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Preface

The aim of this book is to make the quantum theory of condensed matter

accessible. To this end we have tried to produce a text that does not demand

extensive prior knowledge of either condensed matter physics or quantum

mechanics. Our hope is that both students and professional scientists will find

it a user-friendly guide to some of the beautiful but subtle concepts that form

the underpinning of the theory of the condensed state of matter.

The barriers to understanding these concepts are high, and so we do not try

to vault them in a single leap. Instead we take a gentler path on which to

reach our goal. We first introduce some of the topics from a semiclassical

viewpoint before turning to the quantum-mechanical methods. When we

encounter a new and unfamiliar problem to solve, we look for analogies

with systems already studied. Often we are able to draw from our storehouse

of techniques a familiar tool with which to cultivate the new terrain. We deal

with BCS superconductivity in Chapter 7, for example, by adapting the

canonical transformation that we used in studying liquid helium in

Chapter 3. To find the energy of neutral collective excitations in the frac-

tional quantum Hall effect in Chapter 10, we call on the approach used for

the electron gas in the random phase approximation in Chapter 2. In study-

ing heavy fermions in Chapter 11, we use the same technique that we found

successful in treating the electron–phonon interaction in Chapter 6.

Experienced readers may recognize parts of this book. It is, in fact, an

enlarged and updated version of an earlier text, A Quantum Approach to

the Solid State. We have tried to preserve the tone of the previous book by

emphasizing the overall structure of the subject rather than its details. We

avoid the use of many of the formal methods of quantum field theory, and

substitute a liberal amount of intuition in our effort to reach the goal of

physical understanding with minimal mathematical complexity. For this we

pay the penalty of losing some of the rigor that more complete analytical

ix



Contents

Preface ix

Chapter 1

Semiclassical introduction 1

1.1 Elementary excitations 1

1.2 Phonons 4

1.3 Solitons 7

1.4 Magnons 10

1.5 Plasmons 12

1.6 Electron quasiparticles 15

1.7 The electron–phonon interaction 17

1.8 The quantum Hall effect 19

Problems 22

Chapter 2

Second quantization and the electron gas 26

2.1 A single electron 26

2.2 Occupation numbers 31

2.3 Second quantization for fermions 34

2.4 The electron gas and the Hartree–Fock approximation 42

2.5 Perturbation theory 50

2.6 The density operator 56

2.7 The random phase approximation and screening 60

2.8 Spin waves in the electron gas 71

Problems 75

v



Chapter 3

Boson systems 78

3.1 Second quantization for bosons 78

3.2 The harmonic oscillator 80

3.3 Quantum statistics at finite temperatures 82

3.4 Bogoliubov’s theory of helium 88

3.5 Phonons in one dimension 93

3.6 Phonons in three dimensions 99

3.7 Acoustic and optical modes 102

3.8 Densities of states and the Debye model 104

3.9 Phonon interactions 107

3.10 Magnetic moments and spin 111

3.11 Magnons 117

Problems 122

Chapter 4

One-electron theory 125

4.1 Bloch electrons 125

4.2 Metals, insulators, and semiconductors 132

4.3 Nearly free electrons 135

4.4 Core states and the pseudopotential 143

4.5 Exact calculations, relativistic effects, and the structure factor 150

4.6 Dynamics of Bloch electrons 160

4.7 Scattering by impurities 170

4.8 Quasicrystals and glasses 174

Problems 179

Chapter 5

Density functional theory 182

5.1 The Hohenberg–Kohn theorem 182

5.2 The Kohn–Sham formulation 187

5.3 The local density approximation 191

5.4 Electronic structure calculations 195

5.5 The Generalized Gradient Approximation 198

vi Contents



5.6 More acronyms: TDDFT, CDFT, and EDFT 200

Problems 207

Chapter 6

Electron–phonon interactions 210
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treatments can yield. The methods used to demonstrate results are typically

simple and direct. They are expedient substitutes for the more thorough

approaches to be found in some of the bulkier and more specialized texts

cited in the Bibliography.

Some of the problems at the ends of the chapters are sufficiently challenging

that it took the authors a longer time to solve them than it did to create them.

Instructors using the text may therefore find it a time-saver to see our versions

of the solutions. These are available by sending to solutions@cambridge.org

an e-mail containing plausible evidence that the correspondent is in fact a

busy instructor rather than a corner-cutting student pressed for time on a

homework assignment.

The earlier version of this text owed much to Harold Hosack and Philip

Nielsen for suggested improvements. The new version profits greatly from the

comments of Harsh Mathur, Michael D. Johnson, Sankar Das Sarma, and

Allan MacDonald. Any mistakes that remain are, of course, ours alone. We

were probably not paying enough attention when our colleagues pointed

them out to us.

Philip Taylor Cleveland, Ohio

Olle Heinonen Minneapolis, Minnesota
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Chapter 1

Semiclassical introduction

1.1 Elementary excitations

The most fundamental question that one might be expected to answer is

‘‘why are there solids?’’ That is, if we were given a large number of atoms

of copper, why should they form themselves into the regular array that we

know as a crystal of metallic copper? Why should they not form an irregular

structure like glass, or a superfluid liquid like helium?

We are ill-equipped to answer these questions in any other than a quali-

tative way, for they demand the solution of the many-body problem in one of

its most difficult forms. We should have to consider the interactions between

large numbers of identical copper nuclei – identical, that is, if we were for-

tunate enough to have an isotopically pure specimen – and even larger num-

bers of electrons. We should be able to omit neither the spins of the electrons

nor the electric quadrupole moments of the nuclei. Provided we treated the

problem with the methods of relativistic quantum mechanics, we could hope

that the solution we obtained would be a good picture of the physical reality,

and that we should then be able to predict all the properties of copper.

But, of course, such a task is impossible. Methods have not yet been

developed that can find even the lowest-lying exact energy level of such a

complex system. The best that we can do at present is to guess at the form the

states will take, and then to try and calculate their energy. Thus, for instance,

we might suppose that the copper atoms would either form a face-centered or

body-centered cubic crystal. We should then estimate the relative energies of

these two arrangements, taking into account all the interactions we could. If

we found that the face-centered cubic structure had the lower energy we

might be encouraged to go on and calculate the change in energy due to

various small displacements of the atoms. But even though we found that

all the small displacements that we tried only increased the energy of the
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system, that would still be no guarantee that we had found the lowest energy

state. Fortunately we have tools, such as X-ray diffraction, with which we can

satisfy ourselves that copper does indeed form a face-centered cubic crystal,

so that calculations such as this do no more than test our assumptions and our

mathematics. Accordingly, the philosophy of the quantum theory of con-

densed matter is often to accept the crystal structure as one of the given

quantities of any problem. We then consider the wavefunctions of electrons

in this structure, and the dynamics of the atoms as they undergo small dis-

placements from it.

Unfortunately, we cannot always take this attitude towards the electronic

structure of the crystal. Because we have fewer direct ways of investigating

the electron wavefunction than we had for locating the nuclei, we must some-

times spend time questioning whether we have developed the most useful

picture of the system. Before 1957, for example, people were unsuccessful

in accounting for the properties of superconductors because they were start-

ing from a ground state that was qualitatively different from what it is now

thought to be. Occasionally, however, a new technique is introduced by

means of which the symmetry of electronic states can be probed. An example

is shown on the cover of this book. There the effect on the electronic structure

of an impurity atom at the surface of a high-temperature superconductor is

shown. The clover-leaf symmetry of the superconducting state is clearly seen

in the scanning-tunneling-microscope image.

The interest of the experimentalist, however, is generally not directed

towards the energy of the ground state of a substance, but more towards

its response to the various stimuli that may be applied. One may measure its

specific heat, for example, or its absorption of sound or microwaves. Such

experiments generally involve raising the crystal from one of its low-lying

states to an excited state of higher energy. It is thus the task of the theorist

not only to make a reasonable guess at the ground state, but also to estimate

the energies of excited states that are connected to the ground state in a

simple way. Because the ground state may be of little further interest once

its form has been postulated, it is convenient to forget about it altogether and

to regard the process of raising the system to a higher state as one of creating

something where nothing was before. The simplest such processes are known

as the creation of elementary excitations of the system.

The usefulness of the concept of elementary excitations arises from a

simple property that most many-body systems have in common. Suppose

that there are two excited states, and that these have energies above the

ground state of E1 and E2, respectively. Then it is frequently the case that

there will also be one particular excited state whose energy, E3, is not far
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removed from ðE1 þ E2Þ. We should then say that in the state of energy E3 all
the excitations that were present in the other two states are now present

together. The difference �E between E3 and ðE1 þ E2Þ would be ascribed to

an interaction between them (Fig. 1.1.1). If the states of energy E1 and E2
could not themselves be considered as collections of other excitations of

lower energy then we say that these states represent elementary excitations

of the system. As long as the interaction energy remains small we can with

reasonable accuracy consider most of the excited states of a solid as collec-

tions of elementary excitations. This is clearly a very useful simplification of

our original picture in which we just had a spectrum of energy levels which

had no particular relationship to one another.

At this point it is useful to consider a division of the possible types of

elementary excitations into two classes, known as quasiparticle excitations

and collective excitations. The distinction between these is best illustrated

by some simple examples. We know that if we have a gas of noninteracting

particles, we can raise the energy of one of these particles without affecting

the others at all. Thus if the gas were originally in its ground state we could

describe this process as creating an elementary excitation. If we were now to

raise the energy of another particle, the energies of the excitations would

clearly add up to give the energy of the doubly excited system above its

ground state. We should call these particle excitations. If now we include

some interactions between the particles of the gas, we should expect these

particle excitations to decay, since now the excited particle would scatter off

the unexcited ones, and its energy and momentum would gradually be lost.

However, if the particles obeyed the Pauli Exclusion Principle, and the energy

of the excitation was very low, there would be very few empty states into

which the particle could be scattered. We should expect the excitation to

have a sufficiently long lifetime for the description in terms of particles to

1.1 Elementary excitations 3

Figure 1.1.1. When two elementary excitations of energies E1 and E2 are present
together the combined excitation has an energy E3 that is close to E1 þ E2.



be a useful one. The energies of such excitations will differ from those for

noninteracting particles because of the interactions. It is excitations such as

these that we call quasiparticles.

A simple example of the other class of excitation is that of a sound wave in

a solid. Because the interatomic forces in a solid are so strong, there is little

profit in considering the motion of an atom in a crystal in terms of particle

motion. Any momentum we might give to one atom is so quickly transmitted

to its neighbors that after a very short time it would be difficult to tell which

atom we had initially displaced. But we do know that a sound wave in the

solid will exist for a much longer time before it is attenuated, and is therefore

a much more useful picture of an excitation in the material. Since a

sound wave is specified by giving the coordinates not of just one atom but

of every atom in the solid, we call this a collective motion. The amplitude of

such motion is quantized, a quantum unit of traveling sound wave being

known as a phonon. A phonon is thus an example of a collective excitation

in a solid.

We shall now consider semiclassically a few of the more important excita-

tions that may occur in a solid. We shall postpone the more satisfying

quantum-mechanical derivations until a later chapter. By that time the

familiarity with the concepts that a semiclassical treatment gives may reduce

somewhat the opacity of the quantum-mechanical procedures.

1.2 Phonons

The simplest example of collective motion that we can consider is that of a

linear chain of equal masses connected by springs, as illustrated in Fig. 1.2.1.

The vibrational modes of this system provide some insight into the atomic

motion of a crystal lattice.

If themassesM are connected by springs of force constantK , and we call the

displacement of the nth mass from its equilibrium position yn, the equations

4 Semiclassical introduction

Figure 1.2.1. This chain of equal masses and springs supports collective motion in
the form of traveling waves.



of motion of the system are

M
d2yn
dt2

¼ K½ðynþ1 � ynÞ � ðyn � yn�1Þ�

¼ Kðynþ1 � 2yn þ yn�1Þ: ð1:2:1Þ

These equations are easily solved for any boundary conditions if we remem-

ber the recursion formula for cylindrical Bessel functions,

dJn
dt

¼ � 1

2
½Jnþ1ðtÞ � Jn�1ðtÞ�;

from which

d2Jn
dt2

¼ 1

4
½Jnþ2ðtÞ � 2JnðtÞ þ Jn�2ðtÞ�:

The problem we considered in Section 1.1 was to find the motion of the

masses if we displaced just one of them ðn ¼ 0, say) and then released it.

The appropriate solution is then

ynðtÞ ¼ J2nð!mtÞ

where !2m ¼ 4K=M. This sort of behavior is illustrated in Fig. 1.2.2. The

displacement of the zeroth mass, being given by J0ð!mtÞ, is seen to exhibit

oscillations which decay rapidly. After just a few oscillations y0ðtÞ behaves as
t�1=2 cos ð!mtÞ. This shows that particle-like behavior, in which velocities are

constant, has no relation to the motion of a component of such a system.

1.2 Phonons 5

Figure 1.2.2. These Bessel functions are solutions of the equations of motion of the
chain of masses and springs.



And this is quite apart from the fact that in a crystal whose atoms are

vibrating we are not fortunate enough to know the boundary conditions of

the problem. This direct approach is thus not very useful.

We find it more convenient to look for the normal modes of vibration of

the system. We make the assumption that we can write

yn / eið!tþknaÞ; ð1:2:2Þ

where ! is some function of the wavenumber k, and a is the spacing between

masses. This satisfies the equations of motion if

�!2M ¼ Kðeika þ e�ika � 2Þ;

that is, if

! ¼ 
!m sin 1
2 ka
� �

:

The solution (1.2.2) represents traveling waves of frequency ! and wave-

number (defined for our purposes by 2�=�, where � is the wavelength)

equal to k. The group velocity v is given by d!=dk, the gradient of the

curve shown in Fig. 1.2.3. We note that as ! approaches its maximum

value, !m, the group velocity falls to zero. This explains why the Bessel

function solution decayed to an oscillation of frequency !m after a short

time, if we realize that the original equation for ynðtÞ can be considered as

a superposition of waves of all wavenumbers. The waves of low frequency,

having a large group velocity, travel quickly away from the zeroth site, leav-

ing only the highest-frequency oscillations, whose group velocity is zero.

6 Semiclassical introduction
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It is formally straightforward enough to find the normal modes of vibra-

tion for systems more complicated than our linear chain of masses. The

extension to three dimensions leads us to consider the polarization of the

lattice waves, that is, the angle between k, which is now a vector, and the

direction of displacement of the atoms. We can also introduce forces between

atoms other than nearest neighbors. This makes the algebra of finding !ðkÞ
more involved, but there are no difficulties of principle. Introduction of two

or more different kinds of atom having different masses splits the graph of

!ðkÞ into two or more branches, but as long as the restoring forces are all

proportional to the displacement, then solutions like Eq. (1.2.2) can be

found.

A phonon is the quantum-mechanical analog of the lattice wave described

by Eq. (1.2.2). A single phonon of angular frequency ! carries energy 0!. A
classical lattice wave of large amplitude corresponds to the quantum situa-

tion in which there are many phonons present in one mode. We shall see later

that a collection of phonons bears some similarity to a gas of particles. When

two particles collide we know that the total momentum is conserved in the

collision. If we allow two phonons to interact we shall find that the total

wavenumber is conserved in a certain sense. For this reason phonons are

sometimes called quasiparticles, although we shall avoid this terminology

here, keeping the distinction between collective and particle-like behavior.

1.3 Solitons

The chain of masses connected by Hookean springs that we considered in the

previous section was a particularly easy problem to solve because the equa-

tions of motion (1.2.1) were linear in the displacements yn. A real solid, on

the other hand, consists of atoms or ions having hard, mutually repulsive

cores. The equations of motion will now contain nonlinear (i.e., anharmonic)

terms. How do these affect the type of excitation we may find?

If the amplitudes of the phonons are small then the effects of the anhar-

monic terms will be weak, and the problem can be treated as a system of

interacting phonons. If the atomic displacements are large, on the other

hand, then there arises a whole new family of elementary excitations

known as solitary waves or solitons. In these excitations a localized wave

of compression can travel through a solid, displacing the atoms momentarily

but then leaving them as stationary as they were before the wave arrived.

The term soliton suggests by its word ending that it is a purely quantum-

mechanical concept, but this is not the case. Solitary waves in classical

systems had been observed as long ago as 1834, but it was only when their

1.3 Solitons 7



interactions were studied that it was found that in some cases two solitary

waves could collide and then emerge from their collision with their shapes

unchanged. This particle-like behavior led to the new terminology, which is

now widely applied to solitary waves of all kinds.

We can begin to understand the relation between phonons in a harmonic

solid and solitary waves in an anharmonic solid with the aid of an exactly

soluble model due to Toda. We start by considering the simplest possible

model that can support a soliton, namely a one-dimensional array of hard

rods, as illustrated in Fig. 1.3.1. If we strike the rod at the left-hand end of the

array, it will move and strike its neighbor, which in turn will strike another

block. A solitary wave of compression will travel the length of the array

leaving all but the final block at rest. The speed of this soliton will be deter-

mined entirely by the strength of the initial impact, and can take on any

positive value. The wave is always localized to a single rod, in complete

contrast to a sound wave in a harmonic solid, which is always completely

delocalized.

Toda’s achievement was to find a model that interpolated between these

two systems. He suggested a chain in which the potential energy of inter-

action between adjacent masses was of the form

VðrÞ ¼ arþ a
b
e�br: ð1:3:1Þ

In the limit where b! 0 but where the product ab is equal to a finite constant

c we regain the harmonic potential,

VðrÞ ¼ a

b
þ 1

2
cr2:

In the opposite limit, where b! 1 but ab ¼ c, we find the hard-rod poten-

tial for which V ! 1 if r 
 0 and V ! 0 if r > 0.

8 Semiclassical introduction

Figure 1.3.1. Through a series of elastic collisions, a solitary wave of compression
propagates from left to right.



We construct a chain of equilibrium spacing d by having the potential

�nVðRn � Rn�1 � dÞ act between masses located at Rn and Rn�1. In the nota-
tion where the displacement from equilibrium is yn ¼ Rn � nd, the equations
of motion are

M
d2yn
dt2

¼ �a e�bðynþ1�ynÞ � e�bðyn�yn�1Þ
� �

:

If we now put yn � yn�1 � rn then we have

M
d2rn
dt2

¼ a �e�brnþ1 þ 2e�brn � e�brn�1
� �

:

One simple solution of this set of equations is the traveling wave for which

e�brn � 1 ¼ sinh2 � sech2ð�n
 	tÞ ð1:3:2Þ

with 	 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
ab=M

p
sinh�, and � a number that determines both the amplitude

of the wave and its spatial extent. Because the function sech2ð�n
 	tÞ
becomes small unless its argument is small, we see that the width of the

solitary wave is around d=�. The speed v of the wave is 	d=�, which on

substitution of the expression for 	 becomes

v ¼ d

ffiffiffiffiffi
ab

M

r
sinh�

�

� 	
:

For large-amplitude solitons the hard-rod feature of the potential dominates,

and this speed becomes very large. For small-amplitude waves, on the other

hand, sinh�=�! 1, and we recover the speed of sound, d
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ab=M

p
, of the

harmonic chain.

The example of the Toda chain illustrates a number of points. It shows

how the inclusion of nonlinearities may completely alter the qualitative

nature of the elementary excitations of a system. The complete solution of

the classical problem involves Jacobian elliptic functions, which shows

how complicated even the simplest nonlinear model system can be.

Finally, it also presents a formidable challenge to obtain solutions of the

quantum-mechanical version of this model for a chain of more than a few

particles.

1.3 Solitons 9



1.4 Magnons

In a ferromagnet at a temperature below the Curie point, the magnetic

moments associated with each lattice site l are lined up so that they all point

inmore or less the samedirection.We call this the z-direction. In a simplemodel

of the mechanism that leads to ferromagnetism, the torque acting on one of

these moments is determined by the orientation of its nearest neighbors. Then

the moment is subjected to an effective magnetic field, Hl, given by

Hl ¼ A
X
l 0

kl 0

where A is a constant, kl 0 is the moment at the site l
0, and the sum proceeds

only over nearest neighbors. The torque acting on the moment at l is kl �Hl

and this must be equal to the rate of change of angular momentum. Since the

magneticmoment of an atom is proportional to its angularmomentumwehave

dkl
dt

/ kl �Hl ¼ A
X
l 0

kl � kl 0 : ð1:4:1Þ

As in the problem of the chain of masses and springs we look for a wave-like

solution of these equations which will represent collective behavior. With the

assumption that deviations of the kl from the z-direction are small we write

kl ¼ kz þ k?e
ið!tþk � lÞ;

where kz points in the z-direction and where we have used the useful trick of

writing the components in the x�y plane as a complex number, kx þ iky. That
is, if k? is in the x-direction, then ik? is in the y-direction. On substitution in

(1.4.1) we have, neglecting terms in k2?,

i!k? / kz � k?
X
l 00

ðeik � l 00 � 1Þ:

Here the l 00 are the vectors joining the site l to its nearest neighbors. In a

crystal with inversion symmetry the summation simplifies to

�2
X
l 00

sin2ð12 k � l 00Þ:

This equation tells us that k? rotates in the x�y plane with frequency

! / jkzj
X
l 00

sin2ð12 k � l 00Þ; ð1:4:2Þ

10 Semiclassical introduction



the phase difference between atoms separated by a distance r being just k � r.
This sort of situation is shown in Fig. 1.4.1, which indicates the direction in

which k points as one moves in the direction of k along a line of atoms.

Because the magnetic moment involved is usually due to the spin of the

electron, these waves are known as spin waves. The quantum unit of such a

wave is known as a magnon.

The most important difference to note between phonons and magnons

concerns the behavior of !ðkÞ for small k (Fig. 1.4.2). For phonons we

found that the group velocity, d!=dk, tended to a constant as k tended to

zero, this constant being of course the velocity of sound. For magnons,

1.4 Magnons 11

Figure 1.4.1. The k-vector of this spin wave points to the left.

Figure 1.4.2. The dispersion curve for magnons is parabolic in shape for small wave
numbers.



however, the group velocity tends to zero as k becomes small. This is of great

importance in discussing the heat capacity and conductivity of solids at low

temperatures.

In our simplified model we had to make some approximations in order to

derive Eq. (1.4.2). This means that the spin waves we have postulated would

eventually decay, even though our assumption about the effective field had

been correct. In quantum-mechanical language we say that a crystal with two

magnon excitations present is not an exact eigenstate of the system, and that

magnon interactions are present even in our very simple model. This is not to

say that a lattice containing phonons is an exact eigenstate of any physical

system, for, of course, there are many factors we left out of consideration that

limit the lifetime of such excitations in real crystals. Nevertheless, the fact

that, in contrast to the phonon system, we cannot devise any useful model of

a ferromagnet that can be solved exactly indicates how very difficult a pro-

blem magnetism is.

1.5 Plasmons

The model that we used to derive the classical analog of phonons was a

system in which there were forces between nearest neighbors only. If we

had included second and third nearest neighbors we might have found that

the dispersion curve (the graph of ! against k) had a few extra maxima or

minima, but ! would still be proportional to k for small values of k. That is,

the velocity of sound would still be well defined. However, if we wanted to

consider a three-dimensional crystal in which the atoms carried an electric

charge e we would find some difficulties (Problem 1.3). Although the

Coulomb force of electrostatic repulsion decays as r�2, the number of neigh-
bors at a distance of around r from an atom increases as r2, and the equation

for ! has to be treated very carefully. The result one finds for longitudinally

polarized waves is that as k tends to zero ! now tends to a constant value �p,

known as the ion plasma frequency and given by

�2
p ¼

4�
0e
2

M
ð1:5:1Þ

where e is the charge and M the mass of the particles, and 
0 the number of

particles per unit volume of the crystal. We thus conclude that a Coulomb

lattice does not support longitudinal sound waves in the usual sense, since �p

is no longer proportional to the wavenumber k.
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This raises an interesting question about the collective excitations in

metals. We think of a metal as composed of a lattice of positively charged

ions embedded in a sea of nearly free conduction electrons. The ions interact

by means of their mutual Coulomb repulsion, and so we might expect that

the lattice would oscillate at the ion plasma frequency, �p. Of course, we

know from everyday experience that metals do carry longitudinal sound

waves having a well defined velocity, and so the effective interaction between

ions must be short-range in nature. It is clear then that the conduction

electrons must play some part in this.

This leads to the concept of screening. We must suppose that in a sound

wave in a metal the local variations in charge density due to the motion of the

positively charged ions are cancelled out, or screened, by the motion of the

conduction electrons. This influx of negative charge reduces the restoring

force on the ions, and so the frequency of the oscillation is drastically

reduced. That is to say, the ions and the electrons move in phase, and we

should be able to calculate the velocity of sound by considering the motion of

electrically neutral atoms interacting through short-range forces.

But if there is a mode of motion of the metallic lattice in which the elec-

trons and ions move in phase, there should also be a mode in which they

move out of phase. This is in fact the case, and it is these modes that are the

true plasma oscillations of the system, since they do give rise to variations in

charge density in the crystal. Their frequency, as we shall now show, is given

for long wavelengths by Eq. (1.5.1), where now the ionic mass,M, is replaced

by the electron mass, m. (In fact m should really be interpreted as the reduced

mass of the electron in the center-of-mass coordinate system of an electron

and an ion; however, since the mass of the ion is so many times greater than

that of the electron this refinement is not necessary.)

We shall look for plasma oscillations by supposing that the density of

electrons varies in a wave-like way, so that


ðrÞ ¼ 
0 þ 
q cos qx: ð1:5:2Þ

This density must be considered as an average over a distance that is large

compared with the distance between an electron and its near neighbors, but

small compared with q�1. When the electrons are considered as point parti-

cles the density is really a set of delta-functions, but we take a local average of

these to obtain 
ðrÞ. The electrostatic potential �ðrÞ will then be of the same

form,

�ðrÞ ¼ �0 þ �q cos qx; ð1:5:3Þ
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and will be related to the density of electrons 
ðrÞ and of ions 
ionðrÞ by
Poisson’s equation,

r2�ðrÞ ¼ �4�e½
ðrÞ þ 
ionðrÞ�: ð1:5:4Þ

If we take 
ion to be equal to 
0 we have on substitution of (1.5.2) and (1.5.3)

in (1.5.4)

q2�q ¼ 4�e
q:

The potential energy density is then

1

2
e
� ¼ 1

2

4�e2
2q
q2

cos2 qx:

The average kinetic energy density, 12m
v
2, is also altered by the presence of

the plasma wave. The amplitude of the oscillation is 
q=
0q and so an elec-

tron moving with the plasma suffers a velocity change of ð _

q=
0qÞ sin qx with
_

q the time derivative of 
q. We must also take into account the heating of the

plasma caused by adiabatic compression; since the fractional increase in

density is ð
q=
0Þ cos qx this effect will add to the velocity an amount of

the order of ðv0
q=
0Þ cos qx. If we substitute these expressions into the

classical Hamiltonian and take the spatial average we find an expression of

the form

�HH ¼ 1

4

4�e2
2q
q2

þ 1

4
m
0

��
_

q

0q

	2

þ
�
�v0
q

0

	2�

¼ m

4
0q2

�
_

2q þ 
2q

�
4�
0e

2

m
þ �2v20q2

	�
with � a constant of order unity. This is the Hamiltonian for a classical

oscillator of frequency

!q ¼ ð!2p þ �2v20q2Þ1=2;

where !p is the electron plasma frequency, ð4�
0e2=mÞ1=2.
The important point to note about this approximate result is that !p is a

very high frequency for electrons in metals, of the order of 1016 Hz, which

corresponds to a quantum energy 0!p of several electron volts. Quanta of

such oscillations are known as plasmons, and cannot be created thermally,
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since most metals melt at a thermal energy of the order of 0.1 eV. Thus the

plasma oscillations represent degrees of freedom of the electron gas that are

‘‘frozen out.’’ This accounts for the paradoxical result that the interaction

between electrons is so strong that it may sometimes be ignored. One may

contrast this situation with that of an atom in the solid considered in Section

1.2. There it was found that any attempt to give momentum to a single atom

just resulted in the creation of a large number of collective excitations of low

energy. An electron in the electron gas, on the other hand, retains its particle-

like behavior much longer as it may not have the energy necessary to create a

single plasmon.

1.6 Electron quasiparticles

Most of the phenomena we have considered so far have been collective

motions. Our method of solving the equations of motion was to define a

collective coordinate, yk, which was a sum over the whole lattice of some

factor times the particle coordinates, yl. If we had had an infinite number of

particles, then the coordinates of any one particle would only have played an

infinitesimal role in the description of the motion. We now turn to the con-

sideration of excitations in which the motion of one particle plays a finite

role.

In Section 1.1 we have already briefly considered the problem of an assem-

bly of particles that obey the Pauli Exclusion Principle. A gas of electrons is

an example of such a system. As long as the electrons do not interact then the

problem of classifying the energy levels is trivial. The momentum p of each of

the electrons is separately conserved, and each has an energy E ¼ p
2=2m. The

spin of each electron may point either up or down, and no two electrons may

have the same momentum p and spin s. If there are N electrons, the ground

state of the whole system is that in which the N individual electron states of

lowest energy are occupied and all others are empty. If the most energetic

electron has momentum pF , then all states for which jpj < jpF j will be occu-
pied. The spherical surface in momentum space defined by jpj ¼ pF is known

as the Fermi surface (Fig. 1.6.1). The total energy of the system is then

ET ¼
X

s;jpj<pF

p
2

2m
;

the sum being over states contained within the Fermi surface. We can write

this another way by defining an occupation number, np;s, which is zero when
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the state with momentum p and spin s is empty and equal to 1 when it is

occupied. Then

ET ¼
X
all s;p

p
2

2m
np;s:

The usefulness of the concept of a quasiparticle rests on the fact that one may

still discuss the occupancy of a state even when there are interactions between

the particles. Although in the presence of interactions np;s will no longer have

to take on one of the two values 0 or 1, we can attach a meaning to it. We

might, for instance, suppose that in with the electrons there is a positron at

rest, and that it annihilates with one of the electrons. The total momentum of

the gamma rays that would be emitted by the annihilating particles would be

equal to their total momentum before annihilation. We could now ask what

the probability is that this momentum be equal to p. Since for the noninter-

acting system this probability is proportional to
P

s np;s, this provides an

interpretation for np;s in the interacting system.

In the noninteracting system we had a clear view of what constituted a

particle excitation. The form of np;s differed from that of the ground state in

that one value of p less than pF was unoccupied, and one greater than pF was

occupied (Fig. 1.6.2). We then consider the excited system as composed of

the ground state plus an excitation comprising a particle and a ‘‘hole,’’ the

particle–hole pair having a well defined energy above that of the ground

state. If we introduce interactions between the particles, and in particular if
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energy less than p
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we introduce the troublesome Coulomb interaction, it is hard to see whether

the concept of a particle–hole excitation survives. It is, in fact, not only hard

to see but also hard to calculate. One approach is to consider the effect of

switching on the interactions between particles when the noninteracting sys-

tem contains a particle–hole pair of energy E. If the lifetime � of the excita-
tion is large compared with 0=E, then it will still be useful to retain a similar

picture of the excitations. Since now the interactions will have modified their

energies, we refer to ‘‘quasielectrons’’ and ‘‘quasiholes.’’

1.7 The electron–phonon interaction

In Section 1.5 we discussed sound waves in a metal, and came to the con-

clusion that in these excitations the ions and electrons moved in phase. The

long-range potential of the positively charged ions was thus screened, and the

phonon frequency reduced from the ion plasma frequency �p to some much

smaller value. The way in which this occurs is illustrated in Fig. 1.7.1. We

first imagine a vibration existing in the unscreened lattice of ions. We then
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Figure 1.6.2. The excited state (b) is formed from the ground state (a) by the creation
of a particle–hole pair.



suppose that the electron gas flows into the regions of compression and

restores the electrical neutrality of the system on a macroscopic scale.

There is, however, a difference between the motion of the ions and the

electrons in that we assume the ions to be localized entities, while the

electrons are described by wavefunctions that, in this case, will be small

distortions of plane waves. When we increase the local density of electrons

we must provide extra kinetic energy to take account of the Exclusion

Principle. We might take the intuitive step of introducing the concept of a

Fermi energy that is a function of position. We could then argue that the

local kinetic energy density of the electron gas should be roughly equal to

that of a uniform gas of free electrons, which happens to be 3
5 EF
0. The

sound wave in a metal is thus seen in this model as an interchange of kinetic

energy between the ions and the electrons. We can calculate an order of

magnitude for the velocity of sound by writing the classical Hamiltonian

for the system in a similar approach to that of Section 1.5. The kinetic

energy of the ions will be Mð _

qÞ2=2
0q2 when a wave of wavenumber q

passes through a lattice of ions of mass M and average number density 
0.

The total kinetic energy of the electrons is only changed to second order in


q=
0, and so contributes an energy density of the order of EF
0ð
q=
0Þ2.
Then

H ’ M

2
0q2

�
ð _

qÞ2 þ 
2q

�EFq2
M

�
;

where � is a constant of order unity. The frequency of the oscillator that this
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screened by the flow of electrons.



Hamiltonian describes is

! ¼
ffiffiffiffiffiffiffiffiffi
�EF
M

r
q

which shows that the velocity of sound, vs, can be written as

vs � vF

ffiffiffiffiffi
m

M

r
where vF is the velocity of an electron with energy EF and m=M is the mass

ratio of electron to ion.

In a more careful treatment one would argue that the electron gas would

not completely screen the electric field of the ions. Instead the electrons

would flow until the sum of the electric potential energy and the kinetic

energy of the electrons (the dotted line in Fig. 1.7.1) became uniform.

There would then be a residual electric field (the dashed line in Fig. 1.7.2)

tending to restore the ions to their equilibrium positions. It is the action of

this residual electric field on the electrons that gives rise to the electron–

phonon interaction which we shall study in Chapter 6.

1.8 The quantum Hall effect

We close this chapter with a first glimpse of a truly remarkable phenom-

enon. In the quantum Hall effect a current of electrons flowing along a sur-

face gives rise to an electric field that is so precisely determined that it has
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Figure 1.7.2. In a careful calculation the kinetic energy of the electrons is found to
prevent a complete screening of the potential due to the displaced ions. The residual
potential is shown as a dashed line.



become the basis for the legal standard of electrical resistance. This result is

reproducible to better than one part in 108, even when one changes the

material from which an experimental sample is made or alters the nature

of the surface in which the current flows.

In the elementary theory of the Hall effect one argues that when electrons

travel down a wire with average drift velocity vd at right angles to an applied

magnetic field H0 then they experience an average Lorentz force eðvd=cÞ �H0

(Fig. 1.8.1). In order for the electrons to be undeflected in their motion this

force must be counterbalanced by the Hall field EH , which arises from accu-

mulations of charge on the surface of the wire. In the absence of applied

electric fields we can then write

Eþ vd

c
�H ¼ 0; ð1:8:1Þ

and since the current density jy is given by 
0evd , we have

Ex ¼ 
H jy; ð1:8:2Þ

with the Hall resistivity 
H equal to H=
0ec. The product 
0e can be inter-

preted as giving the density of charge carriers in a metal and also the sign of

their effective charge (which may be positive or negative as a result of the

effects of the lattice potential, as discussed in Chapter 4).

A special situation arises if the electrons are confined to a two-dimensional

surface held perpendicular to the magnetic field. A semiclassical electron in

the center of the sample will then travel in a circular orbit with the cyclotron

frequency !c ¼ eH=mc. The x-component of this circular motion is reminis-

cent of a harmonic oscillator, and so it is no surprise to find that its energy
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Figure 1.8.1. The Hall field EH cancels the effect of the Lorentz force due to the
applied magnetic field H0.



levels are quantized, with E ¼ ðnþ 1
2Þ0!c. These are known as Landau levels.

Because its motion is circular, it does not contribute to any net current

flowing through the sample, and so the question arises as to the origin of

any such current.

The answer lies with the electrons at the edge of the sample. They cannot

complete their little circles, as they keep bumping into a wall, bouncing off it,

and then curving around to bump into it again (Fig. 1.8.2). In this way they

can make their way down the length of the sample, and carry an electric

current, the current of electrons at the top of the figure being to the right and

the current at the bottom being to the left. To have a net current to the right,

we must have more electrons at the top of the figure than at the bottom. The

Fermi level must thus be higher there, and this translates into a higher

electrical potential, and thus a Hall-effect voltage.

Suppose now that we gradually increase the density 
0 of electrons in the

sample while keeping the Hall voltage constant. The number of circular

orbits and edge states will increase proportionately, and the Hall resistance

will decrease smoothly as 1=
0. This simple picture, however, is spoiled if

there are impurities in the system. Then there will exist bound impurity states

whose energies will lie between the Landau levels. Because these states carry

no current, the Hall resistance will stop decreasing, and will remain constant

until enough electrons have been added to raise the Fermi energy to lie in the

next-highest Landau level.

This existence of plateaus in the Hall resistance as a function of number of

electrons is known as the integral quantum Hall effect. In very pure samples

plateaus can also be found when simple fractions (like 1/3 or 2/5) of the states

in a Landau level are occupied. This occurs for a different reason, and is
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Figure 1.8.2. Only the ‘‘skipping orbits’’ at the edges can carry a current along the
sample.



known as the fractional quantum Hall effect. The detailed origin of both these

effects will be explored in Chapter 10.

Problems

1.1 The energy levels Eln of a diatomic molecule are characterized by an

angular momentum quantum number l and a vibrational one n. Assume

a Hamiltonian of the form

H ¼ p21
2m

þ p22
2m

þ 1

4
Kðd � d0Þ2

where d is the interatomic separation and Kmd40 � 02. Calculate

E10 � E00 and E01 � E00 (the energies of the two kinds of elementary

excitation), and also the difference between the sum of these quantities

and E11 � E00. This difference represents the energy of interaction

between the two excitations.

1.2 The Mössbauer Effect Suppose that an atom of 57Fe emits a �-ray of

frequency !0 in the x-direction while it is moving in the same direction

with velocity v. Then by the Doppler effect a stationary observer will see

radiation of frequency approximately equal to !0ð1þ v=cÞ. The spec-

trum of radiation emitted by a hot gas of iron atoms will thus be

broadened by the thermal motion. Now suppose the iron atom to be

bound in a solid, so that the x-component of its position is given by

x ¼
X
q

aq sin ð!qtþ �qÞ;

where the phonon frequencies, !q, are much smaller than !0, and the

phases, �q, are random. Derive an expression for the Fourier spectrum

of the radiation intensity seen by a stationary observer, taking into

account the frequency modulation caused by the motion of the atom.

[The fact that when the aq are small a large proportion of the radia-

tion has the unperturbed frequency, !0, is the basis of the Mössbauer

effect. The emitted �-ray may be resonantly absorbed by another iron

atom in a process that is the converse of that described above.]

1.3 Phonons in a Coulomb Lattice If a particle at l carrying charge Ze

is displaced a distance yl, the change in electric field experienced at
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distances r from l that are large compared with yl is the field due to an

electric dipole of moment kl ¼ Zeyl, and is given by

ElðrÞ ¼ jrj�5½3ðkl � rÞr� r2kl�:

If the lattice is vibrating in a single longitudinal mode of wavenumber q

then one may evaluate its frequency !q by calculating the total fieldP
l El. For vanishingly small q the sum over lattice sites may be

replaced by an integral [why?]. Evaluate !ðq! 0Þ by (i) performing

the integration over spherical polar coordinates �; �, and r, in that

order, and (ii) performing the integral in cylindrical polar coordinates

�; r, and z, restricting the integration to points for which r < R, where R

is some large distance. State in physical terms why these two results

differ.

1.4 Phonon Interactions The velocity of sound in a solid depends, among

other things, on the density. Since a sound wave is itself a density

fluctuation we expect two sound waves to interact. In the situation

shown in Fig. P1.1 a phonon of angular frequency ! 0 and wavenumber

q
0 is incident upon a region of an otherwise homogeneous solid contain-

ing a line of density fluctuations due to another phonon of wavenumber

q. By treating this as a moving diffraction grating obtain an expression

for the wavenumber q 00 and frequency ! 00 of the diffracted wave.
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Figure P1.1. When two phonons are present simultaneously one of them may form
an effective diffraction grating to scatter the other.



1.5 In a long chain, atoms of mass M interact through nearest-neighbor

forces, and the potential energy is V ¼P
n gðyn � yn�1Þ4, where g is a

constant and yn is the displacement from equilibrium of the nth atom. A

solitary wave travels down this chain with speed v. How does v vary

with the amplitude of this wave?

1.6 Assume that the density of allowed states in momentum space for an

electron is uniform, and that the only effect of an applied magnetic

field H is to add to the energy of a particular momentum state the

amount 
�BH, according to whether the electron spin is up or down

(the only two possibilities). Derive an expression in terms of �B and the

Fermi energy EF for the magnetic field H that must be applied to

increase the kinetic energy of an electron gas at 0K by 5� 10�8 of its
original value.

1.7 In a certain model of ferromagnetism the energy of a free-electron gas

has added to it an interaction term

Eint ¼ KðN4=3
" þN4=3

# Þ;

where N" and N# are the total numbers of up- and down-spin

electrons, respectively. By investigating the total energy of this system

as a function of N" �N# for constant Nð¼ N" þN#Þ decide for what
range of K the magnetized state (in which N" 6¼ N#Þ will be (a) stable;
(b) metastable; (c) unstable. Express your results for K in terms of N

and EF , the Fermi energy in the absence of interactions.

1.8 In a classical antiferromagnet there are two oppositely magnetized sub-

lattices, each of which is subject to a field

Hl ¼ �A
X
l 0

kl 0;

the sum proceeding over sites l 0 that are nearest neighbors to l. Find

the form of the spin-wave spectrum in a simple cubic crystal,

and describe pictorially the motion of the spins at low and high

frequencies.

1.9 In problem 1.6, you were asked to find the magnetic field that would

increase the kinetic energy by a fraction 5� 10�8. Now redo this
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problem for the case where the total energy is decreased by a fraction

5� 10�8.

1.10 Calculate the energy of the soliton described by Eq. (1.3.2) in an infinite

Toda chain. [Alternatively, as an easier problem just estimate this

energy in the limits of small and large �.]
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Chapter 2

Second quantization and the electron gas

2.1 A single electron

We have taken a brief look from a semiclassical point of view at some of the

kinds of behavior exhibited by many-particle systems, and have then used

intuition to guess at how quantum mechanics might modify the properties we

found. It is now time to adopt a more formal approach to these problems,

and to see whether we can derive the previous results by solving the

Schrödinger equation for the quantum-mechanical problem.

For a single electron we have the time-independent Schrödinger equation

H ðrÞ ¼ E ðrÞ; ð2:1:1Þ
where

H ¼ p
2

2m
þ VðrÞ

and p is interpreted as the operator �i0r. This equation has physically mean-

ingful solutions for an infinite number of energies E� ð� ¼ 1; 2; 3; . . .Þ. The
eigenfunctions u�ðrÞ, for which

Hu�ðrÞ ¼ E�u�ðrÞ;

form a complete set, meaning that any other function we are likely to need

can be expanded in terms of them. The u�ðrÞ for different � are orthogonal,

meaning that ð
u*�ðrÞu� 0 ðrÞ dr ¼ 0; ð� 6¼ � 0Þ; ð2:1:2Þ

where dr is an abbreviation for dx dy dz; u* is the complex conjugate of u,
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and the integration is over all space. If the wavefunctions u�ðrÞ are normal-

ized then the integral is equal to unity for � ¼ � 0.
It is convenient to adopt what is known as the Dirac notation to describe

integrals of this kind. Because wavefunctions like u�ðrÞ have to be continuous,

we can think of the integral in Eq. (2.1.2) as being equal to the limit of a sum

like

��
X
i

u*�ðriÞu� 0 ðriÞ; ð2:1:3Þ

where we have divided all space into a large number of cells centered on the

points ri, and each of which encloses a volume equal to the vanishingly small

quantity ��. If we look on u� 0 ðrÞ as being the column vector (i.e., the vertical

array of numbers)

u� 0 ðr1Þ
u� 0 ðr2Þ

�
�
�

0BBBB@
1CCCCA

and u*�ðrÞ as the row vector

ðu*�ðr1Þ; u*�ðr2Þ; . . .Þ;

then the sum in expression (2.1.3) is just the matrix product of u*�ðrÞ and

u� 0 ðrÞ. We adopt the notation of writing the row vector u*�ðrÞ as h�j and of

writing the column vector u� 0 ðrÞ as j� 0i. Then we write the integral of

Eq. (2.1.2) as h�j� 0i. For normalized wavefunctions Eq. (2.1.2) then becomes

h�j� 0i ¼ ��� 0 ð2:1:4Þ

where ��� 0 is the Kronecker delta symbol, which is unity when � ¼ � 0 and
zero otherwise.

An example of such a set of functions u�ðrÞ are the plane waves that are a

solution of (2.1.1) when the potential VðrÞ ¼ 0. Then if  ðrÞ / eik � r,

H ¼ � 02

2m
r2 ¼ 02k2

2m
 :

We can avoid the difficulty of normalizing such plane waves (which extend

over all space) by only considering the wavefunction within a cubical box of
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volume � ¼ L3, having corners at the points ð�L=2;�L=2;�L=2Þ. Then we

can take

u�ðrÞ ¼ ��1=2eik� � r:

We then impose periodic boundary conditions, by stipulating that the form of

the wavefunction over any side of the box must be identical to its form over

the opposite side. That is,

u� �L
2
; y; z

	 

¼ u� þL

2
; y; z

	 

; etc:

This means that k� can no longer be any vector, but is restricted to a discrete

set of values such that

eik� � ðL;0;0Þ ¼ eik� � ð0;L;0Þ ¼ eik� � ð0;0;LÞ ¼ 1:

Hence

k� ¼
2�mx
L

;
2�my
L

;
2�mz
L

	 

where mx;my, and mz are integers. Equation (2.1.4) is then obeyed. These

allowed values of k� form a simple cubic lattice in k-space, the density of

allowed points being �=ð2�Þ3, which is independent of k. Summations over �

can then be interpreted as summations over allowed values of k.

We can expand a function �ðrÞ in terms of the u�ðrÞ by writing

�ðrÞ ¼
X
�

C�u�ðrÞ ð2:1:5Þ

and forming the integral ð
u*� 0 ðrÞ�ðrÞ dr;

an integral that we would write in the notation of Eq. (2.1.4) as h� 0j�i. On

substituting from Eq. (2.1.5) we have

h� 0j�i ¼
X
�

C�h� 0j�i ¼
X
�

C� �� 0� ¼ C� 0;
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so that

�ðrÞ ¼
X
�

u�ðrÞh�j�i;

which in the Dirac notation becomes

j�i ¼
X
�

j�ih�j�i:

This allows us to consider the first part of the right-hand side of this equation

as an operator that is identically equal to one;X
�

j�ih�j � 1: ð2:1:6Þ

The combination j�ih�j is the product of a column vector with a row vector;

it is not a number but is an operator. When it acts on a wavefunction j�i it
gives the combination j�ih�j�i, which is just the number h�j�imultiplying the

wavefunction j�i.
This notation can be extended by treating an integral likeð

u*�ðrÞVðrÞu� 0 ðrÞ dr ð2:1:7Þ

in the same way that we handled Eq. (2.1.2). If we replace this integral by the

sum

��
X
i

u*�ðriÞVðriÞu� 0 ðriÞ

we find that we are considering VðrÞ as the diagonal matrix

Vðr1Þ 0 0 � � �
0 Vðr2Þ 0 � � �
� � � � � � � � � � � �

0B@
1CA:

The matrix product that gives expression (2.1.7) would then be written as

h�jVj� 0i:
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We then make use of the identity (2.1.6) to write

VðrÞ ¼
	X

� 0
j� 0ih� 0j



V

	X
� 00

j� 00ih� 00j



¼
X
� 0;� 00

h� 0jVj� 00ij� 0ih� 00j: ð2:1:8Þ

The operator j� 0ih� 00j gives zero when it operates on any of the states j�i
except that for which � ¼ � 00, and then it gives the state j� 0i. We can thus

interpret j� 0ih� 00j as removing an electron from the state described by the

wavefunction u� 00 ðrÞ and putting it into the state described by u� 0 ðrÞ. In more

dramatic language the operator annihilates an electron in the state j� 00i and
creates one in the state j� 0i. We can write this symbolically another way by

introducing the rather difficult concept of the wavefunction j0i that denotes an
empty box! That is, we define a column vector j0i that is normalized, so that

h0j0i ¼ 1; ð2:1:9Þ

but which is orthogonal to all the one-particle wavefunctions u�ðrÞ, so that

h�j0i ¼ 0

for all �. We call it the vacuum state and are careful not to confuse it with the

number zero. This state j0i cannot be described by a wavefunction in the

same sense as the u�ðrÞ, in that we do not expect to be able to ask the same

questions about probability densities that we might ask about an electron in

the state j�i. It is instead just a useful device that allows us to insert Eq. (2.1.9)

into Eq. (2.1.8) and write

j� 0ih� 00j ¼ j� 0ih0j0ih� 00j
¼ ðj� 0ih0jÞðj0ih� 00jÞ:

We now define the combination j0ih� 00j as the operator c� 00 that annihilates

any electron it finds in the state j� 00i, and the conjugate combination

j� 0ih0j as the creation operator cy� 0 for the state j� 0i. Then

j� 0ih� 00j � cy� 0c� 00;

and

VðrÞ �
X
� 0;� 00

h� 0jVj� 00icy� 0c� 00 :
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Similarly for the kinetic energy operator

p
2

2m
� 1

2m

X
� 0;� 00

h� 0jp2j� 00icy� 0c� 00 :

One might at this stage ask what use it serves to write the Hamiltonian for

an electron in this form. As long as there is only one electron present then this

way of representing operators is just a needless complication. It is when we

have a large number of identical particles present that this language comes

into its own.

2.2 Occupation numbers

Let us consider a collection of N identical free particles that do not interact.

The Hamiltonian for this system is just the sum of the Hamiltonians for the

individual particles,

H ¼
X
i

Hi ¼
1

2m

X
i

p
2
i :

We could form eigenfunctions of H simply by multiplying together the eigen-

functions of the individual Hi. If

HiuiðriÞ ¼ EiuiðriÞ
and

� 0 ¼
YN
i¼1

uiðriÞ ¼ u1ðr1Þu2ðr2Þ � � � uNðrNÞ

then

H� 0 ¼
	XN
i¼1

Ei


� 0:

The wavefunction � 0 however is not adequate as a physical solution of the

Schrödinger equation because of its lack of symmetry. We know that if we

interchange any two of the coordinates, then the wavefunction � must either

remain unchanged or else be changed by this operation to ��. That is, �

must either be symmetric in the coordinates of the particles, which we then

call bosons, or else be antisymmetric, in which case we refer to the particles as
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fermions. Electrons in particular are known to be fermions, and so � must be

expressed as an antisymmetrized combination of the � 0. We can achieve this

by forming a determinant of the various uiðrjÞ and writing

� ¼ 1ffiffiffiffiffiffi
N!

p

u1ðr1Þ u1ðr2Þ � � � u1ðrNÞ
u2ðr1Þ � � �

..

. ..
.

uNðr1Þ � � � � � � uNðrNÞ
























:

This form of the wavefunction (known as a Slater determinant) is very

cumbersome to handle, even in this simple case where the particles do not

interact. When interactions are present � will no longer be an eigenfunction

of H, but since the various � form a complete set any N-electron wavefunc-

tion � can be expanded in terms of N-electron Slater determinants. We could

then write

� ¼
X
�1����N

Cð�1 � � ��NÞ�ð�1 � � ��NÞ

where the �i label the various states u�i that occur in the determinant. If we

knew the complex constants Cð�1 . . . �NÞ then the wavefunction would be

completely specified; it would, however, be grossly inconvenient in making

calculations, each � alone being a sum of N! terms.

The shorthand we use for describing the � is known as the occupation

number representation, and cuts out all the redundant information contained

in �. We know first of all that there are N particles, and that all the coordi-

nates ri come into the wavefunction on an equal footing. We also know that

� is antisymmetrized, and so we do not need to write this explicitly every

time we consider �. All we need specify are the states u� that are occupied.

We define an occupation number, n�, that is equal to 1 if the state appears in

the determinant describing �, and equal to 0 if it does not. Thus we specify

the two-particle state

��;	ðr1; r2Þ ¼
1ffiffiffi
2

p u�ðr1Þ u�ðr2Þ
u	ðr1Þ u	ðr2Þ














by writing

n� ¼ n	 ¼ 1; all other n ¼ 0:
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We adopt the notation

j1; 1; 0; 0; . . .i

to signify the wavefunction in which

n� ¼ 1; n	 ¼ 1; n
 ¼ 0; n� ¼ 0; etc:

Clearly we can specify a � for any number of particles by means of this

notation. We might further abbreviate by writing � as jfn�gi, where fn�g is
understood to be the set of occupation numbers n�; n	, etc.

Now we know that for any two distinct � describing states containing the

same number of particlesð
�*��� 0 dr1 dr2 � � � drN ¼ 0: ð2:2:1Þ

We must also consider the � to be orthogonal when they specify different

numbers of particles, since this integral is a product of the integrals over the

various ri, and if � is a wavefunction for only N � 1 particles then it has zero

component in the space defined by rN . (Note that we do not show this result

by taking an integral of the form (2.2.1) when the � have different numbers

of particles present, say N and N � 1. Rather we must convert the � for

N � 1 particles to a function in N-particle space by multiplying by some

function of rN . This function is of course zero, since there is no Nth particle!)

We denote this orthogonality by writing

hfn�gjfn� 0 gi ¼ 0

for the cases where the sets fn�g and fn� 0 g are not identical. For normalized

wavefunctions

hfn�gjfn�gi ¼ 1:

The many-particle wavefunctions that we describe with the notation jfn�gi
are a generalization of the single-particle wavefunctions j�i of Section 2.1.

The jfn�gi form a complete set not just in one-particle space, as did the j�i,
but also in the space known as Fock space, which can contain any number of

particles. Corresponding to Eq. (2.1.6), which only referred to one-particle

space, will be the relation X
fn�g

jfn�gihfn�gj � 1:
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The sum here is over all possibilities for the set of numbers fn�g. If V is an

operator containing the coordinates of any number of particles we can write

the identity

V �
X

fn�g;fn� 0 g
jfn�gihfn�gjVjfn� 0 gihfn� 0 gj: ð2:2:2Þ

If we further abbreviate hfn�gjVjfn� 0 gi by V�� 0 this becomes

V �
X

fn�g;fn� 0 g
V�� 0 jfn�gihfn� 0 gj:

Our next task is to interpret the many-particle operators jfn�gihfn� 0 gj in terms

of the annihilation and creation operators that were introduced at the end of

Section 2.1.

2.3 Second quantization for fermions

The notation jfn�gihfn� 0 gj that we adopted in the last section was an abbre-

viation for

jn1; n2; . . .ihn 01; n 02; . . . j: ð2:3:1Þ

In the case where our identical particles are fermions the individual occupa-

tion numbers, ni, can only take on the values 0 and 1. Because each wave-

function jn1; n2; . . .i symbolizes a determinant of the wavefunctions ui for

which ni ¼ 1, we must be sure that we always take the various ui in the

same order. If we took them in a different order we would be doing the

equivalent of interchanging some columns of the determinant defining �,

and we might end up with �� instead.

The simplest operator of the form (2.3.1) is one in which just one of the n 0i
is different from ni. That is, we consider

jn1; n2; . . . ; np ¼ 0; . . .ihn1; n2; . . . ; np ¼ 1; . . . j: ð2:3:2Þ

This clearly has something in common with the annihilation operator of

Section 2.1, since it acts only on a wavefunction that has the pth one-particle

state occupied, and gives a wavefunction with the pth state empty. If we

want an operator that acts on any wavefunction for which np ¼ 1, we should

have to sum expression (2.3.2) over all the possibilities for the other ni.
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This would giveX
fnigði 6¼pÞ

jn1; . . . ; np ¼ 0; . . .ihn1; . . . ; np ¼ 1; . . . j:

Finally, we need to keep track of the sign of the new wavefunction that this

operator gives, as mentioned above. This can be achieved by defining a

number

Np ¼
Xp�1

j¼1

nj

and multiplying the operator by ð�1ÞNp . We define the result of this as the

annihilation operator for the fermion system.

cp ¼
X

fnigði 6¼pÞ
ð�1ÞNp j . . . ; ni; . . . ; np ¼ 0; . . .ih. . . ; ni; . . . ; np ¼ 1; . . . j: ð2:3:3Þ

Now consider the effect of cp upon a wavefunction in which the pth state is

empty. Since

h. . . np ¼ 1; . . . j . . . np ¼ 0; . . .i ¼ 0

we have

cpj . . . np ¼ 0; . . .i ¼ 0:

If the pth state is occupied, however, there will be one term in the summation

that will not be orthogonal to the wavefunction, and

cpjn1; n2; . . . ; np ¼ 1; . . .i ¼ ð�1ÞNp jn1; n2; . . . ; np ¼ 0; . . .i:

To operate twice with cp would be to try and destroy two particles from the

same state, and so

c2p ¼ 0;

as may also be seen from the definition of cp.

The creation operator is the operator conjugate to cp. It is defined by

cyp ¼
X

fnigði 6¼pÞ
ð�1ÞNp j . . . np ¼ 1; . . .ih. . . np ¼ 0; . . . j;
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and has the effect of introducing a particle into the formerly empty pth state.

cypj . . . np ¼ 0; . . .i ¼ ð�1ÞNP j . . . np ¼ 1; . . .i
cypj . . . np ¼ 1; . . .i ¼ 0:

Any more complicated operator of the form jfn�gihfn� 0 gj can be expressed

in terms of the various cp and c
y
p, for we can always write

jfn�gihfn� 0 gj ¼ jfn�gihn� 00 gjfn� 00 gihfn� 000 gj � � �ihfn� 0 gj;

choosing jfn� 00 gi to differ from jfn�gi in only one occupation number, and so

on. Thus we could writeX
fnigði 6¼p;qÞ

j . . . np ¼ 0; nq ¼ 0; . . .ih. . . np ¼ 1; nq ¼ 1; . . . j

¼
X

fnigði 6¼p;qÞ
j . . . np ¼ 0; nq ¼ 0ih. . . np ¼ 0; nq ¼ 1; . . . j

j . . . np ¼ 0; nq ¼ 1; . . .ih. . . np ¼ 1; nq ¼ 1; . . . j
¼ ð�1ÞNqcqð�1ÞNpcp: ð2:3:4Þ

Alternatively we might have inserted a term

h. . . np ¼ 1; nq ¼ 0; . . . j . . . np ¼ 1; nq ¼ 0 . . .i

into the operator. Then we would have found it to be equal to

ð�1ÞNpcpð�1ÞNqcq: ð2:3:5Þ

Now cp destroys the particle in the pth state, and so the value of Nq depends

on whether we evaluate it before or after operating with cp if we assume

q > p. We then find that

ð�1ÞNqcp ¼ cpð�1ÞNqþ1: ð2:3:6Þ

Np, on the other hand, does not depend on nq. We thus find, combining Eqs.

