Matt " }
{who, town } - - {"Matt" , "Ojai " }

When you use set (as opposed to copy) to set a variable to a value which is a record,
you set the variable by reference. This means that the record is not copied; the vari
able 's name becomes a new name for the record, in addition to any names for the
record that may already exist. The same is true when a record is passed as a parame
ter to a handler. This special treatment is in common between lists , records, dates,
and script objects. (See "Pass By Reference" in Chapter 8 and "Set By Reference" in
Chapter 9.)

For example:

set R2 to {who : "Matt " , town : "Oj a i " }
set Rl to R2
set who of R2 to " J aime "
Rl - - {who : "Jaime" , town : "Ojai " }

In an existing record, you can replace the value of individual items by assigning to an
item of a record using a name that already exists in that record. But if you wish to
create an item with a name that doesn't already exist in that record, you must make a
new record using concatenation. So:

set R to {who : "Matt " , town : "Ojai " }
set who of R t o " J a ime "
R - - {who : "Jaime" , town : "Ojai " }
set R to R & {friend : " Steve " }
R - - {who : "Jaime" , town : "Ojai" , friend : " Steve " }

Record I 261

There is no penalty for concatenating an item with a name that already exists in a
record, but it has no effect. For example:

set R to {who : "Matt " , town : "Oj ai " } & {who : " J aime " }
R - - {who:"Matt", town:"Ojai" }

Clearly, order i s all-important here, and you can use this fact to your advantage. Sup
pose you want to assign a friend value within a record. If the record already has such
an item, you can do it by assignment. If it doesn't, you can do it by concatenation .
But what if you don't know whether it has such an item or not? You can do it regard
less by concatenating in the opposite order:

set R to {who : " J aime " , town : "Ojai " }
set R to {friend : " Steve " } & R
R - - {friend: "Steve", who: "Jaime", town: "Ojai"}

set R to {who : " J a ime " , town : "Oj ai " , friend : " Matt " }
set R t o {friend : " Steve " } & R
R - - {friend:"Steve", who:"Jaime", town:"Ojai" }

A record can recurse, for the same reason that a list can:

set R to {who : "Matt " , town : "Oj a i " , cycle : null}
set cycle of R to R
R - - {who:"Matt", town:"Ojai", cycle:{who:"Matt", town:"Ojai", cycle: • • • }}

You can make records mutually recurse; you can even make a list and record that
mutually recurse. Does anyone have an aspirin?

Record Properties

The following are the properties of a record:

length

The number of items in the record. This property is read-only. You can get the
same information by sending the record the count message.

The names of the items
Every name of every item is a property of the record.

Please pretend now that I'm jumping up and down, waving a big red flag and
screaming as I repeat, for emphasis: the names of a record's items are properties . The
names are not strings ; the names are not any kind of variable or value . They are effec
tively tokens created by Apple5cript at compile-time, like the names of variables.

When you talk to a record, it is the target, and its item names are used to interpret
the vocabulary you use. The first thing AppleScript does is look to see whether any of
this vocabulary is the name of an item of the record. That's why you can't assign to a
nonexistent item in a record-the name you're using for that item is meaningless . No
terminological confusion normally arises , because the context is clear. 50:

set town to "Oj a i "
s et R to { name : "Matt " , town : null}
set town of R to town - - no problem

262 I Chapter 13 : Datatypes

Of course, you can confuse AppleScript if you set your mind to it. This code just sets
the existing value of the variable town to itself; the record is untouched:

set town to "Oj a i "
s e t R to { name : " Matt " , town : null}
tell R

set town to town
end tell
R - - {name: "Matt ", town:null}

But you know how to fix that-right?

set town to "Oj a i "
set R to { name : " Matt " , town : null}
tell R

set its town to town
end tell
R - - {name: "Matt", town: "Ojai"}

There is no good way to obtain a list of the names of the items of a record. A record
has no such introspective abilities. You (a human being) can see the names of the
items of a record in AppleScript's display of the record's value. But your code can't
see this information; the names of the items are not values of any kind, and cannot
easily be turned into values. I have seen many elaborate attempts to work around this
problem, but I'm not going to show you any of them. This is a big shortcoming of
AppleScript itself, and it needs to be fixed on the level of AppleScript itself.

It is possible to fetch or assign to the value of an item of a record using a variable to
represent the name, through a second level of evaluation. Here's a way to fetch an
item's value :

global r
set r to { nam : " Matt " , age : "49 " }
o n getWhat (what)

set s to "on run { r } " & return
set s to s & " get " & what & " of r " & return
set s to s & " end "
run script s with parameters {r}

end getWhat
getWhat (" age ")

It's a pity that such trickery is needed, and I don't really recommend this approach.
See also "List Coercions" in the next chapter.

Record I 263

CHAPTER 14

Coercions

A coercion is a conversion of a value of one datatype to a value of another datatype.
This definition implies that there is some sort of equivalence or formula that deter
mines the new value given the old value. In AppleScript, not just any old value can be
turned into a value of just any old datatype. This chapter describes how coercions
are performed and what coercions are possible.

Implicit Coercion
When you supply a value where a value of another datatype is expected, AppleScript
may coerce silently if possible. This is called implicit coercion, and it takes place in
connection with AppleScript's operators. These operators have definite rules about
what datatypes they expect, and what implicit coercions they will perform if other
data types are provided. Details appear in Chapter 15 .

No implicit coercion takes place when assigning a value to a variable , because vari
ables have no declared datatype; the variable simply adopts the new value.

No implicit coercion takes place when passing a parameter, because handlers and
commands do not provide prototypes specifying a particular datatype. This is not to
say that a handler or command cannot itself perform a coercion if it receives one
datatype and prefers another. It can. But then the coercion is not necessarily implicit,
and it isn't necessarily being performed by AppleScript.

For example, suppose you say this:

tell application " F inder"
set name of folder 1 to 6
-- error: "Can't make some data into the expected type. "

end tell

The Finder's dictionary says very plainly what the Finder expects as the name of a
folder-it expects Unicode text. But AppleScript does not look at the dictionary and
then perform an implicit coercion; it just sends the Finder what you said to send it. It

264

is then up to the Finder to decide whether it's happy with what was sent. In this par
ticular case, the Finder is not happy, and it lets you know with an error.

Now suppose you say this:

tell application " F inder"
set name of folder 1 to " 6 "

end tell

Now the Finder happily performs a coercion, and you never hear about it. The
Finder expects Unicode text, and you sent a string. The Finder coerces the string to
Unicode text, so the difference is never evident to you; it's all handled transparently.

An application's dictionary doesn't necessarily say what implicit coercions the appli
cation will perform. The Finder's dictionary didn't say, "I'd like Unicode text but I'll
accept a string, and no numbers, please"; it said "Unicode text," period. Typically, to
find out whether an application will accept a datatype other than what its dictionary
specifies , you just have to try it and see ("Coercions" in Chapter 19).

Handlers that you write are not protected by any mechanism such as prototypes or
datatype declarations in their definition from receiving parameters with undesirable
datatypes. If your handler has reason to be choosy about what sorts of values it's
willing to accept, then it needs to test those values and respond accordingly. For
example:

on sendMeAString (s)
i f {class o f s } i s not i n { string, Unicode text } then

error "Can ' t make some data into the expected type."
end if

end sendMeAString

Explicit Coercion
Explicit coercion is performed with the as operator.

as

Syntax

val ue as class

Description

coercion

When you use the a s operator, you're asking AppleScript to perform the coercion. If this is
a coercion AppleScript is willing to perform (as described in the rest of this chapter) , the
result is a new value of the requested datarype. If not, there 's a runtime error.

Examples

9 as string - - " 9 "
9 as boolean - - error

Explicit Coercion I 265

Even though a variable 's value can be a class, you can't use a variable as the second
operand in a coercion. This won't even compile:

set clas sName to string
9 as className -- compile-time error

AppleScript must see a class name right there in the script at compile time, or it
won't parse the line. (I regard this as a bug.)

Do not confuse a coercion with an object string specifier! (See "Object String Speci
fier" in Chapter 10.) This is a coercion:

" xxx : " as alias

This is an object string specifier:

alias " xxx : "

The distinction can be crucial. There are circumstances where the coercion will com
pile but the object specifier will not. You can't compile an alias specifier unless the
file exists; but you can compile a coercion from a string to an alias , because the string
is just a string. And there are circumstances where the object string specifier will
compile but the coercion will not. You can form a file specifier using a pathname
string, but you can't coerce anything, not even a pathname string, to a file object.

A special case of coercion arises when you say as in the context of a get , implicit or
explicit, targeted at an application. When you do this, you are not using the as opera
tor. You are using the get . . . a s command, which is a very different thing. The a s

operator asks AppleScript t o perform the coercion. The get . . . a s command asks the
target to return a particular class of value; in effect, you're asking the target to per
form the coercion.

get . . . as

Syntax

[get] attri bute as class

Example

tell application " F inder"
folder 1 as string

end tell

coercion by target

An application may be willing to perform coercions of which AppleScript itself
would be incapable . The preceding example demonstrates this . AppleScript itself
can't coerce a folder to a string. It doesn't even know what a folder is . This is a
request targeted entirely at the Finder, and it says: "Get folder 1, but please return a
string as the result." It happens that the Finder has a way to do this, so it complies
with this request-it returns the pathname of the folder.

266 I Chapter 14: Coercions

You can be using the get . . . a s command without realizing it if you become con
fused about who the target is. For example:

tell application " F inder"
set f to folder 1

end tell
f as string

That looks like it shouldn't work. Having retrieved folder 1, we are no longer talking
to the Finder. 50 when we try to coerce this folder to a string, we will be talking to
Apple5cript, and Apple5cript won't know how to do it. Right? Wrong. The variable
f isn' t just a folder; it's a reference to a folder, a folder belonging to the Finder. (If
this isn't clear to you, you should reread Chapter 11.)

tell application "F inder"
set f to folder 1

end tell
f - - folder "myFolder" of desktop of application "Finder"

Therefore it's a complete and valid target. 50 when you say:

f as string

you're actually saying:

tell application " F inder"
get (folder " myFolder" of desktop) as string

end tell

The target is the Finder and the get . . . a s command is sent to the Finder.

If you ask an application to perform a coercion it isn't willing to perform, you'll
receive the compulsory mysterious error message from the application:

tell applicat ion " F inder"
set f to folder 1 a s folder -- error: "Unknown object type. "

end tell

Again, you usually have no way of knowing in advance what coercions an application
is willing to perform for you, or what the rules of those coercions may be . The appli
cation's dictionary doesn't tell you. You just have to find out by experimentation.

Boolean Coercions
A boolean may be coerced to a string; depending on whether the boolean is true or
false , this string will be either " true " or " false " . A string may be coerced to a bool
ean. The string "true " (not case-sensitive) will be true; any other string will be false .

A boolean may be coerced to an integer; depending on whether the boolean i s true

or false , this integer will be either 1 or o . The integers 1 and 0 may be coerced to a
boolean, yielding true and false respectively; other integers can't be coerced to a
boolean.

Boolean Coercions I 267

Str ing, Number and Date Coercions
A class or enumerator may be coerced to a string; for example:

string as string - - "string"

A number may be coerced to a string. A string may be coerced to a number, pro
vided it looks like a literal number; whitespace will be ignored, but nothing else will
be. So for example " l a " can't be coerced to a number. But the empty string, or a
string consisting solely of whitespace, will be coerced to o .

An integer may be coerced to a real. A real may be coerced to an integer; i t is
rounded to the nearest integer. This is a new feature; in earlier versions of Apple
Script, a real could be coerced to an integer only if it was an integer. For example, 1 . 5
couldn't be coerced to an integer. The round scripting addition command can help
here (see "Numbers and Dates" in Chapter 20) , and can be used to dictate the
desired rounding behavior.

A date may be coerced to a string; this is simply the string that appears in the literal
date specifier after compilation. A string may be used to form a date specifier, but it
cannot be coerced to a date. A month may be coerced to a string (because it is a
class). A month may also be coerced to an integer; this is a new feature.

A string, Unicode text, and styled text may be coerced to one another. When coerc
ing to a string, you can say as text instead of as string . This is confusing, since the
class of the result is still string, and text is actually the name of a completely differ
ent class (string is ' TEXT ' , text is ' ctxt ') .

File Coercions
An alias can be coerced to a string representing its Macintosh pathname, and its
POSIX path property is a string representing its POSIX pathname. An alias cannot be
coerced to a file object, but a string can be used as an intermediary. A Macintosh
pathname can be coerced to an alias. A file object cannot be coerced to a string, but
it can be coerced to an alias (which can be coerced to a string). A file 's POSIX path

property is a string representing its POSIX pathname. A POSIX file can be coerced to
a string representing its Macintosh pathname. A Macintosh pathname can be used to
form a file specifier. A POSIX pathname can be used to form a POSIX file specifier.
(I'm not making this up !)

I believe that the possibilities are summed up by the following code:

set colon Path to " main : rea son : resources : "
set a to alias colonPath
set a to colon Path as alias
set colonPath to a as string
set posixPath to POSIX path of a
set f to a reference to file colon Path

268 I Chapter 14: Coercions

set a to f as alias
set posixPath to POSIX path of f
set pf to POSIX file posixPath
set colonPath to pf a s string
set posixPath to POSIX path of pf
set a to pf a s alias

Just to make matters more confusing, coercion of a file specifier to an alias fails in the
current Script Editor. To work around this, pass through a POSIX file :

set colon Path to "main : reason : resources : "
set f to a reference to file colon Path
set pos ixPath to POSIX path of f
set pf to POSIX file posixPath
set a to posixFile as alias

List Coercions
Anything may be coerced to a list, and will be treated as follows :

• If the thing you start with is not a collection, the result is a list of one item, and
that item is the thing you started with.

• If the thing you start with is a list, the result is the very same list.

• If the thing you start with is a record, the result is a list of the values from the
record.

Coercion to a list is very useful for making sure you have a list : if the thing you start
with isn't a list, it becomes one, and if it is a list, it is unchanged.

Officially you can't coerce a list to a record, but there's a trick for doing it using a
second level of evaluation. (Reread the warnings at "Second-Level Evaluation" in
Chapter 12 before resorting to this trick; remember, it involves a lot of overhead.)
Every odd item of the list becomes the name of the record item whose value is the
corresponding even item of the list :

on listToRecord (L)
script myScript

return { «class usrf» : L }
end script
return run script myScript

end listToRecord
listToRecord ({ "yoho " , " haha " , "teehee " , "giggle " })
- - {yoho : "haha " , teehee : "giggle" }

A list o f one item may be coerced t o the data type o f that item, and the result will be
that item. Of course, the result can then be coerced to any datatype that it can be
coerced to, so you can also coerce a list of one item to that datatype in a single step.
For example :

{true} as string - - "true"

List Coercions I 269

That's possible because the list of one boolean is first coerced to boolean, and a bool
ean can be coerced to a string.

A list of multiple items may be coerced to a string, provided every individual item
may be coerced to a string. This coercion is performed using the current value of the
text item delimiters . (See "String" in Chapter 13 .) The rule is that every item of the
list is coerced to a string, and the resulting strings are joined into a single string with
the text item delimiters value between each pair. The text item delimiters value
can be the empty string; this is in fact its default value. If an item of the list is a list, it
is coerced to a string by the same rule; so this coercion in effect flattens a list, to any
depth, into a single string.

So, assuming the text item delimiters is the empty string:

{ " Manny " , { "Moe " , " J ack" } } as string - - "MannyMoeJack"

Or, assuming the text item delimiters is a comma followed by a space:

{ "Manny " , { "Moe " , " J ack " } } as string - - "Manny, Moe, Jack"

A list can be implicitly coerced to a string. (See Chapter 15 for the situ
ations in which this can occur.) Because the coercion is implicit, it can
happen without your realizing it will happen; this means that the text
item delimiters can be used without your expecting it. Therefore it is
best not to leave the text item delimiters in a nonstandard state.

Also, bear in mind that the text item delimiters has a second use,
namely to split a string into its text item elements ("String" in
Chapter 13) ; a change in the value of the text item delimiters made
for that purpose will affect any subsequent list-to-string coercions, and
vIce versa.

Unit Conversions
AppleScript provides a number of classes whose sole purpose is to allow you to per
form measurement unit conversions. They are implemented as classes so that you
can use the as operator to perform the conversion; that is, the conversion is really a
coercion.

Because of this implementation, the way you have to speak in order to perform a
conversion ends up looking fairly silly. You can't say 3 feet ; you have to coerce 3 (a
number) to the feet class , by saying 3 as feet . Now you coerce to the desired class;
suppose this is yard s . But now you have a value of the yards class. You can't do any
thing with it, so you have to coerce it to a number.

So, for example:

on feetToYards (ft)
return ft as feet as yards as number

end feetToYards
feetToYards (3) - - 1 . 0

270 I Chapter 14: Coercions

The implemented units are themselves a mixed lot. Many important units , such as
acres and hectares, aren't implemented at all. Table 14-1 provides a list.

Table 14-1. Conversion unit classes

meters inches feet yards

miles kilometers centimeters square meters

square feet square yards square miles square kilometers

liters gallons quarts cubic meters

cubic centimeters cubic feet cubic inches cubic yards

kilograms grams ounces pounds

degrees Celsius Fahrenheit degrees Kelvin

A much better list of conversion units is built into Mac OS X by way of the Unix tool
units . Here's a way to use it:

on convert (val , unitl, unit2)
set text item delimiters to
set conv to do shell script { " units " , unitl , unit 2 } a s string
return val * (word 1 of paragraph 1 of conv as real)

e nd convert
convert (4 , " feet " , " meters ") - - 1 . 2192

Unit Conversions I 271

CHAPTER 15

Operators

An operator is a token that transforms a value or a pair of values into a new value.
These transformations are operations, and the values operated upon are the operands.
An operator with two operands is binary; an operator with one operand is unary.

That definition is pretty good, but it doesn't quite pick out what this chapter cata
logues. Parentheses are also discussed here, because they determine the effects of the
other operators; and some of the things I'm calling operators are thought of by
AppleScript as language keywords. (For the coercion operator, a s , see "Explicit Coer
cion" in Chapter 14 ; for the object containment operator, of, see Chapter 10.)

Binary operators can perform a limited range of implicit coercions. AppleScript's
behavior in this regard is odd, and the error messages that result when a binary oper
ator refuses to perform an implicit coercion are confusing. For example, if you say:

1 and 1 -- compile-time error

the compile-time error message says: "Can't make 1 into a boolean." But Apple
Script can make 1 into a boolean, as you can prove by asking it to do so:

1 as boolean and 1 -- true

In that example, AppleScript refuses to coerce the first operand implicitly, but it hap
pily coerces the second operand implicitly. But in this next example, AppleScript
happily coerces both operands implicitly (to a number):

" 3 11 + " 4 " - - 7

This chapter catalogues the rules governing this behavior. To learn what can be
coerced to what in AppleScript, see Chapter 14 .

Arithmetic Operators
As in most computer languages, multiplication and division take precedence over
addition and subtraction (in the absence of parentheses). So, for example:

3 + 4 * 2 - - 11
3 * 4 + 2 -- 14

272

An operand that is a list consisting of one number will be coerced to a number. An
operand that is a string, or a list consisting of one string, will be coerced to a number
if possible.

+

Syntax

numberl + number2
date + integer

Description

addition

The addition operator is not overloaded to perform string concatenation; see on the amper
sand operator (&) later in this chapter. A date plus an integer yields date increased by
i nteger seconds .

The result is an integer if the first operand is an integer and if the second operand can be
coerced to an integer without loss of information. Otherwise, the result is a real.

Syntax

numberl - number2
date - integer
date - date
-number

Description

subtraction; unary negation

A date minus an integer yields date decreased by integer seconds . A date minus a date
yields an integer, the number of seconds between them. For two numbers, see on addition
(+) .

Unary negation has very high precedence.

Example

- 3 A 2 - - 9

* multipl ication

Syntax

number * number

Description

For the class of the result, see on addition (+) .

/ rea l division

Syntax

numberl / number2

Description

Both numbers are treated as reals , and the result is a real.

Arithmetic Operators I 273

div integer division

Syntax

numberl div number2

Description

Both numbers are treated as reals ; the first is divided by the second, and the result is
coerced to an integer by throwing away its fractional part. Notice that this is not the same
as AppleScript's normal real-to-integer coercion behavior.

Example

4 div 5 - - 0
(4 / 5) as integer - - 1

mod remainder

Syntax

numberl mod numberl

Description

The first operand is divided by the absolute value of the second and the remainder is
returned. For the class of the result, see on addition (+) .

A exponentiation

Syntax

numberl h number2

Description

Raises the first number to the power of the second. The result is a real.

Do not blame AppleScript for the phenomena inherent in doing floating-point arith
metic in any language on any computer. It is the nature of computer numerics that
most values can only be approximated. Modern processors are extraordinarily clever
about compensating, but rounding operations can easily expose the truth:

2.32 * 100 . 0 div 1 - - 231

Similarly, there may be situations where instead of comparing two values for abso
lute equality you will do better to test whether the difference between them lies
within some acceptable small epsilon.

Boolean Operators
The second operand, but not the first , will be coerced from a string or an integer, or
a list of one string or one integer, to a boolean. Either operand will be coerced from a
list of one boolean to a boolean.

274 I Chapter 15: Operators

and logical and

Syntax

booleanl and bool ean2

Description

Returns true if both operands are true . If the first operand is false, the second operand
won't even be evaluated ("short-circuiting") .

or logical or

Syntax

bool eanl or bool ean2

Description

Returns false if both operands are false . If the first operand is true, the second operand
won't even be evaluated ("short-circuiting") .

not logical not

Syntax

not bool ean

Description

Changes true to false and false to true.

Comparison Operators
The result is a boolean. The nature of comparisons involving strings can be influ
enced by a considering clause; see Chapter 12 .

Lists are ordered, but records are not:

{ 1 , 2} = { 2 , 1} - - false
{ name : "Matt " , age : " 49 " } = {age : " 49 " , name : "Matt " } - - true

The equality (=) and inequality (;to) operators do not coerce their operands; operands
may be of any datatype, and operands of different datatypes are unequal. So, for
example:

{ " 2 " } = 2 - - false

The first operand is a list; the second operand is a number; no coercion takes place;
therefore the operands are not equal, and the comparison is false.

With the other comparison operators , operands must be a string, a number, or a
date; the first operator is coerced to a string, a number, or a date, and then the sec
ond operator is coerced to match the datatype of the first:

{ " 2 " } � 2 - - true

Comparison Operators I 275

The first operand is a list of one string, so it is coerced to a string. Now the second
operand is coerced to a string; the two strings are equal and the comparison is true.

Thus, although you cannot use the equality operator to learn whether two values
would be equal if implicitly coerced to the same datatype, you can work around the
problem like this :

{ " 2 " } � 2 and { " 2 " } � 2

= (is) equa l ity

Syntax

operandl = operand2

Description

No coercion is performed; operands of different datatypes are not equal. Synonym is equal

to has abbreviations equal , equals , and equal to.

::j:. (is not)

Syntax

This operator is not overloaded as an assignment operator; see
"Assignment and Retrieval" in Chapter 7. It is not an error for a line of
AppleScript code to consist of an equality comparison, like this :

x = 3

That line is an equality comparison, not an assignment! If you write a
line like that, intending to write an assignment, your code will gener
ate incorrect results that can be difficult to track down.

operandl # operand2

Description

inequal ity

No coercion is performed; operands of different datatypes are not equal. The not-equals
sign is typed using Option-= . is not has abbreviation isn 0 t. Synonym is not equal to has
abbreviations is not equal , i sn 0 t equal, does not equal , and doesn 0 t equal . There are no
synonyms <> or ! = .

< less than

Syntax

operandl < operand2

Description

Synonyms are is less than (abbreviation less than) and comes before .

276 I Chapter 15: Operators

> greater than

Syntax

operandl > operand2

Description

Synonyms are is greater than (abbreviation greater than) and comes after.

�

Syntax

operandl � operand2

Description

less than or equal to

Abbreviation is < = , or the � symbol may be typed using Option-comma. Synonym is less

than or equal to has abbreviations omitting i s , to , or both . There are also synonyms does

not come after and is not greater than .

greater than or equal to

Syntax

operandl � operand2

Description

Abbreviation is > = , or the ;:: symbol may be typed using Option-period. Synonym i s

greater t h a n o r equal to has abbreviations omitting i s , t o , o r both. There are also
synonyms does not come before and is not less than .

Containment Operators
Containment may apply to two strings, two lists, or two records . The result is a bool
ean . Containment implies comparison, and the nature of comparisons involving
strings can be influenced by a considering clause; see Chapter 12.

The fact that in the case of list containment both operands must be lists is a little
counterintuitive at first. Thus:

{ 1 , 2} contains { 2 } - - true

You might have expected to say:

{ 1 , 2} contains 2 - - true

You can say that, but only because 2 is coerced to { 2 } implicitly. In other words, the
second operand is not an element; it's a sublist. Thus you can ask about more than
one element at once . For example:

{ 1 , 2, 3 } contains { 2 , 3} - - true

Containment Operators I 277

Lists are ordered, so the items of the sub list you ask about must appear consecu
tively and in the same order in the target list; these are false :

{ i , 2 , 3 } contains { i , 3 } - - false
{ i , 2, 3} contains { 3 , 2} - - false

Since lists can contain lists , you may have to use an explicit extra level to say what
you mean:

{ { i } , { 2 } } contains { 2 } - - false
{ { i } , { 2 } } contains { { 2 } } - - true

The first is false because 2 is not an element of the first list, and { 2 } is not going to be
coerced to { { 2 } } for you-it's a list already so there's nothing to coerce.

In the case of record containment, both the label and the value must match for con
tainment to be true. So:

{ name : "Matt " , age : " 49 " } contains {name : "Matt " } - - true
{ name : " Matt " , age : " 49 " } contains {title : "Matt " } - - false
{ name : "Matt " , age : " 49 " } contains { name : " Socrates " } - - false

Records are not ordered:

{ name : "Matt " , age : " 49 " } contains {age : "49 " , name : "Matt " } - - true

Since the containment operators are overloaded to apply to both strings and lists, the
first operand is never implicitly coerced to a string, because AppleScript can't know
that this is what you mean; it is coerced to a list unless it is a string. The second oper
and is then coerced to match the datatype of the first.

So, for example :

"49" contains 4 - - true; string containment, "49" contains "4 "
49 contains 4 - - false; list containment, {49} doesn't contain {4}

It's important not to confuse the implicit coercion rules here with those for certain
other operators . For example, your experience with arithmetic operators might lead
you to expect a certain kind of implicit coercion:

{ " t' } * 7 - - 49

The list of a single string is coerced to a single string and from there to a number. But
that isn't going to happen with contains :

{ " 7 " } contains 7 - - false

The first operand isn't coerced at all; the second operand is coerced to { 7 } , and that's
the end. The second operand isn't a sublist of the first, so the comparison is false.

contains, does not contain, is in, is not in

Syntax

stringl conta i n s string2
string2 is in stringl
listl cont a i n s list2

278 I Chapter 1 5: Operators

conta inment

l i s t2 is in l i s t1
record1 contains record2
record2 is in record1

Description

The is in synonyms reverse the operand order of the conta ins synonyms-that is, with is

in , the second operand comes before the first operand (as deliberately shown in the syntax
listings) . This is relevant in the rules for implicit coercions .

begins with

Syntax

s tring1 begins with s tring2
l i s t1 begins with l i s t2

Description

in itial conta inment

Same as conta ins with the additional requirement that the second operand come first in the
first operand. Records are not ordered, so they aren't eligible operands. Synonym is starts

wit h .

ends with

Syntax

s tring1 ends with s tring2
l i s t1 ends with l i s t2

Description

final containment

Same as contains with the additional requirement that the second operand come last in the
first operand. Records are not ordered, so they aren't eligible operands .

Concatenation Operator
Concatenation may be performed on a pair of strings (resulting in a string), a pair of
lists (resulting in a list) , or a pair of records (resulting in a record). Implicit coercions
are performed in exactly the same way as for the containment operators; see "Con
tainment Operators ," just previously.

So, for example:

" three" & 20 - - "three20"
3 & " twenty" - - {3 , "twenty"}

This shows the difference the order of operands can make; the reason is perfectly
obvious if you know the implicit coercion rules , baffling otherwise.

To turn string concatenation into list concatenation, it suffices to coerce the first
operand to a list; this can be done simply by expressing it in list delimiters. So :

{ " Mannie " } & "Moe" & " J ack " - - { "Mannie" , "Moe " , "Jack"}

Without the list delimiters, we'd end up with "Ma n n ieMoe J ack " .

Concatenation Operator I 279

Recall (from Chapter 14) that coercion of a list to a string is another way to concate
nate. Thus concatenation of a string and a list concatenates the string with all the ele
ments of the list, each coerced to a string and joined by the text i tern delirni ters :

set text i tem delimiters to " "
" butter" & { " field " , 8 } - - "butterfield8"

Recall what was said in the previous section about both operands having to be of the
same type, and what this implies for lists . Concatenation is a way to append one or
more items to a list :

{ 1 , 2 , 3 } & {4 , 5 , 6} - - {l, 2, 3, 4, 5, 6}

The result is not { 1 , 2 , 3 , { 4, 5 , 6 } } ; if that's what you wanted, you can use an
extra level of list delimiters :

{ 1 , 2 , 3 } & { {4 , 5 , 6 } }

Recall (from Chapter 13) that a more efficient way to append a single element to a
list is like this :

set L to { 1 , 2 , 3 }
set end of L t o 4 - - {l, 2 , 3 , 4}

The operation set end of is more efficient than the concatenation operator for lists,
and coercion of a list to a string is more efficient than the concatenation operator for
strings, because no extra copies have to be made internally. So, instead of this :

set s to " a nti "
set s to s & " d i s "
set s to s & " establishment "
set s to s & " arianism"

it is more efficient to say this :

set text item delimiters to " "
set L t o { }
set end of L t o "anti "
set end of L to " d i s "
s et e n d of L to " establishment "
set end of L to " arianism"
set s to L as string

Concatenating records yields a record consisting of all the items of the first record
along with just those items of the second record whose name isn't the name of any
item in the first record (see Chapter 13) :

set r to {who : " J a ime " , town : "Ojai " } & {who : "Matt " , friend : " Steve " }
r - - {who : " Jaime " , town : "Ojai" , friend : " Steve"}

Scripting additions can provide further interesting variations on the notion of concat
enation. For example, the Satimage scripting addition's s pecial concat command
concatenates lists from items with the same name in different records:

special con cat {who : { "Matt " } } with {who : { "Neuburg " } }
- - {who : { "Matt" , "Neuburg"}}

280 I Chapter 1 5: Operators

&

Syntax

stringl & string2
listl & list2
recordl & record2

Description

The result is a string, list, or record respectively.

Parentheses
Parentheses may be used to determine the order of operations at runtime :

3 + 4 * 2 -- 11
(3 + 4) * 2 - - 14

concatenation

Parentheses can also help determine the order of interpretation of vocabulary at com
pile time. Thus they can make the difference between successful compilation and failed
compilation. For example, this compiles fine, because all the expressions are legal :

set r to random n umber
round r rounding up

Now try to save a line by combining them:

round random number rounding up - - compile-time error

The problem is that random n umber is a command that can optionally take various
labeled parameters , and rounding up isn't one of them. Instead of rethinking its inter
pretation ("So, maybe random number isn't taking any parameters here ! ") , Apple
Script just gives up . You have to help it out, by using parentheses :

round (random number) rounding up

Sometimes AppleScript will insert parentheses for you, on compilation. For exam
ple, I didn't put any parentheses when I typed this code :

tell application " System Events"
copy name of every process where it is frontmost to theProc

end tell

But AppleScript did, when it compiled:

tell application " System Events"
copy (name of every proces s where it is frontmost) to theProc

end tell

The reason seems to be to delimit a phrase implying a get command. But if you actu
ally use get explicitly here without parentheses, AppleScript refuses to compile at all :

tell application " System Events"
copy get name of every proces s where it is frontmost to theProc - - compile error

end tell

Parentheses I 281

The problem seems to be that AppleScript doesn't like the phrase copy get, which is
two commands in a row. If you add the parentheses, AppleScript compiles :

tell application " System Events "
copy (get name o f every process where it i s frontmost) to theProc

end tell

Parentheses can also make a difference at runtime. AppleScript will compile this, but
it causes an error at runtime :

tell application " System Events "
set L t o name o f every process
the frontmost of process item 1 of L - - error

end tell

This runs fine :

tell application " System Event s "
set L to name o f every process
the frontmost of process (item 1 of L)

end tell

The moral is : if things don't seem to be working out, try playing with parentheses.

Who Performs an Operation
Some operations within an interapplication communications context can be per
formed by the target application rather than AppleScript. There are two cases to con
sider. The operation may appear as a bare expression (for example, the condition in
an if clause) ; I will call this a direct operation. Or, the operation may be part of a
boolean test element specifier.

Direct Operations

According to Apple's documentation, if the first operand of a direct operation is a
reference to an object of the target application, the target application performs the
operation. So, for example:

tell application " F inder"
if the name of folder 1 contains "e" then

The comparison performed by the keyword contains is one of the operations that
can be performed by the target application. The object the name of folder 1 is a
Finder object, so in this case the Finder should perform the operation. In fact ,
though, experimentation shows that the Finder does not perform the operation ;
AppleScript does try to get i t to do so , but the target application replies with an error
indicating that it doesn't wish to perform that sort of operation. AppleScript there
upon adopts a new strategy: it asks the target application for the values in question ,
and performs the operation itself.

282 I Chapter 15: Operators

So, the way AppleScript first tries to deal with the operation in the previous example
is by sending the Finder a single Apple event that means : "Please tell me whether the
name of your folder 1 contains "e"." The Finder replies with an error message, so
then AppleScript goes back to the Finder and sends it another Apple event that
means : "Okay, never mind that, just tell me the name of your folder 1. " The Finder
complies, and now AppleScript looks, itself, to see whether the result contains "e".

This approach seems wasteful, but it is only wasteful the first time . The second time
the same sort of code is encountered, the AppleScript scripting component remem
bers that the Finder doesn't do this sort of operation, and skips the first step ; it just
asks the Finder for the value of the operand and does the operation itself.

In fact , I have not found any application that appears willing to perform direct opera
tions when AppleScript asks it to ! The entire matter is therefore moot. One can see,
all the same, that the mechanism is a good idea. Suppose both operands are objects
belonging to the target application; for example, we might want the Finder to per
form this comparison:

tell application " Finder"
if the name of folder 1 is the name of folder 2 then

It would be efficient to be able to send the Finder a single Apple event saying: "Please
tell me whether the name of folder 1 and the name of folder 2 are the same . " As it is,
AppleScript ends up sending the Finder two Apple events: one asking for the name
of folder 1, the second asking for the name of folder 2. It then performs the compari
son itself.

Boolean Test Element Specifiers

In a boolean test element specifier (see Chapter 10) , the target application always
performs the comparison itself. For example :

tell application " F inder"
name of every folder whose name contains " E "

end tell

That is a single Apple event; the Apple event includes instructions to use contai n s
" E " as the criterion for returning folder names, so the Finder must implement
conta ins in order to obey.

Differences between an application's implementation of an operator and Apple
Script's implementation can arise under these circumstances . This seems rather
scary, but if the application is well-behaved, these differences should be minor. The
primary case in point is the use of considering clauses. For example :

tell application " F inder"
considering case

name of every folder whose name contains " E "
end considering

end tell
-- {"emptyFolder", "Test Me"}

Who Performs an Operation I 283

The Finder gives the wrong answer; if you consider case, neither of these folder
names contains" E". The Finder is simply ignoring the considering clause. In fact, I
don't know of any application that considers considering clauses in a string compari
son. See "String Considerations" in Chapter 12.

The workaround in a situation like this is to take a two-step approach : fetch all the
values and then have AppleScript perform the test itself. AppleScript does not imple
ment boolean test element specifiers for lists , so the test must be performed as a
loop. So :

tell application " F inder"
set L to name of every folder

end tell
set L2 to { }
cons idering case

repeat with aName in L
if aName contains " E " then

set end of L2 to contents of aName
end if

end repeat
end considering

After that, L2 contains the right answer.

284 I Chapter 15: Operators

CHAPTER 16

Global Properties

This chapter catalogues the global script properties of the AppleScript language.
These are implemented by the AppleScript scripting component, which is present as
the parent of the top-level script (see "The Implicit Parent Chain" in Chapter 9) .
They are globally accessible, as if your entire script started with property declara
tions for them. In case of a naming conflict, they can also be accessed like the proper
ties of any visible script object, using the term AppleScript as the script object's
name. For example :

property pi : 3
display dialog AppleScript ' s pi -- 3.141592 • . .

These are script properties like any other script properties , and as such :

• They are settable.

• Their values are in common to all scripts running under this instance of the
AppleScript scripting component.

• They persist for as long as this instance of the AppleScript scripting component
persists.

The status of the global script properties is thus somewhat counterintuitive . You can
accidentally (or intentionally) change their values , and then scripts that rely upon
them to have their default values will not work. You would probably have expected
things like pi and tab to remain constant. That's not the case-you can change their
values-and furthermore if you change such a value in one script in a script editor
application, the new value affects all scripts run in that script editor application, until
you quit the application.

285

Strings

return "\r"

Description

Macintosh line break character. There does not seem to be any conflict with the keyword
return ("Returned Value" in Chapter 8). The only place where a conflict could occur is
when return is the first word of a line. The rule in that situation seems to be that if return

is followed by an operator, it can't be the keyword, so it must be this property.

Example

"This is a line . " & return & "This is another line . "

tab "\t"

Description

Tab character.

Example

" a n item" & tab & " a nother item"

space

Description

Space character.

Example

"word " & space & " otherWord"

text item delimiters "" (the empty string)

Description

The text item delimiters has two uses. It is used to split a string into its text item

elements ("String" in Chapter 13). And it is used to join list items when a list is coerced to a
string ("List Coercions" in Chapter 14, and please reread the warning there).

Example

set text item delimiters to " : "
text item 1 of (path to system folder as string)

286 I Chapter 16: Global Properties

Numbers
The minutes property and its ilk are intended to help you convert to seconds . This is
because date arithmetic uses seconds ("Date" in Chapter 13 and "Arithmetic Opera
tors" in Chapter 15) .

pi 3.14159265359

Description

The ratio of a circle's circumference to its diameter.

Example

set area to pi * (radius A 2)

minutes 60

Description

The number of seconds in a minute.

Example

(current date) + 30 * minutes - - half an hour from now

hours 3600

Description

The number of seconds in an hour.

Example

(current date) + 2 * hours -- two hours from now

days 86400

Description

The number of seconds in a day.

Example

(current date) + 2 * days - - two days from now

weeks 604800

Description

The number of seconds in a week.

Example

(current date) + 2 * weeks - - two weeks from now

Numbers I 287

Miscellaneous

version "1.9.2"

Description

The version of AppleScript. This is actually the name of a class.

Example

display dialog AppleScript's version

288 I Chapter 16: Global Properties

CHAPTER 17

Constants

This chapter catalogues the constants of the AppleScript language. A constant is a
reserved word representing a value. You cannot set the value of a constant; if you try,
you'll get a compile-time error, "Access not allowed. " You cannot create a variable
whose name is that of a constant; if you try, you'll get a compile-time error,
"Expected variable name or property but found application constant or consider
ation. " The datatype (class) of a constant is usually constant ; but as we shall see,
some of them are a class instead.

The fixed value of a constant will appear to you as the name of the constant. For
example, the value of yes is yes ; it cannot be reduced to any other form. But a con
stant is meaningful to AppleScript behind the scenes . Also, a constant can be coerced
to a string.

Constants are often implemented as enumerations, meaning a set of values any of
which may occupy a certain syntactic slot. For example, the replacing clause of a
store script command ("Compiled Script Files as Script Objects" in Chapter 9) may
consist of any of the constants yes , no, or ask . Nothing stops you from supplying
some other value, in which case it is up to the target to decide how it wants to
respond. If you say replacing 42 in a store script command, the script will compile
and run. If you try to set a date's weekday to yes , the script will compile but not run.

Applications are free to extend AppleScript's vocabulary by implementing constants
of their own. For example, GraphicConverter can save an image file in many formats ,
and it needs a way to let you specify a format; it does this with some four dozen con
stants, such as PICT, TI F F , GI F , BMP , JPEG, and so forth. An application's dictionary will
show you the constants that can be used in any connection with any command
though it probably won't tell you what they mean. See "Enumerations" in Chapter 19.

289

true, false

Description

Boolean values. See "Boolean" in Chapter 13 and "Boolean Operators" in Chapter 15.

Example

open for access f write permission true

yes, no, ask

Descri ption

Options when saving a file. For a description of some typical behavior in response to these
options, see "Compiled Script Files as Script Objects" in Chapter 9.

Example

store script s in f replacing yes

missing value

Description

This is actually a class, but it has no values; all you'll ever see is the class itself, so it works
as if it were a constant. It seems to be a way for an application to return a value while
signaling a nonvalue; it isn't an error, and it isn't a failure to return any value at all.

