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Introduction

The purpose of these remarks is to introduce you to the technical foun-

dations of a number of formal methods of analysis that have come to play

a large role in the writings of philosophers, economists, political theo-

rists, legal theorists, and others, and then to show you how these formal

methods are misused by many of those theorists, with results that are con-

ceptually confusing and quite often covertly ideologically tendentious. I

am going to expound these materials carefully and with sufficient detail

to allow you to master them and make your own judgments about the

appropriateness of their use.

There are three distinct bodies of material with which we shall be deal-

ing. Each has grown out of a different intellectual tradition, uses different

methods of formal analysis, and finds different application by philoso-

phers, political, theorists, and so forth. Quite often they are confused

with one another, and my impression is that the people who use them

frequently do not understand the distinctions among them, but we shall

treat them separately.

The first body of material is Rational Choice Theory. When people talk

about maximizing utility or calculating the expected value of an alterna-

tive or discounting an outcome by its risk, they are drawing on Rational

Choice Theory.

The second body of material is Collective Choice Theory. When people

talk about the paradox of majority rule or Arrow’s Theorem or Pareto

Optimality they are drawing on Collective Choice Theory.

The third body of material is Game Theory. When people talk about

strategies or zero-sum or prisoner’s dilemma, they are drawing on Game
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Theory.

I am going to ask you to be patient, because this is going to take a

while. By the time we are done, I may have written a short book. As we

proceed, I will make some reading suggestions for those of you who wish

to pursue the subject in greater depth, but everything you will need to

know to follow my exposition will be contained in these pages.

The order of exposition is going to be as follows:

1. Some preliminary technical matters, principally concerning different

kinds of orderings.

2. The elements of Rational Choice Theory.

3. The elements of Game Theory, maybe [if you have the stomach for

it] including a formal proof of von Neumann’s Fundamental Theo-

rem concerning two person zero-sum games with mixed strategies.

This will include some discussion on the misuse of Game Theory in

nuclear deterrence theory.

4. A general discussion of misuses of the formal materials in treatments

of so-called Free Rider problems and other matters. Depending on

your endurance and interest, I may at this point discuss the use of

formal models and materials in legal theorizing and other areas.

5. A formal analysis of John Rawls’ claims concerning choice in the

Original Position in A Theory of Justice.

6. The elements of Collective Choice Theory, including a formal proof

of Kenneth Arrow’s General Possibility Theorem, which is the cen-

tral formal result in the field.1

1Final note in the original text: A REALLY, REALLY IMPORTANT REQUEST: I cannot

see your eyes, so I cannot tell when they glaze over, either from boredom because I am

going too slowly, or from confusion because I am going too fast. So I need to hear from

you if either of those things is happening.
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Chapter 1

Preliminary Technical Matters

1.1 Scales of measurement

Let us suppose that we have a finite set of discrete elements of any sort,

which we will call S = (a, b, c, . . . , n).1 The elements might be different

amounts of money, different flavors of ice cream, different bowls of ice

cream [not the same thing, of course], different candidates in an election,

and so forth.

We may wish to impose an ordering on the set. The very simplest

ordering we can impose is a nominal ordering, or a labeling. To each ele-

ment, we assign a label or name [hence "nominal"]. Two or more elements

may receive the same name, but each element receives only one name.

Such an ordering is said to be complete if every element in S is labeled.

The ordering creates what are called equivalence classes, which is to say,

subsets of elements all of which bear the same label or name. This labeling

exhaustively and mutually exclusively divides S into subsets. Obviously,

two elements are in the same equivalence class if and only if they have

the same name. Every element is in one, and only one, equivalence class.

With a nominal ordering, nothing more can be deduced from the labeling

than the simple fact that two elements are in the same equivalence class

if and only if they bear the same label. The essential fact about this very

1For more detail, see Stevens (1951), originally published in 1951 but re-issued and

updated.
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simple measure is that it is complete. Every element bears a label. For any

two elements, either they are in the same equivalence class or they are not.

Trivially, each element is in the same equivalence class with itself. Thus,

every element is in some equivalence class.

The next step is to introduce a binary relation, R, over the set of el-

ements. xRy is construed variously as meaning "x is equal to or greater

than y," or "(someone is) indifferent between x and y or prefers x to y," or

even "x is hotter than or is the same temperature as y," and so forth. All

of these have the same formal structure.

Let us suppose the following two propositions are true for R and for

S:

(i) for all x and y in S, xRy or yRx. This says that R is complete. Notice

that from this, it follows that for all x, xRx. [Just as a trivial exercise,

here is how we prove that xRx. Since for any x and y, xRy or yRx,

take the case in which x = y. Then substituting, we have xRx or

xRx, which is logically equivalent to xRx. That is the sort of baby

logic steps we will be taking many of in what follows]. This property

of an element bearing a relation to itself is called reflexivity, and a

relation of which it holds is said to be reflexive.

(ii) for all x, y, and z in S, if xRy and yRz then xRz. This property is

called transitivity, and it will turn out to be the single most impor-

tant property of relations like R.

Just to be absolutely clear what we are talking about here, suppose we

interpret the relation xRy to mean (someone) prefers x to y or is indifferent

between x and y. Then (i) says that for any two members of the set S, the

person in question either prefers x to y or is indifferent between them,

or else prefers y to x or is indifferent between them. If this is still a bit

puzzling, think of x and y as real numbers and R as meaning "is equal to

or greater than." (ii) says that if the person in question prefers x to y or is

indifferent between them, and also prefers y to z or is indifferent between

them, then that person also prefers x to z or is indifferent between them.

A binary relation like R is said to establish a weak ordering on the set

S. It is weak because it allows for indifference. Starting with the relation
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R, we can also define a relation P on S, like this: xPy means xRy and not

yRx. P here stands for "prefers," and a relation like P is said to establish

a strong ordering on the set S. To get an intuitive handle on these very

important little symbols, think of it this way. xRy says that x is at least

as good as y, and maybe better. xPy says that x really is better than y

[whatever "better" means here.] So R is weak and P is strong. Later on,

when we come to Collective Choice Theory, we will be saying a lot about

weak and strong orderings.

A relation, R, over a set, S, for which (i) and (ii) hold is said to be an

ordinal ordering. In discussions of these matters in philosophy, economics,

and political theory, it is often taken as a fundamental test of a person’s

rationality that his or her preferences exhibit at least an ordinal ordering

over all available alternatives.

Some economists, using what is called a theory of "revealed prefer-

ence," even argue that everyone must have a preference structure that at

least satisfies the first condition, and thus is complete, because confronted

with any two alternatives, x and y, a person will either choose one, thus

showing that she prefers it to the other, or else will be indifferent between

the two. But that, I will argue much later, is a covertly tendentious thesis

made more plausible by the formalism. Think Sophie’s Choice. [I.e., first

you force a woman to choose which of her two children you are going to

kill, and then you say, "So, that shows she prefers the one to the other."

I am going to have a good deal to say about this sort of thing down the

line.]

By the way, "ordinal" because the ordering merely establishes which of

the elements is first, second, third, fourth, etc. according to the relation R,

and these are what are called "ordinal numbers."

It may not be obvious at first glance, but preference structures do not

always exhibit transitivity, and hence are not even ordinal. Indeed, the

casual assumption of transitivity is actually an enormously powerful and

simplifying assumption.

Let me give an elementary and non-controversial example here, and

save the controversial examples for later. All of us, I assume, have had our

eyesight checked at the optometrist’s office. You shut one eye, the room is
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darkened, and you look through a complicated gadget at a chart of rows

of letters, each line smaller than the one above. The doctor flips lenses in

front of your open eye, and asks: "Which is clearer, one, or two?" Some-

times you can see a difference, and sometimes you just say, "They are the

same." The two lenses may actually have different degrees of magnifica-

tion, but the difference is simply too small for you to notice. Experimental

psychologists say that the difference between the two is then below your

"minimal discriminable difference," or MDD. Now, it is obvious that with

a little work, the optometrist could line up a series of lenses, each succes-

sive pair of which falls below your MDD, but the first and last of which

are clearly discriminable. If we interpret R in this case to mean "is clearer

than or is equally as clear as," it would be true that for any adjacent pair,

m and n, mRn and nRm, but for the first, a, and the last, q, it would not be

the case that aRq and qRa. In other words, the relation "is clearer than or

equally as clear as" would not be transitive.

The same thing might manifestly be true of someone’s preferences.

What all this means is that it is very powerful and quite probably false

to assume that someone has a transitive preference ordering over a set of

available alternatives. But people who use this sort of formalism almost

never realize that fact. Indeed, it is quite often the case that people in-

troduce this formalism without even feeling any need to say that they are

assuming transitivity. This is a simple example of what I mean when I say

that the formalism can conceal powerful and dubious assumptions.

Ordinal preference orders encode the order of someone’s preferences,

but not the intensity of that preference. Compare voter A with voter B in

the 1992 presidential election. Voter A is a fanatic George H. W. Bush sup-

porter. She doesn’t really like either Clinton or Perot, but despite Perot’s

kookiness, prefers him by a hair to Clinton. Voter B is torn between Bush

and Perot, neither of whom he loves, but he finally decides to go with

Bush. He hates Clinton and wouldn’t vote for him even if Mao Tse-Tung

were the alternative. These voters have identical ordinal preference struc-

tures: Bush first, Perot second, Clinton third. That is all you need to

know to figure out how they will vote, but obviously for all sorts of other

purposes this ordinal preference ordering fails to embody a great deal of
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important information. In particular, this ordering will not tell you how

either voter might behave in other political contexts besides voting, such

as donating money, working for a campaign, lobbying, and so forth.

This is as good a place as any to call into question the easy assump-

tion that the possession of a complete ordinal preference structure is the

most elementary test of one’s rationality. A great deal is at stake here,

much more than you might think. Let us start slow. The theory of ra-

tional choice has its roots in analyses of gambling behavior, of economic

behavior, and—to some degree—of political behavior. Now, when we are

talking about the way in which professional gamblers decide how to play

their cards or place their bets, it makes sense to assume that they can de-

fine a complete preference order over the available alternatives. That is to

say, the various possible outcomes offered by a gambling game are plau-

sibly described as commensurable with one another. The outcomes are,

after all, simply different wins or losses of amounts of money. The same

is true of people engaged in economic activities. But these are relatively

limited and specialized arenas of human activity. There are many other

arenas in which it is not so obvious that rational individuals have complete

preference orders over available alternatives.

Consider, as an example, the terrible choice presented to the central

character in William Styron’s novel Sophie’s Choice. [I know the story from

the movie of the same name, starring Meryl Streep.] A Gestapo gauleiter

overseeing the loading of Jews onto trains taking them to the death camps

offers Sophie a choice. She may save one of her two children from certain

death, but she must choose which one will survive. His posing of this

choice is clearly an act of satanic sadism. There are two ways of thinking

about this situation. The natural, and I suggest, rational way to think about

it is as a tragedy in which a woman is presented with a terrible situation

that will destroy her life no matter what she does. To choose either child

is impossible. To fail to choose one is to condemn them both to death.

Religion may have something useful to say about this situation. Literature

may. Perhaps nothing can. But for sure Rational Choice Theory is no help.

But Rational Choice Theory says that she must have some preference order

or other over the three outcomes, and her choice, whatever it is, reveals
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that preference.

Let me put this in a summary fashion, and ask you to think about what

I say. Perhaps later on we can discuss it. The assumption of a complete

ordinal preference order is presented in the literature as an innocuous

premise that gets the more complex and interesting arguments going. But

in fact it is, covertly, a highly questionable proposal to extend a form of

economic rationality into areas in which it arguably does not belong. By

accepting the formalism, someone unwittingly buys into this powerful

encroachment of the economic into arenas of human experience in which

it has no place. Imagine coercing a man into acting dishonorably, and

then saying that his agreement reveals exactly what price he places on his

honor. It would be more true to the human reality to say that by this act

of coercion, you have besmirched his honor, which henceforth is worth

nothing to him. The outcome of the choice you forced on him is not a

rational choice but shame.

The defining characteristic of capitalism is the reduction of all human

activity to market relations. Too often, Rational Choice Theory functions

as a covert and seductive rationalization of the capitalist ethos, which then

seems, because of the apparent neutrality of the formalism, to be equiva-

lent to rationality tout court.

It is not necessary to limit ourselves to complete orderings—orderings

which establish the individual’s or society’s preference for any two alter-

natives whatever. We can also define partial orderings, and these have in

fact played an important role in Economics and other disciplines. I will

only say a few words here, and return to this subject down the line. The

Sophie’s Choice example has shown us that sometimes individuals cannot

say, for two alternatives, which one they prefer. It is not that they are indif-

ferent between the two. The two are simply, in their minds and hearts, not

comparable. How many lives is it worth to save the only score of Bach’s B

Minor Mass? The question makes no sense to us, no matter what phony

scenarios we cook up in a philosophy essay.

A similar problem arises when we are trying to compare different so-

cial distributions of wealth. If Situation B offers everyone more wealth

than Situation A, then we can be pretty sure there will be unanimous
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agreement that B is better than A. Indeed, if people are willing not to be

envious of what others get, then we might be able to secure unanimity

for the proposition that B is better than A if B offers everyone at least as

much as A does, and offers at least one person more. [Why begrudge her

the extra if it isn’t coming out of your share?] But what about the case in

which B makes some people better off and others less well off than they

were in A? There may just be no answer in that case.

Thanks to Vildredo Pareto [1848 - 1923], when B makes everyone better

off than they were in A, we say that B is Pareto Preferred to A. Obviously,

if B is Pareto Preferred to A and C is Pareto Preferred to B, then we should

expect that C will be Pareto Preferred to A. So this Pareto or Unanim-

ity ordering is transitive but not complete. If some way of distributing

things is such that there is no alternative distribution that is Pareto Pre-

ferred to it, then we say that it is Pareto Optimal. Don’t be misled by

the enticing sound of the word "optimal." If we assume that everyone has

positive marginal utility for money, so that taking even a little bit away

from someone makes her less well off, then a social distribution that gives

everything to one man and nothing at all to anyone else is Pareto Optimal,

because any re-distribution will involve making at least one person worse

off, namely the person who had everything and now has slightly less. In

case you are wondering why this matters, I will just point out that when

economists describe a market as efficient, they mean that it produces a

Pareto Optimal outcome. Not too heart warming.

So much for ordinal preference orders, at least for the moment. Now

things get somewhat more complicated, but also a good deal more impor-

tant. The next step up, after nominal and ordinal orderings, is cardinal

orderings. Since this is going to require a little technical work, let me first

explain what is at stake. Both Rational Choice Theory and Game The-

ory [but not Collective Choice Theory] involve talking about people doing

something called "maximizing expected utility," or "discounting the value

of an outcome by its risk" and so forth. These calculations require that we

be able to assign cardinal numbers, or magnitudes, to different outcomes

or alternatives, and that we be able then to do things like adding them,

subtracting them, multiplying them by other numbers, etc. Now, you can-
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not add or subtract or multiply or divide ordinal numbers. It makes no

sense to ask, "Is Second the average of First and Third?" in the way that

you might ask "Is 2 the average of 1 and 3?" If you have ever been involved

in trying to work out a system to decide which team in a track meet has

won over all, or which country has won over all in the Olympics, you

will understand this. Does a whole raft of silver and bronze medals count

for more or for less than a small pile of gold medals? Are a gold and a

bronze equal to two silvers? The questions are meaningless. To carry out

any of these calculations, you need an interval scale, also called a cardinal

ordering.

An interval scale is an assignment of numbers to the elements of an

ordinal ordering in such a way that the intervals are equal [hence "interval

scale." This is actually a gross simplification of the correct definition, but I

don’t want to scare people away, and this will suffice.] A good example is

the Fahrenheit temperature scale. The elements here are, let us suppose,

readings provided by a thermometer of the temperature of different bodies

of water. We can first impose a nominal ordering by grouping together

the bodies of water that are [or maybe feel] the same temperature. We

then impose an ordinal ordering by arranging the equivalence groups in a

hierarchy from hottest to coolest. Thus far, all we have is the information

that this body of water is hotter than that one, or maybe that this body of

water is at least as hot as that one [i.e., weak rather than strong ordering].

Now, suppose we can actually answer the following question for any four

bodies of water, a, b, c, and d: Is the difference between the temperature of

a and the temperature of b at least as large as the difference between the

temperature of c and the temperature of d? Notice I said any four bodies

of water. In other words, I am asking about intervals of temperature, not

just temperatures. If I have enough information to answer that question

for any tetrad of bodies of water, then I can define a cardinal measure of

temperature. I can say, for example, using the Fahrenheit scale, that the

difference or interval between fifty degrees and sixty degrees is the same

as the difference or interval between twenty degrees and thirty degrees. So

it makes sense to say, "It is ten degrees cooler today," regardless of what

the temperature was yesterday.
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We are here performing an arithmetic operation on the labels assigned

to the elements of the set [namely subtraction]. But you cannot perform

arithmetic operations on ordinal numbers. For that you need cardinal

numbers [i.e., real numbers] like 1, 2, 3, and 4. So, this sort of scale is

called a cardinal scale.

This right here is one of the most important things I am going to ex-

plain, so if it is not clear, I expect to hear from you.

The last step, which is only important for a few purposes, is to define

what is called a ratio ordering or a ratio scale. A ratio scale is just like

a cardinal scale but with one thing added: with a ratio scale, we have

enough information to say, for any four elements of our set, a, b, c, and

d, whether the ratio of a to b is equal to or greater than the ratio of c to

d. Or, going back to the symbolism we used above, whether a
b R c

d . Now

a little experimentation will show you that a ratio scale requires that you

be able to identify some point as the zero point, or origin. A Fahrenheit

temperature scale is not a ratio scale. The zero point in the Fahrenheit

scale is chosen arbitrarily. Therefore, it makes no sense at all to say that in

a Fahrenheit scale, the ratio of twenty degrees to ten degrees is the same

as the ratio of eighty degrees to forty degrees. [For those of you who know

some Physics, that sort of statement does make sense in a Kelvin scale of

temperature, where the zero point is what is called absolute zero.]

Why am I going on about this? Well, for one reason, because it will

turn out, way down the line, that without knowing this stuff you cannot

understand what a zero-sum game is.

1.2 Transformations

Now we are going to talk about transformations. Technically, a trans-

formation is a one-one mapping of a set onto another set, but we can just

think about a transformation as a rule for assigning new labels or numbers

to a set of elements.
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1.2.1 Permutation

A permutation is a re-assignment of the labels attached to the elements

that preserves their grouping into equivalence classes. Initially, you will

recall, we attached labels to the elements of our set, S. Two elements that

got the same label were then in the same equivalence class. So if we label

people by their last names, all the Millers go together, all the Tailors go

together, and so forth. We could now relabel everyone, say by translating

their names into another language [so that all the Millers become Muellers,

and all the Tailors become Schneiders.] That would change everyone’s

name, but it would not change the groupings into equivalence classes.

All the Millers were together before, and they are still together now that

they are all Muellers. What is more, no two people who were in different

groups before are in the same group now. The official jargon for this state

of affairs is that the labeling is invariant under a permutation.

1.2.2 Monotone transformation

A monotone transformation is a re-labeling that preserves an ordinal

ordering. Suppose we take the items labeled first, second, third, and

fourth, and now label them fifth, eleventh, nineteenth, and fortieth. No

information in the original ordering has been lost, and none has been

gained. In the formalism of the relation R, for any two elements a and b in

S that have been relabeled a′ and b′ respectively, aRb if and only if a′Rb′.

So the ranking has not been changed by the transformation. Again, the

official way to say this is that the ordinal ordering, R, is invariant under a

monotone transformation.

1.2.3 Linear transformation

A linear transformation is a transformation that preserves a cardinal

ordering. A linear transformation of a relation R on a set of elements

S = (a, b, c, ...n) is a relabeling of each element a in S such that the new

label, a′ equals the old label a times some constant plus another constant.

Or: a′ = aq + r. This is called a linear transformation because the
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expression (a′ = aq + r ) is the formula for a straight line drawn on the a

and a′ axes. A little elementary algebra will show that this transformation

preserves an interval scale or cardinal ordering on the elements of S.

Remember: This means that it preserves equality of intervals between

pairs of elements. Here is how we prove this:

Take four elements, a, b, c, and d, such that (a − b) = (c − d). Now

impose a linear transformation on S. That means:

a′ = aq + r

b′ = bq + r

c′ = cq + r

d′ = dq + r.

Notice that we have imposed the same linear transformation on each

element. In other words, the constants q and r are the same in each case.

By hypothesis (a− b) = (c− d)

Substituting the transformed labels, we get (aq + r − bq − r) =

(cq + r− dq− r)

or: (aq− bq) = (cq− dq)

Dividing both sides by q, we get (a− b) = (c− d) Ta Da!

Figure 1.1 has a graph with two lines on it, showing you that the line

a′ = qa + r (A′ = 0.5a + 2, represented by a solid line) cuts the a′ (i.e.,

vertical) axis at r (2) and cuts the a (i.e., horizontal) axis at −r/q (-4). The

dotted line, on the other hand, represents a′ = −qa + r (a′ = −0.5a +

6), which cuts the vertical axis at r (6) and the horizontal one at −r/q
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(−(−6/0.5) = +12). So long as you re-label the elements of S so that the

labels satisfy the equation a′ = qa+ r, for any a in S, it makes no difference

which set of labels you use, because they all encode the same information.

This is what it means to say that a cardinal ordering is invariant under a

linear transformation.

−10 −5 0 5 10

−
10

−
5

0
5

10

a

a'

a'= 0.5·a + 2

a' = −0.5·a + 6

Figure 1.1: An example of representation of a′ = qa + r and a′ = −qa + r.

A linear transformation does two things. It changes the size of the in-

tervals [but not the equality of different pairs of intervals], and it changes

the zero point. The classic example of a linear transformation is the for-

mula for converting temperature from Fahrenheit to Centigrade. The for-

mula, as everyone knows who travels to Europe and wonders whether to

wear a sweater or not, is F degrees = 9/5 Centigrade degrees + 32. So, if Le

Monde says it is going to be 20 degrees today in Paris, that means 9/5(20)

+ 32 or 68, so no sweater. Zero degrees in centigrade is the temperature at
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which water freezes, but in Fahrenheit, that is 32 degrees. And so forth.

Each degree Centigrade is equal to 9/5 Fahrenheit degrees. Why does

this matter? Once again, it will turn out to be crucial when we come to

give a correct definition of a zero sum game, and for many other purposes

besides.

1.2.4 Ratio transformation

Finally, and uninterestingly, a ratio transformation is a transformation

of the form a′ = qa. This the formula for a line that goes through the origin

of the graph. The transformation just changes the size of the intervals but

does not change the zero point. And obviously, a′/b′ = qa/qb = a/b. This

one doesn’t matter much, but I put it in for completeness’ sake.

O.K. We have nominal, ordinal, interval, and ratio scales, and we have

permutations, monotone transformations, linear transformations, and ra-

tio transformations.

Now, as Portnoy’s analyst says in the last line of the novel, let us begin.

Pedagogical Note: This exposition is intended for people unfamiliar

with the material. I am trying to explain things slowly and clearly, without

inside baseball allusions to sophisticated interpretations. I want each step

to be completely clear to anyone who is following along. Maybe at the end

I can discuss some of the trickier mathematics. I do not believe that makes

any difference to the applications of this material in law, political science,

etc.



16 Preliminary Technical Matters



Part II

Theoretical Details





Chapter 2

The elements of Rational

Choice Theory

Gamblers have always known that in deciding how to place your bets,

it is essential to take into account both how much you can win or lose

and how likely you are to win or lose. One bet may offer a chance for an

enormous payoff [a national lottery, say] but very little chance of winning,

while another bet offers a pretty good chance of a small gain. "Enormous"

and "small" are not much help, and neither are "little" and "pretty good."

How should you evaluate the relative attraction of two bets? How should

you decide what is a reasonable entry fee for playing a gambling game?

For a very long time, one standard answer has been to calculate what

is called the mathematical expectation of a gamble. This is the size of the

possible gain discounted, or multiplied by, the probability of winning. If a

gamble pays winners $100 and players have a 10% chance of winning, then

the mathematical expectation of the gamble is (100)(.1) = $10. A prudent

gambler will pay no more than ten dollars to play that game.

What exactly does it mean to say that the mathematical expectation

of the game is $10? Well, one thing it does not mean is that there is any

chance at all of winning exactly ten dollars. If you play this game, there

are only two possible outcomes: either you will win one hundred dollars

or you will just lose your entry fee. The standard answer is that if you play

the game over and over again, your average winnings will tend to cluster
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more and more tightly around ten dollars. This is the sort of calculation

that casinos and casino gamblers make. The games are all set up so that

over the long run, the House tends to average a small gain per play. That

is why casinos make money.

There are two problems with this explanation, both of which play an

extremely important role in the application of this formalism to political

theory, legal theory, military strategy, and so forth. The first problem is

that not all of life is a casino, and in some situations we are not presented

with the realistic possibility of "playing" over and over again. Think nu-

clear war. The second problem is that very long runs of losses are possible,

even in a game with an attractive mathematical expectation, and there is

always the chance, as you play again and again, that you will run out of

money before things "average out."

Are there any other rules someone might propose for making "rational"

choices? Indeed there are, but before we talk about any of them, we need

to do a good deal more technical preparation.

Notice that to carry out a calculation of mathematical expectation,

there are two things you must know: the precise value of each outcome,

be it a win or a loss, and the precise probability of each possible outcome.

If you do know both of these things, then you are said to be making a

decision under risk. If you do not know the probabilities of the several

outcomes, but you do know the precise value of each possible outcome,

then you are said to be making a decision under uncertainty. Game Theory

analyses decision under uncertainty. The Original Position in Rawls’ the-

ory is a situation of decision under uncertainty. Maximization of expected

utility presupposes decision under risk.

If you are not sure what all the possible outcomes of a choice are, or

you do know what they are but do not know what value you place upon

them, then these theories have nothing to tell you about how you should

make decisions, even though that is a pretty good description of the fix we

usually find ourselves in the real world. As my favorite Rational Choice

Theorist, Donald Rumsfeld, liked to say, during his glory days when the

Iraq invasion was going the way he wanted it to, there are the knowns and

the known unknowns, and then there are the unknown unknowns.



21

At this point, enter Nicolaus Bernoulli [1687-1759], cousin of the

Bernoulli whose work helps to explain why airplanes fly. It seems that

in St. Petersburg, which was, in the 18th century, a popular watering

hole for European aristocrats, a game was being played by skilled and

knowledgeable gamblers whose betting behavior seemed to contradict the

well-known rule of maximizing mathematical expectation.

The gamble was this: a fair coin is tossed again and again until it comes

up heads. You receive, as your winnings, a number of ducats equal to 2

raised to the (n− 1) power, where n is the number of the toss on which

heads appears. [Ducats because you couldn’t spend rubles anywhere but

in Russia, and there are only so many sets of nested Russian dolls you

can buy.] So if the coin comes up heads on the first toss, you get 1 ducat.

[Why? Because in this case, n = 1, and 1− 1 = 0, and 2 to the zero power

is 1] if the coin does not come up heads until the second toss, then you

get 2 ducats. [Why? Because in this case n = 2, and 2− 1 = 1, and 2 to

the first power is 2.] If heads comes up on the third toss, you get 4 ducats,

on the fourth toss 8 ducats, and so on ad infinitum. The question for the

gamblers was: How much should I be willing to pay to enter the game?

Now the classic answer, well understood was: Pay any amount up to the

mathematical expectation of the game. So all that was necessary was to

calculate the mathematical expectation of the game.

You calculate the mathematical expectation of the game by taking the

payoff of each possible outcome [heads on the first toss, heads not until

the second toss, heads not until the third toss, etc.], discounting that payoff

by the probability of that outcome, and then adding up all th discounted

payoffs. That is the mathematical expectation of the gamble.