(2.3.4), (2.3.5), and (2.3.6),

cpcq þ cqcp ¼ 0 ðp 6¼ qÞ: ð2:3:7Þ
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We say that cp and cq anticommute, and abbreviate Eq. (2.3.7) by writing

fcp; cqg ¼ 0 ðp 6¼ qÞ: ð2:3:8Þ

By similar arguments it can also be shown that

fcyp; cyqg ¼ fcyp; cqg ¼ 0 ðp 6¼ qÞ: ð2:3:9Þ

The combination cypcp, in which cp first operates followed by cyp, is particu-
larly important. It is easy to see that it has eigenvalue zero when it operates

on a state for which np is zero, and has eigenvalue unity when it operates on a

state that has np ¼ 1. We can consequently identify the operator cypcp as the
number operator,

cypcp ¼ np:

Now if we first operate with cyp upon a state with np ¼ 0, we obtain the state

with np ¼ 1. Thus when the combination cpc
y
p operates upon a wavefunction

in which the pth state is empty it gives unity. Similarly we know that

cpc
y
pj . . . np ¼ 1; . . .i ¼ 0

since cyp cannot create another particle in an already occupied state. We are

thus led to the conclusion that

cpc
y
p ¼ 1� np;

from which

cypcp þ cpcyp ¼ 1:

Thus in the notation of Eq. (2.3.8) we have

fcyp; cpg ¼ 1:

In summary the commutation relations for cp are

fcyp; cyqg ¼ fcp; cqg ¼ 0

fcp; cyqg ¼ �pq: ð2:3:10Þ
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We are now in a position to use Eq. (2.2.2) to write any operator in terms

of annihilation and creation operators. Let us first consider a single-particle

operator, such as an ordinary potential, VðrÞ. This will enter the many-body

Hamiltonian in the form

XN
i¼1

VðriÞ

since it acts equally on all the particles. We then find that the only matrix

elements, given by

hfn�gjVjfn� 0 gi ¼
ð
�*ð�1 . . .�NÞVðriÞ�ð� 0

1 . . .�
0
NÞ dr1 � � � drN; ð2:3:11Þ

that do not vanish are those in which not more than one of the � 0
i is different

from �i. Then the integral reduces toð
ui*ðrÞVðrÞui 0 ðrÞ dr:

In the occupation number representation we should write this as

Vii 0 � hn1; . . . ; n�i ¼ 1; n� 0
i
¼ 0; . . . jVjn1; . . . ; n�i ¼ 0; n� 0

i
¼ 1; . . .i:

Then from Eq. (2.2.2)

V �
X
�i;�

0
i

fnjgð j 6¼�i;� 0
i Þ

Vii 0 j . . . n�i ¼ 1; n� 0
i
¼ 0; . . .ih. . . n�i ¼ 0; n� 0

i
¼ 1; . . . j

¼
X
�i;�

0
i

Vii 0c
y
�i
c� 0

i
:

We could do the same with the kinetic energy part, T , of the Hamiltonian,

and write the Hamiltonian as a sum of T and V. It is usually most convenient

to choose a set of functions u� such that T only has diagonal matrix elements.

The plane wave representation of Section 2.1 satisfies this criterion, so that if

we choose

u�ðrÞ ¼ ��1=2eik� � r ð2:3:12Þ
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as the states out of which to build our determinants �, we shall have

Tkk 0 ¼ ��1

ð
e�ik � r

	�02

2m
r2



eik

0 � r
dr ¼ 02k2

2m
�kk 0;

and

Vkk 0 ¼ ��1

ð
eiðk

0�kÞ � rVðrÞ dr:

The Hamiltonian then becomes

H ¼
X
k

Ekcykck þ
X
k;k 0

Vkk 0cykck 0

where we have written Ek for Tkk. Note that the annihilation and creation

operators always appear in pairs; a potential cannot remove a particle from a

state without putting it back in some other state.

As long as there are no interactions between the particles – that is, as long

as the Hamiltonian can be split up into a sum of parts each of which refers to

only one particle – there is little profit in rephrasing the problem in this

notation, which is, for irrelevant reasons, known as second quantization.

When, however, we introduce interactions between particles this formalism

provides the only workable approach. Consider, for example, an interaction

between particles that is expressible as a simple potential. That is, we add to

the single-particle Hamiltonian terms of the form

V ¼ 1
2

X
i; j

Vðri � rjÞ; i 6¼ j

(the factor of 1
2 prevents us from counting interactions twice). Then

hfn�gjVjfn� 0 gi

¼
X
i; j

1
2

ð
�*ð�1 � � ��NÞVðri � rjÞ�ð� 0

1 � � � � 0
NÞ dr1 � � � drN :

As in the case of Eq. (2.3.11), this integral may be simplified. The determi-

nants are sums of products of the functions u�, and so the integral is a sum of

terms of the formð
u*aðr1Þu*bðr2Þ � � � u*zðrNÞVðri � rjÞua 0 ðr1Þ � � � uz 0 ðrNÞ dr1 � � � drN :
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This can be separated into a product of integrals over one coordinate,ð
u*aðr1Þua 0 ðr1Þ dr1

ð
u*bðr2Þub 0 ðr2Þ dr2

ð
� � � ; ð2:3:13Þ

with the exception of the integration over dri and drj, which cannot be

separated, and gives a term of the form

V�	
� ¼
ð
u*�ðriÞu*	ðrjÞVðri � rjÞu
ðrjÞu�ðriÞ dri drj: ð2:3:14Þ

Because the uðrÞ are orthogonal, the integrals (2.3.13) vanish unless

a ¼ a 0; b ¼ b 0, etc. We are thus left with the fact that V can only alter the

occupation of the states �; 	; 
 and �. Thus V may be expressed as

V � 1
2

X
�;	;
;�

V�	
�c
y
�c

y
	c
c�: ð2:3:15Þ

It is not obvious that we have the correct numerical factor and the correct

order of the operators c
 and c� in this expression. Because these operators

anticommute, incorrect ordering would describe the interaction ð�VÞ. We

can check the validity of the expression by considering the simplest case,

where V ¼ 1. Then the contribution of V to the Hamiltonian is

1
2

X
i 6¼j

1 ¼ 1
2NðN � 1Þ; ð2:3:16Þ

with N the total number of particles present. From (2.3.14) we have

V�	
� ¼ ��� �	


and so from Eq. (2.3.15)

V ¼ 1
2

X
�;	

cy�c
y
	c	c�

¼ 1
2

X
�;	

cy�ðc�cy	 � ��	Þc	

¼ 1
2 ðN2 �NÞ

in agreement with Eq. (2.3.16).
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The matrix elements of V take on a particularly simple form when the uðrÞ
are the plane waves defined in (2.3.12). Then

Vk;k 0;k 00;k 000 ¼ ��2

ð
eiðk

000�kÞ � r1eiðk
00�k 0Þ � r2Vðr1 � r2Þ dr1 dr2

¼ ��2

ð
e
1
2iðk 000�kþk 00�k 0Þ � ðr1þr2Þe

1
2iðk 000�k�k 00þk 0Þ � ðr1�r2Þ

� Vðr1 � r2Þ dr1 dr2:

If we change to relative coordinates by writing r ¼ r1 � r2 and R ¼ 1
2 ðr1 þ r2Þ

we have

Vk;k 0;k 00;k 000 ¼ ��2

ð
eiðk

000�kþk 00�k 0Þ �R
dR

ð
e
1
2iðk 000�k�k 00þk 0Þ � rVðrÞ dr:

The integral over dR vanishes unless k 000 � kþ k
00 � k

0 ¼ 0, in which case it

gives �, so that

Vk;k 0;k 00;k 000 ¼ �kþk 0;k 000þk 00��1

ð
eiðk

0�k 00Þ � rVðrÞ dr:

The �-function is no more than an expression of the conservation of momen-

tum in a scattering process, since for a plane wave p ¼ 0k. The integral over
dr is the Fourier transform of the interparticle potential; we shall call it

Vk 0�k 00 . Then

V � 1
2

X
k;k 0;k 00

Vk 0�k 00cykc
y
k 0ck 00ckþk 0�k 00 :

We can make it clearer that momentum is being transferred by defining

k
0 � k

00 ¼ q and renaming the other variables. This gives

V � 1
2

X
k;k 0;q

Vqc
y
k�qc

y
k 0þqck 0ck:

It is often useful to interpret this product of operators pictorially. Particles

in the states k and k 0 are destroyed, while particles in the states k� q and

k
0 þ q are created. This can be seen as a scattering of one particle by the

other – a process in which an amount of momentum equal to 0q is transferred
(Fig. 2.3.1).

2.3 Second quantization for fermions 41



2.4 The electron gas and the Hartree–Fock approximation

Our principal motivation in studying the theory of systems of interacting

fermions is the hope that we might in this way better understand the

behavior of the conduction electrons in a metal. Accordingly the first

system to which we apply this formalism is that of unit volume of a gas

of N spinless electrons, interacting by means of the Coulomb electrostatic

repulsion. Then

Vðri � rjÞ ¼
e2

jri � rjj
;

and

Vq ¼ ��1

ð
eiq � r

e2

jrj dr

¼ 2�e2

�

ð1
0

dr

ð�
0

d
 eiqr cos 
r sin 


¼ 4�e2

�q

ð1
0

sin qr dr:

This integral does not converge, owing to the long range of the Coulomb

potential, and so one uses the trick of supposing that the potential does not

vary merely as r�1, but as r�1e��r and then takes the limit as � tends to zero.
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Figure 2.3.1. This diagram shows electrons in states k and k 0 being scattered into

states k� q and k 0 þ q, and represents the product of operators c
y
k�qc

y
k 0þqck 0ck.



One finds

Vq ¼
4�e2

�q2
lim
�!0

ð1
0

e��y=q sin y dy

¼ 4�e2

�q2
;

provided q 6¼ 0. The divergence of Vq for q ¼ 0 is a difficulty that we might

have anticipated had we looked more closely at the physics of the situation

we are considering. Because the electrons are described by traveling waves the

box may be considered as a conductor carrying a charge Ne, and it is an

elementary result of electrostatics that charge always resides at the outer

surface of a conductor.

It is now clear that our model of a metal as a mere gas of electrons was too

simplified to be useful. We must take into account the presence of the posi-

tively charged ions that maintain the overall electrical neutrality of the metal.

This, however, makes the problem a very difficult one indeed. Even for a

single electron it is not trivial to solve the Schrödinger equation for a periodic

lattice potential, as we shall see in Chapter 4, and so it is necessary to keep as

simple a model as possible. This is achieved by replacing the lattice of posi-

tively charged ions by a fixed uniform distribution of positive charge, and

investigating the interaction of the electrons in the presence of this back-

ground charge. This simplified model of a metal is sometimes known as

jellium. The positive charge background adds to the Hamiltonian an extra

one-particle potential term Vþ which, as we saw in the previous section, can

be written

Vþ �
X
k;q

Vþ
qc

y
k�qck:

As this charge density is uniform, the Fourier transform Vþ
q of the potential

due to it vanishes unless q ¼ 0. Thus

Vþ ¼
X
k

Vþ
0 nk ¼ NVþ

0

and no scattering is caused by this term, which is just a constant. Now if we

look back to our transcription of the electron interaction potential in second-

quantized form, we see that the troublesome coefficient V0 also occurs in

2.4 The electron gas and the Hartree–Fock approximation 43



terms that cause no scattering. The part of H containing V0 was

1
2

X
k;k 0
V0c

y
kc

y
k 0ck 0ck ¼ 1

2

X
k;k 0
V0c

y
kðckcyk 0 � �kk 0 Þck 0

¼ 1
2

X
k;k 0
V0ðnknk 0 � nk �kk 0 Þ

¼ 1
2 NðN � 1ÞV0;

which is again a constant. It is then reasonable to suppose that we can choose

the density of the positive charge background in such a way that these terms

cancel. We write

1
2 NðN � 1ÞV0 þNVþ

0 þWþ
0 ¼ 0;

where the energyWþ
0 of interaction of the positive charge with itself has been

included in the sum of divergent terms that must cancel. The details of this

cancellation are left as an exercise, and it suffices for us to know that the

divergence can be removed. We shall assume that this has been done in what

follows, and always omit the term for q ¼ 0. The Hamiltonian then becomes

H ¼
X
k

Ekcykck þ
X
k;k 0;q

2�e2

�q2
cyk�qc

y
k 0þqck 0ck; ð2:4:1Þ

where once again we have written Ek for 02k2=2m. We are interested in

finding the eigenfunctions of this Hamiltonian and the corresponding eigen-

values. Such a task proves to be immensely difficult, as many of the techni-

ques that are used for single-particle problems fail in this instance. We shall

not go too deeply into the complicated procedures that can be developed to

get around these difficulties, but instead shall just examine some simple

approximation methods.

A zero-order solution can be arrived at by neglecting the interaction term

altogether. Then

H0 ¼
X
k

Ekcykck ¼
X
k

Eknk:

We can easily construct eigenfunctions of the operator nk. First let us start

with the state j0i in which there are no particles at all. This is just the vacuum

state defined in Section 2.1. For all k

nkj0i ¼ 0:
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We can next create one particle in the state k 0 by operating upon the vacuum

state with cyk 0 ,

jk 0i ¼ cy
k 0 j0i:

Then

nkjk 0i ¼ cykckcyk 0 j0i
¼ cykð�kk 0 � cyk 0ckÞj0i

from the commutation relations. But we know that ck operating upon the

vacuum state gives zero, since there is no particle there to destroy, and so

nkjk 0i ¼ �kk 0 jk 0i:

We can go on to build up a wavefunction j�i containing N particles by

repeatedly operating upon the vacuum state with different cy
k 0 , so that

j�i ¼
	YN
i¼1

cyki



j0i:

We can similarly show that

nkj�i ¼
XN
i¼1

�kki j�i:

Then

H0j�i ¼
X
k

Eknkj�i

¼
XN
i¼1

Eki j�i:

Thus j�i is an eigenfunction of the Hamiltonian with eigenvalue
P
i Eki . The

solution of this kind having the lowest energy is clearly that in which the

wavenumbers ki represent the N single-particle states for which the indivi-

dual energies Eki are the lowest. Since

Eki ¼
02k2i
2m

;
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this is no more than our picture of a Fermi surface in momentum space. If

there are N states for which jkj < kF , then all such states are filled to give the

ground state of a gas of noninteracting fermions. This picture is sometimes

known as a Sommerfeld gas (Fig. 2.4.1).

Now that we have found the eigenfunctions of H0 we can calculate an

approximation to the energy of the interacting system. The exact energy

we know to be h�jHj�i, where � is the exact wavefunction. If we assume

� and � to be not too dissimilar we can calculate an approximate energy,

EHF , by forming h�jHj�i. Using Eq. (2.4.1) we find

EHF ¼ h�jH0 þ Vj�i

¼ E0 þ h�j
X
k;k 0;q

2�e2

�q2
cyk�qc

y
k 0þqck 0ckj�i;

where we call the energy of the noninteracting system E0.

Now the effect of the potential is to take particles out of the states k and k 0

and put them into the states k� q and k 0 þ q. If these states are different

from the original ones, then the wavefunction formed in this way will be

orthogonal to �, and the matrix element will be zero. This means that the

only terms that do not vanish will be those that do not change the occupation

numbers of j�i. Then either

k
0 ¼ k

0 þ q and k ¼ k� q

46 Second quantization and the electron gas

Figure 2.4.1. The Fermi surface of the Sommerfeld gas separates k-states for which
nk ¼ 1 from those for which nk ¼ 0.



or else

k
0 ¼ k� q and k ¼ k

0 þ q:

The first possibility implies that q ¼ 0, and we have agreed to omit this term,

which does not correspond to any scattering at all (Fig. 2.4.2(a)). This leaves

us with the second possibility, Fig. 2.4.2(b), known as exchange scattering, in

which the particle that was in the state k is scattered into the state k 0, and vice

versa. The correction this gives to E0 is known as the exchange energy. We

find

EHF ¼ E0 þ
X
k;k 0

h�j 2�e2

�jk� k 0j2 c
y
k 0c

y
kck 0ckj�i

¼ E0 þ
X
k;k 0

h�j 2�e2

�jk� k 0j2 ð�nk 0nkÞj�i: ð2:4:2Þ

This we can write as

EHF ¼ E0 �
X

k;k 0 occupied

2�e2

�jk� k 0j2
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where now the summation is over states k and k 0 that are both occupied. This
method of treating the electron gas is a special case of an approach known as

the Hartree–Fock approximation, and is the simplest way in which we can

take the interactions into account. Even this approach can become very

complicated, however, if in addition to the interactions there is some addi-

tional one-particle potential applied to the system.

The interesting point to note is that in this approximation the energy is

reduced below that of the Sommerfeld gas, E0. It is not paradoxical that the

repulsive interaction should decrease the energy of the system, for we must

not forget that we have also effectively added a uniform background of

positive charge when we eliminated the interaction Vq¼0. The reduction in

energy comes from the fact that the particles are kept apart by the antisym-

metrization of the wavefunction, and so are acted upon more by the positive

charge background than by their neighbors.

So far we have considered only a system of spinless particles. In fact we

know that the electron has a spin angular momentum of 1
2 0, which means

that a single electron can occupy a state k in two ways, either with spin up or

with spin down. We denote this by naming the states k" and k#. This

modifies the energy we find for the Sommerfeld gas, since now the Fermi

wavenumber kF is determined by the condition that there be only 1
2N values

of k for which jkj < kF . The inclusion of the spin of the electron in our model

must necessarily introduce a number of other complications, for the spin will

be accompanied by a magnetic moment, and the electrons will interact by

virtue of their magnetic fields. However, we ignore these effects, retaining

only the Coulomb interaction, and ask how the Hartree–Fock energy is

modified by the inclusion of spin.

The first point we note is that since k" and k# denote separate states all

anticommutators for states of opposite spin vanish. Thus for example

fck"; cyk#g ¼ 0:

Next we see that since the Coulomb interaction does not contain the spin

coordinates it cannot cause an exchange of particles with opposite spin. The

integration over rj, for example, in Eq. (2.3.14) demands that the spin of state

u	 be the same as that of u
 . The Hamiltonian thus becomes

H ¼
X
k;s

Ekcykscks þ 1
2

X
k;k 0;q;s;s 0

Vqc
y
k�q;sc

y
k 0þq;s 0ck 0;s 0ck;s

and only terms of the form nk 0"nk" and nk 0#nk# will come into the expression
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for the exchange energy. We again find

EHF ¼ E0 �
X 2�e2

�jk� k 0j2

but now the summation proceeds only over states k and k 0 that are occupied
and that have the same spin. This reduces the amount by which the Hartree–

Fock energy EHF is less than E0. One may express this by saying that now the

antisymmetrization only keeps apart the electrons having parallel spins. We

can guess that in the exact solution to the problem all the electrons will try to

keep apart from one another regardless of their spins; they will reduce the

potential energy of the system by doing so. We say that their motions will be

correlated, and that the difference between the exact energy and EHF is the

correlation energy.

One might now be tempted to ask how the energy of a single electron is

altered by the interaction. A little reflection shows this question to be mean-

ingless, since the energy of interaction of two particles cannot be associated

with either one, and it makes no sense to share out the interaction energy

between the particles in some arbitrary way. One can only talk about the

total energy of the system. However, as long as we are within the Hartree–

Fock approximation we can ask how the total energy changes when we

change the approximate wavefunction �. In particular we might ask how

EHF changes when we remove an electron. If we consider h�jnpj�i as the

number hnpi (as opposed to the operator np ¼ cypcp), then to take away an

electron in the pth state is to reduce hnpi by 1. The energy change is conse-

quently @E=@hnpi. From Eq. (2.4.2) this gives for the example where we

neglected spin

@EHF
@hnpi

¼ @

@hnpi
X
k

Ekhnki �
X
k;k 0

2�e2

�jk� k 0j2 hnknk 0 i
( )

¼ Ep �
X
k

4�e2

�jk� pj2 hnki: ð2:4:3Þ

We might then put this electron back into another state p
0. The work

required to take the electron from p to p 0 would then be

�W ¼ @EHF
@hnp 0 i �

@EHF
@hnpi

:

If the states were separated by a very small momentum difference, so that
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p
0 ¼ pþ d we should have

�W ¼ d � @
@p

	
@EHF
@hnpi



: ð2:4:4Þ

Because of the spherical symmetry in momentum space of the interactions

and of the function hnpi, we know that the derivative with respect to p (by

which we mean the gradient in p-space) must be in the direction of p, so that

only the component, �p, of d that is parallel to p enters Eq. (2.4.4). In the limit

that �p ! 0 we have

�W

�p
! dW

dp
¼ @

@p

	
@EHF
@hnpi



;

which from (2.4.3) is

dW

dp
¼ @Ep
@p

� @

@p

X
k

4�e2

�jk� pj2 hnki: ð2:4:5Þ

This is of interest because it tells us the energy of the lowest-lying group of

excitations of the system within the Hartree–Fock approximation. When we

took an electron below the Fermi surface of the noninteracting system and

put it in a higher energy state, we said that we had created a particle–hole

pair, which was an elementary excitation. In the limiting case that we had

taken an electron from a vanishingly small distance �=2 below the Fermi

surface, and put it in a state �=2 above the surface, the excitation would

have had energy �� ð@E=@pÞp¼pF , corresponding to the first term in (2.4.5).

In the Hartree–Fock approximation the elementary excitation has the energy

�� ðdW=dpÞp¼pF , which includes the second term in (2.4.5). However, inspec-

tion of (2.4.5) shows that as p! pF ; dW=dp becomes infinite. This has con-

sequences that are at variance with the experimentally determined properties

of the electron gas as found in metals, and is a first indication that the

Hartree–Fock approximation may be inadequate where Coulomb forces

are involved.

2.5 Perturbation theory

The only system whose wavefunctions we have studied has been the gas of

noninteracting fermions described by the Hamiltonian

H0 ¼
X
k

Eknk:

50 Second quantization and the electron gas



In the Hartree–Fock approximation we merely took the wavefunctions j�i
of the noninteracting system, and worked out the expectation value in the

state j�i of a Hamiltonian containing interactions. While we could look

upon this as a variational approach – we guess that the wavefunction

might be like j�i and we work out the energy it would give – we could

also consider it as the first term in a perturbation expansion. Let us now

quickly look at the methods of perturbation theory, and see how they apply

to many-body systems.

We start by stating a solution of a simple problem,

H0j�i ¼ E0j�i; ð2:5:1Þ

and consider the solutions of

ðH0 þ VÞj i ¼ Ej i: ð2:5:2Þ

From the perturbed Eq. (2.5.2) we have that

h�jðH0 þ VÞj i ¼ h�jEj i

and so if we normalize j i with the condition

h�j i ¼ 1;

then because h�jH0 ¼ h�jE0 we have

E � E0 ¼ h�jVj i: ð2:5:3Þ

To proceed further we need to define what we mean by a function of an

operator. From (2.5.1), for instance, we can find by operating with H0 on

both sides that

H0H0j�i ¼ H2
0j�i ¼ E2

0j�i;

and in general that

ðH0Þnj�i ¼ ðE0Þnj�i:

Thus if we interpret f ðH0Þ as a power series expansion in H0 we should have

f ðH0Þj�i ¼ f ðE0Þj�i: ð2:5:4Þ
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We generalize this definition to include functions like H1=2 that have no

power series expansions. In particular, the operator function ðz�H0Þ�1 is

the operator whose eigenfunctions are j�i and whose corresponding eigen-

values are ðz� E0Þ�1, provided z 6¼ E0.

There are various ways in which we can write the solution of (2.5.2) using

the expression for the perturbed energy (2.5.3). We could write

j i ¼ j�i þ ðE0 �H0Þ�1ð1� j ih�jÞVj i; ð2:5:5Þ

which is the starting point of Rayleigh–Schrödinger perturbation theory.

Another possibility is

j i ¼ j�i þ ðE � H0Þ�1ð1� j�ih�jÞVj i; ð2:5:6Þ

which is the starting point for Brillouin–Wigner perturbation theory. These

equations can be verified by operating upon them with ðE0 �H0Þ and

ðE � H0Þ, respectively. Because the right-hand sides still contain the unknown

j i, one iterates these by using the equation itself to substitute for j i. Thus if
we write

ðE � H0Þ�1ð1� j�ih�jÞ ¼ G0

then the Brillouin–Wigner formula becomes

j i ¼ j�i þ G0Vj�i þ G0VG0Vj�i þ � � � :

The Rayleigh–Schrödinger expansion, for example, allows us to write the

energy, to second order in V , as

E ¼ E0 þ h�jVj�i þ h�jVðE0 �H0Þ�1ð1� j�ih�jÞVj�i:

This sort of expression is evaluated by remembering thatX
p 0

j�p 0 ih�p 0 j � 1

when the j�p 0 i form a complete set. Then for the energy of the state j pi
corresponding to the unperturbed state j�pi of energy Ep one finds

E ¼ Ep þ h�pjVj�pi þ
X

p 0ðp 0 6¼pÞ
h�pjVj�p 0 iðEp � Ep 0 Þ�1h�p 0 jVj�pi: ð2:5:7Þ
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Again, this expression is valid only to second order in V . The term p 0 ¼ p is
excluded from the summation by the projection operator, 1� j�pih�pj. This
removes one term for which the energy denominator would vanish.

We can interpret the final term in expression (2.5.7) in the following way.

First the interaction V causes the system to make a transition from the state

j�pi to the state j�p 0 i. This process does not conserve energy, and so the

system can only remain in the intermediate state a time of the order of

0=ðEp � Ep 0 Þ, which is all that the Uncertainty Principle allows. It must

then make a transition back to the original state, again by means of the

perturbation V. The higher-order expansions become very complicated, espe-

cially in the Rayleigh–Schrödinger formula, where j i occurs twice. In fact, it

turns out that the Brillouin–Wigner expression is less well suited to many-

body systems than the Rayleigh–Schrödinger one from the point of view of

convergence. Although there are a number of elegant methods that mitigate

the awkwardness of keeping track of the terms in the Rayleigh–Schrödinger

expansion the approach remains a difficult one, and we shall for the most

part leave this approach to the more specialized texts.

In the case of the electron gas in particular, one runs into difficulty even in

the second-order expansion for the energy, as this turns out to diverge. We

noticed the danger signals flying in the first-order term, which was the

Hartree–Fock approximation. There we found in Eq. (2.4.5) that although

the energy W required to add another electron to the system was finite, its

derivative, dW=dp, was infinite. This was due to the fact that for the

Coulomb interaction Vq / q�2, and reflects the long-range nature of the

Coulomb force. If we try to take this to second order in perturbation theory

by using (2.5.7) we find that the total energy itself diverges logarithmically.

To see this we note from Eq. (2.5.7) that the contribution to the energy that is

of second order in V takes on the form

Eð2Þ ¼
X
	ð6¼�Þ

h��jVj�	iðE� � E	Þ�1h�	jVj��i;

where �� and �	 are the initial and intermediate wavefunctions describing

the N independent electrons. Now

V ¼ 1
2

X
k;k 0;q

Vqc
y
k�qc

y
k 0þqck 0ck

and so �	 differs from �� in having electrons removed from states k and k 0

and put back in states k 0 þ q and k� q. Now the second time that V appears
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in Eð2Þ it must transform �	 back into ��. If we now write

V ¼ 1
2

X
p;p 0;q 0

Vq 0c
y
p�q 0c

y
p 0þq 0cp 0cp

then there are only two possible ways in which this can happen. These are

illustrated in Fig. 2.5.1. We must either have p ¼ k
0 þ q and p 0 ¼ k� q as in

Fig. 2.5.1(a) or else p ¼ k� q and p
0 ¼ k

0 þ q as in Fig. 2.5.1(b). In the

former case the operators cp 0 and cp annihilate the electrons that were scat-

tered into states k� q and k 0 þ q, respectively, and electrons are created in

states k� qþ q
0 and k 0 þ q� q

0. In order for the net result of all this to be

the original state �� we must either have q ¼ q
0 or else k 0 þ q� q

0 ¼ k. We

call the first possibility a ‘‘direct’’ term and the second an ‘‘exchange’’ term.

We shall investigate only the contribution to Eð2Þ of the direct term, as this

turns out to be the more important one. If we follow up the alternative

54 Second quantization and the electron gas

Figure 2.5.1. The two possible second-order scattering processes.



possibility for the choice of p and p 0, we find that this also leads to a direct

term and an exchange scattering term of the same magnitude as before. The

total contribution of direct terms to Eð2Þ is thus

Eð2Þ
direct ¼ 2

X
k;k 0;q

1

2
Vq

	 
2

h��jcyk 0cykck�qck 0þq

� 1

Ek þ Ek 0 � Ek�q � Ek 0þq
cyk�qc

y
k 0þqck 0ckj��i:

We may use the fact that Ek ¼ 02k2=2m to simplify the energy denominator

and then commute the c-operators into pairs that form number operators.

We then have

Eð2Þ
direct ¼

m

202
X
k;k 0;q

V2
q h��j

ð1� nk�qÞð1� nk 0þqÞnk 0nk
�q � ðqþ k 0 � kÞ j��i; ð2:5:8Þ

and we now take �� to be the noninteracting ground state. If we include the

spin of the electron we should have to multiply this result by a factor of 4,

since both states k and k 0 can have spin either up or down.

The difficulty with expression (2.5.8) lies in the terms for which q is small.

The factor of ð1� nk�qÞnk then restricts the summation over k to a thin layer

of states of thickness q on one side of the Fermi surface, as indicated in Fig.

2.5.2. The summation over k 0 is similarly restricted to a layer on the opposite

side. The two summations thus contribute a factor of order q2. The volume

element for the summation over q will be 4�q2 dq, and Vq is proportional to
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q�2. The net result is that Eð2Þ
direct contains a factor

Ð
0 q

�1 dq, which diverges

logarithmically.

We might also have guessed that perturbation theory could not be applied

in any straightforward way from our semiclassical approach to the electron

gas. There we found that a form of collective motion – the plasma oscillation

– played an important role in the dynamics of the system. It is clear that we

could not arrive at a description of collective motion by just taking a couple

of terms of a perturbation expansion starting with a scheme of independent

particles. As it turns out, rather sophisticated methods have been devised

whereby one can sum an infinite number of terms selected from the perturba-

tion expansion, and arrive at a picture of collective behavior. We, however,

shall first take a simpler approach. We know that plasma oscillations repre-

sent density fluctuations, and so we shall deliberately search for a solution of

the Schrödinger equation that describes these.

2.6 The density operator

So far we have used the occupation number representation to define opera-

tors that create particles in various states, u�. When these are plane wave

states the probability of finding the particle is constant at all points in space.

We now ask whether it is possible to define operators that will create or

destroy particles at one particular point in space.

For the plane wave states contained in a cubical box of volume �, we

found in Section 2.1 that the allowed values of k were given by

k ¼ 2�mx
L

;
2�my
L

;
2�mz
L

	 

;

where the m were integers. We now first show the important relationX
k

eik � r ¼ � �ðrÞ ð2:6:1Þ

where �ðrÞ is the three-dimensional Dirac delta-function, which is zero for

r 6¼ 0 and for which
Ð
� f ðrÞ �ðrÞ dr ¼ f ð0Þ when r ¼ 0 is within �. To see this

we first substitute for k to find

X
k

eik � r ¼
X1

mx¼�1
exp

2�imxx

L

	 
 X1
my¼�1

exp
2�imyy

L

	 
 X1
mz¼�1

exp
2�imzz

L

	 

:
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Now

XM
m¼�M

exp

	
2�imx

L



¼

sin

� ð2M þ 1Þ�x
L

�
sin

	
�x

L




so that

ð XM
m¼�M

exp
2�imx

L

	 

f ðxÞ dx ¼

ð
L

�

sin½ð2M þ 1Þ��
sin �

f
L�

�

	 

d�:

As M ! 1 the term sin½ð2M þ 1Þ�� begins to oscillate so rapidly that only

the region near � ¼ 0 gives any contribution to the integral. Then we can

replace sin � by � and f ðL�=�Þ by f ð0Þ so that the integral becomes

L

�
f ð0Þ

ð1
M�¼�1

sin½ð2M þ 1Þ��
M�

dðM�Þ ¼ Lf ð0Þ:

Thus

ð
f ðrÞ

X
k

eik � r dr ¼ L3f ð0Þ;

which proves (2.6.1).

This relation suggests that we define an operator  yðrÞ by

 yðrÞ ¼ ��1=2
X
k

e�ik � rcyk: ð2:6:2Þ

This operator, not to be confused with a one-particle wavefunction, is known

as a fermion field operator. Its conjugate is

 ðrÞ ¼ ��1=2
X
k

eik � rck: ð2:6:3Þ
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Then

f ðrÞ;  yðr 0Þg ¼ ��1
X
k;k 0
eiðk � r�k

0 � r 0Þfck; cyk 0 g

¼ ��1
X
k

eik � ðr�r
0Þ

¼ �ðr� r
0Þ: ð2:6:4Þ

The fact that the field operators have these anticommutation relations shows

that they are the operators we are looking for. If  ðrÞ does indeed annihilate a

particle at r we should expect that

h0j yðr 0Þ ðrÞj0i ¼ 0

and

h0j ðrÞ yðr 0Þj0i ¼ �ðr� r
0Þ;

for  ðrÞ will always give zero when operating on the vacuum state j0i unless
we first operate with  yðrÞ. This is compatible with (2.6.4).

The operators that we expressed in terms of the cyk and ck may equally well

be expressed in terms of the  yðrÞ and  ðrÞ. For instance,

VðrÞ �
ð
 yðrÞVðrÞ ðrÞ dr;

and

Vðr; r 0Þ �
ð
 yðrÞ yðr 0ÞVðr; r 0Þ ðr 0Þ ðrÞ dr dr 0;

as may be verified by substitution from the definitions (2.6.2) and (2.6.3) and

use of (2.6.1).

In particular, we can use the field operators to represent the density of

particles, �ðrÞ, at the point r. The density is defined as the sum over particle

coordinates, ri,

�ðrÞ ¼
X
i

�ðr� riÞ;
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and in terms of the field operators this becomes

�ðrÞ �
ð
 yðr 0Þ �ðr� r

0Þ ðr 0Þ dr 0

¼  yðrÞ ðrÞ: ð2:6:5Þ

The Fourier transform of the particle density is

�q ¼ ��1

ð
e�iq � r�ðrÞ dr

¼ ��2

ð
e�iq � r

X
k;k 0
eiðk

0�kÞ � rcykck 0 dr

¼ ��1
X
k;k 0
cykck 0 �k 0�k;q

¼ ��1
X
k

cykckþq:

Because �ðrÞ ¼ �yðrÞ it follows that �yq ¼ ��q.
As an example of the usefulness of the density operator, we show how the

Hamiltonian for the electron gas can be expressed in terms of the number and

density operators. From Eq. (2.4.1) we have

H ¼
X
k

Eknk þ
X
k;k 0;q

2�e2

�q2
cyk�qc

y
k 0þqck 0ck:

NowX
k;k 0;q

cyk�qc
y
k 0þqck 0ck ¼ �

X
k;k 0;q

cyk�qc
y
k 0þqckck 0

¼ �
X
k;k 0;q

cyk�qð�k;k 0þq � ckcyk 0þqÞck 0

¼ �
X
k 0;q

cyk 0ck 0 þ
X
q

	X
k

cyk�qck


	X
k 0
cyk 0þqck 0




¼ �
X
q

	X
k 0
nk 0



þ�2

X
q

�q��q:
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But since
P

k 0 nk 0 ¼ N, the total number of particles, we have

H ¼
X
k

Eknk þ
X
q

2�e2

�q2
ð�2�yq�q �NÞ:

Note that the summation over q cannot be performed for each component of

the interaction separately, as these would not converge.

2.7 The random phase approximation and screening

Let us suppose that there is an operator By that creates an excitation of a

many-body system. If the ground-state wavefunction is j�i then we should

have

Hj�i ¼ E0j�i

and

HByj�i ¼ ðE0 þ EbÞByj�i;

since the excited state of the system, Byj�i, is also an eigenfunction of H,

having an energy that is greater than the ground state by an amount Eb, the
excitation energy. Thus

HByj�i � ByHj�i ¼ EbByj�i:

If in particular

HBy � ByH ¼ EbBy

then we can say that By creates an excitation of energy Eb irrespective of which
eigenstate of H it operates on (provided Byj�i 6¼ 0). We abbreviate this con-

dition by

½H;By� ¼ EbBy;

where ½H;By� is known as the commutator of H and By, in distinction to the

anticommutator, in which the minus sign is replaced by a plus.

Let us now examine the case where

By ¼ cypþqcp;
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and see under what conditions this would create an excitation in the electron

gas. In this case

H ¼
X
k

Ekcykck þ 1
2

X
k;k 0;q 0

Vq 0c
y
k�q 0c

y
k 0þq 0ck 0ck;

and it takes but a tedious half-hour to show that

½H; cypþqcp� ¼ ðEpþq � EpÞcypþqcp

þ
X
q 0

Vq 0

2
½ðcypþq�q 0cp � cypþqcpþq 0 Þ�yq 0�

þ��q 0 ðcypþq 0þqcp � cypþqcp�q 0 Þ�: ð2:7:1Þ

We recall that for the noninteracting system the operator cypþqcp creates a
particle–hole pair when it operates on the ground state of a system in which

the pth state is occupied and the ðpþ qÞth state is empty. We do not know

what the ground state of the interacting system is, but we can see under what

conditions the operator cypþqcp will create an excitation in it. Let us consider

this operator when jqj is much greater than the Fermi radius, kF (Fig. 2.7.1).

Then for any occupied p we can choose q such that Epþq � Ep is as large as we
like. Then we can ignore the second term in (2.7.1), and to a good approx-

imation the commutator of H and cypþqcp is a number times this operator

itself. This means that where large momentum transfers between particles are

concerned, we are justified in considering quasiparticle excitations of the

system. But now let us look at the case where q is small. Then the argument

that the first term will dominate is no longer valid, indicating that the quasi-

particle picture may not be appropriate where small momentum transfers are
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Figure 2.7.1. For large q the change in kinetic energy on scattering from p to pþ q is
generally large compared with the matrix element of the potential for this process.



concerned. Accordingly we go on to ask whether �yq, the creation operator for

a density fluctuation, might not be the one we are after.

We can form the commutator of �yq with the Hamiltonian simply by sum-

ming (2.7.1) over all p. The interaction terms cancel exactly, since

X
p

cypþq�q 0cp ¼
X
p

cypþqcpþq 0 ¼ ��yq�q 0;

which leaves us with

½H; �yq� ¼ ��1
X
p

ðEpþq � EpÞcypþqcp:

Although this does not appear to be proportional to �yq, we cannot be sure

that it will not have a similar effect when acting on the wavefunction of the

interacting system. Accordingly we optimistically persevere, and once again

take the commutator with the Hamiltonian H. If ½H; �yq� is effectively equiva-

lent to 0!�yq then we should have

½H; ½H; �yq�� ¼ ð0!Þ2�yq:

In fact, our tenacity will be rewarded. We find

½H; ½H; �yq�� ¼ ��1

�
H;
X
p

ðEpþq � EpÞcypþqcp
�

¼ ��1
X
p

ðEpþq � EpÞ½H; cypþqcp�

¼ ��1
X
p

ðEpþq � EpÞ2cypþqcp þ
X
p;q 0

ðEpþq � EpÞ
Vq 0

2

� ½ðcypþq�q 0cp � cypþqcpþq 0 Þ�yq 0 þ �q 0 ðcypþq 0þqcp � cypþqcp�q 0 Þ�:

This simplifies when we remember that

Epþq ¼
02

2m
ðpþ qÞ2; Ep ¼

02p2

2m
; Epþq � Ep ¼

02

2m
ð2p � qþ q

2Þ:
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This means thatX
p

ðEpþq � EpÞðcypþq�q 0cp � cypþqcpþq 0 Þ

¼ 02

2m

X
p

ð2p � qþ q
2Þcypþq�q 0cp

� 02

2m

X
p 0

½2ðp 0 � q
0Þ � qþ q

2�cyp 0þq�q 0cp 0;

where we have written p 0 for pþ q
0. This reduces to

02

2m

X
p 0

2q 0 � qcyp 0þq�q 0cp 0 ¼ 02q 0 � q
m

�yq�q 0;

so that

ð0!Þ2�yq ¼
X
p

�
02

2m
ð2p � qþ q

2Þ
�2
cypþqcp=�

þ
X
q 0

Vq 0

2

02q � q 0

m
ð�q 0�q�

y
q 0 � �y�q 0��q�q 0 Þ�: ð2:7:2Þ

Now the zero Fourier component of the density, �0, plays a very different

role from all the other components. It is just the average density of particles

in the system. Consider, for instance, a box of electrons of average density �0,

the box being of length L (Fig. 2.7.2). The first nonzero Fourier component
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Figure 2.7.2. When q ¼ 2�=L the operator �q measures a quantity approximately
equal to the difference in the number of particles in the two halves of the container.



of � will be approximately equal to the difference between the number of

particles in the left- and right-hand sides of the box, since it is just

��1

ð
�ðrÞ exp 2i�x

L

	 

dr:

When the number of particles present is large the difference between numbers

in the two halves will be very small compared with the total number, and so

�0 will be the most important term in the summation over q 0 in (2.7.2).

Because the term with q 0 ¼ 0 is omitted, it is only when q 0 ¼ �q that such

a term will appear. The neglect of all terms for which q 0 6¼ �q is known as the

random phase approximation, or RPA. This, combined with neglect of the

summation over p, which is small when q is small, leaves us with

ð0!Þ2�yq ¼
4�e2

2q2
02q2

m
ð�0�yq þ �yq�0Þ;

and since all the �q commute (Problem 2.7) we have

!2 ¼ 4�e2�0
m

;

which gives just the classical plasma frequency, !p.

We thus see that the relevant excitations of low wavenumber are not par-

ticle–hole pairs, but collective motions of the electron gas. Bohm and Pines

argue that we should consider the electrons as interacting through a matrix

element Vq that is equal to 4�e2=�q2 only when q is greater than some

characteristic value qc. Below qc the interactions contribute only to the

plasma oscillations and can be left out of the particle interaction terms in

the Hamiltonian. We expect q�1
c to be of the order of the average interparticle

distance, since plasma waves can only exist when their wavelength is greater

than this value. Thus we put Vq ¼ 0 for q < qc. This means that the inter-

action potential in configuration space, which is the Fourier transform of Vq,

will be

VðrÞ ¼
X
q>qc

eiq � r
4�e2

�q2
:

This gives a function rather like the Yukawa potential,

ðe2=rÞ exp ð�qcrÞ;
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which is an example of a screened Coulomb potential. An electron at a point

tends to repel all the others from its vicinity, which effectively gives a region

of net positive charge surrounding each electron. This partially cancels (or

screens) the mutual repulsion of the electrons at large distances.

We can understand the concept of screening within the framework of

perturbation theory by considering the effect of a weak sinusoidal potential

applied to the electron gas. The total Hamiltonian would then be

H ¼ H0 þ V þU;

with V the Coulomb interaction of the electrons, and U the externally

applied potential, being given by

U ¼ 2Uq cos q � r;

which in the notation of second quantization is

U ¼ Uq
X
p

ðcypþqcp þ cyp�qcpÞ: ð2:7:3Þ

Perturbation theory can then be used to express the wavefunction and energy

as a power series in ðU þ VÞ, which we can then rearrange in the form of a

power series in U. In the Rayleigh–Schrödinger expansion for the wavefunc-

tion, for example, we have

j�i ¼ j�i þ ðE0 �H0Þ�1ð1� j�ih�jÞðU þ VÞj�i þ � � �
¼ ½j�i þ ðE0 �H0Þ�1ð1� j�ih�jÞVj�i þ � � ��

þ ðE0 �H0Þ�1ð1� j�ih�jÞUj�i þ ðE0 �H0Þ�1

� ð1� j�ih�jÞVðE0 �H0Þ�1ð1� j�ih�jÞUj�i þ � � �
þ ½terms of order U2� þ � � � :

We investigate the response of the system to weak applied fields by examining

those terms that are linear in U. We notice that we could write the sum of

these contributions in the form

ðE0 �H0Þ�1ð1� j�ih�jÞUeff j�i
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if we were to define an effective potential Ueff by the equation

Ueff ¼ U þ VðE0 �H0Þ�1ð1� j�ih�jÞU
þUðE0 �H0Þ�1ð1� j�ih�jÞV þ � � � : ð2:7:4Þ

Let us now substitute for V, the Coulomb interaction, and for U, and sim-

plify U by considering only the first part of the summand in expression

(2.7.3). Then the second term on the right-hand side of Eq. (2.7.4), for

example, becomes

1
2

X
k;k 0;q 0

Vq 0c
y
k�q 0c

y
k 0þq 0ck 0ckðE0 �H0Þ�1ð1� j�ih�jÞ

X
p

Uqc
y
pþqcp: ð2:7:5Þ

This component of Ueff is thus a sum of terms that annihilate the electrons in

states p; k, and k 0, and create them again in states pþ q; k 0 þ q
0, and k� q

0.
Such complicated processes could be represented by diagrams like Fig. 2.7.3,

and are not easily interpreted in physical terms.

There are, however, some terms from this sum that contribute in a special

way to Ueff , and whose effect has a simple interpretation. Let us look, for

example, at the term in which q ¼ q
0 and pþ q ¼ k. Then we can join

together the two parts of Fig. 2.7.3 and represent the scattering in the

form shown in Fig. 2.7.4. We note the interesting fact that the net result of
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Figure 2.7.3. In this diagram an electron is scattered by the externally applied poten-
tial U, and then two other electrons interact through their Coulomb repulsion V .



these interactions is that an electron is scattered from k
0 to k

0 þ q. The

physical interpretation of this is that the externally applied potential U causes

a density fluctuation in the electron gas, and it is this density fluctuation that

scatters the electron originally in the state k 0. The contribution to expression

(2.7.5) from these processes is

1
2

X
p

Vqnpð1� npþqÞðEp � EpþqÞ�1
X
k 0
Uqc

y
k 0þqck 0;

the energy denominator ðEp � EpþqÞ�1 coming from the effect of U on the

state �. There is also a set of terms for which q ¼ �q 0 and pþ q ¼ k
0, which

contribute an equal amount again. To these must then be added a set of

terms from the third component of the right-hand side of expression (2.7.4) in

which V acts first, followed by U. From these we select the terms shown in

Fig. 2.7.5, which contribute an amountX
p

Vqnpþqð1� npÞðEpþq � EpÞ�1
X
k

Uqc
y
kþqck:

We identify the sums over k and k 0 as just being equal to U itself, and so our

approximation for Eq. (2.7.4) becomes

Ueff ’ U þ Vq
	X

p

npþq � np
Epþq � Ep



U þ � � � :

If we make similar approximations for the terms of higher order in this series

we shall have contributions of the form shown in Fig. 2.7.6, which can be
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Figure 2.7.4. In this special case of the preceding diagram the same electron parti-
cipates in both scattering processes.



given a simpler aspect if we think of the scattering of the electron from pþ q

to p as the creation of a particle–hole pair, and represent the hole of wave-

number pþ q by an arrow pointing backwards. Figure 2.7.6 can then be

redrawn as in Fig. 2.7.7. All these complicated diagrams will have the net

effect of scattering just one electron and increasing its wavenumber by an
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Figure 2.7.5. Here an electron is first scattered by another electron and then by the
applied potential U.

Figure 2.7.6. In this diagram an electron scattered by the externally applied potential
passes its extra momentum to another electron through a chain of Coulomb inter-
actions.



amount q. They in fact form a geometric series, which allows us to write

Ueff ’
�
1þ Vq

	X
p

npþq � np
Epþq � Ep



þ V2

q

	X
p

npþq � np
Epþq � Ep


2

þ � � �
�
U

¼ U

�ðqÞ ;

where

�ðqÞ ¼ 1� Vq
X
p

npþq � np
Epþq � Ep

: ð2:7:6Þ

Defined in this way, �ðqÞ plays the role of a dielectric constant in that it is the

factor by which the applied field, which may be likened to the electric dis-

placement D, exceeds the actual field E within the electron gas. Because a

conductor like the electron gas cannot support a steady uniform electric field
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Figure 2.7.7. This redrawing of Fig. 2.7.6. depicts the absence of an electron in a
given k-state as a line pointing backwards.



we expect �ðqÞ to become infinite as q! 0. This does indeed occur, since Vq
varies as q�2 while the summation over p remains finite.

Because any potential can be analyzed into its Fourier components, this

theory gives us an approximate result for the modification by the electron gas

of a potential of any shape. If, for example, we put a charged impurity into

the electron gas the potential U would be �Ze2=r. This is the sum of Fourier

components �4�Ze2=�q2, each of which would be screened in our linear

approximation by the dielectric constant �ðqÞ. The result would be a screened

potential of Fourier transform

Ueff ðqÞ ’
�4�Ze2=�q2

1� ð4�e2=�q2Þ
X
p

½ðnpþq � npÞ=ðEpþq � EpÞ�
:

This expression remains finite as q! 0, and thus represents a potential that

again has some similarity to the Yukawa potential.

Improvements on this theory are fairly arduous, even in the linear approx-

imation. The most obvious correction would be to include exchange scatter-

ing in our analysis by considering processes of the type shown in Fig. 2.7.8 in

addition to those of Fig. 2.7.4. In higher orders, however, these processes do

not reduce to simple products that can be summed as geometric series, and

their investigation lies beyond the scope of this book.
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Figure 2.7.8. Exchange processes such as this one, in which the final k-state of one
electron is identical to the initial state of another electron, are neglected in deriving
Eq. (2.7.6).



2.8 Spin waves in the electron gas

An interesting application of the random phase approximation occurs in the

theory of metallic ferromagnets. We saw in Section 2.4 that in the Hartree–

Fock approximation the exchange energy is negative. It is illustrated in

Problem 2.3 that at low electron densities this exchange energy becomes

large enough in comparison to the kinetic energy that a magnetized phase,

in which all the electron spins are pointing in the same direction, appears the

most stable. While we are aware of the failings of the Hartree–Fock approx-

imation and should not accept its predictions unquestioningly, we are led to

the conclusion that in a metal such as nickel it is the presence of some effective

electron interaction that gives rise to ferromagnetism. We cannot accept

an alternative model of the type we assumed in Section 1.4, in which each

spin is localized at a lattice site, because measurements show there to be a

nonintegral number of spins per atom in this metal. We thus assume a

Hamiltonian of the form

H ¼
X
k;s

Ekcyk;sck;s

þ 1

2

X
k;k 0;q 0;s;s 0

Vq 0c
y
k�q 0;sc

y
k 0þq 0;s 0ck 0;s 0ck;s;

which is identical to our previous form for the Hamiltonian of the electron

gas except that we shall take Vq 0 to be an effective interaction, and not

necessarily the pure Coulomb interaction. We make the assumption that

the ground state of this system is magnetized, so that N#, the total number

of electrons with spin down, is greater than N".
We now look for collective excitations of this system that can be inter-

preted as spin waves. We first consider the commutator of the Hamiltonian

with the operator

By
p ¼ cypþq"cp#: ð2:8:1Þ

This differs from the operator considered in the previous section in that it

reverses the spin of the electron on which it acts, and can thus change the

magnetization of the electron gas. We find

½H;By
p� ¼ ðEpþq � EpÞBy

p þ
X
q 0;k;s

Vq 0 ðcypþq�q 0"c
y
kþq 0;sck;scp#

þ cypþq"cyk�q 0;scp�q 0#ck;sÞ: ð2:8:2Þ
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The summation is thus over interactions of the form shown in Fig. 2.8.1.

We now make the random phase approximation by retaining only those

processes in which one electron leaves in a state identical to one of the

original states. We thus select from Fig. 2.8.1(a) only those processes for

which kþ q
0; s ¼ p# or for which k; s ¼ pþ q� q

0". With a similar selection

from the processes of Fig. 2.8.1(b) we find that Eq. (2.8.2) becomes

½H;By
p� ’ ðEpþq � EpÞBy

p þ
X
q 0
Vq 0 ½ðnp�q 0# � np�q 0þq"ÞBy

p

þ ðnpþq" � np#ÞBy
p�q 0 �; ð2:8:3Þ

where

By
p�q 0 ¼ cyp�q 0þq"cp�q 0#:

This can be characterized as a random phase approximation because it

retains only those terms involving the number operators, and it is the sum
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Figure 2.8.1. Of these scattering processes we retain only those in which one of the
final electron states is the same as one of the initial ones.



of the number operators that gives the zeroth Fourier component of the

density.

The fact that the right-hand side of Eq. (2.8.3) involves terms in By
p�q 0

shows that By
p does not create eigenstates of H when acting on the ground

state. It does, however, suggest that we once again form a linear combination

of these operators by writing

By ¼
X
p

�pB
y
p;

where the �p are constants. If this operator does indeed create spin waves of

energy 0!q we shall findX
p

�p½H;By
p� ¼ 0!q

X
p

�pB
y
p:

We substitute in this relation from Eq. (2.8.3) and equate the coefficients of

By
p to find

ð0!q � Epþq þ EpÞ�p ¼
X
q 0
Vq 0 ½ðnp�q 0# � np�q 0þq"Þ�p

þ ðnpþqþq 0" � npþq 0#Þ�pþq 0 �:

At this point we simplify the problem by assuming that Vq 0 can be taken as a

positive constant V . We can then write

ð0!q � Epþq þ Ep � VN# þ VN"Þ�p ¼ V
X
p 0

ðnp 0þq" � np 0#Þ�p 0;

where we have written p 0 for pþ q
0. This can be solved by noting that the

right-hand side is independent of p. We can thus multiply both sides of this

equation by a factor

npþq" � np#
0!q � Epþq þ Ep � VN# þ VN"

;

sum over p, and find

V
X
p

npþq" � np#
0!q � Epþq þ Ep þ VðN" �N#Þ

¼ 1:
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This equation determines !q. For small q, which is the regime in which the

random phase approximation is best justified, we can expand the left-hand

side binomially to find

1

N" �N#

X
p

ðnpþq" � np#Þ
�
1� 0!q � Epþq þ Ep

VðN" �N#Þ

þ
	
0!q � Epþq þ Ep
VðN" �N#Þ


2

� � � �
�
¼ 1:

If Ep is just the free-electron energy, 02p2=2m, and we retain only terms of

order q2 or greater, then this reduces to

0!q ¼
X
p

	
npþq" � np#
N" �N#


�
02

2m
ð2p � qþ q

2Þ þ 04

m2

ðp � qÞ2
VðN" �N#Þ

�

¼ 02q2

2m
ð�þ 	Þ; ð2:8:4Þ

where � is a constant of order unity and independent of V , while 	 is

inversely proportional to V . These constants are most simply evaluated by

considering the ground state of the system to consist of two filled Fermi

spheres in momentum space – a large one for the down-spin electrons and

a small one for the up-spin electrons. The form of the magnetic excitation

spectrum is then as shown in Fig. 2.8.2, and consists of two branches. The

spin waves have an energy 0!q that increases as q2 for small q, and they

represent the collective motion of the system. There are, however, also the

quasiparticle excitations of energy around VðN# �N"Þ that are represented

by the diagonal terms in Eq. (2.8.3).

This calculation presents a very much oversimplified picture of magnons in

a metal, and should not be taken too seriously. It has the disadvantage, for

instance, that states of the system in which spin waves are excited are eigen-

states of S", the total spin in the up direction, but not of S2, the square of the

total spin angular momentum. The model suffices to show, however, the

possibility of the existence of a type of magnon quite dissimilar to that

introduced in the localized model of Section 1.4. It is also interesting to

note that there are some materials, such as palladium, in which the inter-

actions are not quite strong enough to lead to ferromagnetism, but are

strong enough to allow spin fluctuations to be transmitted an appreciable

distance before decaying. Such critically damped spin waves are known as

paramagnons.
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Problems

2.1 Using the definitions of cp and c
y
p given, verify that

fcp; cyp 0 g ¼ �pp 0; fcp; cp 0 g ¼ fcyp; cyp 0 g ¼ 0:

2.2 Verify the statement that dW=dp as defined by Eq. (2.4.5) becomes

infinite as p! pF , the radius of the Fermi surface.

2.3 In the Hartree–Fock approximation the energy of the electron gas is

composed of kinetic and exchange energies. In a certain set of units the

kinetic energy per electron is 2.21 rydbergs and the exchange energy

�0:916 rydbergs when the gas is at unit density and zero temperature,

and the up- and down-spin levels are equally populated. Estimate the

density at which a magnetic phase, in which all spins are pointing up,

becomes the more stable one.

2.4 The operators 
k0 and 
k1 are defined in terms of electron annihilation

and creation operators by the relations


k0 ¼ ukck" � vkcy�k#; 
k1 ¼ vkcyk" þ ukc�k#;

where cyk", for instance, creates an electron of wavenumber k with spin
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Figure 2.8.2. The spectrum of elementary excitations of the ferromagnetic electron
gas. The lower branch shows the magnons while the upper band represents quasi-
particle excitations.



up, and uk and vk are real constants such that u2k þ v2k ¼ 1. What are the

various anticommutation relations of the 
 and 
y?

2.5 Verify that �X
k

nk;H
�
¼ 0

for the electron gas.

2.6 Verify Eq. (2.7.1).

2.7 Verify that ½�k; �k 0 � ¼ 0.

2.8 Calculate the contribution to Ueff as defined in Eq. (2.7.4) of the

exchange scattering processes shown in Fig. 2.7.8.

2.9 The theory of the dielectric constant of the electron gas can be general-

ized to include the responses to applied fields that vary with time. If a

potential UðrÞe�i!t is applied then scattering of an electron occurs by

absorption of a photon of energy 0!, and the energy denominator of

Eq. (2.7.6) is modified to give

�ðq; !Þ ¼ 1� Vq
X
p

npþq � np
Epþq � Ep þ 0!

:

Show that for vanishingly small q the dielectric constant itself vanishes

when ! is the plasma frequency !p.

2.10 Evaluate the constants � and 	 of Eq. (2.8.4).

2.11 If the sum of coefficients �þ 	 in Eq. (2.8.4) becomes negative, then the

magnetic system will be unstable. Use your answer to Problem 2.10 to

find the minimum value that VðN# �N"Þ=EF must have to ensure that

the magnet is stable. (Here EF is the Fermi energy of the unmagnetized

system.) Does your result agree qualitatively with the semiclassical

argument that N# �N" should be equal to the difference between the

integrated densities of states NðEF#Þ � N ðEF"Þ?

2.12 Sketch a contour map of �ðq; !Þ as determined from the expression

given in Problem 2.9. That is, estimate the sign and magnitude of

�ðq; !Þ for various q and !, and plot lines of constant � in the q–! plane.
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2.13 Consider a system consisting of a large number N of spinless interacting

fermions in a large one-dimensional box of length L. There are periodic

boundary conditions. The particles interact via a delta-function poten-

tial, and so the Hamiltonian is

H ¼
X
k

Ak2c
y
kck þ ðV=2LÞ

X
k;k 0;q

c
y
k�qc

y
k 0þqck 0ck

with A and V constants. The sums proceed over all permitted values of

k, k 0, and q. That is, the terms with q ¼ 0 are not excluded from the

sum.

(a) Calculate the energy of the ground state of the noninteracting

system.

(b) Calculate the energy of the ground state of the interacting system in

the Hartree–Fock approximation.

(c) State in physical terms why the answer you obtained to part (b)

must be an exact solution of the problem.
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Chapter 3

Boson systems

3.1 Second quantization for bosons

In the formalism that we developed for dealing with fermions the number

operator, np, played an important role, as we found that the Hamiltonian for

the noninteracting system could be expressed in terms of it to give

H0 ¼
X
k

Eknk:

Now we turn to the consideration of systems in which we can allow more

than one particle to occupy the same state. This time we shall need to define a

number operator that has not only the eigenvalues 0 and 1, but all the

nonnegative integers. The wavefunctions � that describe the noninteracting

system will no longer be determinants of one-particle states, but will be

symmetrized products of them, such that � remains unaltered by the inter-

change of any two particles.

In analogy with the fermion case we define annihilation and creation

operators for boson systems

ap ¼
X
fnig

ffiffiffiffiffi
np

p jn1; . . . ðnp � 1Þ; . . .ihn1; . . . np; . . . j ð3:1:1Þ

and

ayp ¼
X
fnig

ffiffiffiffiffi
np

p jn1; . . . np; . . .ihn1; . . . ðnp � 1Þ; . . . j: ð3:1:2Þ

The summation is understood to be over all possible sets of numbers ni,

including np, with the sole condition that np > 0. These operators reduce or

increase by one the number of particles in the pth state. The factor of
ffiffiffiffiffi
np

p
is
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included so that the combination aypap will correspond to the number opera-

tor and have eigenvalues np. We do, in fact, find that with these definitions

aypap ¼
X
fnig

npj . . . np; . . .ih. . . np; . . . j;

so that

aypapj . . . np . . .i ¼ npj . . . np . . .i:

On the other hand,

apa
y
pj . . . np . . .i ¼ ðnp þ 1Þj . . . np . . .i

and so

apa
y
p � aypap ¼ 1:

We write this as

½ap; ayp� ¼ 1;

which says that the commutator of ap and a
y
p is equal to unity. We can further

show that

½ayp; ayp 0 � ¼ ½ap; ap 0 � ¼ 0

½ap; ayp 0 � ¼ �pp 0 :

These results are in terms of commutators rather than anticommutators

because of the fact that we form the same wavefunction irrespective of the

order in which we create the particles.