Example

tell application " F inder" to get clipboard -- missing value

In that example, the Finder's dictionary implements clipboard but warns that it isn't yet
available; getting its value is not an error on the user's part, but the Finder can't comply
either, so the Finder needs a way to reply apologetically, and missing value is its solution.

null

Description

Like missing value, this is implemented as a class with no values, and can be used as a
placeholder to signal a nonvalue. I've never found a use for it in communicating with a
scriptable application, nor have I ever seen an application return it as a result. But I do
sometimes use it in my own scripts, as a way of giving a variable or record item a value to
prevent it from being undefined (and causing an error), without its having any particular
value belonging to a useful class.

Example
set aPerson to {name:null, age:null, town:null}

plain, bold, italic, outline, shadow, underline, superscript, subscript,
strikethrough, small caps, all caps, all lowercase, condensed, expanded, hidden

Description

Text styles, available for use by applications that wish to speak of such things. The example
here shows Tex-Edit Plus returning a text style record. (See "Pseudo-Classes" in
Chapter 19.) This is a record consisting of two lists, the on styles (those that are applied to
a piece of text) and the off styles (those that are not applied to a piece of text). The items
of each list are text styles. The piece of text we're asking about here is underlined.

290 I Chapter 17: Constants

Example

tell applicat ion "Tex-Edit Plus "
set tsr to style of word 4 of document 1
on styles of tsr - - {underline}

end tell

case, diacriticals, white space, hyphens, expansion, punctuation

Description

String considerations; see "Considering/Ignoring" in Chapter 12.

Example

cons idering case
" heyho" contains "H" -- false

end considering

application responses

Description

See "Considering/Ignoring" in Chapter 12.

Example

ignoring a pplication responses
tell application "GraphicConverter" to quit

end ignoring

current application

Description

The top-level object. See "The Implicit Parent Chain" in Chapter 9.

Example

name of current application - - Script Editor

Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday

Description

Days of the week; see "Date Properties" in Chapter 13. These terms are actually imple
mented as class names (I don't know why).

Example

weekday of (current date) - - Wednesday

January, February, March, April, May, June, July,
August, September, October, November, December

Description

Names of months; see "Date Properties" in Chapter 13. These terms are actually imple
mented as class names (I don't know why).

Example

month of (current date) - - May

Constants I 291

CHAPTER 18

Commands

A command is basically a verb . This chapter catalogues the built-in commands of the
AppleScript language-those that have not been described already. AppleScript
defines very few verbs of its own, leaving it to other applications to define further
commands by way of their dictionaries.

(On how to use a command, see Chapter 10. For set, copy, and get , see "Assign
ment and Retrieval" in Chapter 7. For fun , see "Script Object'S Run Handler" in
Chapter 9. For errOf, see "Errors" in Chapter 12. For count , see "String Properties , "
"List Properties , " and "Record Properties" i n Chapter 13.)

Application Commands
A few commands may be sent to applications to start them up, bring them to the
front, and make them quit. An application does not have to be scriptable to obey
them (see Table 19-1 and the discussion there) .

launch

Syntax

launch application

Description

Makes sure an application is running, without bringing it frontmost or making it perform
any actions.

activate

Syntax

activate application

Description

Brings an application frontmost.

292

reopen

Syntax

reopen application

Description

Tells an application to behave as if it had been opened from the Finder. Some applications
behave specially when told to do this. For example, in the case of the Finder, reopen makes
a window open if no Finder windows are open at that moment; launch and activate don't.

quit

Syntax

quit application

Description

Tells an application to quit.

Logging Commands
These commands have to do with the script editor application's logging window or
pane. They control the generation of the AppleScript messages that this window or
pane is "watching" while it is open.

log

Syntax

log value

Description

If the event log pane or window is open, writes value to the log pane or window. This is
useful for debugging. See Chapter 3 for an example.

stop log, start log

Syntax

stop log
start log

Description

If the event log pane or window is open, disables and enables automatic logging of Apple
events sent between applications; has no effect on the log command.

Only the old version of Script Editor (version 1.9), and Script Debugger, implement stop

log and start log properly. If you try to use them in Smile or in the current Script Editor,
you get a runtime error.

Logging Commands I 293

PART III

AppleScript In Action

Part III is about AppleScript in practice . The previous section described the Apple
Script language ; that is your sword. Now, wielding this sword, you will go forth to
do battle ; this section is about the battle-the practical side of actually using Apple
Script to get something done.

The chapters are :

Chapter 19, Dictionaries

Chapter 20, Scripting Additions

Chapter 21, Scriptable Applications

Chapter 22, Unscriptable Applications

Chapter 23, Unix

Chapter 24, Writing Applications

CHAPTER 19

Dictionaries

A dictionary is a scriptable application's way of letting the world know how it
extends AppleScript's vocabulary. This extended vocabulary is called the applica
tion's terminology. AppleScript itself defines few commands, and has few abilities of
its own; its value emerges when it is used for communicating, by means of Apple
events , with scriptable applications. A scriptable application provides powers that
AppleScript lacks , along with terminology that permits the programmer to harness
those powers . For example, AppleScript can't make a new folder on your hard drive,
but the Finder can; and the Finder supplements AppleScript's vocabulary with terms
such as make and folder so that you can use AppleScript to command it (the Finder)
to do so. This supplementary terminology is made available through the Finder's
dictionary.

A dictionary has two intended audiences :

The AppleScript programmer
The AppleScript programmer studies a human-readable display of an applica
tion's dictionary to learn what English-like terms beyond those built into the
AppleScript language itself may be used when targeting that application.

AppleScript
AppleScript uses an application's dictionary at compile time to look up the terms
that the programmer uses . In this way, AppleScript confirms that the terms
really exist; since they don't exist within AppleScript itself, AppleScript cannot
know without a dictionary that the programmer isn't just talking nonsense.
AppleScript also uses the dictionary to resolve the terms into their correspond
ing Apple event form; otherwise, AppleScript wouldn't know what actual Apple
event messages to send to the scriptable application at runtime. And it uses the
dictionary when decompiling, to translate those Apple event terms back into
English-like form for display to the programmer.

This chapter discusses both aspects of dictionaries. It explains how AppleScript uses
dictionaries . It also describes the dictionary as experienced by the programmer, who

297

will use it to learn how to talk to an application. Studying a dictionary to figure out
how to use AppleScript to get an application to do your bidding (and combining that
study with experimentation when the dictionary is insufficiently informative) is a
major part of the typical AppleScript programming experience . See Chapter 3 for an
example.

Certain details about how an application's dictionary is stored appear in the section
"Dictionary" in Chapter 4. In the section "Target" in Chapter 10 we talked about
how AppleScript decides what application it will be sending Apple events to . In the
sections "Tell" and "Using Terms From" in Chapter 12 we discussed how Apple
Script decides what application's dictionary it will use to resolve terminology.

Resolution of Terminology
Example 19-1 consists of a little code exhibiting some common patterns of terminol
ogy usage; we will use it as an example to help us form a mental picture of Apple
Script's compilation process.

Example 19-1. Simple terminology resolution
tell application " F inder"

set r to display dialog (get name of folder 1)
end tell

Compilation of code like Example 19-1 proceeds in two distinct stages. First the tell
block causes AppleScript to locate a particular application and load its dictionary.
Then the terms inside the tell block are resolved. Let's take these stages one at a
time .

Loading the Dictionary

As AppleScript's compiler encounters a tell block targeting an application, it immedi
ately attempts to locate this application, so that it can load its dictionary. If the com
piler can't find the application, it will ask the user where it is; if the user cancels out
of this process , refusing to choose an application, AppleScript will not compile the
script.

(If the current instance of the AppleScript scripting component has already loaded a
particular application's dictionary, it doesn't need to do so again, because it now has
a copy of the dictionary cached in memory. This is one of the reasons why a script
typically takes longer to compile the first time.)

AppleScript will proceed happily at this point, provided it can find the application, or
the user chooses an application for it-any application. The compiler has not yet
come to the point of trying to resolve any actual terminology, so it doesn't matter at
this stage whether there is any terminology to resolve, or even whether the application

298 I Chapter 19: Dictionaries

has a dictionary. All that matters is that the application referred to in code should be
identified with some actual application. See "External Referents Needed at Compile
Time" in Chapter 4.

Example 19-1 consists of a single tell block, but there are other situations that will
cause a dictionary to be loaded. The tell block might contain another tell block that
names another application; in that case, that application's dictionary will also be
loaded. The same thing happens if a terms block is encountered ("Using Terms
From" in Chapter 12) . The question of whether the running script will eventually
target any of these applications is completely irrelevant; the dictionaries will be
loaded anyhow.

Translating the Terms

Presume that the compiler has reached the interior of the innermost tell block or
terms block that caused a dictionary to be loaded. The compiler now proceeds to
resolve the actual terms of the block.

The innermost application dictionary

Only one application dictionary is involved in the resolution of terminology in a
given context. This is the dictionary corresponding to the innermost surrounding
terms block or tell block. Let's call this the innermost application dictionary.

So, for example, in the following code, it is the Finder's dictionary that is the inner
most application dictionary, and it will be used to resolve the term folder (and this
resolution will succeed) :

using terms from application "Mailsmith "
tell application " F inder"

get name of folder 1
end tell

end using terms from

In the following code, it is Mailsmith's dictionary that is the innermost application
dictionary, and it will be used to resolve the term folder (and this resolution will fail,
so that the code will not compile) :

tell application " F inder"
u s ing terms from application "Mailsmith "

get name of folder 1
end using terms from

end tell

Hunting for each term

Every term used in a given context must be found in a dictionary in order to be
resolved. But the innermost application dictionary is not the only place where

Resolution ofT erminology I 299

AppleScript may have to look, because some of the terms may be defined elsewhere .
The hunt for terminology thus involves several steps . Here's how it goes :

1. At every step of the hunt, if a term is found as a property in a dictionary, and if it
isn't linked to some object by of (or one of its synonyms) , it is also sought as a
variable in the current scope of the script itself; if it's found as a variable in the
script, it is resolved as that variable . '

2. The term is sought in the innermost application dictionary.

3. The term is sought in AppleScript's own dictionary (described later in this chap
ter under "The 'aeut' Resource" and in Appendix A) .

4. The term is sought in the dictionaries of any scripting additions that are present .

S. The term is sought in the script itself.

Let's trace the resolution of the terms in Example 19-1, according to these rules :

• The terms set and get are not defined in the dictionary of the Finder, so they are
sought and found in AppleScript's own dictionary (rule 3) .

• The term r isn't found anywhere, so it's sought in the script; that works fine in
this syntactic context, because r is being used in a place where it can be the
name of an implicitly defined local variable (rule S).

• The term display dialog isn't found in the Finder's dictionary or in AppleScript's
own dictionary, but it's defined in a scripting addition's dictionary (rule 4).

• The term folder is defined in the Finder's dictionary (rule 2) .

• Definitions for the term name appear both in the Finder's dictionary and in
AppleScript's own dictionary. The former is used in the present case (rule 2) ; the
latter explains how name is resolved in the last line of the example on page 208.

(Example 19-1 did not illustrate the use of rule 1; this rule is rather tricky, and we'll
explore it more fully in a moment.)

Substituting four-letter (odes

Apple events are made up chiefly of four-letter codes . (See Example 4-1, where the
four-letter codes have values like ' core ' , ' move ' , ' in sh ' , ' in sl ' , ' kobj ' , ' obj "

' kpos ' , ' form ' , ' want ' , and ' seld ' .) Having located a term in a dictionary, the com
piler uses the term's dictionary definition to translate that term into a four-letter code
so that it can build an Apple event .

• This rule is my attempt to codify a kind of short-circuiting that AppleScript performs in order to allow vari
ables to be accessible even within a tell block (see "Names in Scope" in Chapter 10). Even after much exper
imentation I may still not quite have succeeded in formulating the rule perfectly.

300 I Chapter 19: Dictionaries

II, @': These four-letter codes are actuallYintegers' An integer is four bytes,
�:' while a character from the ASCII range is one byte; so an integer can

t;,' �. express four "packed" characters. The expression of this integer as a
. four-letter string is simply a convenience for the human re.ader. The use

of single quotes to delimit a four-letter code is a standard convention.

Think of a term as either a noun or a verb ; a command is a verb , and everything else
is a noun. These are fundamentally different grammatical entities in an Apple event
just as they are in a human utterance, and the dictionary makes clear which is which .
So, for example, the Finder's dictionary stipulates that eject is a verb, while folder is
a noun. (Actually it says that eject is an event, while folder is a class . We'll talk more
about these technical notions later in the chapter, under "What's in a Dictionary. ")

The dictionary defines each verb as a pair of four-letter codes, and each noun as a
single four-letter code. For example, the Finder's dictionary defines eject as ' fndr /
ejct ' , and it defines folder as ' dol ' .

Thus, having found each term of a line of code in some dictionary, the compiler is
able to use these four-letter codes, along with the line's grammar, to construct the
Apple event that will eventually be sent to the application.

Resolution Difficulties
Having sketched a basic picture of how terminology is resolved, we can proceed to
cover various complications that occasionally arise .

Conflict Resolution

Terms are sought in the dictionaries of the innermost application, of AppleScript
itself, and of all scripting additions, as well as in the script . Given such a large
namespace involving multiple independent entities, it is possible for conflicts to
arise . Such a conflict is called a terminology clash. Either the programmer generates
the clash by an unwise choice of variable names, or different dictionaries generate it
by defining the same term in different ways .

Clash caused by the programmer

When the programmer causes a terminology clash, various things can happen. Some
times the code won' t compile ; sometimes it won't run; sometimes it runs but gets an
unexpected result; sometimes the clash is resolved sensibly and there' s no problem.

When the compiler stops you from using a term, it is generally because the term is
defined elsewhere as a certain "part of speech" and you're trying to use it in a differ
ent way. For example, this won't compile:

local container
tell application "Finder" to set container to 7 - - compile-time error

Resolution Difficulties I 301

Within the context of a tell directed at the Finder, conta iner is resolved as the
Finder's term container , which is a class name; that's not something that can be
assigned to, so the compiler balks .

You may be wondering what happened to rule 1 on page 300. Rule 1 didn't apply in
that example, because conta iner was resolved as a class . Rule 1 specifically applies
only if a term is resolved as a property. So, for example :

local bounds
tell application " F inder"

set bounds to (get bounds of item 1)
end tell
bounds - - {-33, -33, 31, 31}

The term bounds in the third line is found to be the name of a property defined by the
Finder. But the first bounds in the third line is not followed by of and is matched by
the name of a variable that's in scope at this point, so it is taken to be that variable ,
by rule 1. Thus there' s no terminology clash.

The explicit declaration of bounds in the first line is crucial here ; take it away, and the
code won't run. With no existing variable bounds in scope during the third line, both
occurrences of bounds in the third line are taken as a property in the Finder; so now
the phrase set bounds in the third line is incorporated into an Apple event sent to the
Finder, which replies with an error message because it doesn't know what it's sup
posed to set the bounds of.

This won't compile :

set sel to { length : 2, offset : 4} -- compile-time error

The error message from the compiler is so mysterious that it might take you a while
to realize that the problem is a terminology clash. The trouble is that offset is
defined as a command in a scripting addition. Because it's a command, you're trying
to use a verb where a noun is expected. Observe that length doesn't cause a clash
here, even though it's defined in AppleScript's own dictionary; that's because it 's
defined as a property, and you're using it as a property. (Remember, names of items
of a record are properties; see "Record Properties" in Chapter 13.)

This won't compile :

local desktop -- compile-time error

Again, the problem is a scripting addition; desktop is part of an enumeration used in
the path to command. (See "Enumerations, " later in this chapter.)

Now let's look at a terminology clash where the compiler doesn't complain. This is
potentially worse for the programmer than when the compiler does complain,
because the code runs but it doesn't behave as expected :

local container, x
set container to " howdy"
tell application " F inder" to set x to container
x - - container, not "howdy"

302 I Chapter 19: Dictionaries

In that example, container in the third line is the name of a class in the Finder; a
class is a legitimate value for a variable, so the variable x ends up with that class as its
value.

In a case like that, the compiler can give you one subtle hint that something might be
wrong-in the way it formats the "pretty-printed" decompiled code. You can set
AppleScript 's pretty-printing preferences to distinguish dictionary terms from script
based terms such as variable and handler names, and this will let you see that
conta iner in the third line is being interpreted as a dictionary term.

If you are aware of a conflict caused by your choice of variable names, and you insist
upon using those variable names, you can usually resolve the conflict , as explained
earlier in the section "Me" in Chapter 10. You can use pipes to suppress Apple
Script's interpretation of something as a dictionary term. This works :

local container
tell application " F inder" to set I container I to 10
container -- 10

So does this :

set sel to { length :g, I offset I :4}

In the case of a handler call, you will have to retarget the message as well :

on container ()
display dialog "Howdy"

end container
tell application " F inder" to my I container I () - - Howdy

In that example, if you omit my , the message is sent to the Finder instead of the
script. If you omit the pipes as well , the compiler reinterprets the last line :

on container ()
display dialog "Howdy"

end container
tell application " F inder" to get container {} -- error

The parentheses are (surprisingly) transformed at compile time into an empty list to
be used as an index in an element specifier; an empty list is not an integer, so this
fails at runtime.

Sometimes pipes aren't quite enough. This doesn't work:

local folder
set folder to 5
tell application "Finder" to set I folder I to 10
folder -- 5, notlO

The trouble is that folder is also defined in a scripting addition, as the name of a
property. It 's a property of the file information pseudo-class returned by the info

for command. That in itself is a terminology clash, because the scripting addition
defines folder as ' a sdr ' , but the Finder defines it as ' dol ' . To use folder as a vari
able name successfully, if we are going to put pipes around it anywhere, we must put

Resolution Difficulties I 303

pipes around it everywhere, so that it isn't identified with this scripting addition
property:

local I folder I
set I folder I to 5
tell application " F inder" to set I folder I to 10
I folder I -- 10

Clash between dictionaries

There's nothing wrong with an application's dictionary redefining an AppleScript
defined term, so long as the same English-like term and the same underlying four
letter code are both used (and, I should probably add, so long as they use the term as
the same part of speech) . For example, AppleScript defines the term name (' pnam ') as
a property of a script object; the Finder defines it as a property of an item. Since they
both use the same English-like term and the same four-letter code, and they both use
it as a property, this is not a conflict . If the Finder's name were defined as a different
four-letter code, that would count as a conflict.

Even if an application's dictionary generates a terminology clash, at least the prob
lem arises only if you're targeting that application; but when a scripting addition
makes the same kind of mistake, it conflicts everywhere, and there 's nothing you can
do about it.

In general, a clash between dictionaries is completely out of your control ; even if you
know about it, you can't resolve it. The only dictionary you can refer to explicitly is
the innermost application dictionary. You have no way to help AppleScript when
there's a clash; you can't specify that a term should be interpreted in accordance
with AppleScript's own dictionary or a particular scripting addition's dictionary.

We have already seen some examples of trouble caused by poor choice of terminol
ogy in an application's dictionary. The use of the term end tra n saction by File
Maker Pro as the English-like equivalent of the ' misc/endt ' Apple event
("Transaction" in Chapter 12) conflicts with the AppleScript 's own use of end

transaction as the closing phrase of a transaction block. BBEdit' s use of the term
contents as a property of a text-object ("Dereferencing a Reference" in Chapter 11)
conflicts with AppleScript's own contents of operator.

With scripting additions, there have historically been many instances of clashes . The
real trouble lies in the nature of the scripting addition mechanism itself, which invites
such clashes; this is one of the reasons why Apple discourages developers from writing
scripting additions (see Chapter 20) . Thoughtful scripting addition developers fre
quently give their terms unique, improbable names to reduce the likelihood of clashes .
For example, the GTQ Script Library scripting addition sorts lists with the sort com
mand, which is probably not a very wise choice of English-like term; the ACME Script
Widgets scripting addition sorts lists with the ACME sort command, a term unlikely to

304 I Chapter 19: Dictionaries

recur elsewhere (see http://www.osaxen.com/gtq_scripting_library. html and http://
www.acmetech. com) . Even this doesn't prevent a four-letter code in the scripting addi
tion from matching a four-letter code in some application; that sort of problem is hard
for even a wary developer to guard against. With luck, some user notices the clash and
notifies the scripting addition's developer, who responds by creating a new version of
the scripting addition with an altered dictionary. But there are some scripting addi
tions where terminology clash is simply part of the price of using them.

Invalid Apple Events

Aside from confirming that your terminology is defined, does the compiler use the
dictionary to check that you're employing that terminology in a valid manner? It
does to some extent, but not as much as one might wish; it is all too easy to form a
nonsensical expression and get it past the compiler (which will then form a nonsensi
cal Apple event, which will be sent to the application at runtime) . In general, you
should not expect that compilation can be used as "sanity check. " It 's up to you to
know the language and to use it sensibly. This is one reason why I describe the con
tents of dictionaries in such detail later in this chapter ("What's in a Dictionary") .

The compiler does largely enforce the difference between verbs and nouns, though it
has various ways of expressing this , and it might not be obvious what it's doing. For
example, this will compile :

tell application " F inder" to folder the item

It probably looks to you as if AppleScript has treated folder as a verb ; but in fact
AppleScript is supplying get , as it typically does if the verb is missing. AppleScript is
parsing your words like this :

tell application " F inder" to get folder index item

It thinks you're asking for a folder by index (e.g. , folder 1), except that you've put
the class name item as your index instead of an integer value . The fact that a class
name is not a valid index value doesn't seem to faze the compiler one bit, but of
course the resulting Apple event is nonsense and causes a runtime error when sent to
the Finder.

The compiler also checks that the terms following a verb match the labeled parame
ters of that verb as defined by the dictionary. For example, this won't compile :

tell application " F inder" to duplicate x by y - - compile-time error

because a command must be followed only by valid labeled parameters , and the
duplicate command doesn't have a by parameter.

The compiler also won't let you say get name 1 or get left 1. Evidently, it knows
that name is a property and that left is an enumeration (a constant) , and that these
are not the sorts of terms that can be used in an element specifier.

Resolution Difficulties I 305

The compiler also displays some intelligence about singular and plural forms of a
class name. The plural form of a class name is taken to be a synonym for the every
element specifier; otherwise , if you use a plural where a singular is expected or vice
versa, the compiler will usually change it for you, silently:

tell application " Finder"
folder - - folder (the class name)
folders - - { • • • }, a list of references to every folder
folders 1 - - compiles as folder 1
folder 1 thru 2 - - compiles as folders 1 thru 2

end tell

Now for the bad news : the dictionary describes certain definite relationships-this
property is a property of this class, this element is an element of this class, this name
is a class, this name is a property-but AppleScript largely ignores this information.
As far as the compiler is concerned, property and element names are not encapsu
lated with respect to their class, and property names and class names are not distin
guished. The result is a namespace mess ; indeed, this is one reason why terminology
clashes can so easily occur.

Here we use a class name where a property name is expected :

tell application " F inder" to eject the item of file 1

That' s rank nonsense . The Finder's dictionary makes it clear that item isn' t a prop
erty of file , and that it isn ' t a property name but a class name . But AppleScript 's
compiler ignores such matters ; it will simply translate the line into an Apple event
and (at runtime) send it, at which point it's up to the Finder to return an error
message.

Here we use a property name where a class name is expected:

tell application " F inder" to make new extension hidden

But extens ion h idden isn't a class ; it's a property. And it isn't a property of the
a pplication class . But the code compiles anyway.

Again, demonstrating the complete lack of encapsulation :

tell application " F inder" to get column 1 of desktop

That's also total nonsense ; column is an element of the list view options class , not
of the desktop, and of course there's an error at runtime .

Raw Four-letter Codes

It is sometimes possible to resolve a term yourself, in code, in advance of compila
tion. Instead of an English-like term, you type the corresponding four-letter code.
You are thus essentially doing what the compiler would do : you've looked up the
English-like term in a dictionary and substituted the corresponding four-letter code
yourself. This is a useful device in situations where, because of a terminology clash,
the English-like term would be ambiguous, but the four-letter code is not.

306 I Chapter 19: Dictionaries

II .. , �" This technique obviously requires a way to read the four-letter codes
�:, in a dictionary. There are various ways to do this. If the dictionary is a

t;,' :" text file, you can read it in any text editor. If the dictionary is an ' aete '
• resource in a resource fork, you can read it with Eighty-Rez. The easi

est way is to use Script Debugger, which lets you switch between the
normal English-like view of a dictionary's terms and an Apple event
view displaying the four-letter codes.

The notation is straightforward. Typically the term will be either a noun (a class) or a
verb (an event) , so you use the word class or event followed by a space, followed by
the four or eight letters , respectively. The entire thing is wrapped in guillemets ((») .

On the U.S . keyboard layout, these are typed using Option-\ and Shift-Option-\
(backslash) .

Let's look at an example . This won't compile :

tell application " BBEdit"
tell window 1

offset of " i " in contents of word 1 -- compile-time error
end tell

end tell

The reason is that we're trying to use offset as defined in a scripting addition, but
BBEdit's own implementation of offset is getting in our way. There is no way to tar
get the scripting addition, so in this context, where BBEdit is specified as the inner
most application dictionary, there is no way to inform AppleScript that we mean the
scripting addition command offset and not BBEdit's offset.

One workaround is not to use the scripting addition command in the context of an
innermost application dictionary that conflicts with it. All we have to do is use the
scripting addition's offset outside the tell block:

tell application " BBEdit"
tell window 1

set w to contents of word 1
end tell

end tell
offset of "i" in w -- 3 (word 1 is "this")

But we could use four-letter codes instead. BBEdit's offset is a noun, a property
. Ofse ' , while the scripting addition's offset is a verb ' sys% ffs · . This means that
with regard to the underlying Apple event representation the two are completely dis
tinguishable. So, we type this :

tell application " BBEdit"
tell window 1

«event sysooffs» of " i " in (get contents of word 1) - - 3
end tell

end tell

Resolution Difficulties I 307

That' s what we type, but it isn't what appears after compilation. The decompilation
process involves translating terms from their raw four-letter codes back to their
English-like equivalents . Thus, the compiled script ends up looking like this :

tell application " BB Edit"
tell window 1

offset of " i " in (get contents of word 1) - - 3
end tell

end tell

Nevertheless , unlike the earlier attempt, this is the correct offset , the one defined by
the scripting addition; the script compiles-and it runs, because when « event
sysooffs » is sent to BBEdit, BBEdit can't deal with it and it is passed along to the
scripting addition.

Unfortunately, because decompilation has removed our raw four-letter code, if we
edit this script and compile it again, we are right back where we started. We must be
prepared to enter « event sysooffs» into the code manually before every compilation
if we want to use this solution.

Occasionally you'll see a four-letter code show up in a compiled script. Typically this
is because the compiled script has lost track of an application; thus it can't find the
application's dictionary, so it can't decompile the four-letter codes to the corre
sponding English-like terms. Therefore it just shows you the four-letter codes
directly. For example, here's a script targeting Eudora :

tell application " E udora "
get subject of message 1 of mailbox "Trash "

end tell

Now I ' ll quit the Script Editor and throw Eudora away. When I try to open the script
again, the Script Editor naturally can't find Eudora, so it asks me where it is; it's
gone, so to get the script to open at all, I just pick an application at random (the
Finder) . This satisfies AppleScript's desire for a dictionary, but of course the terms
s ubj ect , message, and ma ilbox aren't defined in that dictionary, so the raw four-letter
codes are displayed (and the Finder is substituted for Eudora as the target of the tell
block) :

tell application " Finder"
get «class euSu» of «class euMS» 1 of «class euMB» " Tra s h "

e n d tell

The same sort of thing can happen if you open an old compiled script whose applica
tion's dictionary has changed. It can happen with a dictionary, too; here 's a line from
BBEdit's dictionary:

cover page «class lwecll [r / 0 1 - - should a cover page be generated
for the job and where should it be placed

Evidently, either the dictionary itself is defective because someone forgot to define
the class ' lwec ' , or else at the time this dictionary was written, something (Apple
Script itself, or a scripting addition) defined the class ' lwec ' and no longer does.

308 I Chapter 19: Dictionaries

A further use of raw four-lener codes in a script is described under "Pseudo-Classes , "
later in this chapter.

Multiple-Word Commands

Many terms, especially in scripting additions , consist of multiple words . An example
frequently used in this book is display d ialog . Such a term would seem to present
extra challenges; but AppleScript seems to rise to them quite well. For example :

local clipboard, tester
set clipboard to "Mannie" - - sets the variable clipboard
set the tester to "Moe " - - sets the variable tester (ignoring "the")
set the clipboard to " J ack " - - sets the system scrap

That example illustrates AppleScript's ability to recognize the scnptmg addition
command set the clipboard to, which is used in the last line . This works even
though set is an AppleScript command, clipboard could be the name of a variable,
and the is usually ignored. In this particular code, clipboard is the name of a vari
able, and we are able to set it, as the second line shows . The third line illustrates that
AppleScript usually ignores the . Though I don't know the details , a natural explana
tion of AppleScript 's success here would be that it tries the longest possible combina
tions of words first .

A multiple-word property name such as text item delimiters presents a special case
in the context of an innermost application dictionary. To see why, contrast it with a
single-word property such as space . Both are defined by AppleScript itself as global
script properties (see Chapter 16), but they are treated differently. When you say
this, no Apple event is sent to the Finder :

tell application " F inder" to get space

That's because, in accordance with rule 1 on page 300, AppleScript has resolved
space as a name that 's in scope in the script. But with text item delimiters , Apple
Script can't do that, because a multiple-word name isn't a legal variable name. Thus,
when you say this , an Apple event is formed and sent:

tell application " F inder" to get text item delimiters - - error

The Apple event tells the Finder to get its ' txdl ' property (because ' txdl ' is the
four-letter code for text item delimiters) . But the Finder has no ' txdl ' property, so
it returns an error. To prevent this, you have to specify that the text item delimiters
belongs to me, or AppleScript :

tell application " F inder" to get my text item delimiters

What's in a Dictionary
This section describes the contents of a dictionary. This is primarily so that you can
interpret a dictionary when you read it in an application such as the Script Editor.

What's in a Dictionary I 309

Enumerations

An enumeration is a value that must be one of a fixed list of four-letter codes .
These four-letter codes are called enumerators ; and the enumeration itself also has
a four-letter code, identifying the entire set of its enumerators . Thus, by using the
four-letter code of an enumeration, a dictionary can specify that a value must be
one of the enumerators of that enumeration.

For example, BBEdit's dictionary entry for the close command reads, in part :

close reference [saving yes/no/ask]

The triad of values yes/no/ask is an enumeration. The dictionary actually just says
here that the saving parameter is a ' savo ' . That 's the four-letter code for an enumer
ation. The script editor application, presenting this information in human-readable
form, has looked up the ' savo ' enumeration in the dictionary and has fetched the
English-like equivalents of its three enumerators . The four-letter code for the enu
meration itself, ' savo ' , has no English-like equivalent .

By and large, an enumerator is the same thing as a constant, as discussed in
Chapter 1 7. If you ask AppleScript for the class of yes , it tells you it's a constant .

AppleScript uses this information to translate between English-like terms and four
letter codes, but the compiler does not check to see whether the value you actually
supply is an enumerator of the specified enumeration.

Value Type

At various points in a dictionary, a value type is specified. For example, a command
parameter is of some type; a command reply is of some type; every property of an
object is of some type.

This notion corresponds to a datatype or class (Chapter 13) . Thus, a value type is
specified in a dictionary by means of the four-letter code for a class. An application
can define classes beyond those that are native to AppleScript itself. There is also a
wild-card value type (, * * * * ') , whose English-like rendering is "anything. " A slightly
less wild wild-card type (' obj ') may be used when the value is some object belong
ing to the application; the English-like rendering is "reference. " A value type that is
itself a class (' type ') has the English-like rendering "type class. "

A value type may be a list (since a list is a class) ; in the special case where the list is
all of one class of item, there is a way to say so in the dictionary, and the English-like
rendering for this is "a list of" followed by the name of the class. A value type may be
an enumeration, or even a list of some one type of enumeration.

Here is part of the dictionary entry for the Finder's count command:

count reference - - the object whose elements are to be counted
Result : integer -- the number of elements

310 I Chapter 19: Dictionaries

The dictionary says that the parameter is an ' obj , and the reply is a ' long ' . These
are rendered as "reference" and "integer" respectively. A "reference" is a wild card
denoting some object belonging to the Finder; " integer" is the built-in integer class
("Integer, Real, and Number" in Chapter 13).

Here is the dictionary entry for the Finder's make command :

make
new type class - - the class of the new element
at location reference -- the location at which to insert the element
[to reference] -- when creating an alias file, the original item to create an alias to

or when creating a file viewer window, the target of the window
[with propert ies record] -- the initial values for the properties of the element
Result : reference -- to the new object(s)

The new parameter is a " type class , " meaning that its value is itself a class , so that the
Finder knows what class of object to create. The to parameter, and the result, are a
"reference. " A "record" is the built-in record class ("Record" in Chapter 13). For
"location reference" and the insertion location class , see "Relative" in Chapter 10.

In Mailsmith, a mail message's delivery path property appears in the dictionary like
this :

delivery path a list of string [rio]

A "string" is the built-in string class ("String" in Chapter 13). The dictionary actu
ally says that this property's class is ' TEXT ' , and also specifies that the value type is a
list . If you ask Mailsmith for the delivery path of a message, you'll see that it is
indeed a list of strings, one for each "Received : " entry in the header.

In Mailsmith, a mail message's status property appears in the dictionary like this :

status a list of seen/answered/forwarded/redirected/deleted/flagged/draftl
recentl sent [r 10] -- List of status flags

Mailsmith implements an enumeration called ' Eflg ' whose enumerators are the con
stants seen , a n swered , forwarded , and so forth. The dictionary actually says that the
status property's class is ' Eflg ' and that its value type is a list. This makes sense,
since the possible kinds of status are limited but a message might have more than
one status .

This information is for the human reader only. The AppleScript compiler does not
check to see whether the value you actually supply is of a specified type, and the
runtime engine doesn't care what type of value a scriptable application returns.

Event

An event is a command. You can think of it as a verb ; you can also think of it as an
Apple event (hence the name) . It is specified with two four-letter codes . The render
ing of both codes together, separated by slash (or backs lash) and delimited by single
quotes, is a common convention. So, for example, the Finder's reveal command is

What's in a Dictionary I 311

the event ' misc/mvis ' . The dictionary lists the command's parameters ; it specifies
each parameter's value type, and whether the parameter is optional or required. The
dictionary also specifies whether the command has a reply; if it does, the dictionary
specifies the reply's value type.

There are two types of parameter. A parameter may be the command's direct object
("Direct Object" in Chapter 10) . Every event listed in a dictionary must say whether
the command has a direct object. For example, the Finder's quit command has no
direct object:

tell application " F inder" to quit - - don't try this at home

The Finder's reveal command has a direct object:

tell application " F inder"
reveal item 1 of desktop
-- or, alternatively:
tell item 1 of desktop

reveal
end tell

end tell

The other type of parameter is a labeled parameter ("Prepositional Parameters" in
Chapter 8) . For every labeled parameter, the label is specified as a four-letter code
and as an English-like equivalent . From an Apple event point of view, a label is a
property; when the command is sent as a message, the labeled parameters appear as
items of a record. For example, recall that the Finder's make command appears in the
dictionary like this :

make
new type class - - the class of the new element
at location reference - - the location at which to insert the element
[to reference 1 -- when creating an alias file, the original item to create an alias to

or when creating a file viewer window, the target of the window
[with properties record 1 - - the initial values for the properties of the element
Result : reference -- to the new object(s)

The command has parameters labeled new, at , to, and with properties . The first two
parameters are required, and the second two are optional . So the following Apple
Script code :

tell application " F inder"
make new folder at desktop with properties {name : " J a ck " }

end tell

generates this Apple event:

core/crel{
koel : ' dol ' ,
insh : obj {

} ,

form : ' prop ' ,
want : ' prop ' ,
seld : ' desk ' ,
from : ' null ' ()

312 I Chapter 19: Dictionaries

prdt : {
pnam : " J ack"

}

You can see the two four-letter codes specifying the event (' corel crel ') , followed by
a record where the names of the items are the four-letter codes for the three parame
ters we supplied : ' kocl ' , ' i n s h ' , and ' prdt ' are the four-letter codes for new, at, and
with properties .

You probably know enough by now to understand the rest of what's happening here
too . ' dol ' is the four-letter code for the folder class ; the last parameter is a record,
and we've already mentioned that ' pnam ' is the name property. The term desktop is a
property, which is rendered as an object specifier, as mentioned in "Element Specifi
ers" in Chapter 10.

The AppleScript compiler enforces the rule that the only parameters following a com
mand should be the direct object and the labeled parameters defined by that particu
lar command. It knows nothing about required and optional parameters, however.

Classes

A class is a datatype (see Chapter 13) . Applications are free to define new data types
in addition to those provided by AppleScript. These will generally correspond

·
to the

various types of thing the application operates on. For example, the Finder is all
about files and folders on hard drives ; thus it has a file class, a folder class, and a
disk class .

If a value type is of a particular class, the dictionary will say the name of the class .
See "Value Type, " earlier in this chapter, for the ways in which a value type may be
expressed in the dictionary.

Plurals

For most classes defined by an application, the dictionary will provide both a singu
lar and a plural form for the English-like term. So, for example, the Finder defines
both file and files , both folder and folders , both disk and d i s k s . In the dictio
nary, the mechanism for doing this is to list the class a second time, along with a
pseudo-property marking it as a plural .

For example, in the Finder's dictionary, the listing for folder is immediately fol
lowed by a listing for folders . They both have the same four-letter code (' dol ') , and
folders has the pseudo-property marking it as a plural. Therefore AppleScript knows
that folders is the English-like plural of folder. The human-readable presentation in
the Script Editor simply combines these into one listing:

Clas s folder : A folder
Plural form :

folders

What's in a Dictionary I 313

The only time a dictionary won't provide a plural form for a class name is when there
is only one object of that class ; you can't say every, because this class occurs only as
a property, not an element. For example, the Finder provides only the singular for
desktop-obj ect, the class of the desktop . It is also possible for a class to be declared
as its own plural (text does this, for example) .

The compiler uses this information to treat singular and plural alternatives with
some intelligence ; see "Invalid Apple Events, " earlier in this chapter.

Class inheritance

A dictionary can specify a class as inheriting from another class. The mechanism for
this is a special pseudo-property; if a class has this property, the property's value is
the class from which this class inherits . For example, in the Finder, there is a class
item; both the file class and the container class have the pseudo-property stipulat
ing that they inherit from item. We also say that item is the superclass of file and
conta iner, and that file and conta iner are two of its subclasses . Similarly, the class
folder is a subclass of conta iner . Thus we have a hierarchy of inheritance.

The nature of this inheritance is that a subclass has all the properties and elements of
its superclass. It may also implement some properties and elements that it doesn't
inherit, and it passes these along to its own subclasses as well . For example, in the
Finder, the item class has a name property; therefore, so does the conta iner class, and
so does the folder class. The container class has an entire contents property; there
fore, so does the folder class .

Because of class inheritance, it is possible for a class to be abstract-that is, a class
exists only as a way of encapsulating a set of elements and properties so that other
classes can inherit them, and is not the class of any actual object to which the pro
grammer will ever make or obtain a . reference. For example, BBEdit 's dictionary
defines an item class to act as an ultimate superclass , just so that every other class
will have an ID property inherited from it; there 's no property or element anywhere
in the dictionary whose class is item.

The Finder, too , has an item class that acts primarily as a superclass, though there's a
slight difference : some classes do have an item element, so you can refer to the item

class in this way. Nevertheless, the reference you wind up with is an item subclass,
not an item ; so it is reasonable to describe the Finder's item class as abstract. For
example :

tell application " F inder"
class of item 1 of des ktop - - document file (not item)

end tell

The chief value of inheritance is that it makes the dictionary smaller. (Historically, in
fact , this is why class inheritance in the dictionary was implemented; QuarkXPress' s
dictionary was too large to be displayed by the Script Editor, which had a 32K limit
on the size of dictionary text.) For example, in the Finder, a file and a folder have

3 14 I Chapter 19 : Dictionaries

lots of properties in common. Rather than having to list all these properties twice ,
once for the file class and once for the folder class , the dictionary simply lists them
once, for the item class, and both file and folder inherit them from item.

Unfortunately for the human reader, a dictionary may be displayed in a way that
makes inheritance more of a stumbling block than a convenience. In the Script Edi
tor, for example, inheritance actually makes it harder for you to learn what a class 's
properties are . When you look at the listing for the Finder's file class , you see about
five properties, preceded by a statement that the file class inherits from the item

class. So if you want to know about the file class's other two dozen properties, you
have to find the listing for the item class and look in that! You thus spend all your
time slogging from class to class trying to remember what's in each one.

Script Debugger is much more helpful. The listing for a class optionally shows you its
inherited attributes along with its own, so it suffices to look just in the listing for the
Finder's file class to learn about all its properties , including those it inherits from
i tern. And Script Debugger even displays the inheritance hierarchy graphically;
Figure 19-1 shows its nice hierarchical display of some of the Finder's classes, includ
ing item, conta iner, file , and folder.

!