O.K. There is a 1/2 chance that heads will turn up on the first toss, and

(n− 1) in this case is 0. 2 to the 0 power is 1. So, discounting the value

of the payoff, one ducat, by the odds, one-half, the value to a gambler

of heads turning up on the first toss is 1/2 ducat. There is a 1/4 chance

heads won’t turn up until the second toss. If that happens, then (n− 1)

is (2− 1) or 1. So the payoff is 2 ducats, and the odds of getting it are

1/4, so the expected value is again 1/2 ducat. A little thought or a little

experimentation will you show that every payoff of this endless series of
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terms is 1/2 ducat. And the sum of an infinite number of 1/2s is infinite.

In other words, the MATHEMATICAL EXPECTATION of the gamble is

INFINITE!

So according to the rule that everybody accepted, namely evaluating

a gamble as equal to its mathematical expectation, a gambler should be

willing to pay any amount of money he can lay his hands on to enter the

game. Or, as Bernoulli rather quaintly puts it, a gambler should refuse to

accept any amount of money that another gambler offers him for his ticket

to play the game. But that is crazy! As Bernoulli observed in St Petersburg,

experienced gamblers would not dream of doing anything like that. How

to explain this apparently irrational behavior?

Bernoulli’s answer was that the gamblers, contrary to popular opinion,

were not trying to maximize their money winnings. Instead, they were

trying to maximize the utility they got from their money winnings. I

am going to continue with Bernoulli’s analysis, and put off for a few

paragraphs a deeper look at his solution to the puzzle, but let us be clear

right here what he is saying. According to Bernoulli, the gamblers know

what the mathematical expectation of the gamble is, in money, and they

also know how much "utility," whatever that is, those amounts of money

will give them. We will come back to this very soon. Let us continue.

Drawing on the theory of logarithms, which had been around for about

a century, thanks to John Napier, Bernoulli decided that there was a

logarithmic relationship between the amount of money a gambler won or

lost and the amount of utility he got from that money. Indeed, Bernoulli

claimed to know the formula. It was, he said:

u = b ∗ log(a + D)/a

Where a is the amount of one’s fortune before the gamble, D is one’s

winnings from a toss of the coin, u is the utility the gambler gains from

the winnings, D, and b is a constant to be determined empirically—by

observation, one supposes. Bernoulli then demonstrated mathematically

that if a pauper was given an entry ticket to the game [a pauper is someone

with no previous fortune, so a = 0], the rational thing for him to do would
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be to sell that ticket for as little as 2 ducats. For an ordinary gambler, who

presumably already has some money in his pockets, the ticket would not

be worth even that much.

There is a whole lot to say about this little story, so settle down. First

of all, where on earth did Bernoulli get that formula from? The answer

is pretty clear. He invented it, because he knew how to manipulate it

mathematically to get the answer he wanted. For our story, it doesn’t

really matter, because that formula is going to disappear pretty soon, and

never reappear in this blog. I just put it in because once in your life you

should know what Bernoulli said. Pretty clearly, he decided that was the

shape of the utility function because he knew how to solve that formula

for D = 0. Here are the really important things that can be said:

1. If you plot that formula on a graph whose x axis is the amount of

money won and whose y axis is the amount of utility gained from

that money, you will find that the line rises sharply at first and then

bends more and more toward the horizontal, so that as it goes out

infinitely to the right [representing longer and longer streaks of all

tails before a head shows up], it approaches the horizontal asymp-

totically. So the total value of the entire gamble in utility approaches

some finite amount. Each additional half ducat one gains by yet an-

other tails yields less additional utility than the half ducat gained

by the previous appearance of tails. This is called having declin-

ing marginal utility for money [or at least for ducats], and if you

can grasp this idea, you can understand most of modern Economics.

For all manner of purposes, economists routinely assume declining

marginal utility for money. The idea is that although the next dollar

is probably worth a good deal to you if you are of modest income,

if you keep getting dollars, after a while each additional one will be

worth less and less to you. If people’s utility functions are nice and

regular like this—continuous, monotonically increasing, with declin-

ing marginality—then we can use the calculus to do all sorts of nifty

things that make economists feel really good about themselves. But

the fact is that people’s utility functions, assuming they have them,
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are much less conveniently smooth than that. They are lumpy, they

go backwards, and in all sorts of ways are not amenable to the simple

manipulations that the calculus allows us when dealing with what

are called continuous functions. Leonard Savage and Milton Fried-

man, a long time ago, published a famous little paper in which they

pointed out that since the same people often buy both lottery tickets

and life insurance [in the first case paying for the privilege of risk

and in the second case paying to avoid risk], their utility functions

cannot exhibit monotonic declining marginal utility.

2. The second point is equally important, but not usually mentioned.

So long as you are talking about the money payoffs, you are in the

realm of the public, the objective, the easily measurable. But once

you shift to talking about utility, all of this easy publicity disappears.

Each person has his or her own utility function relating money to

utility, and there is no reason at all to suppose that any two peo-

ple have identical utility functions. Furthermore, for all manner of

well-known philosophical reasons, it is impossible to compare one

person’s utility with another person’s utility [basically because you

cannot see into another person’s mind]. And since a person’s utility

function, even if it is a cardinal function, is invariant under a linear

transformation, there is no way of knowing whether one person’s

units of utility are bigger or smaller than another person’s units, nor

is there any way of knowing the relation between the zero point of

one person’s scale of utility and the zero point of another person’s

scale. Both of those [scale and size of unity] are arbitrary. It is ex-

actly as though you found two thermometers using different scales

of temperature, and there was no way of sticking them into the same

bucket of water to discover the conversion formula. [Now you begin

to see why I went through that technical stuff earlier]. Everyone has

had the experience of thinking that some guy is a sissy because he

cannot stand a little pain, even though his wife went through child-

birth without an epidural. But suppose he replies that he is more

sensitive to pain, and suffers more from something that others find
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bearable. Not even modern neurophysiology can determine whether

that is true or false. Recall the aristocrats who claimed that peasants

have courser sensibilities and therefore suffer less from sleeping on

rocks than a princess does from having a pea under her mattress.

The appropriate response to that claim is not Rational Choice The-

ory. It is the guillotine. For all of these reasons, it never makes sense

to try to add together the utilities of two different people, unless

some very special conditions are present [see discussion below of

the concept of a zero sum game.]

3. The third point is that Bernoulli gives us no way to figure out what

someone’s utility function is, and neither do most of the people who

followed after him and adopted the practice of talking about utility

functions. When we get to Game Theory, I will go through the rather

complex set of premises that Howard Raiffa and Duncan Luce lay

down in their invaluable book, Games and Decisions, from which one

can deduce that someone has a cardinal utility function invariant

under linear transformations. You will see that it is a huge leap of

faith to suppose that people have cardinal utility functions. It is even

a leap of faith to suppose that they have utility functions at all.

4. But the big problem is, Bernoulli does not tell us what utility is,

and neither do any of the people who follow him. This is a huge

subject, and I can only scratch the surface of it. Here goes. The word

"utility" means "usefulness," which immediately raises the question,

useful for what? Intuitively, we do not think of pleasure useful.

It is, as we say, an end, not a means. David Hume, in his great

work A Treatise of Human Nature, speaks of things that are "useful

or agreeable to ourselves or others," clearly implying that a thing

that is useful is useful for getting something else that is agreeable.

In the modern discussions of what is called "utility theory," or "the

theory of expected utility," this distinction is simply ignored, and

utility is treated as somehow equivalent to pleasure. This confusion

or unclarity was made worse by the ethical and political theorists—

James Mill, John Stuart Mill, Jeremy Bentham—who asserted that an
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act is right only insofar as it produces the greatest happiness for the

greatest number, and then called that view Utilitarianism.

5. If you put these various comments together, here is the sort of prob-

lem you arrive at: Rational Choice Theorists take it for granted that

the rational thing to do in any situation is to choose the alternative

that maximizes expected utility. This presupposes four things, not

one of which they can plausibly argue for: First, that we know all the

possible outcomes in a situation and their probabilities; Second, that

each of us has, and has access to, a cardinal utility function invariant

under linear transformations that takes as its argument an outcome

and has as its value the measurable quantum of utility that outcome

will yield; Third, that we know what quality, experience, or state of

mind we are referring to when we speak of a quantum of utility; and

finally, that we should choose in accordance with the principle of the

maximization of expected utility even in situations in which there is

no realistic opportunity to repeat the choice endlessly many times so

as to generate a series of outcomes. The elegance of the mathemat-

ics seduces Rational Choice theorists and others into sliding past all

these serious issues so that they can get to the fun stuff of playing

with the mathematics.

So much for the easy stuff. Now let’s say a word or two about more

complex issues that play a very important role in criticizing the applica-

tion of Rational Choice Theory and Game Theory to military strategy and

nuclear deterrence. We have been talking about maximizing expected util-

ity, as though it were obvious that two alternative actions or strategies or

choices with the same expected utility are equally worthy of being chosen.

But a moment’s thought shows that this assumption is, at the very least,

questionable.

A simple example will make the point. Suppose I am presented with

the opportunity to play either of two games. The first offers a coin toss,

with heads winning me an amount of money for which I have very great

utility, and tails losing me an amount of money for which I have exactly

the same utility. [I have to define the game in this clumsy way, remember,
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because it is, by hypothesis, utility and not money that I seek to maximize.

Given the shape of my utility function, it might be that for me, a million

dollars gained is equal in utility to the one hundred thousand dollars I

already have. So this might be a coin toss game that wins a million if heads

comes up and loses a hundred thousand if tails comes up.] The expected

utility of this game is, by construction, zero. [1/2 times the utility to me of

a million dollars 1/2 times the utility to me of a hundred thousand dollars,

where, by hypothesis, those two amounts of utility are equal.] The second

game consists of the game master simply saying to me, "You neither win

nor lose anything." The expected value of this game is also zero.

Now, the theory of rational choice says I should be indifferent between

these two games. There is, according to my calculations of expected value,

no reason to prefer one to the other. But in fact, as I think is obvious, some

people would clearly prefer to play the first game, while others [myself

included] would prefer to play the second. This is not, let me emphasize,

because I value the million I might win less highly than the one hundred

thousand I already have [assuming that I have it, hem hem]. If that is

true, then just adjust the amounts until the utilities are equal, wherever in

dollar amounts that balance lies. [There must be such a pair of amounts,

by the way. That is one of the implications of the assumption that my

utility function is reflexive, complete, and transitive.]

Intuitively [and correctly], the explanation for the varying ways in

which different people would rank these two games is that people have

different tastes for risk itself, independent of their calculation of expected

value. Some people like to take risks, and others are risk averse. Take

me, for example. I don’t like risks. Suppose I decide [who knows how?]

that fifty dollars is worth twice as much to me as twenty dollars [because

I have declining marginal utility for money]. If you offer me a sure twenty

dollars or a fifty percent chance of getting fifty dollars, I am as likely as

not to take the sure twenty, because I just don’t like risk. I know that the

mathematical expectation of the risky alternative is (1/2 x 50) or 25 dol-

lars. And since I have positive, albeit declining, marginal utility for money,

I prefer $25 to $20. Even so, I will take the sure $20. I have better things to

do with my life and I just don’t like risk.
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This problem was the subject of a fascinating debate fifty years ago or

so between the French economist Maurice Allais and the emigré Ukrainian

economist Jacob Marschak. Allais argued the point I have just been mak-

ing. Marschak replied that the problem of attitudes toward risk itself

could be got round by changing the nature of the set, S, of alternatives

over which a subject is asked to express preferences. Instead of a set of

outcomes, or payoffs as they are frequently referred to in the literature,

you can present the subject with a set of what Marschak called prospects,

which are total future states of affairs. Since a prospect includes the pat-

tern of risk involved in the making of a choice, preference for risk itself can

be built into the utility function, thus getting around the fact that people

have different tastes for risk independently of their attitudes toward the

various outcomes that may result from a gamble.

This response is correct, and can easily enough be handled mathemat-

ically, but it misses a deeper point that is, I believe, fundamental. The

whole purpose of introducing the concept of a utility function and the

associated process of maximizing expected utility is supposed to be to

provide a chooser with a definite and calculable method for making a

decision confronted with alternatives, based only on the chooser’s utility

function. In effect, the theory says to someone making a choice, "If you

know how you feel about the outcomes [your utility function] and if you

know the probabilities [the premise of choice under risk], then this method

will allow you to calculate what it is rational for you to do, even when it

is unclear to you what that is." If this claim can be sustained, then the

method of expected utility maximization is a very powerful aid to rational

choice. But if it is necessary to shift to a utility function defined over to-

tal prospects, then all of the power and usefulness of the rule of expected

utility maximization is lost. This may not be clear when one is awash in

formalism and symbolism, but if you remind yourself what those symbols

actually mean, and do not let yourself be beguiled by the spiffiness of the

mathematics, then the force of Allais’ objection is clear [in my opinion].

There are also a number of more subtle points relating to the con-

struction of the utility function. In order for a cardinal utility function

to be constructed from someone’s preferences, it is necessary that all of
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the outcomes in the set S be commensurable with one another. That is, it

must be possible to represent the subject’s preferences by an assignment

of finite cardinal numbers, so that for any three alternatives a, b, and c in

S, there is some probability p for a such that:

b = pa + (1− p)c.

Since p + (1− p) = 1, the expression on the right of the equation says

that it is certain that either a or c will happen. The equation says that there

is some way of adjusting the probabilities so that the subject is indifferent

between outcome b and the gamble of a or c with the probabilities p and

(1− p).

But it may be that one of the possible outcomes is, in the eyes of the

subject, so much worse than any of the others [for example the subject’s

death] that there is no probability of that outcome, however small, that

the subject is willing to risk. Alternatively, there might be one outcome

so much better, in the subject’s view, that there is nothing else you can

offer the subject to compensate her for losing even the tiniest bit of her

chance of getting it [for example, eternal salvation]. If either of these is the

case, then the subject does not have a cardinal preference ordering, but

instead has what is called a lexicographic preference ordering. Since this

will come up later, a word about lexicographic preference orderings.

When we alphabetize a group of words [hence "lexicographic"], we

put first all the words that begin with the letter a, regardless of what the

subsequent letters in the word are. We put azure before bad, because kit

starts with the letter a, even though the z, the u, and the r in azure come

relatively late in the alphabet, whereas the letters a and d in bad come

early. The earliness of a and d does not, as it were, compensate for the fact

that b comes after a, nor does the lateness of z, u, and r count against azure

in the alphabetizing. In other words, we are not assigning numbers to the

letters and then arranging the words in the order of the sum of the letters

in them [as medieval Hebrew scholars did in the Kabbalah]. Arranging

a set of alternatives in this fashion, with one or more alternatives being,

as we say, "lexicographically prior to" the others, yields a lexicographic
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ordering of the set.

Keep this in mind, along with everything else I am telling you. It will

turn out to play a role in my criticism of the application of Game Theory

to military strategy by deterrence theorists, and also will turn out to pose

problems for Rawls.

Well, that was fun. Now let us discuss an even hairier problem that

actually played a very important role in decisions made by the Defense

Department in the 1960s about the construction of the command and con-

trol systems for America’s nuclear weapons [we are talking serious stuff

here, folks.]

As I explained in my blog, the enormous destructive power and rev-

olutionary character of nuclear weapons forced America’s military plan-

ners to turn for advice to economists, psychologists, mathematicians, and

philosophers. Very quickly, a number of these think tank defense in-

tellectuals began to worry about the following problem. If the Soviet

Union should be so foolhardy as to launch a first strike nuclear attack

on America, it might, as part of this attack, target Washington D.C. In an

instant [quite literally, in an instant] every decision maker of any consti-

tutional authority in Washington might go up in a mushroom cloud. At

the same time, almost certainly communications among those remaining

alive would be disrupted by the effects of the explosions occurring across

the country. The nuclear submarines carrying missiles with multiple sepa-

rately programmable warheads would still be functional, presumably, but

they might be out of contact with whatever remained of the military or

civilian high command.

It was clear to the defense intellectuals that two things needed to be

planned for and implemented. First, a physical system of backup commu-

nications and control of warhead delivery systems had to be put in place

now, so that even after the incineration of the president and his so-called

black box, it would be physically possible to use the remaining missiles,

if that what was what it was decided to do. Second, a set of standing

orders had to be promulgated now, directing officers [or even enlisted sol-

diers] still in possession of usable nuclear weapons to carry out whatever

orders it was decided, ex ante, to give them. Because of the instantaneity
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and scope of nuclear destruction, it was clear that those responsible for

making decisions about the use of nuclear weapons could not wait until

after the attack to deliberate and decide. The relevant people might not

survive the attack, and even if they did, they might not be in a position to

issue orders that could be received. The response had to be planned for in

advance, if there was to be a response at all.

To the defense intellectuals, who were accustomed to thinking and

writing about matters of nuclear deterrence strategy in terms of Game

Theory or Rational Choice Theory, this second desideratum was a matter

of defining the nation’s utility function in the face of a set of hypothet-

ical choices. But at this point, some of those intellectuals realized that

they faced a very puzzling problem. To put it simply, should they find

ways to build into the physical system and set of standing orders the

preference structure that the relevant decision makers have now, or the

preference structure they might have after the attack? After all, contem-

plating these end-times scenarios quietly in a backroom of the Pentagon,

the planners might conclude that should America suffer the sort of devas-

tating attack that would effectively terminate the existence of the United

States as a functioning political entity, it would make no sense at all to

launch a counter-attack whose sole purpose was the vengeful killing of

several hundred million Soviet citizens, none of whom had played any

role in the launch of the attack. But the defense intellectuals could also see

that after the attack, with America in ruins, those still in control of nuclear

weapons might desperately want revenge simply for the sake of revenge.

In short, the trauma of the attack might change the preference order, or

utility function, of the surviving decision makers.

Since the planners could recognize this possibility in advance, in ac-

cordance with which utility function should the plans be made? The one

the decision makers had now, or the one they thought they were likely to

have then?

If we step back from the horror of these speculations, we can see that

this dramatic example is an instance of a much larger theoretically in-

tractable problem. Rational Choice Theory assumes that utility functions

are both exogenously given and invariant. The utility functions are exoge-
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nously given in the sense that whatever determines them is outside of, or

exogenous to, the system of decision being analyzed. The utility functions

are invariant because, for purposes of the expected utility calculations,

they are assumed to remain unchanged and are the foundation on which

the calculations are based. So in situations in which the utility functions

themselves change, the theory has nothing to say.

The same point can be made in another and more striking way. We

have already seen that interpersonal comparisons of utility are not allowed

in the theory of rational choice. The utility functions are cardinal, which

is to say invariant under linear transformations, which in turn means that

neither the units nor the zero point of two distinct utility functions are

comparable. All of modern economic theory is erected on this assump-

tion, by the way. [See the classic work by Lionel Robbins, An Essay on the

Nature and Significance of Economic Science.] Now, from the point of view

of Rational Choice Theory, a person simply is an embodied utility func-

tion. If a person’s utility function changes, then so far as the theory is

concerned, that person is now a new person, no longer the old person,

and there can be no useful comparison of that person’s utility function

before and after the change, because that is the same as trying to compare

the utility functions of two different people. In other words, the question

posed by the defense intellectuals has no answer.

11 When I was a child, I spake as a child, I understood as

a child, I thought as a child: but when I became a man, I put

away childish things.

12 For now we see through a glass, darkly; but then face to

face: now I know in part; but then shall I know even as also I

am known. [1 Corinthians 13]

Now, if you think about it for even a moment, you will see that growing

up, maturing, and aging is a process, common to all human beings, that

among other things involves a change of one’s utility function. Surely any

useful theory of rational choice must allow for growth and change. But

the Theory of Rational Choice does not, and cannot. That does, to put it

mildly, seem to be a bit of a problem.
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Well, so much for the Theory of Rational Choice, for the moment.1

We come now to the most elaborate, the technically most difficult, the

most popular, and the most often misunderstood body of formal materi-

als applied to philosophy, politics, law, military strategy, economics, and

love: Game Theory. Quick check—Google finds 600,000 sites for "Pris-

oner’s Dilemma" and 1,900, 000 sites for "zero sum game." Not quite up

there with Lady Gaga [83,700,000], but still, not chopped chicken liver ei-

ther. This is going to take a long time, and there are going to be some

seriously technical patches that will try both your patience and my skills

at explication. Nevertheless, if, in the immortal words of W. S. Gilbert in

Patience, you want to "get up all the germs/ of the transcendental terms,"

now is your chance to do it. By the way, if you are actually paying at-

tention to the outline with which I started, you will notice that I moved

Game Theory up ahead of Collective Choice Theory. Arrow’s Theorem

(Arrow, 1963) and Amartya Sen’s extension of it are two of the loveliest

bits of theoretical material around, fully deserving of the two Nobel Prizes

they earned. But their application to the fields you folks come from is not

as rich as the application or misapplication of Game Theory, so I figured I

would get to the good stuff before you all drift away. Here we go.

1An explanatory word to my readers. Each of the installments of this Formal Methods

tutorial is not very long. There are two reasons for this. First, it is difficult stuff, and I do

not want to scare away readers for whom this is all new. Second, I am writing two blogs at

the same time—this one and my Memoirs—and I am working flat out. Five typed pages

or so of this formal material is all I can manage each time I post. So be patient.



34 The elements of Rational Choice Theory



Chapter 3

The elements of Game Theory

3.1 Introductory remarks

In the eighteenth and nineteenth centuries, the standard conception of

the capitalist market was of a place inhabited by so many sellers and so

many buyers that the actions of any one buyer or seller had a negligible

effect on prices. One buyer, by shifting to a different supplier or choosing

not to buy at all, could have no measurable impact on what came to be

called aggregate demand, and the output of one factory or shop had as

little impact on aggregate supply. The marketplace was, in this sense,

opaque. One could not see through the hustle and bustle to the individual

suppliers or buyers whose actions, intersecting with one another, were

determining the structure of prices. The standard term for this situation

is that everyone was a "price taker," and no one was a "price maker." This

was always an idealization that did not quite fit the facts, of course. First

of all, from the very beginning there had been producers who managed

to control so large a part of the market for their goods that they could

simply dictate the prices at which they sold. They were said to have a

monopolistic position in the market. There were also buyers who exercised

a monopoly—Kings and Princes who by main force made themselves the

sole buyers for certain luxury or military goods and so could dictate the

prices at which they bought.

By the beginning of the twentieth century, economists were theoriz-
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ing about situations that fell somewhere between monopoly and perfect

competition, situations in which a small number of producers dominated

a market—three or four great steel producers, three auto manufacturers,

and so forth. A sizeable literature grew up dealing with what was called

Imperfect Competition. For example, in 1933, Joan Robinson, the doyenne

of the Cambridge School, published The Economics of Imperfect Competition.

The defining characteristic of imperfect competition is that it is a situation

in which the opacity of the market lifts, and it becomes possible for a pro-

ducer to know about, be aware of the individual behavior of, and thereby

adjust its own behavior to, that of the other producers.

Beginning in the 1920s, John von Neumann, one of the genuinely great

minds of the last hundred years and more, developed a powerful math-

ematical analysis of the decision making that is possible in the precisely

delineated structure of a game as well as in the situation of imperfect com-

petition that economists had been examining. Joining forces with Oskar

Morgenstern, an economist, von Neumann elaborated his theories in one

of the great books of the twentieth century, The Theory of Games and Eco-

nomic Behavior, published in 1944 (Neumann and Morgenstern, 1944). If

you are unfamiliar with von Neumann’s career, it is worth your time to

look him up. He had a unparalleled capacity to grasp the underlying for-

mal structure of a wide variety of fields, and made contributions not only

to mathematics and economics, but also to physics. He is also the per-

son who came up with the idea of using a binary number system so that

it could be modeled in an electrical circuit, thereby making possible the

digital age. Suffice it to say that there are only two or three talents that I

would give years off my life to possess, and that is one of them.

What makes games so interesting, from von Neumann’s point of view,

is that they are interactions in which the number of players, the outcomes

or payoffs, and the permissible moves are all precisely defined by clearly

stated rules. Games are thus, in a sense, models of economic transactions.

In many games, each player knows who his or her fellow players are, how

they value the outcomes, and what the moves are at any stage in the game

that are available to each player.
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3.2 The definition of a game—extensive form

I am going to start by analyzing a very simple game. This will give me

a chance to define the key concepts we are going to be working with. Here

is a game I invented for these purposes, called Take Away Matchsticks.

There are two players, and a pile of four matchsticks lying on a table.

Players take turns moving. Each move consists of taking away either one

or two matchsticks. The last player to take away a matchstick loses. The

loser has to give the winner a penny. The rules say that if it is your turn,

you have to move. That’s the whole game. Obviously, the first person to

move loses every time, because either she takes away one matchstick or

two. If she takes away one, that leaves three, and the other player takes

two, forcing her to take the last one and lose. If the first player starts

by taking away two, then the second player takes one, forcing the first

player to take the last matchstick and lose. Everybody got it? Trust me,

for present purposes, you don’t want me to choose a more complicated

game.

A game consists of a number of moves. The rules define the starting

point, the number of players, whose move it is at each step in the game,

what the available choices are for each player at each step, when the game

ends, and what the result is for each player at each ending point. We are

going to limit ourselves to games whose rules define a finite number of

players and guarantee a finite number of moves. So, for example, if we

are analyzing chess, we will include the rule that says that if a position is

repeated three times, or if fifty moves are made by each player without a

piece being taken or a pawn being advanced to the eighth rank, then the

game is declared a draw.

In Taking Away Matchsticks, there are two players, whom we will call

A and B. The starting point is the pile of four matchsticks. The player

labeled A goes first [tough luck]. A move consists of taking away one

matchstick or two. The rules of the game ensure that it can last at most

four moves [if each player takes one matchstick each time—stupid, but

legal]. There are two possible outcomes: either A pays B one cent, or B

pays A one cent. There cannot be any draws.
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Just as Economics doesn’t care how anything is actually produced or

consumed, so Game Theory doesn’t really whether a game is played with

matchsticks or chess pieces or a pile of chips and a deck or a bat and a

ball. It only cares about moves and players and outcomes and such. So

our entire little game can be fully represented by the following diagram,

which for obvious reasons is called a Game Tree:

= A wins

= B wins

2

B

A A

A

A

B

B

2

2

21 1

1

1

1

1

1

Figure 3.1: Game Tree

Each of the black circles is a node. It is a point at which a player has

a move. The nodes are labeled, showing whose move it is. Each branch

coming out of a node represents one of the moves that the rules allow that

player to make at that point in the game. A square box indicates that the

game is over. A white box indicates that Player A has won. A black box

indicates that Player B has won. For purposes of Game Theory, two games

with identical game trees are indistinguishable, even if one involves guns

and swords and the other involves cards and chips.

If I had created a game in which a coin toss decides which player goes

first [a little bit fairer for Player A], then there would be three players in
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the game. The third player would be Lady Luck, and she would have the

first move.

I want each of you to take a moment to look carefully at the Game

Tree and follow out in your mind the sequence of moves I described ear-

lier leading to one player or the other winning. There are five different

sequences of moves that can occur in the game, each one leading to a dif-

ferent square box. Notice that there are no loops in the tree—no way that

two different sequences of plays can lead to the same node up the tree a

ways. For example: A takes the right hand branch; B then takes the right

hand branch; then A takes the left hand branch. Game over, B wins. Or, A

takes the left hand branch, B takes the right hand branch, A takes the only

branch offered. Game over, B wins. And so forth. A game represented in

this form is said to be in the Extensive Form. The Game Tree is said to be

the Extensive Form of the Game.

Let us suppose A agrees to play the game with B and then is called

away for an emergency. She asks the referee to play for her, following to

the letter her instructions. [There has to be a referee to make sure no one

cheats]. The referee agrees, but insists that A give him a complete set of

instructions, so that no matter what B does, the referee will know how to

play A’s hand. A says: here is what I want you to do: Take 1 matchstick.