We can then write the Hamiltonian for a noninteracting system of bosons

in the form

H0 ¼
X
k

Ekaykak ¼
X
k

Eknk:

An important difference between the fermion and boson systems that we

consider is that while for the Fermi systems the total number of particles,

N, is constant in time, this is not generally so for true Bose systems, where N

may be determined by thermodynamic considerations; for example, the total
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number of phonons present in a solid may be increased by raising the tem-

perature of the system. On the other hand, there are also systems such as

atoms of 4He for which N is conserved but which behave as pseudobosons in

that their behavior is approximately described by boson commutation rela-

tions. This distinction will be made clearer in Section 3.3.

3.2 The harmonic oscillator

The simplest example of a system of noninteracting bosons is provided by the

case of the three-dimensional harmonic oscillator, where a particle of mass m

is imagined to be in a potential 1
2m!

2
r
2. The Hamiltonian is

H ¼
X3
i¼1

1

2m
½ p2i þ ðm!xiÞ2�;

where the three components of momentum and position obey the commuta-

tion relations

½xi; pj� ¼ i0 �ij:

We then define

ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1

2m!0

r
ðm!xi þ ipiÞ; ayi ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1

2m!0

r
ðm!xi ¼ ipiÞ; ð3:2:1Þ

and are not in the least surprised to find that

½ai; ayj � ¼ �ij

and that

H ¼
X
i

1
2 0!ðayiai þ aiayi Þ

¼
X
i

ðni þ 1
2Þ0!;

where ni ¼ a
y
iai.

In Section 3.1 we started our discussion of boson systems with the assump-

tion that there was a number operator whose eigenvalues were the positive

integers and zero, and deduced the commutation relations for the a and ay.
What we could have done in this section is to proceed in the reverse direction,
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starting with the commutation relations and hence deducing that the eigen-

values of ni are the natural numbers. Our solution to the harmonic oscillator

problem is then complete. The eigenfunctions are constructed from the

ground state by creating excitations with the a
y
i,

j�i ¼ A
Y3
i¼1
ðayi Þni j0i;

the energy eigenvalues of these states being simply
P

i ðni þ 1
2Þ0!. (Here A is

some normalizing constant.)

As an exercise in using boson annihilation and creation operators we shall

now consider a simple example – the anharmonic oscillator in one dimension.

To the oscillator Hamiltonian,

H0 ¼
1

2m
½ p2 þ ðm!xÞ2�;

we add a perturbation

V ¼ �x3:

Since

x ¼
ffiffiffiffiffiffiffiffiffiffi
0

2m!

r
ðay þ aÞ; ð3:2:2Þ

then

�x3 ¼ �
�

0
2m!

�3=2

ðay þ aÞ3

and

H ¼ 0!
�
ayaþ 1

2

�
þ �

�
0

2m!

�3=2

ðay þ aÞ3:

We try to find the energy levels of the anharmonic oscillator by using per-

turbation theory. For the unperturbed state j�i, which we can write as jni
(since it is characterized solely by its energy (nþ 1

2Þ0!Þ, the perturbed energy

to second order in V will be

E ¼
�
nþ 1

2

�
0!þ hnjVjni þ hnjV 1

En �H0

Vjni: ð3:2:3Þ
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In this particular case the first-order energy change, hnjVjni, will be zero,

since V is a product of an odd number of annihilation or creation operators,

and cannot recreate the same state when it operates upon jni. In second

order, however, we shall find terms like

�2
0

2m!

� �3

hnjayaa 1

En �H0

ayaayjni; ð3:2:4Þ

which will give a contribution. From the definitions (3.1.1) and (3.1.2) we

have

ayaayjni ¼ ðnþ 1Þ3=2jnþ 1i;

so that

ðEn �H0Þ�1ayaayjni ¼ ½n0!� ðnþ 1Þ0!��1ðnþ 1Þ3=2jnþ 1i:

Thus the expression (3.2.4) is equal to

��2 0
2m!

� �3
nðnþ 1Þ2

0!
¼ �nðnþ 1Þ2 02�2

8m3!4
:

The energy to second order will be the sum of a handful of terms similar to

this, and is easily enough evaluated. Note that had we been using wavefunc-

tions �nðxÞ instead of the occupation-number representation jni we would

have had to calculate the energy shift by forming integrals of the formð
�*nðxÞx3�n 0 ðxÞ dx;

which would have required knowledge of the properties of integrals of

Hermite polynomials. Note also that in this particular case the perturbation

series must eventually diverge, because the potential �x3 becomes indefinitely

large and negative for large negative x. This does not detract from the useful-

ness of the theory for small x.

3.3 Quantum statistics at finite temperatures

In the last section we saw that the excited energy levels of a harmonic oscil-

lator could be regarded as an assembly of noninteracting bosons. It is clear

that for such systems the total number of bosons present is not constant,
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since exciting the oscillator to a higher level is equivalent to increasing the

number of bosons present. While we were considering the electron gas we

always had a Hamiltonian that conserved the total number of particles, so

that we were then able to write the equation

H;

X
k

nk

�
¼ 0:

This was because any term inH that contained annihilation operators always

contained an equal number of creation operators. In the boson case this was

not so, as it is easily verified that

½ðay þ aÞ3; aya� 6¼ 0;

and so the interactions in the anharmonic oscillator change the total number

of particles. This leads us to the consideration of systems at temperatures

different from zero, for if the system of noninteracting bosons is at zero

temperature, then there are no bosons present, and we have nothing left to

study. At a finite temperature the system will not be in its ground state, but

will have a wavefunction in which the various k-states are occupied according

to the rules of statistical mechanics. This contrasts with the system of non-

interacting fermions, where at zero temperature

j�i ¼ j1; 1; . . . 1; 0; 0; . . .i:

If the density of fermions is reasonably large, as in the case of electrons in a

metal, the average energy per particle is large compared with thermal ener-

gies. Thermal excitation is then only of secondary importance in determining

the total energy of the system. In the case of bosons, however, the thermal

energy is of primary interest, and so we now turn briefly to a consideration of

the form we expect j�i to take at a finite temperature T .

A fundamental result of statistical mechanics is that the probability of

a system being in a state jii of energy Ei is proportional to e��Ei where

� ¼ 1=kT and k is Boltzmann’s constant. Thus the average value of a

quantity A that has values Ai in the states jii is given by

�AA ¼

X
i

Aie
��EiX

i

e��Ei
:
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This can be expressed as

�AA ¼ TrðAe��HÞ
Trðe��HÞ ð3:3:1Þ

where the operation of taking the trace is defined by

TrðAe��HÞ ¼
X
j

h jjAe��Hj j i:

We show this by using the identity operator (2.1.6) to write

TrðAe��HÞ ¼
X
i; j

h jjAjiihije��Hj j i

¼
X
i; j

h jjAjiie��Ej �ij

¼
X
i

Aie
��Ei :

Fortunately, a trace is always independent of the choice of basis functions,

and so here we have chosen the most convenient set, j j i, the eigenfunctions

of the Hamiltonian.

When the Hamiltonian refers to a system of interacting bosons whose total

number N is not conserved, the operation of taking the trace must include

summing over all possible values of N, as these are all valid states of the

system. But while it is the case that for true bosons N may not be constant,

there are some systems in which the total number of particles is conserved,

and whose commutation relations are very similar to those for bosons. We

shall see in the theory of superconductivity that an assembly of bound pairs

of electrons has some similarity to a Bose gas. If we define the operator that

creates an electron in the state k" and one in the state �k# by

b
y
k ¼ c

y
k"c

y
�k#

then we can show that

½bk; byk 0 � ¼ �kk 0 ð1� nk" � n�k#Þ:

Note that it is the commutator, and not the anticommutator, that vanishes

when k 6¼ k
0. When k ¼ k

0, the commutator is not the same as when the b

are boson operators, and so in the case of superconductivity it is necessary to
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use these special commutation relations for electron pairs. An even better

example in which it is suitable to approximate the operators for composite

particles by boson operators is the case of liquid 4He. The isotope of helium

of atomic mass 4 is composed of an even number of fermions, has no net spin

or magnetic moment, and – what is most important – is very tightly bound,

so that the wavefunctions are well localized. This means that operators for

atoms at different locations will commute. If it is valid to treat helium atoms

as noninteracting bosons, then we should expect that at zero temperature all

the atoms are in the state k ¼ 0, and we should have

j�i ¼ jN; 0; 0; . . .i:

At finite temperatures we should expect to use Eq. (3.3.1) to predict the

various properties of the system. There is, however, a difficulty involved in

this in that we must choose a zero of energy for the single-particle states. That

is, the Hamiltonian,

H ¼
X
k

Eknk þHinteractions;

could equally well be written as

ĤH ¼
X
k

ðEk � �Þnk þHinteractions ¼ H�N�;

as we have no obvious way of deciding the absolute energy of a single-particle

state. This was not a problem when N was not conserved, for then we knew

exactly the energy Ek required to create a phonon or a magnon, and we could

take � as being zero. The approach we take, which corresponds to the con-

cept of the grand canonical ensemble in statistical mechanics, is to choose � in

such a way that Eq. (3.3.1) predicts the correct result, N1, for the average

value of the operator N when the trace includes a summation over all

possible N. That is, we choose � such that

N1 ¼
TrNe��ðH�N�Þ

Tr e��ðH�N�Þ

¼ 1

�

@

@�
ln Tr e��ðH�N�Þ:

The energy � is known as the chemical potential.
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We are now in a position to calculate explicitly various temperature-

dependent properties of a system of independent bosons or fermions. For

�nnp, the average number of bosons in the pth single-particle state, for example,

we find

�nnp ¼
Tr aypape

��ðH�N�Þ

Tr e��ðH�N�Þ

¼ Tr ape
��ðH�N�Þayp

Tr e��ðH�N�Þ
:

We are allowed to permute cyclically the product of which we are taking the

trace because the exponential makes the sum converge. Now

e��ðH�N�Þayp ¼ aype
��ðH�N�Þe��ðEp��Þ;

since ayp increases N by one, and alters the eigenvalues ofH by an amount Ep.
Thus

�nnp ¼
Tr apa

y
pe
��ðH�N�Þe��ðEp��Þ

Tr e��ðH�N�Þ

¼ Tr ð1þ aypapÞe��ðH�N�Þe��ðEp��Þ
Tr e��ðH�N�Þ

¼ e��ðEp��Þð1þ �nnpÞ;

from which

�nnp ¼
1

e�ðEp��Þ � 1
: ð3:3:2Þ

For fermions the anticommutator leads to a positive sign, giving

�nnpðfermionsÞ ¼
1

e�ðEpþ�Þ þ 1
: ð3:3:3Þ

These functions �nnp give the average value taken by the operator np.

The form of the boson distribution function, (3.3.2), has an interesting

consequence for a system of independent particles in which the total number

N is conserved, as in the case of 4He. We have

N ¼
X
p

�nnp ¼
X
p

1

e�ðEp��Þ � 1
:
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We know that � � 0, because if it were not then some �nnp would be negative,

which would be nonsense. Thus

N �
X
p

1

e�Ep � 1
: ð3:3:4Þ

Because we know (from Section 2.1) that the density of states in wave-

number space is �=8
3 we can change the sum to an integral and write

N � �nn0 þ
�

8
3

ð1
0þ

4
k2 dk

exp ð�02k2=2mÞ � 1
:

We consider �nnk for k ¼ 0 separately, since this term is not defined in (3.3.4).

The integral is well behaved, and gives a number which we shall call N0ðTÞ.
As T tends to zero, N0ðTÞ, which represents an upper bound to the number

of particles in excited states, becomes indefinitely small, as illustrated in

Fig. 3.3.1. When N0ðTÞ < N it follows from the inequality that all the rest

of the particles must be in the state for which k ¼ 0. Thus there is a tem-

perature Tc, defined by N0ðTcÞ ¼ N, below which the zero-energy state is

occupied by a macroscopic number of particles. This phenomenon is

known as the Bose–Einstein condensation, and is remarkable in being a

phase transition that occurs in the absence of interparticle forces.

We might expect the introduction of forces between particles to destroy

the transition to a condensed phase, but this is not the case. Bose–Einstein
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condensation is observed in a wide variety of systems, including not only 4He

but also spin-polarized atomic hydrogen and gases of alkali atoms like 23Na,

which consist of an even number of fermions. We must now develop the

formalism with which to attack this problem.

3.4 Bogoliubov’s theory of helium

As early as 1946 Bogoliubov developed a theory of a system of interacting

bosons of the number-conserving kind by making use of the fact that n0 may

be very large. He was able in this way to provide an insight into how a weak

interaction may totally change the nature of the excitation spectrum of a

system and also increased our understanding of the phenomenon of super-

fluidity.

We treat liquid 4He as a system of interacting bosons. The Hamiltonian

will look just like that for the spinless electron gas, except that we shall have

to replace every c and cy by an a or an ay, and, of course, the form of the

interaction will be different. We have

H ¼
X
k

Ekaykak þ
1

2

X
k;k 0;q

Vqa
y
k�qa

y
k 0þqak 0ak:

The single-particle energies Ek will be just

Ek ¼
02k2

2M
;

withM being the mass of the helium atom, and Vq the Fourier transform of a

short-range potential.

We can immediately arrive at an expression for the energy of this system at

zero temperature by employing the same procedure that we used in deriving

the Hartree–Fock approximation for the electron gas. That is, we write

EH ¼ h�jHj�i;

where � is the wavefunction in the absence of interactions. Because all N

particles are in the state having k ¼ 0 we simply find

EH ¼ NE0 þ 1
2V0h�jay0ay0a0a0j�i

¼ NE0 þ 1
2NðN � 1ÞV0:
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We recall from the definition (2.3.14) that V0 is inversely proportional to the

volume �. If we restore this factor by writing V0 ¼ V 0
0=� and approximate

N � 1 by N we find

EH ’ NE0 þ
N2V 0

0

2�
:

Note that there are no exchange terms present in this approximation, as only

one state is occupied.

We can now predict from the dependence of the energy on the volume that

this system will support longitudinal sound waves of small wavenumber. For

a classical fluid the velocity of sound is given by

v ¼
ffiffiffiffi
R

�

s
;

where R is the bulk modulus, ��ð@P=@�ÞN , and � is the mass density. If we

interpret the pressure P as �ð@EH=@�ÞN we find that

v ¼
�
@2EH
@�2

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
NV 0

0

M�
:

r

Thus for a system of unit volume we expect there to be boson excitations for

small k having energies 0!k such that

!2
k ¼

NV0k
2

M
:

Bogoliubov’s method shows how these excitations arise as a modification of

the single-particle excitation spectrum.

In looking for the ground-state solution of this problem we invoke the fact

that in the noninteracting system all the particles are in the state for which

k ¼ 0. We make the assumption that even in the interacting system there is

still a macroscopic number of particles in the zero-momentum state. The num-

ber still in the zero-momentum state is the expectation value of a
y
0a0, which

we write as N0. Because we expect N0 to be large we treat it as a number

rather than an operator, and similarly take a
y
0a
y
0 to be equal to N0. In fact, the

operator a
y
0a
y
0 operating on a wavefunction with N0 particles in the k ¼ 0

state would give
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN0 þ 1ÞðN0 þ 2

p Þ times the state with N0 þ 2 particles, but
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since 2� N0, we ignore this difference. We next rewrite the Hamiltonian

dropping all terms that are of order less than N0. Provided Vq is equal to

V�q this leaves us

H ’
X
k

Ekaykak þ 1
2N

2
0V0 þN0V0

X
k

aykak þN0

X
k 0

Vk 0a
y
k 0ak 0

þ 1
2N0

X
q

Vqðaqa�q þ ay�qayqÞ;

where the sums exclude the zero term. We then put

N0 þ
X
k

aykak ¼ N; N0Vk ¼ 
k; Ek þ 
k ¼ 0�k;

and make the assumption that N �N0 � N0 (an assumption that is of

dubious validity for real liquid helium). We then only make errors in terms

of order (N �N0Þ=N0 if we write

H ¼ 1
2N

2V0 þ
X
k

0�ka
y
kak þ 1

2

X
k


kðaka�k þ aykay�kÞ: ð3:4:1Þ

While the first term is a constant, and the second is an old friend, the third

term is an awkward one. In perturbation theory it leads to divergences, the

pictorial representations of which are aptly known as ‘‘dangerous diagrams.’’

The major advance we have made, however, is to reduce our original

Hamiltonian, which contained interactions represented by a product of

four operators, to a quadratic form, in which only products of two operators

are present. It is then in principle always possible to diagonalize the

Hamiltonian.

The trick that Bogoliubov used to get rid of the off-diagonal terms aka�k
and ayka

y
�k was to define a new set of operators. He wrote

�k ¼ ðcosh �kÞak � ðsinh �kÞay�k;

where the �k are left arbitrary for the time being. One can show that the �

obey the same commutation relations as the a,

½�k; �yk 0 � ¼ �kk 0 :
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Now suppose we had a Hamiltonian

H ¼
X
k

0!k�
y
k�k:

This would pose no difficulties; the energies would just be
P

k nk0!k. Our

approach now is to write out �yk�k in terms of the a’s and see if we can choose

!k and �k in such a way as to make it equal to the kth component of our

approximate Hamiltonian, (3.4.1). Substituting, we have

�yk�k ¼ ½ðcosh �kÞ�yk � ðsinh �kÞa�k�½ðcosh �kÞak � ðsinh �kÞay�k�
¼ ðcosh2 �kÞaykak þ ðsinh2 �kÞa�kay�k � ðcosh �k sinh �kÞ
� ðaykay�k þ a�kakÞ:

Then, if !k ¼ !�k and �k ¼ ��k;X
k

0!k�
y
k�k ¼

X
k

0!kðcosh 2�kÞaykak þ
X
k

0!k sinh
2 �k

� 1
2

X
k

0!kðsinh 2�kÞðaka�k þ ayka�kÞ:

This is identical to (3.4.1) except for a constant if we choose ! and � such that

!k cosh 2�k ¼ �k; 0!k sinh 2�k ¼ �
k:

Then

02!2
k ¼ 02�2

k � 
2k
and

0!k ¼ ½ðEk þN0VkÞ2 � ðN0VkÞ2�1=2:

Thus Bogoliubov’s transformation from the a’s to the �’s has diagonalized

the Hamiltonian. Within the approximation that N0 is large compared with

everything else in sight we can say that the excitations of the system above its

ground state are equivalent to Bose particles of energy 0!k.

The interesting thing about these excitations is the way the energy varies

with k for small k. We can write

0!k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2k þ 2EkN0Vk

q
;
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and since for small enough k we shall have that E2k, which varies as k4, will be

small compared with EkN0Vk, we shall find

!k ’
ffiffiffiffiffiffiffiffiffiffi
NVk

M

r
k:

That is, the excitations will look more like phonons than like free particles,

and will have the dispersion law predicted from the elementary arguments

used at the beginning of this section. When k becomes large, so that

Ek � N0Vk, then the excitations will once again be like particles. The detailed

shape of the graph of ! against k will depend upon the form of Vk. If we

choose a form of Vk like Fig. 3.4.1 then we should find that ! behaves as in

Fig. 3.4.2, starting off with a finite gradient, but then dipping down again to a

minimum at some value of k.

This is the form of the dispersion relation for liquid 4He that is found

experimentally, and is in accord with the superfluid properties of this sub-

stance at low temperatures. We consider a heavy particle of mass M0 pro-

jected into a container of liquid helium at zero temperature, and investigate

the mechanism by which the particle is slowed down. Since its energy EM is

p2=2M0, a heavy particle has a lot of momentum but not much energy, as

shown in Fig. 3.4.3. If the particle is slowed down by the helium it will only

give up a small amount of energy even though it loses a considerable amount of

momentum. Now if the helium is in its ground state, then all the excitations

available in Fig. 3.4.2 require a lot of energy for each bit of momentum they

provide. Themassive particle is not capable of providing this energy, and hence

cannot cause an excitation and will experience no viscous force. It is only when
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Figure 3.4.1. One possible form that the effective interaction between helium atoms
might take.



the particle has such a large momentum, pc, that its velocity is equal to the

gradient of the dotted line in Fig. 3.4.2 that excitations will be caused.

In fact liquid 4He at low temperatures is found to have superfluid proper-

ties for motions below a certain critical velocity, but the magnitude of this

velocity is only about 1 cm s�1, rather than the 104 cm s�1 predicted by this

theory. The discrepancy is accounted for by low-energy excitations in the

form of vortex rings not included in the Bogoliubov theory.

3.5 Phonons in one dimension

In the case of the Bogoliubov theory of helium we started with a system

containing a fixed number of Bose particles. It was the fact that the total

number of particles had to be conserved that obliged the k ¼ 0 state to

contain a macroscopic number of particles, and which, in turn, gave the
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sion curve with a minimum as shown here.

Figure 3.4.3. For a given momentum p a heavy particle has very little energy.



system its remarkable properties. We now turn back to the situation that we

encountered with the harmonic oscillator, where we start with a Hamiltonian

and transform it in such a way that the excitations appear as the creation of

an integral number of bosons. We return to a linear chain of interacting

atoms as the first such system to consider.

Once again we let the displacements of the atoms from their equilibrium

positions, l, be yl, and abbreviate the notation yl1; yl2; . . . by writing

y1; y2; . . . . Then the Hamiltonian will be

H ¼
X
l

p2l
2m

þ Vðy1; y2; . . .Þ:

We expand V in a Maclaurin series to get

Vðy1; y2; . . .Þ ¼ Vð0; 0; . . .Þ þ
X
l

yl



@

@yl
Vðy1; y2; ; . . .Þ

�
y1¼y2¼���¼0

þ 1

2!

X
l;l 0

ylyl 0



@2

@yl@yl 0
Vðy1; y2; ; . . .Þ

�
y1¼y2¼���¼0

þ 1

3!

X
l;l 0;l 00

ylyl 0yl 00



@3

@yl@yl 0@yl 00
Vðy1; y2; ; . . .Þ

�
y1¼y2���¼0

þ higher terms: ð3:5:1Þ

The first term on the right-hand side may be eliminated by suitable choice

of the zero of energy, and all the terms in the summation forming the second

term must be zero by virtue of the definition of y ¼ 0 as the equilibrium

positions of the atoms. Thus the first set of terms we need to consider are

the set

X
l;l 0

ylyl 0
@2V

@yl@yl 0
:

We could write this double summation in matrix notation. If we abbreviate

@2V=@yl@yl 0 by Vll 0 then we can represent the double sum as

ðy1; y2; . . .Þ
V11 V12 � � �
V21

..

.

0BB@
1CCA

y1

y2

..

.

0BB@
1CCA:
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Now we can always diagonalize a finite matrix like Vll 0 . That is, we can find

some matrix T such that TVT�1 is diagonal. If T has elements Tql this means

TVT�1 ¼
X
l;l 0

TqlVll 0 ðT�1Þl 0q 0 ¼ Vq �qq 0; ð3:5:2Þ

where the Vq are a set of numbers defined by T and V . ThenX
l;l 0

ylVll 0yl 0 ¼
X

l;l 0;l 00 l 000
q;q 0

ylðT�1ÞlqTql 00Vl 00l 000 ðT�1Þl 000q 0Tq 0l 0yl 0

¼
X
l;l 0q;q 0

ylðT�1ÞlqVq �qq 0Tq 0l 0yl 0

¼
X
q

yq ~yyqVq;

ð3:5:3Þ

where

yq ¼
X
l

ylðT�1Þlq

and

~yyq ¼
X
l

Tqlyl:

Because yl is a physical observable it must be its own conjugate, and yl ¼ y
y
l.

If we can choose T such that (T�1Þlq ¼ T*ql we should have that ~yyq ¼ yyq, and
we could write the potential energy as 1

2

P
q yqy

y
qVq.

What we have done here is really no more complicated than the elementary

approach of Section 1.2 – we have changed from the particle coordinates yl to

the collective coordinates yq. We can similarly define collective momenta, pq,

using the inverse transformation:

pq ¼
X
l

Tqlpl:

This follows from the fact that

pl ¼ �i0
@

@yl
¼ �i0

X
q

@yq
@yl

@

@yq
¼ �i0

X
q

ðT�1Þlq
@

@yq
:
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Thus on multiplication by T we have

�i0 @

@yq
¼
X
l

Tqlpl:

The kinetic energy remains diagonal in the new coordinates, since

1

2M

X
l

p2l ¼
1

2M

X
l;q;q 0

pqðT�1Þlqpyq 0 ðT�1Þ*lq 0

¼ 1

2M

X
l;q;q 0

pqT*qlðT�1Þ*lq 0pyq 0

¼ 1

2M

X
q

pqp
y
q:

Thus if we ignore all terms in the Hamiltonian that are of order y3 or higher

(this is known as the harmonic approximation) we can write

H ¼
X
q

�
1

2M
pqp

y
q þ

1

2
M!2

qyqy
y
q

�
;

where M!2
q ¼ Vq. Because pq ¼ �i0@=@yq the commutation relations for the

collective coordinates are similar to those for particles, and we have

½yq; pq 0 � ¼ i0�qq 0 :

We then see that by defining operators

aq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2M0!q

s
ðM!qyq þ ipyqÞ ð3:5:4Þ

ayq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2M0!q

s
ðM!qy

y
q � ipqÞ; ð3:5:5Þ

which are a simple generalization of (3.2.1), we can write

H ¼
X
q

0!q a
y
qaq þ 1

2

� �
: ð3:5:6Þ
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Thus to know all about the excitation spectrum of the linear chain we simply

need to know the transformation matrix Tql.

The matrix we need is, of course, the one that will make the yq the collective

coordinates for phonons. We thus need to have Tql proportional to e
iql and so

we write

yq ¼ N�1=2X
l

e�iqlyl; pq ¼ N�1=2 X
l

eiqlpl; ð3:5:7Þ

where N is the total number of atoms in the chain. In order to avoid diffi-

culties with the ends of the chain we adopt the device of introducing periodic

boundary conditions, as was done in Section 2.1 for the electron wavefunc-

tions. That is, we specify that

ylþNa � yl;

with a once again the distance between atoms, so that the ends of the chain

are effectively joined. This restricts the possible values of q, since from expres-

sion (3.5.7) we must have

eiql ¼ eiqðlþNaÞ

if the yq are to be uniquely defined. We then have

q ¼ 2
n

Na
;

where n is an integer. It then follows that

yq � yqþg; pq � pqþg

where g ¼ 2
=a, which shows that there are only N distinct collective co-

ordinates. The inverse transformations are found to be

yl ¼ N�1=2 X
q

eiqlyq; pl ¼ N�1=2 X
q

e�iqlpq; ð3:5:8Þ

where the summations proceed over all N distinct values of q. We note that

yyq ¼ y�q and pyq ¼ p�q, so that since !q ¼ !�q we can, by making use of
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expressions (3.5.4) and (3.5.5), write

yq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

0
2M!q

s
ðay�q þ aqÞ ð3:5:9Þ

pq ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
M0!q

2

r
ðayq � a�qÞ: ð3:5:10Þ

These relations allow us to write any operator in terms of phonon annihila-

tion and creation operators.

The frequencies !q that appear in the Hamiltonian (3.5.6) are given by

!q ¼
ffiffiffiffiffiffi
Vq
M

r
and

Vq ¼
X
l;l 0

TqlVll 0 ðT�1Þl 0q

¼ N�1X
l;l 0

eiqlVll 0e
�iql 0 :

As Vll 0 is, by the translational invariance of the system, a function only of

(l � l 0), we have

Vq ¼
X
L

eiqLVL;

where we have written L for l � l 0.
This result for the frequencies is identical to that which we obtained by

classical methods in Section 1.2. For the particular case where there were

interactions only between nearest neighbors we had

V ¼
X
l

1
2Kðyl � ylþaÞ2 ¼

X
l

Kðy2l � ylylþaÞ;

so that

Vll 0 ¼ 2K if l ¼ l 0

¼ �K if l ¼ l 0 � a
¼ 0 otherwise:
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Then

Vq ¼ 2K � Kðeiqa þ e�iqaÞ

¼ 4K sin2
qa

2
;

and

!p ¼ 2

ffiffiffiffiffi
K

M

r
sin

qa

2

as before.

3.6 Phonons in three dimensions

The theory of phonons in three-dimensional crystals is not very much more

difficult in principle than the one-dimensional theory. The basic results that

we found merely become decorated with a wealth of subscripts and super-

scripts. We first consider the simplest type of crystal, known as a Bravais

lattice, in which the vector distance l between any two atoms can always be

written in the form

l ¼ n1l1 þ n2l2 þ n3l3:
Here the n are integers and the li are the basis vectors of the lattice. It is con-

venient to define a set of vectors g such that eig � l ¼ 1 for all l. These form the

reciprocal lattice. We can calculate the useful property that sums of the formP
l e

iq � l vanish unless q is equal to some g, in which case the sum is equal toN,

the total number of atoms. Thus we can define a function	ðq) by the equationX
l

eiq � l ¼ N
X
g

�qg � N	ðqÞ:

The Hamiltonian of a lattice of atoms interacting via simple potentials can

be written in analogy with Eq. (3.5.1) as

H ¼
X
l;i

1

2M
ðpilÞ2

þ 1

2!

X
l;l 0;i; j

yily
j
l 0V

ij
ll 0 þ

1

3!

X
l;l 0;l 00;i; j;k

yily
j
l 0y

k
l 00V

ijk
ll 0l 00 þ � � � ; ð3:6:1Þ

where pil and y
i
l represent the ith Cartesian component of the momentum and

displacement, respectively, of the atom whose equilibrium position is l. The

tensor quantities Vij
ll 0 , V

ijk
ll 0l 00 , etc., are the derivatives of the potential energy
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with respect to the displacements as before. In the harmonic approximation

only the first two terms are retained. The Hamiltonian can then be written in

matrix notation as

H ¼
X
l

1

2M
ðpxl ; pyl ; pzl Þ

pxl

p
y
l

pzl

0B@
1CAþ 1

2

X
l;l 0
ðyxl ; yyl ; yzl Þ

Vxx
ll 0 Vxy

ll 0 Vxz
ll 0

Vyx
ll 0 Vyy

ll 0 Vyz
ll 0

Vzx
ll 0 V

zy
ll 0 Vzz

ll 0

0B@
1CA yxl 0

y
y
l 0

yzl 0

0B@
1CA:

ð3:6:2Þ

Collective coordinates may be defined as in the one-dimensional problem.

We put

yiq ¼ N�1=2X
l

e�iq � lyil; piq ¼ N�1=2 X
l

eiq � lpil:

From these definitions one can see that

yqþg � yq; pqþg � pq;

for any reciprocal lattice vector g, and so we only need to consider N non-

equivalent values of q. It is usually most convenient to consider those for

which jqj is smallest, in which case we say that we take q as being in the first

Brillouin zone. (We note also that since there are only 3N degrees of freedom

in the problem it would be an embarrassment to have defined more than N

coordinates yq.) With this restriction on q the inverse transformations are

yil ¼ N�1=2 X
q

eiq � lyiq; pil ¼ N�1=2 X
q

e�iq � lpiq;

and may be substituted into (3.6.2) to give

H ¼
X
q

1

2M
ðpxyq ; pyyq ; pzyq Þ

pxq

pyq

pzq

0BB@
1CCA

8>><>>:
þ 1

2
ðyxyq ; yyyq ; yzyq Þ

Vxx
q Vxy

q Vxz
q

Vyx
q Vyy

q Vyz
q

Vzx
q Vzy

q Vzz
q

0BB@
1CCA

yxq

yyq

yzq

0BB@
1CCA
9>>=>>;;
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where

Vij
q ¼

X
l 0
eiq � ðl�l

0ÞVij
ll 0 :

The Hamiltonian has thus been separated into a sum of N independent terms

governing the motions having different wavenumbers q. To complete the

solution we now just have to diagonalize the matrix Vij
q . This can be achieved

merely by rotating the coordinate system. The matrix Vij
q will have three

mutually perpendicular eigenvectors which we can write as the unit vectors

s1, s2, and s3, with eigenvalues V1
q , V

2
q , and V

3
q . Then in the coordinate system

defined by the s

H ¼
X
q;s

�
1

2M
psyq p

s
q þ

1

2
V s

q y
sy
q y

s
q

�
: ð3:6:3Þ

The three directions s that describe the eigenvectors of Vij
q are the directions

of polarization of the phonons, and are functions of q. If it happens that one

of the s is parallel to q we say that there can be longitudinally polarized

phonons in the crystal. Since the s are mutually perpendicular it follows

that there can also be transversely polarized phonons of the same wavenum-

ber; for these s � q ¼ 0. It is usually only when q is directed along some

symmetry direction of the lattice that this will occur. However, if q and s

are approximately parallel it is still useful to retain the terminology of long-

itudinal and transverse polarizations.

The frequencies of the phonons described by expression (3.6.3) are given by

!qs ¼
ffiffiffiffiffiffiffiffi
V s

q

M
:

r
We can write the Hamiltonian in the concise language of second quantization

by defining annihilation and creation operators

aqs ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M0!qs

p ðM!qsyq þ ipyqÞ � sq

ayqs ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2M0!qs

p ðM!qsy
y
q � ipqÞ � sq:

ð3:6:4Þ

Then

H ¼
X
q;s

0!qsðayqsaqs þ 1
2Þ:
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3.7 Acoustic and optical modes

In solving the dynamics of the Bravais lattice we diagonalized the

Hamiltonian in two stages. First we transformed from the yl to the yq and

thereby reduced the double summation over l and l 0 to a single summation

over q. We then rotated the coordinate system for each q so as to eliminate

terms off the diagonal of the matrix Vij
q . This completed the separation of the

Hamiltonian into terms governing the motion in the 3N independent modes

of vibration.

Not all lattices, however, are of the simple Bravais type, and this leads to a

further stage that must be included in the task of diagonalization of the

Hamiltonian. In a lattice with a basis the vectors l no longer define the

equilibrium positions of atoms, but rather the positions of identical groups

of atoms. The equilibrium position of an atom is then given by the vector

lþ b, where l is a vector of the Bravais lattice, and b is a vector describing the

position of the atom within the group (Fig. 3.7.1). There may be several

different types of atom within the group, each having a different mass Mb.

The harmonic Hamiltonian then takes on the rather complicated form

H ¼
X
l;b;i

1

2Mb

ðpil;bÞ2 þ
X

l;b;l 0;b 0;i; j

1

2
yilby

j
l 0b 0V

ij
lb l 0b 0 :

One can look upon a lattice with a basis as a set of interlocked Bravais

lattices, and this suggests that we define collective coordinates for each
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Figure 3.7.1. In a lattice with a basis the vectors l now define the position of some
reference point of a group of atoms, while the vectors b define the positions of
individual atoms of this group relative to the reference point.



sublattice separately. We write for each of the nb possible values of b

yqb ¼ N�1=2X
l

ylbe
�iq � l

and

Vij
qbb 0 ¼

X
l 0
eiq � ðl�l

0ÞVij
lbl 0b 0;

which reduces the Hamiltonian to

H ¼
X
q;b;i

1

2Mb

piyqb p
i
qb þ

X
qbb 0ij

1

2
yiqbV

ij
qbb 0y

jy
qb 0 :

It is not enough now just to rotate the coordinate system to complete the

diagonalization of H; we also need to form some linear combination of the

yiqb that will remove terms of the form Vqbb 0 when b 6¼ b
0. We then find that

for each q there are 3nb distinct modes of vibration. The polarization direc-

tions of these modes are in general ill-defined since the nb atoms that form the

basis group may be moving in quite different directions. It is only the collec-

tive coordinate formed by the linear combination of the yiqb that has a specific

direction in which it vibrates.

The 3nb different modes that one finds in this way form the various

branches of the phonon spectrum of the crystal. The lowest frequencies of

vibration will be found in the three modes in which all the atoms within the

basis move more or less in phase. For vanishingly small values of q these can

be identified as the three modes of ordinary sound, for which ! is propor-

tional to jqj. For this reason these three are said to form the acoustic branch

of the phonon spectrum. In the other modes the atoms within the basis move

to some extent out of phase, and ! tends to a nonzero value as jqj tends to
zero. (There is some parallel here with plasma oscillations, in which the ions

and electrons also move out of phase.) Because the frequencies of these

phonons may be high enough to be excited by infrared radiation, they are

said to lie in the optical branch of the phonon spectrum (Fig. 3.7.2).

An understanding of the way in which the phonon spectrum splits into

acoustic and optical branches is helped by considering the problem of the

linear chain when alternate atoms have different masses. This is solved clas-

sically in many texts on solid state physics. An instructive variation of this

system, to be solved quantum mechanically, is given in Problem 3.4.
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3.8 Densities of states and the Debye model

We have found that in the harmonic approximation the lattice may be con-

sidered as a gas of independent phonons of energies 0!q, where now the

subscript q is intended to specify the wavenumber and polarization of a

phonon as well as the branch of the spectrum in which it lies in the case of

a lattice with a basis. It is useful to define a function Dð!Þ to be the density of

phonon states – that is, the number of states per unit frequency range near a

given frequency. We write

Dð!Þ ¼
X
q

�ð!� !qÞ; ð3:8:1Þ

from which it is seen that
Ð !2

!1
Dð!Þ d! is the number of phonon states with

frequencies between !1 and !2.

This function is important in the interpretation of many experiments.

There are, for instance, many processes that could occur in crystals but are

forbidden because they do not conserve energy. Some of these nevertheless

take place if it is possible to correct the energy imbalance by absorbing or

emitting a phonon in the process. The probability of these phonon-assisted

processes occurring will be proportional to Dð!Þ among other things. As

another example we might consider the specific heat of the phonon gas,

which we could calculate by finding the variation with temperature of the
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Figure 3.7.2. There are two atoms in the basis of the diamond lattice, and so this
structure has a phonon dispersion curve with acoustic and optical branches.



average expectation value of the Hamiltonian. According to Section 3.3 we

should have

�EE ¼ TrHe��H
Tr e��H

¼
Tr

X
q

0!qðnq þ 1
2Þe��H

Tr e��H

¼

X
q

0!q Trðnq þ 1
2Þe��H

Tr e��H
¼
X
q

0!qð �nnq þ 1
2Þ;

where

�nnq ¼
1

exp ð0!q=kTÞ � 1
:

Note that �, the chemical potential, is zero in this case because the number of

phonons is not conserved. Then

Cv ¼
d �EE
dT

¼ 1

kT2

X
q

� ð0!qÞ2 exp ð0!q=kTÞ
½exp ð0!q=kTÞ � 1�2

�

¼ 1

kT2

ð1
0

ð0!Þ2 exp ð0!=kTÞ
½exp ð0!=kTÞ � 1�2 Dð!Þ d!: ð3:8:2Þ

Thus the function Dð!Þ is all that we require to calculate the specific heat of a

harmonic crystal.

Unfortunately, it is a tedious job to calculate Dð!Þ for even the simplest

crystal structure and set of force constants. One would like, however, to have

some model for Dð!Þ in order to interpret experiments. A popular and con-

venient model is the one first proposed by Debye in 1912, in which Dð!Þ is
proportional to !2 below a certain cutoff frequency, !D, above which it is

zero (Fig. 3.8.1). The foundation for this model comes from consideration of

the form of !q when q�1 is much greater than the lattice spacing. Then ! is

proportional to jqj in the acoustic branch of the spectrum, so that the density

of states in frequency is proportional to the density of states as a function of

jqj. By arguments similar to those we used in considering electron states

(Section 2.1), one can show that the density of states is uniform in q-space.

Thus one knows that the exact Dð!Þ certainly varies as !2 in the limit of

small !. The Debye model is an extrapolation of this behavior to all ! up

to !D.
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It is convenient to express the cutoff parameter in temperature units rather

than frequency units. This is achieved by defining

0!D ¼ k
;

where 
 is known as the Debye temperature. The cutoff frequency is

expected to correspond to a wavelength of the order of the lattice spacing,

a, and so one has the useful approximate relation for the Debye model

0!q

kT
’ qa


T
:

The constant of proportionality of Dð!Þ to !2 is fixed by stipulating that the

total number of modes must be equal to 3N, where N is the number of atoms

in the crystal. Thus if Dð!Þ ¼ A!2 one has

A

ð!D
0

!2 d! ¼ 3N;

so that

Dð!Þ ¼ 9N
0
k


� �3

!2 ð! � !DÞ: ð3:8:3Þ
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Figure 3.8.1. In the Debye model the phonon density of states Dð!Þ, which may be a
very intricate shape, is approximated by part of a parabola.



Substitution of Eq. (3.8.3) into the specific heat formula (3.8.2) gives the well

known Debye result

Cv ¼ 9Nk
T




� �3 ð
=t
0

x4ex

ðex � 1Þ2 dx;

from which Cv is found to vary as T3 at very low temperatures.

In some physical problems in which the phonon spectrum only enters in a

minor way, it is occasionally desirable to have an even simpler approximation

for Dð!Þ. In these cases one may use the Einstein model, in which it is

assumed that a displaced atom experiences a restoring force caused equally

by every other atom in the crystal, rather than by the near neighbors alone.

Then all vibrations have the same frequency, and

Dð!Þ ¼ 3N �ð!� !EÞ: ð3:8:4Þ

Because this model neglects all the vibrational modes of low frequency, its

use is appropriate only for describing the optical modes of vibration.

3.9 Phonon interactions

While the picture of a lattice as a gas of independent phonons may be an

excellent approximation with which to calculate the specific heat, there are

many physical properties that it completely fails to explain. We know, for

instance, that sound waves are attenuated in passing through a crystal, which

shows that phonons have a finite lifetime. We also know that if we heat a

substance then its elastic constants will change, or it may even undergo a

martensitic transformation and change its crystal structure. The fact that the

elastic constants change implies that the frequencies of the long-wavelength

phonons also change. This means that !q must be a function not only of q,

but also of all the occupation numbers of the other phonon states. To explain

these phenomena we must return to the lattice Hamiltonian (3.6.1), and

rescue the higher-order terms that we previously neglected.

The term of third order in the displacements was

H3 ¼
1

3!

X
l;l 0;l 00;i; j;k

yil y
j
l 0y

k
l 00V

ijk
ll 0l 00;
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where for simplicity we consider a Bravais lattice, so that there is no summa-

tion over b. We can substitute for the yil with the yiq and writeX
l 0;l 00

eiq
0 � ðl 0�lÞeiq

00 � ðl 00�lÞVijk
ll 0l 00 ¼ Vijk

q 0q 00

to obtain

H3 ¼
1

3!N3=2

X
l;q;q 0;q 00;i; j;k

eiðqþq
0þq 00Þ � lyiqy

j
q 0y

k
q 00V

ijk
q 0q 00

¼ 1

3!N1=2

X
q;q 0q 00
i; j;k

yiqy
i
q 0y

k
q 00V

ijk
q 0q 00	ðqþ q

0 þ q
00Þ:

From (3.6.4)

yiq ¼
X
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0

2M!qs

s
ðay�qs þ aqsÞsi;

where si is the ith Cartesian component of the unit polarization vector s, and

so

H3 ¼
1

3!N1=2

0
2M

� �3=2 X
q;q 0;q 00;i; j;k

s;s 0;s 00

ð!qs!q 0s 0!q 00s 00 Þ�1=2sis 0js 00k

� Vijk
q 0q 00	ðqþ q

0 þ q
00Þðay�qs þ aqsÞðay�q 0s 0 þ aq 0s 0 Þðay�q 00s 00 þ aq 00s 00 Þ: ð3:9:1Þ

The third-order term in the Hamiltonian thus appears as a sum of products

of three annihilation or creation operators, and can be interpreted as repre-

senting interactions between phonons. As in the case of electron–electron

interactions we can draw diagrams to represent the various components of

(3.9.1), although the form of these will be different in that the number of

phonons is not conserved. In the case of electron interactions the diagrams

always depicted the mutual scattering of two electrons, as there were always

an equal number of annihilation and creation operators in each term in the

Hamiltonian. The interactions represented by expression (3.9.1), however,

are of the four types shown in Fig. 3.9.1. Some terms will be products of

three creation operators, and will be represented by Fig. 3.9.1(a). It is, of

course, impossible to conserve energy in processes such as these, and so
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the three phonons created in this way would have to be very short-lived. They

might be quickly annihilated by a process such as that shown in Fig. 3.9.1(d),

which represents a product of three annihilation operators. The processes of

Figs. 3.9.1(b) and 3.9.1(c) are more like scattering events, except that one of

the phonons is created or destroyed in the process. Such interactions may

conserve energy if the wavenumbers and polarizations are appropriate, and

would then represent real transitions.

The fact that the term 	ðqþ q
0 þ q

00Þ appears in the expression for H3

implies a condition that is equivalent to the conservation of momentum

in particle interactions. Because this function vanishes unless the vector

qþ q
0 þ q

00 is zero or a reciprocal lattice vector, g, the total wavenumber

must be conserved, modulo g. Thus in Fig. 3.9.1(a) the sum of the wave-

numbers of the three created phonons must either vanish, in which case we

call the interaction a normal process, or N-process, or else the total wave-

number is equal to a nonzero reciprocal lattice vector, in which case we call

the interaction an Umklapp process, or U-process.

The distinction between N-processes and U-processes is to some extent

artificial, in that whether a scattering is designated as N or U depends on

the definition of the range of allowed values of q. It remains a useful concept,

however, in discussing phonon interactions by virtue of the fact that there is a

well defined distinction between N- and U-processes within the framework of

the Debye model. This is of importance in the theory of thermal conductivity

as a consequence of a theorem first proved by Peierls. He pointed out that

the heat current density is calculated from the group velocity @!=@q of the

phonons as

J ¼ ��1 X
q;s

0!qs

@!qs

@q

� �
nqs:

In the Debye model !qs ¼ vjqj, where the velocity of sound, v, is independent
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Figure 3.9.1. The anharmonic term in the Hamiltonian that is of third order in the
atomic displacements gives rise to processes involving three phonons. These are the
four possible types of three-phonon interactions.



of q or s, so that

J ¼ ��1 X
q;s

0v2qnqs:

This quantity is conserved when H3 contains only terms describing N-
processes, and so the energy current should remain constant in time. This

indicates that thermal resistivity – the ability of a solid to support a steady

temperature gradient – must be due to U-processes or impurities in this

model.

Now that we have expressed the third-order anharmonic part, H3, of the
Hamiltonian in terms of the aq and a

y
q, it is straightforward in principle to use

perturbation theory to find the change in energy of the system caused by

phonon interactions. If the unperturbed lattice is in the eigenstate jfnigi, then
first-order perturbation theory gives an energy shift of

hfnigjH3jfnigi;
which clearly vanishes because of the fact that each term inH3 is a product of
an odd number of annihilation or creation operators. Just as in the anhar-

monic oscillator of Section 3.2, the perturbation cannot recreate the same

state jfnigi that it operates upon. We must then go to second order in per-
turbation theory, allowing the possibility of H3 causing transitions into vir-
tual intermediate states jfnjgi. The qualitative result of including phonon
interactions in the Hamiltonian is to give the energy a set of terms that

will not be linear in the occupation numbers, nq. As in the case of the inter-

acting electron system, it is meaningless to talk about the energy of one

particular phonon in an interacting system. But we can ask how the energy

of the whole system changes when we remove one phonon from the unper-

turbed state, and to evaluate this we need to form @E=@nqs. The result we find
will contain a term 0!qs arising from the differentiation of the unperturbed

energy, and also a set of terms arising from differentiation of products like

nqsnq 0s 0 . The energy required to introduce an extra phonon into the qth mode

is thus a function of the occupation numbers of the other modes. For a

crystal in equilibrium these occupation numbers are functions of the tem-

perature, as dictated by the Bose–Einstein distribution formula for their

average value �nnqs. In particular the energy required to introduce phonons

of long wavelength, as in a measurement of the elastic constants of the

material, will depend on the temperature. The inclusion of phonon interac-

tions is thus necessary for the calculation of all properties at temperatures

near the Debye temperature, and in particular for the thermal expansion and

thermal conductivity.
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3.10 Magnetic moments and spin

The classical idea of a magnetic substance is that of an assembly of atoms

containing circulating electrons. By using the laws of electromagnetism

one may show that the average magnetic field h due to a single circulating

electron of mass m and charge e is of the form associated with a magnetic

dipole, i.e.,

h ¼ 3ðk � rÞr� r2k
r5

at large distances r from the atom. Here the magnetic dipole moment, k, is
given by

k ¼ e

2c
r� v; ð3:10:1Þ

averaged over a period of the particle’s orbital motion. The magnetization M

of a macroscopic sample of unit volume is then given by

M ¼
X
i

ki;

where the sum proceeds over all contributing electrons. While the definition

(3.10.1) is quite adequate for the calculation of magnetic moments of classical

systems, it is not sufficiently general to be useful in the framework of quan-

tum mechanics. We can, however, derive an expression for k in terms of the

Hamiltonian of the electron which may then be interpreted as defining the

magnetic moment operator of a quantum-mechanical system.

To achieve this we consider the motion of the electron from the point of

view of formal classical mechanics. In the presence of an externally applied

magnetic field H an electron experiences the Lorentz force,

F ¼ e

c
v�H;

so that in a potential Vðr) the equation of motion is

m_vv ¼ �rV þ e
c
v�H: ð3:10:2Þ

(Note that we are considering effects on a microscopic scale here, and do not

make any distinction between the magnetic induction B and the magnetic

field H. If the atom we are considering is located within a sample of magnetic

material we should say thatH is the sum of an applied fieldH0 and the dipole

fields hi of the other atoms. It is only when one is considering the average
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field in a macroscopic body that it is useful to make the distinction between B

and H.) Now Lagrange’s equation states that

d

dt

@L
@v

� �
¼ @L
@r
;

and in order for this to be equivalent to Eq. (3.10.2) it is sufficient to write the

Lagrangian

L ¼ 1

2
mv2 � V þ e

c
v �A;

where A is a vector potential defined byH ¼ r � A. The momentum p is then

defined by

p ¼ @L
@v
¼ mvþ e

c
A; ð3:10:3Þ

and the classical Hamiltonian is

H ¼ v � @L
@v
� L ¼ 1

2
mv2 þ V : ð3:10:4Þ

If one then differentiates the Hamiltonian with respect to the applied mag-

netic field, keeping p and r constant, one finds

@H
@H

¼ @

@H



1

2
m
X
i

v2i þ VðrÞ
�

¼ m
X
i

vi

�
@vi
@H

�
p;r

¼ � e
c

X
i

vi

�
@Ai
@H

�
r

:

For a uniform field, H, it is convenient to write

A ¼ 1
2H� r; ð3:10:5Þ

which is consistent with the definition of A. Then

@H
@H

¼ � e

2c

X
i

vi
@ðH� rÞi
@H

¼ � e

2c
r� v:
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By comparison with (3.10.1) we then have

k ¼ � @H
@H

: ð3:10:6Þ

It is this expression that is taken as a definition of the quantum-mechanical

operator that represents the magnetic moment of a system. If in particular a

system is in an eigenstate of energy Ei then its magnetic moment is �@Ei=@H.

If it is a member of an ensemble of systems at temperature T then by

Eq. (3.3.1) its average magnetic moment is

�kk ¼ �Tr½ð@H=@HÞe��H�
Tr½e��H�

¼ �
�
@F
@H

�
�

; ð3:10:7Þ

where the Helmholtz energy, F , is given by

F ¼ ���1 ln ½Trðe��HÞ�:

To illustrate this we might consider the magnetic moment due to a single

spinless electron. In the absence of a magnetic field the Hamiltonian is

H0 ¼
1

2m
p
2 þ VðrÞ:

As is seen from substituting for v from Eq. (3.10.3) in (3.10.4), the presence of

a magnetic field modifies the Hamiltonian to

H ¼ 1

2m

�
p� e

c
A

�2

þ VðrÞ; ð3:10:8Þ

which is equivalent to adding to H0 a perturbation

H1 ¼
e

2mc

�
e

c
A

2 � p �A� A � p
�
:

Use of the relation (3.10.5) then gives

H1 ¼ �
e

2mc
r� p �Hþ e2

8mc2
ðH� rÞ2:
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We then find that when H is taken in the z-direction

�z ¼ �
@H
@H

¼ e

2mc
ðr� pÞz �

e2H

4mc2
ðx2 þ y2Þ: ð3:10:9Þ

This shows that in the limit of small applied fields the magnetic moment

due to a spinless nonrelativistic electron is proportional to its orbital

angular momentum, L ¼ r� p, with a constant of proportionality equal to

e=2mc.

In solids the form of the potential Vðr) that acts on an electron bound to a

particular atom is frequently so lacking in symmetry that the eigenstates have

no net orbital angular momentum. That is to say, the states of the electron

are formed out of mixtures of equal amounts of the two degenerate wave-

functions corresponding to orbital angular momenta L and �L. The only

magnetic moment observed is then due to second-order effects such as the

second term in expression (3.10.9), which, being intrinsically negative, leads

to diamagnetic effects in which the induced moment is in the opposite direc-

tion to H. One says that the strong magnetic moment one would expect from

the first term in expression (3.10.9) is quenched.

Having thus considered and disposed of the orbital angular momentum as

an important source of magnetic effects in solids we now restore to the

electron its spin, and ask how this property modifies our picture. As spin

has been shown to be a consequence of the relativistic nature of the electron

we might take as our starting point the Dirac equation, which describes the

relativistic motion of an electron or positron by means of a wavefunction

having four components. In the nonrelativistic limit the electron and positron

parts of this equation may be separated by means of the Foldy–Wouthuysen

transformation to give an equation for the two-component wavefunction

describing the electron alone. The fact that the electron wavefunction does

have two components is consistent with the electron possessing a degree of

freedom corresponding to a spin angular momentum s of 1
2 0 that can point

either up or down.

The most important terms from our point of view that are contained in this

reduction of the Dirac equation are given by the Hamiltonian

H ¼ 1

2m

�
p� e

c
A

�2

� 1

8m3c2
p
4 þ VðrÞ � e

mc
s �r � A

þ 1

2m2c2
s �


rVðrÞ �

�
p� e

c
A

��
þ 02

8m2c2
r2V : ð3:10:10Þ
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This differs from expression (3.10.8) in having a term in p
4, which is a rela-

tivistic correction to the kinetic energy, and in having two terms involving

the spin angular momentum s. In this section we consider only the first of the

terms containing s. Since r � A ¼ H the presence of this term in the

Hamiltonian shows the electron to have a magnetic moment of es=mc due

to its spin. The ratio of the magnetic moment of a substance to its angular

momentum is a quantity that can be determined by experiment, and is

found to be close to a value of e=mc in many ferromagnetic substances.

This indicates that it is the spin of the electron rather than its orbital motion,

which from (3.10.9) would have led to a value of e=2mc for this ratio, that is

principally responsible for magnetic properties in these materials.

The operator s, being an angular momentum, has the same com-

mutation properties as the orbital angular momentum L. Because of the

definition

L ¼ r� p

and the relation

½r; p� ¼ i0

it follows that

½Lx;Ly� ¼ i0Lz; ½Ly;Lz� ¼ i0Lx; ½Lz;Lx� ¼ i0Ly;

or, more concisely,

L� L ¼ i0L:

We then also have the relation

s� s ¼ i0s: ð3:10:11Þ

It is useful to define two new operators, sþ and s�, known as spin raising and

lowering operators, by writing

sþ ¼ sx þ isy; s� ¼ sx � isy: ð3:10:12Þ

We then find that

½sz; sþ� ¼ 0sþ; ½sz; s�� ¼ �0s�: ð3:10:13Þ
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It then follows that if the state j"i is an eigenfunction of sz having eigenvalue
1
2 0, then s

�j"i is the eigenfunction j#i of sz having eigenvalue � 1
2 0.

szðs�j"iÞ ¼ ðs�sz � 0s�Þj"i
¼ ð12 0s� � 0s�Þj"i
¼ � 1

2 0ðs�j"iÞ:

The naming of sþ may be similarly justified by showing that it transforms j#i
into j"i. As these are the only two possible states for a spin-12 particle we have

sþsþ ¼ s�s� ¼ 0:

The spin raising and lowering operators remind us rather strongly of boson

creation and annihilation operators. We recall that the number operator for a

boson state can have an eigenvalue equal to any one of the infinite spectrum

of natural numbers (Fig. 3.10.1(b)). The operator sz, which has eigenvalues

� 1
2 0 (Fig. 3.10.1(a)) could be considered as operating within the ‘‘ladder’’ of

the boson system if we could somehow disconnect the bottom two rungs

from the rest of the spectrum. The procedure that enables one to make the

correspondence between the spin system and the boson system is known as

the Holstein–Primakoff transformation. We define boson operators ay and a
as usual so that

½a; ay� ¼ 1; aya ¼ n;
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Figure 3.10.1. In the Holstein–Primakoff transformation a direct correspondence is
achieved between the two possible states of a particle of spin 1

2 0 and the n ¼ 0 and
n ¼ 1 states of a harmonic oscillator.



and make the identification

sþ ¼ 0ð1� nÞ1=2a; s� ¼ 0ayð1� nÞ1=2: ð3:10:14Þ

Substitution of these expressions in (3.10.11), (3.10.12), and (3.10.13) shows

that these relations satisfy the commutation relations for spin operators, and

that

sz ¼ 0 1
2� n
 !

: ð3:10:15Þ

This form for sz seems to suggest that it can have all the eigenvalues 1
2 0, � 1

2 0,
� 3

2 0, etc. While this is so one can also see that the operator s�, which trans-

forms the state with sz ¼ þ 1
2 0 to that with sz ¼ � 1

2 0, is not capable of further
lowering the spin, as the factor (1� nÞ1=2 then gives zero. There is in effect a

barrier separating the lowest two levels of the boson system from the other

states. This correspondence paves the way for the description of a ferromag-

net in terms of a gas of interacting bosons. We shall in particular consider a

model of a ferromagnetic insulator. This is distinguished from the ferromag-

netic conductor considered in Section 2.8 by the fact that the spins are

considered as bound to a particular lattice site in the manner of the classical

model of Section 1.4.

3.11 Magnons

In a ferromagnet an atom carrying a magnetic moment is not free to orient

itself at random, but is influenced by the moments carried by other atoms in

the crystal. The simplest model of such a situation is due to Weiss, who

assumed that there was an effective magnetic field Hm acting on each atom

proportional to the macroscopic magnetization of the whole crystal. This

model is very similar in concept to the Einstein model of lattice dynamics

introduced at the end of Section 3.8, where it was assumed that the restoring

force on a displaced atom was due equally to every other atom in the crystal.

The term mean field model is now used generically to refer to theories such as

the Weiss or Einstein models in which a sum of different forces is approxi-

mated by an overall average. Because a mean field theory ignores the dom-

inance of interactions between neighboring atoms, there are no low-

frequency phonons in theEinsteinmodel of lattice dynamics.As a consequence

the lattice specific heat is incorrectly predicted to vary exponentially at low

temperatures. In a similar way the Weiss model of ferromagnetism does not

support the existence of magnons of low frequency, and the magnetization of
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a ferromagnet of spinning electrons is also incorrectly predicted to vary

exponentially at low temperatures. What is needed to rectify this situation

is a theory based on a model in which the interaction between near neighbors

is emphasized.