I

r8 e e Ie Finder Dictionary
. ""

f II Dictionary » .. Object Model f t,d Explorer l
� Hierarchy: { I nherita . . . I � , Root Class : f item !; � View As: I AppleScript �

d isk
fo lder

H conta iner IEIH
itom 8

desktop-object
trash-object

file ijj
package

C� item: An item � P1U11l! tonn:
items

� S ub classes :
conta iner, fi le , p a ckage -

Prnpertil!s : ,
n a m e U n i code text -- the name of the item d

.�
- �

:

"
,

!

Figure 19-1. Part of the Finder's class inheritance structure

The implementation of inheritance of elements (as opposed to properties) is rather
confusing. Most dictionaries behave as if there were no such thing. Thus , for exam
ple, in the Finder the elements of the folder class are the same as the elements of the
conta iner class, and folder inherits from container , but the identity of their elements

What's in a Dictionary I 315

is not a consequence of inheritance; their elements are stated separately in the dictio
nary, the same list of elements appearing twice. (This is not an artifact of the way the
Finder's dictionary is presented to a human user in a script editor application; I 'm
describing the Finder's ' aete ' resource .) If the Finder believed in inheritance of ele
ments , it wouldn't need to do this , and more space would be saved. On the other
hand, some applications, such as FrameMaker and Adobe Illustrator, do display ele
ment inheritance.

The truth is, however, that none of this matters much. The compiler doesn' t enforce
(or care about) encapsulation of property and element names with respect to their
class ("Invalid Apple Events, " earlier in this chapter) , so class inheritance in the dic
tionary has no effect whatever on how AppleScript works . Class inheritance in the
dictionary is merely a form of shorthand to save space; it is meaningless except to the
human reader, and its chief effect upon that human reader is to make the dictionary
harder to read.

Properties and Elements

Recall from "Properties and Elements" in Chapter 10 that an object can have two
kinds of attribute : properties and elements . For every class listed in a dictionary, its
properties and elements are listed along with it.

AppleScript uses the property listings to translate between their English-like names
and their four-letter codes , but that 's all . The compiler does not enforce the distinc
tion between a property and an element, and does not enforce encapsulation (for
example, it doesn't look in the dictionary to see whether the property you are ascrib
ing to an object really is a property of that object) . See "Invalid Apple Events , " ear
lier in this chapter.

How properties are listed

The dictionary listing for a property consists of two four-letter codes-the four
letter code for the name of the property, and the four-letter code for the class of its
value type. For example, in the Finder the name property of the item class has the
four-letter code ' pnam ' , and its value type is specified as ' utxt ' , that is to say, Uni
code text . As with any value type (see "Value Type , " earlier in this chapter) , the
dictionary can specify that the property's value is an enumeration, or a list whose
items are of some one particular class or enumeration. It can also specify that the
value is read-only; this appears in the human-readable rendering as " [rio] " . Here 's
part of the listing for the Finder's item class :

Class item : An item
Properties :

name Unicod.e text -- the name of the item

3 16 I Chapter 19: Dictionaries

How elements are listed

The dictionary listing for an element is the four-letter code of a class-which must be
defined elsewhere, of course-along with a list of the forms of specifier that may be
used to refer to this element . (Naturally, there are four-letter codes for the element
specifier forms .) For example, in the Finder the folder class has a ' file ' element
with specifier forms ' indx ' and ' name ' . The four-letter code ' file ' is paired with the
English-like term file elsewhere, namely at the point where the file class is defined.
So this is a way of saying that a folder can have file elements which can be referred
to by index or by name. This information appears in the human-readable rendering
of the dictionary, which says, in part :

Class folder : A folder
E lements :

file by numeric index, by name

The object model

An object belonging to a scriptable application is of some class . That class can have
properties and elements . All of the elements , and possibly some of the properties,
represent objects belonging to the application as well . Thus, properties and elements
together bind all of an application's objects into a hierarchy, whereby it should be
possible to specify every object that actually exists. This is called the application's
object model .

Much of the struggle of using a dictionary involves trying to work out the object
model, so that you can refer to the object you want to refer to. (See Chapter 3.) This
is another area where Script Debugger is particularly helpful. It charts the element
hierarchy in a manner similar to the way it charts the class inheritance hierarchy
(Figure 19-1); and it displays hierarchically all of an application's actual objects , tell
ing you their values and how to refer to them (Figure 2-4) .

Pseudo-Classes

A pseudo-class is a record that 's listed as a class in the dictionary. This publicizes the
names of the items of the record, making them part of the application's terminology,
as well as informing the human reader about the structure of the record.

A good example is the text style info that some applications return as a descrip
tion of how text is styled. Tex-Edit Plus is such an application. In its dictionary,
there 's a listing for a text style info class with properties on styles and off styles ,
each of which has a value that's a list of an enumeration (' styl ') :

Class text style info : The on and off styles of a text object
Properties :

on styles list of plain/bold/italic/underline/outline/shadow/
condensed/expanded/strikethrough/all caps/
all lowercase/hidden [rio]

What's in a Dictionary I 317

off styles list of plain/bold/italic/underline/outline/shadow/
condensed/expanded/strikethrough/all caps/
all lowercase/hidden [rio]

Tex-Edit Plus's dictionary says that the text class has a u n iform styles property
whose class is text style info. But that 's not really true; the dictionary does not dis
tinguish between a real class and a pseudo-class. When you ask for a text object's
u n iform styles property, you get a record :

tell application "lex- E dit Plus " to get uniform styles of the selection
{class : text style info, on styles : {bold, italic} , �

off styles : {underline, outline, shadow, condensed, �
expanded, strikethrough, all caps, all lowercase, hidden}}

However, AppleScript is able to characterize a record as being of a particular class;
you can see this happening in the Apple event version of the result from the previous
example (' tsty ' is the four-letter code for the text sty Ie info pseudo-class) :

tsty{
onst : [

' bold ' ,
, ital '

] ,
ofst : [

' undl ' ,
' outl ' ,
' s had ' ,
' cond ' ,
' pexp ' ,
' strk ' ,
' alcp ' ,
' lowc ' ,
' hidn '

And within your script, the resulting record has been consequently endowed with an
item whose name is class , so that if you ask about its class, you'll be told it is a text
style i nfo.

To retrieve items of a pseudo-class record outside of a tell block targeting the origi
nal application may require the use of raw four-letter codes (see "Raw Four-Letter
Codes, " earlier in this chapter) . For example, this works :

tell application "BBEdit"
set r to check syntax file "xxx : Users : mattneub : testing . html "
get result_file of item 1 of r

end tell

But the following code doesn't , because AppleScript has no way to associate the term
result_file with the four-letter code that identifies it internally within the record :

tell application " BB E dit "
set r to check syntax file "xxx : Users : mattneub : testing . html "

318 I Chapter 19: Dictionaries

end tell
get res ult_file of item 1 of r - - error

You can get around this error by using the raw four-letter code :

tell application " BBEdit"
set r to check syntax file " xxx : Users : mattneub : testing . html "

end tell
get «class Efil» of item 1 of r

The reason why the same problem doesn't arise with text style info is that all the
terms involved are defined within AppleScript's own dictionary (see "The 'aeut'
Resource, " later in this chapter, and Appendix A) .

Suites

At the top level of a dictionary, events and classes are clumped into suites . What is a
suite? In part, it 's just a way of organizing the top level of a dictionary. This is sup
posed to make it easier for the human user to navigate the dictionary, but the result
is often just the opposite . Typically, you don't get to see classes and events in alpha
betical order; you don't get to see them in any order. They are clumped into suites,
and within each suite they come in what seems an arbitrary order (it is whatever
order the dictionary's designer felt like giving them) .

Thus, suites can actually make it harder to find a particular class or event because
you don't know what suite it's in or where it will appear within its suite. Once again,
Script Debugger can be a big help here, because it lets you view all classes or events
in alphabetical order, dispensing with suites altogether.

A suite also has a second use, behind the scenes . Suites are an attempt to bring some
semblance of standardization to the anarchic world of terminology. Even before
AppleScript was made public, back in the earliest days of System 7 when there were
just Apple events , Apple began fostering an attempt to make Apple events more uni
form from one application to another. Since it couldn't do this at System level, it
resorted to a combination of propaganda and browbeating aimed at developers. An
Apple event czar was appointed-the Apple event registrar-whose job was to orga
nize and codify commonly used Apple events into a centralized database-the Apple
event registry. The suites resulted from this codification.

You will thus see, recurring amongst applications, a few suites that have become
informally conventional. An example is the Miscellaneous Suite, a frequent reposi
tory for commands like copy, cut , and undo . But Apple did more than just ask devel
opers to implement and conform to the suites ; they incorporated some suites into
AppleScript's own dictionary (and you can see them in Appendix A, The 'aeut '
Resource) . They did this in such a way that there would be no breach of the freedom
of developers to devise their own repertories of Apple events and their own dictionar
ies . The suites incorporated into AppleScript itself are mostly voluntary. An applica
tion may adopt none or any or all of these suites; it may adopt any suite in part, as a

What's in a Dictionary I 3 19

whole, or with extensions ; it may adopt events and classes as is, or it may change
them. In other words, the suites incorporated into AppleScript itself function as
starting points .

Some of AppleScript's own suites, such as the Macintosh Connectivity Classes , are
relatively obscure and rarely adopted, but others are frequently adopted by script
able applications . The Standard Suite, sometimes referred to as the Core Suite, shows
up quite a lot in one form or another; it contains terms like exist s , make, and select .
And the Text 'Suite, containing terms like word and text style info , i s sometimes
used as a starting point by applications that do that sort of thing.

There used to be a suite called the Required Suite ; in the current implementation of
AppleScript this is empty. It dates back to the invention of Apple events and System
7, where all applications, scriptable or not, had to respond to four particular Apple
events or they couldn' t exist as System 7-native applications at all. That's because
these are fundamental Apple events sent by the Finder to the application in order to
notify it that the user wants to do such things as launch it, open a document owned
by it, or quit it. These Apple events now have analogues in the Standard Suite, but
the original Required Suite Apple events are not listed, because it is certain that every
application responds to them. They are shown in Table 19-1.

Table 19-1. The original Required Apple events

Command Four-letter (ode

run ' aevtloapp '

open ' aevt/odoc '

print ' aevtlpdoc '

quit ' aevtlquit '

The 'aeut' Resource

Effect

Launch the application

Open a document or documents

Print a document or documents

Quit

When terminology is resolved according to the rules in the earlier section "Translat
ing the Terms, " AppleScript itself is represented by a dictionary. This dictionary is
the ' aeut ' resource . The ' aeut ' resource is loaded when the AppleScript scripting
component comes into being. It looks just like any other dictionary. There's just one
problem: you, the human reader, can' t normally see it . Of the commonly used script
editing programs, only Smile displays the ' aeut ' resource. Therefore, I present it in
Appendix A.

The appendix contains a representation of the ' a eut ' resource as currently imple
mented by AppleScript on Mac OS X. You will be amazed when you see what's in
there-basically, it's the entire AppleScript language as already described in this book,
including comparison operators, prepositions for handler parameters, the global script
properties, and so forth. There are even some terms not discussed in this book
(because in practice they don't arise, or may never even have been implemented, like

320 I Chapter 19: Dictionaries

the u pper case class) . You can learn a lot from perusing the ' aeut ' resource . For one
thing, it shows you why certain variable names generate terminology conflicts . (It's
because they're defined in the ' aeut ' resource. How you're supposed to find this out
without being able to see the ' aeut ' resource is a mystery to me. AppleScript program
ming is often indistinguishable from guessing.)

I nadequacies of the Dictionary
One purpose of the dictionary is to show the human user how to speak AppleScript
to a scriptable application in order to drive that application . But a dictionary, by its
very nature, is not completely adequate to this task. A dictionary is merely a list of
words. Knowing a lot of words is not the same as knowing a language. Languages
refer to the real world, they develop under certain conventions of communication,
and they have idioms. You might know every word of the English language, includ
ing the words "how, " "you," and "do" ; but nothing about these words , qua words,
would tell you what "How do you do?" means, nor would anything about these
words lead you to think of generating such a phrase at the appropriate moment. An
AppleScript dictionary is like that. It tells you the building blocks of the phrases you
can say, but it does not tell you what to say-how, as Austin famously put it, to do
things with words . Yet this is exactly what you want to know.

This section lists the main types of problem you're likely to encounter. Forewarned,
as they say, is forearmed. It is hoped that study of this section will make you a better
reader of dictionaries and a wiser AppleScript programmer.

Defective Object Model

Since an application's object model (see "The object model , " earlier in this chapter)
is a hierarchy, essentially equivalent to the chain of ofs allowing you specify any of
the application's objects, it's clear that it requires a starting point. If we are to spec
ify any object, there must be some ultimate, top-level object in terms of which we
will specify it. In an Apple event, that top-level object is null () . But in AppleScript
there is no way to express this n U ll () explicitly; it is simply supplied for you as the
end of the chain, whenever you specify an object. (You can see this happening in
Example 4-1.)

By convention, in a well-written dictionary for a well-behaved application, the
application class can be used to describe the top-level n U l l () object. For example,
the Finder's application class has a home property, and sure enough, you can refer to
the home property as a property of the top-level object, with no further qualification:

tell application " F inder"
get home - - folder "mattneub" of folder "Users " of startup disk �

of application " Finder"
end tell

Inadequacies of the Dictionary I 321

In reality, though, you never know quite what an application will do if you simply
refer to a property or element with no further qualification. You can't find out from
the dictionary; you just have to try it. A good example is what happens when you
refer to a top-level element in the Finder:

tell application " F inder"
get folder 1 - - folder "Moe" of desktop of application " Finder"

end tell

Since desktop is a property of the Finder's application object, it's a property of the
top level; thus, a folder on the desktop is not an element of the top level. But the
Finder permits you to speak as if it were; you can refer to a folder element without
further qualification, and the Finder supplies the interpretation that this means a
folder on the desktop . We say that the Finder supplies an implicit subcontainer (the
desktop) when you speak of certain elements without qualification. That's conve
nient, but you have no way to know from the dictionary that it will do this .

Some applications are particularly badly behaved in this regard. A good example is
Eudora. There is a ma ilbox class in Eudora, but how can you speak of any particular
mailbox? The only place ma ilbox is listed is as an element of mail folder . But in fact
not every mailbox in Eudora is in a mail folder, so that makes no sense. It turns out,
however, that you can speak of a mailbox as an element of the top-level object:

tell application " E udora " to count messages of mailbox " I n "

Nothing about Eudora's dictionary informs you that this i s legal. This i s a good exam
ple of how an application can have an object model in its head, as it were, without
showing it to you in its dictionary. In Eudora's dictionary, mailbox is an orphan class .

A dictionary may also simply omit pieces of the puzzle, such as not listing all of a
class 's elements. Much of the time in Chapter 3 was spent discovering, by experi
mentation, that in FrameMaker an anchored frame can be an element of a paragraph
or of a document. This was a relief, and made our ultimate solution possible , but the
dictionary said no such thing; only experimentation revealed it. In the Finder, too , a
Finder window can have items, as if it were a folder, even though the dictionary
doesn't list it as having any elements at all.

Defective Element Specifiers
There are many ways to refer to an element (see "Element Specifiers" in Chapter 10),
but you can't be sure from the dictionary which ones are implemented for any partic
ular element. The dictionary can list some element specifier forms as ways of access
ing a particular element, but the list might not be correct. The programmer's
difficulty here is closely related to the defective object model-how to work your way
down the chain of ofs and tells to refer to some particular object or set of objects .

322 I Chapter 19: Dictionaries

For example, as we saw earlier, the Finder lists only the ' indx ' and ' n ame ' specifier
forms as ways of referring to a folder object's file elements . But this code both com
piles and runs on my machine :

tell application " F inder" to get files 1 thru 2 of folder 1

That code doesn't use the ' indx ' or ' name ' specifier form; it uses the 'ra ng ' (range)
specifier form. So the Finder fails to list in its dictionary a specifier form that is valid.
It also does list in its dictionary a specifier form that is not valid: it claims you can
specify a folder by ID , but since you can't get a folder's ID , that's not true . So you
often have to ignore the element specifier form information in a dictionary and just
use good old trial and error to determine what specifiers are really possible .

Sometimes an application's implementation of element specifier forms (or lack
thereof) is nothing short of astounding. Certain specifiers may work on the very same
object in one context but not in another. In Eudora, you can say this :

tell application " E udora " to get name of mailbox 1 - - "In"

but you can't say this :

tell application " E udora " to get mailbox 1 - - error

and you can't say this :

tell application " E udora " to get every mailbox - - error

or this , which amounts to the same thing:

tell application " E udora " to count mailboxes - - error

As far as I know, there's no way to learn how many Eudora mailboxes there are ; the
only way to cycle through all mailboxes in Eudora is simply to keep cycling by index
number, incrementing the index, until you get an error.

Boolean test specifiers are , of course, the most chancy. When a boolean test specifier
works, it's a superbly elegant feature . We used this one in "Reduction" in Chapter 1:

tell application " System Events " to get proces s 1 where it is frontmost

If System Events didn't implement that boolean test, we would have had to get the
list and then cycle through it ourselves :

tell application " System Events "
repeat with p in (get every proces s)

if frontmost of p then exit repeat
end repeat

end tell
contents of p

That gets the same result, but it takes much longer and involves lots of Apple events.

Inadequacies of the Dictionary I 323

Make

The verb make, used to create objects in AppleScript, poses many peculiar difficulties,
so it's worth some individual attention. (See also the section "Relative" in Chapter 10.)

The first question is what to make . You might think, for example, that to make a
new email message in Mailsmith-I mean a new outgoing message, one that you
intend to populate with an address, a body, and so forth, so as to send it later
you'd ask to make a new message, but that creates a new incoming message (which
makes no sense whatever) . The way to make a new outgoing message is to ask for a
new message window. Nothing in the dictionary would lead you to this solution.

Similarly, the way you create a new window in AppleWorks isn't to ask for a new
window, which just gets you an incomprehensible error message, but to ask for a new
document. The way you create a new window in the Finder isn't to ask for a new
window but to ask for a new Finder window.

The verb make also often requires that you say where to create the new object. The
dictionary lists this parameter:

at location reference - - the location at which to insert the element

Every application seems to have a different idea of what constitutes an appropriate
location. In Eudora, for example, if you're trying to make an outgoing message, it
turns out that the place to create it is at the end of the "Out" mailbox:

tell application " E udora "
make new message at end of mailbox "Out "

end tell

With Cocoa applications, the at parameter must typically refer to a collection (some
times imaginary) of the same things you're trying to make one of. An example
appears in the section "Application" in Chapter 2 (where the Cocoa application is
AppleScript Studio) . Here 's another example; in the outliner NoteTaker, to make a
new page, you have to say something like this :

tell application " NoteTaker"
tell book 1

tell section 1
make new page at end of pages

end tell
end tell

end tell

If you target the wrong object, or if you don't say at end of pages , you get an error,
or nothing happens, or NoteTaker crashes.

Not only the at parameter, but also the meaning of at, varies from application to
application. This code inserts a new word after word 2:

tell application "BBEdit"
tell window 1

make new word at word 2 with data " howdy"

324 I Chapter 19: Dictionaries

end tell
end tell

This code inserts a new word replacing word 2:

tell application "Text Edit "
tell text o f document 1

make new word at word 2 with data " howdy"
end tell

end tell

This code inserts a new folder inside folder 1:

tell application " F inder"
tell desktop

ma ke new folder at folder 1 ,
with properties { name : " (ool new folder" }

end tell
end tell

Then there's the with properties parameter. Sometimes you have to use this . For exam
ple, the way to add a recipient address to a Mailsmith message window is as follows:

tell application "Mailsmith "
tell mes sage window 1

make new to_recipient at end ,
with properties {addres s : " matt@tidbit s . com" }

end tell
end tell

If you leave out the with properties parameter, you'll get a runtime error. Notice
also the peculiar at end ; you have to say it this way-you can't omit the at parame
ter, and you can' t say something more sensible-sounding such as at end of to_

recipient s . None of this comes from the dictionary.

One more thing to know is that with the make command you can omit the word new;

what follows the word ma ke, where the direct object would go , is taken to be the new
parameter. The dictionary fails to express this fact, which is hardcoded into the inner
workings of AppleScript itself.

Idioms for Common Tasks

The commonest tasks are often the hardest to express using the terms the dictionary
gives you. The object model is often not at all like the mental picture of the applica
tion you've built up from using it in the ordinary way. The verbs you think you need
aren't there, or the verbs that are there don't do what you expect.

Take the problem of deleting a message in Eudora. You're used to simply selecting a
message and deleting it (with the Delete key) . This sounds like the delete event, so
you try it :

tell application " E udora "
delete message 1 of mailbox "Out " - - error

end tell

Inadequacies of the Dictionary I 325

The error message says, "Message 1 of mailbox 'Out' doesn't understand the delete
message . " So how on earth are you supposed to delete it? The solution is to move the
message to the end of the trash :

tell application " E udora "
move mes sage 1 of mailbox "Out " to end of mailbox "Tra s h "

e n d tell

Who would ever have thought of saying something like that? And the dictionary
doesn't tell you to say it, so how are you supposed to find out?

Another good example is how you insert text into a BBEdit window. There is no
in sert verb, and make turns out to be unreliable. The best way turns out to be to
position the selection where you want to insert the text and then say set the
selection . You have to be careful, because set i s not being used here quite the way
you might suppose . For example, what do you think this code does?

tell application "BBEdi t "
tell window 1

set selection to word 1
end tell

end tell

If you expect that code to select the first word of the window, you're wrong; it
-changes whatever text is currently selected to the same text as the first word of the
window. The way you "set the selection" in the sense of positioning the current
selection point is with the select command.

To produce Fetch's shortcut window (a Fetch shortcut is like a bookmark in other
Internet applications) , you choose Fetch Shortcuts from the Window menu. How do
you do it with AppleScript? There's a shortcut window class, so naturally you try vari
ous incantations based on make new shortcut window, but none of them work. Even
tually you discover shortcut window listed as an element of the application class, and
experimentation shows that you can say this :

tell application " Fetch 4 . 0 . 3 " to open shortcut window 1

That makes no sense whatever. The application has only one Shortcut Window, after
all . There is no shortcut window 1 (there are no shortcut windows at all , which is
why you're trying to produce one) , and you're never allowed to speak of s hortcut
window 2 . This shouldn't be an element, but a property, and you should be using
make, not open ; but such is not Fetch's idiom. The dictionary didn't tell you what to
do; you had to guess.

Events and Classes

A dictionary lists events (verbs) and classes (nouns) , but it doesn't tell you what
verbs apply to what nouns. The verb make creates a new object, but what objects am I

326 I Chapter 19: Dictionaries

allowed to create? The verb delete deletes things, but what objects am I allowed to
delete? The dictionary doesn't say.

The problem is particularly acute when the dictionary entry for a verb doesn't pro
vide any meaningful information. For example, here's how delete is listed in most
dictionaries :

delete reference - - the element to delete

That could mean anything, so of course it means nothing. The only way to find out
what it does mean is by trying it. If AppleScript or an application doesn't want to
apply a particular verb to a particular object, it will usually return an error message
that "such-and-such an object doesn't understand the so-and-so message . " In other
words : sorry, guess again.

Inconsistent Return Types

Dictionaries give no information about what sort of value will be returned when you
use a verb that isn't defined in the dictionary (like get) . As usual, experimentation is
your best bet.

For example, when you ask the Finder for every folder (of any container) , you get a
list ; but when you ask the Finder for every disk , you get a list unless there is only
one disk, in which case you get a reference to a single disk object. Quite apart from
the inconsistency, this is troublesome because it means a script like this can break:

tell application " Finder"
repeat with d in (get every disk)

- - do something here
end repeat

end tell

The script will break in a subtle way: if you have more than one disk, then on every
iteration of the repeat block, d represents a disk, but if you have just one disk, then
on every iteration of the repeat block, d represents an item at the top level of that
disk, and your script will behave very differently. What's more, if it just so happens
that you have more than one disk, you have no way to find this out! You can test
your script until you're blue in the face, believe that it works fine, and distribute it to
others , only to learn later that it mysteriously breaks on someone else 's computer.

Also, determining what sort of return value you've got is not always easy. Asking for
its class doesn't necessary tell you what you want to know. The Finder, for exam
ple, simply lies to you about the class of the desktop, claiming that it 's desktop when
in fact it's desktop- obj ect . But there is no desktop class ! The problem is that the
Finder's dictionary foolishly uses the same four-letter code for the desktop-object
class and the a pplication class's desktop property; when AppleScript tries to decom
pile that four-letter code, the term desktop comes first in the dictionary and hides the
term desktop - obj ect .

Inadequacies o f the Dictionary I 327

Coercions

Dictionaries don' t list the coercions that can be performed by an application in
response to get . . . a s . (See "Explicit Coercion" in Chapter 14.) Only trial and error
can give you this information.

A rare exception is the Finder, which defines a class alias list and almost tells you
(but not quite) that the purpose of this class is to let you coerce to it :

tell application " F inder"
get every disk as alias list
-- {alias " xxx : " , alias "main : " , alias " second : " , alias "extra : " }

end tell

A related problem is that dictionaries typically don't tell you about the implicit coer
cions that an application is willing to perform on a parameter of verb . We saw an
example of this in "Alias" in Chapter 13, where it turned out that, even though
GraphicConverter's dictionary says it expects an alias as the in parameter of the save
command, a string would do :

tell applicat ion "GraphicConverter"
set s to " xxx : Users : mattneub : Oesktop : j oconde "
save window 1 in s as PICT

end tell

Ironically, the I aeut I resource contains an alias or string class, expressly so that a
dictionary has a way to convey to the user that an alias or a string is acceptable as a
parameter. But GraphicConverter's dictionary fails to take advantage of this .

Enumerations

The way enumerations are presented in the human-readable version of a dictionary,
there's no place for comments . There's no real reason for this , because in the dictio
nary itself, enumerators can and sometimes do have comments .

So, for example, in the I aeut ' resource, the enumerators of the I savo I enumeration
have comments :

yes - - Save objects now
no - - Do not save objects
a s k - - Ask the user whether to save

But in the human-readable version of the dictionary, you aren't shown the enumera
tion in columnar form like this ; instead, you see the English-like enumerators listed
in their verb context. So, for example, GraphicConverter's dictionary entry for the
verb close might be shown like this :

close reference - - the object to close
[saving yes/no/ask]
- - specifies whether to save currently open documents

328 I Chapter 19: Dictionaries

In effect, the comments are thrown away. This isn't a big deal for yes/no/a sk , since
you can guess what they do; but there are lots of enumerations where comments
would be more than welcome.

Borderline Syntax

Some syntactical constructions in AppleScript are of borderline legitimacy, and you
can't be sure of what they'll do until you try them. A good example is the construc
tion described in "Properties of Multiple References" in Chapter 10. This works :

tell application " F inder"
name of every disk - - { "xxx" , "main " , " second " , "extra" }

end tell

So does this :

tell application " BBEdit"
contents of every word of window 1 - - { "this " , " is " , " a " , "test " }

e n d tell

But this doesn't :

tell application "BBEdit"
length of every word of window 1 - - 4

end tell

Instead of a list of lengths, we were given the length of the list (that is, the number of
words in the window) . This sort of inconsistency adds to the uncertainty of the pro
grammer's task.

Bad Grammar

When developers decide on the English-like terminology for a dictionary, do they
think about the experience of the users who will actually employ this terminology in
typical AppleScript expressions? I sometimes wonder, when I find myself saying
something like this :

if application file n is has scripting terminology then

The trouble is that has s cripting terminology is the name of a property. Why would
anyone make a property name a verb? If the name of this property were an adjective,
such as scriptable, this expression would seem natural. The real trouble with this
sort of mistake is that sooner or later the user will be misled by English into trying to
write an expression that won't compile, such as this :

if application file n has scripting terminology then

See "The "English-likeness" Monster" in Chapter 5.

Inadequacies of the Dictionary I 329

Lying Dictionary

If a dictionary wants to lie right to your face, it can. AppleScript has no way of check
ing to see whether the application's behavior matches the description in the
dictionary.

The Finder's dictionary says that when you're using the make command, the new and
at parameters are compulsory, not optional . That just isn't true; this works :

tell application " F inder" to make Finder window

In NoteTaker, the make command is said by the dictionary to return a reference to
what has just been created. It should (since this is how most applications work) , but
it doesn't .

The StandardAdditions dictionary says that the POSIX file class's POSIX path prop
erty is a file; it's Unicode text. It say that list disks returns a list of aliases ; it returns
a list of strings. It says that do shell script returns plain text ; it returns Unicode
text .

StuffIt Expander's dictionary contains just one entry-the verb expand . The dictio
nary says that this verb returns an integer representing the number of files that were
successfully expanded. It doesn't . It doesn't return anything at all . Just one term in
the dictionary, and the folks who wrote the dictionary couldn't be bothered to tell
the truth. I discovered this while trying to write the script for the section "Automatic
Location" in Chapter 2. Naturally the script took much longer to write than it should
have, because of the lying dictionary.

This is the sort of thing you must expect to encounter all the time . The road to
AppleScript is strewn with the bodies of programmers who believed what the dictio
naries told them. Be skeptical ; you'll live longer.

Bad Comments

Because a dictionary, by its very nature, is inadequate in so many ways, its main
chance to be informative is through its comments . Comments are just strings, so they
are the developer's opportunity to say anything at all to the user. Unfortunately,
many developers don't take advantage of this ; they seem to feel that a comment
should be terse and, if possible, opaque. AppleScript would be much easier to use if
developers would take fuller advantage of the educational potential of comments in
dictionaries.

My favorite example of this is Excel's dictionary, which in certain areas has no com
ments at all . (One area that has no comments is the Chart class; see "Combining Spe
cialties" in Chapter 1 for some code written despite a complete lack of assistance
from Excel's dictionary.) Excel has one of the weirdest dictionaries under the sun,
along with one of the weirdest object models. The Microsoft folks have actually done

330 I Chapter 19: Dictionaries

a rather clever thing here: instead of working out an AppleScript scriptability imple
mentation from scratch, they've simply taken the existing internal scripting imple
mentation (Visual Basic for Applications) and exposed its entire object model, lock,
stock, and barrel, to AppleScript. This is ingenious because it means that if you can
drive Excel with Visual Basic you can drive it in just the same way with AppleScript,
but it also means that if you don't know how to drive Excel with Visual Basic it's
really hard to figure out how to drive it with AppleScript, since there are no com
ments to help you.

Here's an example of a good comment-the to parameter from the Finder's make

command:

[to reference] -- when creating an alias file, the original item to create an alias to

or when creating a file viewer window, the target of the window

That tells me exactly what this parameter is for; it's used on a limited set of occa
sions, and the comment says just what they are.

Here's an excerpt from Mailsmith's listing for the text_object class:

Class text_object: abstract class describing a text object and its basic properties
Properties:

offset integer [rio] -- offset of a text object from the beginning of the document
(first char has offset 1)

That is really superb. The dictionary itself has no way to let you know a class is
abstract, so the Mailsmith folks come right out and tell you in a comment. And the
description of offset tells you how the characters are numbered-it all but gives you
an example of how to use this property. Would that all comments were like these.

Inadequacies ofthe Dictionary I 331

CHAPTER 20

Scripting Additions

A scripting addition is a compiled code fragment, typically written in a language such
as C, that extends the AppleScript language. A scripting addition can't be targeted,
and doesn't need to be; the commands that it implements are present as if built into
AppleScript itself (see "Resolution of Terminology" in Chapter 19).
The scripting addition file StandardAdditions.osax is present on every machine.
Therefore, even though AppleScript technically remains a "little language" with no
ability to read files, put up dialogs, and so forth, such functionality is in fact essen
tially part of AppleScript (see "Scripting Addition" in Chapter 4).
This chapter provides some technical discussion of scripting additions generally, and
then surveys the contents of the StandardAdditions osax. I'm not going to teach you
how to write a scripting addition. If you're interested, see the vitally important Tech
Note on the subject from Apple, http://developer.apple.com/technotes/tn/tn1164.html.
See also http://www.mactech.com/articles/mactechNol.l 0/1 O.OllExtendApplescriptl and
http://www.latenightsw.com/technotes/ScriptingAddition/.

Pros and (ons of Scripting Additions
In certain ways, scripting additions are clearly a Bad Thing, and Apple actively dis
courages them. As Apple puts it, "There are severe limitations to what you can do in
the context of a scripting addition, and the system costs of managing large numbers
of scripting additions are high." The main limitation is that a scripting addition can
not define any classes. ' The system costs involve the global AppleScript namespace
we have already talked, in Chapter 19, about the terminology problems that scripting
additions can cause-and certain technical considerations of memory management .

• A scripting addition can define events (commands). It can define pseudo-classes; see "Pseudo-Classes" in
Chapter 19. It can also define coercions; this is not terribly common, but Jon's Commands defines some
see http://www.seanet.com/-jonpugh/. The Apple document I'm quoting here also says that scripting addi
tions can't maintain state between calls, but this is no longer true.

332

Apple has tried to lead users away from scripting additions, in part through exam
ple, by installing faceless background applications in the same folder where the
scripting additions live. On Mac as 9, of the nine files present by default in the
Scripting Additions folder, five are applications; under Mac as x, of the seven files
present in ISystemlLibrarylScriptingAdditions, five are applications. Such applica
tions must be targeted explicitly; their vocabulary does not appear automatically as
part of the AppleScript language. But applications don't suffer from any of the disad
vantages of scripting additions, and as long as they are present on every machine, the
commands they contain are universal.

On the other hand, there are some things that scripting additions do better than
scriptable applications. An application must be running in order to be targeted; if it
isn't running, it must be launched, which takes time. A scripting addition, on the
other hand, once installed, is always present. If a scripting addition puts up some
interface, that interface appears to be part of whatever application is being targeted
at that moment. And communicating with an application is slower than calling a
scripting addition command (though less so than formerly) .

Scripting additions have a venerable history. Many generous developers have provided
freeware or shareware scripting additions, and users have collected these with some
thing approaching the fervor with which HyperCard users once collected XCMDs. (A
popular and definitive repository of scripting additions is http://www.osaxen.com.)
Scripting additions are a convenient way to provide AppleScript with system-level
abilities and powers of rapid calculation that it otherwise lacks.

So it doesn't seem that scripting additions will be going away any time soon. One
could argue that they aren't a very good idea, but they are a fact of life when you're
using AppleScript.

Scripting Additions and Speed
One of the main reasons for using scripting additions is speed. For repeated trigono
metric calculations, for example, it is certainly going to be a lot faster to use a script
ing addition, such as the Satimage osax, than to roll your own calculation, as
disingenuously suggested at Apple's web site. Similarly, a scripting addition that
implements transformations to a list, such as returning a list with a particular ele
ment deleted, is going to be faster than coding the same operation in AppleScript
(see "LISP-likeness" in Chapter 5).
Just how quickly a scripting addition is called, though, depends upon how you call
it. The osax architecture is such that a scripting addition appears to be present
"inside" whatever application is being targeted when the scripting addition com
mand is called. This is noticeable, and useful, when a scripting addition puts up
some user interface. For example, if the display dialog command is called from
within a tell block targeting the Finder, the dialog appears within the Finder; it's as if
you'd given the Finder a new dialog.

Scripting Additions and Speed I 333

Behind the scenes, the way this works is that the application is sent the Apple event
denoting a scripting addition command and can't deal with it; the message is then
sent on up to the realm of scripting additions as a kind of fallback. This means that
when you use a scripting addition command while targeting an application, it must
go through an extra step. If you use a scripting addition command outside of any tell
block, or within a "tell me" block, the message is sent directly to the scripting addi
tion, which is faster by about an order of magnitude:

set t to the ticks
repeat 5000 times

tell application "Finder" to get offset of "i" in "ticks"
end repeat
set tl to (the ticks) - t
set t to the ticks
repeat 5000 times

tell me to get offset of "i" in "ticks"
end repeat
set t2 to (the ticks) - t
return {tl, t2} -- {944, 71}

(The command the ticks comes from the Jon's Commands osax, and is good for
timing things; a tick is about one-sixtieth of a second.)

Classic Scripting Additions
There is a difference between a scripting addition intended to be used with Mac as 9
or before and a scripting addition intended to be used with Mac as X. A Mac as X
type osax will not work on Mac as 9. A Mac as 9-type osax will work on Mac as
x only if it has been Carbonized, meaning that internally its Toolbox calls have been
linked against CarbonLib. In general, any particular osax file will probably be
intended for one system or the other, not both. You may not be able to tell just by
looking; if the Show Package Contents menu item appears in the Finder's contextual
menu for an osax, it is certainly for Mac as x, but otherwise you may need to con
sult the osax's documentation.

Classic implements AppleScript separately from Mac as x, but the two are compati
ble and Apple events travel back and forth across the "system barrier. " The Classic
system contains osaxen, which are implemented by the Classic version of Apple
Script. This raises the question of how the presence of osaxen in Classic affects
scripts running under Mac as x.
The answer seems to be that when you run a script under Mac as x, in code that
targets a Classic application, any terminology that is resolved as belonging to a
scripting addition is handled by a Classic scripting addition if possible. You can see
this with a term like display dialog, because the dialogs put up by the Mac as x and
Classic versions of this command differ in appearance. So, for example:

tell application "Panorama" to display dialog "hello"

334 I Chapter 20: Scripting Additions

The dialog that appears is clearly a Classic dialog. (When I wrote this example, Pan
orama, my favorite database application, ran only in Classic.)

On my computer, it is impossible to use English-like terminology to call a Classic
scripting addition command unless the same terminology is defined by an installed
Mac OS X scripting addition. (The Apple documentation claims there's a way to do
it with a terms block, but I have not gotten their way to work.) Fortunately, many
commands are defined on both systems. But, for example, this will not compile:

min monitor depth - - compile-time error

and neither will this:

tell application "Panorama"
min monitor depth - - compile-time error

end tell

The simplest solution is to employ the raw four-letter code to call the scripting addi
tion command:

tell application "Panorama"
«event aevtgmnd» - - 8 (same as min monitor depth)

end tell

But remember, you have to be targeting a Classic application for this to work. On its
own, the same Apple event will fail:

«event aevtgmnd» - - error

Loading Scripting Additions
To be usable, a scripting addition must be present in the correct location on the
machine where a script will compile or run. This means that scripts relying on third
party scripting additions are not particularly portable. You might write a script that
depends on some scripting addition, and then distribute it to others without remem
bering to provide the scripting addition on which it depends. This can easily happen
by accident, because scripting addition terminology appears to you, the program
mer, to be part of the AppleScript language. Once again, Script Debugger is espe
cially helpful here; it can list the scripting additions on which your script depends,
and will even look them up on http://macscripter.net for you.

You might provide, along with your script, any third-party scripting additions on
which the script depends. Two problems then remain:

• Osaxen are not loaded from just any old location; to be seen at all, they must be
in a LibrarylScriptingAdditions folder.

• Osaxen are loaded when the AppleScript scripting component instance is cre
ated and starts up.

Loading Scripting Additions I 335

So the user must install the extra scripting additions in the correct place before run
ning your script. A script might, at runtime, move a scripting addition file into a
ScriptingAdditions folder, but it's too late, since the AppleScript scripting component
instance has already been created, and any scripting additions that are going to be
loaded have already been loaded.

Under Mac as x 10 .3 ("Panther") , a solution to this problem has finally been pro
vided. Save your script as an Application Bundle; then open the bundle with Show
Package Contents and create Contents/Resources/Scripting Additions, and copy any
needed osaxen into this folder. Now this applet will run on any Panther machine.

There is also a trick that allows your script to force osaxen to be loaded again, while
the script is running. Here it is:

try
tell me to «event ascrgdut»

end try

This raw Apple event, for which there is no equivalent English-like terminology, tells
the current AppleScript scripting component instance to refresh its knowledge of
scripting additions. It's enclosed in a try block because it will probably generate an
error, but the error is spurious; the command works, and any osaxen that were
installed since the scripting component was instantiated will be loaded.

So now we can write a script that installs a scripting addition on the fly and calls a
command within it, all in one move. We still might not be able to call the scripting
addition command using the English-like terminology, though, since the scripting
addition was perhaps not installed at compile time. Here's an example using the
Jon's Commands osax. If the osax isn't installed, we ask the user to find it for us,
and we install it ourselves. We then call the ticks, a command within Jon's Com
mands, using the raw four-letter code:

try
«event JonstikC»

on error -- evidently it isn't installed
set jons to choose file with prompt "Please find Jon's Commands:"
set sa to path to scripting additions from user domain
tell application "Finder" to duplicate jons to sa
try

tell me to «event ascrgdut»
end try

end try
display dialog (<<event JonstikC») -- 1974834

Standard Scripting Addition Commands
This section is a catalogue of the scripting addition commands present in a standard
installation of Mac as x.

336 I Chapter 20: Scripting Additions

... , �" For load script, store script, and run script, see "Compiled Script
II:, Files as Script Objects" in Chapter 9. For the POSIX file class, see
""

,
' .:" "File" in Chapter 13 and "File Coercions" in Chapter 14. For digital

, hub scripting, folder action, and CGI events, see Chapter 24. For the
do shell script command, see Chapter 23.