If B takes 1, take 2. If B takes 2, take 1. This set of instructions is called

a Strategy. It tells the referee what to do in every situation in which A

has a choice. There is no need to specify what the referee is to do when

A’s move is forced by the rules. The referee is now totally prepared for

all eventualities. How many strategies does A have, total, including the

one she actually chose? Well, here they are: [A1] Take 1. If B takes 1, take

2. If B takes 2, take 1 [A2] Take 1. If B takes 1 take 1. If B takes 2, take

1. [A3] Take 2. Notice that strategy A3 is complete because once A takes

2, the rest of the game so far as she is concerned is forced. Now let us

suppose B says, "Well, if A isn’t going to be there, I will just leave my

strategy choice with the referee also." What are B’s strategies? [B1] If A

takes 1, take 2. If A takes 2, take 2. [B2] If A takes 1, take 2. If A takes 2,

take 1. [B3] If A takes 1, take 1. If A takes 2, take 1. [B4] If A takes 1, take

1. If A takes 2, take 2. So A has three strategies and B has four. There are
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thus 3 x 4 = 12 possible pairs of strategy choices that A and B can leave

with the referee. Notice [very important] that there is no communication

between A and B. Each chooses a strategy by him or herself. Now, there

are no chance elements in this game—no rolls of the dice, no spins of

a wheel. Game Theory allows for that, but this game doesn’t happen

to have any such "moves by Lady Luck." Therefore, once you know the

strategy choices of A and B, you can calculate the outcome of the game.

And we know what the payoffs are. In each possible outcome, either A

wins a penny and B loses a penny, or B wins a penny and A loses a penny.

Notice that there is no assumption that a penny yields the same amount

of utility to A as to B. Indeed, any such statement is meaningless. We

are now ready to construct what Game Theory calls the "payoff matrix,"

which in this case is a grid three by four, each box of which represents

the payoffs to A and B of a pair of strategies that are played against one

another. For example, what happens if A tells the referee to play her first

strategy, [A1], and B tells the referee [without knowing what A is doing]

to play his first strategy, B1? Well, A1 tells the referee to take 1 stick.

Then it is B’s turn, and B1 tells the referee that if A takes 1, the referee

is to take 2. Now it is A’s turn, and she has no choice but to take the

last matchstick. B wins, and A pays B one cent. So the payoff for A is -1,

and the payoff for B is +1. Here is the complete payoff matrix for this game:

B1 B2 B3 B4

A1 -1, +1 -1, +1 -1, +1 -1, +1

A2 -1, +1 -1, +1 -1, +1 -1, +1

A3 +1,-1 -1, +1 -1, +1 +1, -1

Table 3.1: Payoff matrix for a simple game.

You should take a few minutes to look at this carefully and be sure

that you see how I derived the figures in the boxes—the payoffs. This is

called the normal form of the game. If you look at the payoff matrix just

above, you will see that B wins in all but two cases: when A plays strategy

A3 and B plays either B1 or B4. Now, Game Theory assumes that both



3.2 The definition of a game—extensive form 41

players know everything we have just laid out about the game, so A and

B both know the payoff matrix. B can see that if he chooses strategy B2

or B3, then he is guaranteed a win no matter what A does. Furthermore,

either B2 or B3 is equally good for B. We describe this by saying that B2

and B3 are dominant strategies for B. A is out of luck. Her only hope, and

a pretty slim one at that, is to play A3 and hope against hope that B is a

dope. With this elementary example before us, let me now make several

comments.

1. Legal theorists, political scientists, sociologists, philosophers all

seem to think that there is something deep and profound about the

Prisoner’s Dilemma. Well, I invented the simplest game I could think

of, and in that idiot game, there are three strategies for A and four

for B. The Prisoner’s Dilemma is a game with only two strategies for

each player. How can something that much simpler than the idiot

game I invented possibly tell us anything useful about the world?

The truth is, it can’t!

2. From the point of view of Game Theory, the entire game is repre-

sented by the payoff matrix. Any information not contained in the

payoff matrix [like the fact that this game uses matchsticks, or that B

has brown eyes] is irrelevant. All of the games with the same payoff

matrix are, from the point of view of Game Theory, the same game.

For a long time, until we get to something called Bargaining Theory,

the little stories I tell about the games I am analyzing will serve sim-

ply to make the argument easier to follow. All the inferences will

be based on the information in the payoff matrix. When we get to

Bargaining Theory, which is tremendous fun but rather light on the-

orems, it will turn out that a great deal turns on what story you tell

about the game. [For those of you who are interested, the classic

work, which also won the author a Nobel Prize, is The Strategy of

Conflict by Thomas Schelling (Schelling, 1960).]

3. In the game above, the only information we actually use about the

payoffs is A’s ordinal preference for the possible outcomes of the
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game and B’s ordinal preference for those outcomes. We make no

use of the fact that the payoffs are money, nor do we use the fact

that the amount of money won by one player happens to equals the

amount of money lost by the other player. Even when we are talking

about ordinal preference, I am going to use numbers, simply because

they make it very easy to keep in mind the player’s preference order.

4. At a certain point, when we introduce moves by Lady Luck [roll of

the dice, spin of the wheel, etc.], we will have to shift up to cardinal

preference orders for A and B. At that point, we will need cardi-

nal numbers for the entries in the payoff matrices. The numbers

before the comma will be A’s utility for a certain outcome, as de-

termined by A’s cardinal utility function, and the numbers after the

comma will be those for B. NOTHING AT ALL CAN BE INFERRED

FROM THE NUMERICAL RELATIONSHIP BETWEEN AN ENTRY

IN FRONT OF A COMMA AND THE ENTRY AFTER A COMMA.

This is because the utility indices indicated by the numbers before

the comma are invariant up to a linear transformation [or an affine

transformation, as it is apparently now called, but I am too old to

learn anything], and the same is true for the utility indices after the

comma. If I multiply all of B’s utilities for payoffs by one million, no

information has been added or lost.

5. A is assumed to have a utility function that assigns ordinal [later

cardinal] numbers to the outcomes. So is B. The outcomes are the

terminations of the game as defined by the rules and diagrammed

on the game tree. The rules may simply stipulate who is declared to

have won and who has lost, or they may assign various payoffs, in

money or anything else, to one or more of the players. No assump-

tion is made about the attitudes of the players to these outcomes,

save that their attitudes must generate consistent [ordinal or cardi-

nal] preference orders of the outcomes. A can perfectly well prefer

having B win the game over herself winning the game. Eventually,

we will be assuming that both A and B are capable of carrying out

expected utility calculations, and that each prefers an outcome with
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a greater expected utility to one with a lesser expected utility. But

that assumption does not have built into it any hidden assumptions

about what floats A’s boat. It is utility, not money or anything else,

that A and B are maximizing.

6. We have been talking thus far only about two person games. The

mathematical theory developed by von Neumann is capable of prov-

ing powerful theorems only for two person games. A great deal

can be said about multi-person games, especially those allowing for

pre-play communication, which leads to coalitions, betrayals, and

all manner of interesting stuff. But unfortunately not much that is

rigorous and susceptible of proof can be said about such games.

7. Really important: Game Theory treats the extensive form of a game

[game tree] and the normal form of the game [payoff matrix] as

equivalent. As we have already seen in the case of planning for

nuclear war, that assumed equivalence can be problematic, because

in the playing out of the game in extensive form, the utility functions

of the players may change. We will talk some more about this later,

but for now, we are going to accept Game Theory’s treatment of the

two forms of a game as equivalent.

Now we are ready to start.

I will progress from game to game [i.e., from payoff matrix to payoff

matrix], making things a little more complicated each time, until we get to

the payoff for all of this [so to speak]: a two person mixed strategy zero

sum game. I will then explain [but probably not drive you nuts by actu-

ally proving] The Fundamental Theorem of Game Theory, von Neuman’s

own [if I may make a play on a popular line of environmentally friendly

spaghetti sauces and such], which says that Every two person zero-sum mixed

strategy game has a solution in the strong sense. But I get ahead of myself.

Here is our first little game. Two businesses are competing to produce

and sell children’s toys, and each one must decide whether to make hula

hoops or yoyos [but not both, for technical reasons]. Each player knows

everything there is to know about the costs, the market, and such, except
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what the other player is going to choose to do. Although neither player

knows what the other will do, each knows what effect the other’s decision

will have on the bottom line of each company. The following matrix shows

the profit each will make in one of the four possible situations: A makes

hula hoops and B makes hula hoops, A makes hula hoops and B makes

yoyos, A makes yoyos and B makes hula hoops, or A makes yoyos and

B makes yoyos. Now, I know that some of you are philosophers, but I

really do not want you wasting your time wondering how they know these

things, or what extraneous factors, cultural or otherwise, might affect their

decisions. We will get nowhere if you do. Just go with the flow here.

Table 3.2 is the payoff matrix for the game. We assume that both players

prefer making more money to making less, and do not care about anything

else.

B1 make hula hoops B2 make yoyos

A1 Make hula hoops 10000, 1000 8000, 6000

A2 Make yoyos 9000, 6000 6000, 5000

Table 3.2: Payoff matrix for the game of making hula hoops and yoyos.

A is in a position to make a rational decision, for consider: If A decides

to make hula hoops, then no matter which choice B makes, A can be sure

of doing better by sticking with hula hoops than by changing to yoyos. As

the matrix shows, if B chooses B1, then A1 is better than A2 [because 10000

is bigger than 9000]. If B chooses B2, then A1 is better than A2 [because

8000 is bigger than 6000]. The strategy A1 is thus said to dominate the

strategy A2. Let us from now on use the notation Pij to mean the payoff

to A for the strategy pair [Ai, Bj], and the notation Qij to mean the payoff

to B for the strategy pair [Ai, Bj]. We can se by looking at the matrix that

P11 > P21 and P12 > P22. Notice several things about this game:

1. A does not need to know B’s payoffs for the four possible combina-

tions. In this very simple case, A’s payoff schedule alone is enough

to allow the calculation that A1 dominates A2.

2. As I have several times emphasized, we do not need to know the



3.2 The definition of a game—extensive form 45

actual dollar or utility payoffs to carry out this line or reasoning. All

we need to know is that P11 > P21 and P12 > P22.

Now look at the situation from B’s point of view. A quick look at the

payoff matrix reveals that B cannot use the line of reasoning that solved

the choice problem for A. B’s preference pattern is (Q12 = Q21) > Q22 >

Q11. Strategy B1 does not dominate strategy B2, because Q12 > Q11, and

B2 does not dominate B1, because Q12 > Q22. Now B takes an important

step forward. Since B knows that A is rational, and since B knows A’s

payoffs, B reasons that A will choose strategy A1, since it is A’s dominant

strategy. Knowing that, B now looks at the payoff matrix and sees that

with A choosing strategy A1, B’s best strategy is B2, because 6000 > 1000.

Thus, assuming that the figures in the payoff matrix are correct, that A

is perfectly rational, and that A cares only about maximizing her utility

as represented by the figures in the matrix, B can now solve the choice

problem by choosing strategy B2, even though neither of the B strategies

dominates the other. With this tiny step forward, we begin to develop a

theory that takes account of and adjusts for the rational calculations of the

other player. In this way, we move beyond the opacity of the marketplace,

which is the central point of Game Theory. The games in which one or

the other player has a strictly dominant strategy are relatively rare [and

uninteresting]. When neither player has a strictly dominant strategy, we

must extend our notion of what constitutes a "rational" choice. Consider

the following game with a 3 x 3 payoff matrix (see Table 3.3). Once again,

the preferences are ordinal, and I use numbers simply because it is easy to

tell in what order A or B ranks two payoffs.

B1 B2 B3

A1 3, 9 5, 6 1, 4

A2 0, 11 6, 2 2, 11

A3 4, 5 5, 19 3, 8

Table 3.3: 3 x 3 payoff matrix for a game.

A little careful examination reveals that neither A nor B has a domi-

nant strategy. For example, strategy A2 is not dominant [i.e., does best
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no matter what B does], because if B chooses B1, A would do better with

either A1 or A3. Strategy B3 is not dominant for B because if A were to

choose A1, B would be better off with B2 or B1. And so forth. What are

A and B to do in this situation? This is, notice, exactly what we meant

by "choice under uncertainty.’ A and b know everything about the payoff

matrix, therefore everything about possible outcomes and consequences

of pairs of strategic choices, but neither of them can be certain what the

other will do. In this situation, there are obviously a great many different

ways A and B might proceed [leaving to one side for the moment engag-

ing in industrial espionage to find out what the other is thinking.] If they

had cardinal utility functions, and hence could say not merely in which

order they prefer the possible outcomes but also by how much they do,

they might decide to avoid any strategies that have any possibility at all

of outcomes they consider really terrible. That might narrow their choices

to the point where dominance considerations could be invoked. By the

same token, they might decide to give preference to strategies that have

at least some possibility of outcomes they prize very, very highly. And of

course one might do one and the other the other. With cardinal preference

orders, they might even cast about for some way to engage in expected

utility calculations, although without any knowledge of the probabilities,

that would be very difficult. At this point, von Neuman and Morgen-

stern propose an extremely conservative rule for choosing from among

the available strategies. They suggest that the players, in effect, try to min-

imize the damage they may suffer as a consequence of the choices of their

opponents. Let us, they say, define something we will call the "security

level" of a strategy. The security level is the worst outcome that the strat-

egy can produce. For example, look at strategy A1. Depending on what

B chooses, A will get 3, 5, or 1. So her security level for A1, the worst

she can do if that is her choice, is 1. By the same reasoning, we can see

that the security level of A2 is 0, and of A3 is 3. Correspondingly, B’s

security levels for his three strategies are 5 for B1, 2 for B2, and 4 for B3. If

the players adopt von Neuman and Morgenstern’s rule for rational choice,

then A will choose A3, which has the maximum security level of her three

strategies, and B will adopt B1 for the same reason. The outcome of the
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game will be the intersection of strategies A3 and B1, which, as we can

see from the payoff matrix gives A 4 and B 5. This pair of strategy choices

guarantees at least 4 to A and at least 5 to B. But notice the following

fact: There are two other pairs of strategy choices that are better for both

A and B. (A1B2) gives the 5 and 6, instead of 4 and 5, and (A3B2) gives

them 5 and 19 instead of 4 and 5. Now, both A and B can see this, of

course, but without what is called pre-play communication or any way of

making commitments to one another, they have no way of reaching either

of those mutually better [i.e. Pareto Preferred] outcomes. The problem is

that if B chooses B2, A may switch to A2 to get 6, leaving B with 2, which

is worse than he can guarantee to himself by following the von Neuman

Morgenstern rule.

There are lots of games like this—or, to put it another way, lots of situa-

tions which, when analyzed as games, produce payoff matrices with these

characteristics. We shall return to them later. [The Prisoner’s Dilemma is

one example]. Instead, let us take the next step forward in the evolution

of the theory. Very often, in a game A and B have what are called "strictly

opposed" preferences over the outcomes. What that means is simply that

if you take all the possible outcomes of the game and rank them from best

to worst from A’s point of view, B will rank them in exactly the opposite

order.

Somewhat more formally, where Pij and Qij are the payoffs to A and

B when A’s strategy Ai a is played against B’s strategy Bj, and Pqr and

Qqr are the payoffs to A and B when A’s strategy q is played against B’s

strategy Br, then:

(i) Pij > Pqr if and only if Qqr > Qij and

(ii) Pij = Pqr if and only if Qqr = Qij

You might think that most of life is like this, and especially that all bar-

gaining is, but a little reflection will convince you that that is not so. Think

of the situation in which Jones has a house to sell and Smith wants to buy

a house. They enter into a negotiation, which we can call a bargaining

game. Suppose the lowest price for which Jones will sell the house is
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$350,000 and the highest price Smith will pay for the house is $375,000.

Jones cannot get more than $375,000 for the house, and Smith cannot get

the house for less than $350,000. Clearly, within that $25,000 spread, they

have strictly opposed preferences. But both of them have an interest in

concluding a sale, rather than in having the bargaining break down be-

cause they cannot come to an agreement in that "bargaining space." So,

simplifying considerably, if we suppose there are three possible outcomes,

namely (1) a sale price of 355,000, (2) a sale price of 370,000, and (3) no

sale price, then clearly Jones prefers (2) to (1) and (1) to (3). Smith prefers

(1) to (2) and (2) to (3). Jones’ preference order is 213 and Smith’s is 123.

These are NOT strictly opposed preference orders [because in both orders

alternative 3 is last]. Thus, many real world situations to which we might

want to apply Game Theory are not cases of strictly opposed preference

orders. Now consider a simple example of strictly opposed preference

orders. Suppose a married couple, Harry and John, are trying to decide

where they will go for their vacation, and suppose that all either of them

cares about is the weather. For Harry, the warmer the better; for John,

the cooler the better. [So why did they get married?, you ask.] They play

a game in which the outcomes are the different places they could go for

the vacation. Obviously, if Harry prefers destination 1 to destination 2,

because 1 is warmer than 2, then we can be sure that Harry will prefer

destination 2 to destination 1. You get the idea. Table 3.4 shows the payoff

matrix.

B1 B2 B3 B4

A1 9, -9 -4, 4 2, -2 -1, 1

A2 -1, 1 3, -3 -1, 1 0, 0

A3 6, -6 4, -4 5, -5 3, -3

A4 -3, 3 5, -5 1, -1 -2, 2

Table 3.4: Payoff matrix for a game with 4 strategies per player.

This is a more difficult game to analyze, and not merely because each

player has four strategies rather than two. The problem is that neither

player has a strictly dominating strategy. Consider each of the eight strate-
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gies in turn:

1. A1 is not best for A if B should choose B2, B3, or B4 [Because if B2

anything is better, if B3 A3 is better, if B4 A2 or A3 is better]

2. A2 is not best if B should choose B1, B2, B3, or B4

3. A3 is not best if B should choose B1, or B2

4. A4 is not best if B should choose B1, B3, or B4

5. B1 is not best if A should choose A1, A2, or A3

6. B2 is not best if A should choose A2, A3, or A4

7. B3 is not best if A should choose A1, A3, or A4

8. B4 is not best if A should choose A1, A2, or A4

Before we go on, make sure you understand how I arrived at this

series of conclusions. Look just for a moment at strategy B3. B says to

himself: "If A should choose A1, I will get -2 with B3. But I would get

9 with B1, 4 with B2, and 1 with B4. So clearly B3 does not do best for

me no matter what A does, and that is what ’dominant strategy’ means.

So B3 is not a dominant strategy." The same reasoning leads A and b to

conclude that neither one has a dominant strategy. Now let us adopt von

Neuman and Morgenstern’s proposal that the players seek to maximize

their security levels. By the same process we followed a short while ago,

we find that the security levels for the strategies available to A and B are:

A1 -4 A2 -1 A3 3 A4 -3

B1 -9 B2 -5 B3 -5 B4 -3

So A3 and B4 are the strategies with the maximum security levels,

and following von Neuman and Morgenstern’s rule, the players choose

the strategy pair (A3B4) which, according to the payoff matrix yields the

payoffs (3, -3). If A holds to A3, B cannot do any better by switching

strategies, because the other payoffs to B in that row are -6, -4, and -5. If B
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holds to strategy B4, A cannot any better by switching strategies, because

the other payoffs to A in that column are -1, 0, and -2. A pair of strategies

with this property is called an equilibrium pair of strategies.

The following fact is crucial: A pair of strategies (Ai, Bj) is in equi-

librium if and only if the entry Aij is the minimum of its row, Ai, and the

maximum of its column, Bj.

Here is a proof of that important proposition:

To say that Ai and Bj are in equilibrium is to say that neither player can

improve his or her payoff by a strategy switch so long as the other player

holds firm. This means that A’s payoff, Aij, is larger than any other payoff

in its column, these being the payoffs available to A when B is holding to

the strategy Bj. By the same reasoning, Bij is the largest, or most preferred,

payoff to B in row Ai, since those are the payoffs available to B so long as

A holds fast to Ai. But by hypothesis, A and B have strictly opposed pref-

erences [this is where that crucial assumption comes in], so the outcome

at Aij will be the least preferred of all the payoffs in row Ai from A’s point

of view. Thus, if Ai and Bj are in equilibrium, it follows that Aij will be

the maximum of its column and the minimum of its row.

Conversely, suppose that Aij is the maximum of its column and the

minimum of units row. Since it is the maximum of its column, A can only

do worse by switching to a different strategy so long as B holds fast. And

since A and B have strictly opposed preferences, payoff Bij must be the

most preferred of its row, for Aij is the least preferred of its row. So B can

only lose by switching so long as A holds fast. But this is the definition of

an equilibrium pair of strategies. Q. E. D.

We have wandered pretty far into the weeds here, so you should take

a moment to go over this argument and make sure you understand it. It

is a typical Game Theory argument, and you need to become comfortable

with that way of reasoning. Remember, we have already talked about

whether identifying security levels and choosing a strategy to maximize

your security level is a rational way of proceeding in game that presents

you with choice under uncertainty. It is interesting to note, as we will

see much later, that Rawls adopts this notion of rationality in A Theory

of Justice (Rawls, 1971), where he dramatizes it by saying, in effect [not a
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quote], Design an institution as though your worst enemy was going to

assign you a place in it. In such a case, pretty clearly, maximizing the

payoff to the least favored role in the institution makes a good deal of

sense.

Thus far, we have looked at games in which each player’s maximum

security level shows up in only one of the available strategies, but obvi-

ously there might be several strategies with identical security levels, and

that security level could perfectly well be the maximum one. In that case,

the rule to choose the strategy with the maximum security level does

not tell player which strategy to choose. All of the strategies exhibiting

the maximum security level are equally good, as far ass the rule is con-

cerned. But if we cannot specify which strategy a player will choose, fol-

lowing the rule, then how can we know what the outcome of the game

will be? Fortunately, when players have strictly opposed preferences, it

makes no difference. The following is a very important fact: If strategy

pairs (Ai, Bj) and (Ap, Br) are both equilibrium pairs of strategies, then

so too are the pairs (Ai, Br) and (Ap, Bj). What is more, in that case

Aij = Air = Apj = AprandBij = Bir = Bpr = Bij. So, no matter how A

and b mix and match their strategies with the maximum security levels,

the results will be the same. [Note: When I say this, I mean the payoffs

to the players will be the same. The actual play of the game may differ

according to which strategies A and B choose, but they don’t care about

that, by hypothesis. They only care about the payoffs. keep that in mind,

because down the line, it could be problematic.] Here is the proof. Let us

suppose that we have a payoff matrix that is n rows by m columns, or n x

m. I am going to show you a central part of the total matrix that is large

enough to include all four payoff pairs: (Aij, Bij), (Air, Bir), (Apj, Bpj), and

(Apr, Bpr).

1. Apr ≥ Air because (Apr, Bpr) is an equilibrium point, and hence Apr

is the maximum of its column. [Notice, the symbol ≥ means "equal

to or greater than." That is the way my word processing program

writes it.]

2. Air ≥ Aij because (Aij, Bij) is an equilibrium point, and hence Aij is
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... Bj ... ... ... Br ... ... ...

...

Ai Aij, Bij Air, Bir

...

Ap Apj, Bpj Apr, Bpr

...

...

Table 3.5: Central part of a large payoff matrix.

a minimum of its row.

3. Aij ≥ Apj, same reasoning as (1)

4. Apj ≥ Apr, same reasoning as (2). Hence

5. Apr ≥ Air ≥ Aij ≥ Apj ≥ Apr Therefore

6. Apr = Air = Aij = Apj

The same reasoning establishes that Bij = Bir = Bpr = Bpj and there-

fore obviously (Air, Bir) and (Apj, Bpj) are also equilibrium pairs.

Just to review, the key to the proof is the fact that A and B have strictly

opposed preference orders. If that is not the case, the argument clearly

does not go through.

Everything we have said thus far assumes only ordinal preferences, but

that is not going to be enough to allow us to analyze games that involve

chance elements, or what I have somewhat facetiously been calling moves

by Lady Luck [think Marlon Brando singing "Luck be a lady tonight" in

the movie version of Guys and Dolls. ] Suppose that at some point in

a game the rules call for a roll of the dice, a flip of a coin, or a spin of

a wheel, with some player’s options determined by the outcome of the

chance event. That is going to create problems for our analysis.

Here is the simplest game I could think of to illustrate this idea. A

moves first, and she has a choice. She can choose not to toss a coin, in

which case B has to choose between a move that has the payoff (2.4, -2.4)

to A and B, and a move that has the payoff (2, -2) to A and B. Pretty
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obviously, B will choose the latter. OR A can opt to flip a coin. If the coin

comes up heads, the game ends with the payoff (1, -1). if the coin comes

up tails, the game ends with the payoff (6, -6). Not much of a game, but it

will do.

What should A do? If she opts not to toss the coin, she has a sure thing

payoff [given that B is rational] of 2. if she opts to flip the coin, she has

a one-half chance of a payoff of 1 and a one-half chance of a payoff of 6.

Now, if we forget that the numbers in the example are ordinal labels, we

might be tempted to suppose that A can solve her problem by engaging

in an expected utility calculation. After all, (1/2 x 1) + (1/2 x 6) = .5 + 3 =

3.5 so A should apparently choose to flip the coin. But these are ordinals,

not cardinals, and all we really know is that for A, the payoffs are ranked

6 first, 2.4 second, 2 third, and 1 fourth. This ranking is preserved if we re-

label the 6 as a 2.5 That still makes it first, which is all the information we

have. But now, when we carry out an expected utility calculation on the

game, we have 2 versus (1/2 x 1) + (1/2 x 2.5) = 1.75. With these numbers,

A should change her strategy choice.

Obviously, we cannot analyze games with chance elements unless we

assume that the players have cardinal utility functions with utility assign-

ments that are invariant under an affine [linear] transformation. Therefore,

we need now to introduce the formal machinery required to allow us to

talk about cardinal utility functions. This is going to get seriously gnarly, I

am afraid. The faint of heart may wish to take a vacation for a day or two

while I lay all of this out. I choose to go into this for two reasons: First,

as my son Tobias, who is following this blog, pointed out to me at dinner

several evenings ago, I am really a rather nerdy wonk when it comes to

this stuff. I just plain like it. I hadn’t realized that, but of course he is

right. I think it is nifty. Second, one of the central ideological messages

of this blog is that too many intellectuals and academics adopt the jargon

and the style of argument of Game Theory without any real grasp of the

assumptions that are embedded in what they are saying. They are like

party crashers at a Mass who think that the Eucharist is just a light snack,

oblivious to its theological meaning. For those who can handle it, I want

to take you through the formal unfolding of the concept of a cardinal util-
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ity function. For those who cannot handle it, I want to shock and awe you

so that in the future, when you idly assume that someone has a cardinal

utility function, you will at least know what lies beneath the surface of

that assumption. Here goes.

We must begin with the notion of a probability distribution over a set

of outcomes. Remember that all of this theory assumes that in a game

there are a finite number of possible outcomes [maybe just win or lose,

but maybe also lots of different money payouts, or even things like a trip

to the zoo, a fur coat, a dinner date with Kevin Bacon, etc.] The convention

in probability theory is that probabilities range from 1 to 0 inclusive. If a

possible outcome has a probability of 1, that means it is certain to happen.

If it has a probability of 0, that means it is certain not to happen. Thus,

probabilities are expressed as real numbers between 1 and 0. Most of the

time, they are expressed as a decimal point followed by some real number,

like .4 or .125, and so forth.

We also assume that the possible outcomes are independent of one

another, not part of or nested inside one another. So we cannot have two

outcomes one of which is "I lose the game" and another of which is "I

lose the game and have to pay fifty dollars to the person who won." If

all of this is so, then the probability that either outcome O will happen

or outcome P will happen is equal to the probability that O will happen

plus the probability that P will happen. So, if the probability of O is .3

and the probability of P is .6, then the probability of either O or P is (.3

+ .6) = .9. A little reflection will tell you that if there are three possible

outcomes, O, P, and Q, and if it is certain that one or another of them will

happen, then the sum of their probabilities must be 1. In other words, "O

or P or Q" is certain to happen. A probability distribution over the set of

possible outcomes is a set of numbers, each of which is between 1 and 0

inclusive [some of the outcomes may be certain not to happen, in which

case they have probability zero] and all of which add up to 1. Another way

to express this [hang on, I am really reaching with my word processing

program here] is this: If the probability of outcome i is pi then for all n

possible outcomes from 1 to n, ∑ pi = 1. [Cripes, That wasn’t worth the

effort. Oh well.]
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Following Luce and Raiffa, I am going to use the term "Lottery" to refer

to an experiment that has built into it a probability distribution over the set

of n possible outcomes in a game. For example, if you want to construct

a lottery that has built into it a .5 chance of outcome O, a .25 chance of

outcome P, and a 2.5 chance of outcome Q, you can make a wooden wheel

with an arrow fixed to its center. You can then draw radii on the wheel

dividing it into a half segment and two quarter segments. Then you can

spin the arrow in such a way that there was an equal chance of the point

of the arrow coming to rest anywhere on the wheel [remember to oil the

bearings]. That wheel would be a lottery with the desired probabilities.