The simplest such model of a ferromagnet is one in which neighboring

spins interact only through the z-component of their magnetic moments. A

lattice of N fixed electrons (fixed so that we can neglect kinetic and potential

energies) would then have the Hamiltonian

H ¼ �
X
l

szðlÞ


ju0j þ

X
l 0
Jll 0szðl 0Þ

�
;

where u0 ¼ eHz=mc, the l and l 0 are lattice sites, and the Jll 0 are functions

only of l� l 0. This is known as the Ising model, and is of great interest to

those who study the statistical mechanics of phase transitions. It is of less

interest to us, however, as it is no more able to support magnons than was the

Weiss model. We could say in classical terms that because the x- and y-

components of magnetic moment are ignored, the tilting of one moment

does not induce its neighbor to change its orientation. It is thus necessary

to introduce interactions between the x- and y-components of spin, leading us

to the Heisenberg model, for which

H ¼ �
X
l

sðlÞ �


u0 þ

X
l 0
Jll 0sðl 0Þ

�
: ð3:11:1Þ

We rewrite this in terms of boson operators by making use of the Holstein–

Primakoff transformation. From Eqs. (3.10.12), (3.10.14), and (3.10.15) we

find

sðlÞ � sðl 0Þ ¼ sxðlÞsxðl 0Þ þ syðlÞsyðl 0Þ þ szðlÞszðl 0Þ
¼ 1

2 ½sþðlÞs�ðl 0Þ þ s�ðlÞsþðl 0Þ� þ szðlÞszðl 0Þ
¼ 1

2 0
2½ð1� nlÞ1=2alayl 0 ð1� nl 0 Þ1=2 þ aylð1� nlÞ1=2ð1� nl 0 Þ1=2al 0 �

þ 02ð12� nlÞð12� nl 0 Þ: ð3:11:2Þ

At very low temperatures the magnetization of the specimen, which will be

directed in the z-direction, will be close to its saturation value of (Ne=mcÞ 12 0.
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That is, the total z-component of spin will be close to 1
2N0. In terms of the

boson number operators, nl, we have from (3.10.15) thatX
l

szðlÞ ¼ 1
2N0�

X
l

nl0;

showing that the expectation value of the nl will all be small compared with

unity at low temperatures. We take this as justification for neglecting terms of

order n2 in expression (3.11.2). Replacing (1� nlÞ1=2 by unity in this way we

find that

sðlÞ � sðl 0Þ ’ 1
2 0

2 ala
y
l 0 þ aylal 0 þ 1

2� nl � nl 0
� �

:

As we are looking for spin waves, now is clearly the time to transform from

local to collective coordinates. The magnon creation and annihilation opera-

tors are defined by

ayq ¼ N�1=2 X
l

eiq � layl; aq ¼ N�1=2 X
l

e�iq � lal;

from which

a
y
l ¼ N�1=2 X

q

e�iq � layq; al ¼ N�1=2 X
q

eiq � laq:

The sum over q is restricted as for the case of phonons to N distinct allowed

values, such as are contained within the first Brillouin zone defined in Section

3.6. We then find that

sðlÞ � sðl 0Þ ’ 02

2N

X
q;q 0

½aqayq 0eiðq � l�q
0 � l 0Þ þ ayqaq 0e�iðq � l�q

0 � l 0Þ

� ayqaq 0 ðe�iðq�q
0Þ � l þ e�iðq�q 0Þ � l 0 Þ� þ 1

4 0
2:

If we define

Jq ¼
X
l 0
eiq � ðl

0�lÞJll 0

we have for the Heisenberg Hamiltonian (3.11.1)

H ¼ 0!0

X
q

ayqaq � 1
2

� �
þ 1

2 0
2
X
q

J0 � Jq
 !

ayqaq þ J0 � J�q
 !

aqa
y
q � 3

2 J0

h i
:
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For a Bravais lattice it will be true that Jq ¼ J�q, giving us

H ¼ E0 þ
X
q

0!qa
y
qaq;

where E0 is a constant and

!q ¼ !0 þ 0ðJ0 � JqÞ:

Within the approximations we have made we can thus consider the magnet

as a system of independent bosons. Because

J0 � Jq ¼ 2
X
l 0
Jll 0 sin

2 1
2 q � ðl� l 0Þ$ %

the magnon frequency ! will always increase as q2 for small values of q, in

agreement with the classical approach of Section 1.4.

This simple theory is adequate to account for a number of the low-

temperature properties of ferromagnets, when only a few magnons are

excited. The total magnetization, Mz, for instance, is given by

Mz ¼
e

mc

X
l

szðlÞ ¼
e

mc

1

2
N0�

X
l

nl0

 !
¼ e0
mc

1

2
N �

X
q

nq

 !
; ð3:11:3Þ

showing that each magnon carries a magnetic moment of ðe0=mcÞ. The Bohr
magneton �B is defined as e0=2mc, and so we can write the deviation from

saturation of the magnetization as

M0 �Mz ¼ 2�B
X
q

nq:

Because the magnons behave as bosons the average number present in any

mode will be given by (3.3.2), from which

X
q

�nnq ¼
X
q

1

exp ð0!q=kTÞ � 1
: ð3:11:4Þ

At low temperatures only magnons of low energy will be present, and so in

a cubic crystal in the absence of an applied field !q may be approximated

by �q2, where � is a constant. Writing the summation over q as an integral in
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q-space we find

X
q

�nnq /
ð

q2 dq

exp ð�0q2=kTÞ � 1
:

Changing the variable of integration from q to x ¼ �0q2=kT gives the low-

temperature relation

M0 �Mz / T3=2; ð3:11:5Þ

which is a result well verified experimentally. Mean field theories predict

either a linear or exponential variation, according to whether a classical or

quantized picture of the magnetic moment is used.

As the temperature is increased and the magnetization begins to deviate

from its saturation value, the approximation of replacing (1� nlÞ1=2 by 1 will

become less valid. If we expand this expression binomially, writing

ð1� nlÞ1=2 ¼ 1� 1
2 nl � 1

8 n
2
l � � � �

¼ 1� 1

2N

X
q;q 0

ayqaq 0e
�iðq�q 0Þ � l � � � �

we can interpret the exact Hamiltonian as describing a magnon system with

interactions. We could then use perturbation theory to calculate a better

estimate of how the magnetization should vary with temperature at low T .

However, we know that there exists a Curie temperature, TC, at which the

magnetization vanishes. It will thus be a fruitless task to pursue the perturba-

tion approach too far in this direction, as convergence will become very slow

as soon as T becomes comparable to TC. There are also complications that

arise from the upper limit !max to the frequencies !q over which one sums in

Eq. (3.11.4). This introduces terms of the form e�0!max=kT , which are not

expressible as any sort of power series in T , and makes comparison with

experiment very difficult.

As a final note on magnons it should be mentioned that more complicated

magnetic structures than the ferromagnet also have elementary excitations in

the form of spin waves. Simple, helical, and canted antiferromagnetism and

ferrimagnetism are examples of phenomena that arise when various inter-

actions occur between localized spins in various crystal structures. All these

exhibit magnon excitations of one form or another, and show a variety of

forms of !ðqÞ.
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Problems

3.1 Verify that for the Bogoliubov operators defined in Section 3.4

½�k; �yk 0 � ¼ �kk 0 :

3.2 Calculate the excitation spectrum of a gas of charged bosons interacting

through the Coulomb potential.

3.3 An alternative approach to the Bogoliubov theory of interacting bosons

first expresses the Hamiltonian (3.4.1) in terms of � and �y. One then

argues that the ground-state energy is found by evaluating h�jHj�i,
where j�i is the vacuum state such that �kj�i ¼ 0 for all k. Show that

minimization of this ground-state energy with respect to the �k leads to

the same results as the approach given in the text.

3.4 Optical and Acoustic Modes The problem of the chain of masses and

springs is modified by the introduction of extra springs connecting every

second particle. Then, with l ¼ na,

H ¼
X
all n



1

2M
p2l þ

1

2
K1ðyl � ylþaÞ2

�

þ
X
even n

1

2
K2ðyl � ylþ2aÞ2:

Find the phonon frequencies for this system. [Hint: First make the

transformations:

yð1Þq ¼
X
n even

e�iqlyl; yð2Þq ¼
X
nodd

eiqlyl:�

3.5 A particle is bound in a one-dimensional potential, VðxÞ, which can be

approximated for small x by

V ¼ 1
2m!

2x2 � �x3:

Show how the mean position of the particle,
Ð
 *x dx, changes with

the energy of the eigenstates when � is small. [Hint: Use perturbation

theory on the harmonic oscillator states by writing x3 and x in terms of

ay and a.] This illustrates the fact that the thermal expansion of a crystal

is due to anharmonic terms in the potential energy.
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3.6 Magnon–phonon Interactions If we allow the spins in the Heisenberg

Hamiltonian (3.11.1) to be displaced by the presence of phonons in

the lattice, then we must allow the constants Jll 0 to be functions of

the displacements yl and yl 0 . At low temperatures these displacements

will be small and one can put

Jll 0 ðyl; yl 0 Þ ¼ Jll 0 ð0; 0Þ þ yl �Kll 0 � yl 0 �Kll 0 :

Rewrite the total Hamiltonian in terms of magnon and phonon anni-

hilation and creation operators, aðmagnonÞ
q , ay ðmagnonÞ

q , aðphononÞq , and

ayq
ðphononÞ.

3.7 Show that the Hamiltonian for magnon–phonon interactions derived in

Problem 3.6 exhibits conservation of the total number of magnons, in

that



H;
X
q

ayqaq

�
¼ 0

when ayq and aq are magnon operators.

3.8 The result of Problem 3.7 is no more than an expression of the

conservation of total angular momentum in the z-direction. Noncon-

servation of total magnon number can occur when there is interaction

between the electron spin and the spin of the nucleus at a particular site.

Express in terms of magnon operators the Hamiltonian of a Heisenberg

ferromagnet interacting with a nuclear spin of 1
2 0 at one particular

site.

3.9 Evaluate the expectation value of nk ¼ a
y
kak in the ground state j�i of

the Bogoliubov picture of helium. [Hint: Express nk in terms of the

�-operators and then make use of the fact that �kj�i ¼ 0 for all k.]

3.10 Express the ground-state j�i of the Bogoliubov picture of helium in

terms of the operators a
y
k and the vacuum state j0i.

3.11 Prove the statement preceding Eq. (3.6.3) which says that the matrix Vij
q

has three mutually perpendicular eigenvectors.
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3.12 Consider a large number N of spinless interacting bosons of mass m in a

large one-dimensional box of length L. There are periodic boundary

conditions. The particles interact via a delta-function potential, and so

the Hamiltonian is

H ¼
X
k

Ak2a
y
kak þ ðV=2LÞ

X
k;k 0;q

a
y
k�qa

y
k 0þqak 0ak

with A and V constants. The sums proceed over all permitted values of

k, k 0, and q. That is, the terms with q ¼ 0 are not excluded from the

sum.

(a) Calculate the energy of the ground state of the noninteracting

system.

(b) Calculate the energy of the ground state of the interacting system in

the Hartree approximation.

(c) Estimate the speed of low-frequency sound waves in this system.
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Chapter 4

One-electron theory

4.1 Bloch electrons

The only model of a metal that we have considered so far has been the gas of

interacting electrons. A real metal, of course, contains ions as well as elec-

trons, and we should really include the ionic potentials in the Hamiltonian,

rather than the uniform background of positive charge that we used to

approximate them. The difficulty of the many-electron problem is such, how-

ever, that the loss of translational invariance caused by adding an ionic

potential Vðr) to the Hamiltonian proves disastrous. Even in the Hartree–

Fock approximation, for example, it becomes impossible to write the energy

in a closed form. When there was no ionic potential we could write the

wavefunction of the noninteracting system as

j�i ¼
Y
jkj<kF

c
y
kj0i; ð4:1:1Þ

where the operators c
y
k created electrons in plane-wave states. But if there is

an additional potential applied to the system we might find the energy to be

lower in the state � if we replaced the cyk by operators cy� that create electrons

in states that are not plane waves. The definition of the Hartree–Fock

approximation in this general case is then taken to be that � must be a

Slater determinant and must make the expectation value of the

Hamiltonian a minimum. It becomes very laborious to work out what states

the cy� should create to fulfill this condition.

We are saved from what seems to be an impossible task by three fortunate

features of the problem. The first of these is the fact that we can initially

ignore the thermal motion of the lattice, and study the motion of the elec-

trons in the potential of a stationary array of ions. This is known as the

adiabatic or Born–Oppenheimer approximation. Its justification appears when
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we apply the motion of the ions as a perturbation, and calculate the effects of

the gas of phonons interacting with the electrons. This is discussed in detail

in Chapter 6. There we find the corrections to the electron energies to be

comparatively small, and of importance only in special circumstances like

superconductivity.

The second useful fact is that the electrons in the core of an atom are so

tightly bound that they are not significantly perturbed by the motion of

electrons at the Fermi energy. The effects of the core electrons on the proper-

ties of a solid are limited to their repulsion of other electrons through elec-

trostatic forces, and to the effective repulsion that arises from the demands of

the Exclusion Principle that no two electrons of the same spin occupy the

same location. The consequences of the requirement that the wavefunctions

of the higher-energy electrons be orthogonal to those of the core states will be

discussed in Section 4.4.

The third happy feature of the problem is the most important. It is the fact

that the properties of a system of interacting electrons in a static lattice

potential can be found by solving a set of related one-electron Schrödinger

equations. The formalism by means of which this equivalence can be proved

is known as density functional theory, and is the topic of Chapter 5. For now

we assume this result, and turn our attention to the solution of the

Schrödinger equation for a single electron moving in the potential Vðr) due

to a periodic crystal lattice. That is, we need to solve the equation

� 02

2m
r2 ðrÞ þ VðrÞ ðrÞ ¼ E ðrÞ; ð4:1:2Þ

where the lattice potential has the property that, for all lattice vectors l,

VðrÞ ¼ Vðrþ lÞ.
If the potential were zero, the wavefunctions would be of the form dis-

cussed in Section 2.1,

�k ¼ ��1=2eik � r;

with energies given by

Ek ¼
02
k

2

2m
:

If we now slowly switch on the lattice potential the wavefunctions are per-

turbed to a new form

 k ¼ ��1=2ukðrÞeik � r: ð4:1:3Þ
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Because the lattice potential is periodic, this modification of the wavefunction

is also periodic, and so

ukðrÞ ¼ ukðrþ lÞ:

The fact that the wavefunctions can be written in the form (4.1.3) is known

as Bloch’s theorem, and can be proved as follows. Let us consider any solu-

tion  of the Schrödinger equation

HðrÞ ðrÞ ¼ E ðrÞ:

On relocating the origin of r we find

Hðrþ lÞ ðrþ lÞ ¼ E ðrþ lÞ:

But since Vðrþ lÞ ¼ VðrÞ it follows that

HðrÞ ðrþ lÞ ¼ E ðrþ lÞ:

Thus any linear combination of the  ðrþ lÞ for different l gives a valid

eigenstate of energy E. Let us in particular choose the combination

 kðrÞ ¼
X
l

 ðrþ lÞe�ik � l

¼ eik � r
X
l

 ðrþ lÞe�ik � ðrþlÞ:

Because the sum is over all l it must be a periodic function of r with the

period of the lattice, and can be identified with the function ukðrÞ of

Eq. (4.1.3). If we now impose the cyclic boundary conditions that we used

in Section 2.1 for free electrons, and demand that

 kðrÞ ¼  kðrþ LÞ

for three different large lattice vectors L, we shall clearly have the condition

that all the components of k must be real.

An electron having a wavefunction of the form (4.1.3), where ukðrÞ is

periodic in the lattice, is known as a Bloch electron. In terms of ukðrÞ the

Schrödinger equation (4.1.2) becomes�
� 02

2m
ðr þ ikÞ2 þ VðrÞ

�
ukðrÞ ¼ EkukðrÞ; ð4:1:4Þ
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which we write as

HkukðrÞ ¼ EkukðrÞ:

The reciprocal lattice vectors, g, defined in Section 3.6, have the property

that eig � l ¼ 1 for all g and l. It follows that any function that may be written

in the form
P

g age
ig � r is periodic with the periodicity of the lattice. The

converse may also be shown to be true for any well behaved periodic func-

tion, which allows us to expand VðrÞ and ukðrÞ in Fourier series of the plane

waves eig � r. We can thus write

VðrÞ ¼
X
g

Vge
ig � r; ukðrÞ ¼

X
g

ugðkÞeig � r;

where

Vg ¼ ��1

ð
e�ig�rVðrÞ dr; ugðkÞ ¼ ��1

ð
e�ig � rukðrÞ dr:

If we substitute these expressions into (4.1.4) and equate the various Fourier

components we find the infinite set of equations

02

2m
ðgþ kÞ2ugðkÞ þ

X
g 0

Vg 0ug�g 0 ðkÞ ¼ EkugðkÞ;

which can in principle be solved for Ek and ugðk). The graph of Ek against k is

known as the band structure, for reasons that will soon be apparent. It is

interesting to note that it is only certain Fourier components of the atomic

potentials that contribute to these equations which determine the Ek. If the

lattice potential is supposed to be due to a superposition of atomic potentials

VaðrÞ, so that

VðrÞ ¼
X
l

Vaðr� lÞ;

one can write the Fourier transform of VðrÞ as

VðqÞ ¼ ��1

ð
e�iq � rVðrÞ dr

¼ ��1

�X
l

e�iq � l
� ð

Vaðr 0Þe�iq � r
0
dr
0:
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Thus the Fourier transform of the lattice potential is expressed in terms of the

Fourier transform, VaðqÞ, of the atomic potential VaðrÞ. However, because

the sum over l vanishes unless q is equal to a reciprocal lattice vector, g, the

energies of the Bloch electrons depend only on these particular terms in VðqÞ.
This is illustrated in Fig. 4.1.1.

If one were to take a free electron and slowly switch on the lattice potential,

the wavefunction would be gradually transformed from a plane wave to a

Bloch wave of the form (4.1.3). In general the value of k is then well defined,

since it does not change from its original value, and the plane wave merely

becomes modulated by the function ukðrÞ. It is, however, possible to write the
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Figure 4.1.1. VðqÞ is the Fourier transform of the potential VðrÞ due to a single atom.
When one sums the contributions of all the atoms in the lattice the only parts of VðqÞ
that do not vanish occur when q is equal to a reciprocal lattice vector g.



Bloch wavefunction in the form

 kðrÞ ¼ ��1=2½ukðrÞeig � r�eiðk�gÞ � r:

Because both ukðrÞ and eig � r are periodic, so is their product. This means that

the wavefunction can be considered as obeying the Bloch condition (4.1.3)

not just for one value of k, but for any value such as k� g. This is not the

same thing as the equivalence that was found in Section 3.6 of the coordinate

yq to yqþg, for here we are dealing with a set of wavefunctions that are all

different although they happen to obey the Bloch equation with the same k.

The function ukðrÞeig � r is not the same as ukþgðrÞ. The difference arises from

the fact that the phonon problem has only a limited number of degrees of

freedom, while the Schrödinger equation has an infinity of solutions. The

Bloch theorem allows these solutions to be classified either according to the

original value of k before the potential was switched on, or else according to

the value of k after some reciprocal lattice vector has been added to it. The

first Brillouin zone was defined in Section 3.6 as the volume in k-space con-

taining all those points for which jkj � jkþ gj for all g. It is sometimes

convenient to classify Bloch states by specifying the value of k reduced to

lie in the first Brillouin zone. To define the state completely it is then also

necessary to define a band index which is related to the value of g necessary to

achieve this reduction. In general the band index is defined as the number of

different values of g (including zero) for which jkj � jkþ gj. This is illustrated

in Fig. 4.1.2 for a hexagonal lattice in two dimensions. The point a cannot be
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Figure 4.1.2. In this two-dimensional hexagonal lattice the point a lies in the first
Brillouin zone. The point b lies in the second Brillouin zone while the point c lies in
the third zone.



brought closer to the origin � by addition of any nonzero reciprocal lattice

vector. It thus has band index 1, and is said to be in the first Brillouin zone.

The point b can be brought closer to � only by addition of the vector g that

takes it to b 0. It thus has band index 2 and is in the second Brillouin zone.

Point c is in the third Brillouin zone, since it may be reduced either to c 0 or c 00,
and so on. One thus has two alternative schemes for depicting the band

structure Ek. The first scheme, in which k is allowed to take on any value

consistent with the boundary conditions, is known as the extended zone

scheme. In the second, the band structure is written in the form EðnÞk , where

n is the band index, and now k is the reduced wavenumber, restricted to lie

within the first Brillouin zone. This is known as the reduced zone scheme. The

usefulness of the reduced zone scheme is a consequence of the most impor-

tant property of Bloch electrons, namely that surfaces of discontinuity in

general exist in Ek in the extended zone scheme at all the boundaries between

Brillouin zones. In the reduced zone scheme, however, EðnÞk is always a con-

tinuous function of k.

This may be made plausible by the following argument. When k does not

lie on a Brillouin zone boundary, so that there is no nonzero g for which

jkj ¼ jkþ gj, then  k is certainly different from its complex conjugate  *k.

Now a complex wavefunction always carries a current, since then  *kr k �
 kr *k cannot vanish, and so the application of an electric field to the system

will change the energy of the electron even if the field is vanishingly small.

This energy change comes about by the mixing of  k with states of neighbor-

ing wavenumber whose energies are arbitrarily close to Ek. If k lies on a zone

boundary, however,  k may be real and still satisfy the Bloch condition.

There is then no current carried by these states, and so there are not neces-

sarily states whose energies are arbitrarily close to Ek both from above and

below. One may then find ranges of energy over which there are no states.

One may define a density of states in energy DðE) by the relation

DðEÞ ¼
X
k

�ðE � EkÞ;

where the sum proceeds over all values of k in the extended zone scheme. For

an infinite crystal this spectrum of delta-functions becomes a continuum, and

can be plotted to give a curve that might, for example, be of the form shown

in Fig. 4.1.3. The states for which k is in the first Brillouin zone contribute to

the shaded part of DðEÞ, while states in the second and higher Brillouin zones

give the rest. The fact that there are bands of energy for which DðEÞ vanishes

justifies the naming of Eðk) as the band structure of the crystal.
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4.2 Metals, insulators, and semiconductors

If a crystal is composed of N atoms then each Brillouin zone contains N

allowed values of k. As an electron has two spin eigenstates each zone may

then contain 2N electrons, which is equivalent to saying that there are two

states per zone per atom in a Bravais lattice. In some elements it happens that

the number of electrons that each atom possesses is just sufficient to populate

all the states below one of the gaps in DðEÞ. This has a very important

effect on a number of the properties of these elements, and especially on

the electrical properties. At zero temperature all the states below one of the

band gaps are filled, while all the states above it are empty. One thus is

required to provide an energy equal to the width, 2�, of the band gap if

one is to excite an electron from the lower band (known as the valence band)

to the upper one (known as the conduction band). Thus the crystal will not

absorb electromagnetic radiation of frequency ! if 0! < 2�. In particular the

crystal will not absorb energy from a weak electric field of zero frequency –

that is, it is an insulator. In a metal, on the other hand (in which term we

include such good conductors as ReO3 or RuO2), the number of electrons is

such that at zero temperature there are occupied and unoccupied states

differing in energy by an arbitrarily small amount. The energy of the most

energetic electron (the Fermi energy, EF , which is the chemical potential

at zero temperature) does not coincide with a gap in the density of states.

The crystal can then absorb radiation of low frequency, which makes it a

conductor.
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Figure 4.1.3. In this model all the states in the valence band (shown shaded) are
occupied, while all those in the conduction band are empty. This system would be an
insulator, since a finite amount of energy would be required to create a current-
carrying elementary excitation.



The Fermi surface of a metal of Bloch electrons is defined as the locus of

values of k for which EðkÞ ¼ EF . Whereas for free electrons this surface was a

sphere of radius 0�1ð2mEF Þ1=2, for Bloch electrons it is distorted to a greater

or lesser extent from spherical shape, particularly by the effects of the dis-

continuities in EðkÞ. Because the discontinuities of EðkÞ occur only at the zone

boundaries, the Fermi surface remains continuous in the reduced zone

scheme. If, however, there are states with different band indices contributing

to the Fermi surface then the surface will consist of two or more sheets. In

experiments on metals in magnetic fields one can sometimes separately dis-

tinguish the effects of the various parts of the Fermi surface.

We started our discussion of Bloch electrons by considering the effects of

the lattice potential as a perturbation of the free-electron wavefunction. We

might, however, have approached the problem from the opposite extreme,

and looked at Bloch states as perturbations of atomic orbitals. A useful

picture of this viewpoint is given in Fig. 4.2.1(a), which shows the degenerate

energy levels of a crystal of widely spaced atoms broadening into bands as the

lattice spacing a is reduced from some initial large value. In the case of a

simple monovalent metal like sodium or potassium, with only one electron in

its outer shell, the lower band shown in Fig. 4.2.1(b) would always be only

half-filled, since there are two possible spin states for each value of k. The

4.2 Metals, insulators, and semiconductors 133

Figure 4.2.1. Atomic energy levels found when the interatomic spacing a is
large broaden into bands when a is reduced (a). Monovalent atoms have half-filled
bands (b). Divalent atoms have filled valence bands at large a but become
conductors when a is small and the bands overlap (c).



electrical conductivity would then be high, provided a were sufficiently small

to allow passage from one atom to another.

For a crystal of divalent atoms like magnesium, the lower band will be

filled, as in Fig. 4.2.1(c). For large a the crystal would be an insulator, as by

symmetry the occupied states would carry zero net total current. That mag-

nesium is a metal must be a consequence of a being small enough that two

bands overlap, allowing each to be partially filled. Magnesium does indeed

crystallize in the hexagonal close-packed structure, and is a good metal.

Carbon, on the other hand, can crystallize into the much more open diamond

structure. Being tetravalent it then has a filled valence band, and is an excel-

lent electrical insulator, with a band gap of over 5 eV.

Silicon and germanium also crystallize in the diamond structure, but have

much smaller band gaps, of the order of 1.1 eV for Si and 0.67 eV for Ge.

This makes them semiconductors, as it is possible at room temperature to

excite a few electrons from the valence band into the conduction band.

Thermal energies at room temperature are only about 0.03 eV, giving a

probability of thermal excitation of only about e�22, which is 10�10, in

germanium. Intrinsic semiconductors, like pure Ge and Si, thus have quite

low conductivities.

A much larger conductivity, and hence more technological usefulness, can

be obtained by adding impurities to produce an extrinsic semiconductor.

Adding small amounts of a pentavalent element such as arsenic to silicon

increases the number of electrons available for conduction. This doping with

donor atoms moves the chemical potential up from its previous position in

the middle of the energy gap, and into the conduction band. The material is

now known as n-type silicon. The converse process of doping with trivalent

acceptor atoms produces p-type silicon, whose chemical potential lies in the

valence band.

The union of p-type and n-type material to form a p–n junction enables a

wealth of useful phenomena to occur. In a photovoltaic cell, electrons fed

into the valence band of p-type material may be elevated into the conduction

band by a photon of sunlight. They then emerge from the n-type material at a

higher potential and can do useful work before being returned to the lower

potential of the p-type material. In a light-emitting diode, or LED, the

reverse process occurs. Electrons at a high enough potential to be fed into

the conduction band of the n-type material can move to the p-type side and

then fall into the valence band, emitting a photon of light as they do so. From

more complex arrangements of p-type and n-type semiconductors and

metals, that ubiquitous foundation of our technological society – the tran-

sistor – can be constructed.
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4.3 Nearly free electrons

There are now powerful computer codes that can produce credible forms for

EðkÞ for any given periodic potential. In materials in which there are several

atoms in each unit cell these band structures may be exceedingly complex,

and so it is useful to start by looking at some much simpler situations. In this

way we can appreciate some of the concepts that play important roles in

determining material properties. The simplest approximation one can make

is to neglect the lattice potential altogether, except in as much as to allow the

existence of infinitesimal discontinuities in EðkÞ at the zone boundaries. The

Fermi surface one obtains then consists of portions of the free-electron

sphere reduced to lie in the first Brillouin zone. This is known as the

remapped free-electron model. An example of this construction in two dimen-

sions is shown in Fig. 4.3.1 for a hexagonal reciprocal lattice. The circle of the

extended zone scheme is reduced to a central portion, A, derived from the

second Brillouin zone and a group of small regions, B, derived from the third

Brillouin zone. The occupied electron states are always on the concave side of

the boundaries, and so the surface A is seen to contain unoccupied states. It is

consequently known as a ‘‘hole surface.’’ The portions B, on the other hand,

contain electrons. We note that the use here of the term ‘‘hole’’ is quite
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Figure 4.3.1. The circle represents the free-electron Fermi surface in the extended
zone scheme. In the remapped representation of the reduced zone scheme it forms a
central ‘‘hole’’ surface and a group of small electron surfaces.



distinct from that of Chapter 2, where a hole was simply the absence of an

electron from a state below the Fermi energy. In the context of band struc-

tures, a hole is also an unoccupied state, but one that has an additional

property: the energy of the state decreases as one moves away from the

interior of the constant-energy surface, as is the case for the surface A in

Fig. 4.3.1. A hole state in band-structure parlance may have an energy either

below or above the Fermi energy. We shall see some examples of hole states

in later sections of this chapter.

The way in which the remapped free-electron Fermi surface is derived from

the Fermi surface in the extended zone scheme is seen most easily when the

first Brillouin zone of Fig. 4.3.1 is repeated periodically to form the scheme

shown in Fig. 4.3.2. In this repeated zone scheme one sees that the various

parts of the Fermi surface are formed in the first Brillouin zone when a free-

electron sphere is drawn around each point in the reciprocal lattice.

The simplest approximation that can be made that includes the effect of the

lattice potential is known as the model of nearly free electrons. Here one

assumes that only a certain small number of different plane waves combine

to form the Bloch wave  k. The relative coefficients of these plane waves

are then varied to minimize
Ð
 *kH k dr, and this gives an approximation for

EðkÞ and the wavefunction in the first Brillouin zone. The form of EðkÞ in the

second zone is found by minimizing the integral by varying wavefunctions

restricted to be orthogonal to those in the first zone, and so on. In practice
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Figure 4.3.2. This picture shows the model of Fig. 4.3.1 in the repeated zone scheme,
and is formed by periodically repeating the first Brillouin zone of the reduced zone
scheme.



the labor involved can be greatly reduced if one chooses to include in  k only

those plane waves that one thinks will enter with large coefficients. Thus if a

point k in the extended zone scheme is much nearer to one zone boundary

than any other, then one might approximate  k by a mixture of eik � r and

eiðkþg1Þ � r where g1 is that reciprocal lattice vector that makes jkj close to

jkþ gj. Physically this is equivalent to saying that the plane wave eik � r will

only have mixed with it other plane waves whose energies are close to its own.

Thus, if we write

 k ¼ ��1=2½u0ðkÞeik � r þ u1ðkÞeiðk�g1Þ � r� ð4:3:1Þ

and

VðrÞ ¼
X
g

Vge
ig � r

with the zero of potential energy defined to make V0 vanish, thenð
 *H dr ¼ 02

2m
½u*0u0k

2 þ u*1u1ðk� g1Þ2� þ u*0u1Vg1
þ u*1u0V�g1

:

The normalization condition isð
 * dr ¼ u*0u0 þ u*1u1 ¼ 1:

We now minimize the energy by varying the wavefunction. According to

Lagrange’s method of undetermined multipliers we can take account of the

normalization condition by writing

�

� ð
 *H dr� 


ð
 * dr

�
¼ 0:

But now we can immediately identify the multiplier 
 with the energy E, for

this is the only way we can ensure that just multiplying  by a constant will

leave the term in brackets unchanged. On differentiating partially with

respect to u*0 and u*1 and putting 
 ¼ E we find

02
k

2

2m
u0 þ Vg1

u1 ¼ Eu0

02ðk� g1Þ2
2m

u1 þ V�g1
u0 ¼ Eu1:
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For these equations to be consistent the determinant of the coefficients must

vanish, and so

02
k

2

2m
� E Vg1

V�g1

02ðk� g1Þ2
2m

� E


















 ¼ 0

and thus

E ¼ 1

2

(
02
k

2

2m
þ 02ðk� g1Þ2

2m

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
02ðk� g1Þ2

2m
� 02k2

2m

� �2

þ 4Vg1
V�g1

s )
: ð4:3:2Þ

The two possible signs of the square root correspond to the nonuniqueness of

the wave vector k that characterizes the Bloch state. That is to say, this

expression tells us the energy of the electron in the first and second energy

bands. If k is chosen to lie in the first Brillouin zone then the negative square

root will give the energy of the state that is formed from the wavefunction

eik � r when the lattice potential is turned on slowly. The positive square root

will refer to the state formed from eiðk�g1Þ � r, and which was originally in the

second Brillouin zone.

It is interesting to note that this formula (4.3.2) for the energy of a Bloch

state is identical to the one we should obtain from the use to second order of

the Brillouin–Wigner perturbation theory described in Section 2.5. This result

is peculiar to the two-plane-wave assumption of expression (4.3.1), and

should not be looked upon as indicating that an approach using perturbation

theory is necessarily equivalent to a variational approach.

The general expression of the model of nearly free electrons is found when

any finite sum of plane waves is chosen as the trial wavefunction. Then if

 k ¼ ��1=2
X
g

ugðkÞeiðkþgÞ � r;

minimization of the energy leads to the series of equations

X
g

��
E � 02

2m
ðkþ gÞ2

�
�gg 0 � Vg 0�g

�
ugðkÞ ¼ 0:
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For these to be consistent the determinant of the coefficients of the ugðk) must

vanish, and so





�E � 02

2m
ðkþ gÞ2

�
�gg 0 � Vg 0�g





 ¼ 0: ð4:3:3Þ

This polynomial in E has as many solutions as there are plane waves in the

expansion of  k, and reduces to expression (4.3.2) when that number is only

two.

We can observe some of the effects of the lattice potential in the simplest

three-dimensional model, which is known as ‘‘sandwichium.’’ Here the lattice

potential is just 2V cos gx, and so the loci of the points jkj ¼ jkþ gj are just

the planes defined by kx ¼ �ðn=2Þg. The two-plane-wave version of the

nearly-free-electron model then gives expression (4.3.2) for the energy,

which in the neighborhood of kx ¼ 1
2 g becomes

E ¼ 02

2m
ðk2

y þ k2
zÞ þ

1

2

(
02k2

x

2m
þ 02ðkx � gÞ2

2m

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
02ðkx � gÞ2

2m
� 02k2

x

2m

� �2

þ 4V2

s )
; ð4:3:4Þ

which we write as

E ¼ 02

2m
ðk2

y þ k2
zÞ þ ExðkxÞ:

The form of Exðkx) is shown in Fig. 4.3.3 for two different values of V . The

sign of the square root has been chosen so that Ex! 02k2
x=2m as V ! 0,

which means that we are using the extended zone scheme. One sees that it

is only when kx is in the vicinity of 1
2 g that Ex deviates appreciably from its

free-electron value, and that a discontinuity in Ex does indeed occur when

kx ¼ 1
2 g. The magnitude of this discontinuity is 2V.

The shapes of the surfaces of constant energy are shown in Fig. 4.3.4,

where their intersections with the plane kz ¼ 0 are plotted. For low energies

the surfaces are close to spherical; then as kx approaches the zone boundary

Exðkx) starts to fall below the free-electron value, and the magnitude of

kx becomes correspondingly greater for a given energy. One says that the

constant-energy surfaces are ‘‘pulled out’’ towards the zone boundary. The
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Figure 4.3.3. The variation of energy with kx in the sandwichium model is shown by
the solid line for the case where V is small compared with 02g2=8m. As V is
increased, the discontinuity at the zone boundary becomes larger, as illustrated by
the dashed curve.

Figure 4.3.4. The variation of energy with the x�y component of wavenumber in the
sandwichium model is shown in this picture, in which the lines of constant energy are
drawn in the plane in which kz ¼ 0.



lowest-energy surface to meet the zone boundary is, in fact, pulled out to a

conical point at the place where it does so. We can verify this by writing

k ¼ ð 12 g� �x; ky; kzÞ

and expanding the square root in (4.3.4). For the negative root we find

E ’ 02

2m

�
1

2
g

�2

� V þ h2

2m
ðk2

y þ k2
zÞ �

02

2m
�2
x

�
02g2

4mV
� 1

�

¼ Eg � V þ 02

2m
ðk2

y þ k2
zÞ �

02�2
x

2m

�
2Eg
V
� 1

�
ð4:3:5Þ

where we have used the abbreviation

02

2m

�
1

2
g

�2

¼ Eg:

Thus when

E ¼ Eg � V

the energy surfaces are given by

k2
y þ k2

z ’
2Eg
V
� 1

� �
�2
x:

This equation defines a cone whose axis is in the x-direction.

When the energy is greater than Eg þ V one also finds energy states in the

second band. Then the positive square root is chosen in Eq. (4.3.4) and

E ’ Eg þ V þ 02

2m
ðk2

y þ k2
zÞ þ

h2�2
x

2m

�
2Eg
V
þ 1

�
:

The constant-energy surfaces are thus approximately spheroidal in this

region of k-space. If it were not for the factor of (2Eg=VÞ þ 1 that multiplies

the term in �2
x the surfaces would be spherical, and the free-electron band

structure that one finds near k ¼ 0 would merely be repeated at the bottom of

the second band. It is possible to exploit this similarity by considering the

electron energy to be given by the free-electron relationship, with the excep-

tion that the inverse of the electron mass must now be considered a tensor.

4.3 Nearly free electrons 141



Thus we can write

E ’ Eg þ V þ 1
2 0

2
k �M�1 �k;

with the understanding that the origin of k is taken to be the point ( 1
2 g; 0; 0Þ

and that

M
�1 �

1

m

2Eg
V
þ 1

� �
0 0

0
1

m
0

0 0
1

m

0BBBBBB@

1CCCCCCA:

The inverse-effective-mass tensor in this problem is thus anisotropic in that

the energy increases more rapidly as a function of kx than of ky or kz. If the

lattice potential is weak enough, then (M�1Þxx may be many times larger than

(M�1Þyy. In this case one says that it is a light electron for motion in the

x-direction.

It is also possible to interpret the band structure in the first band in these

terms by writing Eq. (4.3.5) in the form

E ’ Eg � V þ 1
2 0

2
k �M�1 �k:

In this case (M�1Þxx is negative while (M�1Þyy is still positive. The electron is

said to exhibit hole-like behavior for motion in the x-direction. If there were

also a periodic potential 2V cos gy then there would also be the possibility of

(M�1Þyy being negative for some points in k-space [Problem 4.5], and for a

three-dimensional crystal the states at the corners of the first Brillouin zone

will be completely hole-like.

The particular constant-energy surface that represents the boundary

between filled and empty states in a metal is again known as the Fermi

surface. The shape of the Fermi surface depends on the crystal structure,

the lattice potential, and the electron density, and is different for every

metal. For some, such as sodium or potassium, the lattice potential is

weak and the Fermi surface deviates little from a sphere. For others, and

in particular the polyvalent metals, the Fermi surface is far from

spherical, and may be formed from regions in several different Brillouin

zones.
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4.4 Core states and the pseudopotential

In using the nearly-free-electron approximation we have confined our interest

for the most part to the first few Brillouin zones. We have tacitly assumed

that the conduction-electron states can be found by solving the Schrödinger

equation for electrons moving in a weak potential that is composed of the

Coulomb attraction of the nuclei screened by the presence of the electrons in

the filled atomic shells.

This picture is not justifiable on two counts. Firstly, we must remember

that the Exclusion Principle demands that the wavefunctions of the conduc-

tion electrons be orthogonal to those of the electrons in the filled atomic

shells, or core states as we shall call them. Secondly, we can calculate that

for real solids the lattice potential is too strong for the nearly-free-electron

approach to be valid when only a few plane waves are used. That is to say,

the lowest Fourier components Vg of the lattice potential are not small

compared with 02
g

2=8m for the smallest reciprocal lattice vectors.

However, while either one of these considerations alone would prevent us

from using the nearly-free-electron approximation, it happens that taken

together they present a tractable situation. Because we are now going to

take account of the Bloch states of the core electrons, the determinant

(4.3.3) must now be much larger than the 2� 2 form that we have just

been using. If we wish to apply this method to potassium, for instance, we

must calculate that with an atomic number of 19 this metal has enough

electrons to fill 9 1
2 Brillouin zones. This means that a large number of

Fourier components of the lattice potential must be included if we are to

find energy discontinuities at all the relevant zone boundaries. But if the

conduction states and the Fermi surface are to be located in higher

Brillouin zones than the first few, then their k-vectors in the extended zone

scheme must be very large. This means that if they are to be scattered by the

lattice to a state of approximately equal energy, then it will be mostly large

reciprocal lattice vectors that will describe the difference in wavenumbers of

the two states. Consequently it will be the Fourier components Vg of the

lattice potential corresponding to large g that will describe the energy dis-

continuities at the zone boundaries. Because these components are much

smaller than those corresponding to small g, the validity of the nearly-

free-electron approximation is restored as a means of calculating the band

structure of the conduction bands.

The use of plane-wave expansions of all the electron states in solids has,

however, one big disadvantage. We have not so far made use of the fact that

the core states are very highly localized around the nuclei of the atoms. If the
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core level in the free atom is tightly bound, then its kinetic energy starts to

become negative at a short distance from the nucleus, and the wavefunction

decays rapidly outside this distance. When many of these atoms are brought

together to form a solid, the wavefunctions of the core states of different

atoms do not overlap appreciably, and the tendency of the degenerate core

states to broaden into a band is very small. This suggests that it would be

more appropriate to expand the  k, not in terms of plane waves, but in terms

of the atomic wavefunctions, �iðrÞ. Because we know that Bloch’s theorem

must still be obeyed, we first form linear combinations of normalized atomic

wavefunctions centered on different atoms by writing

�ki ðrÞ ¼ N�1=2
X
l

eik � l�iðr� lÞ: ð4:4:1Þ

We then expand  k in terms of these, and write

 kðrÞ ¼
X
i

uiðkÞ�ki ðrÞ:

This formalism is known as the Linear Combination of Atomic Orbitals, or

LCAO, method.

For an exact solution we should include not only the bound atomic states,

but also states of positive energy, so that we have a complete set in which to

expand  k. In practice, however, this method is still useful when only a few

atomic states are assumed to contribute. We take matrix elements of the

Hamiltonian between the states �ki ðrÞ and write a secular equation analogous

to Eq. (4.3.3) of the form

jDj ¼ 0

where

Dij ¼
ð
�k
�

i ðrÞðH � EÞ�kj ðrÞ dr:

We note that the nonorthogonality of the �ki must be taken into account.

The LCAO method is widely used for practical computations, as are varia-

tions of it in which  k is expanded in eigenstates of other spherically sym-

metric potentials. Our goal in this section, however, is not to provide detailed

instructions for performing these calculations. It is rather to point out the

physical significance of the presence of the core states in reducing the effective

lattice potential. To this end we make the most drastic simplification possible,

which is known as the method of tight binding, and assume that only the

diagonal elements contribute to this determinant. The energy is then given
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simply by the expectation value of H in the state �ki ðrÞ. Now

H�ki ðrÞ ¼ N�1=2
X
l

eik � lH�iðr� lÞ;

and it is convenient to consider the lattice potential Vðr) that acts on �iðr� lÞ
as the sum of two separate terms – the potential due to an atom located at l

and that due to all the other atoms. We thus write

H ¼ � 02

2m
r2 þ Vaðr� lÞ þWðr� lÞ

where VaðrÞ is the atomic potential and WðrÞ is the difference between the

lattice potential and the atomic potential (Fig. 4.4.1). We expect WðrÞ to be

4.4 Core states and the pseudopotential 145

Figure 4.4.1. In the method of tight binding the periodic lattice potential VðrÞ is
considered to be the sum of an atomic potential VaðrÞ and a correction WðrÞ that is
small in the neighborhood of the origin. The potential WðrÞ is then treated as a
perturbation acting on the known atomic wavefunctions.



small when jrj is less than half the interatomic distance. If we define the

energy of the atomic state �iðrÞ as Ei, then

H�ki ðrÞ ¼ N�1=2
X
l

eik � l½Ei þWðr� lÞ��iðr� lÞ

¼ Ei�ki ðrÞ þN�1=2
X
l

eik � lWðr� lÞ�iðr� lÞ;

so thatð
�k
�

i H�ki dr ¼ Ei
ð
�k
�

i �
k
i dr

þN�1
X
l;l 0

eik � ðl�l
0Þ
ð
�*iðr� l 0ÞWðr� lÞ�iðr� lÞ dr:

If we assume that the �iðr� lÞ overlap appreciably only when they are

centered on adjacent atoms, the double summation reduces to a sum over

pairs of neighboring atoms. With the further approximation that this overlap

is small we find the �ki to be normalized, and so

E ¼ Ei þ
ð
�*iðrÞWðrÞ�iðrÞ dr

þ
X
L

e�ik �L
ð
�*iðr� LÞWðrÞ�iðrÞ dr;

where L are the different lattice vectors connecting nearest neighbors. As the

integrals are just constants, one finds for a Bravais lattice a result of the form

E ¼ E0 þW
X
L

cos k �L: ð4:4:2Þ

The tight-binding method is suitable only when the overlap between atomic

wavefunctions is small, and this is appropriate only for states whose energies

are well below the Fermi energy. Metals whose energy bands are composed of

low-lying core states, which may be approximated by tight-binding wave-

functions, well separated from conduction states, which may be described

in the nearly-free-electron approach, are known as simple metals. For these it

is possible to reformulate the nearly-free-electron description of the conduc-

tion states by using as basis functions plane waves that have been modified so

as to be automatically orthogonal to the tight-binding states of the core

electrons. This is known as the method of orthogonalized plane waves (the
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OPW method). One first defines a set of OPW functions which are formed

from plane waves by subtracting their projections on the Bloch waves of the

occupied core states. In the tight-binding approximation for the core states

�kOPWðrÞ ¼ ��1=2

�
eik � r �

X
c

�kc ðrÞ
ð
�kc*ðrÞeik � r dr

�
;

or, in a briefer notation,

j�kOPWi ¼ jki �
X
c

j�kc ih�kc jki:

We note that the �kc were defined in the repeated zone scheme, since by (4.4.1)

�kc ¼ �kþgc ;

while the wavenumber k in the term eik � r, is allowed to take on all values, and

is thus considered to be in the extended zone scheme. One then again takes

matrix elements of H� E between the various OPW functions and sets

jDj ¼ 0

where

Dgg 0 ¼ h�kþgOPWjH � Ej�kþg
0

OPWi:

The most noticeable difference between this equation and Eq. (4.3.3), in

which matrix elements were taken between pure plane waves, is in the off-

diagonal elements. Because the OPWs are not mutually orthogonal, we now

find terms involving the energy as well as terms involving the tight-binding

Bloch energies, Ekc . When g 6¼ g
0

Dgg 0 ¼ Vgg 0 þ
X
c

ðE � Ekc Þhkþ gj�kc ih�kc jkþ g
0i:

Because E > Ekc , the summation over core states has a tendency to be positive,

while Vgg 0 , which is just the Fourier transform of the lattice potential, tends

to be negative. The off-diagonal elements of D, and hence the energy dis-

continuities at the zone boundaries, are thus smaller than we should expect

from using the model based on plane waves.

We can see this another way by explicitly separating the core functions

from the sum of OPWs that form the complete wavefunction. Let us

first abbreviate the operator that projects out the core Bloch states by the
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symbol Pk. Thus

Pk �
X
c

j�kc ih�kc j

and

j�kþgOPWi ¼ ð1� PkÞjkþ gi:

The exact wavefunction is a sum of OPWs, and so

j ki ¼
X
g

uOPW
g ðkÞð1� PkÞjkþ gi;

which we write as

j ki ¼ ð1� PkÞj
ki

where

j
ki ¼
X
g

uOPW
g ðkÞjkþ gi:

Then

ðH � EÞj ki ¼ ðH � EÞð1� PkÞj
ki ¼ 0 ð4:4:3Þ

and we may look upon the problem not as one of finding the states j ki that

are eigenfunctions of H� E, but as one of finding the states j
ki that are

eigenfunctions of (H� EÞð1� PkÞ. Now H is composed of kinetic energy T

and potential V , so that 
k must be an eigenfunction of

ðT þ V � EÞð1� PkÞ ¼ T � E þ Vð1� PkÞ � ðT � EÞPk:

Thus (4.4.3) can be written

ðT þUkÞj
ki ¼ Ej
ki;

where the operator

Uk ¼ Vð1� PkÞ � ðT � EÞPk ð4:4:4Þ

is known as a pseudopotential operator. We can argue that we expect it to

have only a small effect on the pseudo-wavefunction 
k by noting two points.
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Firstly we expect Vð1� Pk) to have small matrix elements, since it is just

what is left of V after all the core states have been projected out of it. The

strongest part of V will be found in the regions near the atomic nuclei, and so

the core states, which are concentrated in the same regions, will be suitable

functions in which to expand V . The combination T � E, on the other hand,

is not so drastically affected by the operation 1� Pk. On the contrary, it

becomes reasonable to assume that (T � EÞPk has only a small effect, for

there will be little overlap between 
k and the core states if 
k is indeed just

acombination of a few plane waves of small wavenumber. It thus is self-

consistent to assume that the pseudopotential is weak and that 
k is a

smoothly varying function. One should remember, however, that although

Uk may be small it remains an operator rather than a simple potential, and

has a dependence on energy that must sometimes be treated carefully.

Yet another way of looking at the pseudopotential is obtained by defining

a new Hamiltonian H0 formed by adding (E � HÞPk to the original

Hamiltonian. Then

H0 ¼ Hþ ðE �HÞPk

¼ Hþ
X
c

ðE � Ekc Þj�kc ih�kc j:

The extra terms added to H have artificially raised the energies of the core

states to be equal to E, as can be seen by letting H0 act on the �kc . Now since

the lowest energy levels of H0 are degenerate, we can state that any linear

combination of  k and the �kc are eigenstates of H0, and we are at liberty to

choose that combination 
k that is most smoothly varying, and hence which

can be best approximated by the fewest plane waves. This expresses the fact

that the pseudo-wavefunction 
k is not uniquely defined by (4.4.3), which

only says that the part of 
k that is orthogonal to the core states must be

equal to  k.

When pseudopotentials are used in numerical calculations, their character

as operators makes itself felt. One must then deal with a nonlocal form of the

pseudopotential in which the interaction between an electron and a nucleus

depends on their coordinates separately, and not only on their relative co-

ordinates. Fortunately, the pseudopotential can usually be split into factors,

each of which depends on only one separate coordinate. This greatly reduces

the memory requirements for computer calculations. Pseudopotentials

have been developed in which the normalization of the pseudo-wavefunction

j
ki has been relaxed in favor of making the pseudopotential as soft as

possible. While this leads to a slight complication in calculating the electron
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charge density, the advantage of these so-called ultrasoft pseudopotentials is

that many fewer plane waves are required in expansions of the electron

valence states.

In summary, then, pseudopotential theory serves to show that the band

structure of simple metals may be much closer to that of the remapped free-

electron model than one would be led to believe by considering the strength

of the lattice potential alone.

4.5 Exact calculations, relativistic effects, and the structure factor

Although pseudopotential theory provides a useful short cut for the calcula-

tion of band structures and Fermi surfaces of simple metals, there remain

many cases for which it is difficult to implement. In transition metals, for

example, the electron states of interest are formed from atomic s-states and

d-states, and thus mix core-like and free-electron-like behavior. To account

correctly for the magnetic properties of transition metals, care has to be

taken to include adequately the interactions between bands formed from

3d and 4s states and deeper-lying bands formed from atomic 3s and 3p states.

For these cases a variety of ways of solving the Schrödinger equation have

been derived, and these are discussed in great detail in the many books now

available that are devoted solely to band structure calculations. Here we shall

outline just one such method which follows fairly naturally from Eq. (2.5.6),

the starting point of Brillouin–Wigner perturbation theory.

Equation (2.5.6) may be written in the form

j i ¼ aj�i þ ðE � H0Þ�1Vj i;

where a is a constant whose value is determined by the condition that the

presence of the term aj�i ensure that j i reduces to the unperturbed state j�i
as V tends to zero. For the present problem we take H0 to be the kinetic

energy of a single electron and V the lattice potential, so that for the Bloch

state j ki

j ki ¼ ajki þ ðE �H0Þ�1Vj ki

¼ ajki þ
X
k 0

�
E � 02

k
02

2m

��1

jk 0ihk 0jVj ki:

But since  k is a Bloch state and VðrÞ is a periodic function, the matrix

element hk 0jVj ki must vanish unless, for some reciprocal lattice vector g,
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we find that k 0 ¼ kþ g. This follows from the direct substitution

hk 0jVj ki /
ð
e�ik

0 � rVðrÞeik � rukðrÞ dr

¼
ð
eiðk�k

0Þ � ðr�lÞVðr� lÞukðr� lÞ dr

¼ 1

N

X
l

e�iðk�k
0Þ � l

ð
eiðk�k

0Þ � rVðrÞukðrÞ dr

¼ 0 unless k� k
0 ¼ g:

Thus

j ki ¼ ajki þ
X
g

�
E � 02ðkþ gÞ2

2m

��1

jkþ gihkþ gjVj ki:

Let us define an operator GkðEÞ by writing

GkðEÞ �
X
g

�
E � 02ðkþ gÞ2

2m

��1

jkþ gihkþ gj:

That is, GkðEÞ is just the operator (E � H0Þ�1 restricted to act only on states

that are of the Bloch form with wavenumber k. Then

j ki ¼ ajki þ GkðEÞVj ki:

We can verify by making use of the normalization condition hkj ki ¼ 1

that in this case the constant a can be put equal to zero (Problem 4.15), so

that

j ki ¼ GkðEÞVj ki: ð4:5:1Þ

It then follows that if one defines a quantity � by

� ¼ h kjVj ki � h kjVGkðEÞVj ki; ð4:5:2Þ

then from (4.5.1) we find that � vanishes when  k is a solution of the

Schrödinger equation. That is, since

Vj ki ¼ ðE �H0Þj ki
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we are in effect writing

� ¼ h kjVj ki � h kjðE � H0Þ
�

1

E �H0

�
ðE � H0Þj ki

¼ h kjðE � HÞj ki:

But now we not only know that � vanishes, but also that we may determine

 k by a variational approach that minimizes �.

In terms of integrals in r-space, expression (4.5.2) may be written

� ¼
ð
 *

kðrÞVrÞ kðrÞ dr

�
ð ð

 *
kðrÞVðrÞGkðr� r

0ÞVðr 0Þ kðr 0Þ dr dr 0 ð4:5:3Þ

where

Gkðr� r
0Þ ¼ ��1

X
g

�
E � 02ðkþ gÞ2

2m

��1

eiðkþgÞ � ðr�r
0Þ:

An advantage claimed for this method is that Gkðr� r
0Þ depends only E, k,

r� r
0 and the positions of the reciprocal lattice sites g, and may thus be

computed once and for all for any particular crystal structure. One may

then use this function in conjunction with whatever lattice potential VðrÞ is

appropriate to the material under consideration. This approach is known as

the Korringa–Kohn–Rostoker (KKR) or Green’s-function method.

One effective approach of this type is known as the Linear Muffin-Tin

Orbital method, or LMTO method. If we look back to Eq. (4.5.1) we may

be reminded of equations used to describe the scattering of a particle by a

single spherically-symmetric scatterer. Particle-scattering theory describes the

perturbed wavefunction  in terms of phase shifts for the various angular-

momentum components of the scattering. This suggests that the operator Gk

ðEÞ could be recast in a basis of spherical-harmonic components that are

solutions of the Schrödinger equation for a single spherically-symmetric

potential. It is convenient to choose a potential that approximates the actual

effective potential of the atom, but which vanishes outside a certain radius

(hence the term ‘‘muffin-tin’’!). This reduces the computational effort needed,

and makes possible the calculation of band structures in crystals having bases

of hundreds of atoms per unit cell.
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Before leaving the topic of the calculation of band structures, we should

glance briefly at the question of when it is valid to ignore relativistic effects.

The Fermi energies of metals, by which we generally mean the energy differ-

ence between the lowest and highest filled conduction state, are of the order

of a few electron volts. As this figure is smaller than the rest-mass energy by a

factor of about 10�5, it might at first be thought that we could always neglect

such effects. However, one must remember that the potential wells near the

nuclei of heavy atoms are very deep, and that only a small change in energy

may sometimes cause qualitative differences in band structure in semiconduc-

tors in which the band gaps are small.

Accordingly, we turn to the Dirac equation, which describes the motion of

a relativistic electron in terms of a four-component wavefunction. Because

the Dirac Hamiltonian, like the Schrödinger Hamiltonian, has the periodicity

of the lattice, each component of the wavefunction obeys Bloch’s theorem,

and one may associate a wavenumber k with each state. It is thus formally

possible to recast the OPW method in terms of the orthogonalization of four-

component plane waves to the four-component tight-binding core states, a

procedure that was first carried through for thallium. However, because the

relativistic effects usually contribute only a small amount to the total energy

of a Bloch electron, it is often possible to treat them as a perturbation of the

nonrelativistic band structure. In Section 3.10 we noted that the Dirac equa-

tion could be reduced by means of the Foldy–Wouthuysen transformation to

an equation of the form

H ¼ E 

where now  is a two-component wavefunction describing an electron with

spin 1
2, and H, in the absence of a magnetic field, is given by

H ¼ p
2

2m
þ VðrÞ � p

4

8m3c2

þ 1

2m2c2
s � ½rVðrÞ � p� þ 02

8m2c2
r2V þ � � � :

The third term in this expression simply reflects the relativistic increase in

mass of the electron, and is known as the mass–velocity term. The next term

contains the spin angular momentum s of the electron, and is the spin–orbit

coupling term. It may be qualitatively understood as the energy of alignment

of the intrinsic magnetic moment of the electron in the magnetic field caused
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by its own orbital motion. The fifth term is known as the Darwin term, and

can be thought of as a correction due to the finite radius of the electron.

If these three correction terms are to be treated as perturbations to the

Schrödinger Hamiltonian, then it is necessary to calculate not only the ener-

gies of the Bloch states in the various bands, but also their wavefunctions,

which involves considerably more labor. Some calculations have con-

sequently been made using the tight-binding approximation to describe the

wavefunctions. Because the relativistic terms are important only in the vici-

nity of the atomic nuclei, the tight-binding model provides a wavefunction

whose shape is a very good approximation to that of the true Bloch state in

the region that is important. However, the amplitude of the wavefunction

and consequently the size and k-dependence of these effects may be less

accurately predicted.

Since the Darwin, mass–velocity, and spin–orbit terms give energy shifts of

comparable magnitude, they must all be considered in semiconductors such

as PbTe in which such small perturbations may qualitatively change the band

structure. Because their effect is strongest close to the atomic nuclei, the

Darwin and mass–velocity terms tend to lower the energies of s-states relative

to p- and d-states. Some of the differences in properties between copper,

silver, and gold arise in this way. In the hexagonal metals it is the spin–

orbit term which, because of its lack of symmetry, most often causes obser-

vable effects. The detailed study of the effect of the spin–orbit term on

band structure is a difficult topic which requires some knowledge of group

theory, but the nature of the effects can be seen from the following simple

examples.