Dialogs

These scripting addition commands put up dialogs. The dialog will appear in what
ever application is being targeted at the moment, or in the host application if no
application is being targeted.

display dialog general informational, text entry, and button-choice dialog

Description

A remarkably flexible little command. You can put up an information dialog, with a choice
of standard icons. You can put up a text entry dialog, where the user can type a short
string. You can dictate the names of up to three buttons, and learn which one the user
pressed. The dialog can be set to time out if the user does not respond, and you can learn
that this is what happened. By default, the buttons are "Cancel" and "OK". Returns a
dialog reply record containing only the relevant items. If the user presses a button entitled
"Cancel", an error is thrown (-128: "User canceled.").

Examples
set r to display dialog "Quick! Pick a Pep Boy!" buttons {"Mannie", "Moe", "Jack"} �

with icon caution giving up after 3
set favoritePepBoy to button returned of r
if favoritePepBoy is "" and gave up of r then set notFastEnough to true
set wholslt to text returned of (display dialog "What is your name?" �

default answer "" buttons {"OK"} default button "OK")

choose from list listbox selection dialog

Description

Puts up a scrolling list of strings for the user to choose from. Returns a list of chosen
strings, or false if the user cancels.

Example
choose from list {"Mannie", "Moe", "Jack"} with prompt "Pick a Pep Boy:"

choose file file selection dialog

Description

Puts up a standard Open File dialog, with title "Choose File" and default button "Choose".
Returns an alias. If the user cancels, an error is thrown (-128: "User canceled.")

Example
set f to choose file with prompt "Pick a text file:" of type "TEXT"

Standard Scripting Addition Commands I 337

choose folder folder selection dialog

Description

Puts up a standard Choose Folder dialog, with title "Choose a Folder". The user can also
create a new folder. Returns an alias. If the user cancels, an error is thrown (-128: "User
canceled. ")

Example ,
set f to choose folder with prompt "Pick a folder:"

choose file name file save dialog

Description

Puts up a standard Save File dialog (default button "Save"), with title "Choose File Name"
and default prompt "Specify new file name and location". The user can also create a new
folder. If the user types the name of an existing file, goes through the usual "Replace?"
rigmarole. Returns a file URL (which appears as a file specifier). If the user cancels, an error
is thrown (-128: "User canceled.") Does not actually save anything.

Example
set f to choose file name with prompt "Where shall I save this stuff?"

choose application application selection dialog

Description

Puts up a standard Choose Application dialog. The user can choose from a list of all appli
cations, or can switch to browsing in a standard Open File dialog. Returns an application
specifier, or an alias if requested; or a list of either, if multiple selections are allowed. If the
user cancels, an error is thrown (-128: "User canceled.")

Example
set theApp to choose application as alias
tell application "Finder"

set is Scriptable to has scripting terminology of theApp
end tell
if isscriptable then display dialog "It's scriptable!"

choose URL
Description

URL selection dialog

Puts up a standard Choose URL dialog (with a Connect button); this is the same as the
Finder's Connect to Server dialog, useful for specifying servers on the local network, with
an option to let the user choose various categories of server. The user can also just type a
URL unless you prevent it; this can be basically any string at all. Does not actually connect!
Returns a string. If the user cancels, an error is thrown (-128: "User canceled.")

Example
choose URL showing Remote applications -- "eppc:1I169.254.199.218:30311"

338 I Chapter 20: Scripting Additions

choose color color selection dialog

Description

Puts up a standard Color Picker dialog, where the user may choose a color. Returns a color.
A color is expressed as an rgb color, which is a list of three integers representing the red,
green, and blue components. If the user cancels, an error is thrown (-128: "User canceled.")
You can optionally specify a color that is selected initially when the Color Picker appears.

Example
choose color default color {9000, 10000, SOOOo} - - {soooo, 9000, 10000}

Noises

The following commands can be invoked to produce a sound alert.

beep

Description

Plays the system beep sound.

Example
beep

set volume

Description

Sets how loud the speakers are, on a scale of a to 7.

Example

say

set volume 7
beep

Description

beep

speaker volume

text-to-speech

Performs text-to-speech, either speaking text or saving the synthesized speech as a sound
file. Can also be used in conjunction with speech recognition to determine what text
appears below the microphone window.

Example
tell application "SpeechRecognitionServer"

set s to listen for {"yes", "no"} with prompt "Would you like me to beep?" �

giving up after 10
end tell
if s is "yes" then

say "Okay, I will beep now." displaying "Okay."

Standard Scripting Addition Commands I 339

beep
else

say "Okay, then I won't." displaying "Okay."
end if

File and Machine Information

The following commands can be used to get information about a file or your system.

system attribute

Description

Returns the value of gestalt selectors.

Example
set n to system attribute "sysv"
set s to "print sprintf \"%lx\", " & n
set v to do shell script "perl -e " & quoted form of s
set L to characters of v
set v to "." & item - 1 of L
set v to "." & item -2 of L & v
set v to ((items 1 thru -3 of L) as string) & v
display dialog "You are running system " & v & "!"

gestalt and environment variables

For a list of gestalt selectors, see http;lldeveloper.apple.comltechpubslmacosxICarbonlossl
GestaltManagerlGestalCManagerlgestalcrefchaplConstantsIndex.html.

Also returns the value of user environment variables. To find out what they are, give the
system attribute command with no parameters.

Example
system attribute "SHELL" -- "/bin/tcsh"

For an example of the system attribute command used to fetch an environment variable,
see Chapter 23.

path to standard folder location

Description

Locates various standard folders, such as the system folder. Returns an alias (or string, if
desired).

Example
path to desktop -- alias "xxx:Users:mattneub:Desktop:"

If the designated folder is legal but doesn't exist, the path to command silently creates it
unless you specify without folder creation, in which case an error is returned if the folder
doesn't exist.

340 I Chapter 20: Scripting Additions

Because of a bug in the Script Editor's dictionary display, it can't display the complete list
of standard folders available. So here it is:

application support
applications folder
desktop
desktop pictures folder
documents folder
favorites folder
Folder Action scripts
fonts
frontmost application
help
home folder
internet plugins
keychain folder
library folder
modem scripts
movies folder
music folder
pictures folder
preferences
printer descriptions
public folder
scripting additions
scripts folder
shared documents
shared libraries
sites folder
startup disk
startup items
system folder
system preferences
temporary items
trash
users folder
utilities folder
voices
apple menu
control panels
control strip modules
extensions
launcher items folder
printer drivers
printmonitor
shutdown folder
speakable items
stationery

Many standard folders aren't documented by the dictionary; these are accessed through
four-letter codes as strings. For example, path to "cmnu" gives an alias to the Contextual
Menu Items folder. For a list of these four-letter codes, see http://developer.apple.com/
documentation/Carbon/Reference/Folder _Manager/folder_manager Jeflconstant_6. html.

Standard Scripting Addition Commands I 341

For another way to access many standard folders, see "System Events" in Chapter 21.

This command also locates applications. Important undocumented uses are path to me and
path to current application, which locate the host application.

Example
path to application "Finder" -- alias "xxx:System:Library:CoreServices:Finder.app:"
path to me - - alias "xxx:Applications:AppleScript:Script Editor.app:"

list disks volume names

Description

Gets the names of all mounted volumes. Returns a list of strings (see "Lying Dictionary" in
Chapter 19).

Example
list disks - - {"xxx", "main", "second", "extra"}

list folder folder contents

Description

Gets the names of all items within a folder. Includes invisible files and folders if you don't
prevent it. Returns a list of strings.

Example
list folder (path to home folder)
- - {".CFUserTextEncoding", ".DS_Store", ".Trash", "Desktop", • • • }

info for file/folder information

Description

Gets information about an item on disk. Returns a file information record packed with
useful stuff.

Example
set uf to (path to home folder as string)
set L to list folder uf
set s to {}
repeat with f in L - - collect sizes of all items

set end of s to size of (info for file (uf & f))
end repeat
set maxltem to a
set maxVal to a
repeat with i from 1 to (count s) -- find biggest size

if item i of s > maxVal then
set maxltem to i
set maxVal to item i of s

end if
end repeat
display dialog �

342 I Chapter 20: Scripting Additions

"The biggest thing in your home folder is " �

& item max Item of L

If you ask for the info for a folder, the script may take some time to run, in order to sum the
sizes of all the files within it.

File Data

These are scripting addition commands that read and write file data.

open for access open file

Description

Opens a file for read access-optionally, for write access-creating the file as a text file if it
doesn't exist (it does this even if you're opening for read access only; I regard this as a bug).
Returns a file reference number that can be used with the other commands.

read read data

Description

Reads data from a file, optionally coercing the data to a desired datatype. There are options
for where to start (character positions are I-based), how many characters to read, and what
delimiter character to stop at.

The using delimiter parameter is poorly documented. This parameter is a list, as long as
you like, of one-character strings. They are used to break the data into a single-level list of
strings which will lack all the delimiter characters.

write write data

Description

Writes data to a file, optionally coercing the data to a desired datatype. There are options
for where to start and how much data to write.

The data coercion options for reading and writing allow you to store any kind of data in a
text file and retrieve it later. The data is encoded, but it will be decoded correctly if you
specify the same class when writing and when reading.

Example
open for access f with write permission
write {"Mannie", "Moe", "Jack"} as list to f
close access f
open for access f
set L to read f as list
close access f
L -- f'Mannie", 1IMoe", "Jack"}

On the whole, however, this approach is not very flexible; see "Data Storage" in Chapter 9.

Standard Scripting Addition Commands I 343

get eof get file end position

Description

Returns the I-based index of the last character of a file (which is also the size of the file).

Because character positions are I-based, and because the eaf is the position of the last char
acter, if you want to append to a file you must start writing at a position one greater than
the eaf. That is the largest position at which you are permitted to start writing.

Example
write "Howdy" to f
set ourEof to get eof of f
write "Doody" to f starting at ourEof + 1

set eof set file end position

Description

Sets a file's size, truncating its data or filling the new excess with zeros.

close access close file

Description

Closes a file. Always close a file you have opened for access.

In general, the file data commands are smart about how they let you describe the file
you want to operate on: they can take a file reference number returned by open for

access, or a file specifier or alias.

When using the file data commands, you should ensure sufficient error handling so
as not to leave a file open. If you do accidentally leave a file open, you might have to
quit the current application (such as the Script Editor) in order to close it.

In this example, we use AppleScript to construct a miniature "database." We have
some strings; taking advantage of the write command's starting at parameter, we
write each string into a 32-character "field." The example perhaps overdoes the error
handling, but it shows the general idea:

set pep to {"Mannie", "Moe", "Jack"}
set f to (path to current user folder as string) & "testFile"
try

set fNum to open far access file f with write permission
on error

close access file f
return

end try
try

set eof fNum to 0 -- erase if exists
set eaf fNum to (count pep) * 32
repeat with i from 1 to (count pep)

344 I Chapter 20: Scripting Additions

write item i of pep to fNum starting at (i - 1) * 3 2
end repeat
close access fNum

on error
close access fNum

end try

Now we'll fetch the data from the "database." We take advantage of the fact that all
data that isn't part of a string is null.

set f to choose file of type "TEXT"
try

set fNum to open for access f
on error

close access f
return

end try
set L to {}
try

set ct to (get eof fNum) / 3 2
repeat with i from 1 to ct

set end of L to read fNum from (i - 1) * 32 ,
before ASCII character 0 -- read up to but not including null

end repeat
close access fNum

on error
close access fNum

end try
L -- {""'annie", "Moe", "Jack"}

String and Clipboard

The following commands can be used to obtain a string or collect something from
the Clipboard.

ASCII character number to character

Description

Converts an ASCII numeric value to a one-character string.

Example
ASCII character 82 -- "R"

ASCII number character to number

Description

Converts the first character of a string to an ASCII numeric value.

Example
ASCII number "Ribbit" -- 82

Standard Scripting Addition Commands I 345

offset substring position

Description

Reports the position of a substring within a target string. Character positions are l-based.
Returns 0 if the substring isn't found.

Example
offset of "bb" in "Ribbit" -- 3

The offset command's behavior used to be to consider case and ignore diacriticals, which
is backwards from AppleScript's own defaults. In the current version, this is fixed, and
string considerations are obeyed.

summarize summary of content

Description

Summarizes the content of a string or textfile, using the same technology as the Summarize
Service.

set the clipboard to set clipboard

Description

Sets the clipboard.

clipboard info describe clipboard

Description

Describes the contents of the clipboard as a list of class-size pairs.

Example
clipboard info - - {{ string, 54}, {ccc1ass FMcln, 20}, {ccc1ass FM5CI), 10240}}

the clipboard get clipboard

Description

Gets the clipboard text, or you can specify some other class (you'd use clipboard info to
know what to specify).

Numbers and Dates

The following commands are used for working with numbers and dates.

round round

Description
Rounds a real to an integer, in various ways.

346 I Chapter 20: Scripting Additions

Example
round 1 . 3 - - 1

random number generate random number

Description
Generates a random number. This can be a real between 0 and 1, exclusive; or it can be an
integer between two non-negative integers, inclusive. You can seed the generator to get it
started; this is useful for generating a fixed pseudo-random sequence.

Example
random number
set L to {}
repeat 10 times

if (random number 1) as boolean then
set end of L to "heads"

else
set end of L to "tails"

end if
end repeat
L -- {"heads", "tails", "heads", "heads", "heads",

"tails", "heads", "heads", "heads", "heads"}

current date

Description

Generates a date object corresponding to the current date and time.

Example
time string of (current date) -- "10:41:13 AM"

time to GMT
Description

now

time zone

Reports the time zone that has been set via the Date &: Time preference pane, as an offset
from Greenwich time, in seconds.

Example
(time to GMT) / hours -- -7.0

Miscellaneous

These are scripting addition commands I couldn't categorize.

delay wait

Description

Pauses a specified number of seconds. Starting with Panther, this number can be a real.

Standard Scripting Addition Commands I 347

Example
delay 1
beep

mount volume

Description

AppleShare

Mounts an AppleShare volume (i.e., a machine where Personal File Sharing is turned on).
The machine is specified as an afp URL; to avoid the dialog for choosing a particular
volume, add the volume name as a second path element. Parameters can be used to avoid
the username-password dialog (or you can include the username and password as part of
the URL).

Examples
set s to choose URL showing File servers
mount volume s as user name "mattneub" with password "teehee"
mount volume "afp: I Ilittle-white-duck .local" -- avoids no dialogs

mount volume "afp:lllittle-white-duck.localiOmniumGatherum" ,
as user name "matt neuburg" with password "teehee" -- avoids all dialogs

If the machine is serving via AppleTalk (rather than TCPIIP), and if you have AppleTalk
turned on in Mac OS X, you can mount the machine via AppleTalk using an AppleTalk
URL, which looks, for example, like this: mount volume "afp:/atiLittleWhiteOuck". Note
that you must use a name; the IP number doesn't apply here. You can specify volume, user
name, and password just as for a TCP/IP afp URL. Windows servers can be mounted using
an 5mb URL.

scripting components list OSA components

Description

Returns a list of strings giving the names of the installed OSA scripting components. One of
these will be "AppleScript".

open location open a URl

Description

Hands the System a string representing a URL; the URL is opened with the appropriate
helper application.

348 I Chapter 20: Scripting Additions

CHAPTER 21

Scriptable Applications

The chief virtue and purpose of AppleScript lies in its ability to communicate with
scriptable applications by means of Apple events. This chapter summarizes the ways
in which such communication is performed, and points out a few scriptable applica
tions that might otherwise go unnoticed.

If you were hoping that this chapter would teach you all about how to script some
particular application, I'm afraid you're going to be disappointed (see "The Scope of
This Book" in the Preface) . If the application comes with documentation or exam
ples showing how to script it, start with that. For certain applications, there may be
third-party books or web pages devoted to the topic. The application will in any case
have a dictionary; see Chapter 19.

Targeting Scriptable Applications
To target a scriptable application is to aim Apple events at it, like arrows. This sec
tion catalogues the various ways to do it.

Tell and Of

The primary linguistic device for targeting an application in AppleScript is the tell
block containing an application specifier. This actually has two purposes: it deter
mines the target, if no other target is specified within the block, and it also causes a
dictionary to be loaded, which may be used in the resolution of terminology. Instead
of a tell block, the of operator (or its equivalents) can be used to form a target; this
does not affect resolution of terminology.

(See "Target" and "Direct Object" in Chapter 10; "Tell" and "Using Terms From" in
Chapter 12; "Application" in Chapter 13; and "Resolution of Terminology" in
Chapter 19.)

349

Reference

A reference to an object belonging to an application can be used to target that appli
cation. The terminology within the reference has already been resolved (otherwise
the reference could not have been formed in the first place) ; any further terminology
prefixed to the reference when you actually use it will have to be resolved indepen
dently. (See Chapter 1 1 .)

Local Applications

A local application is an application on the same computer as the script. The speci
fier for a local application may consist of a full pathname string (colon-delimited) or
simply the name of the application; the name should usually be sufficient. Apple
Script builds into a compiled script enough information about the application that if
the compiled script is moved to a different machine containing the same application,
AppleScript on that machine will usually be able to find it. (But this mechanism does
sometimes go wrong; see "Script Text File" in Chapter 4.) If AppleScript can't find a
local application when compiling, decompiling, or running a script, it will put up a
dialog asking the user to locate it.

(See "External Referents Needed at Compile Time" in Chapter 4 and "Loading the
Dictionary" in Chapter 19.)

Remote Applications

A remote application is an application running on a different computer from the
script. Communication is performed over IP (not AppleTalk, as in the past) ; this has
the advantage that it works over the Internet, but it also means that even locally the
remote machine needs an IP number (or a Rendezvous name) . On the remote com
puter, Remote Apple Events must first be turned on; this can be done in the Sharing
preference pane.

To the application specifier you append a machine specifier that uses an eppc URL.
In Panther, the machine specifier can be just a Rendezvous name; in that case, Apple
Script will supply the eppc:11 prefix and the .local suffix on compilation. Connection
requires a username and password; these will be requested in a dialog when the con
nection is first established, or you can avoid the dialog by means of username:

password@ syntax in the URL. A terms block referring to a local application may be
needed in order to resolve terminology at compile time (see "Using Terms From" in
Chapter 12) .

This example lets the user select the remote machine, supplies the username and
password, and talks to the Finder on the remote machine. A terms block is needed
because the machine is specified dynamically:

set u to choose URL showing Remote applications
set L to characters 8 thru -1 of u

350 I Chapter 21: Scriptable Applications

set u to "eppc : llmattneub : teehee@" & (L as string)
- - u is now e.g. "eppc: I Imattneub:teehee@169.254.168.138:3031/"
tell application " F inder" of machine u

u s ing terms from application " F inder"
get name of disk 1

end u sing terms from
end tell

As long as you're targeting an application on the remote machine, scripting addition
commands you call are run on the remote machine. For example:

tell application " F inder" of machine " eppc : I llittle-white-duc k . local "
say "Watson, come here, I want you . "

end tell

When communicating with a remote machine, be careful with aliases. An alias is not
a useful medium of communication between machines, because it will be resolved on
the wrong machine. For example, don't ask the remote Finder for an alias list, and if
you use the path to scripting addition command, ask for a string instead of an alias.
For example:

tell application " F inder" of machine "eppc : I llittle-white-duck . local "
path t o system folder as string

end tell

An even more devious variant of the same trick appears in the next example.

A remote application must already be running before you target it; you cannot target
it and then launch it, as you can on a local machine. However, you can open an
application from the remote Finder and then target it. If a tell block targets a literal
application specifier for a remote application that isn't running, your script won't
compile; so the trick is to put the name of the application in a variable, thus prevent
ing AppleScript from trying to resolve the tell block until the script runs. By the time
the tell block is executed, the application will be running. So, for example:

set m to "eppc : llmattneub : teehee@little-white-duc k . local"
tell application " F inder" of machine m

set s to (run script " path to app \ " System Events . app\ " as string ")
open item s

end tell
set se to " System Event s "
tell application se o f machine m

u s ing terms from application " System Events "
get every process

end us ing terms from
end tell

XML-RP(and SOAP

XML-RPC and SOAP are web services allowing commands in a generalized form to
be sent over the Internet by means of the http protocol, using a POST argument that
contains XML structured according to certain conventions. This is clever because

Targeting Scriptable Applications I 351

any CGI-capable web server can act as an XML-RPC server. The request is an ordi
nary POST request, and the server just passes it along to the appropriate CGI appli
cation, which pulls the XML out of the POST argument, parses it, does whatever it's
supposed to do, and hands back the reply as a web page consisting of XML.

AppleScript can target XML-RPC and SOAP services through support built into the
Apple Event Manager. The syntax is comparable to driving any scriptable applica
tion. You target the server by means of its URL, using a tell block. Within the tell
block, you use either the call xmlrpc command or the call soap command; these
terms are resolved only when the target is an http URL. Behind the scenes, the Sys
tem acts as a web client: your command is translated into XML, the XML is shoved
into the POST argument of an http request, the request is sent across the Internet,
the reply comes back, the System extracts and interprets the XML from the reply,
and this interpretation is returned as the result of the command.

The target can be expressed in this form:

tell application " http : //"vIWN • xxx . coml someApplication "

or you can say this, which decompiles to the previous syntax:

tell application " someApplication " of machine ''http : //"vIWN. xxx . com ''

The syntax for call xmlrpc is as follows:

call xmlrpc {method name : methodName, parameters : parameterList}
The syntax for call soap is as follows:

call soap {method name : methodName, �

method namespace uri : uri, �

parameters : parameterRecord, �

SOAPAction : action}
You can omit an item of the record (such as method namespace uri or parameters) if it
isn't applicable.

Now let's test these commands. There's a copy of UserLand Frontier on the Inter
net that is intended for users to test with XML-RPC and SOAP requests. By default,
we access this server's XML-RPC functionality through a URL whose path is /rpc2.

The server includes some simple test verbs, one of which is examples. getStateName.

We can call this verb using AppleScript, as follows:

tell application ' 'http : // superhonker . userland . comlrpc2 ''
call xmlrpc �

end tell

{method name : " examples . getStateName " , �

parameters : 30} -- "New Jersey"

Frontier is also a SOAP server. We can call the SOAP equivalent of the same verb
using AppleScript, as follows:

tell application '' http : //superhonker . userland . com''
call soap �

352 I Chapter 21: Scriptable Applications

end tell

{method name : " getStateName " , �

SOAPAction : " /examples " , �

parameters : { statenum : 30} } - - "New Jersey"

If you happen to have a copy of Frontier or Radio UserLand, you can test all this on
your own machine, without using the Internet. These programs run the very same
server on port 8080 . So with Frontier or Radio UserLand running, you can substi
tute ''http://localhost: 8080/rpc2 '' and ''http://localhost: 8080'' as the application
URLs for the tell block.

For further examples of call soap, see "Combining Specialties" in Chapter 1 and
"Using Terms From" in Chapter 12 . In general, call xmlrpc and call soap are not
difficult to use; you'll just have to study the documentation for the service you're try
ing to call, and it may take a little trial and error to get the parameters just right.

Some Scriptable Applications
The purpose of this section is to alert you to some useful scriptable applications that
are part of Mac OS X but which you might not otherwise be aware of.

Finder

Okay, you're probably aware of the Finder. After all, you use it every day, and it is
the favorite target application for examples in this book. But I just wanted to remind
you about it one more time. The Finder concerns itself with the hierarchy of folders
and files on your hard drive. It's very good at such things as renaming files, copying
files, deleting files, creating folders and aliases, and describing the folder hierarchy.

If you're an old Applescript hand, accustomed to scripting the Finder for other pur
poses, you'll want to read about System Events, later in this section.

Internet Connect

If you connect to the Internet via modem or PPPoEj Internet Connect is a good way
to query and manipulate your connection. A useful incantation is:

tell application " Internet Connect " to get properties of status

The result is a record containing valuable information. For example, i f its state is 0 ,
you're not connected to the Internet; i f its state is 4, you are.

tell application " Internet Connect "
set r to properties of status
if state of r is 4 then display dialog "You ' re connected ! "

end tell

Some Scriptable Applications I 353

System Events

In Mac as 9 and before, the Finder was the locus of scriptability for a lot of System
functionality that had nothing to do with files and folders , such as what applications
were running. This was somewhat irrational, since the Finder wasn't really responsi
ble for this other functionality; it was being used as a kind of stand-in for the System
itself. In Mac as x, scripting of such functionality has been moved to a faceless
background application called System Events (located in the CoreServices folder,
along with the Finder) . Here are some of the things you can do with System Events :

• Sleep, restart, and shut down the computer.

• Manipulate login items-applications that are run automatically when the user
logs in, which for most people means at startup. For example:

tell application " System Events "
make new login item a t end of login items with properties �

{ path : " /Applications /Safari . app" }
end tell

• Manipulate running processes, determining such things as which process is
frontmost and which processes are visible.

• Access standard user folders.

System Events is also responsible for GUI scripting (Chapter 22) and for folder
actions (Chapter 24) . It is thus a very important application, and its dictionary
deserves study. Examples of scripting System Events appeared in Chapter 1 and
Chapter 2 .

Speech Recognition Server

This application, hidden away in the Carbon framework, is the scriptable frontend
for the System's built-in speech recognition functionality. For an example, see
"Noises" in Chapter 20.

U RL Access Scripting

This is a background-only application in the ScriptingAdditions folder. When it was
invented (back in Mac as 8 .5 , I believe) , it was a very good thing, because it pro
vided a way to download and upload via http and ftp across the Internet without the
overkill of having to drive a full-featured client such as Netscape or Fetch. However,
I personally find it undependable, and since we're now in the Unix-based world of
Mac as x, I recommend the use of do shell script and curl instead (see
Chapter 23) .

354 I Chapter 21 : Scriptable Applications

Keychain Scripting

This is another background-only application in the ScriptingAdditions folder, and
acts as a scriptable frontend to the user's keychain, where passwords are stored. This
is analogous to the functionality accessed through the Keychain Access utility. Key
chain Scripting lets a script fetch a password from the keychain instead of hardcod
ing it in plaintext. For example :

tell application " Keychain Scripting"
set k to (get key 1 of keychain 1 whose name is "mail . mac . com ")
tell k t o set L t o { name, account, pas sword }

end tell
L - - {"mail.mac.com", "mattneub", "teehee"}

If, as in that example, you ask for the password of a key whose access control is set
to require confirmation, the Confirm Access to Keychain dialog will appear (possi
bly twice-once for the Keychain Scripting application and once for the host applica
tion in which the script is running) . You cannot script changes to the access control
rules for a key through Keychain Scripting; I take it that this is a security measure .

Image Events

As this book was being written, Apple had begun work on a background-only appli
cation, Image Events , living in the same directory as the Finder and System Events . It
will probably allow you to perform some basic manipulations on image files, such as
scaling, rotating, and manipulating color profiles, as well as supplying information
about monitors . For example :

tell application " Image Events "
set f t o (path t o desktop as string) & " b igImage . ep s "
set f2 to POSIX path of (path to desktop) & " /smallerImage . ep s "
set i m to open file f
scale im by factor 0 . 5
s ave im i n f2

end tell

Some Scriptable Applications I 355

CHAPTER 22

Unscriptable Applications

Some applications are not scriptable; they have no repertory of Apple events to
which they are prepared to respond. The developers simply omitted this feature, like
the tinsmith who forgot to give the Woodsman a heart. You try to open the applica
tion's dictionary and you get an error. Other applications are scriptable, but they
aren't scriptable in the way you'd like; the thing you'd like to make the application
do isn't among its scriptable behaviors. In a case like this, how can you script the
unscriptable?

On Mac OS 9 and before, the answer was to use a macro program. A macro pro
gram has the power to "see" an application's interface and to act as a kind of ghost
user, pressing buttons, typing keys, and choosing menu items. Anything a user can
do in an application can presumably be performed through some definable
sequence of mouse and keyboard gestures; therefore it might be possible to emulate
that sequence of gestures with a macro program. The result might not be as fast, ele
gant, or flexible as using AppleScript, but it could get the job done; plus, a macro
program might itself be scriptable. (Three very strong macro programs that I often
used on earlier System versions were QuicKeys, PreFab Player, and OneClick; see
http://www.cesoft.com/products/qkmac.html, http://www.prefab.com/player.html, and
http://www.westcodesoft.comlindex.html.)

In the past, macro programs depended upon a feature of the System architecture
whereby third-party code fragments called system extensions (or INITs) could be
loaded into the System at startup in such a way as to modify the System's response to
Toolbox calls. In essence, when the System was told to do a certain thing by any pro
gram (including itself) , this code fragment would be called instead; usually it would
also call the System's original functionality, so as not to break the computer alto
gether, but along the way it would interpose functionality of its own. (For a fine dis
cussion of INITs, see Joe Zobkiw, A Fragment of Your Imagination [Addison
Wesley] , Chapter 4.)

356

The trouble with this approach was that IN ITs were a threat to stability and reliabil
ity. They caused no end of headaches for users, who often found different INITs con
flicted with one another, and for application developers, who would learn that their
application misbehaved in the presence of some INIT. The ability of users to custom
ize their own systems meant that every user's system could be essentially different
from every other's.

On Mac OS X, INITs are abolished. In fact, that's part of the point of Mac OS X: at
bottom, every system should be a clean system, and all machines should reliably
work the same way. But without INITs, there's no way for a macro program to hook
into the System's functionality at a level low enough for it to do the things that a
macro program needs to do. This, in the early days of Mac OS X, made scripting the
unscriptable next to impossible.

Recently, a solution to this quandary has emerged from Apple itself. As part of an
effort to make Mac OS X accessible to people who may not be able to use a mouse
and keyboard or see a computer screen, Apple has created the Accessibility API, a set
of Toolbox commands that can do just what a macro program would do-"see" an
application's interface and manipulate it like a ghost user wielding an invisible
mouse and keyboard. Going even further, they have made the Accessibility API itself
scriptable via AppleScript. Thus, you may be able to use AppleScript to drive the
Accessibility API to manipulate the interface of a program that is not itself script
able, or not scriptable in the way you desire. This technique is called GUI scripting.

Getting Started with Accessibility
If you want to script the unscriptable, you must first open System Preferences to the
Universal Access pane and make sure that the "Enable access for assistive devices"
checkbox is checked. This step is absolutely crucial, since the checkbox is unchecked
by default; unless it is checked, the scripts in this chapter will fail (with a mysterious
error message, of course) .

You will now be able to use GUI scripting, by way of classes and events imple
mented in System Events, in the Processes Suite; here you'll see events such as click

and keystroke and classes such as radio button and menu item. The classes in ques
tion are all UI element subclasses.

Given a particular task you'd like to perform in a particular application by means of
the user interface, the problem is now to express the referenced interface elements in
terms of the UI element object model. This is much the same problem that you
always face with AppleScript-working out the target application's object model (see
Chapter 3 , and "The object model" in Chapter 19) . But now there's an added twist,
because the object model terminology within one application (System Events) must

Getting Started with Accessibility I 357

be used to express object relationships within another (the target application) . There
are various approaches that can help you:

• Use AppleScript. The UI element subclasses let you ask about the interface ele
ments of a window or menu. Apple provides some scripts showing the sorts of
thing you can say; look for one called Probe Window, for example.

• Use an application that will employ the Accessibility API directly to analyze a
window or menu. Apple provides a utility that does this, the UI Element Inspec
tor. At present this can be downloaded from http://www.apple.com/applescript/
uiscriptingI02.html, or (with source code) from http://developer.apple.com/
samplecodeISample_Code/OS_UtilitieslUIElementInspector.htm. A more user
friendly dedicated application for studying the interface and expressing its ele
ments in AppleScript terms is the inexpensive commercial utility PreFab UI
Browser (see http://www.prefab.com/uibrowser/index.html) .

G U I Scripting Examples
This section describes a couple of examples of GUI scripting from my own life.

Our first example will be to toggle File Sharing on or off. This is something I need to
do quite often, and System Preferences isn't sufficiently scriptable to automate it. I
have to open System Preferences, go the right pane, and press all the right buttons,
every time; this, as they say, gets old real fast. But AppleScript can automate it for
me, thanks to GUI scripting.

System Preferences is sufficiently scriptable to get us to the Sharing pane, so let's con
sider that problem solved. To write our script, then, the first step is to open the Shar
ing pane manually and explore it in terms of its UI element objects.

For example, we're initially interested in the Personal File Sharing row of the scroll
ing list in the Services tab . UI Element Inspector describes it this way:

<AXApplication : " System Preferences " >
<AXWindow : " Sharing" >
<AXTabGroup>
<AXScrollArea>
<AXTable>

<AXRow>
<AXTextF ield>

Attributes :
AXRole : "AXText Field"
AXRoleDescription : "text field "
AXHelp : " (nUll) "
AXValue (W) : " Personal File Sharing"
AXEnabled : " 1 "
AXFocused : " 0 "
AXParent : " <AXRow> "
AXWindow : " <AXWindow : " Sharing " > "

358 I Chapter 22: Unscriptable Applications

AXPosition : "x=228 y=341 "
AXSize : "w=195 h=18 "
AXSelectedText : " (null) "
AXSelectedTextRange : " (null) "

Actions :
AXConfirm - AXConfirm

PreFab UI Browser displays the element hierarchy more graphically, using Apple
Script terminology; Figure 22- 1 shows the result.

of'e 'O @- UI Bluwser 1.2b7 Panther - SV$I;'" Prtf.��s

window "'S�rln5J" 1 scroll ;un. l
i bunon -Button- (1)
1 bunon "Button" (2) ext 1

:u.._--:�s., ILubio 1
seroU bar 1 j botton "'Bunon· (3) ext 2 l tnt fi.ld 1. l button "Stop" (1)

Ui t

<=l
"

::
-
:

'

:::

1 ="ir-_-".Wttut entry Olru 1
LtaD text entry aru 2 button *Click t'he Ia<k to button 2 I button "Clkk the: Io<k to r.dia bullon "Serviu.s" tl
iUXf 2 radio button "Flrew;1lir (2 J button "'EdIL." (6) • � r.tdio button 'nttrnet" (3 I toolbar 1 • r (t,!ttn :amtllo'"

T Show Poth G Hlghllgh,
1 I appIJcauon 'System Preferences'

window "SIlaring' (1)
i tab group 1

Qbl" 1
� _ 1
.. raw 2

row 3
row '
row S
row 6
row 7
row S
column 1
column 2
group 1

I u j saoll::;r: 11
I J 1 row j

lllJllJiej"-L-
_____ _____ ::--__ � _

_
_ �_;;:;:::;===�

� (.. fresh)

Figure 22- 1 . UI Browser describes a window

The procedure of exploration continues in just the same way, examining each inter
face item to which we might wish to send a message; I'll spare you the remaining
details.

Once we know enough about the target window, we proceed to develop the actual
script. This is generally quite straightforward because the repertory of actual com
mands is very small; you are pretending to be a mouse and a keyboard, after all, so
the main things you can do are click and type. Here's the script:

tell application " System Preferences "
activate
set current pane to pane "com . apple . preferences . sharing"

end tell
tell application " System Events "

tell application process " System Preference s "
tell t a b group 1 o f window " Sharing"

click radio button " Services "

GUI Scripting Examples 359

select row 1 of table 1 of scroll area 1
click button 1

end tell
end tell

end tell

Let's sum up what happens in that example. First we open System Preferences and
bring it to the front; then we open the Sharing pane. So much for System Prefer
ences' own scriptability.

Now the Accessibility API takes over. Notice the structure of what follows: we target
System Events, and within the targeting of System Events we target the desired applica
tion process. That's crucial. We target System Events because that's the locus of the
terminology and the functionality for driving the Accessibility API. We speak of an
application process, rather than an application, because we need to specify the appli
cation with actually targeting it! You can see that I also like to include a tell block
specifying common UI elements, simply as a way of reducing the chain of ofs.

The rest is just a matter of doing programmatically what we would do in real life
with the mouse. We click the Sharing tab (called a "radio button" in the dictionary)
to make sure we're in the correct tab view, select the first row of the scrolling list,
and click the button at the right. This might be captioned Start or Stop; that's why
we refer to it by index rather than by name.

The next example has to do with Mailsmith. I've got Mailsmith set up to leave large
mail messages on the server, so that they don't take up time and bandwidth when
I'm checking my mail. If a large message is of interest, I later download it and delete
it from the server. Unfortunately, there is no single menu item that lets me do this; I
must manually choose a menu item to download the large message, wait until it has
arrived, and then manually choose another menu item to delete it from the server.
Since this is a frequent sequence of actions, I'd like to reduce it to a script. But
although Mailsmith is pretty heavily scriptable, the developers neglected to define
events for these actions. GUI scripting provides the solution:

tell application "Mailsmith " to activate
tell application " System Event s "

tell applicat ion proces s "Mailsmith "
tell menu "Message " of menu bar 1

click menu item "Get from Server"
tell application "Mailsmith "

delay 5
repeat until not connection in progres s

delay 2
end repeat

end tell
click menu item " Remove from Server"

end tell
end tell

end tell

360 I Chapter 22: Unscriptable Applications

Observe the mixture of GUI scripting with normal scripting in that example. GUI
scripting is used to choose the relevant menu items, but in between, normal script
ing is used to wait until the connection with the server has had time to open and
close, implying that the download is complete.

It should be noted, in closing, that GUI scripting is not a panacea. It doesn't work
everywhere: a particular interface item, a window, or an entire application might not
use the standard interface elements. In that case, the Accessibility API can do noth
ing for you. Also, even though it's a lot of fun, GUI scripting should be considered a
workaround; real scriptability is always better. If you're reduced to using GUI script
ing to accomplish some goal, and if the target application is still being actively devel
oped, then consider writing to the developer and requesting that the application be
made genuinely scriptable.

GUI Scripting Examples I 361

CHAPTER 23

Unix

AppleScript is a powerful way to get information and to make things happen through
scripting on Mac as X-but it's not the only way. Mac as X is Unix, and comes
with many Unix command-line tools, along with scripting languages such as Perl and
Ruby. AppleScript and Unix are different worlds, but there's a communicating door
between them, and it's open in both directions: you can call into the Unix shell from
within AppleScript code, and you can call AppleScript from the Unix command line.
That means you can combine the power of Unix with the power of AppleScript. This
chapter talks about how to do it; see also "Unix" in Chapter 2 .

Do Shell Script
The key to calling the Unix shell from your AppleScript code is the do shell script

scripting addition command.

Apple provides an excellent Tech Note on this command, and your first step should
be to read it (http://developer.apple.com/technotes/tn2002/tn2065.html). The direct
object is a string representing the text you would type at the command-line prompt
in the Terminal. But not quite, because your Terminal shell is probably bash or tcsh,

whereas the default shell for do shell script is sh. Also, the default paths used by do

shell script might not be the same as your own shell's default paths, so in order to
specify a command you might have to provide a full pathname, such as l usr/binl

perl instead of just perl. (That's not a real example, though, since perl will proba
bly work just fine.)

Optional parameters let you provide an administrator password. The result is what
ever is returned from the command via stdout; Unix linefeed characters are con
verted to Mac return characters by default, but you can prevent this if you wish. If
the command terminates with a nonzero result (an error) , an error by the same num
ber is thrown in your script, and you can use this number (along with the manpages
for the command) to learn what went wrong.

362

For example, the following code requests a (decimal) number from the user and con
verts it to hex by means of the Unix printf command:

set theNum to text returned of (display dialog " E nter a number : " default answer " ")
set s to " printf %X " & theNum
display dialog (do shell script s)

An important thing to remember about do shell script is that it does not set up an
interactive shell. You give a command, you get the result, and that's all. In some
cases where a tool is interactive, you can work around this problem. The tool may
provide a non interactive alternative. For instance, you might be able to pass through
a file as intermediary. The following (rather silly) example illustrates the point; it
converts a number to a hex string by way of be, by writing out a small be program file
and calling be to process it:

set theNum to text returned of (display dialog " E nter a number : " default answer " ")
set t to path t o temporary items
set posixT to POSIX path of t
set f to open for access file «t as string) & " bctemp ") with write permis s ion
write "obase = 16\n" to f
write theNum & " \ n " to f
write "quit\n" to f
close access f
set s to " bc - - quiet " & quoted form of (posixT & " bctemp ")
display dialog (do s hell script s)

Similarly, if you wanted to call top, you could call it in a non interactive form such as
top - 11 and parse the result.

The hardest part of calling a Unix tool is dealing with the Unix parsing and quota
tion rules. To protect a string from the parsing rules, you can wrap it in single
quotes. AppleScript makes this easy with the q uoted form property of a string (see
"String Properties" in Chapter 13) , and you should use it, as in the previous exam
ple. This does not absolve you from AppleScript's own rules for forming literal
strings (see Table 13- 1) . So, in the system attribute example in "File and Machine
Information" in Chapter 20, double quotation marks are entered into the literal
string in escaped form, to get AppleScript to do the right thing; then the entire string
is munged with q uoted form to get the shell to do the right thing.

When talking to Perl, using a file as an intermediary can simplify things. There is no
problem forming a short Perl script and handing it to Perl directly by means of the -e

switch; but if a longer Perl script is to be formed and executed on the fly, it might
make sense to write it into a file and then tell Perl to run the file. And there may be
no need to form the Perl script on the fly. Perhaps your script could consist of two
scripts-one in AppleScript, one in Perl.