O.K. We already know that each player has a consistent ordinal prefer-

ence over the set of possible outcomes of the game. But we also know that

that information all by itself is not enough to authorize us to represent that

preference order by cardinal numbers. We can certainly use cardinal num-

bers in payoff matrices to represent a player’s preferences—that is what I

have been doing. But we cannot treat them as cardinal numbers. We can

only treat them as ordinals. Obviously we need more information about

the player’s preference structure if we are to define a cardinal preference

order for him or her over the possible outcomes.

Before we state the six axioms that von Neuman and Morgenstern

proved are sufficient to allow us to impute a cardinal utility function to a

player, we need some more definitions and some more notation. [I warned

you this would get gnarly.] First of all, we must extend our notion of a

Lottery to something called a Compound Lottery. A Simple Lottery is a

probability distribution over as set of outcomes, O,P, Q, etc. A Compound

Lottery is a Lottery the prizes in which are tickets in other lotteries over

O, P, Q, etc. To make this as clear as I can, let me take a very simple case.

Imagine a set of three outcomes (O, P, Q):

O = +$5

P = +$8

Q = -$10 [i.e., the player has to play ten dollars]

and a Lottery, L1, with three prizes, namely tickets in Lotteries L11, L12,

and L13. L1 is set up so that there is a:
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a .5 chance of winning a ticket in L11,

a .25 chance of winning a ticket in L12, and

a .25 chance of winning a ticket in L13.

The prizes in the Lotteries L11, L12, and L13 are the outcomes (O, P,

and Q) Now, L11, L12, and L13 are probability distributions over O, P, Q,

etc. So, let us suppose that these three Lotteries are in fact:

L11: .3 chance of O, .4 chance of P, and .3 chance of Q

L12: 1. chance of O, .0 chance of P, .9 chance of Q

L13: .8 chance of O, .1 chance of P, .1 chance of Q

Notice that in each case the probabilities add up to 1.

If our player, A, buys a ticket in L1, what is her chance of ending up

with each of the outcomes, O, P, or Q? Well, she has a .5 chance of winning

a ticket in L11, and L11 in turn offers a .3 chance of O, so that gives A so

far a (.5)(.3) = .15 chance of O.

She also has a .25 chance of a ticket in L12, and L12 offers a .1 chance

of O, so that gives her a (.25)(.1) = .025 chance of O.

Finally, she has a .25 chance of a ticket in L13, which offers a .8 chance

of O, so that gives her a (.25)(.8) = .2 chance of O.

Adding .15, .025, and .2, we get a .375 chance of O.

If you carry out the same calculations for outcomes P and Q, you will

find that A has a .225 chance of getting P and a .4 chance of getting Q, and

sure enough, .375 + .225 + .4 = 1.

Now, what is the money value to A of this gamble? It is the Mathemat-

ical Expectation, or: (.375)(5) + (.225)(8) + (.4)(-10) = 1.875 + 1.8 - 4 = -.325

or minus 32.5 cents.

So, if all A cares about is making money, she ought not to buy a lottery

ticket in L at any price. In fact, she should not even play if someone gives

her a ticket.

This is what is called reducing a Compound Lottery to a Simple

Lottery, and it should be obvious that you can do this with any finite

number of prizes and any number of levels of lotteries of lotteries of

lotteries. Notice one small point that will be important later: If a Lottery
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offers a chance of p for one outcome, O, and chances of zero for all the

other outcomes save a single one, Q, then the probability for Q will be

(1 − p). At long last, we are ready to state the six assumptions about

someone’s preferences, or Axioms, as von Neuman and Morgenstern

call them, the positing of which is sufficient to allow us to deduce that

the person’s preferences over a set of outcomes can be represented

by a Cardinal Utility Function. There is a very great deal of hairy

detail that I am going to skip over, for two reasons. The first is that

I want there to be someone still reading this when I get done. The

second is that it is just too much trouble to try to get all this symbolism

onto my blog. You can find the detail in Luce and Raiffa. O.K., here we go.

Assume there is a set of n outcomes, or prizes, O = (O1, O2, . . . , On)

Axiom 1 The individual has a weak preference ordering over O, with O1 the most

preferred and On the least preferred, and this ordering is complete and transitive.

Thus, for any Oi and Oj, either Oi R Oj or Oj R Oi. Also, If Oi R Oj, and Oj R

Ok, then Oi R Ok.

[I told you we would use that stuff at the beginning.]

Axiom 2 (A biggie) The individual is indifferent between any Compound Lot-

tery and the Simple Lottery over O derived from the Compound Lottery by the

ordinary mathematical process of reducing a compound lottery to a simple lottery

[as I did for the example].

This a very powerful axiom, and we have already met something like it in

our discussion. In effect, it says that the individual has neither a taste for

nor an aversion to any distribution of risk. The point is that the Compound

Lotteries may exhibit a very broad spread of risk, whereas the Simple Lot-

tery derived from them by the reduction process may have a very narrow

spread of risk. Or vice versa. The individual doesn’t care about that.

Axiom 3 For any prize or outcome Oi, there is some Lottery over just the most

and least preferred outcomes such that the individual is indifferent between that

Lottery and the outcome Oi. A Lottery over just the most and least preferred
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outcomes is a Lottery that assigns some probability p to the most preferred out-

come, O1, and a probability (1− p) to the least preferred outcome, On, and zero

probability to all the other outcomes. Think of this as a needle on a scale marked

0 to 1. You show the person the outcome Oi, and then you slide the needle back

and forth between the 1, which is labeled O1 and the 0 [zero] which is labeled

On. Somewhere between those two extremes, this Axiom says, there is a balancing

point of probabilities that the person considers exactly as good as the certainty of

Oi. Call that point Ui. It is the point that assigns a probability of Ui to O1 and a

probability of (1−Ui) to On.

We are now going to give a name to the Lottery we are discussing,

namely the Lottery [UiO1, (1−Ui)On]. We are going to call it Õi. Thus,

according to this Axiom and our symbolism, the player A is indifferent

between Oi and Õi.

If you have good mathematical intuition and are following this closely,

it may occur to you that this number between 1 and 0, Ui, is going to turn

out to be the Utility Index assigned to Oi in A’s cardinal utility function.

You would be right.

This Axiom is essentially a continuity axiom, and it is very, very pow-

erful. It implies a number of important things. First, it implies that A

does NOT have a lexicographic preference order. All of the outcomes are,

in A’s eyes, commensurable with one another, in the sense that for each

of them, A is indifferent between it and some mix or other of the most

and the least preferred outcomes. It also implies that we can, so far as A’s

preferences are concerned, reduce any Lottery, however complex, to some

Simple Lottery over just O1 and On. The Axiom guarantees that there is

such a Lottery. Notice also that this Axiom implies that A is capable of

making infinitely fine discriminations of preference between Lotteries. In

short, this is one of those idealizing or simplifying assumptions [like con-

tinuous production functions] that economists make so that they can use

fancy math.

Axiom 4 In any lottery, Õ can be substituted for Oi. Remember, Axiom 3 says

that A is indifferent between Õi and Oi. This axiom says that when you substitute

Õi for Oi in a lottery, A is indifferent between the old lottery and the new one.
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In effect, this says that the surrounding or context in which you carry out the

substitution makes no difference to A. For example, the first lottery might assign

a probability of .4 to the outcome Oi, while the new lottery assigns the same

probability, .4, to Õi. [If you are starting to get lost, remember that Õi is the

lottery over just O1 and On, such that A is indifferent between that lottery and

the pure outcome Oi.]

Axiom 5 Preference and Indifference among lottery tickets are transitive rela-

tions. So if A prefers Lottery 1 to Lottery 2, and Lottery 2 to Lottery 3, then

A will prefer Lottery 1 to Lottery 3. Also, if A is indifferent between Lottery 1

and Lottery 2, and is indifferent between Lottery 2 and Lottery 3, then A will be

indifferent between Lottery 1 and Lottery 3. This is a much stronger Axiom than

it looks, as we shall see presently.

If you put Axioms 1 through 5 together, they imply something very

powerful, namely that for any Lottery, L, there is a lottery over just O1 and

On, such that A is indifferent between L and that lottery over O1 and On.

We need to go through the proof of this in order to prepare for the wrap

up last axiom.

Let L be the lottery (p1O1, p2O2, . . . , pnOn).

Now, for each Oi in L, substitute Õi. Axioms 3 and 4 say this can be

done. So, using our previous notation, where xIy means A is indifferent

between x and y,

(p1O1, . . . , pnOn) I (p11, . . . , pnn) so, expanding the right hand side,

(p1O1, . . . , pnOn) I (p1[U1O1, (1−U1)On]), . . . , (pn[UnOn, (1−Un)On) or,

multiplying

(p1O1, . . . , pnOn) I ([p1U1 + p2U2 + . . . + pnUn]O1, [p1{1 − U1} + . . . +

pn{1−Un}On]) or

(p1O1, . . . , pnOn) I ([p1U1 + p2U2 + . . . + pnUn]O1, [p1{1 − U1} + ldots +

pn1−Un]On)

if we let p = p1U1 + p2U2 + . . . pnUn then we have:

(p1O1, . . . , pnOn) I (pO1, (1− p)On). In other words, the lottery, L, with

which we started is indifferent to a lottery just over the best and worst

outcomes, O1 and On.
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Axiom 6 The last axiom says that if p and p′ are two probabilities, i.e., two real

numbers between 1 and 0, then: (pO1, [1− p]On) R (p′O1, [1− p′]On) if and

only if p ≥ p′.

This Axiom says that the individual [A in our little story] prefers [or is

indifferent between] one lottery over the best and the worst alternatives to

another lottery over those same two alternatives if and only if the prob-

ability assigned to O1 in the first lottery is equal to or greater than the

probability assigned to O1 in the second lottery.

Now, let us draw a deep breath, step out of the weeds, and remember

what we have just done. First, we started with a finite set of outcomes,

O = (O1, O2, . . . , On). Then we defined a simple lottery over the set O as

a probability distribution over the set O. Then we defined a compound

lottery as a lottery whose prizes include tickets in simple lotteries. At this

point, we introduced five AXIOMS or assumptions about the preferences

that our sample individual A has over the set of outcomes and simple and

compound lotteries of those outcomes. These are not deductions. They

are assumptions. Then we showed that these five Axioms, taken together,

imply a very powerful conclusion. Finally, we introduced a sixth Axiom

or assumption about A’s preferences.

That is where we are now. von Neuman now takes the last step, and

shows that if someone’s preferences obey all six Axioms, then that person’s

preferences can be represented by a cardinal utility function over those

outcomes that is invariant up to an affine (linear) transformation. I am not

going to go through the proof, which consists mostly of substituting and

multiplying through and gathering terms and all that good stuff. Suffice

it to say that when von Neuman gets all done, he has shown that one way

of assigning utility indices to the outcomes in O in conformity with the six

Axioms is to assign to each outcome Oi the number Ui [as defined above].

This is then "the utility to A of Oi." Remember that this is just one way

of assigning A’s utility indices to the outcomes in the set O. Any affine

transformation of those assignments will serve just as well.

All of this has to be true about A’s preferences in order for us to say

that A’s preferences can be represented by a cardinal utility function.
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I want now to take some time to make sure that everyone understands

just how strong these assumptions are, and also exactly how to interpret

them. The first point to understand is in a way the hardest. You might

think that our subject, A, decides how she feels about all of these simple

and compound lotteries by carrying out expected utility calculations and

then saying to herself, "Well, since this one has a greater mathematical

expectation than that one, I prefer this one to that one." You might think

that, because, good heavens, how else could she possibly decide which she

prefers to which? But if you thought that [which of course none of you

does], you would be WRONG, WRONG, WRONG! TOTALLY WRONG,

WRONG, WRONG! That would be, to use correctly a phrase that these

days is almost always used incorrectly, begging the question. It would be

assuming what is to be proved, and thus arguing in a circle. What von

Neuman actually supposes is that our subject, A, looks at the outcomes

O1, O2, etc and decides how she feels about them. She ranks them in or-

der of her preference. She then looks at the infinitude of simple lotteries

and compound lotteries and decides how she feels about them as well.

She merges this all in her mind into a single complete, transitive order-

ing of all of those outcomes and simple lotteries and compound lotteries.

Then von Neuman posits that her preferences, thus arrived at, in fact obey

the six Axioms. If that is so, then, von Neuman shows, her preferences

can be represented AS THOUGH she were carrying out expected utility

calculations in her head in accordance with the axioms.

We are talking here about an enormously powerful set of idealizing

and simplifying assumptions, as powerful in their way as the assumptions

economists have to make before they can talk about continuously twice

differentiable production functions [which they need in order to prove

their nifty equilibrium theorems.] Let me draw on something I said earlier

to show you just how powerful these Axioms are.

Look at Axiom 5, the transitivity axiom, and let us recall the eye doctor

example. Suppose that the lotteries A is comparing are big Amusement

Park wheels, on which are marked off different sized wedges [each defined
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by two radii], each one of which is associated with one of the outcomes

in the set, O. It would be no problem at all to construct a whole series

of wheels, each of which is such a tiny bit different from the one next to

it that when A is shown the two wheels together, she looks at them and

says, I am indifferent between those two lotteries." But suitably arranged,

the series of wheels might very slowly, indiscernibly, alter the size of the

wedges associated with two prizes or outcomes, Oi and Oj, until, if we

were to show A the first and the last in the series, she would look at them

and say, flatly, I prefer the one on the left to the one on the right. Whoops.

No transitivity! Axiom 5 rules out any such state of affairs.

Well, you can think about each one of the Axioms and see whether you

can imagine a situation in which the assumption of that Axiom clearly re-

quires something very strong and even counterintuitive. But rather than

go on about that, I am going to take the next step. We are now ready to

extend our notion of strictly opposed preference orders. Recall that we

describe the preference orders of A and B over a set of outcomes, O, as

"strictly opposed" when A prefers Oi to Oj or is indifferent between them

if and only if B prefers Oj to Oi or is indifferent between them. We will

describe the preference orders of A and B over the infinite set of lotteries,

simple and compound, over the set of outcomes, O, as "strictly compet-

itive" when A prefers Lottery L1 to Lottery L2 or is indifferent between

them if and only if B prefers L2 to L1 or is indifferent between them. This

means that A and B not only rank all of the outcomes in exactly opposite

ways. They also rank all of the lotteries, simple or compound, over those

outcomes in exactly opposite ways.

In this very specific set of circumstances [where all six axioms apply

to both A’s preferences and B’s preferences, and A and B have strictly

competitive preferences], we can normalize the utility functions of A and

B so that for any lottery, L, simple or compound, over the set of outcomes,

O, the sum of the utility index assigned to L by A’s utility function and

the utility index assigned to L by B’s utility function is a constant. This is

what is meant by saying that a game played by A and B is a constant sum

game.

Rather than grind out an algebraic proof, I will offer a simple, intu-
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itive proof that should be easy to grasp. We shall use u(L) to mean the

utility that A’s utility function assigns to L, and u′(L) to mean the utility

that B’s utility function assigns to L. Now, we are permitted arbitrarily

to let A’s most preferred outcome, O1, have a utility of 1, and A’s least

preferred outcome have a utility of 0. Since A and B have strictly opposed

preferences for outcomes, B’s most preferred outcome is On and his least

preferred outcome is O1. We are permitted to set B’s utility for On equal

to 1 and for O1 equal to 0. So the utility assignments of both A and B can

be portrayed as lying along a line that runs between 1 and 0.

No matter what lottery, L, we have chosen, we know from the Axioms

that it is equivalent, for A, to some lottery over just O1 and On whose

probability weights are u and (1− u) for some u. Think of that as a point

somewhere on the line running between 1 and 0. [Remember that for the

best and worst alternatives, O1 and On, the point is an endpoint of the line.]

The same thing is true for B. We are now going to prove that the point on

the line representing A’s utility for L and the point on the line representing

B’s utility for L are the same point. To prove this, we will assume the

contrary and derive a contradiction with our assumption that A and B

have strictly opposed preferences. So, let us choose a point representing

u(L) and a different point representing u′(L), and then choose some point

that lies between those two points, which we shall call S. Here is a picture

of the situation. The line runs from 1 to 0 for A, and from 0 to 1 for B:

u(L) u'(L)S

1

0

0

1

The point S represents a lottery, Ls, with weights S for On and (1− S)

for O1. Now, just from looking at the diagram, we can see the following:

(i) A prefers L to Ls, because L puts greater weight on O1 than Ls does.

[u(L) is closer to the 1 than S is].

(ii) B prefers L to Ls, because L puts greater weight on On [his favorite]

than Ls does. [u′(L) is closer to his 1 than S is.]
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But this means that A and B do not have strictly opposed preferences,

since they both prefer L to Ls. And this contradicts the assumption. So no

matter which lottery L we choose, there cannot be a point S between u(L)

and u′(L), which means they are the same point.

But if they are the same point, then A’s utility is u and B’s utility is

u′ = (1− u), regardless of which lottery, L, we choose. and:

u + u′ = u + (1− u) = 1

Now, B’s utility function is invariant under an affine (linear) transfor-

mation. So let us introduce the following affine transformation:

u′′ = u′ − 1

What this does is to re-label B’s utility assignments so that instead of

running from 1 to 0, the run from 0 to -1. This means that A’s and B’s

utilities for any arbitrary lottery L are no longer u and (1− u). Instead,

they are now u and −u. And the sum of u and −u is zero.

This, and only this, is what is meant by saying that a game played

by A and B is a zero-sum game.

Now let us introduce the concept of a Mixed Strategy. All along, we

have been working with two-person games whose rules allow for only a

finite number of moves [with cut-off points like the rules that limit a chess

game]. The Game Tree for such a game, however complex, defines a finite

number of strategies for each player, even though that number may, as we

have seen, be large even for very simple games. With a finite number of

strategies for each player, we can convert the extensive form of the game

to the normal form by constructing a payoff matrix with a finite number

of rows representing A’s strategies and a finite number of columns repre-

senting B’s strategies. [From a mathematician’s point of view, it doesn’t

matter how big the number of rows and columns, so long as they are finite

in number]. But as we have seen, even with strictly opposed preferences,

a game in which both players seek to maximize their security level may

not have a stable equilibrium solution. Now von Neuman takes the final
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step by introducing the concept of a mixed strategy.

When A gives her instructions to the Referee, she need not specify one

of her pure strategies. Instead, she can define a probability distribution

over her pure strategies and instruct the Referee to construct a Lottery that

embodies that distribution. Just to be clear, this is a Lottery in which the

"prizes" are strategies, not outcomes. Before leaving for her appointment,

A tells the Referee to spin the wheel that has been constructed and play

whichever strategy comes up. This is a real spin of the wheel. Neither

A nor the referee can know which pure strategy will be played until the

wheel has been spun. B can do the same thing, of course.

Each Lottery, or probability distribution over the set of pure strategies,

is a mixed strategy, and quite obviously there are an infinite number of

them. With an infinite number of mixed strategies for A, and an infinite

number for B, there are of course also an infinite number of mixed strategy

pairs, which is to say pairs each of which consists of one mixed strategy for

A and one mixed strategy for B. Notice that a pure strategy now becomes

simply a mixed strategy in which all the probability weights but one are

zero.

For any mixed strategy pair, A can calculate the value to her of those

mixed strategies being played against one another, although it is obviously

tedious to do so. She says to herself: Suppose I play mixed strategy MA1

and B plays mixed strategy MB1. MA1 offers a .3 probability of my playing

pure strategy A1, and MB1 offers B a .2 probability of his playing pure

strategy B1, so I will calculate the payoff to me of A1 played against B1

and then discount that payoff, or multiply it, by (.4)(.1) = .04. Then I will

do the same for A2 against B1, etc. Then I will add up all the bits of payoffs,

and that is the value to me of the mixed strategy pair (MA1, MB1). I hope

by now this is clear and reasonably obvious.

However, we can no longer construct a payoff matrix, because there

are infinitely many mixed strategies for each player. Instead, we need a

space of points that represent the payoffs to A of each of the infinite pairs

of mixed strategies. Since we are dealing now with strictly competitive

zero-sum games, we do not need to represent the payoff to B. Under the

normalization we have chosen, that is simply 1 minus the payoff to A.
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At this point I must do what mathematicians call "waving their hands."

That is, instead of giving rigorous definitions and proofs [not that I have

been doing that so far], I must simply wave my hands and describe in-

formally what is going on, and hope that you have enough mathemat-

ical intuition to grasp what I am saying. To represent all of the mixed

strategy pairs and their payoffs to A, we are going to need a space with

(n− 1) + (m− 1) + 1 dimensions.

The first (n− 1) dimensions will represent the probability weights be-

ing given to A’s n pure strategies. [(n− 1) because the weights must add

up to 1, so once you have specified (n− 1) of them, the last one is implicit.]

The next (m− 1) dimensions represent the probability weights being given

to B’s m pure strategies. The last dimension, which you can think of intu-

itively as the height of a point off of a hyperplane, represents A’s payoff.

We only need to represent A’s payoff because this is a zero-sum game, and

B’s payoff is just the negative of A’s. Obviously, we are only interested in

the part of the space that runs, on each axis, from 0 to 1, because both the

probability weights and the payoffs all run from 0 to 1 inclusive.

It is said that the great Russian English mathematician Besicovitch

could visualize objects in n-dimensional vector space. If he wanted to

know whether something was true, he would "look" at the object in the

space and rotate it, examining it until it was obvious to him what its prop-

erties were. Then he would take out pen and paper and go through the

tedium of proving what he already knew was true. I suspect the same

must have been true of von Neuman. Well, God knows it isn’t true of me,

so I must just soldier on, trying to connect the dots.

You and I can get some visual sense of what such a space would be

like by thinking of the simplest case, in which A and B each have only two

strategies. In that nice simple case, the number of dimensions we need is

(2-1) + (2-1) + 1, or 3. And most of us can imagine a three-dimensional

system of axes. Just think of a three dimensional graph with an x-axis

and a y-axis forming a plane or bottom, and a z-axis sticking up. The

infinity of A’s mixed strategies can be represented as points along the x-

axis running from the origin to plus 1. The origin represents the mixed

strategy with zero weight given to A1, and therefore a weight of 1 given
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to A2. In other words, it represents the pure strategy A2. Any point along

the line represents some mixture of A1 and A2. The point 1 on the x-axis

represents the pure strategy A1. Same thing on the y-axis for B’s strategies

B1, B2, and the mixtures of them. We thus have a square bounded by the

points (0,0), (1,0), (0,1), and (1,1). The z-axis measures the payoff to A for

each point in that square, and that set of points between 0 and 1 in height

that together form a surface over the square.

Now [here goes the hand-waving], the function mapping mixed strat-

egy pairs onto payoffs is a continuous one, because a tiny change in the

assignment of probability weights results in a tiny change in the payoff.

[I hope that is obvious. If it isn’t, take my word for it—which is a great

thing for a philosopher to say who is trying to explain some mathematics,

I know, but I have my limits!]

OK. Got that in your mind’s eye? Now, let us recall that von Neuman

offered a “solution” of strictly competitive games in terms of something

called security levels and equilibrium pairs of strategies. Suppose that

somewhere in that space of payoffs, there is a point that represents the

payoff to a pair of equilibrium mixed strategies. What would that mean

and what would it look like?

Well, what it would mean is this: First of all, if B holds to his mixed-

strategy choice, any movement A makes back and forth along the x-axis

is going to be worse for her. [That is what it means to maximize your

security level]. Visually, that means that as she moves back and forth

along the x-axis, the point in space representing the payoff to her goes

down. What is more, because of continuity, it goes down smoothly. A

little movement one way or the other produces a little move down of the

payoff point. A bigger move one way or the other produces a bigger move

down. For B, the whole situation is reversed, because B’s payoffs are equal

to the negative of A’s payoff. [Zero-sum game]. So, if A holds to her

mixed strategy choice, any movement B makes along the y-axis will push

the payoff point up [up for B is bad, because the payoff point is A’s payoff,

and B’s is the negative of that.]

Now, what does this region of the payoff surface look like? Well, the

point we are focusing on has the property that if you move back or forth
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in one dimension the surface falls off, and if you move back or forth in the

other dimension, the surface climbs. Have you ever watched a Western

movie? Have you ever ridden a horse? Can you see that the surface looks

like a saddle? Especially a Western saddle, which has a pommel to grab

onto and a nice high back to the seat. The point right under you on the

saddle, the point you are sitting on, is a “saddle point.” It has the property

that if you run your finger from that point side to side [along the y-axis],

your finger goes down, and if you run your finger from that point front or

back, your finger goes up.

Now we know what an equilibrium point looks like, at least in three

dimensional space, for the case in which A and B each have two pure

strategies. Exactly the analogous thing would be true of a hyperplane

in hyperspace [you can get your light sabers at the desk before we go

into warp speed]. So, we can say that if there is a saddle point in the

space representing a two person zero sum mixed strategy game, then

that point will occur at the intersection of an equilibrium pair of mixed

strategies, and in that sense will be a Solution to the game. So, are there

such points? Now comes the boffo ending for which all of this has been

a preparation. John von Neuman proved the following theorem: Every

two person zero sum mixed strategy game has a solution. That solu-

tion is represented by a saddle point in the n-dimensional vector space

representing the normal form of the game. I really think von Neuman

must have seen this in one exquisite flash of mathematical intuition, and

then just cranked out a proof of a proposition he could just see is true.

I am not going to go through the proof [I am not completely crazy], but

having brought you this far, I think I owe it to you to just tell you the idea

underlying it.

In a nutshell, here it is. Von Neuman defines a continuous transfor-

mation or mapping of the strategy space onto itself. He then proves that

the transformation has this neat property: a point is mapped by the trans-

formation onto itself [i.e., it remains invariant under the transformation]

if and only if that point is a saddle point, and is thus a solution to the

game. He then appeals to a famous theorem proved by the great Dutch

mathematician L. E. J. Brower, which states that every continuous transfor-
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mation of a compact space onto itself has at least one fixed point, which

is to say a point that the transformation maps onto itself. [Hence, this is

known as the Fixed Point Theorem.] Ta Da! [Can you believe that when I

taught this stuff to my philosophy graduate students at UMass, I not only

proved von Neuman’s theorem, I even proved Brouwer’s theorem? Ah,

there were giants in the earth in those days, as the Good Book says.]

And that is it, folks. That is the high point of formal Game Theory.

There is a vast amount more to say, and I am going to say a good deal of it,

but the subject never again rises to this level of formal elegance or power.

Notice, before we move on, one important fact. von Neuman proves that

every zero-sum two person mixed strategy game has a solution. But since

Brower’s theorem just tells you there exists a fixed point, and doesn’t tell

you how to find it, in general Game Theory cannot tell us how to solve

even this limited category of games. [If there is anyone out there who has

ever been involved with Linear Programming, every Linear Programming

problem is equivalent to a zero-sum mixed strategy two person game, so

that is why, in a certain sense of why, you also cannot be sure of solving

a Linear Programming problem.] Oh yes, one final point, which we have

already encountered in a simpler form. if there are two saddle points, they

are equivalent, in the sense that they give the same payoffs to A and to B.

Once again, let us pause to catch our breath. We arrived at this mag-

nificent theorem by making a series of very powerful constraining and

simplifying assumptions. Let us just list some of them:

0. We began by talking about games.

1. We limited ourselves to two person games

2. We limited ourselves to players whose preferences satisfy the six

powerful Axioms from which we can deduce that their preferences

can be represented by cardinal utility functions.

3. We limited ourselves to players with strictly competitive preferences

4. We allowed for mixed strategies.
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5. We accepted mathematical expectation as a rational way of calculat-

ing the value of a strategy involving elements of risk.