Let us consider first the zone boundary at kx ¼ g in the sandwichium

model used in Section 4.3 and in Problems 4.1 and 4.2. If we were to use

the nearly-free-electron approximation with only the two plane waves eikx

and eiðk�2gÞx we should find no discontinuity in the energy at kx ¼ g. This

would be a consequence of the vanishing of the matrix element

V2g /
ð
e�ikxx2V cos gx eiðkx�2gÞx

dr:

If, however, we were to use the three plane waves eikxx, eiðkx�gÞx, and eiðkx�2gÞx,
then we should find a discontinuity in the energy at kx ¼ g (Problem 4.9). In

physical terms we could say that the electron is scattered by the lattice first

from kx to kx � g, and then from kx � g to kx � 2g. Accordingly the discon-

tinuity in energy is proportional to V2, rather than to V as was the case at the

zone boundary at kx ¼ 1
2 g.
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In contrast to this we now consider a square lattice of side a in which there

are two identical atoms per unit cell, one at (14 a;
1
4 a) and one at ð� 1

4 a;� 1
4 aÞ,

as shown in Fig. 4.5.1(a). The first Brillouin zone is then a square of side

2�=a, while the second Brillouin zone is contained by a square of side

2
ffiffiffi
2
p
�=a, as shown in Fig. 4.5.1(b). Once again we find that certain Fourier

components of the potential vanish, so that, for example, Vg ¼ 0 when

g ¼ ð0; 2�=a) or (2�=a; 0Þ.More generally onemay suppose the lattice potential

to be composed of atomic potentials Va centered on the various sites, so that

VðrÞ ¼
X
l;b

Vaðr� l� bÞ; ð4:5:4Þ
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Figure 4.5.1. In this two-dimensional model the unit cell in r-space (a) is a square of
side a containing two atoms at the points �ð 14 a; 1

4 aÞ. The first Brillouin zone (b) is
then a square of side 2�=a.



where the l describe the positions of the centers of the unit cells and the b

describe the positions of the atoms within the cell, so that in this case

b1 ¼ ð14 a; 1
4 aÞ; b2 ¼ ð�1

4 a;� 1
4 aÞ:

Then

Vg ¼
1

�

ð
e�ig � rVðrÞ dr

¼ N

�

X
b

e�ig � b
ð
e�ig � rVaðrÞ dr:

The summation

Sg ¼
X
b

e�ig � b

is known as the structure factor, and in this case vanishes when

gx þ gy ¼ ð2nþ 1Þ 2�
a

for all integral n.

The vanishing of the structure factor, and hence of Vg, for g ¼ ð0; 2�=a)
and (2�=a; 0) means that there is no discontinuity in energy to first order in

the lattice potential at the boundaries of the first Brillouin zone. But this is

not all. In this model we should find that to all orders in the lattice potential,

there is no discontinuity at these zone boundaries. This fact becomes obvious

if we merely tilt our heads on one side and notice that, in fact, we are really

just considering a square Bravais lattice of side a=
ffiffiffi
2
p

(Fig. 4.5.2) whose first

Brillouin zone is bounded by the same square of side 2
ffiffiffi
2
p
�=a that was the

boundary of the second Brillouin zone in our first way of looking at the

model. We note the distinction between the vanishing of the structure factor,

which is a property only of the crystal structure, and the vanishing of V2g in

sandwichium, which was an accident of our choice of potential.

This possibility that the energy discontinuity may vanish identically at

some Brillouin zone boundaries is not confined to such artificial models as

the present one. In such common structures as hexagonal close-packed,

in which more than a dozen elements crystallize, and in the diamond and

graphite structures, this very phenomenon occurs. This makes it reasonable

to define a new set of zones that are separated by planes on which energy

discontinuities do occur. These are known as Jones zones. The construction

by which one defines which Jones zone a particular state is in is the following.
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A straight line is drawn from the origin of k-space to the point k in the

extended zone scheme. If this line passes through n discontinuities in energy,

then k is in the (nþ 1)th Jones zone.

The relevance of spin–orbit coupling to these considerations lies in the fact

that the lack of symmetry in this term in the Hamiltonian can cause the

reappearance of energy discontinuities within the Jones zones of some crystal

structures. The hexagonal close-packed structure is a particularly important

example of a structure in which such effects have been observed. Although

this particular lattice is rather complicated to investigate here, we can under-

stand the way in which the energy gaps are restored by the spin–orbit inter-

action by considering a modification of the square lattice shown in Fig. 4.5.1.

We retain the square cell of side a, but this time we place the two identical

atoms at ( 1
6 a;

1
4 a) and (� 1

6 a;� 1
4 a), as shown in Fig. 4.5.3. The structure

factor will now be

Sg ¼ 2 cos

�
agx
6
þ agy

4

�
;
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Figure 4.5.2. The model of which a unit cell was shown in Fig. 4.5.1(a) is here seen to
be merely a square lattice of side 2�1=2a. This explains why no energy discontinuities
were found at the boundaries of the first Brillouin zone shown in Fig. 4.5.1(b).



which will still vanish for g ¼ ð0; 2�=aÞ but no longer for g ¼ ð2�=a; 0). In

first order the energy discontinuities will then occur at the solid lines of

Fig. 4.5.4. Let us now suppose that we use the nearly-free-electron approxi-

mation to find the wavefunctions that result from considering the Fourier

component Vg of the lattice potential for g ¼ ð2�=a; 0). We then could write
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Figure 4.5.3. In this modification of the model shown in Fig. 4.5.1(a) the atoms are
now placed at the points �ð 16 a; 1

4 aÞ:

Figure 4.5.4. Although the Brillouin zone for the lattice shown in Fig. 4.5.3 is a
square, no discontinuities in energy occur at the dashed lines when a nonrelativistic
Hamiltonian is used.



the wavefunctions in the form

 k ¼ ��1=2½u0e
ik � r þ u1e

iðk � r�2�x=aÞ�

with u0 and u1 a pair of real coefficients which we could determine explicitly

in terms of k, if we so wished. We might now look for a second-order dis-

continuity along the lines ky ¼ �=a (the dashed lines in Fig. 4.5.4) by seeing

whether the lattice potential can mix the states of wavenumbers k and kþ g

with g ¼ ð0;�2�=a). We thus form

W ¼
ð
 *

kþgVðrÞ k dr

¼ ��1

ð
ðu0 þ u1e

2�ix=aÞe2�iy=aVðrÞðu0 þ u1e
�2�ix=aÞ dr:

A substitution of the form (4.5.4) then serves to show that W vanishes

because of the form of the structure factor; there are terms in u2
0 and in u2

1

which vanish because Sg ¼ 0 for g ¼ ð0; 2�=a) and two terms in u0u1 which

cancel because the value of Sg when g ¼ ð2�=a;�2�=a) is the negative of its

value when g ¼ ð�2�=a;�2�=aÞ. If, however, we add to VðrÞ the spin–orbit

term we shall find a different result. Then

W ¼ 1

2m2c2
s �
ð
 *

kþg½rVðrÞ � p� k dr:

The terms in u2
0 and u2

1 still vanish, but the cross term leaves a contribution

from the different values p takes when acting on the two plane-wave compo-

nents of  k. One finds

W ¼ � 0u0u1

2m2c2�
s �
ð
e2�iðy�xÞ=arV � ð2�=a; 0Þ dr:

The integral is proportional to Sg for g ¼ ð2�=a;�2�=aÞ, which does not

vanish. The degenerate states  k and  kþg are thus mixed by the spin–

orbit interaction, and energy discontinuities reappear at the Brillouin zone

boundaries. Although these splittings are usually small they are still sufficient

to alter the topology of the Fermi surface, and thus cause effects which are

readily observable.
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4.6 Dynamics of Bloch electrons

In what we have considered so far, the wavenumber k has been little more

than a label for the Bloch states. Experiments, however, are concerned with

such measurable properties as the electric current carried by a system of

electrons in the presence of applied fields. We accordingly now turn to a

consideration of the velocity of Bloch electrons and the modification of this

quantity by applied electric and magnetic fields.

The velocity of an electron in the absence of a magnetic field is propor-

tional to the expectation value of its momentum

v ¼ 1

m

ð
 *p dr

¼ � i0
m

ð
 *r dr: ð4:6:1Þ

We can relate this to the band structure by returning to the Schrödinger

equation written in the form (4.1.4)

HkukðrÞ ¼ EkukðrÞ ð4:6:2Þ

where

Hk � �
02

2m
ðr þ ikÞ2 þ VðrÞ:

We differentiate (4.6.2) with respect to k (that is, we take the gradient in

k-space) to find

ðHk � EkÞ
@

@k
ukðrÞ ¼ �

@

@k
ðHk � EkÞ

� �
ukðrÞ

¼ i0
m
ðr þ ikÞ þ @Ek

@k

� �
ukðrÞ:

But since

 k ¼ eik � rukðrÞ;

then from (4.6.1)

0vk ¼
@Ek
@k
�
ð
u*kðrÞðHk � EkÞ

@

@k
ukðrÞ dr:
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The integral vanishes because of the Hermitian nature of Hk, as can be seen

by integrating by parts, leaving the result

vk ¼
1

0
@Ek
@k
: ð4:6:3Þ

This result appears more familiar if we define a frequency !k by writing

Ek ¼ 0!k. Then vk ¼ @!k=@k, which is the usual result for the group velocity

of a wave of angular frequency !k in a dispersive medium.

We now know the total electric current carried by the conduction electrons

if we know which k-states are occupied. The current density due to a single

electron in the state k will be evk=�, so that the total current density is

j ¼ ��1
X
k

nkevk: ð4:6:4Þ

In this independent-particle model the occupation number nk takes on only

the values 0 or 1.

In equilibrium j, which is of course a macroscopic quantity, vanishes, and if

we are to set up a current flow we must first apply an electric field by, for

example, adding to the Hamiltonian a potential �eE � r. There are now two

paths open to us in investigating the effect of the electric field – the time-

dependent approach and the time-independent approach. At first it seems

that one should treat the applied field as a perturbation and look for the

eigenstates of the perturbed system. Because the Hamiltonian is constant in

time there appears no reason to use time-dependent methods. Unfortunately,

however, this approach is a very difficult one, the chief difficulty arising from

the fact that no matter how small E is, the potential �eE � r cannot be treated

as a perturbation in an infinite system because r then becomes indefinitely

large. A similar difficulty arises when one applies a magnetic field, the vector

potential then becoming large at large distances. We shall consequently leave

the question of the eigenstates of Bloch electrons in applied fields and turn to

the time-dependent approach.

A wave packet traveling with velocity vk in a uniform force field eE might

be expected to increase its energy at the rate eE � vk. On the other hand, if this

change in energy reflects a change in the wavenumber of the Bloch states

forming the wave packet, we could write

dEk
dt
¼ @Ek
@k

� dk
dt
¼ 0vk �

dk

dt
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from (4.6.3). For these two pictures to be equivalent we must have

0
dk

dt
¼ eE: ð4:6:5Þ

This result is not quite correct, as it is really only the kinetic energy that we

should expect to increase at the rate eE � vk, and the potential energy of the

Bloch state will also be changing if k is changing. To see this more clearly we

can consider the time-dependent Schrödinger equation for an electron initi-

ally in a Bloch state of wavenumber k. Then

�kðr; tÞ ¼  kðrÞe�iEt=0

¼ eik � rukðrÞe�iEt=0

satisfies the Schrödinger equation in the absence of the applied field. If we

now add the potential �eE � r to the Bloch Hamiltonian H0, then at t ¼ 0

i0
@�k

@t
¼ ðH0 � eE � rÞ�k

¼ ðEk � eE � rÞ�k: ð4:6:6Þ

But if the only change in �k is to be a change in k at the rate given by (4.6.5)

we should find at t ¼ 0

i0
@�k

@t
¼ i0

@�k

@t

� �
k

þ @�k

@k

� �
t

� dk
dt

� �
¼ Ek�k þ ieE � eik � r irþ @

@k

� �
ukðrÞ

¼ Ek � eE � rþ ieE � @ ln ukðrÞ
@k

� �
�k: ð4:6:7Þ

When the third term in (4.6.7) is neglected, this expression becomes identical

to (4.6.6) and one may say that the wavenumber of a Bloch electron is

changed by the field at just the same rate as that of a free electron. We

note, however, that the rate of change of the velocity of the electron bears

no similarity to that of the free particle, in that as k approaches a zone

boundary the velocity may fall to zero. This would be the case in sandwi-

chium for k ¼ ðkx; 0; 0Þ, as shown in Fig. 4.6.1. The discontinuity in slope of

vk at the zone boundary draws attention to the fact that we do not expect a

weak steady field to be able to provide the energy to enable the electron to
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move from the first to the second Brillouin zone. That is, we cannot interpret

(4.6.5) in the extended zone scheme, but must look more closely at the Bloch

states for which k lies directly on the zone boundary.

In the two-plane-wave approximation for sandwichium, for example,

ukðrÞ ¼ u0ðkÞ þ u1ðkÞeig � r;

and as k approaches ( 1
2 g; 0; 0) we choose for g the reciprocal lattice vector
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Figure 4.6.1. When the energy (a) varies in the kx direction in sandwichium in the
usual way, the velocity (b) in this direction falls to zero at the zone boundaries.



(�g, 0, 0). It may be verified by solving the equations of Section 4.3 for u0 and

u1 that when k lies on the zone boundary, then u0 ¼ �u1 for the solution of

lowest energy when V > 0, so that

ug=2ðrÞ ¼ 2�1=2ð1� e�igxÞ:

When k approaches (� 1
2 g; 0; 0Þ, on the other hand, we choose g ¼ ðþg; 0; 0Þ.

Again we find that also on this zone boundary u0 ¼ �u1, and

u�g=2ðrÞ ¼ 2�1=2ð1� eigxÞ
¼ �eigxug=2ðrÞ:

We now note that these two wavefunctions are identical, in that when we

multiply by eik � r (with the appropriate k) we find just the same wavefunction

 k, apart from an unimportant constant factor. Thus the action of the

electric field is to cause the wavenumber of the electron to change at a

constant rate until the zone boundary is reached, at which point the

wavenumber is ambiguous. The electron may then be considered to have

wavenumber k� g, and so the whole process may be repeated, with k

increasing until the same zone boundary is again reached. Alternatively

we may use the repeated zone scheme, and say that k is changing steadily

with time, although the electron always remains in the first band. This is

illustrated in Fig. 4.6.2(a) which shows the variation of the various com-

ponents of ukðr) with k. In Fig. 4.6.2(b) the electron velocity vk in the first

band is plotted in the repeated zone scheme. The fact that it is a periodic

function of k shows that the electron would exhibit oscillatory motion in a

crystal so perfect that no scattering occurred. In the region near the zone

boundary vk becomes more negative with increasing k as a consequence of

the hole-like behavior characterized by the negative curvature of the function

ExðkxÞ.
The term in (4.6.7) that we neglected was of the form

ieE � @
@k

ln ukðrÞ:

It is only when this term is small that the approximation (4.6.5) is valid, and

this will only be the case when ukðr) is a slowly varying function of k. Now if

the lattice potential is very weak then the Bloch wave is very similar to a

plane wave over most of the Brillouin zone. At the zone boundary, however,

u0 and u1 will always be of equal magnitude irrespective of the strength of the
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lattice potential. Thus the derivative @ ðln uÞ=@k is greatest when the lattice

potential is weak, and it is then that the picture of the electron moving in a

single band breaks down. This extra term that appears in (4.6.7) must be

subtracted from the Hamiltonian if the electron is to remain in one band.

This term is a function of ukðrÞ, and is thus periodic with the period of the

lattice. We may estimate its magnitude very simply by a glance at Fig. 4.6.3

which shows the band structure near the zone boundary. Since u1ðkÞ is of

order unity at the zone boundary, and has become very small by the time it
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Figure 4.6.2. As the electron is accelerated by a weak electric field, its wave number
kx changes uniformly with time and the amplitudes (a) of the various plane wave
components of ukðrÞ, the periodic part of the Bloch wave function, also change.
Because the electron remains in the first Brillouin zone, the velocity (b) then changes
periodically and not in the way shown in Fig. 4.6.1.



has reached a distance �k away, where

V ’ @E
@k

��k

we may write

@u

@k
� 1

�k
� 02k

mV
;

and the extra term is of order eE02k=mV . When this term is of the order of

the lattice potential it may cancel the lattice potential and allow the electron

to make a transition to another band. The condition for this not to occur is

then

eE
02k

mV
� V :

Since the Fermi energy EF is roughly 02k2=2m and k is of the order of 1=a,

where a is the lattice spacing, we may write

eEa� V2

EF
:

The condition for (4.6.5) to be valid is thus that the energy gained by the

electron in being accelerated through one lattice spacing should be small
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Figure 4.6.3. When the lattice potential is weak one may estimate with the aid of this
diagram the range �k of kx-values over which the energy departs significantly from
its free-electron value.



compared with V2=EF . When this condition is not obeyed Zener breakdown is

said to occur. While it is difficult to reach such high fields in homogeneous

materials, the junction between n- and p-type semiconductors naturally con-

tains a steep potential gradient which permits observation of these effects and

as a result of which a variety of device applications are possible.

In the case of an applied magnetic field we might suppose that the Lorentz

force would tend to change k in the same way as the force of the electric field,

so that

0
dk

dt
¼ e

c
v�H: ð4:6:8Þ

This in fact turns out to be true within limitations similar to those imposed in

the case of the electric field, although the demonstration of this result is a

little more involved. Let us first choose the gauge so that the vector potential

is

A ¼ 1
2 ðH� rÞ; ð4:6:9Þ

and write the Hamiltonian (as in Eq. (3.10.8)) as

H ¼ 1
2mv

2 þ VðrÞ

¼ 1

2m

�
p� e

c
A

�2

þ VðrÞ;

where VðrÞ is now the lattice potential. Then

i0
dv

dt
¼ ½v;H�

¼ 1
2m½v; v2� þ ½v;VðrÞ�

¼ i0
e

mc
v�Hþ ½v;VðrÞ� ð4:6:10Þ

as may be verified by substituting (p� eA=cÞ for v and using the explicit form

(4.6.9) for A.

If we had performed a similar manipulation in the case where an electric

field was applied we should have found

i0
dv

dt
¼ i0

eE

m
þ ½v;VðrÞ�;
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and since we were able to identify approximately eE with 0 dk=dt we could

then have written

½v;VðrÞ� ¼ i0
�
dv

dt
� 0

m

dk

dt

�
: ð4:6:11Þ

This relation describes the rate of change of velocity of a Bloch electron

whose wavenumber is changing, but which is remaining in a single band. It

does not discuss the agency that causes k to change, but merely states the

consequent change in velocity. It is thus more general than the case of an

applied electric field, and can be used in combination with (4.6.10) when a

magnetic field is applied, the commutator ½AðrÞ;VðrÞ� vanishing. Substitution

of (4.6.11) in (4.6.10) then gives the expected result, (4.6.8).

While the electric field caused the wavenumber k to move in a straight line

with uniform velocity in the repeated zone scheme, the effect of the magnetic

field is more complicated. Equation (4.6.8) states that dk=dt is always per-

pendicular to both the electron velocity and the magnetic field. But since the

velocity is proportional to dE=dk the energy of the electron must remain

constant, and k moves along an orbit in k-space which is defined by the

two conditions that both the energy and the component of k in the direction

of the magnetic field remain constant.

As an illustration we consider the possible orbits of an electron in sandwi-

chium when the magnetic field is applied in the z-direction. For states of low

energy the constant-energy surfaces are approximately spherical, and their

intersections with the planes of constant kz are nearly circular. The electrons

thus follow closed orbits in k-space with an angular frequency, !, close to the

cyclotron frequency, !0, of a classical free electron, which is given by eH=mc.

Such an orbit is labeled � in Fig. 4.6.4. In real space the path of such a

classical electron would be a helix with its axis in the z-direction. For an

electron of slightly higher energy the orbit passes closer to the zone bound-

ary, and the electron velocity is reduced below the free-electron value. A

circuit of the orbit labeled � in Fig. 4.6.4 thus takes a longer time than a

circuit of �, and one says that the cyclotron frequency of the orbit � is less

than !0, and would be the same as for a free particle of charge e and mass

greater than m in the same magnetic field. One sometimes defines a cyclotron

mass m* in this way for a particular orbit by means of the relation

m* ¼ m!0

!
:

The cyclotron mass, which is a function of the electron velocity at all points

on an orbit, must be distinguished from the inverse effective mass defined in
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Section 4.3 which characterized the band structure in the neighborhood of a

single point in k-space.

If the electron energy is greater than Eg � V and kz is sufficiently small

there will be some orbits, such as � in Fig. 4.6.4, that meet the zone boundary.

The path of the electron in k-space is then a periodic open orbit in the repeated

zone scheme, as shown in Fig. 4.6.5. Such orbits are particularly important in

determining the conductivities of metals in magnetic fields in that the electron

velocity does not average to zero over a period of the orbit. For energies
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Figure 4.6.4. In a magnetic field in the z-direction an electron of low energy in
sandwichium will travel the almost circular orbit � in k-space, while one of slightly
larger energy will follow the distorted orbit �. At still higher energies the electron
may either follow the second-zone orbit � or the periodic open orbit � that lies in the
first Brillouin zone.

Figure 4.6.5. This diagram shows Fig. 4.6.4 replotted in the repeated zone scheme.
The periodic open orbits � carry a current that does not average to zero over a
period of the motion.



greater than Eg þ V there will also be orbits in the second band, such as those

labeled � in Fig. 4.6.4. In the repeated zone scheme these appear as the small

closed orbits in Fig. 4.6.5. Because the velocity may be close to its free-elec-

tron value (in the extended zone scheme) over much of these orbits while their

perimeter is much smaller, the time taken to complete an orbit may be very

small. The cyclotron mass is then stated to be correspondingly small.

The range of validity of Eq. (4.6.8) may be deduced in a similar way to our

estimate in the case of an electric field, and we find that

e

c
v�H � @

@k
ln ukðrÞ

must be small compared with the lattice potential. When we write

@u

@k





 



 � 02k

mV
; v � 0k

m
;

eH

mc
¼ !0

we find the condition to be

0!0 �
V2

EF
:

When this is violated magnetic breakdown is said to occur. The electron then

has a finite probability of making a transition from a �-orbit to a �-orbit in

Fig. 4.6.4, and the conductivity may be qualitatively affected.

4.7 Scattering by impurities

We have now seen how the application of an electric field causes the wave-

number of a Bloch electron to change, and hence how the electric current

grows with time in a perfect periodic lattice. We know, however, that for

moderate electric fields the current rapidly becomes constant and obeys

Ohm’s law in all normal metals. The current does not grow and then oscillate

in the way that our simple dynamics predict, because the electron is scattered

by some departure of the lattice from perfect periodicity. The two most

important mechanisms that limit the magnitude the current attains in a

particular field are scattering by lattice vibrations and scattering by impuri-

ties. The topic of the interaction of Bloch electrons with phonons is a major

part of the theory of solids, and Chapter 6 is devoted to a discussion of such

processes. The theory of alloys, in which the problem is to calculate the

properties of partially disordered systems, is also a topic of some importance.
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For the present, however, we shall just consider the problem of a single

impurity center in an otherwise periodic lattice. This avoids the statistical

problems of the theory of alloys, but still allows us to formulate an expres-

sion for the probability per unit time that an electron is scattered from one

Bloch state to another. We shall then have all the ingredients we need for the

formulation of a simple theory of the conductivity of metals.

The customary approach to the scattering theory of a free particle involves

the expansion of the wavefunction in spherical harmonics and the discussion

of such quantities as phase shifts and cross sections. This approach is not so

useful for Bloch electrons because of the reduced symmetry of the problem

when the lattice potential is present. Instead we consider an electron initially

in some Bloch state, �k, and then apply the perturbing potential, U. The

wavefunction will then be transformed into some new function,  k. We

interpret the scattering probability between the two Bloch states, �k and �k 0 ,

as being proportional to the amount of�k 0 contained in k. That is, we form the

integral h�k 0 j ki to measure the amplitude that tells us how much of the state

that was originally �k has been transformed to �k 0 . The square of the modulus

of this quantity will then be proportional to the probability Qðk;k 0Þ that in

unit time an electron is scattered between these states, i.e.,

Qðk; k 0Þ / jh�k 0 j kij2:
We may use the starting point of perturbation theory to rewrite this expres-

sion in a more useful form. We first write

H0�k ¼ Ek�k
and

ðH0 þUÞ k ¼ Ek k;

and note that the perturbed and unperturbed energies will be very close to

each other provided no bound states are formed, since the impurity causing

U only perturbs a negligible portion of our large volume �. We next note

that these Schrödinger equations are satisfied by

j ki ¼ j�ki þ ðEk �H0 þ i�Þ�1Uj ki ð4:7:1Þ

when �! 0. Then because h�k 0 j�ki vanishes we find

Qðk;k 0Þ / jh�k 0 jðEk �H0 þ i�Þ�1Uj kij2

¼ ½ðEk � Ek 0 Þ2 þ �2��1jh�k 0 jUj kij2:
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Because the scatterer has no internal degrees of freedom in this model the

energy of the electron must be conserved, and only elastic scattering can take

place. This is expressed by the term in brackets. Since

½ðEk � Ek 0 Þ2 þ �2��1 ¼ 1

�

d

dEk
arctan

Ek � Ek 0
�

� �
and arctan ½ðEk � Ek 0 Þ=�� becomes a step function as �! 0, we can interpret

the derivative of the step function as a �-function. The constant of propor-

tionality can be found from time-dependent perturbation theory, which in

lowest order gives the result

Qðk;k 0Þ ’ 2�

0
jh�k 0 jUj�kij2�ðEk � Ek 0 Þ: ð4:7:2Þ

In order for our result to reduce to this when the potential is weak so that  k

may be replaced by �k we must choose the same constant of proportionality,

and write

Qðk;k 0Þ ¼ 2�

0
jh�k 0 jUj kij2�ðEk � Ek 0 Þ: ð4:7:3Þ

The approximation (4.7.2) is known as the Born approximatiom, and may

be thought of as neglecting multiple scattering by the impurity. The exact

formula (4.7.3) might be rewritten by repeatedly substituting for  from

(4.7.1). We should then have a series of terms in which U appeared once,

twice, three times, and so on. These could be interpreted as single, double,

triple, and higher-order scattering by the impurity (Fig. 4.7.1).

It is sometimes useful to ask what the potential T would be that, if the

Born approximation were exact, would give the scattering predicted by

(4.7.3) for the potential U. That is, we ask for the operator T such that

h�k 0 jUj ki ¼ h�k 0 jT j�ki:

This operator is known as the transition matrix (or sometimes just as the

T-matrix), and does not in general have the form of a simple potential. It can

be seen from (4.7.1) that

T ¼ U þU½E � H0 þ i���1T :

Also

½E � H0 þ i���1T ¼ ½E � Hþ i���1U;
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as may be seen by operating on both sides with [E � Hþ i�]. Thus

T ¼ U þU½E � H þ i���1U:

Since the potential U is real, the only difference between T and its Hermitian

conjugate Ty will be that the term i� will be replaced by �i�. We could thus

have equally well used Ty in calculating Qðk;k 0Þ. But since by the definition

of the Hermitian conjugate

h�k 0 jT j�ki* ¼ h�kjTyj�k 0 i

we see that the scattering probability must be the same in either direction,

and

Qðk;k 0Þ ¼ Qðk 0; kÞ: ð4:7:4Þ

We could also argue this from the starting point of the principle of micro-

reversibility, which states that the transition probability will be unaffected by

time reversal. The time reversal of the state �k will be ��k, and so

Qðk;k 0Þ ¼ Qð�k 0;�kÞ: ð4:7:5Þ

However, ��k ¼ �*k, as can be seen from the Schrödinger equation in the

form (4.1.4), and we do not expect a real transition probability to depend on

our convention as to complex numbers. We thus deduce (4.7.4) to be a

consequence of (4.7.5).

We also note that the perturbation of the electron wavefunctions changes

the density of electrons, and hence of electric charge, in the vicinity of an

4.7 Scattering by impurities 173

Figure 4.7.1. The Born approximation is a result of first-order perturbation theory,
and can be diagrammaticaliy represented as a single scattering event (a). The T-
matrix includes multiple scattering (b).



impurity in a metal. If the impurity represents an added electric charge the

change in electron density will screen the field of the impurity. One can thus

equate the excess charge of the impurity with the excess charge of the elec-

trons that are in the process of being scattered. The formulation of this

concept is rather complicated for Bloch electrons, but reduces to a simple

form for free electrons, where it is known as the Friedel sum rule. It is a useful

condition that all models of impurity potentials must approximately satisfy.

4.8 Quasicrystals and glasses

Our study of band structure so far has been built on the concept of the Bloch

waves that we have proved to exist in perfectly periodic structures. In the real

world, however, nothing is perfectly periodic, and so we should ask ourselves

what the consequences are of deviations from perfect periodicity. In Chapter 6

we shall look at the effect of the weak deviations from perfect order that are

introduced by phonons. There we shall see that this type of motion in a three-

dimensional crystal does not destroy the long-range order. That is to say,

when X-rays or neutrons are scattered by a thermally vibrating three-dimen-

sional lattice there will still be sharp Bragg peaks, although in one or two

dimensions this would not be the case. We now look at some other systems

that lack perfect order, and examine whether the concept of band gaps will

survive. The first of these is a remarkable family of structures known as

quasicrystals. These are a form of not-quite-crystalline solid that was discov-

ered experimentally as recently as 1984, although similar structures had been

studied as mathematical constructs much earlier.

An example of a quasicrystal in two dimensions is given in Fig. 4.8.1. It

clearly depicts an ordered array, but closer inspection shows it not to be a

Bravais lattice. The telltale sign is the fact that it has a five-fold rotational

symmetry. This is forbidden for Bravais lattices in two dimensions, as one

cannot completely cover a plane using pentagonal tiles. One can, however,

tile a plane using two types of diamond-shaped Penrose tile, one of which has

an acute angle of �=5, the other tile having an angle of 2�=5 (Fig. 4.8.2). In

three dimensions the task becomes much harder to accomplish, and nearly

impossible to illustrate. Nevertheless, experiment shows that if a molten

mixture of aluminum and manganese in an atomic ratio of 4 : 1 is cooled

ultrarapidly (�1 megakelvin/second!) then small pieces of solid are produced

that give diffraction patterns having the five-fold symmetry characteristic of

an icosahedron. These materials are thus clearly not crystalline (this is

deduced from the five-fold symmetry) but do have long-range order (deduced

from the existence of sharp Bragg peaks).

174 One-electron theory



We can gain some insight into the nature of quasicrystals by looking at the

one-dimensional chain of atoms shown in Fig. 4.8.3. The spacing between

atoms is either long (L) or short (S), with L=S an irrational number. If the

arrangement of L and S spacings were random, then the chain would have no

long-range order, and would give rise to no sharp Bragg diffraction peaks.
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Figure 4.8.1. A quasicrystal in two dimensions.

Figure 4.8.2. Two types of tile can cover a plane with quasicrystalline symmetry.

Figure 4.8.3. A Fibonacci chain is built from atoms separated by either long or short
spacers placed in a special order.



But it is not random. It is a Fibonacci chain, built according to the following

prescription. We start with a single spacing S, and then repeatedly apply the

operation that each S is turned into L and each L is turned into the pair LS.

In this way S! L! LS! LSL! LSLLS! LSLLSLSL and so on. (An

important special case occurs when L=S ¼ 2 cosð�=5Þ ¼ 1
2 ð1þ

ffiffiffi
5
p Þ, a number

known as the golden mean.) Although this sequence does not at first sight

appear to have any long-range order, one can, with the aid of some ingenious

arguments, calculate the Fourier transform of the atomic density exactly. One

finds that there are large, sharp, Bragg peaks at various wavenumbers. The

chain is clearly not periodic in the sense of a Bravais lattice, but it does have

some sort of long-range order. Evidently there are some hidden repeat lengths

that are disguised by local deviations from periodicity. An invisible hand is

placing the L and S segments in just such a way as to retain the Bragg peaks.

We find a clue to what is happening by looking at a strip cut from a true

Bravais lattice in a higher dimension. In Fig. 4.8.4 we see a square lattice

across which two parallel lines have been drawn with a slope equal to the

reciprocal of the golden mean and passing through the opposite corners of

one unit cell. We then project all the lattice points included in this strip onto

the lower line to form a one-dimensional array. This array turns out to be

precisely the special-case Fibonacci chain. We have thus made a connection
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Figure 4.8.4. The Fibonacci chain also appears as a projection of a regular square
lattice.



between a quasiperiodic array in one dimension and a Bravais lattice in a

higher dimension. This idea may be extended to show that five-fold rota-

tional symmetry may be found in spaces of six or more dimensions. In

particular, icosahedral symmetry may be found in a cubic lattice in six dimen-

sions. An icosahedron has 20 identical faces, each of which is an equilateral

triangle. Five of these faces meet at each of the 12 vertices, and so there are

six five-fold symmetry axes. This symmetry is clearly seen experimentally in

single grains of some quasicrystals which form beautiful structures resem-

bling five-petaled flowers. It is truly remarkable that this obscure crystallo-

graphic niche is actually occupied by real materials.

In one dimension, the existence of sharp Bragg peaks will always lead to

gaps in the electronic density of states, but in three dimensions this is not

assured. Thus the density of states for electrons in the potential due to a

Fibonacci chain of atoms will always have band gaps. These chains would

then be good insulators if there were two electrons per atom. In three dimen-

sions the long-range order characteristic of quasicrystals will not necessarily

cause gaps in the density of states, so that even if the number of electrons

were two per atom, the material might still be a metallic conductor.

As we moved from considering crystalline lattices to the less-ordered qua-

sicrystals, we have found that the continued existence of long-range order

was the factor that made plausible the sustained presence of band gaps. If we

move further in this direction we find amorphous or glassy solids, in which

no long-range order remains. The structure factor revealed by X-ray scatter-

ing shows no sharp peaks, but only broad maxima. Surely these materials

should not have band gaps in their electronic density of states? Surprisingly,

band gaps persist in amorphous materials. In silicon, the effective band gap is

even greater in amorphous material than it is in a crystal.

Itwas only in 1966 that a demonstrationwas givenof howbandgaps could be

proved to persist in one simple model of an amorphous solid. In this model the

potential has the muffin-tin form, in which identical spherically symmetric

attractive potential wells are separated by regions of constant potential V0.

No two wells overlap or have their centers closer together than a distance we

define as 2
. We consider the real wavefunction  describing an eigenstate

of energy E < V0. In units in which 0 ¼ 2m ¼ 1, the Schrödinger equation is

r2 ¼ ðV � EÞ : ð4:8:1Þ
If we multiply by  and integrate over the volume of the container we findð

fðV � EÞ 2 þ ðr Þ2g d� ¼ 0; ð4:8:2Þ
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provided  is equal to zero over the surface of the box. Let us define a cell as

the region closer to one particular well than to any other (this is sometimes

known as a Voronoy polyhedron). Then we can certainly find a cell such thatð
cell

fðV � EÞ 2 þ ðr Þ2g d� � 0 ð4:8:3Þ

when the integrations are confined to the volume of the cell. Because both

parts of the integrand are positive at distances greater than 
 from the center

of the well the integral will furthermore be negative when the integration is

restricted to a sphere of radius 
. If S is the surface of this sphere it then

follows that ð
S

 r � dS < 0: ð4:8:4Þ

Taking spherical polar coordinates with the center of this well as the origin,

we expand  in spherical harmonics, writing

 ¼
X
l;m

cl;mYl;mð�; �ÞRlðrÞ ð4:8:5Þ

and substitute in the inequality to obtain

X
l;m

c2
l;m

d

dr
fRlðrÞg2jr¼
 < 0: ð4:8:6Þ

If this inequality holds for the sum of terms, it must also be true for at least

one term of the sum, and so an l must exist for which

d

dr
fRlðrÞg2jr¼
 < 0: ð4:8:7Þ

If there are bands of energy for which no l can be found such that this

inequality is satisfied, then the existence of gaps in the density of states is

proved.

The presence of band gaps in the electronic structure is central to many of

the most important properties of solids. It is thus satisfying that we can

calculate band structures and band gaps in a variety of structures provided

that the one-electron model is a satisfactory approximation. Our next step

must be a more careful look at this assumption, and an exploration of the

elegant analysis with which it can be justified.
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Problems

4.1 In sandwichium metal the lattice potential is 2V cos gx. Investigate, in

the nearly-free-electron model, the electron velocity in the neighbor-

hood of the point (g=2; 0; 0) in reciprocal space.

4.2 Investigate qualitatively the density of states of the sandwichium

defined in Problem 4.1 in the regions near E ¼ 02g2=8m� V , and sketch

the overall density of states.

4.3 Another type of sandwichium has a lattice potential

VðrÞ ¼
X1

n¼�1
Va �ðx� naÞ:

Investigate its band structure in the nearly-free-electron model, using

two plane waves.

4.4 Apply the nearly-free-electron approach using four plane waves to the

band structure of a two-dimensional crystal whose lattice potential is

VðrÞ ¼ 2V ½cos gxþ cos gy�:

Under what conditions will this crystal be an insulator if there are two

electrons per ‘‘atom’’? (An ‘‘atom’’ is assumed to occupy one unit cell of

dimensions 2�=g� 2�=g.)

4.5 What are the possible forms of the inverse-effective-mass tensor in the

model of Problem 4.4 at the point (12 g;
1
2 gÞ in k-space?

4.6 In the Kronig–Penney model a one-dimensional electron moves in a

potential

VðxÞ ¼ �
X1

n¼�1
Va �ðx� naÞ:

Contrast the exact solution for the width of the lowest band with that

given by the method of tight binding when V is very large. Assume

overlap only of nearest neighbors in the tight-binding approach.
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4.7 Examine the inverse effective mass of the states at the bottom of the

third band of the model in Problem 4.6, again assuming V to be large.

Solve this problem in the following ways.

(1) Exactly.

(2) In the two-plane-wave NFE approximation.

(3) In the OPW method, treating the first band as core states in the

tight-binding approximation. [Use two OPW’s, and neglect the k-

dependence of Ekc – i.e., take Ekc as the energy of the ‘‘atomic’’ bound

state.]

4.8 Evaluate the Korringa–Kohn–Rostoker Gkðr� r
0) for the sandwichium

of Problem 4.1. [Hint:
Ð
C cosec�zf ðzÞ dz may be a helpful integral to

consider.]

4.9 Calculate an approximate value for the energy discontinuity and effec-

tive inverse masses in the neighborhood of k ¼ ðg; 0; 0Þ in sandwichium

by using the nearly-free-electron approximation with three plane waves.

4.10 Draw the Jones zone for a square lattice of side a with four identical

atoms in each cell at the points �ða=8;�a=8) and �ð3a=8; 3a=8Þ.

4.11 In the limit of vanishingly small size of an orbit the cylotron mass m*

and the inverse-effective-mass tensor (M�1Þij are related. What is this

relationship between m*, (M�1), and the direction x̂x of the applied

magnetic field? [It is helpful to consider the area A of an orbit, and

its variation with energy, dA=dE.]

4.12 A magnetic field is applied in the z-direction to sandwichium. How,

qualitatively, does m* vary for orbits with kz ¼ 0 as E ! Eg � V?

4.13 A Bloch electron in sandwichium is scattered from (kx; ky; kzÞ to

(�kx; ky; kz) by the potential U exp ½�ðgr=4Þ2]. Investigate qualitatively

how the transition probability for this process varies with kx. [Use the

Born approximation for Qðk;k 0Þ and the two-plane-wave approxima-

tion for �k and �k 0 . Sketch the variation of Q as kx varies from 0 to 1
2 g.]

4.14 When the Coulomb interaction is included in the Hamiltonian of

an insulator it becomes possible for an electron in the conduction

band and a hole in the valence band to form a bound state together;

this elementary excitation of the crystal is known as an exciton. In the
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simple model of an insulator in which the lattice potential is

2Vðcos gxþ cos gyþ cos gz) such a state can be formed if we allow an

interaction e2=�jre � rhj to exist between the electron and hole states at

the corner of the first Brillouin zone. Investigate the possible energies of

such an excitation by solving a Schrödinger equation analogous to that

describing a hydrogen atom, but in which the proton and electron are

replaced by an electron and a hole having the appropriate effective

masses.

4.15 Verify that the constant a of Section 4.5 vanishes, as claimed in the

sentence preceding Eq. (4.5.1).

4.16 In the model illustrated in Fig. 4.5.3 it was shown that spin–orbit

coupling introduces energy discontinuities at the zone boundaries

shown as dashed lines in Fig. 4.5.4. Does (a) the mass–velocity term

or (b) the Darwin term cause a similar effect?
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Chapter 5

Density functional theory

5.1 The Hohenberg–Kohn theorem

In Chapter 2 we explored some of the consequences of electron–electron

interactions, albeit in some simple perturbative approaches and within the

random phase approximation. There we found that the problem of treating

these interactions is exceedingly difficult, even in the case where there is no

external one-particle potential applied to the system. We have also explored

some of the properties of noninteracting electrons in an external potential, in

this case the periodic lattice potential. This led to the concepts of electron

bands and band structure, subjects of fundamental importance in under-

standing the physics of metals, insulators, and semiconductors. Of course,

in the real world, electrons in matter are subjected both to electron–electron

interactions and to external potentials. How to include systematically and

correctly the electron–electron interactions in calculations of real systems is

truly a formidable problem.

Why that is so is easily demonstrated. Suppose that we want to solve the

problem of N electrons interacting in some external potential. The N-electron

wavefunction can be expanded in Slater determinants of some suitable single-

particle basis such as plane waves. We can describe the Slater determinants

by occupation numbers in our second-quantized notation. Suppose further-

more that we have a basis of a total of Nk plane wave states at our disposal.

Here Nk must be large enough that all reasonable ‘‘wiggles’’ of the many-

body wavefunction can be included. The size of our Hilbert space and

hence the size of the Hamiltonian matrix to be diagonalized can then be

found by using combinatorics: the size of the Hilbert space is given by the

number of ways that we can put N ‘‘balls’’ in Nk ‘‘boxes,’’ with only one ball

per box. This number is a binomial factor, Nk!=N!ðNk �NÞ!, which has the
unfortunate property that it grows factorially. Careful use of symmetry may
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help us reduce the size of the Hamiltonian by a factor of ten or so, and the

increasing power of computers allows us to consider ever-larger systems, but

it remains stubbornly the case that current state-of-the-art exact numerical

diagonalizations have difficulty handling more than a few tens of electrons.

Also, even though the computer power at our disposal grows exponentially

with time, the size of the Hilbert space of our N-electron problem

grows much faster than exponentially with N. We may therefore, some-

what pessimistically, conclude that we may never have enough computer

resources available to solve a problem with a macroscopic number of

electrons.

This draws attention to the urgent need for some alternative way to include

electron–electron interactions in our calculations. Virtually the only way to

do so in realistic calculations is provided by density functional theory (DFT).

Since its formulation in the mid 1960s and early 1970s, DFT has been used

extensively in condensed matter physics in almost all band-structure and

electronic structure calculations. It has also been widely adopted in the quan-

tum chemistry community, and has led to a computational revolution in that

area. Density functional theory was conceived by Walter Kohn, who also led

many of the successive developments in this field.

What makes density functional theory so powerful to use is a deceptively

simple-looking theorem, the Hohenberg–Kohn theorem, which has profound

implications. This theorem allows for the systematic formulation of a many-

body problem – interacting electrons in an external potential – in terms of the

electron density as the basic variable. It is worth spending a moment to

reflect on this. Consider the Schrödinger equation for N interacting

electrons. This is a differential equation for a complex quantity, the

Schrödinger wavefunction, which in three dimensions is a function of 3N

variables. This large number makes it impractical to solve even for just the

ground-state wavefunction, which will generally be insufficient, as we

also need information about the excited states. Finally, the physical quanti-

ties in which we are interested have to be extracted from the wavefunctions

that we have laboriously obtained. This in itself may be technically very

difficult. It is clear that if we can instead work with just the electron density

as the basic variable, this will lead to an enormous simplification, since

the density of a three-dimensional system is a scalar field of only three vari-

ables. What is truly remarkable is, as we shall see, that all physical properties

of the system can in principle be determined with knowledge only of the

ground-state density! That is precisely the statement of the Hohenberg–

Kohn theorem, as we now prove for systems with nondegenerate ground

states.
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Let

H ¼ T þ Vext þ V

be the nonrelativistic, time-independent Hamiltonian of a system of N

electrons. Here, T is the kinetic energy, Vext is an external potential which

couples to the density (an example being that from the nuclei in a solid), and

V is the two-body electron–electron interaction (usually the Coulomb inter-

action). In second-quantized notation we write

H ¼
X
k;s

02k2

2m
cyk;sck;s þ

X
k;q;s

VextðqÞcyk;sckþq;s þ
1

2

X
k;k 0;q;s;s 0

Vqc
y
k�q;sc

y
k 0þq;s 0ck 0;s 0ck;s:

The Hohenberg–Kohn theorem then states that the expectation value O of

any operator O is a unique functional O½n0ðrÞ� of the ground-state density
n0ðrÞ, by which we mean that the value of O depends on the value of n0ðrÞ at
all points r.

What does this imply? Well, we already know that if we could solve the

Schrödinger equation for the Hamiltonian H and find all the many-body

eigenstates ��, we could then calculate the expectation value of any operator.

The Hamiltonian therefore determines the expectation value of any operator,

and, in particular, the Hamiltonian determines the ground-state density, since

this is just the ground-state expectation value of the density operator. We can

be even more specific: since the kinetic energy operator T and the interaction

V are universal, meaning that they are the same for all nonrelativistic inter-

acting N-electron systems, it is really only the external potential Vext that

characterizes the Hamiltonian, and thus the eigenstates and the ground-state

density. This is straightforward. What the Hohenberg–Kohn theorem states

is that this mapping from external potential to ground-state density is inver-

tible. Given any density nðrÞ, which is specified to be the ground-state density
for some N-electron system, the Hamiltonian of that system is then uniquely

determined, and so then are all the eigenstates and the expectation value

of any operator. So with knowledge of only the ground-state density of an

N-electron system, we can (in principle, at least) determine everything about

that system, including excited states, excitation energies, transport properties,

etc.

The proof of this theorem is simple. We first show that two potentials, Vext
and V 0

ext, that differ by more than a trivial constant (a constant is unimpor-

tant since we can always shift the reference point of the potential energy),
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necessarily lead to different ground states �0 and � 0
0. The Schrödinger equa-

tions for �0 and for �
0
0 are

ðT þ V þ VextÞ�0 ¼ E0�0 ð5:1:1Þ

ðT þ V þ V 0
extÞ� 0

0 ¼ E 0
0�

0
0; ð5:1:2Þ

where E0 and E 0
0 are the respective ground-state energies. We prove the first

part of the theorem by contradiction. Suppose now that �0 and � 0
0 are the

same. We then subtract Eq. (5.1.1) from Eq. (5.1.2) to obtain

ðVext � V 0
extÞ�0 ¼ ðE0 � E 0

0Þ�0:

But E0 and E 0
0 are just real numbers, so this means that the two potentials Vext

and V 0
ext can differ at most by a constant, in contradiction to our hypothesis.

We have thus shown that if Vext 6¼ V 0
ext then �0 6¼ � 0

0.

At this point we pause to note the relation between n0ðrÞ, VextðrÞ, and
h�0jVextj�0i. We recall that

n0ðrÞ ¼
ð
�*0ðr1; r2; . . .Þ

XN
i

�ðr� riÞ�0ðr1; r2; . . .Þ dr1; dr2; . . . ;

which allows us to write

h�0jVextj�0i

¼
ð
�*0ðr1; r2; . . .Þ

XN
i

VextðriÞ�0ðr1; r2; . . .Þ dr1; dr2; . . . ; drN

¼
ð
�*0ðr1; r2; . . .Þ

XN
i

�ðrp � riÞVextðrpÞ�0ðr1; r2; . . .Þ dr1; dr2; . . . ; drN; drp

¼
ð
n0ðrÞVextðrÞ dr:

Now we can prove that if Vext 6¼ V 0
ext (so that consequently �0 6¼ � 0

0), then we

must also have n0ðrÞ 6¼ n 0
0ðrÞ. Again, we prove this assertion by contradiction.

Assume that n0ðrÞ ¼ n 0
0ðrÞ, and that H and H0 are the two Hamiltonians

corresponding to Vext and V 0
ext, respectively. According to the Rayleigh–

Ritz variational principle, we have

E0 ¼ h�0jHj�0i < h� 0
0jHj� 0

0i;
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and

h� 0
0jHj� 0

0i ¼ h� 0
0jH 0 þ Vext � V 0

extj� 0
0i ¼ E 0

0 þ
ð
n 0
0ðrÞ½VextðrÞ � V 0

extðrÞ� dr;

so that

E0 < E 0
0 þ

ð
n 0
0ðrÞ½VextðrÞ � V 0

extðrÞ� dr: ð5:1:3Þ

An analogous argument, obtained by interchanging primed and unprimed

quantities, yields

E 0
0 < E0 þ

ð
n0ðrÞ½V 0

extðrÞ � VextðrÞ� dr: ð5:1:4Þ

Adding Eqs. (5.1.3) and (5.1.4), and using our assumption that n0ðrÞ ¼ n 0
0ðrÞ

then leads to the expression

E0 þ E 0
0 < E0 þ E 0

0;

which appears unlikely. We have thus established that two different, nonde-

generate ground states necessarily lead to different ground-state densities. It

follows that two identical ground-state densities must stem from identical

external potentials, and with that our proof of the Hohenberg–Kohn theo-

rem is complete.

There is also an important variational principle associated with the

Hohenberg–Kohn theorem. Since the expectation value of any operator O
of a system is a unique functional of the ground-state density n0ðrÞ, this
certainly applies to the ground-state energy. We write this functional as

E½n� � h�0½n�jT þ Vext þ Vj�0½n�i; ð5:1:5Þ

where Vext is the specific external potential of a system with ground-state

density n0ðrÞ and ground-state energy E0. For the case where the density nðrÞ
equals the ground-state density n0ðrÞ corresponding to the external potential
Vext, the functional E½n� then takes on the value E0. Since the ground-state
energy is uniquely determined by n0ðrÞ, the Rayleigh–Ritz principle estab-
lishes that

E0 < E½n� for n 6¼ n0:
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We shall find that this is a very useful property. The ground-state energy can

be found by varying the density to minimize the energy, provided we know

the form of the functional E½n�, or at least have a good approximation for it.
In fact, we can write the ground-state energy functional as

E½n� ¼ FHK½n� þ
ð
VextðrÞnðrÞ dr; ð5:1:6Þ

where FHK½n� ¼ h�½n�jT þ Vj�½n�i is a unique functional. By that we mean
that FHK½n� is the same functional of the density nðrÞ for all interacting N-

electron systems. We thus need to determine it only once, and can then apply

it to all systems.

We have here discussed the Hohenberg–Kohn theorem only for nonde-

generate ground states. The theorem can also be extended to include the

case of degenerate ground states, which is formally very important. There

are also many other extensions that are important for practical calculations,

such as extensions to polarized systems, and to systems at finite temperatures.

For example, we might consider a spin-polarized system with a fixed quanti-

zation axis, which we take to be the z-axis. The system may then have a net

magnetization along this axis. In this case, we can define up- and down-spin

densities n" and n#, or, equivalently, total density n and polarization �, with

n ¼ n" þ n#

� ¼ n" � n#
n" þ n#

:

A Hohenberg–Kohn theorem can then be formulated in terms of n" and n#
(or in terms of n and �). It turns out that calculations formulated in this way

are usually much more accurate than calculations cast in terms of density

alone, even if the system itself has no net polarization.

5.2 The Kohn–Sham formulation

While the Hohenberg–Kohn theorem rigorously establishes that we may use

the density, and the density alone, as a variable to find the ground-state

energy of an N-electron problem, it does not provide us with any useful

computational scheme. This is provided by the Kohn–Sham formalism.

The idea here is to use a noninteracting ‘‘reference,’’ or auxiliary, system,

and to look for an external potential Vs such that the noninteracting system

has the same ground-state density as the real, interacting system. Once we
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have obtained this density, we can use it in the energy functional Eq. (5.1.5),

or in some approximation of it. The ground-state of a noninteracting system

of N electrons is given by a Slater determinant of the N lowest-lying single-

particle states. Since we can much more readily solve for these, the Kohn–

Sham scheme provides us with a route to practical calculations. But there is

no free lunch – the price we pay in the Kohn–Sham scheme is that the

equations have to be solved self-consistently. The effective potential Vs will

turn out to depend on the electron density. In practical calculations, one then

typically starts by assuming an initial density. This gives an input potential

Vs, which can then be used to solve for the single-particle states. From these a

new density is obtained, which gives a new Vs. The equations are then solved

again, and this process is repeated until self-consistency is obtained, i.e., until

the input and output density in one iteration are sufficiently close to one

another. Much effort has been spent over the years to come up with efficient

schemes for such self-consistent calculations.

Let us then start by considering a noninteracting N-electron system in an

external potential Vs. The Hamiltonian Hs of this system is given by

Hs ¼ T þ Vs:

We then apply the Hohenberg–Kohn theorem to this system. Accordingly,

there exists a unique energy functional

Es½n� ¼ Ts½n� þ
ð
VsðrÞnðrÞ dr: ð5:2:1Þ

We note here that Ts½n� is the kinetic energy functional of a system of N

noninteracting electrons, and is consequently a different functional from the

T ½n� that forms part of FHK½n� in Eq. (5.1.6).
The ground-state density of this system is easily obtained. It is simply

nsðrÞ ¼
XN
i¼1

j�iðrÞj2; ð5:2:2Þ

where we have occupied the N single-particle states, or orbitals, that satisfy

the Schrödinger-like equation

��02

2m
r2 þ VsðrÞ

�
�iðrÞ ¼ Ei�iðrÞ; E1 � E2 � � � � ; ð5:2:3Þ
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and have the N lowest eigenvalues Ei. But we are really interested in a system

of N interacting electrons in an external potential Vext, so the question we

would like to answer is the following: can we determine the form that Vs (the

external potential of the noninteracting system) must take in order for the

noninteracting system to have the same ground-state density as the interact-

ing system in the external potential Vext? The strategy we use is to solve for

the density using the auxiliary noninteracting system, and then insert this

density (which by construction is the same as that for the interacting system)

into an approximate expression for the total energy of the interacting system.

The first step in this process is to rewrite the energy functional E½n� of the
interacting system, which was given in Eq. (5.1.5), as

E½n� ¼ Ts½n� þ
�
T ½n� � Ts½n� þ V½n� � e2

2

ðð
nðrÞnðr 0Þ
jr� r 0j dr dr

0
�

þ e2

2

ðð
nðrÞnðr 0Þ
jr� r 0j dr dr

0 þ
ð
nðrÞVextðrÞ dr

� Ts þ
e2

2

ðð
nðrÞnðr 0Þ
jr� r 0j dr dr

0 þ
ð
nðrÞVextðrÞ drþ Exc½n�: ð5:2:4Þ

Here we have added and subtracted both the kinetic energy functional Ts½n�
of a noninteracting system and the direct, or Hartree, term in the electrostatic

energy. We have then defined the sum of the terms in braces to be the

exchange-correlation energy functional Exc½n�. From Eq. (5.1.6), this func-

tional is

Exc½n� � FHK½n� �
e2

2

ðð
nðrÞnðr 0Þ
jr� r 0j dr dr

0 � Ts½n�: ð5:2:5Þ

We have thus swept all our ignorance about electron interactions beyond the

Hartree term under the rug that we call Exc½n�. What we gain in writing E½n� in
this way is that we can eventually focus on developing reasonable approx-

imations for Exc½n�.
According to the Hohenberg–Kohn theorem, the density n that minimizes

the functional E½n� is the ground-state density. Thus by taking the variation
of Eq. (5.2.4) with respect to the particle density we obtain

�E½n�
�nðrÞ ¼

�Ts½n�
�nðrÞ þ e2

ð
nðr 0Þ
jr� r 0j dr

0 þ VextðrÞ þ vxc½nðrÞ� ¼ 0; ð5:2:6Þ
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where we have formally defined the exchange-correlation potential as

vxc½nðrÞ� �
�Exc½n�
�nðrÞ :

We now use the auxiliary noninteracting system and its Schrödinger equa-

tion, from which we can similarly show that

�Ts½n�
�nðrÞ þ VsðrÞ ¼ 0:

By comparing this result with Eq. (5.2.6) we see that this effective potential

VsðrÞ must satisfy

VsðrÞ ¼ VextðrÞ þ e2
ð

nðr 0Þ
jr� r 0j dr

0 þ vxcðrÞ: ð5:2:7Þ

We are now in a position to implement the self-consistent Kohn–Sham

scheme. We first choose an initial trial form of the function nðrÞ and sub-
stitute into Eq. (5.2.7) to find a trial form of Vs. We then solve Eq. (5.2.3) for

the single-particle wavefunctions �iðrÞ, and use Eq. (5.2.2) to find the next
iteration for nðrÞ. When this procedure has been repeated a sufficient number
of times that no further changes occur, then a solution for nðrÞ has been
found that not only satisfies the Schrödinger equation for the reference non-

interacting electrons, but also is the correct density for the interacting system.

We close this section by highlighting a few points about the Kohn–Sham

formalism. First of all, it is formally exact, supposing that we can find the

exact exchange-correlation potential vxcðrÞ. Second, we have cast the solution
of the interacting N-electron problem in terms of noninteracting electrons in

an external potential VsðrÞ. This is of great practical importance. The ground-
state wavefunction of the noninteracting system is just a Slater determinant

of the N orbitals, the so-called Kohn–Sham orbitals, with the lowest eigen-

values E�. It is relatively easy to solve for these single-particle orbitals even
for as many as a few hundred electrons. The Kohn–Sham equations formally

look very much like self-consistent Hartree equations, the only difference

being the presence of the exchange-correlation potential. This makes them

much simpler to solve than the Hartree–Fock equations, in which the poten-

tial is orbital-dependent. In the Kohn–Sham and Hartree equations, the

effective potential is the same for every orbital.
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5.3 The local density approximation

Before we can actually implement the Kohn–Sham formalism, we have to

devise some workable approximation for the exchange-correlation potential

vxcðrÞ. The first such approximation to be suggested was the Local Density
Approximation, or LDA. The idea behind the LDA is very simple; it just

ignores the nonlocal aspects of the functional dependence of vxc. The true

form of vxcðrÞ will depend not only on the local density nðrÞ but also on n at

all other points r 0, and this functional dependence is in general not known.
This difficulty is avoided with the assumption that vxc depends only on the

local density nðrÞ, and that Exc½n� can thus be written as

Exc½n� ¼
ð
	xc½n� nðrÞ dr;

where 	xc½n� is the exchange-correlation energy per particle of a homogeneous
system of density n. In the LDA, we assume that the density of our (in-

homogeneous) system varies very slowly, so that the exchange-correlation

energy is locally that of a homogeneous system at the local density.

For practical calculations, we must then determine what 	xc½n� is. Although
no general form is known exactly, the low-density and high-density limits can

be calculated analytically. Usually, the density is expressed in terms of the

dimensionless parameter rs, which is the radius of the sphere that can be

assigned to each electron (so that the volumes of all these spheres add up

to the total volume of the system), measured in units of the Bohr radius a0.

That is,

rs ¼ ð4
na30=3Þ�1=3:

In the low-density limit (rs � 1), the electrostatic potential energy dominates,

and the electrons condense into what is known as a Wigner crystal, the

energy of which can be calculated. While the density of the Wigner crystal

is not strictly uniform, we can still use the energy per electron of this system

to develop an estimate for 	xc½n� at low densities. In the high-density limit
(rs � 1), the kinetic energy dominates, and the random-phase approximation

becomes exact. Unfortunately, real metals have rs of the order of unity.