Here's an example. There's an excellent weekly online Macintosh journal called
TidBITS, and their site has a web page where you can enter words to search for and get
back a page of links to past articles containing those words (see http://db.tidbits.com) .

D o Shell Script I 363

We'll simulate this page, acting as a web client ourselves, with the help of c url. We
know what the HTML of the results page looks like, so we've prepared a Perl script to
parse it into the URLs and titles of the found articles. The Perl script expects as argu
ment the path name of the file containing the HTML:

$5 = " " ;
while (0) {

$s . = $_j

$s =� m{ search results (. *) $} si j
$1 =� m{<table (. * ?) < /table> } s i j
@rows = ($1 =� m{<tr (. * ?) < /tr>}s ig) j
for ($i=Oj $i< $#rows j $i++) {

($links [$i) , $titles [$i)) =
($rows [$i+1) =� m{ (. * ?) < /a > } i) j

}
print join " \n " , @links , @title s j

Now for the AppleScript code. First we put up a dialog where the user can enter
some search terms. We URL-encode these terms in a primitive way (substituting a
plus sign for any spaces) and assemble the POST data for the form submission. We
use c url to submit this POST data to the TidBITS server. In essence, the TidBITS
server receives exactly the same HTML it would receive if a user entered the same
search terms in the first field of the TidBITS Search page and pressed the Submit
button.

The results come back as a page of HTML, which c url writes out to a file. We now
hand this file over to our Perl script for parsing. The results come back from the Perl
script, and now we have a list which is really two lists: first the URLs of the found
pages, then the titles of those same pages. We put up a list showing the titles; if the
user chooses one, we ask the browser to display the corresponding URL.

set t to text returned of �

(d isplay dialog " Search TidBITS for : " default answer '' '')
set text item delimiters to "+"
set t to (words of t) a s string
set d to " ' - response=TBSearc h . las so&-token . srch=TBAdv"
set d to d & " &Article+HTML= " & t
set d to d & "&Article+Author=&Article+Title=&-operator"
set d to d & " =eq&Rawl s s ueNum=&- operator=equals&ArticleDate"
set d to d & " =&- sort F ield=ArticleDate&- sortOrder=descending"
set d to d & "&-maxRecords=20&-nothing=MS ExplorerHack&- nothing"
set d to d & " = Start+Search ' "
set u to " http : //db . tidbits . com/TBSrchAdv . lasso"
set f to POSIX path of file «path to desktop as string) & "temp TidBITS ")
do s hell script " curl - d " & d & " - 0 " & f & " " & u
set perl Script to POSIX path of �

alias « path to desktop as string) & " parseHTML . pl ")
set r t o d o s hell script " perl " & perlScript & " " & f
set L to paragraphs of r
set half to (count L) I 2
set L1 to items 1 thru half of L

364 I Chapter 23: Unix

set L2 to items (half + 1) thru - 1 of L
set choice to (choose from list L 2) as string
repeat with i from 1 to half

if item i of L2 is choice then
open location (item i of L1)
exit repeat

end if
end repeat

That code works well enough to demonstrate the principle, but one can't help feel
ing it's a pity that AppleScript doesn't let us present the user with some nicer inter
face. We'll rectify that little shortcoming in the next chapter, by building these same
scripts into an AppleScript Studio application.

If you hesitate to use do shell script because you think it's scary or clumsy, stop
hesitating. Unix tools are extremely valuable supplements to AppleScript's powers. I
would much rather ask the shell to convert between decimal and hex, for example,
than construct a handler in AppleScript alone to accomplish the same thing. I've
already said (Chapter 21) that I'd rather use curl than the URL Access Scripting
application. And being able to call on Perl to parse a string is sheer pleasure. The
power of Unix tools is present on every Mac OS X machine; to ignore do shell

script is to cut yourself off from the convenience and delight of having all this power
at your command.

Osascript
Three command-line tools are provided for accessing AppleScript from Unix. The
first, osalang, lists the scripting components present on your machine (see "The
Open Scripting Architecture" in Chapter 4) :

$ osa1ang -1
ascr appl cgxervdh AppleScript
scpt appl cgxervdh Generic Scripting System

If you have other OSA components installed, they will also appear. For example, if
you use Script Debugger, you'll see AppleScript Debugger and JavaScript. These do
in fact appear on my machine, but to reduce confusion, they are not shown here.

The two four-letter codes identifying each component are used by OSA program
mers, but typically won't arise in the context of your AppleScript experience. Then
comes a series of flags describing the capabilities of this scripting component (see the
manpages for their meanings) . Finally, we have the name of the component. The
"Generic Scripting System" is the general front end to the OSA (what Chapter 4 calls
the GSC) ; "AppleScript" is the AppleScript component in particular. You can use
either of these two terms as a language specifier in calling the other two command
line tools, but their effect will be identical, since the GSC will treat AppleScript as the
default component. In general, unless you are using other OSA scripting compo
nents, you'll have no need for osalang .

Osascript I 365

The osacompile command takes as argument a text file, or some text provided on the
command line, and generates a compiled script file or applet. There are options let
ting you determine the characteristics of this file, such as its type and creator, but
you typically won't need these. For example:

$ cat > textfile
display dialog "Hello, world l "
1\0
$ osacompile -0 compiled file textfile

The result is a compiled script file compiled file that opens into Script Editor when
double-clicked in the Finder. We also generated an extra intermediate file, textfile.
You can avoid this and type the script directly into osacompile :

$ osacompile -0 compiledfile
display dialog "Hello, world ! "
"0

The extension on the filename supplied in the - 0 parameter is used to determine the
type of file that's created; this time we'll make an applet bundle:

$ osacompile -0 appBundle.app
display dialog "Hello, world I "
1\0

Further switches let you determine the applet's characteristics (see "Applet Options"
in Chapter 24) , so read the manpages.

The osascript command runs a compiled script file, a text file, or text provided from
the command line. This command is the real key to bridging the gap between Unix
and AppleScript from the Unix side. To enter text directly from the command line,
you can use the -e switch, in which case the shell's usual quotational hoops will have
to be jumped through; to enter the text of a multiple-line script from the command
line in the Terminal, you can use the -e switch multiple times. For example:

$ osascript -e ' tell app "Finder'" -e ' activate ' -e
' display dialog "Hello, world l '" -e ' end '

But you can also type the script as a series of lines, as in the osacompile examples
earlier:

$ osascript
tell app "Finder"
activate
display dialog "Hello, world l "
end
1\0

366 I Chapter 23: Unix

In languages such Perl and Ruby, you can conveniently construct a multiple-line
script as text on the fly by means of a "here document" and then hand this off to
osascript for execution:

$s = «DON E ;
tell app " Finder"

activate

end
DONE

display dialog " Hello, world ! "

' osa script -e ' $s " ;

Again, if you don't have to construct the script on the fly, then consider not doing so.
There is nothing wrong with preparing a compiled script file beforehand and just
calling it with osascript. This is faster than handing text to osascript, because
there's nothing to compile, and it saves you from all the quotational headaches.

Unfortunately there's no way to call osascript with parameters to be handed to the
compiled script. Consider, for example, the following Perl script:

print "What would you like me to say?\n " ;
$prompt = < STDIN> ;
chomp $prompt ;
$s = «DON E ;

tell app " F inder"
activate

end
DONE

display dialog " $ { prompt } ! "

' osa script - e ' $s " ;

We can call that script from the command line, as follows:

$ perl hello.pl
What would you like me to say ?
Howdy

This works fine; the dialog saying "Howdy!" appears in the Finder. Now let's think
about how we would move the AppleScript part of this Perl script off to a compiled
script file and call it with the value of $prompt as a parameter. We can't do this in any
direct way. AppleScript has no ARGV mechanism for retrieving arguments from the
command line. The only place for incoming parameters in a compiled script file is
through the run handler; but this would require us to call run script, which we can
only do by way of osascript, at which point the overhead is even greater. The only
real alternative is to leave the data in a "drop," that is, in some location where the
compiled script expects to find it.

One such "drop" would be an environment variable. (Recall from Chapter 20 that
the system attribute command can read Unix environment variables.) We can't tell
the compiled script the name of the variable, of course, so it must be hardcoded both

Osascript I 367

into the Perl script and the AppleScript code. So, for example, the chain of com
mand might run like this-from the Terminal:

$ perl hello.pl
What would you like me to say?
Hello, world

to Perl (hello. pI) :

print "What would you like me to say?\n " ;
$prompt = < STDIN> ;
chomp ($ ENV{whatToSaylnTheDialog} = $prompt) ;
' osa script Des ktop/helloAS . scpt ' ;

to AppleScript (helloAS.scpt) :

set p to system attribute "whatToSaylnTheDialog "
tell application " F inder"

activate
display dialog p

end tell

Another approach would be to use a file to transfer the data. Again, the file path will
have to be hardcoded in both scripts. Here's Perl (hello.pl) :

print "What would you like me to say ? \n " ;
$prompt = < STDIN > ;
chomp $prompt ;
chdir() ;
open OUT, " >Des ktop/data ForHello" ;
print OUT $prompt ;
close OUT;
' osascript Des ktop/helloAS . scpt ' ;

And here's AppleScript (helloAS.scpt) :

set f to (path to desktop as string) & " data ForHello"
set fNum to open for access file f
set p to read fNum
tell application " F inder"

activate
display dialog p

end tell

That technique may appear extraordinarily elaborate, but if the AppleScript file were
lengthy, the shoe would be on the other foot. To create and compile the text of the
AppleScript code entirely on the fly, merely in order to embed a single value in it
from Perl, would be overkill-and slow. To compile the AppleScript code before
hand saves a lot of time, and handing off a parameter to it from Perl by way of an
environment variable or a file is a perfectly reasonable technique.

Do not use any scripting addition commands that put up a user interface, such as
display dialog, directly from within osascript. The problem is that osascript is not
an application context, so it has no provision for user interactivity. The dialog

368 I Chapter 23: Unix

appears, but you can't click the buttons to dismiss it! The only escape is to kill the
osascript process. The solution is to make sure that your script targets an actual
application and calls any user interface scripting addition commands from within
that. That's why we targeted the Finder in the preceding examples.

Using the -ss switch with osascript presents the results as AppleScript would
present them:

$ osascript -ss -e '{"Mannie", {"Moe"}}'
{"Mannie", {"Moe"} }

If you omit it, you wind up with a flat comma-delimited list:

$ osascript -e '{"Mannie", {"Moe"}}'
Mannie, Moe

The fact that these are strings, that there is a list, and that one of the list items is itself
a list, is completely lost from the representation of the result. Nevertheless, this rep
resentation has its place, especially when you plan to use further shell commands to
process the result. In this example, I find all persons who appear more than once in
my Address Book:'

$ osascript -e 'tell app "Address Book" to get name of every person'
I tr , "\n" I sort -bf -k2 I uniq -d

Mark Anbinder
Mary Byrd
Jeff Carlson

The example takes advantage of the fact that a comma is the delimiter between
names in the output from the AppleScript command. See "Combining Specialties" in
Chapter 1 , "Unix" in Chapter 2, and Chapter 4 for more examples of osacompile in
action.

, Thanks to Chris Nebel for this example.

Osascript I 369

CHAPTER 24

Writing Applications

Macintosh standalone applications are typically written in languages such as C, C++,
Objective-C, or REALbasic. But you can write an application with AppleScript, and
this chapter talks about the ways you can do it. You can write an applet or a droplet,
essentially converting a script directly into an application; this application will be
more or less faceless, but it's a true standalone application, it can accept drag-and
drop of files and folders onto its icon, and it's scriptable. Or you can wrap your
script in a full-fledged Cocoa interface with AppleScript Studio.

This chapter also talks about writing CGIs and how AppleScript may be used to sup
plement a web server. It talks about digital hub scripting. And it talks about folder
actions; a folder action is not really an application, but it is like an application in that
it runs independently and spontaneously, and because it responds to certain events.

Applets
An applet is a compiled script wrapped up in a simple standalone application shell
(see "Applet and Droplet" in Chapter 4). To make a script into an applet, save it
from the Script Editor as an application instead of as a compiled script. You elect this
choice in the Save As dialog. The result is a standalone application. If you open the
application from the Finder (by double-clicking it, for example), the script runs.

Alternatively, you can now save a script as an application bundle. From the outside,
the result looks and works like an applet, exactly as described in this chapter. Since
it's a bundle, though, you can do things with it that you can't do with an old-style
applet, such as storing extra resources inside it; for an example, see "Persistence,"
later in this chapter. Also, an application bundle can call scripting additions con
tained within itself; see "Loading Scripting Additions" in Chapter 20. Keep in mind
that this format is not backward-compatible with earlier system versions.

370

A script still remains editable from inside the applet. The only trick is that now you
must open the script for editing in a different way. You can't edit it by double
clicking it from the Finder, since that runs the applet. But the Script Editor can still
open it. You can even have an applet open for editing in the Script Editor, save it

without closing it, and then double-click it in the Finder to run it, as a way of testing
while developing. (But you can't save an applet's script into the applet while the
applet is actually running, for obvious reasons.) And there's another way to open an
applet for editing, which we'll come to in a moment.

Applet Options

When you select Application (or Application Bundle) in the Save As dialog, some
further options come into play. These options affect the way the application will
behave.

One option is Show Startup Screen. If this is checked, the script's description is used
to form a dialog which is displayed when the applet is started up, as a kind of intro
ductory splash screen. In Script Editor, the description may be typed into the
Description tab at the bottom of the window. It is styled text, and the styling is main
tained in the startup screen dialog. The dialog offers the choice to run the applet's
script or to quit without running it.

Another option is Stay Open. The default behavior of an applet is to run its script
and then quit automatically. But if Stay Open is checked, it doesn't quit automati
cally after running. A Stay Open applet has a Quit menu item, so the user can quit it
manually. (Actually, even a non-Stay Open applet has a Quit menu item, but one is
unlikely to notice this unless its run handler takes a long time. This can confuse the
user; see the next section.) It also has a File menu item that lets the user suppress the
startup screen (if the applet was originally saved with Show Startup Screen checked),
and an Edit menu item that lets the user open the applet's script in the Script Editor:

An applet that was saved with the Show Startup Screen option unchecked, or whose
startup screen has been suppressed by the user, can be forced to show its startup
screen dialog by holding down the Control key as the applet starts up.

While the startup screen dialog is showing, the applet's menus are active. Thus, the
user can always edit an applet's script, even if the applet is not set to Stay Open, by
starting up the applet and holding down the Control key to bring up its startup
screen dialog, then choosing the Edit menu item.

To prevent the applet from being editable by the user, you can save it as Run Only.
Keep in mind that this means even you can no longer edit the applet; if you have no
other copy of the script, you lose all ability to edit the applet's script forever.

• But the Edit menu item is not working for application bundles as of this writing.

Applets I 371

Applet Handlers

Certain handlers in an applet script, if present, will be called automatically at certain
moments in the lifetime of the applet. Because of their special status, none of these
handlers takes parentheses in the first line of its definition; they are not called as han
dlers, but are responding to predefined commands (events):

run
The run handler, whether implicit or explicit ("The Run Handler" in Chapter 8),
is called when the applet is started up, either by the user opening it from the
Finder or by a script targeting it. To start up an applet without calling its run·
handler, tell it to launch.

reopen

idle

quit

A reopen handler, if present, is called when the already running applet is sum
moned to the front by such means as being double-clicked in the Finder or hav
ing its icon clicked in the Dock. Merely switching among applications with 3€
Tab, or telling the applet to activate, does not send a reopen event.

An idle handler, if present, is called as soon as the run handler finishes execut
ing, and then again periodically while a Stay Open applet is running. The value
returned by the idle handler is a real representing the number of seconds before
the idle handler should be called again. A return value of 0, or any other value
that can't be coerced to a positive real, is treated as 30.

A quit handler, if present, is called when the applet is about to quit. If it is a Stay
Open applet, this might be because the user has chosen its Quit menu item; if
not, it might be because the applet has been started up and its run handler has
finished executing. If the quit handler wishes to permit the applet to quit, it must
give the continue quit command.

An applet having a quit handler that does not give the continue quit
command will appear to the user to be impossible to quit (except by
force-quitting) .

So, for example, here's an annoying little Stay Open applet:

on run
display dialog "Howdy!"

end run
on quit

display dialog "Farewell!"
continue quit

end quit
on idle

beep
display dialog "Get to Work!"

372 I Chapter 24: Writing Applications

return 1 * minutes
end idle

An applet is scriptable with respect to its handlers; that is, you can tell an applet to
run, reopen, idle, or quit, and it will execute the respective handler if it has one. If
you tell an applet to run and it has no run handler code, it simply starts up if it isn't
running already. If you tell an applet to run and it does have a run handler, and it
wasn't running already, the run handler will be called twice-once because you tar
geted it, and again because you told it to run. To prevent this, first tell the applet to
launch, and then tell it to run. (To prevent the run handler from being called at all,
tell the applet to launch and don't tell it to run.) If you tell an applet to quit and it has
no quit handler, it simply quits. If you tell an applet to idle and it has no idle han
dler, or to reopen and it has no reopen handler, nothing happens (but the calling
script may receive an error).

You are also free to add handlers of your own to an applet's script. If you do, then the
applet becomes scriptable with respect to these handlers. You call them like ordinary
handlers. For example, suppose we have an applet howdy whose script goes like this:

on sayHowdy (toWhom)
activate
display dialog "Howdy , " & toWhom

end sayHowdy

Then we can say in another script:

tell application "howdy"
sayHowdy ("Matt")

end tell

The value is returned as one would expect; here, the calling script receives the value
{button returned : "OK"} if user presses the OK button.

An applet has no dictionary. This means that when you call an applet's handler from
another script, AppleScript has no way of knowing whether the applet contains such
a handler, or, if it does, what its parameters should be. But it doesn't need to know.
Without attempting to resolve it as terminology, AppleScript converts your call into
the Call-subroutine command (' ascr/psbr ') (see Appendix A). Essentially, it just
recodes your call as a record and throws that record at the applet. It is up to the
applet to decide how to respond; and it decides this correctly, all by itself. If you call
an applet handler that doesn't exist, or if you call an applet handler with parameters
that are not in accordance with those of the handler definition, the applet returns an
error at runtime. The need to be able to code a handler call as an Apple event that
can be blindly sent from one process to another in this way helps to explain the
peculiar rules of AppleScript's handler-calling syntax ("Syntax of Defining and Call
ing a Handler" in Chapter 8).

The idle handler should not be treated as ensuring a precise measure of time. The
time interval returned is merely a request not to be called until after the interval has
elapsed. I am not entirely clear on what the time interval is measured from;

Applets I 373

experiments returning 0 seemed to suggest that it was measured from when the idle
handler was last called, not from when it last returned, but this didn't seem to be
true for other values. If your goal is to run a script at precise times or intervals, you
might be happier using a utility to handle this for you. For example, see http://
www.sophisticated.com/productslido/ido_ss.html for iDa Script Scheduler, a com
mercial product that runs scripts at specified times.

The question arises of how to interrupt a time-consuming applet. Suppose the run
handler takes a long time and the user wishes to stop it and quit. Even a non-Stay
Open applet has a Quit menu item, both in the menu bar and in the Dock, so the user
might try choosing one; but this won't work. The user can cause an error by pressing
9C-Period, which your script can catch and respond by quitting; but the user might not
think of this. The user can force-quit, but then any cleanup operations in your quit
handler won't be performed. The best you can do is probably something like this:"

global shouldQuit
global didCleanup
on run

set shouldQuit to false
set didCleanup to false
try

-- lengthy operation goes here
repeat with x from 1 to 10

if s houldQuit then error
say (x as string)
delay 5

end repeat
on error

tell me to quit
end try

end run
on quit

if not didCleanup then
-- cleanup operation goes here
say ·cleaning up·
set didCleanup to true

end if
set shouldQuit to true
continue quit

end quit

While the run handler of that example is executing, here's what the user can do, and
what our code will do in response:

• The user presses 9C-Period. We catch the error, call our own quit handler, clean
up, and quit in good order.

• The user chooses Quit from the applet's Application menu. This calls our quit
handler, but when we say continue quit we don't succeed in quitting-we

" This example and the entire discussion of the problem come from Paul Berkowitz.

374 I Chapter 24: Writing Applications

merely resume the run handler. Therefore we also set a global indicating that the
user is trying to quit. The resumed run handler notices this, deliberately errors
out as if the user had pressed 3C-Period, and we catch the error and call our own
quit handler, and quit in good order. We would perform our cleanup operations
twice in this case, but that is prevented by another global.

• The user chooses Quit from the applet's Dock menu. This has no effect upon
our applet. I regard this as a bug.

• The user force-quits our applet. This stops the applet dead, but of course there is
no cleanup.

Droplets

A droplet is simply an applet with an open handler :

open
An open handler, if present, will be called when items are dropped in the Finder
onto the droplet's icon. It should take one parameter; this will be a list of aliases
to the items dropped.

The open handler's parameter is a command parameter, not a handler parameter, so
it does not have to be expressed in parentheses in the first line of the definition.

If a droplet is started up by double-clicking it from the Finder, then its run handler is
executed and its open handler is not. But if it is started up by dropping items on it in
the Finder, then it's the other way around: its open handler is executed and its run
handler is not. Once a droplet is running (assuming it is a Stay Open droplet), the
open handler can be executed by dropping items onto the droplet's icon in the
Finder. The open handler is also scriptable, using the open command, whose parame
ter should be a list of aliases.

In this simple example, the droplet reports how many folders were dropped on its
icon:'

on open what
set total to a
tell application "Finder"

repeat with f in what
if kind of f is "folder" then set total to total + 1

end repeat
end tell
display dialog (total as string) & " folder (s)"

end open

, This technique would have to modified in order to work on machines where the Finder's response to get
kind of gives answers in a language other than English.

Applets I 375

Persistence

Persistence of top-level entities (see "Lifetime of Variables" in Chapter 7 and "Persis
tence of Top-Level Entities" in Chapter 9) works in an applet. The script is re-saved
when the applet quits, maintaining the state of its top-level environment.

So, for example, the following modification to the previous example would cause an
applet to report the count of folders that had ever been dropped on it, not just the
count of folders dropped on it at this moment:

property total : 0
on open what

tell application "Finder"
repeat with f in what

if kind of f is "folder" then set total to total + 1
end repeat

end tell
display dialog (total as string) & " folder (s) "

e n d open

On the other hand, this persistence ends as soon as the applet's script is edited. If
you're still developing an applet, or likely to edit it further for any reason, you might
like a way to store data persistently with no chance of losing it. The new application
bundle format supplies a solution. An application bundle appears and behaves in the
Finder just like an applet, but is in reality a folder. When it runs, path to me is the
bundle's pathname. This means we can perform persistent data storage in a separate
script file inside the bundle; the user won't see this separate file, and as long as we
don't deliberately open it in the Script Editor, its data will persist even when we edit
the applet's main script.

To illustrate, let's return to the example in "Data Storage" in Chapter 9. This code is
just the same as in that example, except that we now assume we are an application
bundle, and the first line has been changed to store the data inside the bundle:

set thePath to (path to me as string) & "myPrefs"
script myPrefs

property favoriteColor
end script
try

set myPrefs to load script file thePath
on error

set favoriteColor of myPrefs to text returned of ,
(display dialog "Favorite Color : " default an swer ,

'' '' buttons {"OK"} default button "OK")
store script myPrefs in file thePath replacing yes

end try
display dialog "Your favorite color is " & favoriteColor of myPrefs

Now we save the script as an application bundle, and we have a single file, an applet,
which behaves correctly: the first time it runs, it asks for the user's favorite color; the
next time it runs, it remembers the user's favorite color and presents it. And it
doesn't forget the user's favorite color if we now edit this script.

376 I Chapter 24: Writing Applications

Digital Hub Scripting
You probably have your computer set up so that when you insert a music CD, the
application iTunes runs. This is one example of a general phenomenon called digital
hub scripting: when a DVD, or a CD that doesn't consist of ordinary files, is inserted
into your computer, the System can react by sending an Apple event to a designated
application. You can interpose your own code in this process: instead of iTunes,
when an event like this occurs, an applet of your choice is notified, and can react in
any desired manner.

In the CDs &1 DVDs pane of System Preferences are the settings that determine how
the System reacts to a disk-insertion event. You can determine what application
should be notified when the disk is inserted. If this application is an applet, it should
be prepared to receive an Apple event corresponding to what sort of disk was
inserted. The terminology for these Apple events is defined in the dictionary of the
Digital Hub Scripting scripting addition. (Therefore the parameter does not need to
appear in parentheses at the start of the definition.)

Let's say we want to take charge of what happens when a music CD is inserted.
We'll create an applet called musicListener. In the CDs &1 DVDs pane of System Pref
erences, we use the Open Other Application menu item to set musicListener as the
target application to respond when a music CD being inserted. In musicListener, the
music CD appeared handler will be called when a music CD is inserted.

To illustrate, let's offer the user a choice of playing just one track of the music CD:

on music CD appeared d
set dis kName to d as alias as string
set text item delimiters to " : "
set diskName t o text item 1 o f diskName
tell application "F inder"

set L to name of every file of disk diskName
end tell
set whichTrac k to choose from list L
tell application "iTunes"

play file ({ diskName , whichTrack} as string)
end tell

end music CD appeared

Folder Actions
A folder action is a behavior that occurs automatically when certain events take place
in a designated folder in the Finder. Folder actions are not implemented as applica
tions, but as scripts (but they seem to have found their way into this chapter any
way). As with digital hub scripting, your script has certain handlers which, if present,
will be called when the corresponding event takes place.

Any scripts to be used as folder action scripts should live in -ILibrarylScriptslFolder
Action Scripts. Alternatively they can live in lLibrarylScriptslFolder Action Scripts, and

Folder Actions I 377

some example scripts are located there; but the former, the one in your user library,
is the default.

Setting up a folder action involves the association of a script with a folder. To make

such an association is to attach the script to the folder; to break the association is to
remove the script from the folder. The script is not actually moved; attachment and
removal are conceptual, not physical, and are performed through System Events (see
"System Events" in Chapter 21), which ties a folder and a script together through a
folder action object. It is up to System Events to maintain these folder action objects
and to respond correctly when an appropriate action in the Finder takes place. So Sys
tem Events must be running in order for folder actions to work; that is why, when you
enable the folder actions mechanism, System Events is added to your Startup Items.

In general, you don't have to worry yourself with the details of scripting System
Events to manipulate folder actions. Apple provides a straightforward user interface
through the application Configure Folder Actions, located in IApplicationsl
AppleScript. Here you can turn the folder actions mechanism as a whole off and on;
add and remove folders to the list of those that have folder actions; attach and
remove scripts in association with any listed folder; enable and disable a particular
folder or script; and open a script for editing.

Another interface is provided by a folder's contextual menu. This is a much simpler

interface than the Configure Folder Actions application, because it is clear from the
outset what folder is in question-it's the one whose contextual menu you're
using-and so you're only manipulating scripts in connection with this one folder.
You can attach a script to, and remove a script from, this particular folder, as well as
edit an attached script. You can also enable or disable the folder actions mechanism,
and open the Configure Folder Actions application.

There are also some scripts located in lLibrarylScriptslFolder Actions, which may be
accessed directly or through the Script Menu (see "Script Runner" in Chapter 2).
These are useful for study if you want to learn how to drive the folder actions mecha
nism by scripting System Events. Here is what they do:

Enable Folder Actions.scpt
Turns on the folder actions mechanism.

Disable Folder Actions.scpt
Turns off the folder actions mechanism.

Attach Folder Action.scpt
Prompts the user for a script and folder and attaches the script to that folder as a
folder action for it.

Remove Folder Actions.scpt
Prompts the user for a folder and a script and removes that script from that
folder so that it is no longer a folder action for it.

378 I Chapter 24: Writing Applications

The latter two are especially interesting; look in particular at the use of the com

mands attach a ction to, attached scripts , and remove action from.

So much for how to associate a script with a folder. What about the code that goes
into a folder action script? The terminology for the events to which a folder action
script can respond is defined in the dictionary of the StandardAdditions scripting
addition. Therefore the parameter in the first line of your handler definition doesn't
have to be in parentheses. A folder action script can respond when a folder's win
dow is opened, moved, or closed, or when items are added to or removed from the
folder. An example appears at "Automatic Location" in Chapter 2. There are a num
ber of educational examples in ILibrarylScriptslFolder Action Scripts as well.

CGI Application
A eGl application (for common gateway interface, if you must know) is a process
that supplements a web server. When a request arrives for a page, instead of produc
ing the page as a copy of a file on disk, the web server can turn to a CGI application
and ask it for the page; the CGI application is expected to compose the entire HTML
of the page, including headers, and hand it back to the web server, which passes it on
to the client that made the request.

On Macintosh, the communication between a web server and a CGI application has
conventionally been performed through Apple events. In particular, an Apple event
usually known (for historical reasons) as the WebSTAR event is sent by the web
server to the CGI application, describing the page request. The CGI application
hands back the page as the reply to this Apple event (see http://www.4d.com/
productslwsdevlinternetspecs. htm/).

This means that an applet can be used as a CGI application; and such, indeed, is the
traditional Mac as approach. If you're using WebSTAR or some other web server
that implements CGIs in this manner, you can use it directly with an applet. How
ever, the web server that comes with Mac as x, Apache, doesn't work this way.
Apache is a Unix web server, and Unix doesn't have Apple events. In Unix, environ
ment variables, along with stdin and stdout, are used as the communication medium
between the server and the CGI process.

Therefore, in order to use an AppleScript applet as a CGI application with Apache,
you need some intermediary application that swings both ways, as it were. On the
one hand, this intermediary application must behave as an Apache-style CGI pro
cess, so that Apache has someone to talk to. On the other hand, this intermediary
application must know how to translate a CGI request from Apache into an Apple
event, send this Apple event to the correct applet, and receive the result. It must then
translate the result into the form Apache expects, and pass it on to Apache.

(GI Application I 379

Such an intermediary is James Sentman's acgi dispatcher utility. (See http://www.
sentman.com/acgi.) Here, then, is a description of how to write and implement a
basic CGI applet in AppleScript using acgi dispatcher.

Let's start with the applet. We'll write an "echo" CGI, whose job is to return a web
page simply describing the original request. This is a valuable thing to have on hand
because it can be used for testing and debugging, and it exemplifies the two basic
tasks of a CGI applet, namely to receive the Apple event and to respond by con
structing and returning a web page.

The terminology for the Apple event that's going to be arriving is defined in the
StandardAdditions scripting addition, as the handle CGr request command. In defin
ing our ha ndle CGr request handler we can take advantage of this terminology, but
there are some slight hiccups. The terminology speaks of an a ct ion parameter, but
acgi dispatcher fails to provide this, so we must omit it. And acgi dispatcher includes
one parameter that isn't mentioned in the terminology, and therefore has to be
included by means of a raw four-letter code. (This extra parameter is a list of URL
decoded form elements, saving your applet the tedious job of parsing the form infor

mation. The example script ignores it.)

Apart from this the code is straightforward; here it is:

property crlf : "\r\n"
property http_header : "MIME-Version : 1.0" & crlf & �

"Content-type : text/html" & crlf & crlf
property s : ""

on makeLine (whatName , whatValue)
return "cp>cb>" & what Name & " : c/b> " & whatValue & "c/p>" & return

end make Line
on addLine(whatName , whatValue)

set s to s & makeLine(whatName , whatValue)
end add Line

on handle CGI request path_args �
from virtual host virtual_host �

searching for http_search_args �
with posted data post_args �
us ing access method method �
from address client address �
from user username �
us ing pas sword pword �
with user info from user �
from server server name �
via port server_port �
executing by script_name �
of content type content_type �
referred by referer �
from browser user_agent �
of action type action_path �
from client I P address client_ip �

380 I Chapter 24: Writing Applications

with full request full_request �
with connection 1D connection id �
given «clas s Tra L» : form_elements

us ing action action -- not implemented by acgi dispatcher
set s to http_header
set s to s & �

"chtml>chead>ctitle>Echo Pagec/title>c/head>" & return
set s to s & "cbody>chl> Echo Pagec/hl>" & return
addLine ("virtual_host", POS1X path of virtual_host)
addLine ("path_args", path_args)
addLine ("http_search_args", http_search_args)
addLine ("post_args", post_args)
addLine ("method", method)
addLine ("client_address", client_address)
addLine ("username", username)
addLine ("password", pword)
addLine ("from_user", from_user)
addLine ("server_name", server_name)
addLine("server_port", server_port)
addLine("script_name", script_name)
addLine ("content_type", content_type)
addLine ("referer", referer)
addLine ("user_agent", user_agent)
addLine ("action_path", action_path)
addLine ("client_ip", client_ip)
addLine ("full_request", "c/p>cpre>" & full_request & "e/pre>cp>")
addLine ("connection_ID", connection_id)
set s to s & "chr>ci>" & (current date) & "eli>"
set s to s & "c/body>c/html>"
return s

end handle CG1 request

We start by defining the header that will precede our HTML. Then comes a pair of
utility handlers that will make the code for generating each line of our HTML a bit
less tedious; our plan for generating the HTML is to append line after line of this
format:

.

cp>cb>param_name:c/b>param_valuec/p>

and these utilities make the job a bit more elegant. Finally we have the actual han
dler for the Apple event that will come from acgi dispatcher. In your own experi
ments, be sure to copy the parameters in the first line of the handler definition
exactly as shown here, or the whole thing won't work! In the content of the handler
you can do anything you like, but the result should be the header followed by some
legal HTML.

Now let's talk about how to set up Apache to use this script as a CGI process. The
directory where everything needs to go is lLibrarylWebServerICGI-Executables. Save
the script as a Stay Open applet into that directory, calling it echo.acgi. Start up
echo.acgi. Now open the acgi dispatcher folder and move the dispatcher application
into that directory as well. Start up dispatcher and provide your admin password
when requested. Finally, go into the Sharing pane of System Preferences and turn on

CGI Application I 381

Personal Web Sharing. That's it! You're ready to test. Open a browser and ask for
http://localhost just to make sure Apache is serving. If that works, then cross your
fingers and ask for http://localhostlcgi-bin/echo.acgi. You should see a web page dis
playing your request; it will contain information such as your IP number and what
browser you're using. At the bottom it will show the current date and time. You've
just written your first AppleScript CGI.

A question that arises with CGI applets (or any applet, really) is what happens if a
request arrives when the applet is already in the middle of running its handle CGI
request handler in reaction to a pending request. AppleScript is not multithreaded,
so execution of simultaneous requests must be taken in some definite order. In the
latest version of AppleScript (1.9.2) and the System (Mac OS X 10.3), that order is
FIFO-first in, first out. This means that requests are processed in the order in
which they arrive; if a request arrives while another request is already being pro
cessed, the new request must simply wait its turn.

This is a big improvement over past systems, where the order was LIFO-last in,
first out. Under LIFO ordering, if an Apple event arrives, all pending execution is put
on hold until the execution triggered by this latest Apple event has finished. This
means that if many requests arrive close to one another, it is theoretically possible for
the first ones to be postponed a long time (so that, from the client's point of view,
they time out).

AppleScript Studio
AppleScript Studio is a free development environment from Apple allowing you to
write Cocoa applications using the AppleScript language. It would require an entire
book to discuss AppleScript Studio adequately, so this section just explains how
AppleScript Studio works, talks about its learning curve, and provides a brief illustra
tion of AppleScript Studio in action. To begin at the beginning, we must be clear on
what Cocoa is.

Cocoa

Cocoa is the name of a massive application framework included as part of Mac OS
X. This framework knows how to do all the things that an application might typi
cally wish to do. For example, it can put up windows, and in them it can display
many different kinds of interface widgets for interacting with the user. It also pro
vides very strong text capabilities and good graphics capabilities. Cocoa is a really
great application framework, and makes it quite easy to write sophisticated, power
ful applications. Cocoa applications can also be relatively small, because much of
the work is done by the framework, which is part of the System and not present in
the application itself.

382 I Chapter 24: Writing Applications

How AppleScript Studio Relates to Cocoa

Cocoa is very big, and to use it fully one should learn the Objective-C language and
study the framework as a whole. Objective-C is not hard, but the framework is big,
and the effort involved is more than some will wish to make. Furthermore, Apple
Script users are in rather a special position; you might easily have a script that works
already, but would be enhanced by adding some user interface that is more sophisti
cated than AppleScript on its own is able to provide. So you don't want to learn all of
Cocoa; you just want to leverage your existing script into a Cocoa application.
AppleScript Studio provides a way out of these difficulties, making it possible for the
user to wrap a Cocoa interface around AppleScript functionality with relative ease.

Cocoa is full of interface widgets and classes and objects, and it works through pre
defined messages that the programmer's code must be prepared to send and to
receive in order to interact with the framework. For example, suppose there's a but
ton in a window. If the programmer wants that button to change from being enabled
to being disabled, there's a specific message that the programmer's code must send
to the button; the connection between the programmer's code and the button is
called an outlet, and it is up to the programmer to define this outlet and to know
about the specific message that must be sent to change the button's enabled state. If
the programmer wants to know when the user presses this button, the program
mer's code must be prepared to receive a particular message that the button will
send; the connection between the button and the programmer's code is called an
action, and it is up to the programmer to define this action and to know what sort of
information will arrive when the button is pressed. Furthermore, many events that
take place over the lifetime of an application trigger other kinds of events that the
programmer's code can register to receive, through mechanisms called delegation and
notification. This is all very big stuff, and the documentation for it requires a lot of
space on your hard drive.

AppleScript Studio itself, however, is quite small and light. It simplifies the program
mer's view of Cocoa tremendously. In part, this is because it provides direct access to
only a fraction of Cocoa's full power. But this is a deliberate design decision on the
part of the Apple folks, and it's a good thing; if AppleScript Studio were too big and
complicated, your eyes would glaze over and you'd never use it.

The link between AppleScript and Cocoa is accomplished behind the scenes by
means of special glue code-you talk to AppleScript, and AppleScript turns what you
say into Objective-C and passes it on to Cocoa. This linkage between AppleScript
and Cocoa is often referred to as a bridge. So we may say that the Apple folks have
bridged AppleScript to a certain area of Cocoa.

Furthermore, in the area where the Apple folks have bridged AppleScript to Cocoa,
they have made Cocoa a lot easier to use than if you did it through Objective-Co You
don't have to know about outlets and actions and delegation and notification,

AppleScript Studio I 383

because that's all taken care of for you by AppleScript Studio and the bridging code.
The consequence is that if your aims are restricted in the right way, if what you want
to do with Cocoa from AppleScript lies within the scope of what is bridged, you can
actually write a Cocoa application much more quickly and easily with AppleScript
Studio than an Objective-C programmer could.

How Much Cocoa to Learn

In theory, it is perfectly possible to use AppleScript Studio without knowing any
Cocoa at all. You simply confine yourself to the AppleScript language and to what
the AppleScript Studio manual and dictionary tell you about the sorts of things you
can say, and you can build a Cocoa application.

However, if you don't know any Cocoa at all, you might still be a little mystified
about what's happening, and about how to achieve the effects you envision for your
interface. In my opinion, therefore, the best way to climb the AppleScript Studio
learning curve is to know at least some Cocoa. You will have a better sense of what's
going on in AppleScript Studio, and you'll be able to use it with greater facility, the
more you know about Cocoa itself. I'm not saying you should learn all of Cocoa; I'm
merely suggesting that you should acquire some familiarity with the location of the
Cocoa documentation on your hard drive, and that you might wish to have on hand
a couple of good Cocoa books.

Furthermore, if you do know some Cocoa, you can do much more with AppleScript
Studio than if you don't. That's because it's quite possible to find your program
ming desires banging up against a region where AppleScript is not bridged to Cocoa.
At that point, you're going to find yourself in difficulties; and you can solve these dif
ficulties only by giving up some of your desires, or else by learning some Cocoa and
crossing the bridge yourself. You can do this by calling from AppleScript into Cocoa
explicitly, perhaps even writing some of your application's code in Objective-Co
Many AppleScript Studio users seem to feel daunted or even insulted by the fact that
there are areas of Cocoa that AppleScript Studio does not hand them on a silver plat
ter. They think that AppleScript Studio should be "pure," and that they should not
need to get their hands dirty by using any Objective-C or even knowing what Cocoa
is really up to behind the scenes. In my view, though, it's better to get things done
with AppleScript Studio than to waste time and energy complaining about it; and
that's just what knowing some Cocoa has allowed me to do. You don't have to adopt
my philosophy in this matter, but I offer it for what it's worth.

Where and What Is AppleScript Studio
AppleScript Studio is like Los Angeles: it isn't actually anywhere. It isn't the name of
a thing or a place; it's the name of a collection of things used in a certain way. So
now we're going to talk about what those things are.

384 I Chapter 24: Writing Applications

The Developer Tools

Step one in finding AppleScript Studio is to make sure it is present in the first place.
If you haven't installed the Developer Tools, it isn't. The Developer Tools are on the
mysterious extra CD that comes with some Mac OS X installers; but it is crucial to

have the latest version, so the best way to get the Developer Tools is from Apple's
site. First, you need to become a member of the Apple Developer Connection. You
can join at the Online level, which is free (see http;lldeveloper.apple.comlmembershipl
online.html) . Then follow the links to the ADC Member Site and find the latest ver
sion of the Developer Tools. You can download them, if you have the bandwidth.
Alternatively, it is possible to request the latest Developer Tools CD for a small fee.
Then run the installer. The Developer Tools must be installed on your Mac OS X
startup disk.