6. We adopted von Neuman’s extremely conservative rule of choice of

strategies —maximizing the security levels.

7. We assumed no pre-play communication between the players.

8. We assumed perfect knowledge by both players of the information

required to construct the payoff matrix or payoff space.

Every one of these assumptions can be altered or dropped. When that

happens, a vast array of possibilities open up. No really powerful theo-

rems can be proved about any of those possibilities, but lots and lots can

be said. Here is how I am going to proceed. First, I am going to discuss

each of these assumptions briefly and sketch the sorts of possibilities that

open up when we drop it or alter it. After that, I will gather up every-

thing we have learned and apply it to a number of specific texts in which

Game Theory concepts are used. I will offer a discussion of the so-called

Prisoner’s Dilemma, a full scale analysis of John Rawls’ central claim in

A Theory of Justice (Rawls, 1971), a critique of Robert Nozick’s Anarchy,

State, and Utopia (Nozick, 1974), a detailed critique of a book by Jon El-

ster called Making Sense of Marx (Elster, 1985), a critique of the use made

of Game Theory by nuclear deterrence strategists, and some remarks on

the use of Game Theory concepts in writings by legal theorists. By then,

you ought to be able to carry out this sort of critique yourselves whenever

you encounter Game Theoretic or Rational Choice notions in your field of

specialization.

Now let me say something about each of the nine assumptions listed

above.

3.2.1 The Modeling of Real Situations as Games

I identify this as assumption zero because it is so fundamental to the

entire intellectual enterprise that it is easy to forget what a powerful sim-

plification and idealization it is. Games are activities defined by rules.
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Imagine yourself watching two people playing chess, not knowing what

chess is, but knowing only that a game is being played in the area. How

would you describe what you are watching? Which of the things you see

are appropriately included in the game and which are extraneous? Which

characteristics of the various objects and people in the neighborhood are

part of, or relevant to, the game? Is gender relevant? Is race relevant? Is

the dog sitting by the table part of the game? Are the troubled sighs of one

of the persons a part of the game? How do you know when the game be-

gins and when it ends? Is the clothing of the persons in the area relevant?

Are all of the people in the area part of the game, or only some of them?

Indeed, are any of them part of the game? You cannot answer any of these

questions easily without alluding to the rules of the game of chess. Once

you acquaint yourself with the rules of chess, all of these questions have

easy answers.

Now imagine yourself watching a war. Not one of the questions I

raised in the previous paragraph has an obvious answer with regard to

a war. When does a war start and when does it end? Are the economic

activities taking place in the vicinity of the fighting part of the war or not?

Who are the participants in a war? States that have formally declared war

on one another, other nearby states, private individuals? And so forth.

War is not a game. I don’t mean that in the usual sense—that it is seri-

ous, that people get killed, etc. I mean it in the Game Theory sense. War

is not an activity defined by a set of rules with reference to which those

questions can be answered. Neither is market exchange, contrary to what

you might imagine, nor is love, nor indeed is politics. There are many

descriptive generalizations you can make about war, market exchange,

love, and politics, but no statements that are determinative or definitive

of those human activities. When you apply the concepts of Game Theory

to any one of them, you are covertly importing into your discussion all the

powerful simplifications and rule-governed stipulations that permit us to

identify an activity as a game. Whenever you read an author who uses

the concepts of Game Theory [move, payoff, strategy, zero sum, Prison-

ers’ Dilemma, etc] in talking about some political or military or legal or

economic situation, think about that.
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3.2.2 Games with more than two persons

As soon as we open things up to allow for more than two players in

a game, everything gets very complicated. First of all, with three or more

players, no meaning can be given to the concept of opposed preference

orders. We can still make the assumption of cardinal utility functions

if we wish, because that is an assumption about an individual player’s

preference structure, and has no reference to any particular game. With

three or more players, it also becomes difficult to represent the game by

means of a payoff matrix. Not impossible—we can always define an n-

dimension matrix—just very difficult either to visualize or to employ as

a heuristic device for analyzing a game. That is why writers who invoke

the concepts or the language of Game Theory will sometimes reduce a

complex social situation to "a player and everyone else," in effect trying to

turn a multi-player game into a two player game. That is almost always

a bad idea, because in order to treat a group of people as one player, you

must abstract from precisely the intra-party dynamics that you usually

want to analyze.

Multi-player games also for the first time introduce the possibility of

coalitions of players. Coalitions may either be overt and explicit, as when

several players agree to work together, or they may be tacit, as when play-

ers who are not communicating overtly with one another begin to ad-

just their behavior to one another in reciprocal ways for cooperative ends.

Once we allow for coalitions, we encounter the possibility of defections of

one or more parties from a coalition, and that leads to the possibility that

two players or groups of players will bid for the allegiance of a player by

offering adjustments in the payoff schedule, or side payments.

All of this sounds very enticing and interesting, and I can just imagine

some of you salivating and saying to yourselves, "Yeah, yeah, now he is

getting to the good stuff." But I want to issue a caution. The appeal of

Game Theory to social scientists, philosophers, and others, is that it offers

a powerful analytical structure. That power is achieved, as I have labored

to show you, by making a series of very precise, constraining simplifica-

tions and assumptions. As soon as you start relaxing those assumptions
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and simplifications, you rapidly lose the power of the analytical frame-

work. You cannot have your cake and eat it too. By the time you have

loosened things up enough so that you can fit your own concerns and

problems into the Game Theory conceptual framework, you will almost

certainly have lost the rigor and power you were lusting after, and you

are probably better off using your ordinary powers of analysis and reason.

Otherwise, you are just tricking your argument out in a costume, in effect

wearing the garb of a Jedi knight and carrying a toy light saber to impress

your children.

3.2.3 Abrogating one of the Six Axioms

The six Axioms laid down by von Neuman conjointly permit us to

represent a player’s preferences by means of a cardinal utility function.

There are various ways in which we might ease those axioms. One is

to assume only an ordinal preference structure. As we have seen, that is

sufficient for solving some two-person games, and it might be sufficient for

usefully analyzing some multi-party games. We may need no more than

the knowledge of the order in which individuals rank alternatives. All

majority rule voting systems, for example, require only ordinal preference

orders, a fact that is important when considering the so-called "paradox of

majority rule."

The assumption of completeness is very powerful and potentially

covertly biased in favor of one or another ideological position, a fact that I

will try to show you when we come to talk about Nozick’s work. In effect,

the assumption of completeness serves the purpose of transforming all re-

lationships into market exchanges, with results that are very consequential

and, at least for some of us, baleful.

Transitivity is also a powerful assumption, and some authors, most

notably Rawls, have chosen to deny it in certain argumentative contexts.

Recall my brief discussion of Lexicographic orders. When Rawls says that

the First Principle of Justice is "lexically prior" to the Difference Principle

(Rawls, 1971), he is denying transitivity. He is also, as we shall see, mak-

ing an extremely implausible claim. Whether he understood that is an
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interesting question.

One of the trickiest thickets to negotiate is the relationship between

money and utility. Because the Axioms we must posit in order to repre-

sent a player’s preferences by a cardinal utility function are so daunting,

those who like to invoke the impressive looking formalism of Game The-

ory almost always just give up and treat the money payoffs in a game

[or a game like situation] as equivalent to the players’ utilities. This is

wrong, and some folks seem to know that it is wrong, but they almost

never get further than just making some casual assumption of declining

marginal utility for money. The issue of aversion to risk is usually ignored,

or botched.

To give you one quick example of the tendency of writers to ignore

the complexity of the six Axioms, here is the entry in the end-of-volume

Glossary for "von Neuman-Morgenstern Expected Utility Theory," in

Game Theory and the Law by Douglas G. Baird, Robert H. Gertner, and

Randal C. Picker:

Von Neuman and Morgenstern proved that, when individ-

uals make choices under uncertainty in a way that meets a

few plausible consistency conditions, one can always assign a

utility function to outcomes so that the decisions people make

are the ones they would make if they were maximizing ex-

pected utility. This theory justifies our assumption throughout

the text that we can establish payoffs for all strategy combi-

nations, even when they are mixed, and that individuals will

choose a strategy based on whether it will lead to the highest

expected payoff.

Now that you have sweated through my informal explanation of each

of the six Axioms, I leave it to you whether they are correctly characterized

as "a few plausible consistency conditions."
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3.2.4 Relaxing the Assumption of Strictly Competitive Prefer-
ences

As I have already pointed out, there are a great many two-party situa-

tions [like two people negotiating over the price of a house] in which the

parties do not have strictly opposed preference orders. This is manifestly

true in nuclear deterrence strategy situations in which it is in the interest

of both parties to avoid one outcome—namely mutually destructive all out

war.

In addition to games that are partly competitive and partly cooper-

ative, we can also consider totally cooperative games, sometimes called

"coordination games." Here is one example. In his book, The Strategy of

Conflict, Schelling cites a coordination game he invented to try out on

his Harvard classes. He divided his class into pairs of students, and told

them that without consultation, they were to try to coordinate on a time

and place where they would meet. Each member of the pair was to write

a time and place on a slip of paper, and then the two of them would read

the slips together. "Winning" meant both students choosing the same time

and place. An impressive proportion of the pairs, Schelling reported, won

the game by coordinating on "Harvard Square at noon when classes let

out." Obviously, their success in coordinating involved their bringing to

the game all manner of information that would be considered extraneous

in a competitive game, such as the fact that both players are Harvard stu-

dents. Some time after reading this, I was chatting with a Harvard couple

I knew, and I decided to try the game out on them. When I opened the

first piece of paper, my heart sank. The young man had written, "4:30 p.m.,

The Coffee Connection." "Oh Lord," I thought, "he didn’t understand the

game at all." Then I looked at the young lady’s piece of paper. It read,

"4:30 p.m., The Coffee Connection." It seems that is where they met every

day for coffee. Schelling wins again!

Not much in the way of theorems, but a great deal in the way of insight,

can be gained from analyzing these situations, as Schelling has shown.
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3.2.5 Mixed Strategies

The subject of mixed strategies has an interesting history. During the

Second World War, the Allies struggled with the problem of defending

the huge trans-Atlantic convoys of military supply ships going from the

United States to England against then terrible depredations of the Nazi

wolf packs of u-boats. The best defense was Allied airplanes capable of

spotting u-boats from the air and bombing them, but the question was,

What routes should the planes fly? if they planes, day after day, flew the

same routes, the u-boats learned their patterns and maneuvered to avoid

them. There was also the constant threat of espionage, of the secret anti-

u-boat routes being stolen. The Allied planners finally figured out that a

mixed strategy of routes determined by a lottery rather than by decision

of the High Command held out the most promising hope of success.

Generally speaking, however, mixed strategies are a bit of arcana per-

fect for proving a powerful mathematical theorem but not much use in

choosing a plan of action.

3.2.6 Calculation of Mathematical Expectation versus Maximiza-
tion of Security Levels

We have already discussed at some length the limitations of maximiza-

tion of expected utility as a criterion of rationality of decision making.

von Neuman and Morgenstern reject it in favor of the much more con-

servative rule of maximizing one’s security level. We have also seen that

this rule of decision making does not allow for risk aversion [or a taste

for risk], unless we totally change the set over which preferences are ex-

pressed, so that they become compound lotteries over even total future

prospects rather than Outcomes in any ordinary sense. As we have also

seen, maximization of expected utility rules out lexicographic preference

orders, and when I come to talk about the application of this methodology

to nuclear strategy and deterrence policy, I will argue that the assumption

of non-lexicographic preference orders covertly constitutes an argument

for a nuclear strategy favoring the Air Force or the Army rather than the

Navy in the inside-the-Beltway budget battles.
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3.2.7 Pre-Play Communication

Once we permit pre-play communication, all manner of fascinating

possibilities open up. As we might expect, situations with pre-play com-

munication and non-strictly opposed preference orders are among the

richest fields for discussion and at the same time allow for the least in

the way of rigorous argument or proof. In the hands of an author with

a good imagination and a sense of humor, this can be lots of fun, but

virtually everything that can be said about such situations can be said

without calling them games and drawing imposing looking 2 x 2 payoff

matrices. For example, as any hotshot deal maker in the business world

knows, when you are engaged in a negotiation, it is sometimes very useful

to make yourself deliberately unreachable as the clock ticks on toward the

deadline for a deal. If a deal must be struck by noon on Tuesday, and if

both parties want to reach agreement somewhere in the bargaining space

defined by the largest amount of money the first party is willing to pay

and the smallest amount the second party is willing to accept, it is tacti-

cally smart for the buyer to make a lowball offer within that space, and

then be unavailable until noon Tuesday [somewhere without cell phone

coverage, in the ICU of a hospital, on an airplane.] The seller must then

accept the offer or lose the sale. Since by hypothesis the seller is willing,

albeit reluctant, to sell at that price, she will accept rather than lose the

sale. If the seller sees this coming, she can in turn give binding instruc-

tions to her agent to accept no offer unless there is the possibility of a

counteroffer before the deadline. Then she can make herself unavailable.

And so forth. This is the stuff of upscale yuppie prime time tv shows. It

just sounds more impressive when you call it Game Theory.

3.2.8 Perfect Information

The general subject of perfect and imperfect information has been so

much discussed in economics of late that I need not say anything here.

Suffice it to note that formal Game Theory assumes perfect information of

the payoff matrix, which embodies both the rules of the game and play-

ers’ preference structures. Games do allow for imperfect information, of
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course. Poker players do not know one another’s cards, for example. But

that is a different matter, built into the rules of the game.
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Applications





Chapter 4

Applications

The time has come to put all of this formal stuff to use. In the second

major part of this tutorial, I shall examine a number of attempts to apply

the materials of Game Theory and Rational Choice Theory to substantive

issues in political theory, economics, military strategy, and the law. My

message will in the main be negative. I shall argue, again and again,

that authors attempting to gain rigor or clarity or insight by the use of

these methods actually misuse them, failing to understand them correctly

or failing to understand the scope and nature of the simplifications and

abstractions that are required before the materials of Game Theory and

Rational Choice Theory can be properly applied. I have asked you to read

two essays and a chapter of a book, all by me, and all available by clicking

on the links provided in the blog post of June 2, 2010. In order to move

things along and keep this tutorial to a manageable size, I am going to rely

on you to do that reading, so that I can refer to it without summarizing it

or repeating what I have said in those texts. My order of discussion will

be as follows:

1. A discussion of the Prisoner’s Dilemma

2. A discussion of the Free Rider Problem

3. An extended and very detailed analysis of the central thesis of John

Rawls’ A Theory of justice.
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4. A brief discussion of certain arguments in Robert Nozick’s Anarchy,

State, and Utopia (Wolff, 1977b).

5. A discussion of some of the applications of Game Theory and Ratio-

nal Choice Theory in Game Theory and the Law by Baird, Gertner, and

Picker.

6. A discussion of the role played by Game Theory in the debates about

military strategy and deterrence policy in the United States in the

first twenty years following World War II. In connection with this

portion of the discussion, I will make available the text of a book I

wrote in 1962 but was never able to get published.

Assuming anyone is still with me after all of that, I will entertain sugges-

tions of how we might usefully keep this tutorial going. Alternatively, I

can go back to playing Spider Solitaire on my computer. :)

4.1 The Prisoner’s Dilemma

The Prisoner’s Dilemma is a little story told about a 2 x 2 matrix. For

those who are unfamiliar with the story [assuming someone fitting that

description is reading these words], here is the statement of the "dilemma"

on Wikipedia:

Two suspects are arrested by the police. The police have

insufficient evidence for a conviction, and, having separated

the prisoners, visit each of them to offer the same deal. If one

testifies for the prosecution against the other (defects) and the

other remains silent (cooperates), the defector goes free and the

silent accomplice receives the full 10-year sentence. If both re-

main silent, both prisoners are sentenced to only six months in

jail for a minor charge. If each betrays the other, each receives

a five-year sentence. Each prisoner must choose to betray the

other or to remain silent. Each one is assured that the other

would not know about the betrayal before the end of the inves-

tigation. How should the prisoners act?
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The following matrix is taken to represent the situation.

B1 cooperate B2 defect

A1 cooperate 6 months, 6 months 10 years, Go free

A2 defect Go free, 10 years 5 years, 5 years

Table 4.1: Payoff matrix for the Prisoner’s Dilemma.

The problem supposedly posed by this little story is that when each

player acts rationally, selecting a strategy solely by considerations of what

we have called dominance [A2 dominates A1 as a strategy; B2 dominates

B1 as a strategy], the result is an outcome that both players consider sub-

optimal. The outcome of the strategy pair [A1,B1], namely six months

for each, is preferred by both players to the outcome of the strategy pair

[A2,B2], which results in each player serving five years, but the players fail

to coordinate on this strategy pair even though both players are aware of

the contents of the matrix and can see that they would be mutually better

off if only they would cooperate.

For reasons that are beyond me, this fact about the matrix, and the

little story associated with it, is considered by many people to reveal some

deep structural flaw in the theory of rational decision making, akin to the

so-called "paradox of democracy" in Collective Choice Theory. Military

strategists, legal theorists, political philosophers, and economists profess

to find Prisoner’s Dilemma type situations throughout the universe, and

some, like Jon Elster [as we shall see when we come to the Free Rider

Problem] believe that it calls into question the very possibility of collective

action (Wolff, 1990).

There is a good deal to be said about the Prisoner’s Dilemma, from

a formal point of view, so let us get to it. [Inasmuch as there are two

prisoners, it ought to be called The Prisoners’ Dilemma, but never mind.]

The first problem is that everyone who discusses the subject confuses an

outcome matrix with a payoff matrix. In the game being discussed here,

there are two players, each of whom has two pure strategies. There are

no chance elements or "moves by nature" [such as tosses of a coin, spins
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of a wheel, or rolls of a pair of dice]. Let us use the notation O11 to

denote the outcome that results when player A plays her strategy 1 and

player B plays his strategy 1. O12 will mean the outcome when A plays

her strategy 1 and B plays his strategy 2, and so forth. There are thus four

possible outcomes: O11, O12, O21, O22.

In this case, O11 is "A serves six months and B serves six months." O12

is "A serves 10 years and B goes free," and so forth. Thus, the Outcome

Matrix for the game looks like this:

B1 B2

A1 A serves six months

and B serves six

months

A serves ten years and

B goes free

A2 A goes free and B

serves 10 years

A serves 5 years and B

serves five years

Table 4.2: Outcome matrix for the Prisoner’s Dilemma.

Notice that instead of putting a comma between A’s sentence and B’s

sentence, I put the word "and." That is a fact of the most profound impor-

tance, believe it or not. The totality of both sentences, and anything else

that results from the playing of those two strategies, is the outcome. Once

the outcome matrix is defined by the rules of the game, each player de-

fines an ordinal preference ranking of the four outcomes. The players are

assumed to be rational—which in the context of Game Theory means two

things: First, each has a complete, transitive preference order over the four

outcomes; and Second, each makes choices on the basis of that ordering,

always choosing the alternative ranked higher in the preference ordering

over an alternative ranked lower.

Nothing in Rational Choice Theory dictates in which order the two

players in our little game will rank the alternatives. A might hate B’s

guts so much that she is willing to do some time herself if it will put B

in jail. Alternatively, she might love him so much that she will do any-

thing to see him go free. A and B might be sister and brother, or they
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might be co-religionists, or they might be sworn comrades in a struggle

against tyranny. [They might even be fellow protesters arrested in an anti-

apartheid demonstration at Harvard’s Fogg Art Museum—see my other

blog for a story about how that turned out.]

"But you are missing the whole point," someone might protest. "Game

Theory allows us to analyze situations independently of all these consid-

erations. That is its power." To which I reply, "No, you are missing the real

point, which is that in order to apply the formal models of Game Theory,

you must set aside virtually everything that might actually influence the

outcome of a real world situation. How much insight into any legal, polit-

ical, military, or economic situation can you hope to gain when you have

set to one side everything that determines the outcome of such situations

in real life?"

In practice, of course, everyone assumes that A ranks the outcomes as

follows: O21 > O11 > O22 > O12. B is assumed to rank the outcomes

O12 > O11 > O22 > O21. With those assumptions, since only ordinal

preference is assumed in this game, the payoff matrix of the game can

then be constructed, and here it is:

B1 B2

A1 second,

second

fourth, first

A2 first, fourth third, third

[Notice, by the way, that this is not a game with strictly opposed pref-

erence orders, because both A and B prefer O11 to O22. With strictly

opposed preference orders, you cannot get a Pareto sub-optimal outcome

from a pair of dominant strategies—for extra credit, prove that. :) ]

That payoff matrix contains the totality of the information relevant to

a game theoretic analysis. Nothing else. But what about those jail terms?

Those are part of the outcome matrix, not the payoff matrix. The payoff

matrix gives the utility of each outcome to each player, and with an ordinal

ranking, the only utility information we have is that a player ranks one
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of the outcomes first, second, third, or fourth [or is indifferent between

two or more of them, of course, but let us try to keep this simple.] But

ten years versus going scot free, and all that? That is just part of the

little story that is told to perk up the spirits of readers who are made

nervous by mathematics. We all know that when you are introducing

kindergarteners to geometry, it may help to color the triangles red and

blue and put little happy faces on the circles and turn the squares into

SpongeBob SquarePants. But eventually, the kids must learn that none of

that has anything to do with the proofs of the theorems. The Pythagorean

Theorem is just as valid for white triangles as for red ones.

To see how beguiled we can be by irrelevant stories, consider the

following outcome matrix, derived from a variant of the story we have

been dealing with:

B1 B2

A1 A serves one day and B

serves one day

A serves 40 years and a

day and B goes free

A2 A goes free and B

serves 40 years and a

day

A serves 40 years and B

serves 40 years

In this variant, if both criminals keep their mouths shut, they go free

after only one night in jail. If they both rat, they spend forty years in

jail. If one rats and the other doesn’t, the squealer goes free today and

the other serves 40 years and a day. Both criminals know this, of course,

because the premise of the game is that this is Decision Under Uncertainty,

meaning that they know the content of the outcome matrix and of the

payoff matrix but not the choice made by the other player. The structure

of the payoff matrix associated with this outcome matrix is supposed to

be identical with that associated with the original story, namely: For A,

O21 > O11 > O22 > O12, and for B, O12 > O11 > O22 > O21, because

the premise of the little example is that each player rates the outcomes

solely on the basis of the length of his or her sentence, regardless of how
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long or short that is. It is therefore still the case that O11 is preferred by

both players to O22, and it is still the case that IF each player’s preference

order is determined solely by a consideration of that player’s sentencing

possibilities [and that each player prefers less time in jail to more], and

that each player chooses a strategy solely by attending to considerations

of dominance, then the two of them will end up with a Pareto sub-optimal

result. But how likely is all of that to occur in the real world? I suggest the

answer is, not likely at all. For the upshot of the game to remain the same,

we must assume two things, neither of which is even remotely plausible in

any but the most bizarre circumstances: First, that each player is perfectly

prepared to condemn his or her partner in crime to a sentence of 40 years

and a day just to have a chance at reducing a one day sentence to zero;

and second, that the two of them, faced with this extraordinary outcome

matrix, cannot coordinate on the Pareto Preferred Outcome without the

benefit of communication.

What would happen in the real world? I suggest something like this

might happen: A examines the outcome matrix and says to herself: "Look,

there is no difference to speak of between a 40 year sentence and a sentence

of 40 years and a day. I am going to count on my partner to be sensible,

and go for the one day sentence. The very worst that can happen is that I

will have a day tacked onto the end of forty years, if I am still alive then,

but I have a good shot here at getting off all but scot free."

Now, from a Game Theoretic point of view, this is not interesting at all.

What is the point of introducing outcome matrices and payoff matrices

and dominant strategies and Pareto sub-optimal outcomes if, when it gets

right down to it, we are going to go into all the messy details of who the

players are, what their relation to one another is, what history they have

with one another, and all the rest of it? I thought Game Theory was going

to enable me to analyze the situation without any of that stuff.

This is a point of such importance that I need to talk about it for a

bit. A very long time ago, Aristotle and Pythagoras and some other smart

Greeks [and also some really smart Egyptians, but I don’t want to get into

the whole Black Athena thing] discovered that in some situations, one can

successfully abstract from the details of a problem and still carry out a
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valid process of reasoning about it by attending only to certain formal or

structural features of the situation. One can, for example, carry out long,

complex chains of reasoning about shapes and sizes and spatial relation-

ships without any reference to the materials in which these shapes and

sizes and relationships are embedded. Now, this was not obvious on the

face of it, when they made this historic discovery. You could not get very

far reasoning about crops, after all, if you failed to take notice of which

crop you were talking about, nor could you say much of interest about

metalworking in abstraction from the particular metal in question. But

if you know that all human beings are mortals, and you know that all

Athenians are human beings, then you can draw the conclusion that All

Athenians are mortal, just by attending to the formal syntactic structure of

your two premises, namely that All A are B and All B are C, from which

it follows, regardless of the details of the story you are telling, that All A

are C.

Formal reasoning of this sort is beguiling, both because it is extremely

powerful and because it can be engaged in by people who do not actually

know much about the way the world works. There is also a lot of not very

sublimated erotic and aggressive energy expressed here. Not for nothing

do mathematicians speak about ramming an argument through. Oh well.

That could lead us in rather hairy directions.

Once all of this has gained wide acceptance and has been brought to

its present height of complexity and sophistication, everyone wants to get

in on the act. I mean, who wants to talk about the psychological profiles of

accused individuals enmeshed in the complexities of the criminal justice

system when you can slap a 2 x 2 matrix on the page and carry out abstract

calculations about dominant strategies? How cool is that? This is the

reason why philosophers, who have long since learned that logicians have

the highest status in their profession, put backwards E’s on the page and

talk about "for all x" rather than "everyone."

The little story called The Prisoner’s Dilemma ignores just about every

fact about a real Law and Order type situation that could possibly be

relevant to thinking about it. Let us look at just a few of the things that

are assumed away.
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1. The situation is treated as a two person game. But there are obvi-

ously many more than two people involved. First of all, there are

the cops who are putting the squeeze on the prisoners. In the real

world, they are an important part of the situation, and real prisoners

will try, quite rationally, to figure out whatever they can about the

cops that will help them make their decision. Furthermore, in the

American justice system, the prisoners will have lawyers. So at a

bare minimum, this is a five-person game [one cop, two prisoners,

two lawyers].

2. To force the story into a 2 x 2 matrix, one must suppose that each

player has only two strategies. Recall what I said about how extraor-

dinarily simple a game must be to offer only two strategies to each

player. In the real world, there will be an arraignment, and there will

be some jockeying over venue and date of trial and which judge is

going to hear the case and whether to opt for a jury trial or go for a

bench trial. Lots of moves, therefore lots of strategies, therefore no 2

x 2 matrix.

3. To make the story fit the matrix ["the punishment fit the crime"], we

must abstract from every important fact about the two criminals, in-

cluding sex, race, religion, personal relationship, past history with

the criminal justice system, and so on and on, and then we must

assume, against all plausibility, that each criminal will rank the out-

comes purely on the basis of the length of the jail sentence to himself

or herself.

Now, if we could, by doing all of this, draw conclusions whose validity

is totally independent of all the details we have abstracted from, just as the

validity of geometric calculation is independent of the color of the shapes

whose area we are computing, then we would indeed have a very powerful

tool for the analysis of economic, political, legal, and military problems.

It would be a tool that could both help us to predict how people will act

and also enable us to prescribe how rational individuals should act. But

in fact, what remains when we have stripped away all the detail necessary
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to reduce a complex situation to a 2 x 2 matrix is a structure that neither

assists in prediction nor guides us in prescription.

If we focus simply on the formal structure of a two person game with

two pure strategies for each player, it is obvious that there are 24 different

orders in which each player can rank the four outcomes, setting to one

side for the moment the possibility of indifference. How do I arrive at this

number? Simple. A [or B] has four choices for the number one spot in the

ranking. For each of these, there are three possibilities for the number two

spot. There are then two ways of choosing among the remaining two out-

comes for the number three spot, at which point the remaining outcome

is ranked number four. 4x3x2x1 = 24. Since A’s rankings are logically

independent of B’s rankings, there are 24x24 = 576 possible combinations

of rankings by A and B of the outcomes of the four possible strategy pairs.