Usually, one then uses one of several interpolation schemes that join the

low- and high-density limits of 	xc. The most commonly used approximations

combine numerical calculations with Padé approximants, which are ratios of

polynomials, for the interpolations. In local spin density functional calcula-

tions, the exchange-correlation energy is frequently separated into exchange
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and correlation parts. The exchange part is in this context just the exchange

energy that we discussed in Chapter 2, and the correlation energy is every-

thing else. These two quantities are then calculated at zero and unit polariza-

tions (� ¼ 0 and � ¼ 1). The exchange energy is straightforward to calculate,
and the result is

	xðn; � ¼ 0Þ ¼ � 3

4


�
9


4

�1=3
e2

rsa0
;

and

	xðn; � ¼ 1Þ ¼ 21=3	xðn; � ¼ 0Þ:

A popular approximation for the correlation energy 	c is based on Monte

Carlo calculations by Ceperley and Alder for certain values of rs for � ¼ 0
and � ¼ 1. These are then parametrized. In one example, Perdew and Zunger
use a Padé approximant in r1=2s for rs � 1:

	cðn; � ¼ 0; 1Þ ¼
�ð�Þ

1þ �1ð�Þ ffiffiffiffi
rs

p þ �2ð�Þrs
;

with

�ð0Þ ¼ �0:1423e2=a0; �1ð0Þ ¼ 1:0529; �2ð0Þ ¼ 0:3334
�ð1Þ ¼ �0:0843e2=a0; �1ð1Þ ¼ 1:3981; �2ð1Þ ¼ 0:2611:

ð5:3:1Þ

This form is then joined smoothly to the high-density form of 	c (for rs � 1),
which is

	cðn; � ¼ 0; 1Þ ¼ Að�Þ ln rs þ Bð�Þ þ Cð�Þrs ln rs þDð�Þrs: ð5:3:2Þ

For � ¼ 0, the result is matched to the classical random-phase approximation
result by Gell-Mann and Brueckner, and for � ¼ 1 there exists a scaling
relation (also obtained from the random-phase approximation), which states

that

	cðrs; � ¼ 1Þ ¼ 1
2 	cðrs=24=3; � ¼ 0Þ: ð5:3:3Þ

Finally, by requiring that the correlation energy and the resulting correlation

potential, vcðn; � ¼ 0; 1Þ ¼ ðd=dnÞðn	cðn; � ¼ 0; 1ÞÞ be continuous at rs ¼ 1,
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the parameters Að�Þ, Bð�Þ, Cð�Þ, and Dð�Þ can be fixed. The result (with all
parameters given in units of e2=a0) is

Að0Þ ¼ 0:0311; Bð0Þ ¼ �0:048; Cð0Þ ¼ 0:0020; Dð0Þ ¼ �0:0166
Að1Þ ¼ 0:01555; Bð1Þ ¼ �0:0269; Cð1Þ ¼ 0:0007; Dð1Þ ¼ �0:0048:

ð5:3:4Þ

It then remains to interpolate exchange and correlation energies to arbi-

trary polarizations. For the exchange energy alone, one can show that there is

an exact expression for the exchange energy of a homogeneous system at

arbitrary polarizations. This expression is usually written

	xðn; �Þ ¼ 	xðn; � ¼ 0Þ þ ½	xðn; � ¼ 1Þ � 	xðn; � ¼ 0Þ� f ð�Þ; ð5:3:5Þ

where the dimensionless function f ð�Þ is

f ð�Þ ¼ ð1þ �Þ4=3 þ ð1� �Þ4=3 � 2
2ð21=3 � 1Þ : ð5:3:6Þ

This function has the value zero at � ¼ 0 and unity at � ¼ 1. In the LDA, one
then just replaces n and � in Eq. (5.3.5) by their local values nðrÞ and �ðrÞ. The
correlation energy is again a little trickier. There exists no exact interpolation

to arbitrary polarization, even for the homogeneous system, as there does for

the exchange energy. In lieu of better approximations, the first thing that

comes to mind is to use the same scaling relation for the correlation energy as

for the exchange energy, and write

	cðnðrÞ; �ðrÞÞ ¼ 	cðnðrÞ; �ðrÞ ¼ 0Þ þ ½	cðnðrÞ; �ðrÞ ¼ 1Þ � 	cðnðrÞ; �ðrÞ ¼ 0Þ� f ð�ðrÞÞ;

with the same scaling function f ð�Þ as for the exchange energy, Eq. (5.3.6).
This turns out to be surprisingly accurate: the error given by this for the

Perdew–Zunger parametrization of the exchange and correlation energies is

at most 3.5% when compared with values calculated by more laborious

numerical schemes.

The first real calculation using DFT was by Lang and Kohn, who found

the work functions of simple metals in the LDA. Before their calculation, this

had been a difficult problem. The Hartree approximation typically gave at

least the right sign, but wrong values, while ‘‘improvements’’ using Hartree–

Fock theory often would yield the wrong sign, meaning that according

to Hartree–Fock theory, metals were not stable! The calculations by Lang

and Kohn not only showed metals to be stable, but gave very good
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quantitative agreement with experiments. These calculations thus showed the

importance of the correlation energy. The exchange energy is typically attrac-

tive, but too large to give good results for metals without further corrections.

The inclusion of correlation energy compensates for the large exchange

energy.

It may seem surprising that the LDA gives such good results for work

functions. After all, the calculation of work functions involves metal surfaces.

While the LDA is based on the assumption of a slowly varying electron

density, the density near metal surfaces varies very rapidly, and so metal

surfaces should perhaps not be within the region of applicability of the

LDA. Other cases in point are also given by DFT–LDA calculations of

atomic systems, in which the density again varies rapidly on atomic length

scales. Yet, the LDA yields very good results (of the order of one to ten

percent error depending on the quantity). Why is that?

First of all, the LDA is by construction the exchange-correlation energy of

a physical system (an infinite homogeneous system). As such, it then satisfies

many of the relations, the so-called sum rules, that are required of the

exchange-correlation energy and potential. There is also another reason

that has a deep and physical origin, and for which we need to know a little

about something called the exchange hole. Consider an electron system inter-

acting through Hartree and exchange terms alone. While the Hartree term is

blind to the spin of electrons, the exchange term is not. This term, which is

really a manifestation of the Pauli Exclusion Principle, acts to keep electrons

of like spins apart. As a consequence, if we put an up-spin electron at the

origin, there will be a deficit of other up-spin electrons in a neighborhood

around the origin. One can actually write down a precise expression for this

deficit, which, if integrated out, adds up to precisely one electron. We can

therefore think of each up-spin (or down-spin) electron as it is moving

through the system as being surrounded by a little bubble of deficit of up-

spin (or down-spin) electrons. This ‘‘bubble,’’ which moves with the electron,

is the exchange hole. Now, if we go beyond Hartree and Fock terms, and add

electron correlations, there is still a deficit of up-spin (or down-spin) charge

around the electron. The correlation effects counteract the exchange term

locally to some extent, but the net deficit is still precisely one electron. This

net deficit is, quite naturally, called the exchange-correlation hole. If we

consider an electron at a point r, we can write the exchange-correlation

hole density at r 0 as 
xcðr; r 0Þ, and one can rigorously show that

Exc ¼
1

2

ðð
nðrÞVðr� r

0Þ
xcðr; r 0Þ dr dr 0:
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For translationally invariant interactions, 
xcðr; r 0Þ ¼ 
xcðjr� r
0jÞ. The

exchange-correlation energy is consequently determined by the form of this

spherically symmetric exchange-correlation hole. The LDA amounts to using

a particular approximation for the exchange-correlation hole, and this

approximation is successful in representing the form of the true exchange-

correlation hole. Part of this is due to the fortunate fact that errors from

exchange and correlation terms in the LDA cancel each other to some degree.

5.4 Electronic structure calculations

Density functional theory is the approach that is now almost universally used

in performing electronic structure calculations in condensed matter physics,

and the same is fast becoming the case in quantum chemistry. While many of

the earlier calculations used the Kohn–Sham scheme, there is now also a

large body of work, in particular for large systems, in which the approach

is to focus on minimizing the DFT–LDA expression for the ground-state

energy directly. There are in common use two different kinds of DFT

ground-state calculation. One is the so-called all-electron calculation, in

which the Coulomb potentials of the fully ionized atoms, i.e., of the bare

nuclei, are used for the external potential. All the electrons are then added to

the system and are considered in the calculations. This approach, however, is

frequently not practical for large systems consisting of hundreds of atoms, as

there are then many thousands of electrons.

This difficulty was resolved in the previous chapter for the case of non-

interacting electrons when we introduced the concept of the pseudopotential

in Section 4.4. There we argued that the bare Coulomb potential is very

strong, and thus tightly binds the core electrons, which consequently have

little effect on the properties of the system. We developed an analysis in which

the comparatively weak pseudopotential Uk given in Eq. (4.4.4) acted on a

comparatively smooth pseudo-wavefunction �k. We can proceed to apply a

similar technique within DFT, but at a cost of further loss of rigor, since

there is in this case no Hohenberg–Kohn theorem that formally allows us to

cast the problem in terms of only the ground-state density. This difficulty

stems from the fact that pseudopotentials are operators, and hence are non-

local. That is, a pseudopotential from an ion at position r acting on a valence

electron at r 0 depends on r and r
0 separately, and not just on the difference

r� r
0. A DFT can be constructed for pseudopotentials, but the basic variable

here is the so-called single-particle density–density matrix �ðr; r 0Þ, which
introduces another layer of complexity. For reasons of computational con-

venience, many users of pseudopotential methods within DFT typically
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ignore the inconsistency posed by the nonlocality of Uk. A powerful justifica-

tion is that pseudopotential calculations frequently give results that are as

accurate as any all-electron calculations. This may well be due to the fact

that it is in the end necessary to resort to approximations for the exchange-

correlation energy and potential, and these approximations are probably

responsible for most of the errors in the calculations.

Density functional theory, as we have described it here, is a theory for the

ground state of an interacting electron system, although there do exist exten-

sions to thermodynamic equilibria and to excited states. While it is formally

exact and can in principle be used to determine the expectation value of any

observable of the system, practical calculations focus on the exact formula-

tion for the ground-state energy and electron density, and are constructed to

give good approximations for these quantities. It is therefore not surprising

that quantities extracted directly from the ground-state energy and electron

density tend to be more accurate than quantities found by methods for which

there exists no formal justification. But even if we restrict ourselves to only

the former class, we can, with a little ingenuity, calculate a host of quantities.

First of all, we have the total energy. By calculating this for a variety of

different possible unit cells for a solid, one can predict the crystalline struc-

ture at various macroscopic densities. Calculated values for the total energy

at different lattice parameters for each lattice structure for a given material

can then be fitted to an approximate equation of state, from which the bulk

modulus can be calculated. By analyzing these equations of state, predictions

can be made about phase transitions as a function of pressure. In fact, a high-

pressure phase (a so-called �-tin phase) of silicon was first predicted from

total-energy DFT calculations, and later found experimentally. Most com-

mon semiconductors, such as Si, Ge, GaAs, GaP, InP, InAs, and InSb, have

been studied extensively in total-energy calculations of this sort. Unit cell

volumes and bond distances can be determined directly from the structure

having the minimum energy, with an accuracy of a few percent for the unit

cell volumes, and up to about one third of one percent (less than 0.01 Å) for

bond distances. Total energies (for nonmagnetic crystals) are also well pre-

dicted, with energies accurate to within ten percent of experimental values.

The bulk modulus is found as a second derivative of the energy with respect

to volume, and is correspondingly less accurately predicted, with errors typi-

cally being some tens of percent.

Surfaces have also been the subject of many calculations. For example, the

Lang–Kohn calculations mentioned earlier were the first DFT calculations

of simple surface properties. Compared with exact calculations of surface

exchange-correlation energies for jellium systems, the LDA performs
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acceptably well, with errors of the order of two percent. Surface reconstruc-

tions, in particular of semiconductors, have been particularly extensively

studied. In these calculations, a perfect bulk crystal is terminated at a parti-

cular plane surface, and then the atoms are allowed to move to establish new

positions of lower energy. Since the atoms at or near the surface have fewer

near neighbors than those in the bulk, they experience a net force. As these

atoms move to new equilibrium positions, the symmetry of their arrangement

at the surface is typically altered from the bulk symmetry. Perhaps the most

celebrated example is the reconstruction of Si atoms on a (111) surface, the

so-called 7� 7 reconstruction.
Phonon energies can be determined from ‘‘frozen phonon’’ calculations, in

which the lattice is given a static deformation corresponding to a phonon of a

particular branch of a chosen wavevector q and polarization s, and the total

energy is calculated and compared with the ground-state energy. These ‘‘fro-

zen phonon’’ calculations use the Born–Oppenheimer approximation, which

is based on the fact that electrons are very much lighter than the ions, and so

move much faster. The electrons can thus adjust very quickly to a change in

the ionic positions and at every instant form the ground state of the system

defined by whatever positions the ions are occupying at that time. These

calculations are easiest for special phonon wavevectors q at high symmetry

points in the Brillouin zone, and give results that are typically accurate to

within a few percent.

For atoms and simple molecules, the LDA (or alternatively the Local Spin

Density Approximation, LSDA) gives good results for geometrical quanti-

ties, such as bond lengths, and for electron densities, vibrational frequencies,

and energy differences such as ionization potentials. These results are often

an improvement over results obtained using the Hartree–Fock approxima-

tion. We remember also that the Hartree–Fock approximation is difficult and

time-consuming to use in practical calculations, since the effective potential is

orbital-dependent. For open-shell atoms the LSDA tends to overestimate the

ground-state energy in comparison with the best experimental values, and

with the Hartree–Fock approximation. Another important quantity for

molecules is the bond dissociation energy, or the atomization energy. This

is the energy required to break bonds and dissociate a simple molecule into its

atomic constituents. The LDA typically does rather poorly for this quantity,

overestimating it with errors around 20%, and sometimes over 100%.

The band structures of solids are usually calculated by interpreting the

Kohn–Sham eigenvalues Ek;n for Bloch states of wavevector k in band n as

being the band energies. Although there is no formal justification for this

interpretation, it usually works remarkably accurately. However, if one tries
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to calculate the band gap of insulators and semiconductors by taking the

difference between the highest occupied LDA Kohn–Sham eigenvalue and

the lowest unoccupied one, the result typically underestimates the real band

gap by as much as 50%. The error has two distinct sources. One is the LDA

approximation, which introduces errors due to the inexact nature of the LDA

exchange-correlation potential. The other is of a more subtle kind. One can

rigorously show that the exchange-correlation potential must have disconti-

nuities in its functional derivative at integer particle numbers. In order to

evaluate the band gap of an N-electron system, one must include this dis-

continuity at N. The necessity of doing this adds such complexity to the

calculations that this correction is often neglected, sometimes with unfortu-

nate consequences. It is known that for some systems, such as Si, omission of

the discontinuity in the derivative of the exchange-correlation potential is

responsible for over 80% of the error in the calculated band gap.

5.5 The Generalized Gradient Approximation

As we have mentioned, the local density approximation (or its extension to

spin-polarized systems) has been the most commonly used approximation for

the exchange-correlation energy. It is simple to implement in calculations, it

gives very reasonable results, and it has the appeal of actually being the

exchange-correlation energy of something real (an infinite homogeneous

electron gas) and thus satisfies sum rules and other constraints. It is,

however, tempting to regard the LDA as only the lowest-order term in an

expansion of the exchange-correlation energy in powers of the first- and

higher-order gradients of the density.

For a homogeneous electron gas, there is really only one intrinsic length

scale, and that is k�1F , which is proportional to n
�1=3. For the expansion to be

justified the length scale of variation of the density must thus be large com-

pared with k�1F . We can then formally expand the exchange-correlation
energy in density variations about the constant density of the homogeneous

gas by writing

Exc½n� ¼
ð
½g00ðnÞ þ g22ðnÞðrnÞ2 þ g42ðnÞðr2nÞ2

þ g43ðnÞðr2nÞðrnÞ2 þ g44ðnÞðrnÞ4 þ � � �� dr: ð5:5:1Þ

This form satisfies some constraints on rotational invariance, and the first

term in this expression, g00ðnðrÞ), constitutes the LDA. As terms of higher
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order bring in more powers of rn, the coefficients that accompany them must
bring in an equal number of powers of ðkFnÞ�1 if the dimensions of the
expression are to be preserved. Because kF / n1=3 we conclude that

Eq. (5.5.1) is an expansion in powers of jrnj=n4=3.
Early attempts to incorporate the corrections in Eq. (5.5.1) were focused

almost exclusively on the term g22ðnðrÞÞ, mainly because it has the attractive
property of being quadratic in rn. As a result, any variation in the energy
produces a linear response that can be calculated more or less straightfor-

wardly. However, the results obtained were discouraging in that they did not

improve on the LDA. In fact, the converse was often true, and inclusion of

gradient corrections gave worse results than use of just the LDA. Blindly

expanding the exchange-correlation energy in gradients of the density leads

to functionals that violate some sum rules that the LDA has to satisfy. For

example, such expansions often lead to an incorrect behavior for the long-

wavelength contributions to the exchange-correlation energy, and diverge or

increase sharply as k ! 0, whereas the long-wavelength contributions to the

true exchange-correlation energy vanish as k ! 0. The incorrect behavior of

this expansion is particularly easy to see for finite systems, such as atoms and

molecules. For such systems, the density vanishes exponentially at distances

far from the nuclei, and this makes jrnj=n4=3 diverge.
Further analysis of the gradient expansion shows that the resulting

exchange-correlation hole is not negative definite. The question then arises

of whether one can construct a gradient expansion that avoids these short-

comings, so that the resulting exchange-correlation hole satisfies the most

important sum rules. Such analyses and ‘‘fixes’’ have been performed, most

notably by Perdew and co-workers. The resulting gradient corrections with

exchange-correlation hole constraints restored are referred to as Generalized

Gradient Approximations (GGAs). Carefully constructed GGAs also satisfy

other physical limits, such as giving the correct exchange-correlation energy

in the homogeneous electron gas limit (rnðrÞ ! 0), coordinate scaling rela-

tions, global bounds on the exchange-correlation energy, and correctly giving

the lowest-order term g22ðnðrÞÞ in the expansion Eq. (5.5.1). The exchange-
correlation energy in the GGA is thus written as

EGGAxc ¼
ð
f ðn"; n#;rn";rn#Þ dr; ð5:5:2Þ

where the function f is a universal function of the spin-up and spin-down

densities and their gradients. There exist several versions of the GGA, all of

which are parametrized somewhat differently.
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The great strength of the GGA lies in the dramatic improvement it gives

over the LDA in calculating such properties as bond dissociation energies,

which the LDA may overestimate by as much as 100%, while the GGA gives

errors typically of the order of ten percent or less. The GGA also gives a great

improvement over the LDA for bulk moduli of solids, with an error of

around ten percent, compared with around 20% for the LDA (or LSDA).

With modern GGA exchange-correlation potentials, atomic and molecular

quantities can now be calculated with chemical accuracy. Before the GGA,

this was only possible using so-called configuration-interaction schemes, in

which the true many-body wavefunction is expanded in some small set of

Slater determinants composed of suitable atomic basis functions. This is an

extremely arduous and computationally intensive approach. Density func-

tional theory with the GGA, on the other hand, is essentially no more com-

plicated than Hartree or LDA calculations. The exchange-correlation

potential is only slightly more complicated than in the LDA, and (more

importantly) it is still a multiplicative potential, leading to simple, effective

single-particle equations. The combined advantages of simple equations and

high accuracy have resulted in a revolution in quantum chemistry.

We close this section with a cautionary note. While mean errors, averaged

over many compounds, atoms, or molecules, tend to be improved in the

GGA compared with the LDA, this is no guarantee that the GGA will be

better for some specific calculation. For example, while the LDA on average

gives poorer results for the bulk modulus, it has been found better for GaAs

than some GGA calculations. New forms for the functions used in Eq. (5.5.2)

are continually being suggested, each of which has its own advantages. The

so-called PBE (Perdew–Burke–Ernzerhof) GGA is one of those constructed

to satisfy the constraints and limits mentioned earlier. There are other GGAs

not constructed this way, but obtained by brute-force fitting to a large data

set. While such GGAs may give excellent results for quantities included in the

fitting procedure, they can yield large errors for other quantities. Because

these kinds of fitting procedure tend not to satisfy physical constraints and

limits and often violate, for example, the uniform electron gas limit, their use

is limited to specialized applications.

5.6 More acronyms: TDDFT, CDFT, and EDFT

We finish our discussion of density functional theory with a brief tour of some

later developments. We start with time-dependent density functional theory

(TDDFT), which extends the reach of stationary density functional theory in

a very powerful way. Not only are strongly time-dependent phenomena
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accessible to computations, but TDDFT also provides a natural way to

calculate the excitation energies of a system.

We have previously seen how the Hohenberg–Kohn theorem establishes a

one-to-one correspondence between external potentials and electron densities

for time-independent systems. It is natural to ask under what circumstances

something similar holds true for systems in which the external potential

depends on time, so that Vext ¼ Vextðr; tÞ. The answer is given by the
Runge–Gross theorem, which we will here only state and not prove. This

theorem establishes a one-to-one correspondence between density nðr; tÞ and
its governing time-dependent external potential vðr; tÞ, but there is a catch:
the correspondence can be established only for a specified initial many-body

state �0, and consequently the functional relationships between density and

potential implicitly depend on �0. However, this will not cause any problem

if �0 is a nondegenerate ground state. To state the theorem, we begin with a

system initially in an eigenstate �0 of the usual homogeneous N-electron

Hamiltonian,

H0 ¼ T þ Vint:

At some time t0 we turn on a time-dependent, scalar potential

VextðtÞ ¼
XN
i

vextðri; tÞ:

Here the only requirements we put on vextðr; tÞ are that it be finite and Taylor-
expandable about t0. We do not require �0 to be an eigenstate of Vextðt0Þ. The
theorem then states that the densities nðr; tÞ and n 0ðr; tÞ that evolve from
a common initial state �0 under the influence of two potentials vextðr; tÞ
and v 0

extðr; tÞ are different provided that the potentials differ by more than
a purely time-dependent but spatially uniform function, so that

vextðr; tÞ 6¼ v 0
extðr; tÞ þ cðtÞ:

The proof of the theorem proceeds by first demonstrating that the current

densities resulting from the application of vextðr; tÞ and v 0
extðr; tÞ necessarily

must differ, given the property of Taylor-expandability of the potentials.

Once this is established, one can then use the continuity equation to show

that the densities nðr; tÞ and n 0ðr; tÞ must also differ. Therefore, the density
determines the potential, and so the Hamiltonian, and thus the expectation

value of any operator, is uniquely determined by the time-dependent density.
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However, we must bear in mind that all these relationships implicitly depend

on the choice of initial state �0.

Once the Runge–Gross theorem is established, one can then continue and

derive Kohn–Sham equations, just as for the time-independent case, by con-

sidering a noninteracting system with the same density as the interacting one.

Formally, the equations look just as one would expect for the time-dependent

Kohn–Sham orbitals ’ðr; tÞ:

i0
@’jðr; tÞ
@t

¼
�
� 02

2m
r2 þ vs½n�ðr; tÞ

�
’jðr; tÞ:

Here, the effective potential vsðr; tÞ is given by

vsðr; tÞ ¼ vxcðr; tÞ þ vextðr; tÞ þ vHðr; tÞ;

with the exchange-correlation and Hartree potentials now being time-

dependent.

Once the time-dependent formalism is established, one can derive formally

exact expressions for the density–density response functions, which

describe how the density of the system changes in response to an external

potential that couples to the density. As an example we consider the

linear response function obtained by expanding the density response to

first order in the applied potential. We suppose an external potential of the

form

vextðr; tÞ ¼ v0ðrÞ þ v1ðr; tÞ�ðt� t0Þ;

where �ðxÞ is the Heaviside step function, which vanishes for x < 0 and is
unity for x � 0. This form of external potential is allowed by the Runge–
Gross theorem. For t < t0, the external potential is v0ðrÞ, which we take to be
the potential of the ion cores of the system, and the system is in its ground

state corresponding to v0ðrÞ with density n0ðrÞ. At a time t0 an additional,

time-dependent perturbation v1ðr; tÞ is applied. According to the Runge–
Gross theorem, the time-dependent density nðr; tÞ is then a functional of
the external potential (since we had fixed the state of the system prior to

turning on the time-dependent perturbation). We can then expand the density

in a Taylor series about n0ðrÞ:

nðr; tÞ ¼ n0ðrÞ þ n1ðr; tÞ þ � � �
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The first-order response of the density is by definition linear in v1ðr; tÞ, and
thus can be written

n1ðr; tÞ ¼
ð
�ðr; t; r 0; t 0Þv1ðr 0; t 0Þ dr 0 dt:

The response function �ðr; t; r 0; t 0Þ is the amount by which the density nðr; tÞ
varies when a change in external potential is applied that is localized in both

time and space, and of the form �ðr� r
0Þ�ðt� t 0Þ. It can be expressed as a

functional derivative, but of a type more complicated than those encountered

in Section 5.2, and written as

�ðr; t; r 0; t 0; n0Þ �
�n½vext�ðr; tÞ
�vextðr 0; t 0Þ

;

where we have made the dependence of � on the initial density n0 explicit.

The formal definition of the functional derivative �F ½�ðrÞ�=��ðr 0Þ of the scalar
functional F ½�ðrÞ� with respect to the scalar function �ðr 0Þ is a function of r
and r

0, and is defined as

�F ½�ðrÞ�
��ðr 0Þ � lim

	!0
F ½�ðrÞ þ 	�ðr� r

0Þ� � F ½�ðrÞ�
	

:

We note that the dimensions of functional derivatives are not what they at

first appear to be, since 	 has the dimensions of �multiplied by a volume. The

functional derivative �n½vext�ðr; tÞ= �vextðr 0; t 0Þ thus has dimensions of (number
density)/(energy� volume� time).
Similarly, we can consider the response of the noninteracting auxiliary

system to the external potential vextðr; tÞ, which yields its response function

�sðr; t; r 0; t 0Þ �
�n½vs�ðr; tÞ
�vextðr 0; t 0Þ

: ð5:6:1Þ

It is possible to show that when this response function is Fourier transformed

with respect to the time difference ðt� t 0Þ and is given in terms of the static,
unperturbed Kohn–Sham orbitals ’iðrÞ one finds

�sðr; t; r 0; !Þ ¼
X
i; j

ð fj � fiÞ
’iðrÞ’*jðrÞ’*iðr 0Þ’jðr 0Þ
0!� ð	i � 	jÞ þ i�

: ð5:6:2Þ
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Here the 	i are the Kohn–Sham eigenvalues, � is a positive infinitesimal to fix

the poles of �s, and fi are the occupation numbers (typically 0 or 1) of the

Kohn–Sham orbitals. The sum in Eq. (5.6.2) vanishes unless one of the

orbitals is occupied and one is empty. This can be understood in terms of

electrons making virtual transitions from occupied to unoccupied states. This

means that any practical calculations of the response function must include

enough of the unoccupied orbitals to capture the principal contributions

to �s.

What is now left is to relate the response function � of the interacting

system to that of the noninteracting system. First, we note that, by assump-

tion, the densities of the interacting and the noninteracting systems are iden-

tical. Therefore, we can think of nðr; tÞ in Eq. (5.6.1) as the density of the
noninteracting system. This density is a functional of the effective potential

vsðr; tÞ of the noninteracting system, and vs is in its turn a functional of the

external potential vextðr; tÞ. Putting that all together using the chain rule for
functional differentiation, we obtain

�ðr; t; r 0; t 0Þ ¼
ð

�nðr; tÞ
�vsðr 00; t 00Þ

�vsðr 00; t 00Þ
�vextðr 0; t 0Þ

dr
00 dt 00: ð5:6:3Þ

If we then write the exchange-correlation potential as

vxc½n�ðr; tÞ ¼ vs½n�ðr; tÞ � vextðr; tÞ � vH ½n�ðr; tÞ

we can use this relation between vs, vext, vH , and vxc to rewrite the second

functional derivative in Eq. (5.6.3) as

�vsðr; tÞ
�vextðr 0; t 0Þ

¼ �ðr� r
0Þ�ðt� t 0Þ þ

ð �
�ðt� t 00Þ
jr� r 00j þ

�vxcðr; tÞ
�nðr 00; t 00Þ

�
�nðr 00t 00Þ
�vextðr 0t 0Þ

dr
00 dt 00:

We then insert this into Eq. (5.6.1), and use Eq. (5.6.2) to arrive finally at

�ðr; t; r 0; t 0Þ ¼ �sðr; t; r 0; t 0Þ þ
ðð
�sðr; t; r 00; t 00Þ

�
�ðt 00 � t 000Þ
jr 00 � r 000j þ

�vxcðr 00; t 00Þ
�nðr 000; t 000Þ

�
� �ðr 000; t000; r 0; t 0Þ dr 00 dt 00 dr 000 dt 000: ð5:6:4Þ

Equation (5.6.4) is a formally exact equation for the density–density response

function of the interacting system. Note that this expression (being a

linear response quantity) depends only on the ground-state properties of

the system, and can be calculated if the ground-state Kohn–Sham orbitals

and their eigenvalues have been calculated. By multiplying Eq. (5.6.4) by the
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perturbing potential under consideration, and integrating over r 0 and t 0, we
can also derive a formally exact expression for the linear density response to

the time-dependent potential of our choosing. Moreover, after a little

thought we realize that the exact density–density response function �ðr; r 0;!Þ
has poles at the exact excitation energies of the interacting system. Thus, the

time-dependent linear response theory gives us a practical way to calculate

the excitation energies of an interacting system.This calculationwould be exact

if we were fortunate enough to have an exact expression for the quantity

fxcðr; t; r 0; t 0Þ �
�vxcðr; tÞ
�nðr 0; t 0Þ :

This quantity is called the exchange-correlation kernel. Perhaps the most

natural, and also the most frequently used, approximation for it is one

made in the spirit of the LDA, and is called the adiabatic local density

approximation (ALDA). Here, we consider a homogeneous electron gas

with a time-dependent perturbation that varies sufficiently slowly that the

system is ‘‘adiabatic,’’ meaning that the exchange-correlation energy per

particle at r at any instant t is that of a homogeneous electron gas in an

external potential vextðr; t 0Þ



ðt 0¼tÞ. This implies that there is no frequency

dependence of fxc in the ALDA. Just as for the LDA, it is found that the

ALDA works reasonably well, especially for low-frequency perturbations,

and, just as for the LDA, attempts to improve on it turn out to be difficult.

The reason for this is very deep: any simple attempt to include a frequency

dependence in a local approximation will violate something called the

Harmonic Potential Theorem, which is related to Galilean invariance. The

conclusion is, somewhat discouragingly, that there is no local, frequency-

dependent exchange-correlation kernel. Instead, to build a theory that does

not run into trouble with Galilean invariance, one has to consider the current

density as the fundamental variable, not the particle density. Such a theory is

called current density functional theory (CDFT).

Current density functional theory was developed to deal with magnetic

systems for which the external magnetic field is strong enough that the full

canonical kinetic energy

T ¼ 1

2m

�
p� e

c
A

�2
has to be considered. As a consequence, there will in general be diamagnetic

currents in response to the external magnetic field. The Hohenberg–Kohn
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theorem remains perfectly valid, even in the presence of a magnetic field, so

we can formally still extract everything we want from ‘‘standard’’ density

functional theory. However, experience has shown that practical calculations

are usually more accurate if the broken symmetry can be explicitly included

in the formalism. This is, for example, the case with spin density functional

theory. While we could in principle use regular density-only functional the-

ory, the approximations we make when we consider the spin densities sepa-

rately lead to more accurate calculations. It was thought, therefore, that

building the current density into the formulation would likewise lead to

more accurate computational approaches. While this essentially turned out

not to be the case, current density functional theory has given us a way to

formulate more refined approximations for the exchange-correlation kernel

than can be done using time-dependent density functional theory, and which

are not encumbered by flagrant violations of Galilean invariance.

Finally, in this discourse on more acronyms, we briefly discuss ensemble

density functional theory (EDFT), which helps us deal with degeneracies.

The origin of EDFT is simple enough to relate. Consider a time-independent

system, for which we are solving the Kohn–Sham equations. It does not

matter whether we are using the LDA or GGA, or even some exact

exchange-correlation energy. According to the Kohn–Sham scheme, we fill

all the orbitals having the lowest energy eigenvalues. The occupation

numbers fi for the N lowest-lying orbitals are then unity while fi ¼ 0 for
all the others. Suppose now that, while iterating our equations to reach self-

consistency, we find that as we fill the orbitals in order of ascending energy, p

eigenvalues at the highest occupied level 	F are degenerate. Then what are we

supposed to do? The answer is formally given by ensemble density functional

theory. Here, the density is not constructed from a single Slater determinant

of Kohn–Sham orbitals, but by an ensemble of Slater determinants �k. We

do this by writing the density matrix operator as

Ds ¼
Xp
k¼1

dkj�kih�kj;

where the weights dk of the Slater determinants �k are positive numbers that

sum to unity, so that
P

k dk ¼ 1: This leads to a ground-state ensemble
density

nsðrÞ ¼ Tr fDsnðrÞg ¼
Xp
k¼1

dkh�kjnðrÞj�ki ¼
X

i:	i<	F

j’iðrÞj2 þ
X

i:	i¼	F
fij’iðrÞj2;
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where now the occupation numbers fi of the orbitals on the ‘‘Fermi surface’’

are fractional, 0 � fi < 1. Formally, these fractional occupation numbers are

given as follows. Consider a particular orbital ’j. This orbital does or does

not appear in a particular Slater determinant �k, and we can assign an

occupation number �kj ¼ 0; 1 to this orbital in that Slater determinant. The
occupation number fj for this orbital is then given by a weighted average of

the �kj, with the weights given by the ensemble weights dk:

fj ¼
Xq
k¼1

dk�kj:

One can show that EDFT has very general validity, and in fact formally

avoids some problems that occasionally crop up for ‘‘regular’’ density func-

tional theory. These problems refer to what is known as v-representability,

and are concerned with under what circumstances one can use the auxiliary

noninteracting system to represent the density of the interacting one.

The most profound example of applications of EDFT comes in the frac-

tional quantum Hall effect, about which we shall learn more in Chapter 10.

These are strongly correlated systems (that is, the physics is determined

entirely by the interactions), and there is no systematic perturbation theory

that applies. Furthermore, it is known that the ground-state energy has cusps

at the densities at which the fractional quantum Hall effect occurs. This

implies that the LDA exchange-correlation potential has discontinuities,

and so applications of DFT to fractional quantum Hall systems first have

to deal with these discontinuities. If we assume that this can be done, and

then naı̈vely apply the Kohn–Sham scheme we find that in general all Kohn–

Sham eigenvalues are degenerate. This is apparently a situation where we

have to take EDFT very seriously. A practical calculation scheme has been

devised for these systems, and applications show that EDFT in the LDA

gives very good results, and provides perhaps the only practical scheme with

which to study inhomogeneous fractional quantum Hall systems.

Problems

5.1 A Wigner crystal forms when the potential energy gained by separating

the electrons outweighs the cost of the extra kinetic energy needed to

localize them. It is not easy to calculate the change in electrostatic energy

per electron, but on dimensional grounds it must be of the form

��1e2=a0rs, while the localization energy must be �202=ma20r
2
s , with �1
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and �2 constants. Estimate the value of rs at which crystallization might

occur.

5.2 Explicit calculation of even the kinetic energy functional Ts½n� of a non-
interacting electron gas is very difficult. Consider the effect of a weak

external potential V cos gx for which g � kF on nðrÞ and on the kinetic
energy, and hence evaluate the function h22 in the expansion of Ts½n� in
powers of rn that is analogous to the g22ðnÞ defined in Eq. (5.5.1).

5.3 Now consider the calculation of the kinetic energy functional Ts½n� of a
noninteracting electron gas in the opposite limit from Problem 5.2.

Consider the effect of a weak external potential V cos gx for which g �
kF as causing a periodic variation in the radius of the Fermi surface. The

electron density nðrÞ is again perturbed from its original uniform value
n0ðrÞ, and this time the kinetic energy functional can be written as

Ts½n� ¼ Ts½n0� 1þ �ðhn2i � n20Þ=n20
� 


:

Evaluate �.

5.4 In a collinear spin-polarized electron gas, the total electron density n can

be separated into components n ¼ n" þ n#, where n" and n# are the
densities of electrons with hszi ¼ þ 0=2 and hszi ¼ � 0=2, respectively.
In this case, the Hohenberg–Kohn theorem can be formulated in terms

of n" and n#, or, equivalently, in terms of n and the polarization

� ¼ ðn" � n#Þ=n. In particular, the exchange energy can then be con-
sidered a functional Ex½n"; n#� of n" and n#. Show that this functional
must satisfy the relation

Ex½n"; n#� ¼ 1
2 Ex½n"; n"� þ 1

2 Ex½n#; n#�;

where Ex½n�; n�� means that the functional is evaluated with both argu-
ments set equal to n�. You may use the fact that the exchange interaction

acts only between electrons with the same value of hszi. Since the
exchange energy in the local density approximation is a simple function

of electron density, we then have in this approximation in d dimensions

Ex½n"; n#� /
ð
ddr n�" þ n�#

� 

:
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Find the value of � by using dimensional analysis. Then, by changing

variables to n and � from n" and n#, find the form of the interpolating
function f ð�Þ for a two-dimensional electron gas [cf. Eq. (5.3.6)].

5.5 An old interpolation formula, but one that is simply expressed in closed

form, for the correlation energy of a uniform unpolarized electron gas of

N electrons is due to Nozières and Pines, who wrote

Ec=N ¼ 0:0311 ln rs � 0:115:

The unit of energy here is the hartree, which is equal to about 27.2 eV.

Use this form of the correlation energy to estimate the ground-state

energy of the helium atom. Use a simple singlet Ansatz wavefunction

for the two electrons, the spatial part of which is

�ðr1; r2Þ ¼
8


a30
exp ½�2ðr1 þ r2Þ=a0�;

where r1 and r2 are the coordinates of the two electrons and a0 is the

Bohr radius. First, evaluate the expectation value of the kinetic and

potential energies. To evaluate the Hartree and correlation energy, you

need to derive an expression for the electron density using the Ansatz

wavefunction. [You do not need to consider the exchange energy, since

there is only one electron of each spin orientation, and it cannot

exchange with itself!] Compare your result to the experimental value of

�98.975 eV. How large is the correlation correction? Then calculate the
electron interaction energy in first-order perturbation theory by forming

the quantity h�jVðr1 � r2Þj�i. Discuss the difference you find from the
previous result.

5.6 In Problem 2.3 you estimated the density at which the Hartree–Fock

approximation predicts that the uniform electron gas has a paramagnetic

to ferromagnetic transition. This critical density will change when the

correlation energy is included. Estimate this revised critical density by

using the scaling relation (5.3.3) and the Nozières–Pines expression for

the correlation energy for an unpolarized electron gas given in Problem

5.5. You will need to estimate the ground-state energy (kinetic, exchange,

and correlation) of both the unpolarized and of a fully polarized (� ¼ 1)
electron gas at a fixed density, and find when they become equal.
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Chapter 6

Electron–phonon interactions

6.1 The Fröhlich Hamiltonian

In this chapter we shall consider some of the consequences of the interaction

of phonons with electrons, and in particular with the electrons in a simple

metal. The subject is a complicated and difficult one, in that we need to call

on most of the knowledge that we have of the behavior of the electron gas

and of lattice vibrations. A complete calculation should really start with the

Hamiltonian of a lattice of bare ions whose mutual interaction would include

the long-range Coulomb potential. One would then add the electron gas,

which would shield the potential due to the ions in the manner indicated in

Section 1.7. It is, however, possible to explore many of the consequences of

the electron–phonon interaction by use of a simpler model. In this model we

take for granted the concept of screening, and assume that the ions interact

with each other and with the electrons only through a short-range screened

potential, and we treat the electrons themselves as independent fermions. For

a Bravais lattice our unperturbed Hamiltonian is then simply

H0 ¼
X
k

Ekc
y
kck þ

X
q;s

0!qsa
y
qsaqs;

the phonon frequencies !qs being proportional to q as q ! 0. To this we add

the interaction,H1, of the electrons with the screened ions. We assume that at

any point the potential due to a particular ion depends only on the distance

from the center of the ion – an assumption sometimes known as the rigid-ion

approximation – so that in second-quantized notation

H1 ¼
X
k;k 0;l

hkjVðr� l� ylÞjk 0icykck 0

¼
X
k;k 0;l

eiðk
0�kÞ � ðlþylÞVk�k 0c

y
kck 0 :
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Here VðrÞ is the potential due to a single ion at the origin, and Vk�k 0 its

Fourier transform. With the assumption that the displacement yl of the ion

whose equilibrium position is l is sufficiently small that ðk 0 � kÞ � yl � 1 we

can write

eiðk
0�kÞ � yl ’ 1þ iðk 0 � kÞ � yl

¼ 1þ iN�1=2ðk 0 � kÞ �
X
q

eiq � lyq:

Then H1 can be split into two parts,

H1 ¼ HBloch þHe�p;

the first term,HBloch, being independent of the lattice displacements. We have

HBloch ¼
X
k;k 0;l

eiðk
0�kÞ � lVk�k 0c

y
kck 0

¼ N
X
k;g

V�gc
y
k�gck;

where the g are reciprocal lattice vectors, and

He�p ¼ iN�1=2
X

k;k 0;l;q

eiðk
0�kþqÞ � lðk 0 � kÞ � yqVk�k 0c

y
kck 0

¼ iN1=2
X
k;k 0

ðk 0 � kÞ � yk�k 0Vk�k 0c
y
kck 0 :

In terms of the annihilation and creation operators defined in Eq. (3.6.4) this

becomes

He�p ¼ i
X
k;k 0;s

N0
2M!k�k 0;s

� �1=2

ðk 0 � kÞ � sVk�k 0 ðayk 0�k;s þ ak�k 0;sÞcykck 0;

where the summation now also includes the three polarization vectors, s, of

the phonons. (Because s and �s represent the same phonon mode, care is

necessary in using this expression. With a different convention for the direc-

tion of s, the plus sign in this expression would become a minus sign.) For

simplicity we shall assume the phonon spectrum to be isotropic, so that the

phonons will be either longitudinally or transversely polarized. Only the

longitudinal modes, for which s is parallel to k
0 � k, then enter He�p – a
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fact in accord with the semiclassical viewpoint of Section 1.7. We shall also

neglect the effects of HBloch, the periodic potential of the stationary lattice.

With these simplifications we are left with the Fröhlich Hamiltonian,

H ¼
X
k

Ekc
y
kck þ

X
q

0!qa
y
qaq þ

X
k;k 0

Mkk 0 ðay�q þ aqÞcykck 0; ð6:1:1Þ

where the electron–phonon matrix element is defined by

Mkk 0 ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N0

2M!q

s
jk 0 � kjVk�k 0; ð6:1:2Þ

with the phonon wavenumber q equal to k� k
0, reduced to the first Brillouin

zone if necessary.

The interaction He�p can be considered as being composed of two parts –

terms involving ay�qc
y
kck 0 and terms involving aqc

y
kck 0 . These may be repre-

sented by the diagrams shown in Figs. 6.1.1(a) and 6.1.1(b), respectively. In

the first diagram an electron is scattered from k
0 to k with the emission of a

phonon of wavenumber k 0 � k. The total wavenumber is then conserved, as

is always the case in a periodic system, unless the vector k 0 � k lies outside

the first Brillouin zone, so that q ¼ k
0 � kþ g for some nonzero g. Such

electron–phonon Umklapp processes do not conserve wavenumber, and

are important in contributing to the electrical resistivity of metals.

In the remainder of this chapter we shall study some of the consequences of

the electron–phonon interaction for the equilibrium properties of materials.

We shall see that not only are the electron and phonon excitation spectra

modified, but that there can also appear an effective attractive interaction

between electrons caused by the electron–phonon interaction.
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Figure 6.1.1. The Fröhlich Hamiltonian includes an interaction term in which an
electron is scattered from k

0 to k with either emission (a) or absorption (b) of a
phonon. In each case the total wavenumber is conserved.



6.2 Phonon frequencies and the Kohn anomaly

The effect of the electron–phonon interaction on the phonon spectrum may

be seen by using perturbation theory to calculate the total energy of the

system described by the Fröhlich Hamiltonian (6.1.1) to second order in

He�p. We have

E ¼ E0 þ h�jHe�pj�i þ h�jHe�pðE0 �H0Þ�1He�pj�i;

with E0 the unperturbed energy of the state � having nq phonons in the

longitudinally polarized mode q and nk electrons in state k. The first-order

term vanishes from this expression, since the components of He�p act on �

either to destroy or create one phonon, and the resulting wavefunction must

be orthogonal to �. In second order there is a set of nonvanishing terms, as

the phonon destroyed by the first factor of He�p to act on � can be replaced

by the second factor of He�p, and vice versa. We then find the contribution,

E2, of the second-order terms to be

E2 ¼ h�j
X
k;k 0

Mkk 0 ðay�q þ aqÞcykck 0 ðE0 �H0Þ�1

�
X
k 00;k 000

Mk 00k 000 ðay�q 0 þ aq 0 Þcyk 00ck 000 j�i

¼ h�j
X
k;k 0

jMkk 0 j2½ay�qc
y
kck 0 ðE0 �H0Þ�1a�qc

y
k 0ck

þ aqc
y
kck 0 ðE0 �H0Þ�1ayqc

y
k 0ck�j�i; ð6:2:1Þ

all other terms having zero matrix element. The first term in the brackets in

(6.2.1) can be represented as in Fig. 6.2.1(a). An electron is first scattered

from k to k
0 with the absorption of a phonon of wavenumber �q ¼ k

0 � k.

The factor ðE0 �H0Þ�1 then measures the amount of time the electron is

allowed by the Uncertainty Principle to stay in the intermediate state k
0.

In this case the energy difference between the initial and intermediate

states is Ek þ 0!�q � Ek 0 , and so a factor of ðEk þ 0!�q � Ek 0 Þ�1 is con-

tributed. The electron is then scattered back into its original state with

the re-emission of the phonon. We can represent the second term in

Eq. (6.2.1) by Fig. 6.2.1(b), and there find an energy denominator of

Ek � 0!q � Ek 0 . A rearrangement of the a’s and c’s into the form of number
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operators then gives

E2 ¼
X
k;k 0

jMkk 0 j2hnkð1� nk 0 Þi hn�qi
Ek � Ek 0 þ 0!�q

þ hnq þ 1i
Ek � Ek 0 � 0!q

 !
: ð6:2:2Þ

Here hnki and hnk 0 i are electron occupation numbers while hnqi and hn�qi
refer to phonon states. It may be assumed that !q ¼ !�q, and hence that in

equilibrium hnqi ¼ hn�qi. One may then rearrange Eq. (6.2.2), to find

E ¼ E0 þ
X
k;k 0

jMkk 0 j2hnki
2ðEk � Ek 0 Þhnqi

ðEk � Ek 0 Þ2 � ð0!qÞ2
þ 1� hnk 0 i
Ek � Ek 0 � 0!q

" #
; ð6:2:3Þ

the term in hnknk 0nqi cancelling by symmetry.

The effect of the electron–phonon interaction on the phonon spectrum is

contained in the term proportional to hnqi in Eq. (6.2.3). We again identify

the perturbed phonon energy, 0!ðpÞ
q , with the energy required to increase hnqi

by unity, and so find

0!ðpÞ
q ¼ @E

@hnqi

¼ 0!q þ
X
k

jMkk 0 j2 2hnkiðEk � Ek 0 Þ
ðEk � Ek 0 Þ2 � ð0!qÞ2

:

214 Electron–phonon interactions

Figure 6.2.1. These two processes contribute to the energy of the electron–phonon
system in second-order perturbation theory.



If we neglect the phonon energy in the denominator in comparison with the

electron energies we have

0!ðpÞ
q ¼ 0!q �

X
k

2 jMkk 0 j2hnkiðEk 0 � EkÞ�1; ð6:2:4Þ

where, as before, k 0 ¼ k� q. One may picture the origin of this change in

phonon frequency by redrawing Fig. 6.2.1(a) in the form of Fig. 6.2.2, in

which the first interaction is represented, not as the scattering of an electron,

but as the creation of an electron–hole pair. One can then say that it is the

fact that the phonon spends part of its time in the form of an electron–hole

pair that modifies its energy.

One interesting consequence of Eq. (6.2.4) occurs in metals when q has a

value close to the diameter, 2kF , of the Fermi surface. Let us suppose q to be

in the x-direction and of magnitude 2kF , and evaluate 0@!ðpÞ
q =@qx. If we

neglect the variation of Mkk 0 with q the electron–phonon interaction contri-

butes an amount

2
X
k

jMkk 0 j2hnkiðEk�q � EkÞ�2 @Ek�q

@qx
:

On substituting for Ek�q one finds the summation to contain the factors

hnkiðkx � kF Þ�2. These cause a logarithmic divergence when the summation

is performed, and thus indicate that the phonon spectrum has the form

indicated qualitatively in Fig. 6.2.3. The kink in the spectrum when q ¼ 2kF
reflects the infinite group velocity of the phonons at that point, and consti-

tutes the Kohn anomaly. Its importance lies in the fact that even for very

complex metals there should always be such an image of the Fermi surface in

the phonon spectrum. One should then in principle be able to gain informa-

tion about the electronic structure of metals by studies of the phonon spec-

trum alone. This is important in that neutron diffraction experiments can be

performed to determine !q at high temperatures and in impure samples
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Figure 6.2.2. This alternative way of considering the process of Fig. 6.2.1(a) suggests
that a phonon spends part of its time as a virtual electron–hole pair.



where many other techniques are not useful. Such effects have been seen most

clearly in lead, in which the electron–phonon interaction is very strong.

6.3 The Peierls transition

When we calculated the change in phonon energy caused by the electron–

phonon interaction, the answer we found contained a sum over terms of the

form ðEk�q � EkÞ�1. Even though these could become infinite for certain

values of k, the sum in Eq. (6.2.4) fortunately remained finite. It is only

the derivative @!ðpÞ
q =@q that diverges, giving rise to the Kohn anomaly. We

are saved from finding an infinite perturbation to the phonon frequency by

the fact that we perform the sum in three-dimensional k-space. The integra-

tion proceeds over both the magnitude of k and its direction, and it is the

directional integration that rescues us from the embarrassment of finding an

infinite negative perturbation to the phonon frequency.

However, before congratulating ourselves on this good fortune we might

ponder the fact that there are a number of physical systems that approximate

one-dimensional conductors. These include various organic materials, and in

particular certain families of polymers. A polymer is a long chain molecule of

covalently connected units (monomers), and a polymeric crystal can be

thought of as an assembly of parallel chains. Most everyday polymers, like
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Figure 6.2.3. The kink that appears in the phonon dispersion curve when the phonon
wavenumber q is equal to the diameter of the Fermi surface is known as the Kohn
anomaly.



the polyethylene shown in Fig. 6.3.1(a), for example, have completely filled

electronic bands, and are thus electrical insulators.

Polyacetylene, however, differs from polyethylene in having only one

hydrogen atom on each carbon of the chain backbone as in Fig. 6.3.1(b).

The double bond between every second pair of carbon atoms is the chemist’s

representation of the extra pair of electrons not used in bonding a hydrogen

atom. There is then effectively only one conduction electron per unit cell if we

think of the polymer as a one-dimensional lattice of spacing a.

The band structure for this Bravais lattice has the qualitative form shown

in Fig. 6.3.2(a). The wavenumber at the Fermi level (in one dimension the

Fermi surface has become a pair of Fermi points!) is ��=2a, as the band is
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Figure 6.3.1. The chemical structure of polyethylene (a) makes it an insulator, but
polyacetylene (b) can be a conductor through the motion of the defects (c) known as
charged solitons.

Figure 6.3.2. The half-filled band (a) of polyacetylene would make it a metallic
conductor, but dimerization opens up an energy gap.



half-filled. This causes the phonon wavenumber q that connects the two

Fermi points to be �=a, which is just half a reciprocal lattice vector. This

phonon, of wavelength 2a, is thus the mode of highest unperturbed fre-

quency, and vibrates in such a way that adjacent monomers move in anti-

phase with each other. To estimate the perturbation to this frequency, we put

q ¼ ð�=aÞð1þ �Þ and perform the sum in the one-dimensional version of

Eq. (6.2.4) to find the result

0!ðpÞ
q � 0!q � ln �: ð6:3:1Þ

As expected, this tends to �1 as � tends to zero.

The resolution of this difficulty comes when we realize that, on its way to

negative infinity, 0!ðpÞ
q must pass through zero, and a zero frequency phonon

is simply a static distortion of the lattice. The lattice has thus dimerized, so

that now the effective unit-cell dimension is 2a. The Fermi ‘‘points’’ and the

first Brillouin zone thus coincide. Bragg scattering of the electron states at the

Fermi points thus causes an electronic band gap to open at k ¼ ��=2a, as in
Fig. 6.3.2(b). If we now repeat the sum in Eq. (6.2.4), but with the new form

for Ek, the infinity is removed. This process of dimerization is known as the

Peierls transition.

We could have reached a similar conclusion without the use of many-body

theory by examining the total electronic energy as a function of the dimer-

ization distortion. Displacing every second monomer by a distance u opens

up a band gap 2V that is proportional to u. As only the lower band is

occupied, the electronic energy of a k-state is lowered by an amount equal

to EðnewÞ
k � EðoldÞ

k . From Eq. (4.3.2) we can evaluate the sum of these energies.

The result is that the total electronic energy is lowered by an amount

� V2 lnV2, which is always negative for small V , and hence for small dimer-

ization parameter u. Adding an elastic energy of distortion, which will be

proportional to u2, and hence to V2, does not change this fact, and so the

Peierls transition is always favored at low temperatures.

Because the energy of the distorted system is an even function of u, the

ground state is degenerate. This corresponds to the chemical picture in which

the double bond can form either between monomers 2n and 2nþ 1, or

between monomers 2n and 2n� 1. If the symmetry of the unperturbed

state is broken differently in two different parts of the chain, then a defect

occurs at the boundary of these regions, as shown in Fig. 6.3.1(c). This defect

is mobile, since it just requires the displacement of one monomer to move the

defect a distance 2a along the chain, and may also be charged, as it can

represent a region with added electron concentration. The name soliton is
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used to describe this type of excitation. It bears some qualitative similarity to

the solitary waves that we encountered in Section 1.3 when we looked at wave

propagation in the Toda chain.

6.4 Polarons and mass enhancement

Just as the energy of the phonons in a crystal is altered by interaction with the

electrons, so also does the converse process occur. We examine Eq. (6.2.3) in

the limit of low temperatures, when hnqi vanishes for all q. The perturbed

energy of an electron – once again the energy needed to fill an initially empty

unperturbed state – is given by

@E
@hnki

¼ Ek þ
X
k 0

jMkk 0 j2



1� hnk 0 i
Ek � Ek 0 � 0!q

� hnk 0 i
Ek 0 � Ek � 0!q

�

¼ Ek þ
X
k 0

jMkk 0 j2



1

Ek � Ek 0 � 0!q

� 20!qhnk 0 i
ðEk � Ek 0 Þ2 � ð0!qÞ2

�
: ð6:4:1Þ

The first term in the brackets is independent of nk 0 , and is thus a correction to

the electron energy that would be present for a single electron in an insulating

crystal. Indeed, in an ionic crystal the effect of this term may be so great as to

change markedly the effective mass of an electron at the bottom of the con-

duction band. It then becomes reasonable to use the term polaron to describe

the composite particle shown in Fig. 6.2.1(b) that is the electron with its

attendant cloud of virtual phonons. The name arises because one considers

the positive ions to be attracted towards the electron, and thus to polarize the

lattice. If this polarization is too great then second-order perturbation theory

is inadequate, and different methods must be used.

The second term in the brackets in Eq. (6.4.1) expresses the dependence of

the electron energy on the occupancy of the other k-states. In a metal it has

the effect of causing a kink in the graph of energy against wavenumber for

the perturbed electron states, as shown in Fig. 6.4.1. This kink occurs at the

Fermi wavenumber kF , and leads to a change in the group velocity vk of the

electron. We find an expression for 0vk by differentiating Eq. (6.4.1) with

respect to k. Instead of the free-electron expression we find

0vk ¼
@Ek

@k



1� d

dEk

X
k 0

jMkk 0 j2 20!qhnk 0 i
ðEk � Ek 0 Þ2 � ð0!qÞ2

�
:
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We then argue that the major contribution to the derivative of the summa-

tion comes from the rapid variation of hnk 0 i at the Fermi surface. We change

the summation over k 0 to an integral over Ek 0 and make the approximations

of replacing Mkk 0 and !q by their average values �MM and �!!, and DðEk 0 Þ by its

value at the Fermi energy �. With Ek 0 � Ek written as 	 we then have

0vk ’
@Ek

@k
1� 20 �!!Dð�Þj �MMj2 d

dEk

ð hnðEk þ 	Þi
	2 � ð0 �!!Þ2 d	


 �
:

Since

dhnðEk þ 	Þi
dEk

¼ ��ðEk þ 	� �Þ

we find

0vk ’
@Ek

@k



1þ 20 �!!Dð�Þj �MMj2

ðEk � �Þ2 � ð0 �!!Þ2
�
:

The infinities that this expression predicts when Ek ¼ �� 0 �!! are a spurious

consequence of our averaging procedure. The value predicted when k lies in

the Fermi surface, where Ek ¼ �, is more plausible, and gives us the result

vk ’ v
0
kð1� 
Þ
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Figure 6.4.1. The electron–phonon interaction changes the effective electron energy
in such a way that the velocity is lowered in the vicinity of the Fermi surface. This
gives rise to an increase in the observed electronic specific heat.



where v
0
k is the unperturbed velocity and


 ¼ 2j �MMj2Dð�Þ
0 �!!

:

This decrease in the electron velocity is equivalent to an increase in the density

of states by the factor ð1� 
Þ�1. Because v
0
k is inversely proportional to the

electron mass,m, it is common to discuss the increase in the density of states in

terms of an increase in the effectivemass of the electron. One refers to ð1� 
Þ�1

as the mass enhancement factor due to electron–phonon interactions.

It is important to note that the enhanced density of states must only be

used in interpreting experiments in which the Fermi energy is not altered.

This is because the kink in the electron spectrum depicted in Fig. 6.4.1 is in

fact tied to the Fermi energy; if one were to increase the density of electrons

in the metal the kink in the curve would ride up with �. We thus predict that

it is the enhanced density of states that determines the electronic specific heat,

since the effect of raising the temperature above zero is just to excite a few

electrons from states below the Fermi energy to states above the Fermi

energy. The semiclassical dynamics of a conduction electron in a magnetic

field considered in Section 4.6 will also involve the corrected electron velocity,

as again the Fermi energy is unchanged. The cyclotron mass m* is thus

enhanced by the factor ð1� 
Þ�1.

A different situation is encountered in the theory of the Pauli spin suscept-

ibility �p of the electron gas. We recall that a suitably oriented magnetic

field increases the size of the spin-up Fermi surface while diminishing the

spin-down one in the manner shown in Fig. 6.4.2, in which the densities
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Figure 6.4.2. A magnetic field lowers the energy of the spin-up states while increasing
the energy of those with spin down. The magnetization is proportional to the dif-
ference in area between the two halves of this diagram.



of states, D" and D#, are plotted as functions of energy. The magnetization

is proportional to N" �N#, and hence to the difference in the areas

enclosed on the left and on the right; in a free-electron model �p is thus

proportional to DðEÞ. If we now include the electron–phonon interaction

in our calculation the spin-up and spin-down systems remain indepen-

dent of each other, but two kinks are introduced in the densities of

states, as shown in Fig. 6.4.3. The difference in areas enclosed, however,

remains unaltered by this modification. We conclude that we should

use the unenhanced density of states when discussing such properties as

the Pauli paramagnetism or the change in Fermi surface dimensions on

alloying, since in these experiments the position of the Fermi surface is

altered.

6.5 The attractive interaction between electrons

The fact that the energy of the electron–phonon system (as expressed in

Eq. (6.2.3)) contains terms proportional to hnknk 0 i is an indication that

there is an effective electron–electron interaction mediated by phonons.