Interface Builder

In /Developer/Applications is an application called Interface Builder. This is the pro
gram you will use to design your application's interface. Basically, you will draw the
interface you want. You can experiment with Interface Builder if you like; start it up,
choose the Cocoa Application starting point and press the New button, and presto,
you've got a window. Press :Ie-I to show the interface widgets palette if it isn't show
ing. Here you can select among sets of widgets; these sets have names like "Cocoa
Text" and "Cocoa-Controls." Drag some widgets into the window. Move them
around. Resize them. You might even read the Interface Builder Help document at
this point.

Xcode

Also in /DeveloperlApplications is an application called Xcode (formerly known as
Project Builder). This is the heart of the Cocoa development process. It is where you
edit your code; it is also where you turn your code into an actual application. You
can use Xcode whether you are writing a Cocoa application or an AppleScript Stu
dio application, and it supports many other kinds of project as well. What makes
your project an AppleScript Studio application, in particular, is that you say so when
you create the project.

The fact that you design your interface in one application but edit your code and
build the application in another is a tricky aspect of the Cocoa development experi
ence, and takes some getting used to. For the most part the two applications commu
nicate with one another in a reliable manner, but it's easy to confuse yourself, and
it's possible to confound the connection between Interface Builder and Xcode. It is

best to work on only one project at a time, to have both Interface Builder and Xcode
running, and to hide whichever of them you're not using at that moment.

AppleScript Studio I 385

AppleScript Studio documentation and examples

The documentation for AppleScript Studio is in !Developer!Documentation/
AppleScript. It consists of two books. One is an extended tutorial, well worth going
through with your hands on the computer; it's in ConceptuallStudioBuildApps. The
other is a reference manual, in ReferenceiStudioReference. You should probably skim
the reference manual once at the outset and then be prepared to consult it pretty
much constantly as you work. There are also lots of AppleScript Studio examples in
!DeveloperlExamples/AppleScript Studio, which explore and demonstrate just about
all aspects of using AppleScript Studio to drive the user interface.

Cocoa itself is documented starting in !Developer/Documentation/Cocoa. In the
ConceptuallObjectiveC folder is a splendid book about the Objective-C language.
The file Cocoa.html is the major gateway to the Cocoa documentation. Among other
things, it functions as a table of contents to a large number of highly readable, topic
oriented documents. These will prove helpful even to the AppleScript Studio pro
grammer. For example, if you want to understand what a button really is, the differ
ent ways it can appear and behave, how it fits into the class architecture, and what it
has to do with controls and cells, you'd click the "User Experience" link and from
there you could read the "Buttons" document and the "Controls and Cells"
document.

The nitty-gritty Cocoa reference material appears in Cocoa.html under "API Refer
ence." The part you're likely to be interested in is the link that says "Application Kit
Reference for Objective-C." This is where you would come to find out about all the
Cocoa methods to which a built-in class responds. For example, if you wanted to
know about buttons in the way that a Cocoa programmer knows about them, you'd
go to "Application Kit Reference" and then "NSButton" (the Cocoa name for the
button class) and read through this document, along with the chain of documents
listed at the top about the classes from which NSButton inherits, namely NSControl,
NSView, NSResponder, and NSObject (because anything they can do, NSButton can
do too). You can also get to this document directly; it's in Reference/ApplicationKit/
ObjC_ Classic/Classes.

Before you dismiss out of hand the idea that you, an AppleScript programmer, would
ever want to read any of the Cocoa reference documentation, consider that, in gen
eral, everything you do with AppleScript Studio is a bridged version of something
you could do with Cocoa, so that the Cocoa reference can function as a guide to
what you're really doing. For example, the discussion of setS tate: in the Cocoa
"NSButton" documentation is much clearer on what button "state" is all about than
is the AppleScript Studio reference.

The dictionary

The bridge between AppleScript and Cocoa is implemented partly through files located
in /System/Library/Frameworks/AppleScriptKit.jrameworkiResources. Of these, the

386 I Chapter 24: Writing Applications

most important to you will be AppleScriptKit.asdictionary. This is the dictionary
through which you will access the bridge terminology, the vocabulary that will allow
you to talk to Cocoa. To examine it, just double-click it in the Finder, and it will open
for reading in the Script Editor. (You don't have to find the dictionary like this every
time; it also appears within your AppleScript Studio project in Xcode, as shown in
Figure 24-2.) You'll see that this dictionary is full of exactly the terms that the Apple
Script Studio reference document is all about. Your job as an AppleScript Studio pro
grammer is to harness these terms. This is how your AppleScript code will
communicate with interface items, and how interface items and other Cocoa classes

will communicate with your AppleScript code.

To understand what's going on in AppleStudio you will in general be using a combi
nation of this dictionary, the AppleScript Studio reference documentation, and Inter
face Builder. The dictionary alone is inadequate for understanding how to
communicate with Cocoa. As I mentioned earlier, Cocoa works in part through
sending action messages, delegation messages, and notification messages to your
code so that you can react to things that the user does, and to other things that hap
pen during the lifetime of your application. In the dictionary, all these types of mes
sages get lumped together, along with the messages that you can send to Cocoa, as

events. You can't tell, just from looking at an event listing in the dictionary, whether
this is something you say or something Cocoa will say to you. If it's something
Cocoa will say to you, you can't tell from the dictionary precisely who will say it and
when, and why you might want to put yourself in a position to listen. Thus you need
the help of the documentation, and also of Interface Builder, which shows you what
messages can be sent and received in connection with each widget of your interface.

AppleScript Studio Example

For our example, we'll return to the code developed in "Do Shell Script" in
Chapter 23. In that code, we allow the user to enter search terms; we then go online
to tell the TidBITS search engine to look for those terms. We receive some HTML
that lists the pages found, we parse the HTML, and we present the results to the
user. We have already developed some AppleScript code and some Perl code that
work together to accomplish this task. Now we will embed this code in an applica

tion as a way of presenting the user with a nice interface. This is the sort of purpose
for which AppleScript Studio is particularly appropriate : we already have some work
ing AppleScript code, and now we want to leverage it and make it more comfortable
to use by putting a Cocoa interface in front of it. The finished application is shown in
action in Figure 24-1 ; the user has just searched for all TidBITS articles written by a
certain favorite author.

My goal in what follows is not to teach you AppleScript Studio, nor to provide a
hands-on step-by-step tutorial, nor even to show you the entire learning and devel
opment process for this particular example. I wish simply to highlight some aspects

AppleScript Studio I 387

o Sean:h

Text: I
Title: I r---------------------,

Author: !Neuburg

(Search)

Resu lts

Double-click a title to display the a.rticle in your bmwser.

Titles
Go Hog Wild with Hog Bay Notebook � True Confessions of a Mailsmith Switcher

iData Pro X Opportunity (Mai lBIT)
New Life for Weste rn Civi l isation (MailBIT)
Have a Nice Strip (M ai lBIT)

Remember? Not Forgotten (MailBrn
The Mail Must Go Throu g h , Faster (Mai lOn")
NoteTaker 1 . S : Eve n More Noteworthy (MaI l BIn

Take Note of NoteTaker
The Dig ital Shoebox: IData Pro X 1.0.S
Scripting t he Unscripta ble in Mac OS X
REALbas ic Turns 5 .0 (MaURin
M u ltiple C l i pboard s on Mac OS X I'
A Hearty Mac OS X We lcome to PGP 8.0 (MailB Il) i

=-

Figure 24- 1 . Our AppleScript Studio application in action

of the solution that are significant and typical, so that you gain some understanding
of the workings of the whole, and a sense for what sorts of effort are generally
involved in using AppleScript Studio to wrap a Cocoa interface around a script.

Create the project

The first step is to create the project, in Xcode. Choose File -? New Project and
select "AppleScript Application"; proceed through the creation steps to give the
project a name and finish its creation. We'll call ours Search TidBITS. A Cocoa
project consists of a folder containing many files; the folder will be called
Search TidBITS, and within it the project itself will be represented by a file called
SearchTidBITS.xcode. It is this file that now opens. It appears as the project window,

388 I Chapter 24: Writing Applications

and it acts as a table of contents to everything that's in the project. You would open
this same file at a later time to continue working on any aspect of the project.

Incorporate extra bundle components

A Cocoa application is a bundle, meaning it's a folder that looks (in the Finder) like a
single file. This means that we can store inside the application any ancillary files that
it may require, such as images, help documentation, and so forth, and the user will
not come into direct contact with these ancillary files or even be aware that they exist.

It happens that in this case we have such an ancillary file-the Perl script. To incor
porate the Perl script, choose Project � Add Files. In the Open File dialog, find and
select the Perl script, which is called parseHTML. pl, and elect in the next dialog to

copy it into the project. Once it's listed in the left side of the project window, you
can drag it to any location there; this has no effect in the real world, but merely orga
nizes the project window in a nice way. I like to put it under "Other Sources," as
shown in Figure 24-2.

� milin;m
.. D Frameworh
lOt::) Product<

"�T.rg.,,
.. <I Execuu.bles
.. f1fOf� 0Uld W�T«jn9S

iii Implementation filel

�. ' it Nil Files
... � And Results

Figure 24-2. Project window

Create the interface

P..lI SearchTidbits e '
�. 1A . • � q 0 C9- All Columns)

The next step is to create the interface. This is done by double-clicking MainMenu. nib
in the project window (Figure 24-2). This opens Interface Builder; Jnterface Builder
now knows it is dealing with an Xcode project, and coordinates its editing operations
with Xcode.

My design for the interface consists of two windows. The first, the Search window,
contains an NSForm displaying three fields the user can search on (text, title, and
author) and a Search button, along with a progress indicator to provide feedback

AppleScript Studio I 389

while we're talking to the Internet. The design is shown in Figure 24-3; the square
thing in the lower left is the progress indicator (I'll explain later why it looks this way).

Search

Text: I
Tit le: l -------------------,

Author: [
(Search _)

Figure 24-3. Search window

The second window, the Results window, contains a single-column table for display
ing the titles of the found articles, along with some explanatory text telling the user

what to do. The design is shown in Figure 24-4.

Results
Double-click a title to display the: article in your browser:

Titlts
0
1
2
3
4
5
6
7
8
9

... " �-

Figure 24-4. Results window

390 I Chapter 24: Writing Applications

The last piece of the interface is the menus. Here I make two main changes. I remove
the File menu and replace it with a Search menu consisting of a single menu item,
New. And I add a Close menu item to the Window menu. The menu bar design is
shown in Figure 24-5 , displaying the Search menu.

Figure 24-5. The menu bar

Add AppleScript names and handlers

Now comes the really interesting part. We will work in the AppleScript pane of the
Interface Builder info window, which is shown when you select an interface item and
press 3€-7. (If you don't see the info window at all, press 3€-Shift-l. The popup menu
at the top lets you change panes.) This pane lets you do two important things.

First, it lets you give the interface item an AppleScript name. This is the name that
will be used in your AppleScript code to refer to the item by name when forming an
element specifier. So, for example, although the Search window has a title "Search,"
this is merely a matter of its appearance; it is not something you can use as an ele
ment specifier. The key step is to select the window and give it an AppleScript name
(I call it search) in the info window. This is shown in Figure 24-6.

The other thing you do in the info window (also shown in Figure 24-6) is to explore and
specify the notifications you wish to receive from this interface item. You'll recall that I
said you'd be using Interface Builder to supplement the dictionary; I was referring to
this. The Interface Builder info window lists the messages that the selected interface
item is prepared to send to your code. As you design your application in Interface
Builder, you select an interface item, look at the list of its events in the info window,
look them up in the documentation, and think about which of them your code might
need to receive. Then you use the checkboxes in the info window so that you do receive
them. You check an event in the upper pane of the info window, and also check the
name of the Xcode script file in the lower pane of the info window. In this example, we
have only one script file, which has been created for us automatically; it is called
SearchTidBIT5. applescript. Checking the two checkboxes causes the correct handler to
be created in the script when you save the Interface Builder file.

AppleScript Studio I 391

NSWindow Info

Name: fu� _

Event Handlers
' -�lj-Nrb--- ' - - - - -
"' 0 Panel
" Window

o became kev
became maln
de miniaturized
exposed
moved
opened

o resignl!d kev
B res igned main

resized
shou ld close
should zoom
was miniaturized
will close

B will minia,turize

o will move

@!! will open
o will resize

will zoom

Script
..

,fi!!I SearchTidbits,.applescript

::J Index; 0

(New Sc".ipt) (Edit ,script, 1

Figure 24-6. Info for the Search window

I:
I,

I'

� "
:

So now I'm going to run through the interface items of my project, giving some of
them names and deciding what notifications I want to receive from each of them:

File's Owner
This icon in the main Interface Builder window represents the application as a
whole. I want to know when the application has launched so that I can perform
some initializations, so I select Application: launched .

Search � New menu item
I name this menu item newSearch . I want to know when the user chooses this
menu item, so I select Menu : choose menu item .

392 I Chapter 24: Writing Applications

Window -7 Close menu item
I name this menu item closeWindow. I want to know when the user chooses this
menu item, so I select Menu : choose menu item.

Search window
I name this window search . I want to know when this window is about to open,
because I want to make some interface adjustments; so I select Window : will

open .

Search window: the Search button
I name this button searchButton . I want to know when the user clicks this but
ton, so I select Action : clicked .

Results window
I name this window results .

Results window: the table view
I want to know when the user double-clicks a row of the table view, so I select
Action : double clicked .

Results window: the table view's column
It's very important to give each column of a table view an AppleScript name.
This table view has just one column, and I name it titles .

The code

We are now finished with Interface Builder, and it's time to work on our Apple
Script code. To access the code, just click the Edit Script button in the info window
in Interface Builder. This causes Xcode to come to the front and to open the script
file for editing. As you can see, the handlers that we specified in Interface Builder
have been created. The terminology for these events is defined by the AppleScriptKit
dictionary, so no parentheses appear in the first line of the handler definitions:

on will open theObject
(*Add your script here . *)

end will open

on launched t heObject
(*Add your script here . *)

end launched

on choose menu item theObject
(*Add your script here . *)

end choose menu item

on clicked theObject
(*Add your script here . *)

end clicked

on double clicked theObject
(*Add your script here . *)

end double clicked

AppleScript Studio I 393

Our task in Xcode is now to fill these in, and to add any further handlers of our own.
Let's take a tour of the final code. I'll comment on what each part of the code does
and on the various points about AppleScript Studio that it demonstrates.

Example 24-1 shows some top-level globals and the launched handler generated by
the File's Owner object in Interface Builder. There is no particular reason for prefer
ring script properties over global variables except as a matter of convenience: with
script properties, I don't have to take any explicit action to initialize them. The glo
bals L1 and L2 will be needed for maintaining state and communicating information
between handlers. This use of globals is quite common in AppleScript Studio. It's

true that as a rule I don't favor using globals for passing information around, but in
the case of an application we have no choice, because different handlers will be
called at different times, with our application lying idle in between, and during those
idle periods we need a place to store information where the next handler to be
invoked will be able to find it. The global perl Script Path is really more like a script
property, since I want to initialize it at startup and leave it alone after that, but I can't
actually make it a script property, because in order to initialize it, I need to run some
code after the application has started up. That code is what's in the launched

handler.

Example 24- 1 . Globals and launched handler

property textSought : " "
property t i tleSought : " "
property authorSought
global perlScriptPath
global Ll
global L2

on launched theObject - - app started up, do initialization tasks
set f to resource path of main bundle
set perlScriptpath to POSIX path of POSIX file (f & "/parseHTM L . pl")
set perlScriptPath to quoted form of perlScriptPath

end launched

The lau nched handler will be called when the application starts up. Thus it is our ear
liest opportunity to perform initializations. The handler takes one parameter,
theObj ect ; this is the interface object that sent the event to our code. It happens that
in this particular case I checked the launched event in Interface Builder for just one
object, the File's Owner; so I know perfectly well what theObj ect is, and I don't
bother with it. (In a moment we'll come to a spot in the code where we need to be
more circumspect.)

My launched handler initialization involves setting the value of the global
perlScriptpath , which is the path to the Perl script inside our application bundle. I
will want to call this Perl script later, so I'll need to know where it is so I can tell Perl
about it. The path is not known in advance, because the application bundle could be
anywhere on the user's hard drive. The application object provides a ma in bundle

394 I Chapter 24: Writing Applications

property representing the application on disk, whose resource path property is the
path to the Resources folder inside the application bundle. That's where the Perl
script will be when the application is built, so I can use this information to construct
a Unix path to the Perl script. The path needs to appear in its quoted form because it
will be used as a command-line argument in a do shell script command.

Example 24-2 shows the on will open handler. This was created by the Search win
dow, and will be called just before the window opens. Since I know this, I don't
bother checking the value of theObject; I simply assume it is the Search window.

Example 24-2. The on will open handler

on will open theObject -- search window opening, set prog indic
set p to progress indicator 1 of theObject
call method "setStyle : " of p with parameter 1
call method "setDisplayedWhenStopped : " of p with parameters {false}

end will open

The purpose of this handler is partly practical and partly pedagogical. The practical
side is that I want to adjust some features of the progress indicator before the win
dow appears. I don't actually have to do this in code, but that's where the pedagogi
cal side comes in : I wanted an excuse to show you how one bridges between
AppleScript and Cocoa when the bridging has not been provided by the Apple folks
as part of the AppleScriptKit dictionary. It's done with the call method command.
This command allows just about any Objective-C method to be translated into
AppleScript.

In this case, we wish to use code to set the progress indicator to be a spmmng
progress indicator. AppleScript Studio has not provided the progress indicator

object with any properties that let us do this. But in Objective-C Cocoa it's easy to
do. Looking in NSProgresslndicator.html, we find that we would like to say the
equivalent of this Objective-C code:

[t heProgresslndicator setStyle : NSProgresslndicatorSpinningStyle] ;
[theProgresslndicator setDisplayedWhenStopped : NO] ;

The two call method commands in Example 24-2 are the exact equivalents of these
two lines of Objective-Co Now, I'm not saying that arriving at these equivalents
requires no thought; but it isn't very difficult either. The AppleScript Studio docu
mentation tells you what to do. If an Objective-C method has a colon in its name,
that colon must appear in the name as quoted in the call method command; also,
Objective-C method names are case-sensitive, so we must get the case right. The only
slightly difficult part of translating these particular methods was arriving at the
parameter value to represent the constant NSProgresslndicatorSpinn ingStyle . This is
actually an integer value, and in order to pass it from AppleScript I had to find out
what that integer is. To do so, I looked in the header file NSProgresslndicator.h; one
convenient way to open this file is directly from the project window, as shown in
Figure 24-7.

AppleSaipt Studio I 395

ttaSearchTidbits I:.
1 of 147 :u�lectrd - SUfchTidbitJ olt.td normally .

• , Croups & Fllu II FIle Name

•
....

...
.
·
·
··�·Il·staj1j.i·Tldb'its··

·
·
..

,,'" S"'P"
. Ii' '1!i" ·NSP�ft�h--.. -·-·----· .. -.... -·-----· .. �· .. --.. ·

I
' . NSParagraphStyle.h

. l2! NSPOlSteboard.h .. e; Ruourc�s

.. � Other Sources
. Frameworks

... Cl unked Frameworks
"f' Otmr Frameworks

� Foundation.framework

� NSPOFfmageRep.h
NSPlCTlmageRe:p.h
NSPopUpButton.h I NSPopUpBunonCell.h

J NSPTinttt.h 1 !1!l NSPrintlnfo.h

NSP"ntPaneloh
.e AppKit. frilmework

--"'""" .. ··",;-·Headtrs W
� NSPrinlOperulon.h

, AWhipid.l4Y@Pi., -..iJ Resourcu/Engbsh.lproJJDocum � NSQukkDravNl�.h ..-E' Products I I � NSResponder.h ... Targtu. � NSRulerMarker,h .. <J Execulilblu � NSRulerView.h
.. 3 Efron ,;uld Wi'lrmngs � NSSivtPane1.h

il lmplementatlon Fllf:s r A NSStretn.h

it NIB FIIas I NSStrollu.h

.. Find Results I ���::�:�;:'h 1II-Q!l 80okmarks I �� NSSearchFieldCtll.h • Projea Symbols � NSSecureTextField.h � NSSegmentedCell,h

Figure 24- 7. Accessing headers from the project window

(Q. Ail Column.)

.. Cod. i 0 . " II-···�··�t · · �····�·· .. ····· .. ;;..... -

Example 24-3 shows the choose menu item handler. This handler was generated both
by our Search � New menu item and our Window � Close menu item, and will be
called when the user chooses either of these two menu items. I've architected the
application this way to show you that more than one interface item can have an event
with the same name, and so the very same handler can be called by more than one
interface item. You will typically want the various interface items that call the same
handler to do different things, so your first task in such a handler must be to distin
guish which of the interface items is calling (that is, which of them is theObject) .

Example 24-3. The choose menu item handler

on choose menu item theObject
set which to (name of theObject)
if which is "newSearch" then

hide window "results"
show window "search"
tell matrix 1 of window "search"

set string value of cell 1 to
set string value of cell 2 to
set string value of cell 3 to

end tell
else if which is "closeWindow" then

hide window 1
end if

end choose menu item

Thus, in our choose menu item handler, we do two different things, depending which
menu item it is. This is why we gave the menu items names-it was so that we could

396 Chapter 24: Writing Applications

easily distinguish them at this point. If it's the newSearch menu item, we show just
the Search window and empty the NSForm, ready for the user to enter new values
for a new search. If it's the closeWindow menu item, we close the frontmost window.

Example 24-4 shows the clicked handler. This is created by the Search button, and
will be called when the user clicks it. This, obviously, is the heart of our application.
To make the code clearer, I've broken the functionality out into some ancillary
handlers.

Example 24-4. The clicked handler and associated utilities

on clicked theObject
if name of theObject is "searchButton" then

startNewSearc h ()
end if

end clicked

on startNewSearc h ()
tell matrix 1 of window "search"

set textSought to string value of cell 1
set titleSought to string value of cell 2
set authorSought to string value of cell 3

end tell
urlE ncodeStuff ()
doTheSearch ()

end startNewSearch

on urIEncode (what)
set text item delimiters to " +"
return (words of what) as string

end urlEncode

on urIEncodeStuff ()
set textSought to urIE ncode(textSought)
set titleSought to urIE ncode (titleSought)
set authorSought to urlEncode (authorSought)

end urlE ncodeStuff

The clicked handler simply calls the startNewSearch handler. The startNewSearch

handler copies the three user entries from the NSForm into the three script proper
ties set aside for them, and calls urlEncodeStuff to URL-encode them in our simple
minded way (replacing any spaces with plus signs). It then calls the doTheSearch han
dler, which is shown in Example 24-5.

In Example 24-5 we first have a handler, feedbackBusy, which is intended purely to
provide some user feedback. The idea is that we're going to be talking to the Internet
by way of curl , and while we're doing so, nothing is going to be happening. The user
might think that the application is idle or broken. Therefore we spin the progress
indicator and disable the Search button to give the user a sense that the application is
busy and that he should keep his hands off while it does whatever it's doing. The han
dler is called with a boolean parameter telling whether to begin or end this feedback.

AppleScript Studio I 397

Example 24-5. The doTheSearch handler

on feedbackBusy (yn)
tell window "search"

if yn then

else

set enabled of button "searchButton" to false
start progress indicator 1

set enabled of button "searchButton" to true
stop progres s indicator 1

end if
end tell

end feedbackBusy

on doThesearc h ()
set d to " ' -response=TBsearch . lasso&-token . srch=TBAdv"
set d to d & "&Article+HTML=" & textsought
set d to d & "&Article+Author=" & authorsought
set d to d & "&Article+Title= " & titlesought
set d to d & "&-operator"
set d to d & "=eq&RawlssueNum=&-operator=equals&ArticleDate"
set d to d & "=&-sortF ield=ArticleDate&-sortOrder=descending"
set d to d & "&-maxRecords=2000&-nothing=MsExplorerHack&-noth ing"
set d to d & "=start+search ' "
set u to '' http : //db . tidbits . com/TBsrchAdv . lasso ''
set f to "/tmp/tempTidBITs"
feedbackBusy(true)
try

do s hell script "curl -s --connect-timeout 15 -m 120 -d " ,
& d & " -0 " & f & " " & u

set r to do shell script ("perl " & perl Script Path & " " & f)
feedbackBusy (false)
set L to paragraphs of r
set half to (count L) I 2
set L1 to items 1 thru half of L
set L2 to items (half + 1) thru -1 of L
displayResul ts ()

on error
feedbackBusy(false)
beep

end try
end doThesearch

At last we come to doTheSearch . This should seem astoundingly familiar; it is almost
unchanged from the first part of the code on page 364. The main differences are as
follows:

• The variable d , expressing the search as a POST argument, now incorporates val
ues for the three NSForm fields the user is allowed to fill out.

• The variable d asks for 2,000 articles instead of 20. The reason is that we're hop
ing to capture the titles of all the found articles. The search was originally con
structed so that its results could be displayed in a web page, where you're

398 I Chapter 24: Writing Applications

supposed to find the first 20 results, then ask for another page showing the next
20, and so forth. I originally thought of trying to emulate this in our application.
But then it struck me that we've got this nice scrolling table view to play with,
and displaying a large number of titles is no problem, so we may as well gather
lots of them in one search and be done with it.

• Feedback is provided to the user through calls to feedbackBusy before and after
the call to curl .

• The call to curl now has a few more parameters-we provide some timeout val
ues, because the TidBITS search server can be rather slow-and the intermedi
ary file is now located in Itmp where the user won't see it and it will be deleted
when the user logs out.

• Error handling has been added. It's primitive-if there's a problem, we beep-
but this is enough to prevent any evil error messages from appearing before the
user's eyes. The problem will usually be either that no results were obtained
from the search or that the search was never run because we couldn't connect to
the server. In real life it might be nice to distinguish these cases and to provide
nice error messages, but this is left as an exercise to the reader (meaning that I
was too lazy to do it myself) .

If all goes well, the Perl script has now parsed the HTML results from our curl call,
and we proceed to the next step, which is to display the parsed results to the user.
This is done by calling the displayResults handler, which is shown in Example 24-6.
We have, at this point, two lists in global variables: Ll is a list of the URLs of the
found articles, L2 is a list of their titles. We proceed to load L2 into the table view of
the Results window, and then show the window. The code itself is almost exactly the

same as the code we used to accomplish the same task in "Application" in Chapter 2.

Example 24-6. The displayResults handler

on displayResult s ()
set ds to make new data source at end of data sources
set tv to table view 1 of scroll view 1 of window " result s "
set c o l t o make new data column a t e n d o f data columns o f ds �

with properties { name : "titles " }
repeat with aName i n L2

set a Row to make new data row at end of data rows of ds
set contents of data cell "titles " of aRow to aName

end repeat
set data source of tv to ds
show window " result s "

end displayResults

The chain of events started by the user pressing the Search button has now ended; the
application is idle, and the user is confronted with the Results window containing a
list of titles in its table view. If the user double-clicks a line of the table view, our on

double clicked handler is called; it is shown in Example 24-7. We assume that

AppleScript Studio I 399

theObject is the table view, and we find out the index of the row that the user clicked.
We then, just as at the end of the original code on page 364, use this index number to
get the corresponding URL from L l , and hand this off to the open location scripting
addition command to be opened in the user's preferred browser.

Example 24- 7. The on double clicked Handler

on double clicked theObject -- user double-clicked in results table
tell theObject

set r to clicked row
if r � (count Ll) then

open location (item r of Ll)
end if

end tell
end double clicked

Final steps

When you have designed and saved your interface in Interface Builder, and when you
have written your code in Xcode, you can try out the application by choosing Build
� Build and Run. Xcode constructs your application and starts it up, so you can test
it. If you want to make modifications, just quit your application, edit your code, and
do it again. When you're all done developing your application and are ready to loose
it upon the world, select your project in the project window and click the Info but
ton at the top of the window to bring up the Project Info window; in the Styles tab,
switch the Build Style from Development to Deployment (Figure 24-8). Then choose
Build � Clean All Targets and then Build � Build. The result is a more compact
application with the script saved as run-only so that curious users can't read it.

Scriptability

A pleasant consequence of writing an AppleScript Studio application is that the
resulting application is scriptable. It's as if the AppleScriptKit dictionary were your
application's dictionary, so the way you talk to the application from outside (driving
it from a script) is much the same as the way you talk to it from inside (writing the
application's own code). This facility can be used to script your finished application,
and it can also be used to explore your application during the development process;
in other words, you can use the Script Editor together with Xcode as part of your
arsenal of development tools.

For example, suppose I've forgotten the AppleScript name of the Search button in
the Search window. I could figure it out by looking in Interface builder, but another
way would be to ask my running application, using the Script Editor:

tell application "SearchTidbits"
get name of every button of window 1 - - {OOsearchButtonOO}

end tell

400 I Chapter 24: Writing Applications

000 D_ SearchTldblts _____ .. e c-'------.----.-----
(��ChTidb1UTD �. 1&. . � q • (Q. All Column,)

1 of II sol.<ted . , I� e Projec:t "searchTidbiU" 'nfo "
0 � Ii' _ . Croups Ii Fllu ,,11 , rAle N�

:..;:D S.orchT\4l>i.. _. _ _ J!l 1��it. Gon ... 1 Cod' Son .. '........ SCM r---�,T,Jrgns /..... 1:�Ja�.Ao�a
.. <J [,«utabl.. j's.uing' I" Attl,,* Build Sty": fi).7.iOp,;;;:;;;------m
� � [rron and Yf l:lir"� St5t"OS I Current-Settings Value . £jI lmpleme.ntat -1 f) Common Settings

: " " Zero link � , oa NIB Filu 11 ... � Standard Build Sett ings 1 r_ d ·" I "" I ! V a venerate e""gg no sy t!J .. '" And ••• ults I .. "'" GNU C/ObjC comPII., , _ 0 i I I I I N' Iii .. [ll B�kmarks li'

.

... r:J Resource M;anager 'l . c.nerah PosItion o.p.g fi t,
"" I. V i pt m zat on eve one

J
' IT

• PrQJ«t Symb I I fl- Fl. " Continue t!!I ti'-
I i .. COPY�PHASE..5TRIP N O tii
i " OPnMIZAnON_CFLAGS -00 Ii I ' , __ • ""----..... Irl I " '

--. �,- J

� I .r:.:.:.....�·\ ." . �" " -·-· -·'·='"":'-· --�-ll I i j L
I ! Senln;s In .. build sryte owtride the corresponding. uttings 1 1 In n� attN' tarQft. To d.flM � tttti-ng O1a(r.feu fO the ! I .actWt t.r�l·s setting. u,. 'S(ValueJ" in tht build. s-et�ing
� -

I l' ,. 00 (Hide CoJlK1lon.) (Hide Hel�)
(Q.) 7 item. d

Figure 24-8. Changing build styles

A problem is that you can't call handlers for events that are intended to be called by
Cocoa; but you can sometimes work around this. For example, there's a perform

action command that lets you tell a button to generate its call to the clicked han
dler. So, for example, the following code brings the Search window to the front, fills
out the NSForm with a new search, and presses the Search button:

tell application "SearchTidBITS"
activate
s how window "Search"
tell window "Search"

tell matrix 1
set string value of cell 1 to
set string value of cell 2 to "Catch Conflict"
set string value of cell 3 to

end tell
perform action button "searchButton"

end tell
end tell

AppleScript Studio I 401

As of this writing, Apple is starting to expose the scripts inside an AppleScript Stu
dio application by means of an interface item's script property, so the future may
hold some interesting possibilities. Already one can say things like this:

tell application "SearchTidbits"
set s to (get script of button 1 of window 1)
tell s

set its titleSought to "Catch Conflict"
urIEncode("ha ha") -- call a handler

end tell
set script of window 1 to 5

end tell

set a script property

This amounts to dynamic development-we can actually alter features of a script
inside an AppleScript Studio application while it is running. Observe that what we
get when we obtain an item's script is a copy; that is why we must explicitly save the
changed script back into our application. This is very exciting, but to explore it fur
ther would take us outside the scope of this book.

402 I Chapter 24: Writing Applications

Part IV contains this book's appendixes.

The appendixes are :

Appendix A, The 'aeut ' Resource

Appendix B, Tools and Resources

PART IV

Appendixes

APPENDIX A

The 'aeut' Resource

This appendix contains AppleScript's ' aeut ' resource, which is used for resolution of
terminology as explained in Chapter 1 9.

The ' aeut ' resource is divided into suites. The AppleScript Suite is automatically vis
ible to the compiler; these are the global terms that make AppleScript work. The
Type Names Suite is automatically visible to the compiler as well. So, for example,
you can always use the activate command (see Chapter 1 8) because it is defined in
the AppleScript Suite; and the rotation class is always recognized, even if you can't
usually do anything with it, because it is defined in the Type Names Suite. Applica
tions may implement their own version of the Type Names Suite. It has the special
feature that it is suppressed from the human-readable display of the application's
dictionary, so this is a place for terms that must be defined for compilation but that
the user never needs to see.

The Standard Suite (also called the Core Suite) and the Text Suite are automatically
visible to the compiler too, but they can be overridden and extended by individual
applications, and terms within them don't necessarily have any functional implemen
tation in and of themselves, though some of them do. So, for example, the count

command, defined in the Standard Suite, works on lists and strings. But the exists

command, although it is defined in the Standard Suite and is recognized when you
compile a script, does not actually do anything in AppleScript itself; many scriptable
applications, on the other hand, implement exists so as to give it some functionality
(so that you can, for example, say exists disk 1 to the Finder).

Other suites and their contents are not implemented except voluntarily by individ
ual applications; they are not seen by the compiler except when an application that
implements them is being targeted.

40S

AppleScript Suite
EVENTS :

acti vate : Bring the targeted application program to the front
activate

log : Cause a comment to be logged
log string

stop log : Stop event logging in the script editor
stop log

start log : Start event logging in the script editor
start log

idle : Sent to a script application when it is idle
idle
Result : integer - - the number of seconds to wait for next idle event

launch : Start an application for scripting
launch

tell : Record or log a 'tell ' statement
tell

end tell : Record or log an 'end tell ' statement
end tell

error : Raise an error
error [anything]

[number small integer] - - an error number
[partial result list] - - any partial result occurring before

the error
[from anything] - - the object that caused the error
[to anything] - - the desired class for a failed coercion

Call-subroutine : A subroutine call
Call- subroutine [anything]

[at anything]
[from anything]
[for anything]
[to anything]
[t hru anything]
[through anything]
[by anything]
[on anything]
[into anything]
[onto anything]
[between anything]
[against anything]
[out of anything]
[instead of anything]
[a s ide from anything]
[around anything]
[bes ide anything]
[beneath anything]
[under anything]
[over anything]
[above anything]
[below anything]
[a part from anything]
[a bout anything]
[s ince anything]
[given anything] - - parameter:value pairs, comma-separated

406 I Appendix A: The 'aeut' Resource

[with type class 1 - - formal parameter set to true if
matching actual parameter is provided

[without type class 1 - - formal parameter set to false if
matching actual parmeter [sic] is provided

Result : anything
- . Equality

= reference
Result : anything

;t : Inequality
;t reference
Result : anything

+ : Addition
+ reference
Result : anything

Subtraction
- reference
Result : anything

* : Multiplication
* reference
Result : anything

+ : Division
+ reference
Result : anything

div : Quotient
div reference
Result : anything

mod : Remainder
mod reference
Result : anything

A . Exponentiation
A reference
Result : anything

>: Greater than
> reference
Result : anything

� : Greater than or equal to
� reference
Result : anything

< : Less than
< reference
Result : anything

:0; : Less than or equal to
:0; reference
Result : anything

& : Concatenation
& reference
Result : anything

starts with : Starts with
starts with reference
Result : anything

ends with : Ends with
ends with reference
Result : anything

The 'aeut' Resource 407

contains : Containment
contains reference
Result : anything

and : Logical conjunction
and reference
Result : anything

or : Logical disjunction
or reference
Result : anything

as : Coercion
as reference
Result : anything

not : Logical negation
not reference
Result : anything

negate : Numeric negation

CLASSES :

negate reference
Result : anything

boolean - - A true or false value
booleans (Plural)
integer - - An integral number
integers (Plural)
real - - A real number
reals (Plural)
number - - an integer or real number
numbers (Plural)
list - - An ordered collection of items

Properties :
length integer - - the length of a list
reverse list - - the items of the list in reverse order
rest list - - all items of the list excluding first

lists (Plural)
linked list - - An ordered collection of items

Properties :
length integer - - the length of a list

linked lists (Plural)
vector - - A n ordered collection of items

Properties :
length integer - - the length of a list

vectors (Plural)
record - - A set of labeled items
records (Plural)
item - - An item of any type

Properties :
id integer - - the unique ID number of this object

items (Plural)
script - - An AppleScript script

Properties :
name string - - the name of the script
parent script - - its parent, i.e. the script that will handle events that

this script doesn't
scripts (Plural)
list or record - - a list or record

408 Appendix A: The 'aeut' Resource

list or string - - a list or string
number or string - - a number or string
alias or string - - an alias or string
list , record or text - - a list, record or text
number or date - - a number or date
number, date or text - - a number, date or text
class - - the type of a value
classes (Plural)
event - - an AppleEvents event
events (Plural)
property - - an AppleEvents property
properties (Plural)
constant - - A constant value
constants (Plural)
preposi tion - - an AppleEvents preposition
prepositions (Plural)
reference form - - an AppleEvents key form
reference forms (Plural)
handler - - an AppleScript event or subroutine handler
handlers (Plural)
data - - an AppleScript raw data object
text - - text with language and style information
international text (Plural)
international text - - text that begins with a writing code
string - - text in 8-bit Macintosh Roman format
strings (Plural)
styled text (Plural)
styled text -- text with font, size, and style information
styled Clipboard text (Plural)
sty led Clipboard text - - clipboard text with font, size,

and style information
Unicode text (Plural)
Unicode text - - text i n the Unicode format

(cannot be viewed without conversion)
styled Unicode text (Plural)
sty led Unicode text - - styled text i n the Unicode format
encoded string - - text encoded using the Text Encoding Converter
encoded strings (Plural)
C string - - text followed by a null
C strings (Plural)
Pascal string - - text up to 255 characters preceded by a length byte
Pascal strings (Plural)
character - - an individual text character
characters (Plural)
text item - - text between delimiters
text items (Plural)
writing code - - codes that identify the language and script system
writing code info - - script code and language code of text run

Properties :
script code small integer - - the script code for the text
language code small integer - - the language code for the text

writing code infos (Plural)
< blank> - - the undefined value

The 'aeut' Resource 409

missing value - - unavailable value, such as properties missing from
heterogeneous classes in a Whose clause

missing values (Plural)
reference - - an AppleScript reference
references (Plural)
anything - - any class or reference
type cla s s - - the name of a particular class (or any four-character code)
RGB color - - Three integers specifying red, green, blue color values
RGB colors (Plural)
picture -- A Q}tickDraw picture object
pictures (Plural)
sound - - a sound object on the clipboard
sounds (Plural)
version - - a version value
file specification - - a file specification as used by the operating system

Properties :
POSIX path string - - the POSIX path of the file

file specifications (Plural)
alias - - a file on a disk or server. The file must exist

when you check the syntax of your script.
Properties :
POSIX path string - - the POSIX path of the file

aliases (Plural)
machine - - a computer
machines (Plural)
zone - - an AppleTalk zone
zones (Plural)
keystroke - - a press of a key combination on a Macintosh keyboard

Properties :
key character - - the character for the key was pressed

(ignoring modifiers)
modifiers A list of ' eMds ' - - the modifier keys

pressed in combination
key kind ' ekst ' - - the kind of key that was pressed

keystrokes (Plural)
seconds - - more than one second
date - - Absolute date and time values

Properties :
weekday weekday - - the day of a week of a date
month month - - the month of a date
day integer - - the day of the month of a date
year integer - - the year of a date
t ime integer - - the time since midnight of a date
date string string the date portion of a date-time value as text
time string string - - the time portion of a date-time value as text

dates (Plural)
month
months (Plural)
January
February
March
April
May
J une

410 I Appendix A: The 'aeut' Resource

J uly
August
September
October
November
December
weekday
weekdays (Plural)
Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
metres
meters
inches
feet
yards
miles
kilometres
kilometers
centimetres
centimeters
square metres
square meters
square feet
square yards
square miles
square kilometres
square kilometers
litres
liters
gallons
quarts
cubic metres
cubic meters
cubic centimetres
cubic centimeters
cubic feet
cubic inches
cubic yards
kilograms
grams
ounces
pounds
degrees Celsius
degrees Fahrenheit
degrees Kelvin
upper case - - Text with lower case converted to upper case
app - - Short name for application
application

The 'aeut' Resource 41 1

Properties :
result anything - - the last result of evaluation
space character - - a space character
return character - - a return character
tab character - - a tab character
minutes integer - - the number of seconds in a minute
hours integer - - the number of seconds in an hour
days integer - - the number of seconds in a day
weeks integer - - the number of seconds in a week
pi float - - the constant pi
print length integer - - the maximum length to print
print depth integer -- the maximum depth to print
text item delimiters list - - the text item delimiters of a string
AppleScript script - - the top-level script object

applications (Plural)
ENUMERATIONS :

' cons '
case
diacriticals
white space
hyphens
expansion
punctuation
application responses

' boov '
true
false

' misc '
current application

' eMds '
option down
command down
control down
shift down
caps lock down

' ekst '
escape key
delete key
tab key
return key
clear key
enter key
up arrow key
down arrow key
left arrow key
right arrow key
help key
home key
page up key
page down key
forward del key
end key
Fl key
F2 key

41 2 Appendix A: The 'aeut' Resource

F3 key
F4 key
F5 key
F6 key
F7 key
F8 key
F9 key
FlO key
F l l key
F 1 2 key
F 1 3 key
F 14 key
F 1 5 key

Required Suite
Standard Suite

EVENTS :
open : Open the specified object(s)

open reference - - list of objects to open
run : Run an application.