The Prisoner’s Dilemma is simply one of those 576, to which a story has

been attached.

People enamored of this sort of thing have thought up little stories

for some of the other possible pairs of rankings. [The following examples

come from the pages of Baird, Gertner, and Picker, mentioned earlier]. For

example, the following pair has had attached to it a story about The Battle

of the Sexes [now fallen into disfavor for reasons of political correctness]:

A: O21 > O12 > O22 > O11

B: O21 > O12 > O11 > O22

Another pair of preference orders has a story about collective bargain-

ing attached to it:

A: O21 > O11 > O12 > O22

B: O12 > O11 > O21 > O22

If we allow for indifference, then there are lots more possible pairs of

preference orders. Here is one that has a story attached to it called The

Stag Hunt:
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A: O11 > O21 = O22 > O12

B: O11 > O12 = O22 > O21

I have no doubt that with sufficient time and imagination, one could

think up many more stories to attach to yet other pairs of ordinal rankings

of the four outcomes in a game with two pure strategies for each player.

None of these little preference structures really models, in a useful way,

relations between men and women, or collective bargaining, or stag hunts

[since matching pennies really is a game, with all the simplifications and

rules and such that characterize games, there is no reason at all why a

Game Theoretic analysis should not be useful in understanding it, but one

doesn’t often encounter real world situations, even in Las Vegas casinos,

where people are engaged in matching pennies.]

What is the upshot of this rather bilious discussion of The Prisoner’s

Dilemma? Put simply, it is this: The abstractions and simplifications re-

quired to transform a real situation of choice, deliberation, conflict, and

cooperation into a two-person game suitable for Game Theoretic analysis

fail to identify formal or structural features of the situation that are, at one

and the same time, essential to the nature of the situation and indepen-

dent of the facts or characteristics that have been set aside in the process of

simplification. That, after all, is what does happen when we reduce an in-

formal argument to a syllogism. Consequently, anything we can infer from

the formal syllogistic structure of the argument must hold true for the full

argument, once the content we have abstracted from is reintroduced.

Just to make sure this point is clear: Suppose I come upon a text in

which the author tries to establish that some Republicans are honorable.

She begins, we may suppose, by noting that all Republicans are Ameri-

cans, and then offers evidence to support that claim the some Americans

are honorable, whereupon he concludes that some Republicans are hon-

orable. When we convert this to syllogistic form, it becomes: All A are B.

Some B are C. Therefore, Some A are C. Thus separated from its content,

the argument is quickly seen to be invalid [although, let us remember, that

fact does not imply that the conclusion is false, only that it has not been

established by the argument. Fair is fair.] The As that are B may not be
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among the Bs that are C. [Venn diagrams, anyone?] In this case, the ab-

straction required to convert the informal argument into syllogistic form

succeeds in identifying a formal structure of the original argument. Hence

the formal analysis is valid.

But in the case of the Prisoner’s Dilemma, essential elements of the

original situation must be simplified away, removing aspects of the situa-

tion that are structurally essential to it. The result is not to lay bare the un-

derlying formal structure of the original situation, but rather to substitute

for the original situation another, simpler situation that can be exhibited

in appropriate Game Theoretic form. The reasoning concerning this new

situation is correct, but there is no reason to suppose that it applies as well

to the original situation.

Conclusion: Be not beguiled by 2 x 2 matrices.

4.2 John Rawls’ A Theory of Justice

We come now to what might plausibly be considered the real payoff for

all the technical thrashing about we have been engaged in: an extended

analysis of the core argument in John Rawls’ famous book, A Theory of

Justice (Rawls, 1971). Rawls’ hauptwerk is widely considered the most im-

portant contribution to English language political theory of the past cen-

tury, and is arguably the most influential work of philosophy written in

the English language during that time. It is worth our while, therefore,

to take the time to look at his central argument carefully and in detail.

Thirty-three years ago I wrote a book-length examination of A Theory

of Justice, called Understanding Rawls, published by Princeton University

Press. Much of what I say here overlaps with what I said in that book

(Wolff, 1977a), but my focus here is more narrowly on Rawls’ attempt to

apply Bargaining Theory to his subject. Those interested in a somewhat

broader discussion are invited to hunt up my book and take a look. I am

going to assume that everyone reading these words has some familiarity

with Rawls’ theory.

The core of Rawls’ work is a simple and rather lovely idea. In the

middle of the twentieth century, Anglo-American ethical theory was stuck
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in what Kant, two centuries earlier, had called an antinomy. Utilitarians

and intuitionists were locked in a death struggle, with each side more

than capable of exposing the weaknesses of the other, but each unable

to defend itself against the other’s crushing arguments. Rawls had the

idea that the conflict might be resolved by combining an old tradition of

political philosophy—social contract theory—with a brand new field of

mathematics and economics, Game Theory. Early in the development of

the theory that eventually found its full-scale exposition in A Theory of

Justice, Rawls claimed that he could prove a theorem in Bargaining Theory,

and that the proof of that theorem would constitute a justification for the

pair of principles which, he said, were or ought to be the foundation of a

just society.

This was a very bold claim, and had Rawls been able to fulfill its

promise, it would have been a monumental achievement. As we shall

see, Rawls very early recognized that the original version of the theorem

was unprovable, and indeed false. In response to this realization, he made

sweeping changes to his theory, resulting in the distinctive form that the

theory takes in A Theory of Justice, but unfortunately, the revised theory is

not more defensible than the original. Rawls himself seems to have real-

ized this fact, for while repeating the language of "theorem" and "proof,"

he very considerably backs away from the strong claims that he made in

the earliest published version of his theory.

Before we begin the detailed examination of the argument, let me take

just a moment to explain why I believe it is appropriate to bring the tools

and insights of Game Theory to bear on A Theory of Justice. That is, after

all, not the customary manner in which we engage with the arguments

of Hobbes, Locke, Rousseau, Mill, Kant, or any of the other great figures

of the Western tradition of democratic political theory. Quite simply, the

reason is this: A great part of the plausibility of Rawls’ theses derives from

his claim that they can be grounded in a formal argument of Bargaining

Theory. Absent that claim, the reader is left simply to contemplate Rawls’

political theory and consider whether he or she likes it. The argument for

the theory is, when all is said and done, the claim that the two principles

would be chosen by rationally self-interested individuals situated in what
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Rawls eventually came to call the Original Position. If that is simply not

true, then it is hard to see what other justification Rawls has for his theory.

It is actually rather difficult to figure out exactly what Rawls’ Two

Principles mean, and the only way I can see to grapple with them is to take

Rawls at his word that they are the solution to a bargaining game, and

then see how we might so construe them. In this case, as we shall see,

the formal machinery of Game Theory is quite helpful in guiding us to

turn Rawls’ non-technical language into something precise enough to be

subjected to analysis.

It will be useful for our purposes to begin with the earliest statement

of Rawls’ theory, as it appeared in an article entitled "Justice as Fairness,"

published in 1962 in an important collective volume of essays called ıPhi-

losophy, Politics, and Society, Second Series, edited by Peter Laslett and

W. G. Runciman. Two passages from the essay will set things up for the

first stage of my analysis.

"The conception of justice which I want to develop," Rawls writes, "may

be stated in the form of two principles as follows: first, each person par-

ticipating in a practice, or affected by it, has an equal right to the most

extensive liberty compatible with a like liberty for all; and second, in-

equalities are arbitrary unless it is reasonable to expect that they will work

out for everyone’s advantage, and provided the positions and offices to

which they attach, or from which they may be gained, are open to all."

These principles, Rawls says, would be agreed upon unanimously in a

deliberation that he characterizes roughly in the way that "state of nature"

political theorists describe the agreement on the Social Contract that con-

stitutes a nation. Although he acknowledges that his remarks "are not of-

fered as a rigorous proof" that persons engaged in this deliberation would

agree on the two principles, such a proof requiring "a more elaborate and

formal argument," nevertheless, he goes on to say:

[T]he proposition I seek to establish is a necessary one, that

is, it is intended as a theorem: namely, that when mutually self-

interested and rational persons confront one another in typical

circumstances of justice, and when they are required by a pro-
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cedure expressing the constraints of having a morality to jointly

acknowledge principles by which their claims on the design

of their common practice are to be judged, they will settle on

these two principles as restrictions governing the assignment

of rights and duties, and thereby accept them as limiting their

rights against one another.

I think it is patently clear that Rawls in these passages is laying claim

to the rigor and demonstrative power of Game Theory, at least in its some-

what looser form as Bargaining Theory. He seeks to show that his propo-

sition is a necessary one; he asserts that it is intended as a theorem. Through-

out the long evolution and transformation of his theory, Rawls never gave

up this claim, for all that he also never came close to providing an ar-

gument for it. It is, I believe, the heart and soul of his entire enterprise.

Without it, he has nothing but a rather affecting, albeit extremely murky,

expression of his personal preferences in social organization.

What can Game Theory tell us about Rawls’ claim? There are two

questions that we must try to answer: What do his two principles mean?

and Is his assertion a theorem that can be proved with necessity?

First, a problem: In the original statement of the principles, Rawls

states his first principle thus: "each person participating in a practice, or

affected by it, has an equal right to the most extensive liberty compatible

with a like liberty for all. " In A Theory of Justice, however, the reference to

practices is omitted, and instead we get "Each person is to have an equal

right to the most extensive basic liberty compatible with a similar liberty

for others." [p. 60] Eventually, this is tweaked a bit, and becomes "Each

person is to have an equal right to the most extensive total system of equal

basic liberties compatible with a similar system of liberty for all." [p. 302]

The original formulation is thus intended to apply to practices, such as

marriage, or capitalism, or the military, or the judicial system. The final

formulation applies to nothing less than the total organization of a society.

The shift, as we shall see, makes it forbiddingly difficult to figure out what

the principle actually means.

The first principle, in all of its variants, uses the phrase "the most exten-
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sive." That implies that one can rank alternative arrangements of a practice,

or, alternative sets of fundamental or constitutional arrangements, in or-

der of the degree of liberty that they embody or promise or make possible

or guarantee. But as the term "liberty" is ordinarily used in the context

of debates about political systems, it refers to a wide variety of institu-

tional arrangements or guarantees that vary along multiple dimensions.

The right to trial by a jury of one’s peers, we may suppose, is a form of

liberty. So is the right of all adults to vote periodically in elections to se-

lect the members of the government. Is a system of government with the

first but not the second a more extensive or a less extensive liberty than a

system of government with the second but not the first? One might reply,

it does not matter, because a system of government with both is superior

to either. Hence it would be Pareto preferred to either. But suppose there

are liberties that in some of their forms are incompatible, in the sense that

guaranteeing one interferes with guaranteeing the other.

For example [if I may be a trifle facetious], imagine a society consist-

ing solely of authors and literary critics [these days, what with the in-

ternet, it does seem as though everyone is either an author or a critic,

and sometimes both]. Now authors wish to be free of what they consider

unfounded attacks on their writings, and critics wish to be free of what

they consider unjustified limitations on their critiques. So the critics will

prefer the American system of libel law, which gives very broad latitude

to critics, and authors will prefer the British system, which favors those

supposedly libeled [unless, of course, the authors wish, in their writings,

to say nasty things about the critics, in which case the situation is more

complex.] There is no way in this situation simultaneously to maximize

the liberty of both groups, since each extension of the liberty of one will be

experienced as a loss of liberty by the other. Consequently, as the authors

and critics gather to bargain on the founding principles of liberty in their

society, they will find it impossible to achieve unanimity on Rawls’ first

principle, because every attempt to spell out what it means will have them

at loggerheads. This problem is not at all trivial, for all that my example

may make it seem so. It is referred to in economics as the Indexing Prob-

lem, and it will crop again in a different guise in the final version of Rawls’
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theory.

The second principle says that "inequalities are arbitrary unless it is

reasonable to expect that they will work out for everyone’s advantage."

Remember that in the original version of Rawls’ principles, it is inequal-

ities in a practice that are being referenced—differential salaries, for ex-

ample, or differences in the perks associated with one of the roles in the

practice. The core idea is that economic inequalities may actually result in

an increase in total social output, for example by attracting especially tal-

ented people to positions demanding highly skilled workers. Inequalities

may also motivate young people to acquire time consuming and demand-

ing skills whose deployment in more highly compensated positions will

once again increase total output. Higher wages are required to attract the

talented workers or to persuade them to spend the time and money ac-

quiring the skills. If there is something left over from the increased output

after the skilled workers have received sufficient additional compensation

to motivate them, then the remainder—what we might call an "inequality

surplus"—can be spread around to the rest of the society, making everyone

better off than he or she would have been in a society that enforces equal

compensation at the price of a universally lowered standard of living.

This is really the core idea in Rawls’ entire theory of social justice. It

is, we may note, the standard Sociological rationale for the extreme in-

equality of modern capitalist society. I like to think of it as the Brain

Surgery argument—to wit, "If you have to have brain surgery, do you

want to be operated on by someone who is paid no more than a burger

flipper at Wendy’s?" The idea roughly is this: If everyone were paid the

same wage—say something above what is now Minimum Wage—no one

would have any particular motivation to swap the job of burger flipper

or ditch digger or garbage collector for the job of corporate executive or

brain surgeon or professor, assuming that those jobs had been stripped of

their various perks as well as of their higher salaries [corner offices, people

who call you "sir" or "ma’am," and so forth.] But society needs talented

corporate executives and well-trained brain surgeons and professors. Oth-

erwise the Gross Domestic Product will be sub-optimal and everyone will

suffer. So efficiency demands that we slap big salaries on those jobs to



98 Applications

motivate some of the more promising burger flippers and garbage collec-

tors to trade in their jobs for brain surgery. If we manage things skillfully,

we will pay them just enough to drag them away from their spatulas and

garbage trucks and into the executive suites and hospitals. Those salary

increases will come out of the GDP, of course, but there will be enough

left over to raise the pay of all the remaining burger flippers and garbage

collectors. So, assuming no one is envious, and resents the higher salaries

of the brain surgeons even though the productivity of the brain surgeons

is raising the wages of the burger flippers, everyone will be in favor of this

inequality. [This is the reason for the non-envy clause in Rawls’ theory, in

case you ever wondered.]

I have spelled this out at length because thus explicated it is so wildly

implausible. As a description of what motivates people in a modern cap-

italist society to pursue one career path rather than another it is so tone-

deaf sociologically and psychologically as to sound like a Jon Stewart send-

up. But that is not the focus of these remarks, so let us leave that to one

side.

One of the purposes of the Difference Principle, so called, is supposed

to be to allow us to adjudicate complaints against a scheme of unequal

compensation by showing that the inequality works to everyone’s advan-

tage. But "to everyone’s advantage" is, grammatically speaking, a com-

parative rather than a superlative. To everyone’s advantage compared to

what? This is a good deal harder to answer than it might seem at first

glance.

Presumably, the answer is that the scheme works to everyone’s ad-

vantage compared to the same social system with equal compensation,

if indeed one can even imagine the same social system without the in-

equalities. [Would a corporation be the same institution if everyone made

the same wage? Would a hospital be?] But there are almost certainly a

number of alternative schemes of unequal wages, each of which generates

an Inequality Surplus adequate to make everyone better off, and each of

which makes some positions better off and some positions worse off

than those positions would be under a different inequality scheme gen-

erating a surplus. If that is so, considerations of Pareto Comparability do
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not permit us to say which scheme is preferable to which, even though

each of them is preferable to the society without inequality.

Assuming [what is in fact false] that all of these problems with the

Two Principles can be solved, we are left with the central question: Would

a group of rationally self-interested individuals faced with the circum-

stances of justice necessarily coordinate on the Two Principles? [By the

way, for those who are not up to speed on all of this, the "circumstances

of justice" are these: First, that the members of the society have some-

thing to gain from cooperation, if they can only agree; and Second, that

their pre-agreement assets and powers are sufficiently equal to motivate

them to seek common agreement. This is all standard Social Contract stuff,

straight out of Hume, Hobbes, etc.] In short, we are faced with a proposed

theorem in Bargaining Theory.

As Rawls conceives the Bargaining Game, this is a multi-party game

with full communication among players who are assumed to have cardinal

utility functions invariant under affine transformations. Rawls never tells

us how the game is played, nor does he even seem to think that he needs

to do so. That is one of the odd things about his invocation of "theorems"

in Game Theory. We are left to try to imagine for ourselves how the game

would actually be played. I think we are meant to imagine something

like this: The players sit in a circle in such a way that what each says is

heard, and is known to be heard, by all. One player starts, and proposes

a rule. [Say, the old Bill Cosby rule from early Sesame Street—"All for

one and everything for myself."] The next player either accepts the first

player’s rule, which of course she won’t, or proposes a new rule. They

go around the circle again and again, proposing foundational rules, until

they succeed in making one complete circle during which everyone agrees

to the same rule. That is then the solution to the game. Rawls says that

after a bit "they will settle on [his] two principles." Is he right?

Alas, no. There are two problems, one procedural, the other substan-

tive. The procedural problem is that the bargaining game has no termina-

tion rule. There is no reason for the first player ["Everything for myself"]

ever to stop proposing that rule. There is presumably some very, very

small, but not zero, probability that sooner or later [probably later] the



100 Applications

rest of the players will get tired or drop the ball and agree. Since there

are no costs in the game associated with continuing to play it, none of the

players has any incentive to "be reasonable."

You can fix this glitch, of course, by imposing a time limit on the game.

But that gives an asymmetrical advantage to the last player whose turn

leaves just enough time to go around the circle once. When that moment is

reached, the lucky player can propose a rule that makes everyone better off

than having no rule at all, but advantages that player [such as "People with

naturally curly hair get first dibs on all the nifty jobs," said by someone

who has naturally curly hair]. Now, this is silly, right? But when you claim

to be proving a theorem that is necessary, that is the sort of thing you

have to take into account. This is an example of what I mean by wrapping

yourself in the impressive language of Game Theory to make what you are

doing sound impressive, while not actually engaging in Game Theoretic

arguments. As Rawls says in "Justice as Fairness," "there remain certain

details to be filled in, and various alternatives to be ruled out." Indeed.

The second problem is substantive. The two principles proposed by

Rawls would not win unanimous agreement from the players. The prob-

lem is this: While the players are faced by the circumstances of justice, and

hence are roughly comparable in their powers and endowments, there are

nevertheless significant differences among them in natural talents and abil-

ities. Some of them will fare much better than others in a society in which

"the positions . . . are open to all." What is more, despite these differences

in native intelligence or ability, all of them know these facts. Now, if you

are one of the most talented members of society, you are going to be in fa-

vor of a structure of inequality in which you know quite well that you will

be one of those ending up in the favored positions. But if you are not one

of the talented, you will conduct an expected utility calculation and come

to the conclusion that you might be better off with a system in which the

better paid jobs are distributed by lot to anyone who meets certain mini-

mum requirements [for example, a college degree, even with a low GPA].

The imposition of minimum requirements will suffice to generate some

Inequality Surplus, but the allocation of the favored jobs by lot will work

to the advantage of the less talented members of the society, who will thus
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have a shot at the higher paid jobs, something they would never have if

those jobs were allocated strictly on the basis of a fair competition. [As

Senator Roman Hruska of Nebraska said in 1970, defending the Supreme

Court nomination of G. Harrold Carswell from the charge of mediocrity,

"There are a lot of mediocre judges and people and lawyers. They are

entitled to a little representation, aren’t they?"]

So Rawls’ “theorem” is no theorem at all. I pointed this out in an

article I published in The Journal of Philosophy, and Jack’s face fell when I

told him about it at an annual APA meeting. But I went on to say that

his subsequent essay, "Distributive Justice," changed his theory in a way

that met all of my objections, and his face brightened. "Oh, that’s all right

then," he said before wandering off.

The major changes to the bargaining game introduced in "Distributive

Justice" and carried over into A Theory of Justice are rather dramatic. They

are four in number:

1. Rawls introduces the famous Veil of Ignorance, which is a brilliant

literary device designed to capture what we mean when we say that

judges must be "disinterested"—i.e., that they must make decisions

without taking into consideration their own interests or situation.

This takes care of the problem that some participants in the Bargain-

ing Game are, and know they are, among the more talented mem-

bers of society, while others are, and know they are, among the less

talented. But this fix comes with its own problems.

Stripped of any knowledge of who they are, the players in the Bar-

gaining Game now have no reason at all to bargain, or indeed to do

anything else. This will be clear if we keep in mind the analogy to

judges. Judges, in their judicial capacity, are not supposed to have

an agenda [think Confirmation Hearings for Supreme Court nomi-

nees and all the blather about "activist justices" who "make law from

the bench."] So if the individuals under the veil of ignorance know

nothing at all about who they are, they can have no ends, no pur-

poses, save perhaps the goal to render decisions fairly when they

are presented with cases. Hence these individuals have no reason to
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bargain about anything at all. The self-interest Rawls has equipped

them with is vacuous. Rawls is thus forced to endow the individ-

uals in the Original Position with some sorts of purposes, specific

enough to make them care what they get from the agreement being

hammered out, but not so specific as to recreate the problems that

invalidated the first version of his theory.

2. Rawls’ solution is to state that the individuals in the Original Posi-

tion know that they have Life Plans. And since it wouldn’t do to

allow them to have the life plan of a religious hermit, for example

[because then they would not care how much stuff they got out of

the bargain, or even whether they had civil rights and protections],

Rawls stipulates that the Life Plans posited for the individuals in the

Original Position require for their accomplishment certain rights and

abilities, powers and endowments [i.e., some stuff]. Bu this creates

a new raft of problems, of an especially intractable sort, because the

sorts of rights and abilities, powers and endowments required for

the fulfillment of one Life Plan may be quite different from those

required for the fulfillment of a different Life Plan. If your Life Plan

is to become a Professor of Philosophy, then access to higher educa-

tion for all those sufficiently talented is going to loom large in your

budget of things you are bargaining for. But if your Life Plan is to

become a champion surfer, higher education may drop way down in

your list of desiderata.

[Notice, by the way, that built into Rawls’ conception of Life Plans is a

particular substantive historical, and cultural, and social conception

of individual personality and the good life. I do not have time to go

into this in the detail that it deserves, so I will simply refer you to the

classic discussion in Karl Mannheim’s Ideology and Utopia, Chapter

IV, of the chiliastic, liberal-humanitarian, conservative, and socialist-

communist forms of the Utopian Mentality and the orientation to

time itself. Rawls, to put it in shorthand, assumes that everyone in

the Original Position has a liberal-humanitarian orientation toward

time, which is simply part of the larger fact that his entire theory
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is an ideological rationalization of capitalist social democracy. But I

digress.]

To get over the problem posed by the diversity of possible Life Plans,

so that he can get back to his theorem, Rawls now makes another

assumption, and this one is, technically speaking, a whopper.

3. Since they do not know which particular Life Plans they have, Rawls

asserts [he never offers anything remotely like an argument for it]

that one can create an index of the heterogeneous basket of basic

stuff that anyone would need to pursue whatever Life Plan he or

she might turn out to have, something Rawls calls an Index of Pri-

mary Goods He then simply assumes that everyone in the Original

Position has positive, albeit declining, marginal utility for the Index

of Primary Goods. He assumes this, not because it is plausible [he

never offers any arguments for any of this], but because unless he as-

sumes it he won’t have a hope of invoking the tools and techniques

of modern economic theory with which he thinks he can prove his

"theorem."

The problem of constructing an index of a heterogeneous assortment

of rights and abilities, powers, and endowments is completely insol-

uble, as any honest economist will tell you. Indices like the Con-

sumer Price Index or the Dow Jones Index are hopelessly flawed,

and there is no way to fix them. Some of you may be quite famil-

iar with this problem, others may have never heard of it before. I

guess maybe I ought to say a word or two about the subject, even

though it will slow us down some. The Consumer Price Index is

constructed by putting together a list ["a market basket"] of con-

sumer goods in specific proportions that is supposed to reflect the

way most Americans spend their household income in a specified

time, say a month: So much housing, so many pounds of potatoes,

so many lamb chops, so many visits to the doctor, etc. Samples are

then taken, and averaged out, of what these items are selling for in

various stores, doctors’ offices, etc, around the country. The same

market basket of goods and services is then priced a month later. If
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the total cost of the market basket has increased by 1%, then it is said

that there has been a 1% increase in the CPI, or that there has been a

month to month inflation rate of 1%.

There are a gazillion problems with this index, all of which are to-

tally unfixable. For example, suppose you have a thirty year fixed

rate mortgage on your house. In that case, if housing costs rise dra-

matically [as they did in the 70’s and 80’s, for example], the Con-

sumer Price Index, reflecting that rise, may shoot up dramatically.

But you won’t actually experience that rise, because a major com-

ponent of your market basket of goods, namely housing, is fixed.

The same sort of problem arises with regard to every element in the

"market basket." The dramatic rise in health care costs will not af-

fect you so long as you are healthy, but will affect you if you have

a special needs child. if you are a vegetarian, a steady decline in

the price of meat won’t have any effect on your pocketbook. When

I was a young man living in Cambridge, Massachusetts, lobster was

cheap at the supermarket and steak was expensive. Now, when I

shop for dinner, steak is cheaper per pound than all but the least ex-

pensive fish. Once again, Rawls unconsciously [I think] builds intro

his supposedly universal theory the assumptions, presuppositions,

and tastes of a particular social and economic class, which happens

to be his.

4. The last major change is a revision in the statement of the so-called

"Difference Principle." Instead of inequalities working to everyone’s

advantage, they must now work to the benefit of the least advan-

taged members of society. This is a very significant change However,

Rawls introduces it not by saying that he has changed his mind, or

has been compelled by the logic of the bargaining game to alter the

theorem, but rather by saying that this is a more reasonable "interpre-

tation" of the original form of the principle. I confess that I find this

rather weird and creepy. Rawls treats his own two principles, which

he made up, as though they had been inscribed on tablets by The

Lord God Himself, and thus required us to interpret them rather
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than change them. This is one of the strangest features of Rawls’

entire discussion.

Why the change? Pretty clearly, it is required by the special conditions

imposed by the Veil of Ignorance. Since the parties in the Original Position

now do not know who they are, they are pretty well forced either to carry

out expected utility calculations over the entire range of positions in the

society, some one of which each of them will actually turn out to occupy

when they leave the Hall of Justice and regain their knowledge of who

they are, or else to adopt the conservative assumption that they occupy the

lowest position, and bargain to improve its allocation of Primary Goods.

As we shall see, this is Rawls’ version of the conservative rule proposed

by von Neuman, to maximize one’s security level.

All this goes by so quickly in Rawls’ exposition of the mature form

of his theory that unless you are paying real close attention, you may not

notice how wildly implausible, or even downright impossible, it all is.

This is the form of the theory that everyone is familiar with, but people

usually do not have any coherent idea why Rawls has made all of these

very powerful stipulations. The reason, as I have indicated, is that each

element of the final theory is designed to meet an objection to an earlier

form of the theory.

So where does all of this revision leave us? Well, first of all, something

odd has happened along the way, as Rawls has altered his description of

the choice situation to meet and overcome the difficulties with the first

formulation. The original idea was that the parties to be governed by the

agreed upon foundational rules would confront one another and bargain.

The parties were assumed to be rationally self-interested, but with differ-

ing interests and desires. Rawls’ central idea was that if to this premise

of rational self-interest we added only one additional premise—the will-

ingness of the parties to abide by a set of rules arising from the bargain,

the willingness to take that one step beyond self-interest to something re-

sembling what is involved in having a morality—then we could prove that

the one and only set of rules on which they would self-interestedly settle

would be his "two principles."
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But if we think about it for a moment, we will realize that after the

revisions, Rawls no longer has a Bargaining Game that looks anything like

this. Since the players have been stripped of any individuating features

that might distinguish them from one another [such as differences in tastes

or talents, or indeed even differences in which stage of human history they

happen to be located in], there are no rational grounds on which any two

of them could reason differently from one another about the choice of the

basic structure and rules of the society in which they will find themselves

when they emerge from the Veil of Ignorance. In short, what began as a

problem in Bargaining Theory has morphed into a problem in the Theory

of Rational Choice. [This is one of the reasons why Rawls tended to move

toward what he himself called the Kantian Interpretation" of his theory.