The nature of this interaction is illustrated by redrawing Fig. 6.2.1(b) in

the form of Fig. 6.5.1, in which we deliberately fail to notice that the two

intermediate electron states are the same. The passage of the phonon from

one electron to the other contributes an energy Ec which from Eq. (6.2.3) may
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Figure 6.4.3. The electron–phonon interaction changes the shape of the densities of
states of the spin-up and spin-down systems, but does not alter the difference in areas
of the two halves of the diagram. The magnetization due to the electron spins thus
remains unenhanced.



be written as

Ec ¼ �
X
k;k 0

jMkk 0 j2 hnknk 0 i
Ek � Ek 0 � 0!q

¼ 1

2

X
k;k 0

jMkk 0 j2 20!q

ðEk � Ek 0 Þ2 � ð0!qÞ2
h�nknk 0 i: ð6:5:1Þ

Comparison with Eq. (2.4.2) suggests that this may be considered as the

exchange energy of the electron gas when interacting through a potential V

whose matrix element Vkk 0 is given by

Vkk 0 ¼ jMkk 0 j2 20!q

ðEk � Ek 0 Þ2 � ð0!qÞ2
: ð6:5:2Þ

This is significant in that although Ek and Ek 0 are much greater than 0!q, and

thus usually give a positive Vkk 0 , there is always the possibility of Ek and Ek 0

being close enough that the matrix element could become negative. While it is

not necessarily true that an interaction that is negative in k-space is negative

in r-space, this form for Vkk 0 does open the door to the possibility of

an attractive interaction between electrons. Because the wavefunction of a

system always modifies itself to maximize the effects of attractive inter-

actions, while it tends to minimize those of repulsive interactions, even a

weak attraction between electrons can lead to important consequences.
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Figure 6.5.1. This way of redrawing Fig. 6.2.1(b) looks similar enough to Fig. 2.3.1
that we are led to believe there may be an effective electron–electron interaction
caused by the electron–phonon interaction.



We can verify that such an attractive interaction does exist by performing a

canonical transformation of the Fröhlich Hamiltonian (6.1.1). We write

H ¼ H0 þHe�p

and then look for a transformation of the form

H0 ¼ e�sHes ð6:5:3Þ

that will eliminate He�p to first order. On expansion of the exponentials in

Eq. (6.5.3) we have

H0 ¼ ð1� sþ 1
2 s

2 � � � �ÞHð1þ sþ 1
2 s

2 þ � � �Þ
¼ H0 þHe�p þ ½H0; s� þ ½He�p; s� þ 1

2 ½½H0; s�; s� þ � � � :

We choose s in such a way that its commutator with H0 cancels the term

He�p. With this achieved we have

H0 ¼ H0 þ 1
2 ½He�p; s� þ � � � ;

the omitted terms being of order s3 or higher. Now since

H0 ¼
X
k

Ekc
y
kck þ

X
q

0!qa
y
qaq

and

He�p ¼
X
k;k 0

Mkk 0 ðay�q þ aqÞcykck 0

we try

s ¼
X
k;k 0

ðAay�q þ BaqÞMkk 0c
y
kck 0;

with A and B coefficients to be determined. We then find that in order to

satisfy

He�p þ ½H0; s� ¼ 0

we must have

A ¼ �ðEk � Ek 0 þ 0!�qÞ�1; B ¼ �ðEk � Ek 0 � 0!qÞ�1:
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Then

H0 ¼ H0 � 1
2



X
k;k 0

Mkk 0 ðay�q þ aqÞcykck 0

�
;


 X
k 00;k 000

Mk 00k 000

�
ay�q 0

Ek 00 � Ek 000 þ 0!�q 0
þ aq 0

Ek 00 � Ek 000 � 0!q 0

�
c
y
k 00ck 000

��
:

Of the many terms in the commutator, we examine particularly the set that

arise from commuting the phonon operators. Using the fact that Mkk 0 is a

function only of k� k
0 ¼ q we find

H0 ¼ H0 þ
X
k;k 0;q

jMqj2
0!q

ðEk � Ek�qÞ2 � ð0!qÞ2
c
y
k 0þqc

y
k�qckck 0

þ ðterms involving only two electron operatorsÞ: ð6:5:4Þ

If we were now to take the expectation value of H0 in an eigenstate of H0

we should regain expression (6.2.3). (Because of the transformation we per-

formed, the energy of the system described by H0 is the same in first-order

perturbation theory as that of the system described by H in second order.)

The terms that are not displayed explicitly in Eq. (6.5.4) contain one cy and

one c, and have diagonal elements equal to the terms in hnki and hnknqi in
Eq. (6.2.3). The diagonal elements of the terms involving four electron opera-

tors have the sum shown in Eq. (6.5.1), and represent the Hartree–Fock

approximation applied to H0. (We recall that the direct term is absent as

there is no phonon for which q ¼ 0 in a Bravais lattice.)

The power of the method of canonical transformations which we have just

employed lies in the fact that we are not restricted to using perturbation

theory to find the eigenstates of H0. This is particularly important for the

theory of superconductivity which, as we shall see in the next chapter,

involves a phase transition in the electron gas brought about by attractive

electron interactions and which cannot be accounted for by perturbation

theory. Just such an attractive interaction is present in H0 whenever

jEk � Ek�qj < 0!q. This may allow pairs of electrons to form a bound

state of lower energy than that of the two free electrons. The existence of

Cooper pairs, in which two electrons of opposite wavenumber and spin

form a bound state, provides the foundation for the BCS theory of super-

conductivity.
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6.6 The Nakajima Hamiltonian

While the Fröhlich Hamiltonian (6.1.1) provides a useful model that exhibits

many of the interesting properties of metals, it does have the failing that the

phonon frequencies !q and the electron–phonon matrix elements, Mkk 0 , must

be assumed known. The results of the previous sections cannot then be

thought of as calculations ‘‘from first principles.’’ A better theory would

start with the Hamiltonian of a lattice of bare ions interacting through a

Coulomb potential. To this would be added the electrons, which would

interact with each other and with the ions.

The total Hamiltonian obtained in this way would differ from the Fröhlich

Hamiltonian in a number of aspects. Firstly we should have to replace the

phonon Hamiltonian

Hp ¼
X
q

0!qa
y
qaq

by the phonon Hamiltonian,Hi
p, for the lattice of bare ions, which, as we saw

in Chapter 1, does not support longitudinally polarized acoustic phonons.

We should have

Hi
p ¼

X
q

0�qA
y
qAq

with Ay
q the operator creating a phonon whose frequency �q in a monovalent

metal approaches �p, the ion plasma frequency, ð4�Ne2=M�Þ1=2, for small q.

By making use of the definitions (3.6.4) of both types of phonon operator we

can write Hi
p in terms of the operators ay and a. With neglect of the off-

diagonal terms and some constants we have

Hi
p �Hp ’

X
q

0
ð�2

q � !2
qÞ

4!q

ð2nq þ 1Þ:

The next correction to the Fröhlich Hamiltonian is the replacement of

the screened matrix element, Mkk 0 , by the scattering matrix element, Mi
kk 0 ,

of an ion. Because of the long-range Coulomb potential due to the ion

we expect Mi
kk 0 to diverge as q ! 0. Finally we must add the mutual

interaction of the electrons. Our total Hamiltonian, HN , can then

be written as the Fröhlich Hamiltonian, HF , plus a set of correction terms.
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We have

HN ¼HF þ
X
k;k 0

ðMi
kk 0 �Mkk 0 Þðay�q þ aqÞcykck 0

þ 1

2

X
k;k 0;q

Vqc
y
k�qc

y
k 0þqck 0ck þ

X
q

0
ð�2

q � !2
qÞ

4!q

ð2nq þ 1Þ: ð6:6:1Þ

This model was studied by Nakajima.

In writing the Fröhlich Hamiltonian we made the assumption that if !q

and Mkk 0 were correctly chosen, then it was permissible to ignore the effects

of the correction terms in Eq. (6.6.1). If this is really to be the case then the

canonical transformation (6.5.3) must not only eliminate the interaction

terms in Eq. (6.1.1), but also the correction terms in (6.6.1). That is to say,

we must demand that in some approximation

e�sðHN �HF Þes ¼ 0;

the operator s being the same as before. Let us write Eq. (6.6.1) as

HN ¼ HF þ �He�p þHe�e þ �Hp:

Then we impose the condition that all terms linear or bilinear in the phonon

operators must vanish in the expression

�He�p þHe�e þ �Hp þ ½�He�p; s� þ ½He�e; s� þ ½�Hp; s� þ � � � : ð6:6:2Þ

If we neglect ½�Hp; s� then the two sets of terms of first order in the phonon

operators that arise in this expression are the correction to the electron–

phonon interaction, �He�p, and the commutator, ½He�e; s�, of the Coulomb

interaction of the electrons with s. For the latter term we can build on the

calculation of Eq. (2.7.1) in which we saw that
�
1
2

X
k;k 0;q 0

Vq 0c
y
k�q 0c

y
k 0þq 0ck 0ck

�
; ðcypþqcpÞ

�
¼ 1

2

X
q 0

Vq 0 ½ðcypþq�q 0cp � cypþqcpþq 0 Þ
yq 0 þ 
q 0 ðcypþq 0þqcp � cypþqcp�q 0 Þ��:

We then make the random phase approximation of retaining only those

terms containing number operators, and so we must put q 0 ¼ �q. We are
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left with just

Vq

y
qðnp � npþqÞ:

Since we can write

s ¼ �
X
p;q

Mp;pþqc
y
pþqcp

�
ay�q

Ep � Epþq þ 0!�q

þ aq
Ep � Epþq � 0!q

�
;

then

�He�p þ ½He�e; s� ¼ 0

provided

Mi
kk 0 �Mkk 0 ¼ �Mkk 0Vq

X
p

hnpþq � npi
Epþq � Ep þ 0!q

ð6:6:3Þ

where k� k
0 ¼ q as before. In terms of the dielectric constant �ðq; !Þ defined

in Eq. (2.7.6) and Problem 2.9 this simplifies to

Mkk 0 ¼ Mi
kk 0

�ðq; !qÞ
; ð6:6:4Þ

which is a result we might intuitively have expected. We note that since

�ðq; !qÞ varies as q�2 for small q, the screened matrix element Mkk 0 no longer

diverges as q ! 0.

The phonon frequency !q is fixed by the condition that the diagonal ele-

ments of �Hp are cancelled by the other terms in the transformed

Hamiltonian of order nq. This leads to the condition

�Hp þ 1
2 ½ðHe�p þ �He�pÞ; s� ¼ 0;

the term in He�p occurring since this part of the Fröhlich Hamiltonian gives

rise to terms in nq. [These were included in the unspecified part of Eq. (6.5.4).]

We then find

0
�2

q � !2
q

4!q

¼ � 1

2
Mi

kk 0Mk 0k

X
p

hnpþq � npi
Epþq � Ep þ 0!q

: ð6:6:5Þ
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If, following Eq. (6.1.2), we write

Mi
kk 0 ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N0

2M!q

s
jk 0 � kjVi

k�k 0;

with Vi
k�k 0 the Fourier transform of the Coulomb potential of a bare ion, we

can rewrite (6.6.5) as

�2
q � !2

q ¼ � N

M
ðk 0 � kÞ2Vi

k�k 0Vk�k 0
X
p

hnpþq � npi
Epþq � Ep þ 0!q

¼ � N

M
q
2 ðVi

k�k 0 Þ2
Vq

�
1� �ðq; !qÞ
�ðq; !qÞ

�
:

For our monovalent metal we can put

Vi
k�k 0 ¼ �Vq ¼ � 4�e2

q2�
;

and then

!2
q ¼ �2

q �
4�Ne2

M�
1� 1

�

� �

¼ �2
q ��2

p þ
�2

p

�ðq; !qÞ
: ð6:6:6Þ

Since for small q the phonon frequency �q of the Coulomb lattice tends to �p

this equation correctly predicts that !q should vanish as q ! 0. An expan-

sion of the right-hand side of Eq. (6.6.6) in even powers of q leads to a

prediction for the velocity of sound. One can write

�2
p ��2

q ¼

�2

pq
2

k2F
þ � � �

and

�2
p

�ðq; !qÞ
¼ ��2

pq
2v2F

!2
p

with 
 and � constants of order unity and !p the plasma frequency. Thus

!q ’ q

�
m

M

�1=2

vF



�� 


�
0!p

2EF

�2�1=2
ð6:6:7Þ

in rough agreement with the semiclassical arguments of Section 1.7.
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We note that the electron–electron interaction has not been removed from

HN by our canonical transformation, but only modified. Further transforma-

tions are necessary to exhibit explicitly such consequences of He�e as the

plasma oscillations.

Problems

6.1 Show that the enhancement of the electron density of states in a metal

by the electron–phonon interaction is independent of the isotopic mass

of the ions.

6.2 Use the method of canonical transformations discussed in Section 6.5 to

diagonalize the magnon–phonon system described in Problem 3.6.

6.3 Investigate to second order the T-matrix for scattering of a free electron

by a single impurity fixed in a crystal lattice. Assume the impurity to

participate in the motion of the lattice without perturbing the phonon

spectrum. How is the probability of elastic scattering of the electron

affected by the motion of the impurity?

6.4 What errors would one make if, instead of using Nakajima’s approach,

one used a Fröhlich Hamiltonian with matrix elements given by Eq.

(6.6.4)?

6.5 Discuss whether the infinite group velocity of phonons predicted in the

theory of the Kohn anomaly violates the principle of special relativity.

6.6 Estimate the effective mass of a single polaron in the model described by

the Fröhlich Hamiltonian (6.1.1) with !q equal (for all q) to the ion

plasma frequency :p defined in Eq. (1.5.1) and with Vk 0k equal to

�4�e2=�ðk� k
0Þ2. Why is this an unrealistic description of a polaron

in an ionic crystal?

6.7 A one-dimensional system consists of electrons and phonons in inter-

action, and is described by a Hamiltonian of the form

H ¼
X
k

Ekc
y
kck þ

X
q

0!qa
y
qaq þM

X
k;k 0

ðay�q þ aqÞcykck 0 :

Here 0!q ¼ W sin ðqa=2Þ and in the electron–phonon interaction term,

q ¼ k� k 0. The lattice, originally of spacing a, has become dimerized by

the electron–phonon interaction, so that the spacing is now 2a. A gap
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has consequently appeared in the electron energy-band structure at

k ¼ �=2a, and now Ek ¼ �A� B cos ð2kaÞ in the filled valence band

and Ek ¼ Aþ B cos ð2kaÞ in the empty conduction band. The energies

A and B are both positive, and A� B � W > 0. The matrix element M

is a constant and M2 ¼ G=N, with N the number of atoms. Find a

condition on the magnitude of G in terms of W , A, and B in order

for the phonon energy at q ¼ �=a to be reduced to zero.

6.8 Why doesn’t benzene dimerize?

(a) Consider a periodic polyacetylene chain of six monomers with lat-

tice spacing a, and evaluate the perturbed frequency of the phonon

of wavelength 2a. Determine the condition for this frequency to

vanish when the Hamiltonian is

H ¼
X
k

Ekc
y
kck þ

X
q

0!qa
y
qaq þM

X
k;k 0

ðay�q þ aqÞcykck 0

with q ¼ k� k 0, M ¼ constant, Ek ¼ Að1� cos kaÞ, and 0!q ¼
W sin ðqa=2Þ.

(b) In a completely different approach, calculate the total energy,

Eelastic þ Eelectronic, of a static periodic polyacetylene chain of six

monomers with periodic boundary conditions. The distance

between adjacent monomers alternates between aþ u and a� u.

The Hookian spring constant for a single monomer–monomer

bond is K. The electronic energy Ek is given by Eq. (4.3.2)

with g ¼ �=a and Vg ¼ �u. Find the condition for � in terms of

K; 0;m, and a for dimerization to be energetically favored.

6.9 A hydrogen atom may be absorbed into an interstitial position in pal-

ladium with evolution of energy Es. Make an order-of-magnitude esti-

mate of the amount by which Es is altered by the vibrational motion of

the hydrogen. [Hint: Consider the atom as a three-dimensional harmo-

nic oscillator of frequency !0 moving in a free-electron gas of Fermi

energy EF and carrying its potential VaðrÞ rigidly with it. Calculate to

second order in the electron-vibration interaction in analogy with the

treatment of the electron–phonon interaction of Section 6.1.]

6.10 Find a condition for the minimum value of the electron density in a

metal by requiring that the expression (6.6.7) for the phonon frequency

be real.
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Chapter 7

Superconductivity

7.1 The superconducting state

The discovery, in Section 6.5, of an attractive interaction between electrons in

a metal has mentally prepared us for the existence of a phase transition in the

electron gas at low temperatures. It would, however, never have prepared us

to expect a phenomenon as startling and varied as superconductivity if we

were not already familiar with the experimental evidence. The ability to pass

an electrical current without any measurable resistance has now been found

in a wide range of types of material, including simple elements like mercury,

metallic alloys, organic salts containing five- or six-membered rings of carbon

and sulfur atoms, and ceramic oxides containing planes of copper and oxygen

atoms.

In this chapter we shall concentrate mainly on the simplest type of super-

conductor, typified by elements such as tin, zinc, or aluminum. The organic

superconductors and the ceramic oxides have properties that are so aniso-

tropic that the theories developed to treat elemental materials are not applic-

able. Accordingly, with the exception of the final Section 7.11, the discussion

that follows in this chapter applies only to the classic low-temperature super-

conductors.

Some of the properties of these materials are shown in Fig. 7.1.1, in which

the resistivity, �, specific heat, C, and damping coefficient for phonons, �, are

plotted as functions of temperature for a typical superconductor. At the

transition temperature, Tc, a second-order phase transition occurs, the

most spectacular consequence being the apparent total disappearance of

resistance to weak steady electric currents. The contribution of the electrons

to the specific heat is found no longer to be proportional to the absolute

temperature, as it is in normal (i.e., nonsuperconducting) metals and in

superconductors when T > Tc, but to vary at the lowest temperatures as
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e��=kT , with � an energy of the order of kTc. This leads one to suppose that

there is an energy gap in the excitation spectrum – an idea that is confirmed

by the absorption spectrum for electromagnetic radiation. Only when the

energy 0! of the incident photons is greater than about 2� does absorption

occur, which suggests that the excitations that give the exponential specific

heat are created in pairs.

A rod-shaped sample of superconductor held parallel to a weak applied

magnetic field H0 has the property that the field can penetrate only a short

distance � into the sample. Beyond this distance, which is known as the

penetration depth and is typically of the order of 10�5 cm, the field decays

rapidly to zero. This is known as the Meissner effect and is sometimes

thought of as ‘‘perfect diamagnetism.’’ This rather misleading term refers

to the fact that if the magnetic moment of the rod were not due to currents

flowing in the surface layers (the true situation) but were instead the conse-

quence of a uniform magnetization, then the magnetic susceptibility would

have to be �1=4�, which is the most negative value thermodynamically

permissible. If the strength of the applied field is increased the superconduc-

tivity is eventually destroyed, and this can happen in two ways. In a type I

superconductor the whole rod becomes normal at an applied field Hc, and

then the magnetic field B in the interior of a large sample changes from zero

to a value close to H0 (Fig. 7.1.2(a)). In a type II superconductor, on the other

hand, although the magnetic field starts to penetrate the sample at an applied

field, Hc1, it is not until a greater field, Hc2, is reached, that B approaches H0

within the rod, and a thin surface layer may remain superconducting up to a

yet higher field, Hc3 (Fig. 7.1.2(b)). For applied fields between Hc1 and Hc2
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Figure 7.1.1. The resistivity �, the electronic specific heat C, and the coefficient of
attenuation for sound waves all change sharply as the temperature is lowered
through the transition temperature Tc.
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Figure 7.1.2(a). A magnetic field H0 applied parallel to a large rod-shaped sample of
a type I superconductor is completely excluded from the interior of the specimen
when H0 < Hc, the critical field, and completely penetrates the sample when
H0 > Hc.

Figure 7.1.2(b). In a type II superconductor there is a partial penetration of the
magnetic field into the sample when H0 lies between the field values Hc1 and Hc2.
Small surface supercurrents may still flow up to an applied field Hc3.



the sample is in a mixed state consisting of superconductor penetrated by

threads of the material in its normal phase.

These filaments form a regular two-dimensional array in the plane perpen-

dicular to H0. In many cases it is found possible to predict whether a super-

conductor will be of type I or II from measurements of � and �. One defines

a coherence length 	0 equal to 0vF=�� with vF the Fermi velocity. (This length

is of the order of magnitude of EF=� times a lattice spacing.) It is those

superconductors for which �� 	0 that tend to exhibit properties of type II.

7.2 The BCS Hamiltonian

The existence of such an obvious phase transition as that involved in super-

conductivity led to a long search for a mechanism that would lead to an

attractive interaction between electrons. Convincing evidence that the elec-

tron–phonon interaction was indeed the mechanism responsible was provided

with the discovery of the isotope effect, when it was found that for some

metals the transition temperature Tc was dependent on the mass A of the

nucleus. For the elements first measured it appeared that Tc was proportional

to A�1=2, and hence to the Debye temperature �. More recent measurements

have shown a wider variety of power laws, varying from an almost complete

absence of an isotope effect in osmium to a dependence of the approximate

form Tc / A2 in �-uranium. It is accordingly reasonable to turn to the

Fröhlich electron–phonon Hamiltonian discussed in the preceding chapter

as a simple model of a system that might exhibit superconductivity. The

canonical transformation of Section 6.5 allowed us to write the

Hamiltonian in the form of Eq. (6.5.4), which states that

H0 ¼ H0 þ
X

k;s;k 0;s 0;q

Wkk 0qc
y
k 0þq;s 0c

y
k�q;sck;sck 0;s 0 : ð7:2:1Þ

Here H0 was the Hamiltonian of the noninteracting system of electrons and

phonons, and Wkk 0q was a matrix element of the form

Wkk 0q ¼
jMqj20!q

ðEk � Ek�qÞ2 � ð0!qÞ2
: ð7:2:2Þ

The spin s of the electrons has also been explicitly included in this trans-

formed Hamiltonian.

Because this interaction represents an attractive force between electrons,

we do not expect perturbation theory to be useful in finding the eigenstates of
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a Hamiltonian like Eq. (7.2.1). In fact, an infinitesimal attraction can change

the entire character of the ground state in a way not accessible to perturba-

tion theory. We could now turn to a variational approach, in which we make

a brilliant guess at the form the correct wavefunction j�i will take, and then

pull and push at it until the expectation value h�jH 0j�i is minimized. This is

the approach that Bardeen, Cooper, and Schrieffer originally took, and is

described in their classic paper of 1957. We shall take a slightly different route

to the same result, and turn for inspiration to the only problem that we have

yet attempted without using perturbation theory – the Bogoliubov theory of

helium discussed in Section 3.4.

The starting point of the Bogoliubov theory was the assumption of the

existence of a condensate of particles having zero momentum. This led to the

approximate Hamiltonian (3.4.1) in which the interactions that took place

involved the scattering of pairs of particles of equal but opposite momentum.

Now we can consider the superconducting electron system as being in some

sort of condensed phase, and it thus becomes reasonable to make the hypoth-

esis that in the superconductivity problem the scattering of pairs of electrons

having equal but opposite momentum will be similarly important. We refer

to these as Cooper pairs, and accordingly retain from the interaction in Eq.

(7.2.1) only those terms for which k ¼ �k 0; in this way we find a reduced

Hamiltonian

HBCS ¼
X
ks

Ekcykscks � 1
2

X
kk 0s

Vkk 0c
y
k 0s 0c

y
�k 0sc�kscks 0 ð7:2:3Þ

where in the notation of Eq. (7.2.2)

Vkk 0 ¼ �2W�k;k;k 0�k �Ukk 0

with Ukk 0 a screened Coulomb repulsion term which we add to the Fröhlich

Hamiltonian. A positive value of Vkk 0 thus corresponds to a net attractive

interaction between electrons.

One other question that must be answered before we attempt to diagona-

lize the Hamiltonian HBCS concerns the spins of the electrons: do we pair

electrons of like spin (so that in Eq. (7.2.3) we put s ¼ s 0) or of opposite spin?

The answer is that to minimize the ground-state energy it appears that we

must pair electrons of opposite spin. We shall assume this to be the case, and

leave it as a challenge to the sceptical reader to find a wavefunction that leads

to a lower expectation value of Eq. (7.2.3) with s ¼ s 0 than we shall find when

s and s 0 represent spins in opposite directions. With this assumption we can
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perform the sum over s in Eq. (7.2.3). SinceX
s

c
y
k 0s 0c

y
�k 0sc�kscks 0 ¼ c

y
k 0#c

y
�k 0"c�k"ck# þ c

y
k 0"c

y
�k 0#c�k#ck"

¼ c
y
k 0#c

y
�k 0"c�k"ck# þ c

y
�k 0#c

y
k 0"ck"c�k#

and Vkk 0 ¼ V�k;�k 0 the summation over s is equivalent to a factor of 2. This

allows us to abbreviate further the notation of Eq. (7.2.3) by adopting the

convention that an operator written with an explicit minus sign in the sub-

script refers to a spin-down state while an operator without a minus sign

refers to a spin-up state. Thus

cy
k 0 � cy

k 0"; cy�k 0 � cyð�k 0Þ#; etc:

We then have

HBCS ¼
X
k

Ekðcykck þ c
y
�kc�kÞ �

X
k;k 0

Vkk 0c
y
k 0c
y
�k 0c�kck: ð7:2:4Þ

This is the model Hamiltonian of Bardeen, Cooper, and Schrieffer, of which

the eigenstates and eigenvalues must now be explored.

7.3 The Bogoliubov–Valatin transformation

In the Bogoliubov theory of helium described in Section 3.4 it was found to

be possible to diagonalize a Hamiltonian that contained scattering terms like

a
y
ka
y
�k by means of a transformation to new operators

�k ¼ ðcosh �kÞak � ðsinh �kÞayy�k:

The �k and their conjugates �
y
k were found to have the commutation relations

of boson operators, and allowed an exact solution of the model Hamiltonian

(3.4.1). This suggests that we try a similar transformation for the fermion

problem posed by HBCS, and so we define two new operators


k ¼ ukck � vkc
yy
�k; 
�k ¼ ukc�k þ vkc

y
k ð7:3:1Þ

with conjugates



y
k ¼ ukc

y
k � vkc�k; 
y�k ¼ ukc

y
�k þ vkck: ð7:3:2Þ
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The constants uk and vk are chosen to be real and positive and to obey the

condition

u2
k þ v2

k ¼ 1

in order that the new operators have the fermion anticommutation relations

f
k; 
k 0 g ¼ f
k; 
�k 0 g ¼ f
yk; 
�k 0 g ¼ 0

f
yk; 
k 0 g ¼ f
y�k; 
�k 0 g ¼ �kk 0;

as was verified in Problem 2.4. Equations (7.3.1) and (7.3.2) comprise the

Bogoliubov–Valatin transformation, which allows us to write the BCS

Hamiltonian in terms of new operators. We do not expect to be able to

diagonalize HBCS completely, as this Hamiltonian contains terms involving

products of four electron operators, and is intrinsically more difficult than

Eq. (3.4.1); we do, however, hope that a suitable choice of uk and vk will

allow the elimination of the most troublesome off-diagonal terms.

We rewrite the BCS Hamiltonian by first forming the inverse transforma-

tions to Eqs. (7.3.1) and (7.3.2). These are

ck ¼ uk
k þ vk

y
�k; c�k ¼ uk
�k � vk


y
k ð7:3:3Þ

c
y
k ¼ uk


y
k þ vk
�k; cy�k ¼ uk


y
�k � vk
k: ð7:3:4Þ

The first part of Eq. (7.2.4) represents the kinetic energy HT , and on sub-

stitution from Eqs. (7.3.3) and (7.3.4) is given by

HT ¼
X
k

Ek½u2
k

y
k
k þ v2

k
�k

y
�k þ ukvkð
yk
y�k þ 
�k
kÞ

þ v2
k
k


y
k þ u2

k

y
�k
�k � ukvkð
y�k
yk þ 
k
�kÞ�:

The diagonal parts of this expression can be simplified by making use of the

anticommutation relations of the 
’s and defining a new pair of number

operators

mk ¼ 
yk
k; m�k ¼ 
y�k
�k:

Then

HT ¼
X
k

Ek½2v2
k þ ðu2

k � v2
kÞðmk þm�kÞ þ 2ukvkð
yk
y�k þ 
�k
kÞ�: ð7:3:5Þ
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We note here the presence of three types of term – a constant, a term contain-

ing the number operators mk and m�k, and off-diagonal terms containing the

product 

y
k

y
�k or 
�k
k. The potential energy HV is given by the second part

of HBCS and leads to a more complicated expression. We find

HV ¼ �
X
k;k 0

Vkk 0 ðuk 0
yk 0 þ vk 0
�k 0 Þðuk 0
y�k 0 � vk 0
k 0 Þ

� ðuk
�k � vk

y
kÞðuk
k þ vk


y
�kÞ

¼ �
X
k;k 0

Vkk 0 ½uk 0vk 0ukvkð1�mk 0 �m�k 0 Þð1�mk �m�kÞ

þ uk 0vk 0 ð1�mk 0 �m�k 0 Þðu2
k � v2

kÞð
�k
k þ 
yk
y�kÞ�
þ ðfourth-order off-diagonal termsÞ: ð7:3:6Þ

We now argue that if we can eliminate the off-diagonal terms in HBCS by

ensuring that those in Eq. (7.3.5) are cancelled by those in Eq. (7.3.6), then we

shall be left with the Hamiltonian of a system of independent fermions. We

first assume that the state of this system of lowest energy has all the occupa-

tion numbers mk and m�k equal to zero; this assumption may be verified at a

later stage of the calculation. To find the form of the Bogoliubov–Valatin

transformation that is appropriate to a superconductor in its ground state we

then let all the mk and m�k vanish in Eqs. (7.3.5) and (7.3.6) and stipulate

that the sum of off-diagonal terms also vanish. We findX
k

2Ekukvkð
yk
y�k þ 
�k
kÞ �
X
k;k 0

Vkk 0uk 0vk 0 ðu2
k � v2

kÞð
yk
y�k þ 
�k
kÞ

þ ðfourth-order termsÞ ¼ 0: ð7:3:7Þ

If we make the approximation that the fourth-order terms can be neglected

(Problem 7.6) then this reduces to

2Ekukvk � ðu2
k � v2

kÞ
X
k 0

Vkk 0uk 0vk 0 ¼ 0: ð7:3:8Þ

Because uk and vk, being related by the condition that u2
k þ v2

k ¼ 1, are not

independent it becomes convenient to express them in terms of a single vari-

able xk, defined by

uk ¼ ð 12� xkÞ1=2; vk ¼ ð 12þ xkÞ1=2: ð7:3:9Þ
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Then Eq. (7.3.8) becomes

2Ekð 14� x2
kÞ1=2 þ 2xk

X
k 0

Vkk 0 ð 14� x2
k 0 Þ1=2 ¼ 0: ð7:3:10Þ

If we define a new quantity �k by writing

�k ¼
X
k 0

Vkk 0 ð 14� x2
k 0 Þ1=2 ð7:3:11Þ

then Eq. (7.3.10) leads to the result

xk ¼ �
Ek

2ðE2
k þ�2

kÞ1=2
: ð7:3:12Þ

Substitution of this expression in Eq. (7.3.11) gives an integral equation for

�k of the form

�k ¼
1

2

X
k 0

Vkk 0
�k 0

ðE2
k 0 þ�2

k 0 Þ1=2
: ð7:3:13Þ

If Vkk 0 is known then this equation can in principle be solved and re-

substituted in Eq. (7.3.12) to give xk. In doing so we once more note that

the zero of energy of the electrons must be chosen to be the chemical poten-

tial � if the total number of electrons is to be kept constant. To see this we

note that

N ¼
X
k

ðcykck þ cy�kc�kÞ

¼
X
k

½2v2
k þ ðu2

k � v2
kÞðmk þm�kÞ þ 2ukvkð
yk
y�k þ 
�k
kÞ�;

and so the expectation value of N in the ground state of the system is just

hNi ¼
X
k

2v2
k

¼
X
k

ð1þ 2xkÞ: ð7:3:14Þ

In the absence of interactions

hNi ¼
X
k<kF

2;

and so we deduce that xk ¼ 1
2 if Ek � � and xk ¼ � 1

2 if Ek > �, as illustrated
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in Fig. 7.3.1(a). This shows that xk is an odd function of Ek � � in the

noninteracting case, and that if we make sure xk remains an odd function

of Ek � � in the presence of interactions, then Eq. (7.3.14) tells us that hNi
will be unchanged (the energy dependence of the density of states being

neglected). We also want the form of xk given by Eq. (7.3.12) to reduce to

the free-electron case when Vkk 0 vanishes, and so we choose the negative

square root and obtain a form for vk and xk like that shown in Fig.

7.3.1(b). To remind ourselves that Ek is measured relative to � we use the

symbol ÊEk ¼ Ek � � to rewrite Eq. (7.3.12) as

xk ¼ �
ÊEk

2ðÊE2
k þ�2

kÞ1=2
:
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Figure 7.3.1. In this diagram we compare the form that the functions vk and xk take
in a normal metal at zero temperature (a) and in a BCS superconductor (b).



To make these ideas more explicit we next consider a simple model that

allows us to solve the integral equation for �k exactly. The matrix element

Vkk 0 has its origin in the electron–phonon interaction, and, as Eq. (7.2.2)

indicates, is only attractive when jÊEk � ÊEk 0 j is less than the energy 0!q of

the phonon involved. In the simple model first chosen by BCS the matrix

element was assumed to be of the form shown in Fig. 7.3.2, in which

Vkk 0
¼ V if jÊEkj < 0!D

¼ 0 otherwise;

(
ð7:3:15Þ

with V a constant and 0!D the Debye energy. It then follows that �k is also a

constant, since Eq. (7.3.13) reduces to

�k ¼
1

2

ð1
�1

DðEk 0 Þ dEk 0
�k 0

ðÊE2
k 0 þ�2

k 0 Þ1=2
Vkk 0

¼ 1

2
VDð�Þ

ð0!D

�0!D

�

ðÊE2 þ�2Þ1=2
dÊE;

the energy density of states DðEÞ here referring to states of one spin only and

again being taken as constant. This has the solution

� ¼ 0!D

sinh½1=VDð�Þ� : ð7:3:16Þ

The magnitude of the product VDð�Þ can be estimated by noting that from

Eq. (7.2.2)

V � jMqj2
0!D
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Schrieffer.



and from Eq. (6.1.2)

jMqj2 �
N0k2

F

M!D

jVkj2

� m

M

�

0!D

NjVkj2

with Vk the Fourier transform of a screened ion potential. Since Dð�Þ � N=�

we find that

VDð�Þ � m

M

NVk
0!D

� �2

:

While 0!D might typically be 0.03 eV, the factor NVk is something like the

average of the screened ion potential over the unit cell containing the ion, and

might have a value of a few electron volts, making ðNVk=0!DÞ2 of the order

of 104. The ratio of electron mass to ion mass, m=M, however, is only of the

order of 10�5, and so it is in most cases reasonable to make the approxima-

tion of weak coupling, and replace Eq. (7.3.16) by

� ¼ 20!De
�1=VDð�Þ; ð7:3:17Þ

the difference between 2 sinh (10) and e10 being negligible. In strong-coupling

superconductors such as mercury or lead, however, the electron–phonon

interaction is too strong for such a simplification to be valid; for these metals

the rapid damping of the quasiparticle states must also be taken into account.

The important fact that this rough calculation tells us is that � is a very

small quantity indeed, being generally about one percent of the Debye

energy, and hence corresponding to thermal energies at temperatures of the

order of 1 K. The parameter xk thus only differs from � 1
2 within this short

distance of the Fermi energy and our new operators 
k and 
�k reduce to

simple electron annihilation or creation operators everywhere except within

this thin shell of states containing the Fermi surface.

7.4 The ground-state wavefunction and the energy gap

Our first application of the Bogoliubov–Valatin formalism must be an

evaluation of the ground-state energy ES of the superconducting system.

We hope to find a result that is lower than EN , the energy of the normal

system, by some amount which we shall call the condensation energy Ec. The
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ground-state energy of the BCS state is given by the sum of the expectation

values of Eqs. (7.3.5) and (7.3.6) under the conditions that mk ¼ m�k ¼ 0. As

we have already eliminated the off-diagonal terms we are only left with the

constant terms, and find

ES ¼
X
k

2ÊEkv2
k �

X
k;k 0

Vkk 0uk 0vk 0ukvk

¼
X
k

ÊEkð1þ 2xkÞ �
X
k;k 0

Vkk 0 ½ð 14� x2
k 0 Þð 14� x2

kÞ�1=2: ð7:4:1Þ

It is interesting to pause at this point and note that we could have considered

the BCS Hamiltonian from a variational point of view. Instead of eliminating

the off-diagonal elements of HBCS we could have decided to choose the xk in

such a way as to minimize ES. It is reassuring to see that this approach leads

to the same solution as before; if we differentiate Eq. (7.4.1) with respect to xk
and equate the result to zero we obtain an equation that is identical with Eq.

(7.3.10). We write expression (7.4.1) as

ES ¼
X
k

½ÊEkð1þ 2xkÞ � ð 14� x2
kÞ1=2��

with xk and � defined as before in Eqs. (7.3.12) and (7.3.11). In the normal

system x2
k ¼ 1

4 for all k and so the condensation energy, defined as ES � EN , is

Ec ¼
X
k<kF

ÊEkð2xk � 1Þ þ
X
k>kF

ÊEkð2xk þ 1Þ �
X
k

ð14� x2
kÞ1=2�

¼ 2Dð�Þ
ð0!D

0

�
ÊEk �

2ÊE2

k þ�2

2ðÊE2

k þ�2Þ1=2
�
dÊEk

¼ Dð�Þfð0!DÞ2 � 0!D½ð0!DÞ2 þ�2�1=2g

¼ ð0!DÞ2Dð�Þ
�
1� coth

�
1

VDð�Þ
��
:

In the weak-coupling case this becomes

Ec ’ �2ð0!DÞ2Dð�Þe�2=VDð�Þ

¼ � 1
2Dð�Þ�2: ð7:4:2Þ

This condensation energy is surprisingly small, being of the order of only

10�7 eV per electron, which is the equivalent of a thermal energy of about a

millidegree Kelvin. This is a consequence of the fact that only the electrons
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with energies in the range ��� to �þ� are affected by the attractive

interaction, and these are only a small fraction of the order of �=� of the

whole. We note that we cannot expand Ec in a power series in the interaction

strength V since the function exp½�2=VDð�Þ� has an essential singularity at

V ¼ 0, which means that while the function and all its derivatives vanish as

V !þ0, they all become infinite as V !�0. This shows the qualitative

difference between the effects of an attractive and a repulsive interaction,

and tells us that we could never have been successful in calculating Ec by

using perturbation theory.

The wavefunction �0 of the superconducting system in its ground state

may be found by recalling that it must be the eigenfunction of the diagona-

lized BCS Hamiltonian that has mk ¼ m�k ¼ 0 for all k, so that


kj�0i ¼ 
�kj�0i ¼ 0: ð7:4:3Þ
Now since 
k
k ¼ 
�k
�k ¼ 0 we can form the wavefunction that satisfies Eq.

(7.4.3) simply by operating on the vacuum state with all the 
k and all the


�k. From Eq. (7.3.1) we have�Y
k


k
�k

�
j0i ¼

�Y
k

ðukck � vkc
y
�kÞðukc�k þ vkc

y
kÞ
�
j0i

¼
�Y

k

ðukvk þ v2
kc
y
kc
y
�kÞ
�
j0i:

To normalize this we divide by the product of all the vk to obtain

j�0i ¼
�Y

k

ðuk þ vkc
y
kc
y
�kÞ
�
j0i: ð7:4:4Þ

This wavefunction is a linear combination of simpler wavefunctions contain-

ing different numbers of particles, which means that it is not an eigenstate of

the total number operator N. Our familiarity with the concept of the chemi-

cal potential � teaches us not to be too concerned about this fact, however, as

long as we make sure that the average value is kept constant.

The quasiparticle excitations of the system are created by the operators 

y
k

and 
y�k acting on �0. By adding Eqs. (7.3.5) and (7.3.6) one can write the

Hamiltonian in the form

HBCS ¼ ES þ
X
k

ðmk þm�kÞ
�
ðu2
k � v2

kÞÊEk þ 2ukvk
X
k 0

Vkk 0uk 0vk 0

�
þ higher-order terms;
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which on substitution of our solution for uk and vk becomes

HBCS ¼ ES þ
X
k

ðÊE2
k þ�2Þ1=2ðmk þm�kÞ þ � � � :

The energies Ek of these elementary excitations are thus given by

Ek ¼ ðÊE2
k þ�2Þ1=2: ð7:4:5Þ

These excitations cannot be created singly, for that would mean operating on

�0 with a single 
y, which is a sum containing just one c and one cy. Now any

physical perturbation that we apply to �0 will contain at least two electron

operators, since such perturbations as electric and magnetic fields act to

scatter rather than to create or destroy electrons. For instance

c
y
kck 0 j�0i ¼ ðuk
yk þ vk
�kÞðuk 0
k 0 þ vk 0


y
�k 0 Þj�0i

¼ ukvk 0

y
k

y
�k 0 j�0i;

the other terms vanishing. We thus conclude that only pairs of quasiparticles

can be excited, and that from Eq. (7.4.5) the minimum energy necessary to

create such a pair of excitations is 2�. This explains the exponential form of

the electronic specific heat at low temperatures and also the absorption edge

for electromagnetic radiation at 0! ¼ 2�.

It is interesting to compare these quasiparticle excitations with the particle–

hole excitations of a normal Fermi system. In the noninteracting electron gas

at zero temperature the operator c
y
kck 0 creates a hole at k 0 and an electron at

k provided ÊEk 0 < 0 and ÊEk > 0. The energy of this excitation is ÊEk � ÊEk 0 ,
which can be written as jÊEkj þ jÊEk 0 j, and is thus equal to the sum of the

lengths of the arrows in Fig. 7.4.1(a). In the superconducting system the

operator c
y
kck 0 has a component 


y
k

y
�k 0 , which creates an excitation of total

energy Ek þ Ek 0 equal to the sum of lengths of the arrows in Fig. 7.4.1(b).

The density of states is inversely proportional to the slope of ÊEðkÞ in the

normal metal, and this leads us to think of an effective density of states in

the superconductor inversely proportional to dE=djkj. As Ek and ÊEk are

related by Eq. (7.4.5) we find this effective density of states to be equal to

DðEÞ ¼ 2DðEÞ dÊE
dE

’
2Dð�Þ jEj

ðE2 ��2Þ1=2 if jEj > �

0 if jEj � �:

8><>: ð7:4:6Þ
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The factor of 2 enters when Dð�Þ is the normal density of states for one spin

direction because the states 

y
kj�0i and 
y�kj�0i are degenerate.

7.5 The transition temperature

Our method of diagonalizing HBCS in Section 7.3 was to fix uk and vk so that

the sum of off-diagonal terms from Eqs. (7.3.5) and (7.3.6) vanished. The

resulting equation was of the formX
k

�
2ÊEkukvk �

X
k 0

Vkk 0uk 0vk 0 ð1�mk 0 �m�k 0 Þðu2
k � v2

kÞ
�

� ð
yk
y�k þ 
�k
kÞ ¼ 0; ð7:5:1Þ
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Figure 7.4.1. In a normal metal (a) an electron–hole pair has an excitation energy
equal to the sum of the lengths of the two arrows in the left-hand diagram; the
density of states is inversely proportional to the slope of ÊEðkÞ and is thus roughly
constant. In a superconductor (b) the energy of the excitations is the sum of the
lengths of the arrows when Ek is plotted; an effective density of states can again be
drawn which is inversely proportional to the slope of Ek, as shown on the right.



and to solve this we first put mk 0 ¼ m�k 0 ¼ 0. While this approach remains

valid in the presence of a few quasiparticle excitations it clearly needs mod-

ification whenever the proportion of excited states becomes comparable to

unity, for then the terms in mk 0 and m�k 0 will contribute significantly to the

summation over k 0. This will be the case if the temperature is such that kT is

not much less than �.

We resolve this difficulty by first of all assuming that it is possible to

eliminate these off-diagonal terms. We are then left with a Hamiltonian

that is the sum of the diagonal parts of Eqs. (7.3.5) and (7.3.6), so that

HBCS ¼
X
k

2ÊEkv2
k þ

X
k

ðu2
k � v2

kÞÊEkðmk þm�kÞ

�
X
k;k 0

Vkk 0uk 0vk 0ukvkð1�mk 0 �m�k 0 Þð1�mk �m�kÞ: ð7:5:2Þ

The energy Ek necessary to create a quasiparticle excitation will be

Ek ¼
@hHBCSi
@hmki

¼ ÊEkðu2
k � v2

kÞ þ 2ukvk
X
k 0

Vkk 0uk 0vk 0 ð1� hmk 0 i � hm�k 0 iÞ: ð7:5:3Þ

Now if we had a system of independent fermions at temperature T then we

should know from Fermi–Dirac statistics just what the average occupancy of

each state would be; from Eq. (3.3.3) we could immediately write

�mmk ¼ �mm�k ¼
1

exp ðEk=kTÞ þ 1
: ð7:5:4Þ

(No chemical potential appears in this function because the total number of

quasiparticles is not conserved.) Although the terms in mkmk 0 in Eq. (7.5.2)

represent interactions among the fermions, the definition of the quasiparticle

energy adopted in Eq. (7.5.3) allows us to treat them as independent. We can

then obtain an approximate solution of Eq. (7.5.1) by replacing mk 0 and m�k 0
by their thermal averages. If we abbreviate the Fermi function of Eq. (7.5.4)

by f ðEkÞ then we find that to satisfy Eq. (7.5.1) we must put

2ÊEkukvk � ðu2
k � v2

kÞ
X
k 0

Vkk 0uk 0vk 0 ½1� 2f ðEk 0 Þ� ¼ 0:
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The only difference between this equation and Eq. (7.3.8) lies in the extra

factor of 1� 2f ðEk 0 Þ that multiplies the matrix element Vkk 0 . Consequently if

we again make the substitution (7.3.9), but this time replace the definition of

�k given in Eq. (7.3.11) by the definition

�kðTÞ ¼
X
k 0

Vkk 0 ð14� x2
k 0 Þ1=2½1� 2f ðEk 0 Þ� ð7:5:5Þ

we regain Eq. (7.3.12). The temperature-dependent gap parameter �ðTÞ is

then found by resubstituting Eq. (7.3.12) in Eq. (7.5.5). One has

�kðTÞ ¼
1

2

X
k 0

Vkk 0
�k 0 ðTÞ

½ÊE2

k 0 þ�2
k 0 ðTÞ�1=2

½1� 2f ðEk 0 Þ�: ð7:5:6Þ

This equation still contains the excitation energy Ek which we evaluate by

taking the thermal average of Eq. (7.5.3). We find

Ek ¼ ÊEkðu2
k � v2

kÞ þ 2ukvk
X
k 0

Vkk 0uk 0vk 0 ½1� 2f ðEk 0 Þ�

¼ ½ÊEk2 þ�2
kðTÞ�1=2; ð7:5:7Þ

which is identical with our previous expression (7.4.5) except that � is now a

function of temperature. On substituting for Ek 0 and f ðEk 0 Þ in Eq. (7.5.6) we

find

�k ¼
1

2

X
k 0

Vkk 0
�k 0

ðÊEk 02 þ�2
k 0 Þ1=2

tanh

� ðÊEk 02 þ�2
k 0 Þ1=2

2kT

�
: ð7:5:8Þ

In the simple model defined by Eq. (7.3.15) this reduces to

VDð�Þ
ð0!D

0

tanh½ðÊE2 þ�2Þ1=2=2kT �
ðÊE2 þ�2Þ1=2

dÊE ¼ 1: ð7:5:9Þ

At zero temperature this equation for � reduces to our previous solution

(7.3.16). When the temperature is raised above zero the numerator of the

integrand is reduced, and so in order for Eq. (7.5.9) to be satisfied the

denominator must also decrease. This implies that � is a monotonically

decreasing function of T ; in fact it has the form shown qualitatively in

Fig. 7.5.1. The initial decrease is exponentially slow until kT becomes of the

order of �ð0Þ and the quasiparticle excitations become plentiful; �ðTÞ then

7.5 The transition temperature 249



begins to drop more rapidly until at the transition temperature Tc it vanishes.

The magnitude of Tc in the BCS model is found from Eq. (7.5.9) by putting

�ðTcÞ ¼ 0. We then have

VDð�Þ
ð0!D=2kTc

0

x�1 tanhx dx ¼ 1

or

½ln x tanhx�0!D=2kTc

0 �
ð0!D=2kTc

0

sech2x ln x dx ¼ 1

VDð�Þ :

For weak-coupling superconductors we can replace tanh ð0!D=2kTcÞ by

unity and extend the upper limit of the integral to infinity to find

ln
0!D

2kTc

� �
�
ð1

0

sech2x ln x dx ¼ 1

VDð�Þ :

The integral is more easily looked up than evaluated, but either way is equal

to ln 0:44, from which

kTc ¼ 1:140!De
�1=VDð�Þ: ð7:5:10Þ

Comparison with Eq. (7.3.17) shows that in this model

2�ð0Þ
kTc

¼ 3:50;
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Figure 7.5.1. The energy gap parameter � decreases as the temperature is raised
from zero, and vanishes at the transition temperature Tc.



a result in adequate agreement with the experimentally observed values of

this parameter, which for most elements lie between two and five.

The existence of an isotope effect is an obvious consequence of Eq. (7.5.10).

The simplest form of isotope effect occurs when VDð�Þ is independent of the

ionic mass A, as then Tc depends on A only through the Debye energy 0!D,

which is proportional to A�1=2. The fact that the electron–phonon enhance-

ment of Dð�Þ is independent of A has already been considered in Problem 6.1,

and the demonstration that V should also have this property follows similar

lines. One should, however, note that Tc is very sensitive to changes in the

density of states Dð�Þ as a consequence of the fact that VDð�Þ � 1. Thus

if VDð�Þ ¼ 1
8 then from Eq. (7.5.10) one sees that a one percent decrease in

Dð�Þ will cause an eight percent decrease in Tc. This makes it not very

surprising that inclusion of the Coulomb repulsion in V or the use of other

more complicated models can lead to different kinds of isotope effect.

The electronic specific heat C may now also be calculated for the BCS

model. The energy EðTÞ of the superconductor at temperature T will be

the average expectation value of the Hamiltonian (7.5.2). We find

EðTÞ ¼
X
k

½2ÊEkv2

k þ ðu2

k � v
2

kÞ2fkÊEk � ð1� 2fkÞukvk��

¼
X
k

�
ÊEk �

�
Ek �

�2

2Ek

�
ð1� 2fkÞ

�
from which

C ¼ dEðTÞ
dT

¼
X
k

�
2

�
E ��2

2E

�
df

dT
þ 1

2
ð1� 2f Þ�2 dð1=EÞ

dT

�

¼
X
k

�
2E

df

dT
þ�2 d

dT

�
1� 2f

2E

��

¼
X
k

�
d�2

dT
� 2E2

T

�
@f

@E
: ð7:5:11Þ

Reasonably good agreement with experiment is usually obtained with this

formula. The observed discontinuity in C at the transition temperature arises

from the term d�2=dT , which is zero for T > Tc but finite for T < Tc. The

prediction of Eq. (7.5.11) is that C increases by a factor of 2.43 as the sample is

cooled through Tc; observed increases are within a factor of four of this value.
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7.6 Ultrasonic attenuation

In Fig. 7.1.1 the damping coefficient � for low-frequency sound waves in a

superconductor was shown as a function of temperature. The rapid decrease of

� as the sample is cooled belowTc suggests that the attenuation of an ultrasonic

wave depends on the presence of quasiparticle excitations in the material. We

can see why this should be so when we recall that the frequencies used in such

ultrasonic experiments are typically less than 100MHz, so that each phonon

has an energy of less than 10�6 eV. Unless T is very close to Tc this phonon

energy will be much less than 2�, which is the minimum energy required to

create a pair of quasiparticles. The phonons can then only be absorbed by

scattering already existing quasiparticles from one k-state to another.

The canonical transformation that we adopted in Section 6.5 allowed us to

ignore the phonon system in calculating the BCS ground state; we had removed

the first-order effects of the electron–phonon interaction and we assumed the

transformed phonon system just to form a passive background that did not

affect our calculations. In the theory of ultrasonic attenuation, however, the

occupation number nq of the applied sound wave must be allowed to change as

the wave is damped, and so we must exclude this particular phonon mode q

from the canonical transformation that leads to Eq. (6.5.4). We are con-

sequently left with a Hamiltonian that still contains the set of terms Hq and

H�q where

Hq ¼
X
k;s

Mqc
y
kþq;sck;sðay�q þ aqÞ:

The annihilation operator aq will reduce the occupation number of the phonon

mode q by unity, and thus effect the damping of the applied sound wave. The

effect of this process on the electron system is seen by transforming from the

electron operators c to the quasiparticle operators 
 by means of Eqs. (7.3.3)

and (7.3.4). In the notation in which k � k" and �k � �k# this gives us

Hq ¼Mqðay�q þ aqÞ
X
k

ðcykþqck þ cy�kc�ðkþqÞÞ

¼Mqðay�q þ aqÞ
X
k

½ðukþq
ykþq þ vkþq
�ðkþqÞÞðuk
k þ vk

y
�kÞ

þ ðuk
y�k � vk
kÞðukþq
�ðkþqÞ � vkþq

y
kþqÞ�

¼Mqðay�q þ aqÞ
X
k

½ðukþquk � vkþqvkÞð
ykþq
k þ 
y�k
�ðkþqÞÞ

þ ðukþqvk þ ukvkþqÞð
ykþq
y�k þ 
�ðkþqÞ
kÞ�: ð7:6:1Þ

252 Superconductivity



The terms in 

y
kþq


y
�k and 
�ðkþqÞ
k lead to the simultaneous creation or

destruction of two quasiparticles and, as we have seen, cannot represent

energy-conserving processes when 0!q is negligible. We are thus left

with the terms 

y
kþq
k and 
y�k
�ðkþqÞ, which can lead to energy-conserving

processes if either Ekþq ¼ Ek þ 0!q or E�k ¼ E�ðkþqÞ þ 0!q. For such pro-

cesses to be allowed, the quasiparticle states k and �ðkþ qÞ must initially

be filled and the final states ðkþ qÞ and �k must be empty. We then find

the total probability Pa of a phonon of wavenumber q being absorbed to be

given by

Pa /
X
k

ðukþquk � vkþqvkÞ2½ fkð1� fkþqÞ �ðEkþq � Ek � 0!qÞ

þ f�ðkþqÞð1� f�kÞ �ðE�k � E�ðkþqÞ � 0!qÞ�:

The set of terms H�q is similarly calculated to give a certain probability Pe of

a phonon of wavenumber q being emitted when a quasiparticle is scattered

from k to k� q. We assume this phonon mode to be macroscopically occu-

pied, so that we can neglect the difference between nq and nq þ 1. We then

find the net probability P that a phonon is absorbed to be

P ¼ Pa � Pe

/
X
k

ðu2
k � v2

kÞ2½ð fk � fkþqÞ �ðEkþq � Ek � 0!qÞ

þ ð f�ðkþqÞ � f�kÞ �ðE�k � E�ðkþqÞ � 0!qÞ�; ð7:6:2Þ

where ðukþquk � vkþqvkÞ2 has been replaced by ðu2
k � v2

kÞ2, the justification

being that q is small while in the present context uk and vk are slowly varying

functions. We similarly make the approximation

fk � fkþq ¼ �q �
@f

@k

¼ �q � dE
dk

dE

dE
@f

@E

¼ �q0vk cos �
ÊE
E

@f

@E
;

with � the angle between q and k. On changing the sum in Eq. (7.6.2)

to an integral over energy and solid angle and substituting for ðu2
k � v2

kÞ2
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we find

P / Dð�Þ
ð � ÊE

E

�2

q0vk cos �
ÊE
E

@f

@E
�

�
q0vk cos �

ÊE
E
� 0!q

�
dðcos �Þ dÊE

¼ Dð�Þ
ð � ÊE

E

�2

j cos �j @f
@E

�

�
cos � � 0!qE

q0vkÊE

�
dðcos �Þ dÊE

’ �2Dð�Þ
ð1
�

!q
qvk

@f

@E
dE

/ f ð�Þ:

The ratio of the damping �s in the superconducting state to that in the

normal state is thus approximately

�s

�n

¼ f ð�Þ
f ð0Þ

¼ 2

exp ð�=kTÞ þ 1
;

in good agreement with experiment.

7.7 The Meissner effect

In the Meissner effect the vanishing of the magnetic field inside a bulk super-

conductor must be attributed to the existence of an electric current flowing in

the surface of the sample; the magnetic field due to this current must exactly

cancel the applied field H0. We investigate this phenomenon within the BCS

model by applying a weak magnetic field to a superconductor and calculating

the resulting current density j to first order in the applied field. We avoid the

difficulties of handling surface effects by applying a spatially varying mag-

netic field defined by a vector potential A ¼ Aqeiq � r and examining the

response j ¼ jqeiq � r in the limit that q becomes very small.

It had been realized for many years before the BCS theory that any first-

order response of j to the vector potential A would lead to a Meissner effect.

If we define the constant of proportionality between j and A so that

j ¼ �
�

c

4��2

�
A; ð7:7:1Þ

254 Superconductivity



with c the speed of light, and then take the curl of this relation we obtain the

London equation,

r � j ¼ �
�

c

4��2

�
B:

The use of the Maxwell equations

r �H ¼
�

4�

c

�
j; r �B ¼ 0

and the fact that B ¼ H when all magnetization is attributed to the current j

gives us the equation

r2
B ¼ ��2

B:

The solutions of this equation show a magnetic field that decays exponen-

tially with a characteristic length �, which can thus be identified with the

penetration depth discussed in Section 7.1. In a normal metal � would be

infinite, and so from Eq. (7.7.1) we should expect to find no first-order term

in an expansion of j in powers of A.

We now proceed to perform the calculation of jq in the BCS model. As we

saw in Section 3.10, a magnetic field enters the Hamiltonian of a single

electron as a perturbation term

H1 ¼
e

2mc

�
e

c
A

2 � p �A� A � p
�
;

relativistic effects and the spin of the electron being neglected. We drop the

term in A2 and write H1 in the notation of second quantization as

H1 ¼
e

2mc

X
k;k 0;s

hkj � p �A� A � pjk 0icyk;sck 0;s

¼ e0
2mc

X
k;k 0;s

hkj � A � ðkþ k 0Þjk 0icyk;sck 0;s:

When the vector potential is of the form Aqe
iq � r we have

H1 ¼ ��BAq �
X
k;s

ð2k� qÞcyk;sck�q;s ð7:7:2Þ
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with �B ¼ e0=2mc. The current density ev=� is found from the continuity

equation

��1r � v ¼ � @�
@t
;

of which the Fourier transform is

i��1
q � vq ¼ �

@�q
@t
¼ 1

i0
½H; �q�:

We thus find

q � jq ¼ �
e

0
½ðH0 þH1Þ; �q�:

The commutator of the zero-field Hamiltonian H0 with �q was evaluated in

Section 2.7, and ½H1; �q� can be similarly calculated. The result is that

jq ¼
X
k;s

�
e0

2m�
ð2k� qÞcyk�q;sck;s �

e2
Aq

mc�
c
y
k;sck;s

�
: ð7:7:3Þ

The effect of the magnetic field is to perturb the wavefunction of the super-

conductor from its initial state j�0i to the new state j�i that is given to first

order in H1 by the usual prescription

j�i ¼ j�0i þ
1

E0 �H0

H1j�0i:

The current in the presence of the applied magnetic field will then be

h jqi ¼ h�0j jqj�0i þ h�0j jq
1

E0 �H0

H1j�0i

þ h�0jH1

1

E0 �H0

jqj�0i:

We substitute in this expression for jq and H1 from Eqs. (7.7.2) and (7.7.3)
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and drop terms of order A2
q to find

h jqi ¼ �
Ne2

Aq

mc�
� h�0j

X
k;s;k 0;s 0

e0�BAq

2m�
� ð2k 0 � qÞ

� ð2k� qÞ
�
c
y
k�q;sck;s

1

E0 �H0

c
y
k 0;s 0ck 0�q;s 0 þ c

y
k 0;s 0ck 0�q;s 0

� 1

E0 �H0

c
y
k�q;sck;s

�
j�0i: ð7:7:4Þ

In this expression the operator H0 is the BCS Hamiltonian in the absence of

the magnetic field. To evaluate h jqi it is then necessary to express the electron

operators in terms of the quasiparticle operators that change j�0i into the

other eigenstates of H0. We accordingly use Eqs. (7.3.3) and (7.3.4) to write

c
y
k�q"ck" ¼ ðuk�q
yk�q þ vk�q
�ðk�qÞÞðuk
k þ vk


y
�kÞ

and other similar expressions. There then follows a straightforward but

lengthy set of manipulations in which the first step is the argument that

whatever quasiparticles are created or destroyed when c
y
k 0"ck 0�q" acts on �0

must be replaced when c
y
k�q"ck" acts if the matrix element is not to vanish.