Most applications will open an empty, untitled window.
run - - no direct parameter required

reopen : Reactivate a running application.
Some applications will open a new untitled window
if no window is open .
reopen - - no direct parameter required

print : Print the specified object(s)
print reference - - list of objects to print

quit : Quit an application
quit

[saving yes / no / a sk] - - specifies whether to save
currently open documents

close : Close an object
close reference - - the object to close

[saving yes / no / a s k] - - specifies whether changes
should be saved before closing

[saving in file] - - the file or alias in which to save the object
count : Return the number of elements of an object

count reference - - the object whose elements are to be counted
[each type class] - - if specified, restricts counting to

objects of this class
Result : integer - - the number of elements

delete : Delete an object from its container. Note this does not work
on script variables, only on elements of application classes.
delete reference - - the element to delete

duplicate : Duplicate one or more objects
duplicate reference - - the object(s) to duplicate

[to location] - - the new location for the object(s)
[with properties record] - - the initial values for properties

of the new object that are to be different from the original
Resul t : reference - - to the duplicated object(s)

exists : Verify if an object exists
exists reference - - the object in question
Result : boolean - - true if it eXists, false if not

ma ke : Make a new element

The 'aeut' Resource 41 3

make
new type class - - the class of the new element
[at location] - - the location at which to insert the element
[with data anything] - - the initial data for the element
[with properties record] - - the initial values

for the properties of the element
Result : reference - - to the new object(s)

move : Move object(s) to a new location
move reference - - the object(s) to move

to location - - the new location for the object(s)
Result : reference - - to the object(s) after they have been moved

save : Save an object
save reference - - the object to save, usually a document or window

[in file] - - the file or alias in which to save the object
[a s type class] - - the file type of the document in which

to save the data
select : Make a selection

select reference - - the object to select
data size : (optional) Return the size in bytes of an object

data size reference - - the object whose data size is to be returned
[a s type class] - - the data type for which the size

is calculated
Result : integer - - the size of the object in bytes

suite info : (optional) Get information about event suite(s)
suite info type class - - the suite for which to return information

[in ' intl '] - - the human language and script system
in which to return information

Result : a list of type suite info - - a record containing
the suites and their versions

event info : (optional) Get information about the Apple events in a suite
event info type class - - the event class of the Apple events

for which to return information
[in ' intl '] - - the human language and script system

in which to return information
Result : a list of type event info - - a record containing

the events and their parameters
cla s s info : (optional) Get information about an object class

class info type class - - the object class about which
information is requested

C LASSE S :

[in ' intl '] - - the human language and script system
in which to return information

Result : type class info - - a record containing
the object's properties and elements

application - - An application program
Properties :
name international text - - the name of the application
front most boolean - - Is this the frontmost application?
selection selection-object - - the selection visible to the user.

Use the 'select ' command to set a new selection;
use 'contents of selection ' to get or change information
in the document.

clipboard A list of anything - - the contents of the clipboard
for this application

414 Appendix A: The 'aeut' Resource

version version - - the version of the application
applications (Plural)
document - - A document of a scriptable application

Propert ies :
modified boolean - - Has the document been modified

since the last save?
documents (Plural)
file - - a file on a disk or server

Properties :
POSIX path string - - the POSIX path of the file

files (Plural)
alias - - a file on a disk or server. The file must exist when you

check the syntax of your script.
Properties :
POSIX path string - - the POSIX path of the file

aliases (Plural)
selection -obj ect - - A way to refer to the state of the current

of the selection. Use the 'select' command to make a new selection.
Properties :
contents anything - - the information currently selected.

Use 'contents of selection' to get or change information
in a document.

window - - A window
Propert ies :
bounds bounding rectangle - - the boundary rectangle

for the window
closeable boolean - - Does the window have a close box?
t itled boolean - - Does the window have a title bar?
index integer - - the number of the window
floating boolean - - Does the window float?
modal boolean - - Is the window modal?
resizable boolean - - Is the window resizable?
zoomable boolean - - Is the window zoomable?
zoomed boolean - - Is the window zoomed?
visible boolean - - Is the window visible?

windows (Plural)
insertion point - - An insertion location between two objects
insertion points (Plural)

COMPARISON OPS :
starts with
contains
ends with

�
E NUMERATIONS :

' savo '
yes
no
a s k

' kfrm '
index - - keyform designating indexed access

The 'aeut' Resource 41 5

named - - keyform designating named access
id - - keyform designating access by unique identifier

' styl '

Text Suite
C LASSES :

plain
bold
italic
outline
shadow
underline
superscript
subscript
strikethrough
small caps
all caps
all lowercase
condensed
expanded
hidden

character

line

Properties :
<inheritance> text

Properties :
<inheritance> text
justification ' just ' - - the justification of the text

lines (Plural)
paragraph

Properties :
< inheritance> text

paragraphs (Plural)
text (Plural)

E lements :
Character by numeric index
Line by numeric index
Paragraph by numeric index
Text by numeric index
Word by numeric index
Properties :
color RGB color - - the color of the first character
font text - - the name of the font of the first character
s ize fixed - - the size in points of the first character
writing code ' intl ' - - the script system and language
sty Ie text sty Ie info - - the text style of the first character

of the first character
uniform styles text style info - - the text styles

that are uniform throughout the text
quoted form text - - the text in quoted form

text flow - - A contiguous block of text.
Page layout applications call this a 'story. '
Properties :
< inheritance> text
name international text - - the name

41 6 I Appendix A: The 'aeut' Resource

text flows (Plural)
text style info

Properties :
on styles A list of 'styl' - - the styles that are on for the text
off styles A list of 'styl' - - the styles that are off for the text

text style infos (Plural)
word

Properties :
< inheritance> text

words (Plural)
E NUMERA nONS :

' j ust '
left
right
center
full

' styl '
plain
bold
italic
outline
shadow
underline
superscript
subscript
strikethrough
small caps
all caps
all lowercase
condensed
expanded
hidden

QuickDraw Graphics Suite
C LASSES :

arc - - An arc
Properties :
arc angle fixed - - the angle of the arc in degrees
bounds bounding rectangle - - the smallest rectangle

that contains the entire arc
definition rect bounding rectangle - - the rectangle

that contains the circle or oval used to define the arc
fill color RGB color- - the fill color
fill pattern pixel map - - the fill pattern
pen color RGB color - - the pen color
pen pattern pixel map - - the pen pattern
pen width small integer - - the pen width
start a ngle fixed - - the angle that defines the start of the arc,

in degrees
transfer mode 'tran' - - the transfer mode

arcs (Plural)
drawing area - - Container for graphics and supporting information

Properties :
background color RGB color - - the color used to fill in

unoccupied areas

The 'aeut' Resource 417

background pattern pixel map - - the pattern used to fill in
unoccupied areas

color table color table - - the color table
ordering A list of reference - - the ordered list of

graphic objects in the drawing area
name international text - - the name
default location point - - the default location of

each new graphic object
pixel depth small integer - - the number of bits per pixel
writing code 'inti' - - the script system and language

of text objects in the drawing area
text color RGB color- - the default color for text objects
default font international text - - the name of the default font

for text objects
default size fixed - - the default size for text objects
sty Ie text sty Ie info - - the default text style for text objects
update on change boolean - - Redraw after each change?

drawing areas (Plural)
graphic line

Properties :
start point point - - the starting point of the line
end point point - - the ending point of the line
dash style A list of dash style -- the dash style
arrow sty Ie 'ano' - - the arrow style

graphic lines (Plural)
graphic object
graphic objects (Plural)
graphic shape
graphic shapes (Plural)
graphic text - - A series of characters within a drawing area

Properties :
color RGB color - - the color of the first character
font text - - the name of the font of the first character
size fixed - - the size in points of the first character
uniform styles text style info - - the text styles that are

uniform throughout the text
graphic group
graphic groups (Plural)
oval
ovals (Plural)
pixel

Properties :
color RGB color - - the color

pixels (Plural)
pixel map
pixel maps (Plural)
polygon

Properties :
point list A list of point - - the list of points that define

the polygon
polygons (Plural)
rectangle
rectangles (Plural)
rounded rectangle

418 I Appendix A: The 'aeut' Resource

Properties:
corner curve height small integer - - the height of the oval

used to define the shape of the rounded comers
corner curve width small integer - - the width of the oval

used to define the shape of the rounded comers
rounded rectangles (Plural)

ENUMERATIONS:
'tran'

copy pixels
not copy pixels
or pixels
not or pixels
bic pixels
not bic pixels
xor pixels
not xor pixels
add over pixels
add pin pixels
sub over pixels
sub pin pixels
ad max pixels
ad min pixels
blend pixels

'arro'
no arrow
arrow at start
arrow at end
arrow at both ends

QuickDraw Graphics Supplemental Suite
CLASSES:

drawing area - - Container for graphics and supporting information

Properties:
rotation rotation - - the default rotation for objects

in the drawing area
scale fixed - - the default scaling for objects in the drawing area
translation point - - the default repositioning for objects

in the drawing area
drawing areas (Plural)
graphic group
graphic groups (Plural)

Table Suite

CLASSES:
cell

Properties:
formula text - - the formula of the cell
protection 'prtn' - - Indicates whether value or formula in the cell

can be changed
cells (Plural)
column

Properties:
name international text - - the name of the column

columns (Plural)
row
rows (Plural)

The 'aeut' Resource 41 9

table
tables (Plural)

ENUMERATIONS:
'prtn'

read only
formulas protected
read/write

Macintosh Connectivity Classes
CLASSES:

device sped fication - - A device connected to a computer

Properties:
properties record - - property that allows getting and setting

of multiple properties
device type 'edvt' - - the kind of device
device address 'cadr' -- the address of the device

device specifications (Plural)
address specification

Properties:
properties record - - property that allows getting and setting

of multiple properties
conduit' econ' - - How the addressee is physically connected
protocol 'epro' - - How to talk to this addressee

address specifications (Plural)
ADB address

Properties:
<inheritance> -- address specification
10 small integer - - the Apple Desktop Bus device ID

ADB addresses (Plural)
AppleTalk address

Properties:
<inheritance> -- address specification
AppleTalk machine string - - the machine name part of the address
AppleTalk zone string -- the zone part of the address
AppleTalk type string - - the type part of the AppleTalk address

AppleTalk addresses (Plural)
bus slot

Properties:
<inheritance> -- address specification
10 small integer - - the slot number

bus slots (Plural)
Ethernet address

Properties:
<inheritance> -- address specification
10 integer - - the Ethernet address

Ethernet addresses (Plural)
FireWire address

Properties:
<inheritance> -- address specification
10 small integer - - the Fire Wire device ID

FireWire addresses (Plural)
IP address

Properties:
<inheritance> -- address specification
10 string - - the address in the form "127.201.0.1"

420 Appendix A: The 'aeut' Resource

DNS form string - - the address in the form" apple. com "
port string - - the port number of the service or client

being addressed

IP addresses (Plural)
LocalTalk address

Properties:
<inheritance> -- address specification
network small integer - - the LoealTalk network number
node small integer - - the LocalT alk node number
socket small integer - - the LocalTalk socket number

LocalTalk addresses (Plural)
SCSI address

Properties:
<inheritance> -- address specification
SCSI bus small integer - - the SCSI bus number
10 small integer - - the SCSI ID

LUN small integer -- the SCSI logical unit number
SCSI addresses (Plural)
Token Ring address

Properties:
<inheritance> -- address specification
10 small integer - - the Token Ring ID

Token Ring addresses (Plural)
USB address

Properties:
<inheritance> -- address specification
name string - - the USB device name

USB Addresses (Plural)
ENUMERATIONS:

' edvt'
hard disk drive
floppy disk drive
CD ROM drive
DVD drive
storage device
keyboard
mouse
trackball
trackpad
pointing device
video monitor
LCD display
display
modem
PC card
PCI card
NuBus card
printer
speakers
microphone

' econ'
ADB
printer port
modem port

The 'aeut' Resource 421

modem printer port
LocalTalk
Ethernet
Token Ring
SCSI
USB
FireWire
infrared
PC card
PCI bus
NuBus
PDS slot
Comm slot
monitor out
video out
video in
audio out
audio line in
audio line out
microphone

'epro '
serial
AppleTalk
IP
SCSI
ADB
FireWire
IrDA
IRTalk
USB
PC card
PCI bus
NuBus
bus
Macintosh video
SVGA
S video
analog audio
digital audio
PostScript

Type Names Suite
CLASSES:

type class info
type event info
plain text (Plural)
plain text
string
bounding rectangle
point
fixed
location reference
application dictionary
color table
dash style

422 I Appendix A:· The 'aeut' Resource

double integer
extended real
fixed point
fixed rectangle
long fixed
long fixed point
long fixed rectangle
long point
long rectangle
machine location
menu
menu item
null
pixel map record
PostScript picture
RGB16 color
RGB96 color
small integer
small real
system dictionary
rotation
scrap styles
TIFF picture
version
unsigned integer
type property info
type element info
type parameter info
type suite info

The 'aeut' Resource I 423

APPENDIX B

Tools and Resources

r

This appendix provides sources for tools and further reading on various topics men
tioned in this book. Some of this information has appeared earlier in the book but is
gathered here for reference purposes.

Scripting Software
• Script Debugger, a commercial script editing and debugging environment with

many powerful features to assist development; without it , I couldn't write any
AppleScript code, and wouldn't have been able to write this book:

http://latenightsw. comlsdJ. Olindex. html

• JavaScript OSA, a free OSA component file that adds JavaScript as a System
wide scripting language on your machine, complete with the ability to send and
receive Apple events:

http://latenightsw. com/freewarelJavaScriptOSNindex.html

• Gary McGath's EightyRez, a free 'aete' resource editor; this book could not
have been written without it:

http://www. panix. com/-gmcgath/Eighty Rez. html

• Smile , a free script editing environment:

http://www. satimage·frlsoftwarelen/softx. html

• FastScripts, a replacement for Apple's Script menu:

http://www. red-sweater.com/RedSweaterlFSFeatures. html

• Big Cat, a contextual menu script runner:

http://ranchero.comlbigcat

• QuicKeys, a macrQ program:

http://www.quickeys. com/products/qkx. html

424

• iKey, Keyboard Maestro , and DragThing, programs that let you run a script by

typing a keyboard shortcut:

http://www. scriptsoftware.comlikey
http://www. keyboardmaestro. com
http://www. dragthing. com

• iDo Script Scheduler, a commercial product for running scripts at specified
times:

http://www.sophisticated. com/productslido/ido _ss. html

Other Software Mentioned in This Book
For free software from Apple, the URL is "somewhere on your hard drive." Remem
ber that for AppleScript Studio (Xcode, Interface Builder) you must install the Devel
oper Tools.

• HyperCard, an overpriced, out-of-date , Classic-only, unsuppo�ted, but histori
cally insanely great Mac scripting and interface construction environment:

http://store. apple.com (and then search on "HyperCard")

• UserLand Frontier, and its inexpensive little brother Radio UserLand, a bril
liant, powerful scripting environment with its own scripting language and built
in persistent storage, great interapplication communications, and Internet
server/client capability:

http://www. userland.com

• BBEdit, a scriptable text editor:

http://www.barebones. com/products/bbedit/index.shtml

• Mailsmith, a scriptable email client:

http://www.barebones. com/products/mailsmithlindex. shtml

• Eudora, a scriptable email client:

http://www.eudora. com/emaillindex.html

• Microsoft Word, a word processor with extensive internal (Visual Basic)
scriptability:

http://www.microsoft. com/maclproducts/wordx/wordx.aspx

• Microsoft Excel, a spreadsheet program with extensive internal (Visual Basic)
scriptability and strange but powerful AppleScript scriptability:

http://www.microsoft. com/maclproducts/excelx/excelx. aspx

• FileMaker Pro, a scriptable database program:

http://www. filemaker. com

Other Software Mentioned in This Book I 425

• REALbasic, an application development environment:

http://www.realbasic.com

• GraphicConverter, a scriptable image processing program:

http://www. lemkesoft. com/en/graphcon. htm

• Tex-Edit Plus , a scriptable styled text editor:

http://www.tex-edit.com

• Fetch, a scriptable FTP client:

http://www·fetchsoftworks. com

• NoteTaker, a scriptable outliner:

http://www.aquaminds.com

• Panorama, a database program:

http://www. provue. com/panorama. html

Apple Documentation
• The main AppleScript page, including a number of example scripts and other

resources:

http://www.apple. com/applescript/

• The AppleScript Language Guide, still the primary official documentation, and
an important source of information, even though it often obfuscates more than it
explains and is valid only to Version 1.3.7:

http://developer.apple. comltechpubslmacosxICarbonlinterapplicationcomml
AppleScriptl AppleScriptLangGuidel

• Incremental release notes and change notes post-dating the Language Guide:

• AppleScript 1.4 change notes:

http://developer.apple. com/technotes/tn/tn117 6. html#applescript

• AppleScript 1.4.3 change notes:

http://docs.info. apple. com/article.html?artnum=75073

• AppleScript 1.5.5 change notes:

http://developer. apple. comltechnotesltnltn20 1 O. html #applescript

• AppleScript 1.6 change notes:

http://docs.info. apple. com/article.html?artnum=60835

• AppleScript 1.7-1.9.2 release notes (at this point Apple seems at last to have
recognized the importance of gathering and linking to the release notes from
a single location):

http://www. apple. com/applescript/release_notes/

426 I Appendix B: Tools and Resources

• A superb detailed historical record of AppleScript changes, maintained by Bill

Cheeseman:

http://www. applescriptsourcebook.com/applescript. html

• GUI Scripting:

http://www. apple. com/applescript/uiscripting/

• AppleScript Studio:

http://developer. apple. com/documentation/AppleScript/Conceptuall
StudioBuildingAppslindex. html

• Scripting on Mac OS X:

http://developer.apple. comltechpubslmacosxICocoaffasksAndConceptsl
ProgrammingTopicslScriptabilitylConceptslScriptingOnOSX. html

• XML-RPC and SOAP:

http://developer.apple. com/techpubs/macosx/Carbonlinterapplicationcomml
soapXMLRPClindex. html

• Inside Macintosh, Apple events and Scripting:

http://deveioper.apple. com/documentation/maciIAC/IAC-2. html

• The Open Scripting Architecture:

http://developer.apple. com/documentation/Carbon/Re!erence/Open_Scripti_
Architecture/index. html

• Making a Cocoa application scriptable:

http://developer.apple. com/documentation/Cocoa/ConceptuallScriptabilityl
index.html

• Glossary of AppleScript/Apple event terms:

http://developer.apple. com/documentation/Cocoa/ConceptuallScriptabilityl
ConceptslScriptabilityT erms. html

Portals, Instruction, and Repositories
It's better to list a few web sites that between them contain virtually all important
links than to try to list all those links, so here they are:

• ScriptWeb, a web portal to all things scripting-related:

http://www. scriptweb. org

• MacScripter, a live collection of news items, examples , and links ; now also
incorporates AppleScriptCentral:

http://macscripter.net

• MacScripter's scripting additions repository:

http://osaxen. com

Portals, Instruction, and Repositories I 427

• Bill Cheeseman's encyclopedic site of history, examples , instruction, links, and
more:

http://www. applescriptsourcebook. com/home. html

• Main portal for XML-RPC and SOAP servers:

http://www. xmethods.net

Mailing Lists
Mailing lists remain an important source of assistance, and are often haunted by
Apple employees and by users of wisdom and experience:

• Apple's AppleScript list:

http://lists. apple.com/mailman/listinfo/applescript-users

• Dartmouth's venerable MacScrpt list (in whose name the "i" is not only silent,
it's downright absent):

http://www. lsoft. com/scripts/wl. exe?SL1=MACSCRPT&H=LISTSERV.
DARTMOUTH.EDU

• Apple's list for developers writing scriptable applications:

http://lists. apple. com/mailman/listinfo/applescript-implementors

• Apple's AppleScript Studio list:

http://lists. apple. com/mailman/listinfo/applescript-studio

Books
• Danny Goodman's ground-breaking AppleScript Handbook; outdated and out of

print, it remains a classic, and is now available through print-on-demand direct
from the publisher:

http://www. dannyg. comlpubslindex. html

• Ethan Wilde, AppleScript for the Internet: Visual QuickStart Guide (Peachpit
Press: 1998):

Currently out of print, but check http://www. amazon. com/exec!obidos/ASIN/
02013535981 for a used copy.

• Ethan Wilde, AppleScript for Applications: Visual QuickStart Guide (Peachpit
Press: 2001):

http://www.peachpit. com/books/

• Shirley Hopkins, AppleScripting InDesign (Dtp Connection: 2000):

http://www. amazon. com/exec!obidos/ASIN/0970726511/

• Shirley Hopkins, AppleScripting QuarkXPress (Dtp Connection: 2000):

http://www. amazon. com/exec!obidos/ASIN/0970726503/

428 I Appendix B: Tools and Resources

• Ethan Wilde, Adobe Illustrator Scripting with Visual Basic and AppleScript
(Adobe: 2002):

http://www. amazon. com/exec!obidos/ASIN/0321112512/

• Matt Neuburg, Frontier: The Definitive Guide (O'Reilly &: Associates, 1998);
contains some helpful technical discussion of AEPrint format and of how object
references are structured as Apple events:

http://pages. sbcglobal. net/mattneub/frontier DeflchOO. html

Unix Scripting
Since the Unix shell command line and the Unix scripting languages Perl and Ruby
are mentioned in this book, here are some suggestions for further reading:

• Dave Taylor and Brian Jepson, Learning Unix for Mac OS X (O'Reilly &: Associ
ates: 2002)

• Larry Wall et al., Programming Perl, Third Edition (O'Reilly &: Associates: 2000)

• "Programming Ruby," an excellent online book:

http://www. rubycentral. com/bookJ

Unix Scripting I 429

Symbols

{ } (curly braces)
delimiting lists, 256

empty lists, 45

enclosing lists, 44

() (parentheses)
determining order of operations, 281

in comment delimiters, 56

& (ampersand), concatenation operator, 56,

279-281

° (asterisk)
comment delimiters (0 0) , 56,109

multiplication operator (0) , 273

wildcard value type (' ,), 310

\ (backslash)
entering in a literal string, 247

escaping variable names enclosed in
pipes, 119

, (backtick) operator, 37

: (colon)
in named parameters, 148

in records, 261

, (comma), separating items in lists, 44

/ (division) operator, 273

= (equals sign)
equality operator, 275,276

A (exponentiation) operator, 274

> (greater than) operator, 277
- (hyphens)

in single-line comments, 109

string consideration, 236

< (less than) operator, 276

Index

- (minus sign), subtraction and unary
negation operator, 273

+ (plus sign), addition operator, 273

" (quotation marks)
delimiting literal strings, 247

empty strings, signifying, 47

escaping for AppleScript in FileMaker
Pro, 26

escaping in strings, 247

inside comment delimiters, 109

strings, AppleScript in VBA, 25

strings formatted for osascript, 37

I (vertical bars)
inside comment delimiters, 109

interpretation as dictionary term,
suppressing, 303

resolving names in script vs. target
object, 195

variable names, surrounding with, 119

::; (less than or equal to) operator, 277

� (greater than or equal to) operator, 277

* (Inequality) operator, 275,276

-, (continuation character), 82

« » (guillemets), 256,307

A

a reference to operator, 149, 209

abbreviations, 110
equal, equals, and equal to (for is equal

to), 276

into (for to), 114

is not, isn't, does not, and doesn't equal
(for is not equal to), 276

We'd like to hear your suggestions for improving our indexes. Send email toindex@oreilly.com.

431

abbreviations (continued)
prop (for property), 132

put (for copy), 114

ref (for a reference to), 209

abstract classes, 314

Accessibility API, 357,360

accessible on demand (top-level script object
entities), 162

acgi dispatcher utility, 380

actions, folder, 30

writing, 377

activate command, 292, 405

addition operator (+), 273

AEPrint-formatted Apple events, 69

'aete' resource (Apple Event Terminology
Extension), 90

'aeut' resource, 320,405-423

suites, 405

AppleScript Suite, 405-413

Macintosh Connectivity
Classes, 420-422

QuickDraw Graphics Suite, 417-419

QuickDraw Graphics Supplemental
Suite, 419

Required (Standard) Suite, 413-416

Text Suite, 416

Type Names Suite, 422

after or before (keywords), 200

aliases, 253

for applications, 84

coercions of, 268

anchored frame class (FrameMaker), 43

and operator, 275

announcement keywords for code
blocks, 112

Apache web server
applet as CGI application, 379

setting up to use AppleScript CGI, 381

apostrophe-ess operator ('s), 133, 162, 185,

190

(see also of operator)
Apple Developer Connection (ADC), 385

Apple Event Terminology Extension Caete'
resource), 90

Apple events, 5,65-72

AppleScript and, 72

in attachable applications, 94

codes for
resolution dificulties with, 306-309

translating dictionary terms to, 300

command, query, and reply, 66

432 I Index

communication between web server and
CGI application, 379

in dictionaries, 311

driving scriptable applications with
UserTalk, 22

in factored applications, 93

grammar of, 66

intercepting and reporting, 70-72

invalid, terminology resolution and, 305

life cycle of, 67

Required Suite of, 320

resolution of application terms to, 297

scriptability of applications, 67

scripting and, 427

timeout for reply from target, 232

viewing in AEPrint format, 69

AppleScript
appropriate uses of, 3-15

calculation and repetition, 6

combining specialties, 10-15

customizing applications, 10

listed, 5

reduction, 8

scriptable applications, 5

boolean test specifiers and, 204

defined, 4

dictionary (see 'aeut' resource)
English-like vocabulary, 99

extensibility and its dangers, 98

level of difficulty, 103

"little language" philosophy, 97

objects and, 101

operator implementation, 283

program life cycle, 16

raw Apple events and, 72

similarities to LISP, 102

version property, 288

AppleScript scripting component, 182

AppleScript Studio, 382-402,427

Cocoa, 382,383

creating application, 31-34

learning Cocoa, 384

components of, 384-387

Developer Tools, 385

dictionary, 386

documentation and examples, 386

Interface Builder, 385

Xcode, 385

example application, 387-402

ancillary files, incorporating, 389

AppleScript names and handlers,
adding, 391-393

building and running, 400

code for, 393-400

creating interface, 389-393

creating project, 388

scriptability, 400

AppleScript Suite, 405-413

AppleShare volumes, mounting, 348

applets, 88

CGl application, using as, 379-382

requests, simultaneous, 382

creating with AppleScript, 31

droplets vs., 88

editing, 88

errors thrown in, 237

Mac versions, differences in, 89

writing, 370-376

droplets, 375

handlers, 372-375

options, 371

persistence, 376

Application Bundle, 336

application class, 42, 255

object string specifier, 205

application responses constant, 235,291

applications
attachable, 94

choose application command, 338

commands for, 292

activate, 292

launch, 292

quit, 293

reopen, 293

constants, implementing, 289

creating with AppleScript, 31-36

dictionaries (see dictionaries)
factored, 93

implementation of an operator, 283

internally scriptable, 23-26

object model, 317

recordable, 92

scriptable (see scriptable applications)
as target objects, 193

writing with AppleScript (see writing
applications)

arithmetic operators, 272-274

addition (+), 273

div (integer division), 274

division (/), 273

exponentiation (A) , 274

mod, 274

multiplication (0) , 273

precedence, 272

subtraction, unaty negation operator
(-) , 273

as operator, 265

(see also get ... as command)
ASCII character command, 247,345

ASCII number command, 345

ask constant, 290

assignment
lists, 256

multiple, for target objects, 187

operators and, 114

records, 261

references and, 212

values to variables, 113

definition vs., 115

multiple, in one command, 114

associating scripts with particular
folders, 30,378

attachable applications, 94

attributes
definition of, 195

properties and elements, 196

(see also properties; elements)
automatic location, 29

automatic variables, 137

B

backtick operator C), 37

BBEdit, 94, 99, 425

aliases, 254

contents property for references, 213

dictionary entries, file specifications, 252

dictionary inadequacies
inserting text into window, 326

.
make command, 324

insertion point elements, 200

invalid Apple events, 307

properties of multiple references, 204

pseudo-classes, 319

recording, 93

references, identifying, 214

repeat n times, 228

repeat with .. .in, 224

script runner, using as, 29

script to remove line breaks, 8

beep command, 339

before or after (keywords), 200

beginning or end
instead of an element specifier, 200

instead of index number, 198

of a list, 259

Index I 433

begins with, 202,279

behind, 200

Big Cat, 424

binary operators, 272

blocks, 111

conditional execution of, 218

books on AppleScript, 428

boolean operators, 274

and (logical and), 275

equality and inequality, references
and, 212

not (logical not), 275

or (logical or), 275

boolean test element specifiers, 283

booleans
coercions of, 267

list coerced to, 269

definition of datatype, 243

elements satisfying a test (specifiers), 202

true, false values, 290

with or without, substituting for, 147

(see also conditions)
bootstrap code, 88

borderline syntax in AppleScript, 329

bounding rectangle class, 258

branching, 218

multiple conditions, specifying, 219

bridge (AppleScript and Cocoa), 383

build style, changing, 400

by reference, 148-150

setting and passing values, 206

setting variable to date value, 246

setting variable to value that is a list, 257

setting variable value, 167

setting variable values that are
records, 261

bytecode, 80

(

decompiling into human-readable
text, 81

run-only scripts and, 85

C++, return-by-reference, 217

calculation and repetition, 6

call method commands, 395

case
insensitivity to, variable names at compile

time, 117

sensitivity to, variable names enclosed in
pipes, 119

in string comparisons, 284

case (string consideration), 235

434 I Index

catching errors, 236,238-242

filtered error handler, 240

nested try blocks, 241

timeout, expired, 241

CE Software, QuicKeys, 74

CGI application, writing, 379-382

chain of inheritance, 178

chain of ofs and tells, 186

character positions in strings, 346

character (string element), 248

choose application command, 338

choose color command, 339

choose file command, 337

choose file name command, 252, 338

choose folder command, 338

choose from list command, 337

choose URL command, 338

clashes in terminology, 301-305

caused by the programmer, 301

between dictionaries, 304

classes, 42,63, 185

attributes of, 195

days of the week, 291

in dictionary contents, 313

inadequacies in coverage, 326

inheritance, 314

plural form of name, 313

measurement units, conversions of, 270

missing value, 290

month names, 291

null, 290

numeric, 244

object string specifier, 205

properties and elements in dictionary
contents, 316

reference, 210

resolution difficulties with names of, 306

suites of, 319

terms resolved to, 302

variables, 116

(see also data types)
Classic applications, scripting additions, 334

classname (list element), 259

clipboard info command, 346

clipboard, retrieving items from, 345

close access command, 344

closures, 170

Cocoa application framework, 382, 383

dictionaries, 90

documentation, 386

how much to learn, 384

incorporating AppleScript into, 35-36

incorporating extra bundle
components, 389

project, creating, 388

writing applications with AppleScript
Studio (see AppleScript Studio)

Xcode, 385

Cocoa applications
make command, at parameter, 324

making scriptable, 427

code blocks (see blocks; control structures)
codes

Apple event, 68

resolution problems with raw
codes, 306-309

translating dictionary terms to, 300

element listings in dictionaries, 317

enumerator, 310

property listings in dictionaries, 316

coercions, 243,264-271

arithmetic operators, using, 273

boolean operators, using, 274

booleans, 267

comparison operators, using, 275

concatenation operator, using, 279

constant to string, 289

containment operators, using, 278

explicit, 265

file, 268

file path name to alias, 254

implicit, 264

performed by binary operators, 272

inadequacies in dictionary coverage, 328

lists, 269

to strings, 286

number class, using, 244

string, number and date, 268

styled text to a record, 251

unit conversions, 270

color
choose color command, 339

rgb color, 258

combining application specialties, 10-15

combining multiple steps into single
operation, 8

comes after, 277

comes before, 276

commands, 66, 292-293

application, 292

activate, 292

launch, 292

quit, 293

reopen, 293

direct object of, 189,312

events as, 311

logging, 293

log command, 293

stop log, start log, 293

messages vs., 184

multiple-word, resolution difficulties
with, 309

scripting addition, standard, 336-348

for dialogs, 337-339

for file and machine
information, 340-345

for file data, 343

for numbers and dates, 346

for strings and Clipboard, 345

miscellaneous, 347

termination with line breaks, 104

comment delimiters, 56

comments, 109

dictionary coverage, inadequacies in, 330

enumeration, inadequacy of dictionary
coverage, 328

nested, comment delimiters and, 109

comparing strings (see string considerations)
comparison operators, 275-277

compiled script files, 79

osacompile command, 366

saving, 83-86

as script objects, 172-178

context, 176-178

data storage, 175

libraries, 174

compilingldecompiling scripts, 80-86

decompiling, 81

external referents at compile time, 82

free variables and, 130

insertion of parentheses by
AppleScript, 281

recordable events, decompiling, 93

saving compiled scripts, 83-86

references to applications, 84

run-only, 85

script runners and, 28

synonyms and abbreviations, handling in
decompilation, 110

variable names and, 118

Component Manager, 73

components, 73

AppleScript scripting component, 182

dynamic installation of, 73

formatting code for human users, 81

maintainence of state, 76

Index I 435

components (continued)
Script Application Component, 88

scripting components command, 348

scripts as operands, 79

talking to, 74

variable names, remembering, 118

concatenation operator (&), 56,279-281

conditions, 218

boo leans as, 243

multiple conditions, specifying, 219

considering/ignoring blocks, 234,235

ignoring application responses, 291

ignoring considering clause in string
comparisons, 284

string considerations, 235,291

Console, reporting on Apple events, 70

constant class, 289

constants, 289-291

application responses, 291

current application, 291

days of the week, 291

missing value, 290

months, names of, 291

names of, 289

null, 290

string considerations, 291

text styles, 290

true, false, 290

yes, no, ask, 290

constructors (script objects as handler
result), 172

containment operators, 277-279

begins with, 279

coercion of datatypes, 278

contains, does not contain, is in, is not
in, 278

ends with, 279

contains, 278, 283

contents of operator, 212-215

contents and content property, problems
with, 213-215

contents property
for application object types, 213-215

BBEdit, 200

context, script objects, 170

saving with store script and inserting into
different context, 176-178

continuation character, 105

in literal strings, 106

continuation character (-,), 82

436 I Index

continue command, calling inherited handler
with, 181

control structures, 218-242

branching, 218

multiple conditions, specifying, 219

conditions in (boolean), 243

considering/ignoring blocks, 234

ignoring application responses, 235

string considerations, 235

errors, 236-242

catching, 238-242

throwing, 237

looping, 220

optimization of, 227

repeat n times, 226

repeat until, 221

repeat while, 220

repeat with, 221

repeat with .. .in, 222-226

repeating forever, 220

second-level evaluation, 242

tell blocks, 228

terms blocks, 229-231

with blocks, 232-234

timeout, 232

transaction, 233

copy command, 113

interchangeability with set, 114

copy of a reference, 210

Core Suite, 320, 405

count command, 248, 258

counting word occurrences, 11

current application constant, 291

current application (implicit parent
chain), 183

current date command, 347

current script, representing with me
(keyword), 194

customizing applications, 10

D
data class, 256

datatypes, 243-263

alias, 253

application, 255

boolean, 243

classes as, 185

coercion of, 243

(see also coercions)
constants, 289

data, 256

date, 245

properties of, 246

file, 251-253

properties, 253

handlers as values, 155-158

integer, 244

list, 256-260

access speed, improving with
references, 259-260

elements, 259

properties, 258

recursion, 258

storage as vectors, 257

machine, 255

mutable, 149

record, 261-263

assignment in, 261

properties, 262

recursion, 262

replacing value in existing, 261

references, 210

script objects, 166

string, 247

elements of, 248

styled text, 251

Unicode text, 249-251

value types in dictionaries, 310

variables, 116

date string (date property), 246

dates, 245

coercion of, 268

converting time units to seconds, 287

formats of date-time strings, 245

passed by reference, 149

properties of date values, 246

scripting addition commands for, 346

setting variable to date value, 246

day (date property), 246

days of the week (constants), 291

days property, 287

debuggers (see Script Debugger)
debugging, using it keyword, 192

declarations
of script properties, 131

delayed, 136

redeclaration, 136

of variables, 115

explicit, 117

redeclaration of locals and
globals, 130

reasons for, 128

decompiling scripts (see
compiling/decompiling scripts)

definitions
of handlers, 140

redefining handler in a script
object, 157

of named parameters, 148

of script objects, 159

of variables, 115

delay command, 347

delimited comments, 109

dereferencing a reference, 211-215

contents of operator, using, 212

variable values in repeat with .. .in
block, 222

Developer Tools, 385

diacriticals (string consideration), 235

dialogs, scripting addition commands
for, 337-339

dictionaries, 41,90-92,297-331

'aeut' resource (see 'aeut' resource)
AppleScript Studio, 386

contents of, 309-320

classes, 313

enumerations, 310

events, 311

properties and elements, 316

pseudo-classes, 317-319

suites, 319

value type, 310

dynamic, 255

file types (Mac as 9 and X), 90

human-readable information, 91

implicit coercions of datatypes, 265

inadequacies of, 321-331

bad comments, 330

bad grammar, 329

borderline syntax, 329

coercions, 328

defective element specifiers, 322

defective object model, 321

enumerations, 328

events and classes, 326

false descriptions, 330

idioms for common tasks, 325

inconsistent return types, 327

make, 324

intended audiences for, 297

machine-readable information, 91

published statically or dynamically, 91

resolution difficulties, 301-309

invalid Apple events, 305

Index I 437

dictionaries, resolution difficulties
(continued)