But that really does get us too far afield.]

Before addressing the central question, viz., are these two principles

thus revised, the solution to the Bargaining Game, thus altered, there is

one subsidiary matter I should like to take up. Rawls says that although

the parties in the Original Position under the Veil of Ignorance have tem-

porarily forgotten who they are, what their specific desires are, and where

they are located in history and in the structure of their society, they do

retain a knowledge of the "general facts about human society." Each of

these individuals, Rawls elaborates, understands "political affairs and the

principles of economic theory," as well as "the basis of social organization

and the laws of human psychology." In my book, Understanding Rawls, I

argued that this is an epistemologically impossible state of affairs. There

is not time or room here to repeat what I have said there [another shame-

less plug for my book :) ], but I think it is worth indicating the line of

argument that I develop there.

The first thing to be clear about is that under the Veil of Ignorance, the

individuals in the Original Position do not even know in which stage of

human history they are located. This fact leads Rawls into an extremely

interesting discussion about the appropriate rate of savings that should be

chosen as part of the basic socio-economic structure being negotiated. De-

bates about the social rate of savings are familiar to economists, but have

been virtually absent from the political philosophy literature. It is greatly
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to Rawls’ credit that he recognized this and introduced the subject into his

theory. For those who are unacquainted with the discussion, the central

issue is this: The capital required for future economic activity [seed corn,

machinery, Research and Development, and their monetary equivalents]

must be obtained from current production by somehow imposing limits

on consumption – eat all the corn this season, and there is no seed for next

season’s crop. Simple prudence dictates that people this year save for next

year. But what shall we say about the responsibility of people in this gen-

eration to save for generations as yet unborn? A high, self-denying rate

of social savings, such as that now being enforced by the Chinese govern-

ment, will make possible an explosion of production in future generations,

to the manifest benefit of those who are then alive. But that future produc-

tion will come at the expense of this generation, which will have to deny

itself some measure of present consumption.

From the perspective of Rawls’ theory, the question becomes: Under

the Veil of Ignorance, what rate of savings will rationally self-interested

individuals choose to impose upon themselves once they emerge from the

Veil and discover which generation of their society’s evolution they are

actually located in? I encourage readers interested in this subject to take a

look at Rawls’ discussion.

But getting back to the epistemological issue, the individuals in the

Original Position are presumed to know the general facts of nature, soci-

ety, economy, and human psychology, and even to know the broad outlines

of the historical evolution of societies, but not to know where in that evo-

lutionary process they are themselves located. Rawls clearly thinks it is

possible for someone to be in this particular epistemological position. I

think it is not. Why not?

First of all, the individuals in the Original Position are blocked from

accessing certain individuating facts about themselves, but they have not

lost their powers of reason. To put the point simplistically, if the Veil has

enabled them to retain the knowledge that All men are mammals and the

knowledge that All mammals are animals, then their unimpaired powers

of reason will allow them to conclude that All men are animals. Some-

what more to the point, if they know the standard theorems concerning
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the relation of supply to demand in the determination of price in a cap-

italist economy based on the production of commodities for sale in the

marketplace, then they will be able to infer that their society has under-

gone the transition from Feudal to Capitalist social relations of production,

because until such a transition has taken place, individuals do not even possess

the concepts that are employed in the formulation of those economic laws. What is

more, if, as I believe, capitalist social relations of production systematically

mystify the underlying structure of exploitation on which capitalist profit

rests, so that people mistakenly but inevitably perceive those relations as

the expression of eternal and immutable economic laws, then only some-

one enmeshed in a capitalist society and economy will make the mistake

of thinking that there are "laws of supply and demand."

Now, maybe I am right about that, and maybe I am wrong. But by

building these assumptions into the structure of the bargaining game from

which he hopes to extract the principles of justice, Rawls has begged all

of the questions that might be raised by someone like me ["begged" in

the proper use of that term—i.e., assumed what is to be proved]. This is

one more example of my general claim that the misuse of formal methods

allows authors to present their ideologically laden assumptions as value-

neutral elements of a formal analysis.

Let us now return to the central question: Would the individuals sit-

uated under the Veil of Ignorance in the Original Position coordinate on

Rawls’ Two Principles of Justice as revised in A Theory of Justice? This ques-

tion is much more difficult to answer now than it was with regard to the

first form of the theory. Even to make the question determinate enough to

grapple with it we must make a considerable number of assumptions and

specifications with regard to matters that Rawls either does not discuss or

else leaves up in the air.

At this point, in order to make this manageable, I must ask you to

consult the chapter from my book, a link to which was posted earlier on

this blog. I will discuss the problems in general terms, and leave it to each

of you to read my detailed analysis in that chapter.

The first thing an individual in the Original Position must do when

confronted with a choice of basic organizational rules for society is to
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decide how well or badly off she is, or was, before entering the Hall of

Justice. [I shall simply stipulate that our representative person is female,

but of the course the person does not know this, or indeed anything else

of a particular nature about him/her self.] Since Rawls says that she is ra-

tionally self-interested, and is prepared to enter into the bargaining game

because she believes that a satisfactory outcome will be to her advantage,

she clearly needs to know what her baseline situation is. Otherwise, she

cannot make a judgment as to whether a proposed rule will make her bet-

ter off. Remember: she not only does not know who in particular she is or

where in her society she is situated. She also does not know what stage of

history she is located in.

Faced with the necessity of stipulating a pre-bargain baseline [defined,

we may suppose, simply by some specified amount of Primary Goods—

this whole thing just gets hopelessly complicated if we try to flesh out

her situation in any more realistic manner], she really has only three op-

tions. For each possible stage of history in which she might be located,

she can either adopt the premise that she is the worst off representative

person in that society; or she can adopt the premise that she is the best

off representative individual; or she can carry out an expected utility cal-

culation, assigning some level of Primary Goods and some probability to

every representative position in the society, and then multiplying the two

and summing the results, In this third case, she will say to herself some-

thing like this: "There are seven representative positions in the society;

fifteen percent of the people are in the first, ten percent in the second, etc.

The first position has so and so much of the Primary Goods assigned to

it, the second such and such amount, and so forth; with no more infor-

mation than that I am one of the people in the society, I conclude that I

have a fifteen percent chance of being in the first position, a ten percent

chance in the second position, and so forth. Assuming that I know what

my cardinal utility function is for Primary Goods, I can now carry out my

expected utility calculation."

Sigh. I told you this was going to be messy. I am pretty sure, from

correspondence I had with Jack, that he is aware of a good deal of this,

but I do not think he ever fully appreciated how deeply it undercut his
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central claim that he was advancing a theorem. At this point, Rawls says

that a rational person, recognizing how important the choice is that she

is about to make, will adopt an extremely conservative way of evaluating

alternatives. What does this mean?

Well, the first thing it means is assuming that outside the Hall of Jus-

tice, in the real world, she is one of the persons occupying the least ad-

vantaged representative position in society. Why is this conservative? Be-

cause if she assumes that she is in fact well off in the real world, she will

be correspondingly less willing to make a deal, and this threatens to leave

her utterly disadvantaged should the optimistic assumption about herself

prove false. She must protect herself against the chance that she is one of

society’s poor, and the best way to do this is to agree to inequalities of any

sort only if they work to the advantage of those least well off.

But reasoning in this fashion, she might be tempted to carry out some

sort of expected utility calculation and opt for a set of principles that max-

imizes the average utility that each representative person will enjoy. To be

sure, that can be risky, since a higher average overall might be compatible

with a lower utility to the least well off. In an expected utility calculation,

that risk might be compensated for by a chance at a very much higher

payoff to the better off representative positions.

Rawls now argues that the rational individual under the Veil of Ig-

norance will reject expected utility calculations and instead opt for the

extremely conservative, and also extremely controversial, "maximin" rule

proposed by von Neuman. On page 163 of my book [see the chapter to

which I have linked], I quote Rawls’ reasons for adopting this rule. Here

is what he says: "There are three chief features of situations that give plau-

sibility to this unusual rule. . . The situation is one in which a knowledge

of likelihoods is impossible or at best extremely insecure. . . The person

choosing has a conception of the good such that he cares very little, if any-

thing, for what he might gain above the minimum stipend that he can, in

fact, be sure of by following the maximin rule. It is not worthwhile for him

to take a chance for the sake of a further advantage, especially when it may

turn out that he loses much that is important to him. . . The rejected alter-

natives have outcomes that one can hardly accept. The situation involves
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grave risks." [All four passages from Rawls, p. 154]

In my book, I have given a formal analysis of these claims, complete

with nifty diagrams, but I want here to step back and try to get a sense

of what Rawls is really talking about. Remember, first of all, that Rawls

is not talking about the quantity of Primary Goods that the various prin-

ciples of justice offer as possibilities, but rather about the utility that the

utility function of the individual under the Veil of Ignorance associates

with these various amounts of Primary Goods. The distinction is essential

for understanding what Rawls is saying.

Concretely, Rawls is claiming that the rational individual under the Veil

of Ignorance will say to herself: "If I opt for a system of social organization

that holds out the possibility of vast wealth for a few, but that fails to

protect those at the bottom from absolute penury, I am risking ending up

in a disastrous situation, one that "involves grave risks." But all I stand to

gain is the chance at one of the top spots, even though I "care very little, if

anything, for what [I] might gain above the minimum stipend that [I] can,

in fact, be sure of by following the maximin rule."

Fair warning: I am now going to say something that is mean-spirited

and snarky, but I really do not know how else to get at what is going on

in this argument. I apologize if I offend anyone. Here goes:

What sort of person says to himself or herself what the individual

in the Original Position, according to Rawls, says? Not just a rational

person. There is nothing formally irrational about being willing to risk

utter penury for a chance at fabulous wealth. That is just a matter of

having a utility function of a particular shape [one that is, over a certain

range, monotonically increasing rather than decreasing.] Would Gordon

Gekko think this way? [If there is anyone who does not recognize the

name, Gordon Gekko is the main character of the 1987 film, Wall Street,

starring Michael Douglas. If you haven’t seen it, by all means get it from

NetFlix.] Of course not. But Gordon Gekko is not formally irrational. He

just places a very high value on vast wealth and has a very high tolerance

for risk. What about Picasso? I think not. If you offered Picasso a chance at

artistic immortality, with penury and misery as the alternative if he turned
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out not to have real talent, I think he would have grabbed the chance with

both hands. In fact, of course, he did.

No, the sort of person who would reason as Rawls thinks the individ-

ual in the Original Position would is a tenured professor—someone who

has a comfortable albeit modest lifestyle that is absolutely assured against

any risks, someone who has perhaps turned down other careers offering

much larger rewards but also "involving grave risks." In short, the sort of

person who would reason as Rawls thinks the individual in the Original

Position would is . . . John Rawls.

Strip away all the talk about theorems, all the lovely filigree of philo-

sophical elaboration, all the Reflective Equilibrium and Strains of Com-

mitment and allusions to Game Theory, and you have a simple apologia pro

vita sua.

If the Representative Individual in the Original Position is an academic

at a good American university or college that offers life tenure and a com-

fortable middle class life, then I think it is quite likely that he or she would

opt for Rawls’ two principles. They guarantee a continuation of that pleas-

ant life style, combined with a virtuous but really cost free concern for the

poor downtrodden denizens of the Inner City [the least well off represen-

tative individuals].

Now, that is just about as mean-spirited as I have ever been in print

[though not, I am afraid, in person], but what else can one conclude if

one takes Rawls’ theory seriously and tries to think through what it really

means?

The time has come to step back from the details of Rawls’ discussion

and try to get some perspective on what is, when all is said and done,

the most important contribution to political philosophy of the past hun-

dred years and more. I observed at the beginning of these remarks that

Rawls offered his very new theory at a time when Anglo-American Eth-

ical Theory was mired in an antinomy—a several decades long face off

between Intuitionism and Utilitarianism. Rawls invited us to get past that

stalled historical moment by making use of ideas drawn from Game The-

ory [and also from neo-classical economics, but that is another matter.] If

he had simply offered his Two Principles as an alternative to, or perhaps
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more accurately as a fusion of the best parts of, Intuitionism and Utili-

tarianism, there is no question that his proposal would have commanded

considerable attention. The elegance of his discussion of Utilitarianism

and the interesting and suggestive detail of the fully elaborated version of

his proposal would, I am sure, have generated a lively discussion among

philosophers, political theorists, and others.

But what made Rawls’ theory stand out as deserving of what constitu-

tional lawyers call heightened scrutiny was his claim to be able to establish

his two principles as the solution of a bargaining game. Now, even if this

thesis could be sustained, it would still be open to readers to reject Rawls’

claim that the solution of such a game ought to be considered the principles

of social justice. But a genuine proof of Rawls’ theorem would have vaulted

his theory to an entirely unique status in ethical and political theory. Such

a theorem would have taken its place beside Kenneth Arrow’s General

Possibility Theorem as a major result of formal analysis. [I remain con-

vinced, in the absence of any textual or anecdotal evidence whatsoever,

that this is exactly what Rawls dreamed of accomplishing.] This is why,

both in my book and in these blog posts, I have focused almost exclusively

on the logical status of the theorem that Rawls adumbrates in "Justice as

Fairness," and continues to allude to as a theorem, albeit in a hedged man-

ner, in “Distributive Justice" and A Theory of Justice.

I think I have demonstrated that the theorem is not valid, either in its

original or in its revised form, or, more precisely, that it can only be made

plausible by so many ad hoc adjustments, presuppositions, and qualifica-

tions that it loses its grip on our attention. I also think it is clear that the

theory, as Rawls sets it forth in his book, covertly valorizes, without ade-

quate argument, one particular substantive vision of the good society—a

vision some components of which I share, but for which Rawls fails to

offer an argument.

Well, this is twenty-four pages about Rawls, which is enough, I think,

for this blog. I will turn my attention next to the single most important

formal result in the application of formal methods to political philosophy:

The General Possibility Theorem of Kenneth Arrow. My tone will change

dramatically, as you will discover. No sniping or snarking, no ad hominem
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arguments. Arrow’s result, like von Neuman’s Fundamental Theorem, is

a genuine triumph, and I shall do my best in expounding it to make its

logical structure clear.

4.3 Collective Choice Theory

Collective Choice Theory is the theory of how one selects a rule to go

from a set of individual preference orders over alternatives available to a

society of those individuals to a collective or social preference order over

those same alternatives. [Or, as they say in the trade, how to "map a set

of individual preference orders onto a social preference order."] There is a

long history of debates about how to make social or collective decisions,

going back at least two and a half millennia in the West. The simplest

answer is to identify one person in the society and stipulate that his or

her preference order will be the social preference order. L’etat, c’est moi, as

Louis XIV is reputed to have said. A variant of this solution is the ancient

Athenian practice of rotating political positions. One can also choose a

person by lot whose preferences will thereupon become the social prefer-

ence. A quite different method is that used by the old Polish parliament,

which consisted of all the aristocrats in the country [there were quite a few,

the entry conditions for being considered an aristocrat being low]. Since

each of them thought of himself as answerable only to God, they imposed

a condition of unanimity on themselves. If as few as one Polish aristocrat

objected to a statute, it did not become law.

These rules for mapping individual preference orders onto a social

preference order, unattractive as they may be on other grounds, all have

one very attractive feature in common: They guarantee that if all of the

individual preference orders are ordinal orderings, which is to say if each

of them is complete, reflexive, and transitive [you see, I told you we would

use that stuff], then the social preference order will also be an ordinal

ordering, and that is something you really, really want. You want it to

be complete, so that it will tell you in each case how to choose. And you

want it to be transitive, so that you do not get into a situation where your

Collective Choice Rule tells the society to choose a over b, b over c, and c
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over a.

To sum it all up in a phrase, the aim of Collective Choice Theory is to

find a way of mapping minimally rational individual preferences onto a

minimally rational social preference.

For the past several hundred years, everybody’s favorite candidate for

a Collective Choice Rule has been majority rule. This is a rule that says

that the social preference between any two alternatives is to be decided

by a vote of all those empowered to decide, with the alternative gaining a

majority of the votes being preferred over the alternative gaining a minor-

ity of the votes. Should two alternatives, in a pairwise comparison, gain

exactly the same number of votes, then the society is to be indifferent

between the two.

Enter the Marquis de Condorcet, who published an essay in 1785 called

[in English] Essay on the Application of Analysis to the Probability of Majority

Decisions. In this essay, Condorcet presented an example of a situation in

which a group of voters, each of whom has perfectly rational preferences

over a set of alternatives, will, by the application of majority rule, arrive at

an inconsistent group or social preference. This is, to put it as mildly as

I can, a tad embarrassing. Indeed, it calls into question the legitimacy of

majority rule, which lies at the heart of every variant of democratic theory

that had been put forward at that time, or indeed has been put forward

since.

Let us take a moment to set out the example and examine it. In its

simplest form, it involves three voters, whom we shall call X, Y, and Z,

and three alternatives, which we shall call a, b, and c. We may suppose

that a, b, and c are three different tax plans, say. Let us now assume that

the three voters have the following preferences over the set of alternatives

S = (a, b, c).

X prefers a to b and b to c. Since X is minimally rational, he also prefers

a to c.

Y prefers b to c and c to a. Since she is also minimally rational, she

prefers b to a.

Z prefers c to a and a to b. As rational as X and Y, she naturally prefers

c to b.
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Now they take a series of pairwise votes to determine the collective or

social preference order among the three alternatives. When they vote for

a or b, X and Z vote for a, Y votes for b. Alternative a wins. When they

vote for b or c, X and Y vote for b, Z votes for c, alternative b wins. Now,

if the social ordering is to be transitive, then the society must prefer a to

c. What happens when X, Y, and Z choose between a and c? X prefers a

to c. But Y and Z both prefer c to a. So the society must, by majority rule,

prefer c to a. Whoops. The society’s preference order violates transitivity.

And that is the whole story. The selection of a social or collective pref-

erence order by majority rule cannot guarantee the transitivity of the social

preference order, and therefore does not even meet the most minimal test

of rationality. There are, of course, lots and lots of sets of individual pref-

erence orders that generate a consistent social preference order when Ma-

jority Rule is applied to them. The problem is that here is at least one, and

actually many more, that are turned by Majority Rule into an inconsistent

preference order.

If you have never encountered this paradox before [the so-called para-

dox of majority rule], you may be inclined to think that it is a trick or a

scam or an illusion. Alas, not so. It is just as it appears. Majority Rule

really is capable of generating an inconsistent social preference ordering.

All of this was well known in the eighteenth century, and was, as we shall

see later on, the subject of some imaginative elaboration by none other

than the Reverend Dodgson, better known as Lewis Carroll. Enter now

the young, brilliant economist Kenneth Arrow in the middle of the twenti-

eth century. Coming out of a tradition of economic theorizing called Social

Welfare Economics, to which a number of major figures, such as Abram

Bergson, had contributed, Arrow conceived the idea of analyzing the un-

derlying structure of the old Paradox of Majority Rule and generalizing

it. The result, which he presented in his doctoral dissertation no less, was

The General Possibility Theorem. Arrow published the theorem in 1951 in

a monograph entitled Social Choice and Individual Values.

Another great economist and fellow Nobel Prize winner, Amartya Sen,

in 1970 published Collective Choice and Social Welfare, in which he gener-

alized and extended Arrow’s work in astonishing ways. Sen’s book is
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difficult, but it is simply beautiful, and deeply satisfying. I strongly urge

you, if you have a taste for this sort of thing, to tackle it. Sen has written

widely and brilliantly on a host of extremely important social problems,

including economic inequality, famine, and the demographic imbalance

between men and women in the People’s Republic of China. His little se-

ries of Radcliffe Lectures, published in 1973 as On Economic Inequality, is

the finest use of formal methods to illuminate and analyze a social prob-

lem of which I am aware. It is a perfect example of the proper use of

formal methods in social philosophy, and as such deserves your attention.

In Collective Choice and Social Welfare, Sen gives a simpler and more el-

egant proof of Arrow’s General Possibility Theorem. Nevertheless, I have

chosen in this blog to expound Arrow’s original proof. Let me explain

why. It often happens that the first appearance of an important new the-

orem is somewhat clumsy, valid no doubt, but longer and more compli-

cated than necessary. Later theorists refine it and simplify it until what

took many pages can be demonstrated quickly in a few lines. Sometimes,

this development is unambiguously better, but at other times, the original

proof, clumsy though it may be, reveals the central idea more perspicu-

ously than the later simplifications do. I find this to be true in the case

of Arrow’s theorem. Sen’s simplification serves several purposes, not the

least of which is to set things up formally for his extremely important ex-

tension and elaboration of Arrow’s work. Therefore, I urge you to look at

it, once you have worked with me through Arrow’s original proof.

Now let us begin. This is going to take a while, so settle down. Before

we get into the weeds, let me try to explain in general terms what Arrow is

doing. He asks, in effect, what are the underlying general assumptions of

majoritarian decision making? What is it about voting with majority rule

that appeals to us? He identifies five conditions or presuppositions [later

reduced and simplified to four] that capture the logic of majority rule in

a general way, and then shows that no way of making collective decisions

that satisfies all four of them guarantees that the resulting social or col-

lective choice will be consistent. This way of thinking about the problem

accomplishes three things simultaneously. First, it unpacks majority rule

voting into its component parts so that we can look at it and understand it
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better. Second, it generalizes the Paradox of Majority Rule so that we real-

ize we cannot avoid it simply by tweaking Majority Rule a bit [for example

by requiring a two-thirds majority.] And finally, it allows us to see just ex-

actly what Majority Rule does not do—in other words, it gives us insight

into what would be totally different ways of making collective decisions.

We start with a series of assumptions, definitions, and notational con-

ventions, some of which are already familiar to you from the opening

segments of this general tutorial. This is going to be tedious, but learning

these up now will make it infinitely easier to follow the proof. Here they

are:

1. We start with a set of mutually exclusive alternatives, x, y, z, . . . These

may be all of the possible candidates in an election [i,.e., every sin-

gle person who is eligible to hold office under the rules govern-

ing the election], every possible tax scheme that might come before

Congress, all of the various possible decisions a City Council might

take concerning zoning regulations, and so forth. The point of the

phrase "mutually exclusive" is to rule out, for example, "Obama" and

"Obama or Clinton" as two of the available alternatives.

2. On any give occasion when a decision is to be made, there is a sub-

set, S, of the available alternatives, which will be called The Envi-

ronment. This might be, for example, the relatively small number of

people who have stated publicly that they would like to be elected

to that office, or all the people who have formed campaign commit-

tees, or all the people who survive the primary season and are on

the final ballot. Each of these is a subset of all the people eligible to

hold the office [not necessarily a proper subset—i.e., not necessarily

smaller than the total set of alternatives. All that is required is that

S be included in the set of all alternatives, not that it be smaller than

that set].

3. There is a set of individuals ["voters"], identified by numerical sub-

scripts, 1, 2, 3, 4, . . .

4. Each individual is assumed to have a complete, transitive ranking
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of the entire set of alternatives, which we indicate using the notation

introduced earlier—the binary relations R, I, and P. Just to review,

xRiy means that individual i considers alternative x to be as good

as or better than alternative y. xPiy and xIiy are derived from R in

the way indicated in the opening segments of this tutorial. What we

are aiming for, of course, is a collective or social ranking, and that

is indicated by the same letters, R, P, and I without the subscripts.

So xPy means that the society prefers s to y. The whole point of

this exercise is to start with complete, transitive individual rankings

of the alternatives and then see whether there is any way of going

from the individual rankings to a social ranking that satisfies certain

conditions [see below] and results in a social ranking that is complete

and transitive.

5. Ri all by itself refers to individual i’s ranking of the entire set of

alternatives, x, y, z,. . . Correspondingly, R all by itself refers to the

society’s ranking of the entire set of alternatives.

6. We shall have occasion to refer to different possible rankings, by

an individual i, of the set of alternatives. We will indicate these

different rankings by superscripts. So, for example, Ri is one ranking

by individual i of the entire set of alternatives. R′i is a second ranking.

R′′i is a third ranking. And Ri∗ is a fourth ranking. A ranking Ri can

be thought of either as a list showing the way individual i ranks the

alternatives, including ties [indifference], or as a set of all the ordered

pairs (x, y) such that xRiy.

7. A Social Welfare Function [an SWF] is a function that maps sets of

individual rankings onto a social ranking. Such a mapping function

qualifies as an SWF just in case both the individual rankings, the

Ri, and the social or collective ranking, R, satisfy Axioms I and II

below—which is to say, just in case the rankings, both individual

and social, are complete and transitive.

8. A Social Welfare Function is said to be Dictatorial if there is some in-

dividual i such that, for all x and y, xPiy implies xPy regardless of the
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orderings of all of the individuals other than i. Thus, in particular,

to say that an SWF is dictatorial is to say that there is some individ-

ual who can impose his or her will on the society with regard to the

choice between any pair, x and y, even if everyone else in the society

has the opposite preference as between those two alternatives.

9. Finally, we define something called a Social Choice Function [sym-

bolized as C(S).] C(S) is the set of all alternatives in the Environment

S such that, for every x and y in S, xRy. In other words, C(S) is the

set of top alternatives or best alternatives in S. Quite often, C(S) will

contain only one alternative, the one that the society prefers over

all the others. But it may include more than one if the society is

indifferent as among several best alternatives.

Those are the nine definitions and stipulations. The key new ones

that we have not met before are S, the set of available alternatives, R, the

social ranking, SWF, a Social Welfare Function, and C(S), the Choice Func-

tion. Now Arrow lays down two Axioms governing the social ordering, R.

These are:

Axiom 1 For all x and y, xRy or yRx [Completeness]

Axiom 2 For all x, y, and z, if xRy and yRz then xRz. [Transitivity]

O.K. So much for the preliminary throat clearing. I want you to go over

these definitions and stipulations until you are comfortable with them.

The proof is going to be a formal argument couched in terms of these

symbols and appealing to these assumptions and axioms. You will find it

impossible to follow if you do not have a solid grasp on these preliminary

definitions and so forth. While you are doing that, I want to talk for a bit

about several important points that are implicit in what we have just laid

down, but may not be obvious.

From here on, I am going to break the exposition into short bits, be-

cause this is hard, and I do not want to lose anyone. My apologies to those

of you who are having no trouble following it.
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First of all, notice that Arrow assumes only ordinal preference. This

means that there is no way in the proof to take account of intensity of

preference, only order of preference. Let me give an example to make this

clearer. In 1992, George H. W. Bush, Bill Clinton, and H. Ross Perot ran

for the Presidency. There were some devoted followers of Perot who were

crazy about him, and almost indifferent between Bush and Clinton, whom

they viewed as both beltway politicians. Let us suppose that one of these

supporters ranked Perot first, way ahead of the other two, and gave the

edge slightly to Bush over Clinton, perhaps because Bush was a Repub-

lican. A second Perot supporter might have been rather unhappy with

the choices offered that year, but preferred Perot slightly over Bush, while

hating Clinton passionately. From Arrow’s perspective which is that of or-

dinal preference, these two voters had identical preferences, namely Perot

> Bush > Clinton, and an Arrovian SWF would treat the two individual

preference orders as interchangeable.

Now, there are many ways in which citizens in America can give ex-

pression to the intensity of their preferences, as political scientists are fond

of pointing out. One is simply by bothering to vote. Voter enthusiasm, in

a nation half of whose eligible voters routinely fail to go to the polls, is a

major determinant of the outcome of elections. A second way is by con-

tributing to campaigns, volunteering for campaign work, and so forth. Yet

another way is through a vast array of voluntary organizations dedicated

to pursuing some issue agenda or advantaging some economic or regional

group. None of this can find expression in the sort of Social Welfare Function

Arrow has defined. This is a very important limitation on the method of

collective decision that we call voting. Now, there are voting schemes

that allow voters to give expression to the intensity of their preferences

[such as giving each voter a number of votes, which he or she can spread

around among many candidates or concentrate entirely on one candidate],

but these too are ruled out by Arrow, who only allows the SWF to take

account of individual ordinal preferences.

The second thing to note is that the requirement of completeness

placed upon the SWF rules out partial orderings, such as those estab-

lished by Pareto-Preference. It is often the case that every individual in
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the society prefers some alternative x to some other alternative y, and if

there are a number of such cases, a robust partial ordering might be estab-

lished that, while not complete, nevertheless allows the society to rank a

sizeable number of the available alternatives. This option too is ruled out

by Arrow’s two axioms. These observations have the virtue of helping us

to understand just how restricting a collective decision-making apparatus

like majority rule is. We are now ready to state the four conditions that

Arrow defines as somehow capturing the spirit of majoritarian democ-

racy. Arrow’s theorem will simply be the proposition that there is no

Social Welfare Function, defined as he has in the materials above, which is

compatible with all four conditions. In the original form of the proof, the

conditions were, as you might expect, called Conditions 1, 2, 3, 4, and 5.

In the revised version, which I shall be setting forth here, they are called

Conditions 1’ [a revised version of Condition 1], Condition 3 [which also is

sometimes called the Independence of Irrelevant Alternatives], Condition

P [for Pareto], and Condition 5. Here they are. I will tell you now that

Condition 3 is the kinky one.

Condition 1’ All logically possible rankings of the alternative social

states are permitted. This is a really interesting condition. What it says,

formally speaking, is that each individual may order the alternatives, x, y,

z, . . . in any consistent way. What it rules out, not so obviously, is any reli-

gious or cultural or other constraint on preference. For example, if among

the alternatives are various dietary rules, or rules governing abortions, or

rules governing dress, nothing is ruled in or ruled out. The individuals

are free to rank alternatives in any consistent manner.

Condition 3 Let R1, R2, . . . , Rn and R′1, R′2, . . . R′n be two sets of individ-

ual orderings of the entire set of alternatives x, y, z, . . . and let C(S) and

C′(S) be the corresponding social choice functions. If, for all individuals i

and all alternatives x and y in a given environment S, xRiy if and only if

xR′iy, then C(S) and C′(S) are the same.

OK, this is confusing, so let us go through it slowly step by step and

figure out what it means. To get to the punch line first, this condition says
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that the society’s eventual identification of best elements in an environ-

ment is going to be determined solely by the rankings by the individuals

of the alternatives in that environment, and not by the rankings by the

individuals of alternatives not in the environment. [Remember, the Envi-

ronment, S, is a subset of all the possible alternatives.] Now, take the con-

dition one phrase at a time. First of all, suppose we have two different sets

of individual rankings of all the alternatives. The first set of rankings is the

Ri [there are as many rankings in the set as there are individuals—namely,

the first individual’s ranking, R1, the second individual’s ranking, R2, and

so forth.] The second set of rankings is the R′i, which may be different

from the first set.

Now, separate out some subset of alternatives, which we will call the

Environment S, and focusing only on the alternatives in S, take a look at

the way in which the individuals rank those alternatives, ignoring how

they rank any of the alternatives left out of S. If the two sets of individual

orderings, Ri and R′i, are exactly the same for the alternatives in S, then

when the Social Welfare Function cranks out a social ranking, R, based on

the individual orderings Ri and a social ranking, R′, based on the individ-

ual orderings R′i, Condition 3 stipulates that the set of best elements [The

Social Choice set] will be the same for R and for R′.

Whew, that still isn’t very clear, is it? So let us ask the obvious question:

What would this Condition rule out? Here is the answer, in the form of an

elaborate example. Just follow along.

Suppose that in the 1992 presidential election, there are just three vot-

ers, whom we shall call 1, 2, and 3. Also, suppose there are a total of four

eligible candidates: George H. W. Bush, Bill Clinton, H. Ross Perot, and

me. Now suppose there are two alternative sets of the rankings of these

four candidates by individuals 1, 2, and 3.

Ri: Individual 1: Wolff > Clinton > Bush > Perot

Individual 2: Bush > Perot > Wolff > Clinton

Individual 3: Wolff > Clinton > Bush > Perot

R′i: Individual 1: Clinton > Bush > Perot > Wolff

Individual 2: Bush > Perot > Clinton > Wolff

Individual 3: Clinton > Bush > Perot > Wolff
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The crucial thing to notice about these two alternative sets of rank-

ings is that they are identical with regard to the environment S =

(Bush, Clinton, Perot). The only difference between the two sets is that

in the second set, Wolff has been moved to the bottom of everyone’s list.

[The voters find out I am an anarchist.]

Now let us consider the following Social Welfare Function: For each in-

dividual ranking, assign 10 points to the first choice, 7 points to the second

choice, 3 points to the third choice, and 2 points to the fourth choice. Then,

for any Environment, S, selected from the totality of available alternatives,

determine the social ranking by adding up all of the points awarded to

each alternative by the individual rankings. Got it?

Go ahead and carry out that exercise. If you do, you will find

that for the first set of rankings, the Ri, and for the Environment S =

(Bush, Clinton, Perot). the SWF gives 16 points to Clinton, 16 points to

Bush, and 11 points to Perot. So, C(S), the society’s decision as to which

candidates are at the top, is (Clinton, Bush), because they each have the

same number of points, namely 16. But if you now carry out the same pro-

cess with regard to the second set of individual rankings, the R′i, and the

same Environment S, you will discover that the SWF assigns 23 points to

Clinton, 24 points to Bush, and 13 points to Perot, which means that C′(S)

is (Bush). So the social choice in the Environment S has changed, despite

the fact that the relative rankings of the elements in S have not changed,

because of a change in the rankings of an element not in S, namely Wolff.

And this is just what Condition 3 rules out. It says that the Social Welfare

Function cannot be one that could produce a result like this.

All of us are familiar with this sort of problem from sports meets or the

Olympics. When we are trying to decide which team or country has done

best, we have to find some way to add up Gold medals and Silver medal

and Bronze medals, and maybe fourth and fifth places as well. And, as we

all know, you get different results, depending on how many points you

award for each type of medal. Arrow’s Condition 3 rules out SWFs like

that. Condition P: If xPiy for all i, then xPy. This just says that if everyone

strongly prefers x to y, so does the society. This is a very weak constraint
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on the SWF.

Condition 5 The Social Welfare Function is not dictatorial. Remember

the definition of "dictatorial" above. This rules out "l’état c’est moi" as a

Social Welfare Function.

So, we have the definitions, etc., and we have the four Conditions that

Arrow imposes on a Social Welfare Function. Remember that a Social

Welfare Function is defined as a mapping that produces a social ranking

that satisfies Axioms 1 and 2. Now Arrow is ready to state his theorem. It

is quite simple:

There is no Social Welfare Function that satisfies the four Condi-

tions.

This is really a devastating theorem. Basically, it says that there is no

voting mechanism that gets around the Paradox of Majority Rule. The

proof proceeds as follows. First Arrow states a set of little results about

the relations R, I, and P. You are already familiar with them. They are

trivial, as we shall see. Then he proves a little Lemma about the choice

function. Then he proves a big important Lemma that is really the guts of

the theorem. Finally, he uses the Lemmas to prove what is essentially an

extension of the Paradox of Majority Rule, and he is done. We are going

to go through this slowly and carefully. Let us start with the two little

lemmas. Lemma 1 and Lemmas 2.

Lemma 1 1. For all x, xRx

2. If xPy then xRy

3. If xPy and yPz then xPz

4. If xIy and yIz then xIz

5. For all x and y, either xRy or yPx

6. If xPy and yRz then xPz

These all follow immediately from the definitions of R, I, and P, the assump-

tions of transitivity and completeness, and truth functional logic. Arrow
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includes them as an omnibus Lemma because at one point or another in his

proof he will appeal to one or another of them. You should work through all

the little proofs as an exercise. I will go through just one to show you what

they look like.

7. xRy or yRx [completeness]

So if not xRy, then yRx. But the definition of yPx is yRx and not xRy

Therefore, either xRy or yPx

Lemma 2 xPy if and only if x is the sole element of C([x, y])

If you review the definition of the Choice set, you will see that this

Lemma is intuitively obvious. It says that in the little environment, S,

consisting of nothing but x and y, if xPy, then x is the only element in the

Choice set, C(S). Since this is a bi-conditional [if and only if], we have to

prove it in each direction.

1. Assume xPy. Then xRy, by Lemma 1(2). [See, this is why he put

those little things in Lemma 1]. Furthermore, xRx, by Lemma 1(1).

So x is in C([x, y]), because it is at least as good [i.e., R] as each of the

elements of S, namely x and y. But if xPy then not yRx. Therefore, y

is not in C([x, y]). So x is the sole element of C([x, y]).

2. Assume x is the sole element of C([x, y]). Since y is not in C([x, y]),

not yRx. Therefore xPy.

Lemma 3 If an individual, i, is decisive for some ordered pair (x, y) then i is a

dictator.

This is a rather surprising and very important Lemma. It is the key to

the proof of Arrow’s theorem, and shows us just how powerful the appar-

ently innocuous Four Conditions really are. To understand the Lemma,

you must first know what is meant by an ordered pair and then you must

be given three definitions, including one for the notion of "decisive." Easy

stuff first. An ordered pair is a pair in a specified order. An ordered pair is

indicated by curved parentheses. Thus, the ordered pair (x, y) is the pair
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[x, y] in the order first x then y. As we shall see, to say that individual

is decisive for some ordered pair (x, y) is to say that i can, speaking in-

formally, make the society choose x over y regardless of what anyone else

thinks. But a person might be decisive for x over y and not be decisive

for y over x. We shall see in a moment how all this works out. Now let

us turn to the three definitions that Arrow is going to make use of in the

proof of Lemma 3.

Definition 1 “A set of individuals V is decisive for (x, y)” = d f ” if xPiy for all

i in V and yPjx for all j not in V, then xPy

In other words, to say that a set of individuals V is decisive for the

ordered pair (x,y) is to say that if everyone in V strongly prefers x to y,

and everyone not in V strongly prefers y to x, then the society will strongly

prefer x to y. Under majority rule, for example, any set of individuals V

that has at least one more than half of all the individuals in the society in

it is decisive for every ordered pair of alternatives (x, y).

Definition 2 “xD
¯

y for i” or “i dictates over (x, y)” = d f "If xPiy then xPy"

In words, we say that individual i dictates over the ordered pair (x,y) if

whenever individual i strongly prefers x to y, so does the society regardless

of how everyone else ranks x and y. [Notice that the capital letter D has a

little line underneath it.]

Definition 3 "xDy for i" or "i is decisive for (x, y)" = d f "If xPiy, and for all

j not equal to i, yPjx, then xPy."

In words, i is said to be decisive for the ordered pair (x, y) if when i

strongly prefers x to y and everyone else strongly prefers y to x, the society

prefers x to y. [Notice that in this definition, the capital letter D does not

have a little line underneath it.]

Ok. Now we are ready to state and prove the crucial Lemma 3.

Lemma 4 Lemma 3: If xDy for i, the zD
¯

w for i, for all z,w in S
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In words, what this says is that if any individual, i, is decisive for some

ordered pair (x, y) then that individual i is a dictator [i.e., dictates over any

ordered pair (z, w) chosen from S]. This is an astonishing result. It says

that if the Social Welfare Function allows someone to compel the society

to follow her ranking of some ordered pair, no matter what, against the

opposition of everyone else, then the Social Welfare Function makes her

an absolute dictator. [L’ėtat c’est moi]. Here is the proof. It is going to take

a while, so settle down. In order to make this manageable, I must use the

various symbols we have defined. Let me review them here, so that I do

not need to keep repeating myself.

An ordered pair is indicated by curved parentheses: (x, y), as opposed

to a non-ordered pair, which is indicated by brackets: [x, y].

xD
¯

y for i, which is D with a line under it, means "i dictates over (x, y)"

(an ordered pair) xDy for i, which is D with no line under it, means "i is

decisive for (x, y)"

Proof of Lemma 3 Assume xDy for i [i,e., i is decisive for x against y]

The proof now proceeds in two stages. First, for an environment

[x, y, z], constructed by adding some randomly chosen third element z to

x and y, we show that i is a dictator over [x, y, z].

Then we show how to extend this result step by step to the conclusion

that i is a dictator over the entire environment S of admissible alternatives.

First Stage Proof that i is a dictator over the environment [x, y, z]

(step i) Construct a set of individual orderings over [x, y, z] as follows.

Ri: x > y > z [i.e., individual i’s ordering of the three]

All the other Rj: yPjx yPjzRj[x, z] unspecified

In other words, we will prove something that is true regardless of how

everyone other than i ranks x against z.

(step ii) xPiy by construction. But, by hypothesis xDy for i. Therefore

xPy

In words, i is assumed to strongly prefer x to y, and since by hypothesis

i is decisive for x against y, the society also strongly prefers x to y.
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(step iii) For all i, yPiz, by construction. Therefore, yPz, by Condition P,

and xPz by Lemma 1(3). In words, since everyone strongly prefers y to z,

so does the society. And since the society strongly prefers x to y and y to

z, it strongly prefers x to z [since Axiom 2, which is used to prove Lemma

1(3), stipulates that the SWF is transitive.]

(step iv) So xPz when xPiz, regardless of how anyone else ranks x and

z. [check the construction of the individual orderings in step (i) ]

(step v) Hence xD
¯

z for i, which is to say that i dictates over the ordered

pair (x, z)

(step vi) Now consider (y, z) and assume the following set of individual

orderings:

Ri : y > x > z All the other Rj : yPjx zPjx and Rj[y, z] unspecified.

(step vii) yPix for all i. Therefore yPx by Condition P

(step viii) xD
¯

z for i, by (v). Hence xPz.

(step ix) So yPz by Lemma 1(3). Thus yD
¯

z for i.

In words, we have now shown that i dictates over the ordered pair

(y, z). Let us take a minute to review what is going on here. We are

trying to prove that if i is decisive for a single ordered pair, (x, y), then i

is a dictator over an environment consisting of x, y, and some randomly

chosen z. If we can show that i is a dictator for every ordered pair in the

environment [x, y, z] then we shall have shown that i is a dictator over that

environment. There are six ordered pairs that can be selected from the

environment, namely (x, y), (x, z), (y, x), (y, z), (z, x), and (z, y). So we

must establish that i dictates over every single one of these ordered pairs.

We have already established that i dictates over (x, z) in step (v) and over

(y, z) in step (ix).

(step x) We can now extend this argument to the other four ordered

pairs that can be selected from the environment [x, y, z]. In particular,

let us do this for the ordered pair (y, x). Construct the following set of

orderings:

Ri : y > z > x

All the other Rj : zPjy zPjx Rj[x, y] unspecified.
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(step xi) zPix for all i. Hence zPx by Condition P

(step xii) yD
¯

z for i by (step ix). Hence yPz

(step xiii) So yPx by Lemma 1(3). Thus yD
¯

x for i.

So we have proved [or can do so, by just iterating these steps a few

more times] that i dictates over every ordered pair in [x, y, z], and therefore

i is a dictator over the environment [x, y, z]. So much for Stage One of

the proof of Lemma 3. Now, take a deep breath, review what has just

happened to make sure you understand it, and we will continue to:

Stage Two The extension of our result to the entire environment, S, of

available alternatives. Keep in mind that S, however large it may be, is

finite. Assume xDy for i [our initial assumption—just repeating for clarity]

and also assume the result of Stage One. Now consider any ordered pair

of alternatives (z, w) selected from the environment S. There are just seven

possibilities.

1. x = z, w is a third alternative

2. x = w, z is a third alternative

3. y = z, w is a third alternative

4. y = w, z is a third alternative

5. x = z, y = w

6. y = zx = w

7. Neither z nor w is either x or y

Case 1: We have an environment consisting of three alternatives: [x =

z, y, w]. Stage One shows that if xDy for i, then x = zD
¯

w for i.

Case 2, 3, 4: Similarly

Case 5: Trivial

Case 6: Add any other element v to form the environment [x = w, y =

z, v]. From x = wDy = z for i, it follows that y = zD
¯

x = w for i. [In words,

just in case you are getting lost: In the case in which y is element z and x

is element w, from the fact that i is decisive for x against y, which is to say
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for w against z, it follows that i dictates over y and x, which is to say over

z and w. This is just a recap of Stage One.

Case 7: This is the only potentially problematic one case, and it needs a

little explaining. We are starting from the assumption that i is decisive

for x against y, and we want to show that i is a dictator over some totally

different of alternatives z and w, so we are going to creep up on that

conclusion, as it were. First we will add one of those two other alternatives,

z, to the two alternatives x and y to form the environment [x, y, z]. From

Stage One, if xDy for i then xD
¯

z for i. But trivially, since xD
¯

z for i, it

follows that xDz for i. [The point is that if i dictates over x and z, then of

course i is decisive for x against z].

Now add w to x and z to form the environment [x, z, w]. Since xDz for

i, it follows that zD
¯

w for i, by Stage One. In words, if i is decisive for x

against z, then in the environment [x, z, w], i dictates over z and w. This

follows from Stage One. What this shows is just how powerful Lemma 3

really is.

Thus we have demonstrated that xDy for i implies zD
¯

w for i, for all

z and w in S. In other words, if i is decisive for some ordered pair (x, y),

then i is a dictator over S. But Condition 5 stipulates that no individual

may be a dictator.

Therefore:

An acceptable Social Welfare Function does not permit any individual to be

decisive for even a single ordered pair of alternatives in the environment S of

available alternatives.

Can we all say Ta-Da? This is the heavy lifting in Arrow’s theorem.

Using this Lemma, we can now fairly quickly prove that there is no SWF

satisfying Axioms 1 and 2 and all four Conditions, 1’, 3, P, and D.

4.3.1 Proof of Arrow’s Theorem

Step 1. By Condition P, there is at least one decisive set for each ordered

pair, namely the set of all the individuals. From all the decisive sets, choose

a smallest decisive set, V, and let it be decisive for some ordered pair (x, y).

What I mean is this: Consider each set of individuals that is decisive for
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some ordered pair or other. Since there is a finite number of individuals,

each of these sets must have some finite number of individuals in it. And

the sets may have very different numbers of individuals in them. But one

or more of them must be the smallest set. So arbitrarily choose one of

the smallest, call it V, and label the pair of alternatives over which it is

decisive (x, y).

Step 2: By Condition P, V cannot be empty. [Go back and look at Condi-

tion P and make sure you see why this is so. It is not hard]. Furthermore,

by Lemma 3, V cannot have only one member [because Lemma 3 proved

that no single individual, i, can be decisive for any ordered pair (x, y)].

Therefore, V must have at least two members.

Step 3: Partition the individuals 1, 2, . . . , n in the following way: The set

of all individuals

—————————————————————

| |
V V3

———————

V1 V2

Where,

V1 = a set containing exactly one individual in V

V2 = the set of all members of V except the one individual in V1

V3 = the rest of the individuals, if there are any.

Is this clear? V is a smallest decisive set. It must have at least two in-

dividuals in it. So it can be divided into V1 containing just one individual,

and V2 containing the rest of V. V3 is then everyone else, if there is anyone

else not in the smallest decisive set V.

Step 4: Now let the individuals in the society have the following

rankings of three alternatives, x, y, and z. [And now you will see how this

is an extension of the original Paradox of Majority Rule with which we
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began.]

V1 : x > y and y > z

V2 : z > x and x > y

V3 : y > z and z > x

[You see? This is one of those circular sets of preference orders: xyz,

zxy, yzx]

V1 is non-empty, by construction.

V2 is non-empty, by the previous argument.

V3 may be empty.

Step 5:

1. By hypothesis, V is decisive for x against y. But V is the union of

V1 and V2, and xPiy for all i in V1 and V2. Therefore, xPy. [i.e., the

society prefers x to y.]

2. For all i in the union of V1 and V3, yPiz. For all j in V2, zPjy. If zPy,

then V2 is decisive for (x, y). But by construction, V2 is too small to be

decisive for anything against anything, because V2 is one individual

smaller than a smallest decisive set, V. Therefore not zPy. Hence,

yRz [see the definitions of P and R].

3. Therefore xPz by Lemma 1(6) [go back and look at it].

4. But xP1z and zPix for all i not in V1, so it cannot be that xPz, because

that would make V1 decisive for (x, z), which contradicts Lemma 3.

Therefore, not xPz.

Step 6: The conclusion of Step 5.4 contradicts Step 5.3. Thus, we have

derived a contradiction from the assumption that there is a Social Welfare

Function that satisfies Conditions 1’, 3, P, and 5. Therefore, there is no
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SWF that satisfies the four Conditions. Quod erat demonstrandum.

OK. Everybody, take a deep breath. This is a lot to absorb. Arrow’s

Theorem is a major result, and it deserves to be studied carefully. Go back

and re-read what I have written and make sure you understand every step.

It is not obscure. It is just a little complicated. If you have questions, post

them as a comment to this blog and I will answer them.

With this segment, I conclude my discussion of Arrow’s General Pos-

sibility Theorem. And I think this will also conclude this tutorial on the

use and abuse of formal methods in political philosophy. I will be happy

to respond to questions, if there are any, but I think enough is enough.

Thank you all for staying with me on this, for pointing out errors, and for

asking questions. It has been fun for me, revisiting material I have not

taught for twenty years or more, and I hope it has been informative and

fun for you.

An extremely interesting result concerning the consistency of majority

rule was produced by the Australian political scientist Duncan Black. In a

book called The Theory of Committees and Elections (Black, 1958), published

in 1958, Black proved an important theorem about circumstances under

which majority rule is guaranteed to produce a transitive social preference

ordering. In a moment, I am going to go through the proof in detail, but let

me first explain intuitively what Black proved. Ever since the French Rev-

olution, political commentators have adopted a convention derived from

the seating arrangement in the National Assembly. In that body, Repre-

sentatives belonging to each party were seated together, and the groups

were arrayed in the meeting hall in such a manner that the most radical

party, the Jacobins, sat on the extreme left of the hall, and the most re-

actionary party, the Monarchists, sat on the right, with the other groups

seated between them from left to right according to the degree to which

their policies deviated from one extreme or the other. Thus was born the

left-right political spectrum with which we are all familiar. [Of course, in

the U. S. Senate, there are no Communists and only one Socialist, but, as

the reign of George W. Bush shows, there are still plenty of Monarchists.]

The interesting fact, crucial for Black’s proof, is that wherever a party



4.3 Collective Choice Theory 135

locates itself on the spectrum, it tends to prefer the positions of the other

parties, either to the left or to the right, less and less the farther away

they are seated. So, if an individual identifies himself with a party in the

middle, he will prefer that party’s positions to those of a party a little bit

to the left, and he will prefer the policies of the party a little bit to the

left over those of a party farther to the left, and so on. The same is true

looking to the right. Notice that since only ordinal preference is assumed,

you cannot ask, "Is a party somewhat to the left of you farther from you

than a party somewhat to the right of you?" [Make sure you understand

why this is true. Ask me if it is not.]

Consider contemporary American politics. If I am a moderate Repub-

lican [assuming there still is one], I will prefer my position to that of a

conservative Republican, and I will prefer that position to a right wing

nut. I will also prefer my position to that of a Blue Dog Democrat [looking

to my left rather than to my right], and that position to the position of a

Liberal Democrat, and that position in turn to the position of a Socialist

[Bernie Sanders?].

This can be summarized very nicely on a graph, along the X-axis of

which you lay out the left-right political spectrum, while on the Y-axis

you represent the order of your preference. Pretty obviously, the graph

you draw will have a single peak—namely, where your first choice is on

the X-axis—and will fall away on each side, going monotonically lower

the farther you get on the X-axis from your location on it. In short, your

preference, when graphed in this manner, will be single-peaked. Here is

an example of a person’s preference order graphed in this manner. For

purposes of this example, there are five alternatives, (a, b, c, d, e), and the

individual has the following preference order: d > e > c > b > a (see

Figure 4.1).

Let us suppose that there is a second person whose preference order is

a > b > c > d > e. It is obvious that if we posted this person’s preferences

on the same graph, the two together would look like Figure 4.2.

Notice that each of these lines has a single peak. The first individual’s
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Figure 4.2: Preference ordering of two people.
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line peaks at alternative D; the second’s at alternative A. If you do a little

experimenting, you will find that if you change the order in which the

alternatives are laid out on the X-axis, sometimes both lines are still sin-

gle peaked, sometimes one remains single peaked and one no longer is.

Sometimes neither is single peaked. For example, if you change the order

slightly so that the alternatives are laid out on the X-axis in the order a B

E D C, the first individual’s line will still be single peaked, but the second

individual’s line will now be in the shape of a V with one peak at A and

another peak at C. [Try it and see. It is too much trouble for me to draw it

and scan it and size it and insert it.]

Suppose now that we have an entire voting population, each with his

or her own preference order, and that we plot all of those preference orders

on a single graph, a separate line for each person. There might be some

way of arranging the alternatives along the X-axis so that everyone’s pref-

erence order, when plotted on that graph, is single peaked. Then again,

there might not be. For example, if you have three people and three alter-

natives, and if those three people have the preferences that give rise to the

Paradox of Majority Rule, then there is no way of arranging the three al-

ternatives along the X-axis so that all three individuals’ preferences orders

can be plotted on that graph single-peakedly. [Try it and see. Remember

that mirror images are equivalent for these purposes, so there are really

three possible ways of arranging the alternatives along the X-axis, namely

xyz, xzy, and yxz.]

Duncan Black proved that if there is some way of arranging the

available alternatives along the X-axis so that everyone’s preference order,

plotted on that graph, is single peaked, then majority rule is guaranteed

to produce a consistent social preference order. Notice, in particular,

that if everyone’s preferences can be mapped onto the familiar left-right

spectrum, with each individual preferring an alternative less and less the

farther away it is in either direction from the most preferred alternative,

then everyone will on that graph have a single peaked order [because it

will peak at the most preferred alternative and fall away monotonically to

the right and to the left.]
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The proof is fairly simple. It goes like this.

Step 1: Assume that there are an odd number of individuals [the proof

works for an even number of individuals, but in that case there can be ties,

which produces social indifference, which then requires an extra couple of

steps in the proof, so I am trying to make this as simple as possible.]

Assume that their preferences can be plotted onto a graph so that all of

the plots are single-peaked.

Step 2: Starting at the left, count peaks [there may be many peaks at

the same point, of course, showing that all of those people ranked that

alternative as first] and keep counting until you reach one more than half

of the total number of peaks, i.e. (n/2 + 1). Assume there are p peaks to

the left of that point, q peaks at that point, and r peaks to the right, with

(p + q + r) = n. Now, by construction, (p + q) > n/2 and pn/2, because

if (q + r)n/2, which by construction it is not.

Step 3: Let us call the alternative with the q peaks alternative x. Clearly,

there is a majority of individuals who prefer x to every alternative to the

right of x on the graph, because there are p + q individuals whose plots

are downward sloping from x as you go to the right, which means they

prefer x to everything to the right, and p + q is a majority. But there are

q + r individuals who prefer x to everything to the left of x, because their

plots are downward sloping as you go to the left, and q + r are a majority.

So alternative x is preferred in a pairwise comparison by a majority to

every other alternative.

Step 4: Remove alternative x from the graph, remove alternative x from

everyone’s preference order, and then redraw all of the plots. They will all

still be single-peaked. Why? Well, there are three possible cases: Either

the dot representing the individual’s ranking of x was the peak, or it was

to the left of the peak, or it was to the right. In each case, when you

reconnect the remaining dots, the graph remains single-peaked [try it and
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see. It is too hard to draw it and scan it and upload it. But it is intuitively

obvious.]

Step 5: You now have a new set of single-peaked plots on a single graph,

so go through Steps 2 and 3 all over again. The winning alternative is

preferred to every other remaining alternative, and is of course inferior

to the first winner. If you now iterate this process until you run out

of alternatives, you are left with a fully transitive social preference

established by repeated uses of majority rule.

Black’s theorem has considerable real world application, as we have

seen, but it of course does not identify necessary and sufficient conditions

for majority rule to produce a transitive social preference order. It only

identifies a sufficient condition, namely single-peakedness. This means

that there are sets of individual preferences that cannot be mapped single-

peakedly onto a single graph, and yet which by majority rule produce

transitive social preference orders. I leave it to you to construct an example

of this.
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