multiple-word commands, 309

raw Apple event codes, 306-309

terminology clashes, 301-305

resolution of terminology, 298-301

loading the dictionary, 298

translating terms, 299

for scriptable applications, using in
writing AppleScripts, 63

scriptable applications, 92

terms block, specifying with, 229

digital hub scripting, 377

direct object of a command, 312

direct object of commands, 189

direct operations, 282

display dialog command, 337

div operator, 274

division operator (I), 273

do shell script command, 362-365

returning Unicode text, 250

documentation, Apple, 426

does not come after, 277

does not contain, 278

does not equal and doesn't equal, 276

double clicked handler, 399

double integer class, 244

do ... until construct (in C-like
languages), 221

downward effect of a global declaration, 123

DragThing, 28,425

droplets, 7,31

applets vs., 88

writing, 375

dynamic dictionaries, 255

dynamic nesting, 241

E

ECMAScript Language Specification, 78

EightyRez, 91,424

element specifiers, 197-204

boolean test, 202

defective, in dictionary contents, 322

every, 199

ID, 199

index, 198

index-based, 202

name, 198

range, 199

relative, 200

some, 199

438 I Index

elements, 195-197

definition of, 196

in dictionary contents, 316

object model, 317

codes for, 317

inheritance of, 315

list, 259

read-only, 196

string, 248

email messages, appending random
quotations to, 14

empty lists, 256

empty strings, 47

end (keyword), 111

end of a list, 259

end or beginning (instead of an element
specifier), 200

end transaction, terminology clashes
with, 304

ends with, 279

English-like vocabulary of AppleScript, 99

enumerations, 289

in dictionaries, 310

inadequacies in dictionary coverage, 328

as value types, 310

enumerators, 310

environment variables (Unix), 367

equality (=) operator, 275

equivalent expressions in AppleScript, 110

error command, 237

errors, 236-242

AppleScript, dealing with, 64

binary operators performing implicit
coercions, 272

catching, 236, 238-242

filtered error handler, 240

nested try blocks, 241

timeout, expired, 241

coercion requested of an application, 267

list items (nonexistent), asking for, 203

throwing, 236

error command, 237

message to user, 237

escaped string literals, 247

Eudora, 425

dictionary inadequacies, 323

defective object model, 322

deleting messages, 326

idioms for common tasks, 325

make command, 324

events, 63,311

dictionary content, inadequacies in, 326

suites of, 319

(see also Apple events)
every (element specifier), 199

boolean test specifier, use with, 202

Excel
communicating data to with Ruby

script, 11

dictionary inadequacies in
comments, 330

graphing data with AppleScript, 12

further information about, 425

exit repeat command, 220, 226

expansion (string consideration), 236

explicit coercions, 265

explicit result, 107

explicit returns from handlers, 142

explicit variable declaration, 117

exponentiation operator (A) , 274

extensibility, AppleScript, 98

external referents

F

at compile time, 82

run-only scripts losing track of, 86

script text files and, 87

factored applications, 93

false constant, 290

false descriptions in the dictionary, 330

FastScripts, 28,424

Fetch, 326,426

FIFO (first in, first out), in applet request
procesing, 382

file class, 251-253

object string specifier, 205

properties, 253

URL (furl class), 252

file information pseudo-class, 303

file sharing
mount volume command, 348

toggling on or off, 358

file specifications, 252

file-level persistence, 139

FileMaker Pro, 25, 425

talking to Mailsmith, 26

transactions, 234

files
choose file command, 337

coercions of, 268

compiled script, 83

as script objects, 172-178

dialog for choosing, 12

information about, commands
for, 340-343

reading/writing data, commands for, 343

renaming, 6, 39-64

with Finder, 59

script text files, 86

scripts as individual code files, 79

writing Unicode text to, 250

filtered error handlers, 240

filtering
list for numeric members (example), 158

Finder, 17,32-36,71

applets opened from, 88

capturing explicit results, 107

changing filenames with, 59

compilation/decompilation of scripts, 81

compiled script file in Cocoa
application, 36

dictionary entries, 311

comments, 331

elements, 317

events, 311

inheritance and, 315

top-level element, referring to, 322

dictionary inadequacies
class elements, omitted, 322

coercions, 328

defective object model, 321

make command, new and at
parameters, 330

dictionary shown in Script Debugger, 21

direct operations and, 282

droplet reporting in, 375

elements, specifying with boolean
test, 202

error handling, 240

file class, 252

folder actions, 30,377

implicit coercions and, 264

invalid Apple events and, 305

multiple-word commands, 309

persistence of applets, 376

properties and elements, 197

raw data as result, 256

recordability, 94

references, 206-212

as handler parameter, 216

repeat with .. .in, 226

resolution of terminology, 299,301

running your application from, 31

Index I 439

Finder (continued)
script as driver, 77

second-level evaluation, 242

styled text, 251

targeting, 349

chains of ofs and tells, 187, 188

get command, 191

representing target with it, 192

scoping and, 190

with of operator, 186

with tell block, 186

time outs, 232

UserTalk, using with, 22

using terms from, 230

floating-point arithmetic, 274

flow control (see control structures)
folder actions, 30

as form of attach ability, 94

writing, 377

folders, choose folder command, 338

four-letter codes (see codes)
FrameMaker, 39-63

chain of attributes to refer to desired
object, 196

finding tables with AppleScript, 49-52

references, 206

free variables, 129

closures and, 171

as handler name, 161

as properties, 161

script object context and, 177

from (keyword), 200

Frontier, 22

UserTalk scripting language, 74

furl class, 252

G

Generic Scripting Component (GSC), 75

get command, 115

implicit vs. explicit, 191

target application, list of references
from, 225

(see also get ... as command)
get eof command, 344

get. .. as command, 266

given (keyword), 148

global properties, 285-288

numbers, 287

days, 287

hours property, 287

weeks property, 287

version, 288

440 I Index

global variables
declaring, 117

downward visibility of, 122

handler names defined within script
objects, 151

implicit, 125

passed by reference, 149

redeclarations of, 130

script properties, 136

redeclarations of parameters as, 144

script properties vs., 132

top-level properties as, 134

top-level, script objects referring to, 177

upward effect of global declarations, 125

grammar, dictionary inadequacies in, 329

GraphicConverter, 328,426

aliases, 254

graphing Excel data with AppleScript, 12

greater than operator (», 277

greater than or equal to operator (�), 277

GSC (Generic Scripting Component), 75

GUI scripting, 357,427

examples of, 358-361

guillemets «< ») , 256,307

H

handle CGI request command, 380

handlers, 140-158

AppleScript Studio
choose menu item, 396

clicked, 397

double clicked, 399

launched, 394

will open, 395

applet, 372-375

calls within script objects, 151, 164

creating in AppleScript Studio, 32

defining and calling, syntax of, 145-148

named parameters, 148

no parameters, 145

prepositional parameters, 146

unnamed parameters, 145

free variables within, 129

inherited, calling with continue, 181

as messages sent to target objects, 191

parameters, 143

implicit coercions of, 265

lists as, 257

references as, 210,215-217

persistence of (as top-level entities), 163

pipes (I I) around call, using with me, 195

recursion, 153

result, 141-143

capturing for later use, 142

explicit returns, 142

implicit results, 142

references as, 216

script object as, 168-172

run handler, 153

running, 122

scoping of, 120,150-155

script objects defined in, scoping, 122,

160

side-effects of, 141

terminology clashes, resolving, 303

as values, 155-158

parameters, 156

returning, 158

values passed by reference, 148-150

here documents, 37,367

hex data, constructing character as, 250

hours property, 287

HyperCard, 22,73,114,333,425

hyphens (string consideration), 236

identifiers for Apple events (see codes)
idle handler, 372

iDo Script Scheduler, 425

IDs
element specifiers, 199

script ID, 79

transaction, 233

if blocks, branching control with, 218

ignoring application responses, 235

ignoring string considerations, 235

iKey, 28,425

Image Events, 355

implicit coercion, 264

performed by binary operators, 272

performed by containment operators, 278

implicit global variables, 125

redeclaration as local, 130

implicit local variables, 127

handler parameters, 144

redeclaration as globals, 130

implicit result, 108,142

implicit run handler, 153

implicit subcontainer, 322

in, 185

in back of, 200

in front of, 200

in scope, 120

indentation of code blocks, 111

index (element specifier), 198

index-based specifiers, 202

inequality operator (;t), 275,276

infinite loops, 220

info for command, 253,303,342

inheritance, class inheritance in dictionary
contents, 314

inheritance, script object, 178-183

me keyword and, 194

parent property, initializing, 178

polymorphism, 180

continue command, 181

implicit parent chain, 182

INITs (system extensions), 356

innermost application dictionary, 299

insertion location class, 201,311

insertion point elements (BBEdit), 200

instances of scripting components, 76

integers, 244

coercion of boolean to, 267

coercion tolfrom a real, 268

double integer class, 244

small integer class, 244

interapplication communication, 65

timeout waiting for reply, 232

transactions, 233

(see also Apple events)
Interface Builder, 31,32,385

creating application interface, 389-393

adding AppleScript names and
handlers, 391-393

internally scriptable applications, 23-26

FileMaker Pro, 25

Microsoft Word, 24

international text class, 250

Internet Connect, 353

interpreted languages, 80

interrupting a time-consuming applet, 374

intialization of variables, 116

is, 276

is equal to, 276

is greater than, 277

is in, 278

is less than, 276

is less than or equal to, 277

is not, 276

is not equal and isn't equal, 276

is not equal to, 276

is not greater than, 277

Index I 441

is not in, 278

it (keyword), 52, 192

its, 162

representing target object, 189

using after where or whose, 203

item (list element), 259

iTunes, 377

J

JavaScript OSA, 74,424

joining strings, lists, and records (see
concatenation operator)

Jon's Commands osax, 332,334

K

Keyboard Maestro, 28,425

Keychain Scripting, 355

L

labeled parameters, 146

in dictionaries, 312

Late Night Software (see Script Debugger)
launch command, 292

launched handler, 394

launchers, 28

length
list property, 258

record property, 262

string property, 248

less than «) operator, 276

less than or equal to operator (�), 277

lexical nesting, 241

lexical scoping, 130

libraries, 174

LIFO (last in, first out), request handling for
applets, 382

line breaks
changed by compilation, 82

in scripts, 104

in string literals, 247,286

in VBA, 24

LISP, 102

list disks command, 342

list folder command, 342

lists, 256-260

access speed, improving with
references, 259-260

assignments of values to, 256

coercions of, 269

implicit coercion to string, 270

concatenating, 279

442 Index

containment and, 277

elements of, 259

empty, 256

item-deletion handler, 102

item-filtering handler, 158, 169

item-finding handler, 217

item-insertion handler, 257

length and item attributes, 195

nonexistent items, asking for, 203

passed by reference, 149

properties of, 258

recursion, 258

running through with repeat blocks, 222

size of, 258

storage as vectors, 257

as value types, 310

little computer languages, 97

load script command, 172, 174

higher-level variables referred to in script
object, 177

loading dictionaries, 298

local applications, 350

local (keyword), 121

local variables
automatic, 137

declaring, 117

explicit locals, 121

implicit, 127

handler parameters, 144

redeclarations of, 130

references to, creating, 215

undeclared variables not at top level, 127

visible to script object defined in
handler, 122, 169

location reference, 201,311

log command, 56, 293

logging commands, 293

log, 293

stop log, start log, 293

logical and operator, 275

logical not operator, 275

logical or operator, 275

looping, 220

optimization of loops, 227

repeat blocks, getting out of, 220

repeat n times, 226

repeat until, 221

repeat while, 220

repeat with, 221

repeat with ... in, 222-226

get command, 225

repeating forever, 220

M

Mac as 9
rebooting into, 8
saving script as Mac as x applet, 89
scripting additions, 334

machine class, 255
machine-language code, 80
Macintosh Connectivity Classes, 320,

420-422
Macintosh line breaks (\r), 104, 247, 286
MacRoman text encoding, 249
macros, 356

QuicKeys program, 424
macros, Microsoft Word, 24
MacScript function, 24
mailing lists, 428
Mailsmith, 425

comments in dictionary, 33 1
creating new outgoing message, 14
defective object model, 325
dictionary inadequacies

make command, 324
FileMaker Pro, using with, 25
GUI scripting, 360
references, identifying, 214
spam-reporting feature, 7
targeting by a message, 184, 188
translating terms from, 299
using terms from, 230

make command, 324
me (keyword)

getting polymorphism to operate, 180
lists, speeding up access to, 260
representing current script, 194

measurement unit conversions, 270
Unix units tool, using, 271

menus
Script Menu, 28
script runner, 29

messages
commands vs., 184
error, 237
handler calls as, 1 9 1

Microsoft Entourage, 29
Microsoft Excel (see Excel)
Microsoft Word, 425

AppleScript code, constructing in
VBA, 24

minutes property, 287
Miscellaneous Suite, 3 1 9
missing value constant, 290
mod operator, 274

month (date property), 246
month name constants, 291
mount volume command, 348
multiple steps, combining into single

operation, 8
multiplication operator (0) , 273
mutable data types, 149
my (see me)

N

\n (newline character)
escaping in strings, 247
Unix line breaks, 104

name property, 198
named (keyword), 198
named parameters for handlers, 148
names

element specifier, 198
record items, 262
variables, 1 1 7

forcing illegal name t o be legal, 1 19
nesting

target object specifications, 188
try blocks, 24 1

next repeat command, 226
no constant, 290
noises, scripting addition commands for, 339
not operator, 275
NoteTaker, 324, 330, 426
NSAppleEventDescriptor class, 36
NSAppleScript class, 35
null() (top-level object), 3 2 1
null constant, 290
number class, 244 .
numbers

coercion of, 268
global properties

days property, 287
hours property, 287
minutes property, 287
pi, 287
weeks property, 287

integer and real data types, 244
scripting addition commands for, 346

numeric abilities, AppleScript, 5
numeric classes, 244

o
obj value type, 3 10
object model, 63, 3 1 7

defective, in dictionary contents, 321

Index I 443

object properties, script properties vs., 196
objects, 1 84-205

AppleScript and, 101
classes, 1 85
definition of, 184
element specifiers, 197-204

boolean test, 202
every, 199
ID, 199
index, 198
name, 198
range, 199
relative, 200
some,

·
199

properties and elements, 1 95-197
properties of multiple references, 204
string specifier, 205

coercion vs., 266
target, 185-19 1

chains of ofs and tells, 186
direct objects of commands, 189
get command, 191
multiple assignments, 187
names in scope, 190
nesting specifications for, 188
representing with it, 192

of (handler parameter), 146
of (keyword), connecting command with

direct object, 189
of operator, 133, 184

in announcement of tell block, 187
chains of, determining target with, 186
in (synonym for), 185
objects as attributes of one another, 186
specifying top-level entity in script

object, 162
target object, specifying, 186
targeting application without using its

vocabulary, 229
targeting scriptable applications, 349

offset command, 346
on (keyword), 120, 140

to, 140
on run statement, 153
open for access command, 343
open handler, 375
open location command, 348, 400
Open Scripting Architecture (see OSA)
operands, 272
operations, 272

444 I Index

operators, 272-284
a reference to, 209
arithmetic, 272-274
assignment and, 1 14
boolean, 274
coercions, implicit, 264
comparison, 275-277
concatenation (&), 279-28 1
containment, 277-279
contents of, dereferencing

references, 2 1 2-2 15
of, 133
operations, performance of, 282

boolean test element specifiers, 283
direct, 282

order of operations, determining with
parentheses, 281

or operator, 275
orphan class, 322
OSA (Open Scripting Architecture), 22,

73-77, 427
components, 73
maintenance of state, 76
other scripting languages, 74
talking to scripting component, 74

osacompile command, 366
osalang command, 365
osascript command, 37, 366-369

intercepting Apple events, 71
osax, 89

(see also scripting additions)

p

Panorama, 426
paragraph (string element), 248
parameters

in dictionary contents, 3 1 2
handler, 143

implicit locals, 144
named, 148
no parameters, 145
pass by reference, 148-150
prepositional, 146
unnamed, 145

handlers as, 156
prepositional

of, 189
references as, 215-2 17
run handler, 155
script objects as, 168

parent chain, implicit, 182
parent property, 134, 178
passing by reference, 148-150, 206

list as parameter to a handler, 257
reference to operator and, 215
script object as handler parameter, 168

passing by value, 148
path to command, 340
pathnames

application, 255
coercions, 254, 268
Macintosh, 25 1
POSIX, 25 1 , 253

performance, scripting additions and, 333
Perl, 5 , 144

accessing AppleScript from
Unix, 365-369

calling Unix shell from
AppleScript, 362-365

capabilities of, 98
programming languages and, 78
resources for further reading, 429
Script Menu, 28
string data, expressing, 250
strings, escaping for osascript, 37

persistence
applets, 376
top-level script object entities, 163

store script and, 175
of variables, 137

pi property, 287
pipe characters (see I (vertical bars), under

Symbols)
plural forms of class names, 3 13
point class, 258
polymorphism, 180

continue command, 1 8 1
implicit parent chain, 182
my keyword and, 180

positional parameters, 145
POSIX path property, 253
POSIX pathnames, 25 1

coercions of, 268
obtaining for files, 253

precedence, arithmetic operators, 272
prepositional parameters, 146

in dictionaries, 3 1 2
of, 189

pretty-printed compiled scripts, 81
programming languages

interpreted, 80
scripting languages vs. , 78

programs, scripts as, 78
prop (property), 132
properties, 1 95-197

contents, conflict with contents of
operator, 2 1 3-2 15

date
changing, 245
listing of, 246

definition of, 196
in dictionary contents, 3 1 6

object model, 3 1 7
file, 253
free variables as, 1 6 1
global, 285-288

numbers, 287
strings, 286
version (of AppleScript), 288

of multiple references, 204
name (for elements), 198
object vs. script properties, 196
persistence of, 163
read-only, 196
record, 262
resolution difficulties with names of, 306
script property, 1 16
string, 248
terms resolved to, 302
(see also script properties)

Property List Editor, 9 1
pseudo-classes, listings in

dictionaries, 3 1 7-3 19
punctuation (string consideration), 236
put command, 1 14

Q
queries, 66
QuickDraw Graphics Suite, 417-419
QuickDraw Graphics Supplemental

Suite, 419
QuicKeys, 424
QuicKeys Script, 74
quit command, 293
quit handler, 372
quitting an applet, 374
quotations, appending to email messages, 14
quoted form (string property), 248

R

\r (return) character, 104, 247
Radio UserLand, 22, 425
random number command, 347

Index I 44S

random quotation web services, 14
range (element specifier), 199
raw data, 256
read command, 343
reading/writing file data, commands

for, 343-345
real datatype, 244

coercion to/from an integer, 268
division (I) operator, 273

REALbasic, 426
incorporating AppleScript code into, 33

rebooting into Mac as 9, script for, 8
recordable applications, 92
records, 26 1-263

assignment in, 26 1
coercion of list to, 269
concatenating, 279
containment and, 277
passed by reference, 149
properties of, 262

fetching/assigning value of item, 263
pseudo-class listings in the

dictionary, 3 1 7-3 19
recursion, 262
replacing value in existing, 261

recursion, 102, 153
lists, 258
records, 262

reduction, 8
ref (a reference to), 209
reference to opera to passing by reference

and, 215
references, 48, 206-2 17

to applications, 84
run-only scripts losing track of, 86

by reference vs., 206
creating, 209

to local variables, 215
definition of, 206
dereferencing, 21 1-2 15

contents of operator, 212
references to application objects, 213

external referents at compile time, 82
external referents, script text files and, 87
to file objects, 252
identifying, 210

copy trick, 210
editor result trick, 210
reference coercion trick, 210

as incantations, 207

446 I Index

to lists, speeding up access with, 259-260
multiple, properties of, 204
obj value type, 3 1 0
a s parameters, 215-2 17
pre-resolution of terminology, 207
returned from handlers or script

objects, 2 1 6
safe use of, 208
targeting scriptable applications

with, 350
to variables

handlers, 155
passed by value, 149

variables values in repeat with .. .in
block, 222-226

(see also by reference)
relative (element specifier), 200
remainder, returned with mod operator, 274
remote applications, targeting, 14, 350
renaming files, 6, 39-64

with Finder, 59
writing handler for, 56

reopen command, 293
reopen handler, 372
repeat blocks, 220

repeat n times, 226
repeat until, 221
repeat while, 220
repeat with, 221
repeat with .. .in, 222-226

get command, using, 225
repeat command, 48
repetition, 6
replies (to Apple events), 66, 69

timeout values for, 66
Required Suite, 320, 413-416
reserved words

avoiding naming conflicts with reserved
words, 1 19

constants, 289
resource of type 'aete', 90
responses (application), ignoring, 291
rest (list property), 258
result (keyword), 142
results, 106

explicit, 107
handlers as, 158
implicit, 108
raw data, 256
references as, 210, 2 1 6
script objects as, 168-172

values returned from handlers, 141-143
capturing for later use, 142
explicit return, 142
implicit result, 142
side-effects vs., 141

retrieving the value of a variable, 1 14
return character in strings, 247
return command, 220
return (global property), 286
return types, inconsistency in dictionary

content, 327
return-by-reference (in C++), 217
returning, 1 13
reverse (list property), 258
rgb color class, 258
\r\n (Windows line break), 104
round command, 268, 346
Ruby

resources for, 429
script to count occurrence of words, 1 1

run command, 154
run handler, 153, 372

explicit (on run), 153
implicit, 153
script object, 164

run script command, 173
higher-level variables referred to in script

object, 177
second-level evaluation with, 242

running scripts, 16
run-only scripts, 85

s

's (apostrophe-ess) operator, 133, 162, 185,
1 90

(see also of operator)
save command, aliases and, 254
saving compiled scripts, 83-86

references to applications, 84
run-only, 85

say command, 339
scheduling script running, 374
Scheme, 102
scoping

containment, implicit parenthood
and, 183

handlers, 150-155
calls within script objects, 1 5 1
recursive, 153
run handler, 153

script objects, 160
free variables, 1 6 1
in handlers, 1 60, 169

script properties, 132-134
target objects, names in, 190
variable declarations and, 1 17
variables, 120-131

AppleScript scoping (in general), 120
explicit locals, 1 2 1
free, 129
global declarations, downward effect

of, 122
global declarations, upward effect

of, 125
redeclaration of locals and

globals, 130
undeclared, 126-129

Script Application Component, 88
script bundles, 83
Script Debugger, 19, 74, 424

Apple event codes, viewing, 307
class inheritance displayed in, 3 1 5
compiled script files, saving, 8 7
element hierarchy, charting of, 3 17
element ordering in, 202
loading library files during script property

initialization, 175
Scripts menu, 29
stop log, start log, 293

Script Editor, 6, 17, 79
code formatted for human users, 8 1
compiled scripts, saving, 83
file specifier coercions, 254
saving scripts (Mac as 9) as Mac as x

applets, 89
shortcuts for entering commonly used

text, 18
stop log, start log, 293

script editors, 17-20
compilation of scripts in, 28
constructing scripts from recordable

applications, 93
for dictionaries, 9 1
editing applets, 88
how they work, 76
references as results, 2 1 0
run-only scripts and, 8 6
script runners, using as, 29

script ID, 79
script (keyword), 120

Index I 447

script objects, 159-183
compiled script files as, 172-178

context, 1 76-178
data storage, 175
libraries, 174

defined at top level, persistence of
properties, 139

defined in a handler, scoping and, 122
defining, 159
free variables within, 129
handler calls within, 156, 164

scoping of, 15 1
handlers defined as parameters, 157
inheritance, 178-183

continue command, 181
implicit parent chain, 182
polymorphism, 180

passed as parameters, 156
passed by reference, 149
persistence of (as top-level entities), 163
properties, scoping of, 132
references returned by, 216
run handler, 164
scoping of, 120, 160

free variables, 1 6 1
i n handlers, 160

top-level entities, 162
accessing, 162
as properties, 196
persistence of, 163

as values, 166
assigning value of another script

object, 166
handler result, 168-1 72
pass by reference, 168
set by reference, 167

script properties, 13 1-137
declarations of

delayed, 136
redeclaration, 136

initialization, loading library files
during, 175

linking two script objects in inheritance
chain, 178

object properties vs. , 196
persistence of, 139
reference to list as, 260
scoping, 132-134
top-level, as globals, 134

script runners, 28-29
FastScripts, 28

448 I Index

launchers, 28
Script Editor, using as, 29
Script Menu, 28

scriptable applications, S, 92, 349-355
customization of, 10
deciding whether application is

scriptable, 6
dictionaries (see dictionaries)
Finder, 353
Image Events, 355
internally scriptable, 23-26

FileMaker Pro, 25
Microsoft Word, 24

Internet Connect, 353
Keychain Scripting, 355
repertory of acceptable Apple events, 67
Scripts menu to access scripts for

application, 29
Speech Recognition Server, 354
System Events, 354
targeting, 349-35 1

local applications, 350
reference, using, 350
remote applications, 350
tell and of, using, 349

URL Access Scripting, 354
XML-RPC and SOAP, 35 1-353
(see also entries under individual

application names)
scripting additions, 89, 332-348

Classic, 334
files, 89
loading, 335
online repository of, 333
pros and cons of, 332
speed and, 333
standard commands, 336-348

for dialogs, 337-339
for file and machine

information, 340-345
for file data, 343
for noises, 339
for numbers and dates, 346
for strings and clipboard, 345
miscellaneous, 347

StandardAdditions.osax file, 332
terminology clashes caused by, 304

scripting components command, 348
scripting components (see components)
scripting environments

HyperCard, 22
Radio UserLand, 22

UserLand Frontier, 22
UserTalk language, 74

scripting languages
definition of, 78
OSA (other than AppleScript), 74
programming languages vs., 78
UserTalk, 22
VBA (Visual Basic for Applications), 24

scripting software, 424
scripts, 77-79

compiled, saving, 83-86
references to applications, 84
run-only scripts, 85

driving applications with, 77
as individual code files, 79
as programs, 78
running at specified times, 374
running automatically (automatic

location), 29
scheduling to run at specific time, 425
scoping of, 120
as script objects, 78, 159
as scripting component operands, 79

.scriptSuite and .scriptTerminology file
formats, 90

.sdef files, 9 1
second-level evaluation, 242

coercing a list to a record, 269
fetching/assigning value of record

item, 263
seconds in date arithmetic, 287
selection, 42, 214, 326
sender application, 16, 65

constructing and handing off Apple event
to System, 68

set command, 1 13
interchangeability with copy, 1 14
setting variable to date value, 246

set end of command, 280
set eof command, 344
set the clipboard to, 346
set volume command, 339
setting by reference, 167, 206

lists, 257
records, 26 1

shell, Unix
calling from AppleScript code, 362-365
quoted form string property and, 248
shell scripts

calling AppleScript code
from, 365-369

Unicode text, returning, 250

short date string (date property), 246
side-effects of handlers, 141
single-line comments, 109
single-pass compiler, 80
small integer class, 244
Smile, 19, 29, 424
SOAP, 35 1-353, 427
software (mentioned in this book), 425
some (element specifier), 199
sort command, terminology clashes

with, 304
sounds, commands for, 339
space (global property), 286
special concat command, 280
specialties (application), combining, 10-15
specifiers

alias, 253
application, 254, 349
element (see element specifiers)
file, 252
machine, 255
object string, 205

coercion vs., 266
Speech Recognition Server, 354
speed, scripting additions and, 333
splitting strings, 249
Standard Additions, 90
Standard Suite, 320, 405, 4 13-4 1 6
StandardAdditions.osax file, 332
start log command, 293
starts with, 279
state, mantainence of (in OSA), 76
Stay Open applet, 372
stop log command, 293
store script command, 173, 175

context and, 176
string considerations, 235

constants, listing of, 29 1
strings, 247

coercion of, 268
to a boolean, 267
tolfrom multiple item list, 270

comparisons involving, 275
concatenating, 279
containment and, 277
continuation characters in literal

strings, 106
dates, 245
elements of, 248
empty, 47
escaped characters in, 247

Index I 449

strings (continued)
global properties

return, 286
space, 286
tab, 286
text item delimiters, 286

joining, 270, 279-281
line break characters in literal strings, 104
native AppleScript data type vs. scriptable

applications, 247
properties of, 248
quotation marks in

FileMaker Pro, 26
osascript, 37
VBA, 24

scripting addition commands for 345
splitting into fields based on a

'

delimiter, 249
Unicode text vs., 249

Stufflt Expander, 330
styled text, 25 1

coercions tolfrom strings and
Unicode, 268

constants for, 290
descriptions in dictionaries, 3 1 7

subclasses, 3 14
subcontainer, implicit, 322
sublists, 277
substring, position of, 346
suites, 3 1 9

'aeut' resource, 405
AppleScript Suite, 405-413
Macintosh Connectivity Classes, 420-422
Miscellaneous, 3 1 9
QuickDraw Graphics, 417-419
QuickDraw Graphics Supplemental, 419
Required (Standard), 413-416
Text, 320, 405, 416
Type Names, 422

summarize command, 346
superclass, 314
synonyms in AppleScript, 1 10
syntax, AppleScript, 104- 1 1 2

abbreviations and synonyms, 1 10
blocks, 1 1 1
lines, 104

continuation character, 105
line break characters in literal

strings, 104

450 I Index

result, 106
explicit, 107
implicit, 108

the, 1 12
system attribute command, 340, 367
System Events, 323, 354
system extensions (or IN ITs) , 356
system information, commands for 340-343
System Preferences

'

disk insertion events, 377
turning file sharing on/off, 358

System, role in interapplication
communication, 67

T

\t (tab character), 247
tab (global property), 286
target application, 16, 65

repertory of Apple events, 68
replies to Apple events, 69

target objects, 184, 185-191
application object as, 255
chains of ofs and tells, 186
coercion, performing, 266
direct object of commands, 189
dynamic, using references as, 216
get command, 191
it, 192
me keyword, representing current

script, 194
multiple assignments, 187
names in scope, 190
nesting specifications for, 188
references as, 207
tell blocks and, 228

targeting scriptable applications, 349-35 1
local applications, 350
reference, using, 350
remote applications, 350
tell and of, using, 349
XML-RPC and SOAP services 352

tell blocks, 228
'

application as target, 255
me keyword, specifying current script as

target, 194
target as direct object of command, 189
target object, determining, 186
targeting scriptable applications, 349
transaction block within, 234
translating dictionary terms, 299

Terminal, 75
interception and reporting of Apple

events, 70
terminology, 297

resolution difficulties, 301-309
clashes in terminology, 194, 30 1-305
invalid Apple events, 305
multiple-word commands, 309
raw Apple event codes, 306-309

resolution of, 298-301
finding the terms, 300
tell blocks, 228
translating terms, 299

terms blocks, 229-23 1
(see also terminology)

Tex-Edit Plus, 29, 426
elements, ordering of, 200
pseudo-classes, 3 17
string manipulation, 247

text
coercions of strings, Unicode, and

styled, 268
processing facilities, AppleScript, 5
strings (see strings)
styled, 25 1

constants for styles, 290
descriptions in dictionaries, 3 17

Unicode, 249-25 1
text files

script, 86
XML, Cocoa application dictionaries, 90

text item delimiters, 249, 270, 286
text item (string element), 248
text (string element), 248
text style info class, 3 1 7
Text Suite, 320, 405, 416
text to speech conversion (say

command), 339
TextEdit

dictionary inadequacies, 325
POSIX-style path, 255
Unicode text, 249

the clipboard command, 346
the (use in AppleScript), 1 12
throwing errors, 236

error command, 237
message to user, 237

thru, 199
TidBITS, 363
time (date property), 246
time (see dates)
time string (date property), 246

time to GMT command, 347
timeout blocks, 232

error handling for expired timeout, 241
timeout values for replies, 66
times (keyword), 226
to

into as abbreviation for, 1 14
in range element specifier, 200
synonym for on, 140

tokens, 80, 85
avoiding conflict with reserved

words, 1 19
record item names, 262

tools and resources, 424-429
Apple documentation, 426
books, 428
mailing lists, 428
portals, instruction, and repositories, 427
scripting software, 424
software (other), 425
Unix scripting, 429

top-level entities of script objects, 162
accessing, 162
as properties, 196
persistence of, 163
storing with store script, 175
target object, determining, 186

transactions, 233
end transaction term, clashes with, 304
within tell blocks, 234

true and false values, 147
true constant, 290
try blocks

errors, catching, 238-242
nesting try blocks, 241

exiting repeat blocks, 220
type class, 3 10
Type Names Suite, 405, 422
types (see data types)

u

UI Browser, 359
UI Element Inspector, 358
UI element subclasses, 358
unary operator, 272

negation (-), 273
undeclared variables

finding, 1 17
scoping, 126-129

at top level, 126
declaring all variables, 128
not at top level, 127

Index I 451

un defining a variable, 1 16
Unicode text, 249-25 1

coercions tolfrom strings and styled
text, 268

unit conversions, 270
Unix units tool, using, 271

Unix, 37, 362-369
accessing AppleScript from, 37-38,

365-369
osascript command, 366-369

calling shell from AppleScript, 362-365
line break character (\n), 104
quoted form string property and, 248
scripting languages

Perl (see Perl)
Ruby, 1 1

scripting, resources for, 429
unnamed parameters for handlers, 145
unscriptable applications

scripting, 356-361
Accessibility API, 357
GUI scripting examples, 358-361
macro programs, 356
system extensions (INITs), 356

until (keyword), 22 1
URL Access Scripting, 354
URLs

choose URL command, 338
file (furl class), 252
open location command, 348

UserLand Frontier, 22, 425
UserTalk scripting language, 74

UTF-16 encoding, 249
UTF-8 text encoding, 250

v

value type, 3 10
values

assigning to variables, 1 13
handlers as, 155-158

handler results, 158
parameters, 156

missing value class, 290
as objects, 1 0 1 , 184
script objects as, 166

handler result, 168-172
pass by reference, 168
set by reference, 167

variable interpolation (in Perl) , 37

452 I Index

variables, 1 13-139
assigning value to, 1 13

multiple, in one command, 1 14
class, 185
compiled script files as, 174
datatypes, 1 16
declaring, 1 15
defining, 1 15

undefining a variable, 1 16
handlers as, 155
initializing, 1 16
lifetime of, 137-139

persistence, 13 7
names of, 1 17
references as, 207
retrieving value of, 1 14
scoping, 120-13 1

AppleScript scoping (in general), 120
explicit locals, 121
free variables, 129
global declarations, downward

visibility of, 122
global declarations, upward effect

of, 125
redeclaration of locals and

globals, 130
undeclared variables, 126-129

script object context and, 176
script objects as, 166
script properties, 1 3 1
undeclared, finding, 1 17

VBA (Visual Basic for Applications), 24
vectors, lists stored as, 257
version property, 288
Visual Basic for Applications (VBA), 24
vocabulary

English-like words in AppleScript, 99
(see also terminology)

volume, setting, 339

w
web services, talking to with AppleScript, 14 ,

35 1-353
web sites (portals, instruction, and

repositories), 427
WebSTAR event, 379
weekday (date property), 246
weeks property, 287
where (keyword) , 202
while (keyword), 220

white space (string consideration), 236
whitespace

in AppleScript code, 104
bytecode decompilation and, 82
in strings, 247
in variable names, 1 19

whose (keyword), 202
wildcard value type (' '), 3 1 0
will open handler, 395
Windows line break (\r\n), 104
with blocks, 232-234

timeout, 232
transactions, 233

with or without (handler parameters), 147
word (string element), 248
write command, 343
writing applications, 370-402

AppleScript Studio, using, 382-402
Cocoa, 382-384
example application, 387-402
where/what it is, 384-387

X

applets, 370-376
droplets, 375
handlers for, 372-375
options, 371
persistence, 376

CGI, 379-382
digital hub scripting, 377
folder actions, 377

Xcode, 31 , 385
project, creating, 388

XML text files (Cocoa application
dictionaries), 90

XML-RPC and SOAP services, 14, 35 1-353,
427

y

year (date property), 246
yes constant, 289, 290

Index I 453

About the Author

Matt Neuburg started programming computers in 1968, when he was 14 years old,
as a member of a literally underground high school club , which met once a week to
do timesharing on a bank of PDP- las by way of primitive teletype machines. He also
occasionally used Princeton University's IBM-360/67, but gave it up in frustration
when one day he dropped his punch cards. He majored in Greek at Swarthmore
College, and received his PhD from Cornell University in 1981, writing his doctoral
dissertation (about Aeschylus) on a mainframe. He proceeded to teach Classical
languages, literature, and culture at many well-known institutions of higher learning,
most of which now disavow knowledge of his existence, and to publish numerous
scholarly articles unlikely to interest anyone. Meanwhile he obtained an Apple lIc
and became hopelessly hooked on computers again, migrating to a Macintosh in
1990. He wrote some educational and utility freeware, became an early regular
contributor to the online journal TidBITS, and in 1995 left academe to edit MacTech
Magazine. In August 1996 he became a freelancer, which means he has been looking
for work ever since. He is also the author of two books for O'Reilly & Associates ,
Inc., Frontier: The Definitive Guide and REALbasic: The Definitive Guide.

Colophon

Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach
to technical topics , breathing personality and life into potentially dry subjects.

The animal on the cover of AppleScript: The Definitive Guide is a Boston terrier. The
youngest breed in the American Kennel Club (AKC), the Boston is a cross between
various types of bulldogs and bull terriers. Originally bred in England, the breed
stabilized in the United States , where it was initially favored as a fighter in the under
world rat pits of the seedier areas of late eighteenth- and early nineteenth-century
Boston. By the late nineteenth century, however, people started to admire the beauty
of the breed's compact, elegant build-the "American Gentleman, " as the Boston
terrier is now known, had been discovered.

In 1889, the AKC rejected the Stud Book applications put forth by the "American
bull terrier" owners only to accept the breed in 1893 under its new name, Boston
terrier. Today, its gentle yet playful and protective nature combined with its willing
ness to be trained make it a popular family pet-especially, of course, in Boston, the
metropolitan area in which O'Reilly maintains a large editorial and production staff.
Though the Boston terrier's fighting days are in its past, the sportsmen and -women
at Boston University evoke the breed's heritage each time they take the field or ice.

Genevieve d'Entremont was the production editor and proofreader for AppleScript:
The Definitive Guide. Nancy Kotary was the copyeditor; Claire Cloutier and Phil
Dangler provided quality control. Mary Agner provided production assistance. Ellen
Troutman-Zaig wrote the index.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie
Freedman. The cover image is an original illustration created by Susan Hart. Emma
Colby produced the cover layout with QuarkXPress 4.1 using Adobe's ITC Gara
mond font.

Melanie Wang designed the interior layout, based on a series design by David
Futato. This book was converted by Julie Hawks to FrameMaker 5.5.6 with a format
conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra
that uses Perl and XML technologies. The text font is Linotype Birka; the heading
font is Adobe Myriad Condensed; and the code font is LucasFont's TheSans Mono
Condensed. The illustrations that appear in the book were produced by Robert
Romano and Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop
6. The tip and warning icons were drawn by Christopher Bing. This colophon was
written by Sarah Jane Shangraw.

Want To Know More About

Mac as X?
The Apple Developer Connection offers convenient and timely support

for all your Mac as x development needs .

Developer Programs

The Apple Developer Connection CADC) helps
developers build, test, and distribute software
products for Mac as x. ADC Programs provide
direct, affordable access to Mac as x software,
along with many other products and services,
including:

• Pre-release software seeds

• Apple hardware discounts
• Code-level technical support

Programs range in price from $0 (free) to US$3500
and are available worldwide.

Developer Tools

All ADC Program members receive free Mac as x
Developer Tools such as Project Builder, Interface
Builder, and AppleScript Studio.

Getting Started is Easy

The ADC web site offers a variety of reference
materials including in-depth articles, tutorials,
sample code, and FAQs. You'll also find student
developer resources, open source projects, mail
ing lists, and more. Our electronic newsletter
keeps members notified with up-to-the-minute
information on new releases and documentation.

Join today!

Visit http://developer.apple.com/membership/

" Developer Connection

O'R.ElJ..Y"'

Related Titles Avai lable from O'Rei l ly

Macintosh
Appleworks 6: The Missing Manual

The Best of the Joy of Tech

iMovie 3 and iDVD: The Missing Manual

iPhot02: The Missing Manual

iPod: The Missing Manual

Mac as x Panther in a Nutshell

Mac as x Panther Pocket Guide

Mac as X: The Missing Manual, Panther Edition
Mac as x Unwired

Macintosh Troubleshooting Pocket Guide

Office X for the Macintosh: The Missing Manual

Running Mac as X Panther

Switching to the Mac

Mac Developers
Building Cocoa Applications: A Step-By-Step Guide

Cocoa in a Nutshell

L\ A .\ l'TSHELL
Learning Carbon

Learning Cocoa with Objective-C, 2nd Edition
Learning Unix for Mac as X Panther

O'REur
Mac as X for Java Geeks

Mac as X Hacks

Mac as X Panther for Unix Geeks

Objective-C Pocket Reference

Programming Quartz 2D

ReaIBasic: The Definitive Guide, 2nd Edition

O'REILLY�
Our books are available at most retail and online bookstores.

To order direct : 1-800-998-9938 • order@oreilly. com • www.oreilly.com
Online editions of most O'Reilly titles are available by subscription at safari. oreilly. com

Keep in touch with O'Rei l ly
1 . Download examples from our books

To find example files for a book, go to :

www.oreilly.com/carolog

seiect the book, and follow the "Examples" link.

2. Register your O'Reil ly books
Register your book at register.oreilly.com

Why register your books?
Once you've registered your O'Reilly books you can :

Win O'Reilly books, T-shirts or discount
coupons in our monthly drawing.

Get special offers available only to registered
O'Reilly customers.

Get catalogs announcing new books
(US and UK only).

Get email notification of new editions of the
O'Reilly books you own.

3. Join our email l ists
Sign up to get topic-specific email announcements
of new books and conferences, special offers, and
O'Reilly Network technology newsleners at:

elists.oreilly.com

It's easy to customize your free elists subscription so
you'll get exactly the O'Reilly news you want.

4. Get the latest news, tips, and tools
www.oreilly.com

"Top 100 Sites on the Web"-PC Magazine

CIO Magazine's Web Business 50 Awards

Our web site contains a library of comprehensive
product information (including book excerpts and
tables of contents), downloadable software, back
ground articles, interviews with technology leaders,
links to relevant sites, book cover art, and more.

S. Work for O'Reilly
Check out our web site for current employment
opportunities :

jobs. oreilly. com

6. Contact us
O'Reilly &: Associates, Inc.
1005 Gravenstein Hwy North
Sebastopol, CA 95472 USA

TEL: 707-827-7000 or 800-998-9938
(6am to 5pm PST)

FAX: 707-829-0104

order@oreilly.com
For answers to problems regarding your order or our
products. To place a book order online, visit:

www.oreilly.comlorder_new

catalog@oreilly.com
To request a copy of our latest catalog.

booktech@oreilly.com
For book content technical questions or corrections.

corporate@oreilly.com
for educational, library, government, and
corporate sales.

proposals@oreilly.com
To submit new book proposals to our editors and
product managers.

international@oreilly.com
For information about our international distributors
or translation queries. For a list of our distributors
outside of North America check out:

international. oreilly. coml distributors. html

adoption@oreilly.com
For information about academic use of O'Reilly
books, visit :

academic. oreilly. com

O'REILLye
Our books are available at most retail and online bookstores.

To order direct : 1-800-998-9938 • order@oreil ly.com • www.oreillycom
Online editions of most O'Reilly titles are available by subscription at safari. oreil ly. com