Similar reasoning is applied to all such combinations of operators so that the

summation over k and k 0 is reduced to a single sum. When q is very small

uk�q and vk�q are replaced by uk and vk and a large amount of cancellation

occurs. Eventually one reduces Eq. (7.7.4) to

h jqi ¼ �
2Ne�B

0�
Aq �

e0�B

2m�

� Aq �
X
k

2kðu2
k þ v2

kÞ4kh�0j
�
mk �mkþq
Ek � Ekþq

�
j�0i:

The summation over k is then replaced by an integral over energy multiplied

by Dð�Þ=3, the factor of 1
3 arising from the angular integration. The expecta-

tion of the quasiparticle number operators mk is replaced by their averages fk,

while for small q the ratio of the differences mk �mkþq and Ek � Ekþq
becomes the ratio of their derivatives so that one has

h jqi ¼ �
Ne2

mc�
Aq �

e202

4m2c�
Aq

1

3
Dð�Þ8k2

F

ð
@fk
@Ek

dE:
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Since Dð�Þ may be written as 3Nm=202k2
F this becomes

h jqi ¼ �
Ne2

mc�
Aq

�
1þ

ð
@f

@E
dE
�

¼ � Ne2

mc�
Aq

�
1þ 2

ð1
�

E

ðE2 ��2Þ1=2
df

dE
dE

�
ð7:7:5Þ

with f ðEÞ the Fermi–Dirac function.

That this expression is of the expected form can be verified by examining

the cases where � ¼ 0 and where T ¼ 0. At temperatures greater than Tc the

gap parameter � vanishes and the integration may be performed immedi-

ately: the two terms in parentheses cancel exactly and no Meissner effect is

predicted. At T ¼ 0, on the other hand, the integral over E itself vanishes and

Eq. (7.7.5) may be written as

h jqi ¼ �
c

4��2
Aq

if � is chosen such that

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mc2�

4�Ne2

r
¼ c

!p

with !p the plasma frequency. A Meissner effect is thus predicted with a

penetration depth � which is of the correct order of magnitude and which

depends only on the electron density. At intermediate temperatures

Eq. (7.7.5) predicts a penetration depth that increases monotonically with

T and becomes infinite at Tc, in accord with experiment.

7.8 Tunneling experiments

Shortly after the development of the BCS theory it was discovered that a

great deal of information about superconductors could be obtained by

studying the current–voltage characteristics of devices composed of two

pieces of metal separated by a thin layer of insulator. A typical device of

this kind might consist of a layer of magnesium that had been exposed to the

atmosphere to allow an insulating layer of MgO to form on its surface. After

this layer had reached a thickness of about 20 Å a layer of lead might be
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deposited on top of the oxide, and the differential conductance, dI=dV, mea-

sured at some temperature low enough for the lead to be superconducting.

The result would be of the form shown in Fig. 7.8.1; a sharp peak in dI=dV is

observed when the potential difference V between the magnesium and the

lead is such that the gap parameter � of the lead is equal to eV .

To discuss effects such as these we choose a simplified model in which the

two halves of a box are separated by a thin potential barrier so that

the variation of potential in the z-direction is as shown in Fig. 7.8.2. The
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Figure 7.8.1. A device consisting of a normal metal and a superconductor separated
by a thin layer of insulator has a differential conductance that exhibits a sharp peak
at a voltage V such that eV is equal to the gap parameter �.

Figure 7.8.2. In the simplest model of a tunneling junction the two halves of a box
are separated by a narrow potential barrier.



wavefunction of a single electron in this system will then be of the form

 ¼ eikxxþikyy�ðzÞ;

where, from the symmetry of the potential, �ðzÞ will be either an odd function

�a of z or an even function �s. For each state �s, there will exist a correspond-

ing �a that has just one more node (which will be located at the center of the

barrier). The difference in energy of these states will be governed by the fact

that the phase of the wavefunction at the edge of the barrier will be different

in the two cases by some amount ��; if in the left-hand side of the box �s is of

the form sin kzz then �a will be of the form sin ½ðkz þ ��=LÞz�. The energy

difference 2T will then be given by

2T ¼ 02

2m

��
kz þ

��

L

�2

� k2
z

�
; ð7:8:1Þ

and will be proportional to vz, the component of the electron velocity per-

pendicular to the barrier, when �� is small.

In the discussion of tunneling experiments it is more useful to work in

terms of the wavefunctions �s � �a rather than �s and �a themselves, as

the sum or difference is largely localized on one side or the other of the

barrier. We thus do not write the Hamiltonian of the system as

H ¼ Escyscs þ Eacyaca; ð7:8:2Þ

with

cysj0i ¼ j�si; cyaj0i ¼ j�ai;

instead we form new fermion operators

cy ¼ cya � cysffiffiffi
2

p ; dy ¼ cya þ cysffiffiffi
2

p :

In terms of these the Hamiltonian (7.8.2) becomes

H ¼ Eðcycþ dydÞ þ Tðcyd þ dycÞ;

where

E ¼ 1
2 ðEa þ EsÞ:
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We now have a picture of two independent systems connected by a perturba-

tion term. The Hamiltonian

Hl ¼
X
k;s

Ekcykscks

describes electrons in the left-hand side of the box, while

Hr ¼
X
k;s

Ekdyksdks

describes those on the right. The perturbation

Ht ¼
X
k;k 0;s

Tkk 0 ðcyksdk 0s þ d
y
k 0scksÞ ð7:8:3Þ

acts to transfer electrons through the insulating barrier from one side to the

other, the transition probability in lowest order depending on the square of

the modulus of the matrix element T .

When a voltage V is applied across this device the energies of those states

on the left of the barrier will be raised by an amount eV . Such an electron of

kinetic energy Ek can then only be elastically scattered by Ht to a state k 0 on

the right of the barrier of kinetic energy Ek þ eV . The net flow of electrons

from left to right will then be proportional to

X
k;k 0;s

jT j2½ fkð1� fk 0 Þ � fk 0 ð1� fkÞ� �ðEk 0 � Ek � eVÞ;

from which the current I can be considered as governed by the relation

I /
ð
T2½ f ðEkÞ � f ðEk þ eVÞ�DðEkÞDðEk þ eVÞ dEk

with T2 the square of some average matrix element. The fact that T is, as we

have seen in Eq. (7.8.1), proportional to @E=@kz, while

DðEkÞ ¼
ðdN=dkÞ
ðdE=dkÞ
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leads to a cancellation in the energy dependence of the integrand when

eV � �. One is left with a relation of the form

I /
ð
½ f ðEkÞ � f ðEk þ eVÞ� dEk

¼
ð
f f ðEkÞ � ½ f ðEkÞ þ eVf 0ðEkÞ þ 1

2 ðeVÞ2f 00ðEkÞ þ � � ��g dEk

’ eV

and the device is predicted to obey Ohm’s law. We might picture the calcula-

tion of this kind of tunneling as in Fig. 7.8.3, where the densities of states of

the two halves of the device are plotted horizontally and energy is measured

vertically. The density of occupied states per unit energy is the product

f ðEkÞDðEkÞ, and is represented by the shaded areas. The tunneling current

is then proportional to the difference in the shaded areas on the two sides.

We now consider how this calculation should be modified if the metal on

the right of the barrier becomes superconducting, so that our system becomes

a model of the Mg–MgO–Pb device whose conductance was shown in Fig.

7.8.1. Our first step must be to replace the electron operators d
y
ks and dks by

the quasiparticle operators that act on the BCS state. We accordingly rewrite
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Figure 7.8.3. In this diagram the densities of states in the two halves of a tunneling
junction are plotted to left and right. The densities of occupied states are found by
multiplying these by the Fermi–Dirac distribution function to give the shaded areas.
A voltage difference raises the energy of one side relative to the other and leads to a
current flow proportional to the difference in areas.



the tunneling perturbation (7.8.3) as

Ht ¼
X
k;k 0

T ½cykðuk 0
k 0 þ vk 0

y
�k 0 Þ þ cy�kðuk 0
�k 0 � vk 0


y
k 0 Þ

þ ðuk 0
yk 0 þ vk 0
�k 0 Þck þ ðuk 0
y�k 0 � vk 0
k 0 Þc�k�: ð7:8:4Þ

This perturbation no longer simply takes an electron from one side of the

barrier and replaces it on the other; the first term, for instance, creates an

electron on the left of the barrier and either creates or destroys a quasiparticle

excitation on the right. If the normal metal is at a voltage V relative to the

superconductor then energy conservation demands that for the term c
y
k
k 0 to

cause a real scattering process we must have ÊEk ¼ Ek 0 � eV (all energies now

being measured relative to the chemical potential �). For the term c
y
k

y
�k 0 to

cause scattering, on the other hand, we must have ÊEk ¼ �Ek 0 � eV . Applying

these arguments to all the terms in expression (7.8.4) we find that

I /
X
k;k 0
jT j2ðu2

k 0 f f ðÊEkÞ½1� f ðEk 0 Þ� � f ðEk 0 Þ½1� f ðÊEkÞ�g �ðEk 0 � ÊEk � eVÞ

þ v2
k 0 f f ðÊEkÞ f ðEk 0 Þ � ½1� f ðÊEkÞ�½1� f ðEk 0 Þ�g �ðÊEk þ Ek 0 þ eVÞÞ

¼
X
k;k 0
jT j2fu2

k 0 ½ f ðÊEkÞ � f ðEk 0 Þ� �ðÊEk � Ek 0 þ eVÞ

þ v2
k 0 ½ f ðÊEkÞ � 1þ f ðEk 0 Þ� �ðÊEk þ Ek 0 þ eVÞg:

We change the sums over k and k 0 to integrals over ÊEk and Ek 0 by multiplying

by DlðÊEkÞDrðEk 0 Þ, with DrðEk 0 Þ the effective density of states defined in

Eq. (7.4.6). The first �-function vanishes unless Ek 0 ¼ ÊEk þ eV , which from

Eq. (7.5.7) means that k 0 must satisfy the condition

ÊEk 0 ¼ �½ðÊEk þ eVÞ2 ��2�1=2:

But since from Eqs. (7.3.9) and (7.3.12)

u2ðÊEk 0 Þ þ u2ð�ÊEk 0 Þ ¼ 1;

the coefficients u2
k 0 will vanish from the expression for the current when we

perform the integration. Similar arguments applied to the second �-function
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and the coefficients v2
k 0 give us

I /
ð
T2DlðÊEkÞDrðE ¼ ÊEk þ eVÞ½ f ðÊEkÞ � f ðÊEk þ eVÞ� dÊEk

where use has been made of the fact that

f ð�EÞ ¼ 1� f ðEÞ:

Because of the form of DrðEÞ, which was shown in Fig. 7.4.1(b), the integral

is no longer proportional to V , but leads to a current of the form shown in

Figs. 7.8.4 and 7.8.1. For small V little current will flow, since f ðÊEk þ eVÞ will

differ appreciably from f ðÊEkÞ only when jÊEkj < kT , and in this region the

density of quasiparticle states, DrðEÞ, vanishes. This is illustrated in Fig.

7.8.5, where the occupied states are again represented by shaded areas. It is

only when eV > � that a large current flows, giving rise to the observed peak

in dI=dV at this voltage.

One effect that does not emerge from this elementary calculation concerns

the need to distinguish between the bare electron created by the operator c
y
k

and the electron in interaction with the phonon system. The canonical

transformation of Section 6.5 is applied only to the electrons in the super-

conducting half of the device, and this must be allowed for in any more

careful calculation of the tunneling current. One finds that the observed

characteristics of the junction are greatly affected by the shape of the phonon

264 Superconductivity

Figure 7.8.4. This current–voltage characteristic is the same as that shown in Fig. 7.8.1,
and is typical of a superconductor–insulator–normal metal junction.



density of states in strong-coupling superconductors, and may even give

useful information about phonon modes in alloys that is not easily obtained

by other means.

7.9 Flux quantization and the Josephson effect

The third possible type of tunnel junction is that in which the metal on both

sides of the insulating barrier is superconducting. The calculation of the

characteristics of this device is more difficult than the previous examples in

that the total number of electrons is now not well defined on either side of the

barrier; special operators must be defined that add pairs of electrons to one

side or the other of the device. One result of such a calculation is that a

current is predicted to flow that varies with applied voltage in the way shown in

Fig. 7.9.1. and which is in accord with the simple interpretation of Fig. 7.9.2 for

a device composed of two dissimilar superconductors. There is, however, also

another type of current that may flow in such a device – a current associated

with the tunneling through the barrier of bound pairs of electrons.

We can gain some insight into the nature of these currents by returning to a

consideration of the effect of magnetic fields on the current carried by an

electron. We have seen (in Eq. (3.10.8), for example) that the Hamiltonian of

a free particle of mass m* and charge e* in a magnetic field H ¼ r � A is of

the form

H ¼ ðp� e*A=cÞ2
2m*

:
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Figure 7.8.5. In this generalization of Fig. 7.8.3 the density of states on the right has
been replaced by the effective density of states DrðEÞ of the superconductor.



If the vector potential were of the form

A ¼ ðA; 0; 0Þ ð7:9:1Þ
with A a constant, then r � A would vanish and there would be no magnetic

field. The eigenstates of H would be

 ¼ exp iðkxxþ kyyþ kzzÞ ð7:9:2Þ
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Figure 7.9.1. The current–voltage characteristic of a tunnel junction of two super-
conductors shows a discontinuity at a voltage V such that eV equals the sum of the
gap parameters of the two materials.

Figure 7.9.2. The results shown in Fig. 7.9.1 can be interpreted with the aid of this
diagram of the effective densities of states.



with energies

E ¼ 02

2m*

��
kx �

e*A

0c

�2

þ k2
y þ k2

z

�
:

In the absence of applied fields we imposed periodic boundary conditions

by stipulating that  should be equal at the points ðx; y; zÞ, ðxþ L; y; zÞ,
ðx; yþ L; zÞ, and ðx; y; zþ LÞ. As long as no external electric or magnetic

fields were acting, this was a permissible step whose only effect was to

make the counting of states a little easier. If applied fields are present, how-

ever, this joining of the wavefunction on opposite faces of a cubical box must

be treated more carefully. We cannot, for instance, apply a uniform electric

field to the system and impose periodic boundary conditions, as such a

procedure would result in the particle being continuously accelerated in

one direction! In the particular case where only a vector potential ðA; 0; 0Þ
acts on the particle we can commit the topological sin of imposing periodic

boundary conditions if we remain awake to the physical implications.

Because A is equal at the points ðx; y; zÞ and ðxþ L; y; zÞ the Hamiltonian

itself is periodic in the x-direction. Periodicity of  in this direction then

demands that kx ¼ 2�n=L with n an integer. The contribution of the motion

in the x-direction to the energy is thus

Ex ¼
02

2m*

2�n

L
� e*A

0c

� �2

: ð7:9:3Þ

The motion in the y- and z-directions is unaffected by A and so we can also

retain periodicity in these directions. The physical picture of this situation is

that we have a closed loop of superconducting material, as shown in Fig. 7.9.3.

SinceA acts in the x-direction we physically join these two opposite faces of the

material. Because the electrons occupy pair states we interpret the charge e* of

the current carriers as 2e.

While we assume that the Meissner effect obliges the magnetic field to

vanish within the superconductor (we assume dimensions large compared

with the penetration depth) the magnetic flux � threading the ring does

not necessarily vanish, since

� ¼
ð
r � A � dS

¼
þ
A � dl

¼ AL; ð7:9:4Þ
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the line integral being taken around a closed path within the ring. From

Eq. (7.9.3) the additional energy of the electron pair due to the vector potential

will be

�Ex ¼
02

2m*

�
� 4�n

L

2eA

0c
þ
�

2eA

0c

�2�
: ð7:9:5Þ

If for every state of positive n the corresponding state of negative n is also

occupied then there will be no contribution to the total energy of the electron

gas from the term linear in A, and the total energy change will be

�Etotal ¼
2N02

m*L2

e�

0c

� �2

:

The presence of a finite magnetic flux threading the ring thus increases the

energy of the system.

If the flux is greater than �0c=2e it becomes energetically favorable for an

electron pair with kx ¼ �2�n=L to make a transition to a state for which

kx ¼ 2�ðnþ 1Þ=L. The total energy change due to A is then

�Etotal ¼
2N02

m*L2

�
�� e�

0c

�2

;

which takes on its minimum value of zero when � ¼ �0c=e. These arguments

can be extended to show that the minimum possible energy of the system is in
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Figure 7.9.3. The free energy of a superconducting ring like this is a minimum when
the magnetic flux threading it is quantized.



fact a periodic function of � of the form shown in Fig. 7.9.4. There is thus a

tendency for the magnetic flux � threading the ring to be quantized in units of

the flux quantum �0, equal to �0c=e. This is verified experimentally in a

number of delicate measurements in which minute hollow cylinders of super-

conductor have been cooled down through Tc in the presence of applied

magnetic fields. Subsequent measurements of the flux trapped in this way

show values that unmistakably cluster around integral multiples of �0.

The current carried by a single pair of electrons will be proportional to

0kx � 2eA=c, which from Eqs. (7.9.4) and (7.9.5) is in turn proportional to

@ð�ExÞ=@�. The total current I flowing in the ring is thus proportional to

dEtotal=d�; one differentiates the curve of Fig. 7.9.4 to find the sawtooth

graph of Fig. 7.9.5. This graph leads to two results of great importance in the

theory of superconductivity when we realize that this theory will apply not only

to a closed ring of superconductor but also to a device such as that shown in

Fig. 7.9.6, in which the ring is broken and a thin insulating layer inserted.

Provided the gap is narrow enough that an appreciable number of electron

pairs can tunnel through and that no flux quanta are contained in the gap itself,

then the current will still be a periodic function of � with period �0.

The first experiment we consider is a measurement of the current I when

the flux � is held constant. Since the electromotive force in the ring is equal
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Figure 7.9.4. This construction shows the energy of a ring of superconductor at zero
temperature to be a periodic function of the magnetic flux �, and to have minima at
integral multiples of the flux quantum �0.

Figure 7.9.5. This sawtooth curve is the derivative of that shown in Fig. 7.9.4, and
represents the current I .



to �c�1 d�=dt we know that any current flowing must do so in the absence of

an electric field. If � is maintained at a value different from n�0 it is thus

energetically favorable for a small supercurrent to flow, and the I–V char-

acteristic of Fig. 7.9.1 should exhibit a delta-function peak in the current at

V ¼ 0. This phenomenon is known as the dc Josephson effect (dc standing for

‘‘direct current’’).

The second experiment consists of causing the flux to increase uniformly

with time. This constant value of �c�1 d�=dt represents a constant electro-

motive force V acting in the circuit. From Fig. 7.9.5 we then see that I will in

fact alternate in sign as � is increased, the frequency of this alternating

current being equal to the number of flux quanta introduced per unit time.

The angular frequency ! of the current in this ac Josephson effect is thus

! ¼ 2eV

0
;

which is of the order of magnitude of 1
2 GHz per microvolt.

It is interesting to note that this is just the frequency difference that we

would associate with the wavefunction of a single pair of electrons placed in

this device; the time-dependent Schrödinger equation tells us that a particle

of energy E has a wavefunction of the form

�ðr; tÞ ¼  ðrÞe�iEt=0

while the wavefunction for a particle of energy E þ 2eV varies with time as

e�iðEþ2eVÞt=0. For a single particle such as this we can never expect to measure
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Figure 7.9.6. In this simple version of a Josephson junction a superconducting ring
has been cut through at one place and has had a thin insulating layer inserted at the
break.



the phase of the wavefunction, as physically measurable quantities like the

particle density always involve j j2. This may be thought of as another form

of the Uncertainty Principle, and states that if the number of particles is

known then the phase is unknown. We can, however, form a wavefunction

of known phase if we form a wave packet of different numbers of particles.

Adding equal amounts of the n ¼ 0 ground state and the n ¼ 1 state of a

harmonic oscillator, for example, gives a wavefunction that oscillates back

and forth with the classical oscillator frequency (Fig. 7.9.7). We thus look at

the Josephson junction as a device in which the uncertainty in the number of

pairs on each side of the barrier allows us to measure the relative phase of the

wavefunction of the two parts of the system. This concept can be extended to

the theory of superfluid liquid helium, where effects analogous to the ac

Josephson effect have been detected when a pressure difference is maintained

between two parts of a container separated by a small hole.

7.10 The Ginzburg–Landau equations

The destruction of superconductivity by a strong enough magnetic field may

be understood by considering the energy associated with the Meissner effect.

The expulsion of all magnetic flux from the interior of a long sample held

parallel to an applied field H0 gives it an effective magnetization per unit

volume of�H0=4�. Since the magnetic moment operator is given by�@H=@H
one finds the energy of the sample due to its magnetization to be

EM ¼ �

ðH0

0

H

4�
� dH

¼ �H2
0

8�
:
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Figure 7.9.7. A wavefunction consisting of a linear combination of different har-
monic-oscillator states describes a system in which both the number of particles and
the phase of the wavefunction can be partially specified.



When this energy becomes greater than the condensation energy Ec then, as

illustrated in Fig. 7.10.1, it is no longer energetically favorable for the sample

to remain in the superconducting state. In a weak-coupling superconductor

at zero temperature, for instance, the critical field Hc above which the metal

could not remain uniformly superconducting would be given by

�
H2

c

8�
¼ 1

2Dð�Þ�2ð0Þ:

At finite temperatures, HcðTÞ can be found by identifying the condensation

energy with the difference in Helmholtz energies of the normal and super-

conducting phases.

If the sample geometry is changed to that shown in Fig. 7.10.2 the magnetic

energy is greatly increased, for there is now a large region outside the sample

from which the applied field is partially excluded. Since the condensation

energy remains constant the specimen starts to become normal at an applied

field well below Hc. The sample does not become entirely nonsuper-

conducting, but enters what is known as the intermediate state, in which a

large number of normal and superconducting regions exist side by side

(Fig. 7.10.3). In this way the magnetic energy is greatly reduced while a

272 Superconductivity

Figure 7.10.1. The magnetic energy of a superconductor varies as the square of the
applied magnetic field H0. For fields greater than Hc it is energetically favorable for
the sample to make a transition to the normal state.
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Figure 7.10.2. The magnetic field at the rim of this disc-shaped sample of super-
conductor is greater than the applied field; the superconductivity thus starts to be
destroyed at weaker applied fields than is the case for a rod-shaped sample.

Figure 7.10.3. The intermediate state.



large part of the condensation energy is retained. This behavior is similar

to that described at the beginning of this chapter, where a type II super-

conductor was defined. The difference is that while the type I superconductor

only forms a mixture of normal and superconducting regions when the mag-

netic energy is magnified by geometric factors, the type II superconductor

will enter the mixed state even when in the form of a long sample held parallel

to a strong enough applied field. In the mixed state the distance between

normal regions is typically 0.3mm, which may be compared with the coarser

structure of the intermediate state, which is characterized by distances typi-

cally of the order of 100 mm.

The analysis of these phenomena in terms of the BCS theory is very com-

plicated. Because the magnetic field will be a rapidly varying function of

position within the sample we must return to the arguments of Section 7.7

and ask for the response to the vector potential Aqe
iq � r when q is no longer

vanishingly small. There we saw in Eq. (7.7.5) that the current h jqi due to the

vector potential could be expressed as the sum of two parts – a negative (or

diamagnetic) part and a positive (or paramagnetic) part. In a superconductor

at zero temperature the paramagnetic part vanished for q! 0, while in a

normal metal it exactly cancelled the diamagnetic part and left no Meissner

effect. A more careful investigation shows that as q is increased from zero the

paramagnetic response of a superconductor also increases, until at large

enough q it approximates the response of a normal metal. If one expresses

this result in the form

h jqi ¼ �LqAq ð7:10:1Þ

then one finds that Lq first becomes appreciably lower than its zero-q value

when the approximation

Ekþq � Ek ’ q �
@Ek
@k

becomes invalid. This occurs when

q � @Ek
@k
� �

which is equivalent to the condition

q	0 � 1

with 	0 ¼ 0vF=��, the coherence length discussed in Section 7.1. The Fourier
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transform of Eq. (7.10.1) is an equation of the form

h jðrÞi ¼ �
ð
Lðr 0ÞAðr� r 0Þ dr 0 ð7:10:2Þ

with Lðr 0Þ a function that can be reasonably well approximated by L0e
�r 0=	0 .

An equation of this kind had been suggested by Pippard on macroscopic

grounds before the development of the BCS theory.

When the coherence length 	0 is very much smaller than the penetration

depth � then Aðr� r 0Þ will not vary appreciably within the range of Lðr 0Þ.
Equation (7.10.2) then tells us that the current density at a point will be

approximately proportional to the vector potential in the gauge that we

have chosen, and the London equation (7.7.1) will be valid. Under these

circumstances it will be energetically favorable for type II superconductivity

to occur, as the magnetic field can penetrate the superconductor and reduce

the magnetic energy without reducing the condensation energy. If, on the

other hand, �� 	0 then Eq. (7.10.2) predicts a nonlocal relation between the

magnetic field and the current density. The wavefunction of the supercon-

ductor may then be modified up to a distance 	0 from the surface of the

specimen, with a consequent reduction in the condensation energy. Because

the magnetic field only penetrates a short distance �, little magnetic energy is

gained, and the sample will be a type I superconductor. We can illustrate this

situation if we make the generalization that in a spatially varying magnetic

field the gap parameter � should be considered as a function of position. The

variation of BðrÞ and �ðrÞ at the boundary separating normal and super-

conducting regions of a metal can then be depicted as in Figs. 7.10.4(a)

and 7.10.4(b) for type I and II superconductors respectively, where �1 is

the value of � deep inside the superconductor.

A prediction of the geometry of the mixed state in a type II superconductor

can be obtained by considering the Helmholtz energy FS in a superconductor

in which the gap parameter � varies with position. We saw in Eq. (7.4.2) that

the condensation energy is proportional to ��2 in a homogeneous super-

conductor at zero temperature, and so it is natural to expect the dominant

term in the Helmholtz energy to vary as ��2ðrÞ in the more general case. The

fact that Eq. (7.10.2) shows the current (and hence the wavefunction) at a

point r to depend on the conditions at points distant 	0 from r suggests that a

term proportional to ½	0r�ðrÞ�2 should be included in FS. In the presence of a

magnetic field this contribution must be modified to preserve gauge in-

variance to ½	0ðr � ie*AðrÞ=0cÞ�ðrÞ�2, with e* again chosen equal to 2e; a

magnetic energy density of H2=8� must also be added.
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While the terms we have discussed so far present a fair approximation to

FS, this form of the Helmholtz energy does not allow one to discuss which

particular two-dimensional lattice of normal regions gives the mixed state of

lowest Helmholtz energy; this is due to the linearity of the equation one

obtains by trying to minimize FS with respect to �. One must accordingly

include the term of next highest power in �, which in this case will be
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Figure 7.10.4. The area under the curve of B2ðrÞ represents the magnetic energy
gained in forming the normal–superconducting interface, while the area under the

curve of �2
1 ��2ðrÞ is related to the condensation energy lost. In a type I material

(a) the net energy is positive but in a type II superconductor (b) there is a net negative
surface energy.



proportional to �4. The expression for the difference in Helmholtz energies

between the superconducting and normal states will then be

FS � FN ¼
ð �

aj�ðrÞj2 þ 1

2
bj�ðrÞj4 þH

2

8�

þ c

�����r � 2ieA

0c

�
�ðrÞ

����2� dr ð7:10:3Þ

with a; b, and c temperature-dependent constants and where the possibility of

a complex � has been allowed for in the spirit of the discussion of the phase

of the superconducting wavefunction given at the end of Section 7.9.

Minimization of FS with respect to both AðrÞ and �ðrÞ yields the

Ginzburg–Landau equations, which in principle enable one to calculate A

and � as functions of position and of the constants a; b, and c. These con-

stants can be evaluated in terms of the parameters of the homogeneous

material when FS is derived from the BCS Hamiltonian using some rather

difficult procedures first applied by Gorkov. It is then possible to remove all

but one of these parameters from appearing explicitly in the Helmholtz

energy by working in terms of the dimensionless quantities in which H is

measured in units proportional to Hc, distances are measured in units of the

London penetration depth �, and in which  ðrÞ is the ratio of �ðrÞ to its value

in the homogeneous material. The Ginzburg–Landau equations then take on

the form

�
1� j j2 �

�
1

i�
r � A

�2�
 ¼ 0 ð7:10:4Þ

j j2Aþ r � ðr � AÞ ¼ 1

2i�
ð *r �  r *Þ ð7:10:5Þ

where � is �=	0. The fact that � is the only parameter of the material to enter

these equations confirms the idea that it is this quantity alone that determines

whether a superconductor will be of type I or type II.

The detailed solution of Eqs. (7.10.4) and (7.10.5) leads to a variety of

qualitatively correct predictions of the behavior of type II superconductors.

The lower critical applied field Hc1 at which it first becomes energetically

favorable for a thread of normal material to exist in the superconductor

can be shown to be less than Hc, the bulk critical field calculated from �,

provided � > 1=
ffiffiffi
2

p
. Similarly the upper critical field Hc2 below which a

regular two-dimensional triangular lattice of threads of normal material

7.10 The Ginzburg–Landau equations 277



forms the state of lowest energy can be calculated to be approximatelyffiffiffi
2

p
�Hc. This is illustrated in the ‘‘phase diagram’’ of Fig. 7.10.5, in which

the state of the superconductor is shown as a function of the Ginzburg–

Landau parameter � and the applied magnetic field H0. The existence of a

superconducting surface layer in type II materials up to an applied field Hc3

equal to about 1.7Hc2 may also be shown to follow from Eqs. (7.10.4) and

(7.10.5).

7.11 High-temperature superconductivity

The technological promise of superconductivity is so rich that there has been

a continual search for materials with higher critical temperatures. In high-

voltage transmission lines, ohmic resistance losses consume about one per-

cent of the power carried for every 100 km traveled, and even the best electric

motors made of nonsuperconducting materials waste as heat several percent

of the energy they use. If the need for refrigeration could be eliminated or

reduced, the economic benefits flowing from the adoption of superconducting

materials would be substantial.

In the decades before 1986, the progress made in this search was slow, for

reasons that we can appreciate from the BCS expression (7.5.10) for the

critical temperature. We might think that we could increase Tc by making

the lattice more rigid, and thereby increasing !D. Unfortunately the interac-

tion term V would simultaneously be reduced, as we see from Eq. (7.2.2), and

little advantage would be gained. The remaining component of expression

(7.5.10) is the density of states Dð�Þ, and this can be increased by using

transition metals and choosing the most favorable crystal structure. In this

way a transition temperature of 23K was achieved in Nb3Ge. However, if we
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Figure 7.10.5. This diagram shows which of the three ‘‘phases’’ of a superconductor
has the lowest free energy for a given Ginzburg–Landau parameter � and applied
field H0.



travel too far along the path of increasing the density of states we find a new

obstacle. The electron–phonon interaction reduces the phonon frequencies

through the process shown in Fig. 6.2.2, and a large electronic density of

states enhances this effect. As we saw in the case of the Peierls transition

described in Section 6.3, softening of the phonon modes eventually leads to a

lattice instability.

Among other possible routes to high-temperature superconductivity we

might look for pairing that involves a stronger force than arises from the

electron–phonon interaction. One possibility could be a pairing between an

electron and a hole in a material in which electrons and holes are present in

equal numbers and with similar masses. However, systems of bound electron–

hole pairs have a tendency to form spatially inhomogeneous structures in

which the electric charge density or spin density varies periodically in space.

Superconductivity is not favored in these spatially modulated structures.

It was thus a delightful surprise when, in 1986, Bednorz and Müller dis-

covered that superconductivity occurred at 35K in a ceramic compound of

lanthanum, barium, copper, and oxygen. This delight was magnified the

following year with the revelation by Chu and Wu that replacement of the

lanthanum by yttrium raised Tc to 92 K. This allowed the use of liquid

nitrogen, which boils at 77K, for cooling. Many other ceramic compounds

were subsequently found to be high-temperature superconductors. A feature

common to most, but not all, of these was that they contained parallel layers

of CuO2, each layer separated from its neighbors by ionizable metallic atoms.

Another characteristic was the increase in Tc that occurred when each single

CuO2 layer was replaced by two contiguous layers, and then by three,

although a further increase to four layers produced a decrease in Tc.

The original motivation of Bednorz and Müller for looking at conducting

oxides was the thought that the electron–phonon interaction could be

strengthened if the copper ions were in nearly unstable positions in the lattice.

The Jahn–Teller theorem states that, except in some special circumstances, a

degeneracy in electronic states can be lifted by a distortion in which an atom

moves to a less symmetric position. Since lifting the degeneracy moves the

energies of the states apart, the lowest-lying state will be reduced in energy,

and the system is unstable. The existence of nearly degenerate states on the

copper ions could thus enhance the electron–lattice interaction.

The structure of the CuO2 planes is as shown in Fig. 7.11.1, with each

copper atom having four oxygen neighbors. The oxygen atoms are hungry

for electrons, and succeed in removing not only the single electron in the

outer 4s state of copper, but also one of the electrons from the filled 3d-shell.

The copper is thus doubly ionized to Cu2þ. One might then expect to have a
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metal, since the uppermost band should be only half filled. However, the

mutual Coulomb repulsion of the 3d electrons now intervenes and splits

this band. It does so by arranging the spins of the holes on the Cu sites in

an antiferromagnetic ordering, in which the spin on every Cu site is aligned

antiparallel to that of each of its four Cu neighbors. The size of the unit cell

of the CuO2 lattice is effectively doubled, and so the size of the first Brillouin

zone is correspondingly halved. An energy gap now appears between the new

first Brillouin zone and the new second Brillouin zone. The number of holes is

now exactly equal to the capacity of the first Brillouin zone, making the

compound an insulator. A filled valence band, consisting of states predomi-

nantly located on the oxygens, is separated by an appreciable gap from the

empty conduction band in which electrons, had they been present, would be

mostly concentrated on the copper sites. This is the situation for the undoped

material, which is commonly referred to as a Mott insulator.

The antiferromagnetism, like all types of ordering, can be destroyed if the

temperature is raised sufficiently. It can also be destroyed by increasing the

number of holes in the CuO2 layer, as this eliminates the one-to-one corre-

spondence between holes and lattice sites. The doping process that adds extra

holes can be achieved by either replacing some of the atoms with those of

lower valency or modifying the amount of oxygen in the compound. A dop-

ing level (measured as the number of extra holes per CuO2 unit) of a few

percent is generally sufficient to destroy antiferromagnetism. As the number

of holes is increased beyond this point one enters what is known as the

pseudogap region. Here the electronic specific heat does not fit a picture of

electrons as a gas or liquid of quasiparticles, but shows some traits charac-

teristic of superconductors. A further increase in doping takes us into the

superconducting state, which is often optimized at a doping level of about
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20 percent. The generic phase diagram for high-temperature superconductors

thus appears as in Fig. 7.11.2.

The existence of planes of copper and oxygen atoms suggests that the lower

effective dimensionality of the system may be the factor that overcomes the

difficulties that had been predicted in reaching high transition temperatures. In

fact, there had been suggestions as early as 1964 that one-dimensional organic

molecules might be a possible route to room-temperature superconductivity.

One aspect of low effective dimensionality is that the screening of the Coulomb

interaction is reduced. This has the two opposite effects of increasing the

strength of the electron–lattice interaction, which should favor superconduc-

tivity, and increasing the mutual repulsion of the electrons, which should

inhibit the formation of Cooper pairs and thus disfavor superconductivity.

The response of the system to this combination of a stronger indirect force

of attraction (which may be due to effects other than the electron–phonon

interaction) and a stronger direct repulsion could be a contributory factor in

encouraging the electrons (or holes) to form Cooper pairs having d-wave

symmetry rather than the isotropic s-wave symmetry of the elemental super-

conductors. The spins would again be antiparallel, but now the wavefunction

would vanish as the particle separation tends to zero, reducing the energy

cost of the strong short-range repulsion. Convincing experimental support

for d-wave pairing has been found in a number of ingenious experiments.

One of the most impressive pieces of evidence is seen in the beautiful picture

on the cover of this book, which shows a scanning-tunneling-microscope

image of the surface of a high-temperature superconductor. One of the

copper atoms in a CuO2 plane just below the surface has been replaced by a

zinc atom. Scattering of the d-wave quasiparticles from the zinc atom results

in a distribution that reflects the structure of the superconducting state. In

d-wave superconductors the gap parameter � is no longer a constant, but
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is anisotropic, falling to zero in the four azimuthal directions where cos 2�

vanishes. These are the directions in which the impurity wavefunction, and

the tunneling currents associated with it, extend farthest.

While the standard BCS analysis can be readily modified to handle d-wave

pairing, there are many other pieces of evidence to suggest that the BCS

formalism cannot be applied to high-temperature superconductors without

more drastic modification. Examples include the temperature dependence of

the specific heat, the very small coherence length, and the large value of the

ratio 2�ð0Þ=kTc. In Section 7.5 the BCS prediction for this ratio was shown

to be 3.50, but the experimental result for HgBa2Ca2Cu3O8 is 12.8 in the

direction that maximizes �. It is clear that superconductivity is a phenom-

enon that can appear in a number of forms, and whose complete explanation

requires a correspondingly wide range of theoretical approaches.

Problems

7.1 Would you characterize the BCS theory as a mean field theory in the

sense discussed at the beginning of Section 3.11? If so, at what stage is

the mean field approximation introduced?

7.2 An alternative approach to the finite-temperature theory of Section 7.5

involves minimizing the Helmholtz energy, hHBCSi � TS, with respect

to both xk and fk, with the entropy given by

S ¼ �2k
X
k

½ fk ln fk þ ð1� fkÞ lnð1� fkÞ�:

Show that this approach leads to the same expression for �ðTÞ as given

in Eq. (7.5.8).

7.3 Anderson’s pseudospin formulation of the BCS theory starts by trans-

forming from the pair creation operators b
y
k ¼ c

y
k"c

y
�k# to operators de-

fined by 2sxðkÞ ¼ b
y
k þ bk; 2syðkÞ ¼ iðbyk � bkÞ; 2szðkÞ ¼ 1� nk" � n�k#.

Verify that in units where 0 ¼ 1 these operators have the commutation

properties of spins as defined by Eq. (3.10.11).

7.4 Verify that when the transformation of Problem 7.3 is substituted in the

BCS Hamiltonian (7.2.4) one finds a result of the form

HBCS ¼ �
X
k

HðkÞ � sðkÞ
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where H is an ‘‘effective pseudomagnetic field’’ given by

HðkÞ ¼
�X

k 0
Vkk 0sxðk 0Þ;

X
k 0

Vkk 0syðk 0Þ; 2ÊEk
�
:

[The energy of this system can now be minimized by arguing in analogy

with the theory of domain walls in ferromagnets.]

7.5 Prove that no material can have a macroscopic magnetic susceptibility

more negative than �1=4�. [Hint: consider a long cylinder held parallel

to an applied field, and plot Bz as a function of position.]

7.6 Show that the fourth-order off-diagonal terms omitted from Eq. (7.3.8)

have a negligible expectation value in the BCS ground state.

7.7 How does the electronic specific heat of a superconductor vary with

temperature T as T tends to zero?

7.8 Provide the missing steps in the calculation that leads from Eq. (7.7.4)

to Eq. (7.7.5).

7.9 The operator that describes the spin magnetic moment of the electron

gas is

M ¼ �B

X
k

ðnk" � nk#Þ:

In the ground state of the BCS superconductor, the magnetization

vanishes. What is the minimum energy needed to create a state for

which the expectation value of M is 2�B?

7.10 An exception to our general statement that an electron annihilation

operator ck only acts in partnership with a creation operator c
y
k arises

if we introduce a positron to the system. Consider a positron at rest in a

BCS superconductor at zero temperature annihilating with an electron

to produce two photons of total momentum 0k1. What is the difference

between the total energy they would have in the superconductor and

that in a normal metal?

7.11 Now raise the temperature in problem 7.10 to T1, so that � is reduced

to �ðT1Þ. There are now two possible answers to the problem. What are
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they, and what is the ratio of the probabilities of occurrence of these

two answers?

7.12 Calculate the electronic specific heat CðTÞ for a BCS superconductor in

the limit as T ! Tc, and hence find the ratio of CðTc � �Þ to CðTc þ �Þ
as �! 0.

7.13 How does the penetration depth � vary with temperature in a BCS

superconductor as T ! Tc? Express your answer in terms of T;Tc,

and �ðT ¼ 0Þ.
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Chapter 8

Semiclassical theory of conductivity in metals

8.1 The Boltzmann equation

We now have at our command many of the ingredients of the theory of the

conduction of heat and electricity. In Section 3.9 we considered the heat

current operator for phonons in a lattice, and in Section 4.6 we calculated

the velocity of Bloch electrons and their dynamics in applied fields. The

missing ingredients of the theory of the transport of heat or electricity, how-

ever, are the statistical concepts necessary to understand such irreversible

processes. In this chapter we shall adopt the simplest attitude to these statis-

tical problems, and begin with a discussion of the probable occupation number

of a given phonon mode or Bloch state.

Let us start by considering a system of independent phonons or electrons.

We know that we can define operators nq and nk whose eigenvalues are

integers. If, for instance, there are three phonons of wavenumber q
0 present

then the expectation value hnq 0 i of the operator nq 0 will be equal to three. If the

crystal is not in an eigenstate of the Hamiltonian, however, then hnq 0 i may
take on some nonintegral value. If we wish to discuss the thermal conductiv-

ity of the lattice we should have to interpret the idea of a temperature gra-

dient, and this must certainly involve some departure from the eigenstates of

the lattice. We are thus obliged to consider linear combinations of different

eigenstates as describing, for example, a lattice with a temperature gradient.

Because there will be many different combinations of eigenstates that all give

the appearance of a crystal with a temperature gradient we shall only have a

very incomplete knowledge of the state of any particular crystal. We can,

however, discuss the average results fq and fk that we expect to find when

we make measurements of nq and nk, respectively, and can proceed to use

semi-intuitive methods to derive equations that will govern their variation in

time.

285



If we are to include the possibility of temperature gradients we shall have to

allow fq and fk to be functions of position as well as of wavenumber. This

appears self-contradictory, in that phonon and Bloch states are not localized,

and so one cannot attempt to specify even the approximate location of a

particle if one knows its wavenumber exactly. We must thus sacrifice some

precision in determining the wavenumber if we allow fq and fk to vary with

position. This need not be a serious limitation provided we restrict ourselves

to slowly varying functions in r-space. If for instance we consider a tempera-

ture that varies as

TðrÞ ¼ T0 þ T1 cos ðqT � rÞ

then we must make qT small enough that the concept of a local temperature

is valid. We must certainly have a high probability that all the excitations

have many collisions in traveling a distance q�1T so that they are properly

‘‘thermalized.’’

We now consider the equation of continuity for the function f , which can be

the probable occupation number of either electrons or phonons. This relates

the rate of change of f in the absence of collisions to the number of particles

leaving an element of volume of six-dimensional k-r space. By a simple

generalization of the usual three-dimensional version we find

@f

@t
¼ � @

@r
� f

dr

dt

� �
� @

@k
� f

dk

dt

� �
:

Upon differentiation this becomes

@f

@t
¼ �v � @f

@r
� dk

dt
� @f
@k
� f @

@r
� vþ @

@k
� dk

dt

� �
: ð8:1:1Þ

The term in brackets vanishes both for phonons and for Bloch electrons in

applied fields. For phonons this is obvious, since v ¼ @!=@q, and does not
depend on position while k ¼ q, the wavenumber, and is constant. For elec-

trons

dk

dt
¼ e

0c
ðEcþ v	HÞ;

and the fact that 0v ¼ @E=@k ensures this result. What remains of Eq. (8.1.1)
constitutes the Liouville equation. We now specialize to consider only the

steady state, in which @f =@t vanishes, but we add to the right-hand side a
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term to allow for changes in f due to collisions. We then have a form of the

Boltzmann equation, which states

@f

@t

� �
collisions

� v � @f
@r
� dk

dt
� @f
@k
¼ 0:

The spatial variation in f may be attributed solely to a variation in tempera-

ture, giving

@f

@r
¼ @f

@T
rT :

We then have the following equations for the phonon and electron systems:

@fq
@t

� �
collisions

¼ @!
@q

�rT @fq
@T

� �
ð8:1:2Þ

@fk
@t

� �
collisions

¼ 1
0
@E
@k

�rT @fk
@T

� �
þ e

0c
ðEcþ v	HÞ � @fk

@k

� �
: ð8:1:3Þ

In general these two equations are coupled, since in the presence of the

electron–phonon interaction the scattering probability for the electrons

depends on the phonon occupation function, and conversely.

Before proceeding to an investigation of the solution of these equations in

particular circumstances, we remind ourselves of the fact that applied electric

fields and temperature gradients are usually rather small. If one is measuring

thermal conductivity, for example, one usually wishes to determine this quan-

tity as a function of temperature, and no accurate result could be obtained if

the two ends of the sample were at widely different temperatures. The result-

ing currents of heat and electricity are consequently linear in E and rT . This
leads us to a linearization of Eqs. (8.1.2) and (8.1.3). We expand f in powers

of E and rT , and keep only the first two terms so that

f ’ f 0 þ f 1:

Here f 0 will represent the distribution in the equilibrium situation, and will

be given by the Bose–Einstein function for phonons and the Fermi–Dirac

function for electrons. By definition ð@f 0=@tÞcollisions vanishes. We also note
that for electrons f 0 depends on k only through the function Ek, and so

@f 0k
@k
¼ @f

0

@E
@E
@k
:
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It thus follows that the term v	H � ð@f 0=@kÞ also vanishes. On neglect of
terms of second order of smallness we are then left with�

@f 1q
@t

�
collisions

¼ vq �rT
�
@f 0q
@T

�
ð8:1:4Þ

�
@f 1k
@t

�
collisions

¼ e

0c
vk 	H � @f

1
k

@k
þ vk �

�
rT @f 0

@T
þ eE @f 0

@E
�
: ð8:1:5Þ

This is as far as we can conveniently go in simplifying the Boltzmann equa-

tions without specializing to a consideration of specific models and situa-

tions. We shall now proceed to investigate a few of these and attempt to

see how some of the simple geometrical ideas such as the mean free path can

be rescued from the complexity of the Boltzmann equation.

8.2 Calculating the conductivity of metals

We now specialize to consider the electrical conductivity of a metal in which

the electrons are scattered elastically by a random array of n impurities. We

argue that if the positions of the scattering centers are not correlated in any

way, then we can neglect coherent scattering by the array of impurities as a

whole, and assume that the scattering probability between Bloch states is just

the scattering probability due to a single impurity multiplied by n. This

argument will be valid if the density of the impurities is low, as we can

then consider our calculation as finding the first term of an expansion of

the resistivity � in powers of the impurity density n. While the function �ðnÞ
turns out not to be analytic at n ¼ 0, the derivative d�=dn does exist at this
point, and so for small enough n we can write the scattering probability

following Eq. (4.7.3) as

Qðk;k 0Þ ¼ n 2�

0

� �
jTkk 0 j2�ðEk � Ek 0 Þ:

The rate of change of fk will be the average net number of electrons entering

state k from all other states k
0. Making allowances for the Exclusion

Principle, which will prevent an electron from entering the state k if it is

already occupied, we find�
@fk
@t

�
collisions

¼
X

k 0
½ fk 0Qðk; k 0Þð1� fkÞ � fkQðk 0;kÞð1� fk 0 Þ�:
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It was shown in Section 4.7 that Qðk; k 0) was equal to Qðk 0; k), and so

@fk
@t

� �
collisions

¼
X
k 0
Qðk; k 0Þð fk 0 � fkÞ:

Because energy is conserved Qðk;k 0) vanishes unless EðkÞ ¼ Eðk 0Þ, and as f 0k
depends only on EðkÞ we immediately verify thatX

k 0
Qðk; k 0Þð f 0k 0 � f 0k Þ ¼ 0:

We may thus write

�
@fk
@t

�
collisions

¼
�
@f 1k
@t

�
collisions

¼
X

k 0
Qðk;k 0Þð f 1k 0 � f 1k Þ:

In the absence of a temperature gradient the linearized Boltzmann equation

(8.1.5) then becomes

X
k 0
Qðk; k 0Þð f 1k 0 � f 1k Þ �

e

0c
vk 	H � @f

1
k

@k
¼ eE � vk

@f 0k
@E : ð8:2:1Þ

The changes, f 1k , that occur in f due to the action of the electric field are, of

course, confined to the region of k-space in the vicinity of the Fermi surface.

This is evident from the presence of the factor @f 0k =@E on the right-hand side
of (8.2.1). For Fermi–Dirac statistics

@f 0k
@E ¼

@

@E
1

exp ½ðEk � 	Þ=kT � þ 1
� �

¼ � exp ½ðEk � 	Þ=kT �
kTðexp ½ðEk � 	Þ=kT � þ 1Þ2

;

which may be rewritten in the form

@f 0k
@E ¼ �

f 0k ð1� f 0k Þ
kT

:
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In the limit of low temperatures

@f 0k
@E ! ��ðEk � EF Þ; ð8:2:2Þ

the Fermi energy EF being equal to the chemical potential 	 at zero tempera-
ture. It is then clear that f 1k is too rapidly varying a function for convenience

in computation. We also note that the statement that f 1k is linear in E means

that the total change in fk due to the field (Ex, Ey, Ez) is the sum of the

changes f 1k;x, f
1
k;y, and f

1
k;z that would be produced by the three components of

E acting separately. It is then convenient to define quantities �k;x, �k;y, and

�k;z that satisfy

f 1k;x ¼ �eEx�k;x

@f 0k
@E

and similarly for f 1k;y and f
1
k;z. More briefly we state that a vector ,k exists

such that

f 1k ¼ �eE �,k

@f 0k
@E ð8:2:3Þ

and which is independent of E. Equation (8.2.1) then becomes

� eE �
X

k 0
Qðk; k 0Þ

�
,k 0

@f 0k 0

@E � ,k

@f 0k
@E
�

þ e

0c

�
vk 	H � @

@k

�
eE �,k

@f 0k
@E ¼ eE � vk

@f 0k
@E :

Now since f 0k 0 ¼ f 0k for elastic scattering we may take the derivatives of f 0k
outside the summation. We also note that�

vk 	H � @
@k

�
@f 0k
@E ¼ 0;

which allows us to cancel terms in eE and @f 0k =@E when we substitute back
into (8.2.1). We are left with the equation

X
k 0
Qðk;k 0Þð,k � ,k 0 Þ þ

e

0c

�
vk 	H � @

@k

�
,k ¼ vk: ð8:2:4Þ
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This bears no reference to the Fermi energy or to the temperature, and thus

may be expected to lead to a smoothly varying function as its solution for the

quantity ,k.

Our object in solving the Boltzmann equation in this instance is the evalua-

tion of the electrical conductivity tensor p in terms of the band structure and
the scattering probabilities. We have already noted that the current density

due to a single Bloch electron is equal to evk=�, and we may then write the

total current density j as

j ¼ ��1
X

k

evk fk

¼ ��1
X

k

evk f
1
k ;

since in equilibrium no net current will flow. With use of (8.2.3) this becomes

j ¼ � e
2

�

X
k

vkð,k �EÞ @f
0
k

@E :

As p is defined by

j ¼ p �E

we see that

p ¼ � e
2

�

X
k

vk,k

@f 0k
@E : ð8:2:5Þ

This expression includes a summation over the two spin directions.

At this point we can make a connection with some pictorial concepts of

transport theory by considering the conductivity of the simplest possible

system – the free-electron gas in the absence of a magnetic field. In this

case the conductivity tensor is by symmetry diagonal and


xx ¼ 
yy ¼ 
zz ¼ 1
3 Trp

¼ � e2

3�

X
k

vk �,k

@f 0k
@E :

Also by symmetry v and , must always be parallel to k and of uniform

magnitude over the Fermi surface. Because thermal energies are small com-

pared with the typical Fermi energy we adopt (8.2.2) and replace @f 0k =@E
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by ��ðEk � EF Þ to find


xx ¼
e2v�

3�

X
k

�ðEk � EF Þ

¼ e
2v�

3�
DðEF Þ:

We recall that the energy density of states DðEÞ is proportional to ffiffiffiEp in the

free electron gas, and that N, the total number of electrons, is given by

N ¼
ðEF
0

DðEÞ dE:

Thus

DðEF Þ ¼
3N

2EF
¼ 3N

mv2

and


xx ¼
Ne2�

�mv
:

This is similar to a formula of elementary kinetic theory which expresses the

conductivity in terms of a mean free path � or a relaxation time �, defined

such that ��1 is the probability per unit time of an electron having a collision
in which it loses any momentum gained from the electric field. In such a

theory one argues that at any instant an average electron has been traveling

for a time � since its last collision, and hence has an average extra velocity of

eE�=m. The system thus has a conductivity


 ¼ Ne
2�

�m
;

which is equivalent to our previous expression when � is identified with �v.

Looking back to Eq. (8.2.5) we see that in contrast to these simple ideas the

solution of the Boltzmann equation in the more general circumstances of a

metal with a nonspherical Fermi surface cannot, in general, be expressed in

terms of a relaxation time. It is, however, an extremely useful approximation

to make when the detailed nature of the scattering is not thought to be

central to the problem under investigation. This may, for example, be the
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case in multilayered systems, such as metallic or semiconducting superlat-

tices. These consist of a sequence of layers of two or more different materials,

with each layer perhaps a few nanometers thick. At the interface between two

different layers, there is in general a mismatch in the electronic band struc-

ture. Disorder due to interdiffusion of atoms across the interface may also

lead to significant scattering. A lack of precise information about the form of

the interface scattering can then make it unnecessary to worry about the

lesser errors introduced by the relaxation-time approximation, which corre-

sponds to writing

@fk
@t

� �
collisions

¼ � f
1
k

�

in the Boltzmann equation. When this approximation is not valid one must

return to a calculation of ,k, which is known as the vector mean free path of

the Bloch electrons, it being a natural generalization of the � of kinetic

theory.

When the system is spatially inhomogeneous on a macroscopic scale, there

will be spatial derivatives in the Boltzmann equation. As a consequence, the

distribution function will depend on r as well as on k, in mild violation of the

Uncertainty Principle as discussed at the beginning of this chapter. The

simplest such system is a thin film, which also happens to be an important

subject in such practical applications as the technology of integrated circuits.

The conducting paths connecting different circuit elements are films of Cu or

Al with thicknesses ranging from a few to a few tens of nanometers. In order

to model the transport properties of such thin films correctly, we must

include scattering at the boundaries.

With the film thickness d along the z-axis and with an electric field along

the x-axis, the linearized Boltzmann equation is

vz
@f 1k ðzÞ
@z
þ eEvx

@f 0k
@E ¼ �

f 1k ðzÞ
�

:

For simplicity, we are here using the relaxation-time approximation and are

also assuming that the film is homogeneous in the xy plane. We again remove

the inconveniently rapidly varying part of f 1k by defining a new smoother

function hkðzÞ, just as we did in Eq. (8.2.3), and writing

f 1k ðzÞ ¼ hkðzÞ
@f 0k
@E :
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The Boltzmann equation in terms of hkðzÞ is then

@hkðzÞ
@z
þ hkðzÞ
vz�
¼ � vxeE

vz
:

In order to solve this equation we shall need to stipulate the boundary con-

ditions for hkðzÞ. A simple set of such conditions, which seems to work rather

well in most practical applications, was given by Fuchs and Sondheimer.

Their idea was that an electron incident on a boundary has a probability S

of being specularly reflected. In such a reflection, the momentum of the

electron parallel to the surface is conserved, and the momentum perpendi-

cular to the boundary changes sign but preserves its magnitude. The energy

of the electron is conserved. In addition, there will be nonspecular scattering

due to imperfections at the surface, and so we assume that the electron has a

finite probability D ¼ 1� S of being diffusively reflected in a process in

which only energy is conserved as the electron moves away from the surface

after the reflection. In general, we may not know precisely how the electron is

scattered diffusively. Usually one assumes that the distribution after a diffuse

reflection is the equilibrium distribution for electrons moving away from the

boundary. This is convenient for subsequent calculations of the total current,

since the electrons that have scattered diffusively do not contribute to the total

current. With these Fuchs–Sondheimer boundary conditions, the solutions

will be different for electrons traveling in the positive and negative z-direc-

tions. Let us denote by hþk ðzÞ and h�k ðzÞ the distribution functions of electrons
of wavevector k and position z with vz > 0 and vz < 0, respectively. We can

then write

@h�k ðzÞ
@z

� h
�
k ðzÞ
jvzj�

¼ � vxeEjvzj
:

The general solution for h�k ðzÞ is

h�k ðzÞ ¼ �evxE�½1� F�k e�z=ð�jvzjÞ�:

The coefficients F�k are to be determined using the boundary conditions.

These are

hþk ðz ¼ 0Þ ¼ Sh�k ðz ¼ 0Þ
h�k ðz ¼ dÞ ¼ Shþk ðz ¼ dÞ:
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We can then calculate the current density and conductance of the system.

Here we state only the qualitative result without going through the details. If

the specularity coefficients at the boundaries are not unity, there is current

lost near the boundaries due to diffuse reflections. If the thickness d is less

than or of the order of the elastic mean free path, the effect is an apparent

increase in the resistivity of the material. As the system thickness d becomes

greater than the elastic mean free path, the increase in resistivity becomes less

and less important, and the resistivity approaches that of bulk material. As

an example, in Cu the mean free path at room temperature is of the order of

20 nm. Therefore, the increase in resistivity can be quite appreciable for films

of thickness 10 nm or less. We note that if S ¼ 1, so that the electrons are
reflected perfectly at the boundaries, a film of any thickness will have the

same effective resistivity as bulk material since in this case there is no reduc-

tion in current density due to diffuse reflection at the boundaries. In real

applications, the specularity coefficient S is generally quite low (close to

zero) at the interface between a metal and either vacuum, metal, or insulator

because of roughness and diffusion across the interface.

8.3 Effects in magnetic fields

The presence of the magnetic field term in the Boltzmann equation is a great

complication, and makes the evaluation of the conductivity tensor a difficult

task. The k-vectors of the Bloch electrons now follow orbits around the

Fermi surface as described in Section 4.6, until they are scattered to some

new k-state to start their journey again. At the same time they are accelerated

by the electric field, but then have their extra velocity reversed as the mag-

netic field changes their direction of motion. We shall here outline in the

briefest possible manner the formal solution for the conductivity tensor,

and then indicate a few qualitative conclusions that may be drawn from it.

Let us first abbreviate the Boltzmann equation (8.2.4) by noting that the

left-hand side is a sum of two terms, each of which represents an operator

acting on ,. We could thus rewrite (8.2.4) as

S,k � i!W,k ¼ vk ð8:3:1Þ

with S and W operators and ! the cyclotron frequency, eH=mc. In the

absence of a magnetic field the vector mean free path is then the solution of

S,0
k ¼ vk:
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If we define a new operator T equal to S�1W then we can rewrite (8.3.1) as

ð1� i!TÞ,k ¼ ,0
k: ð8:3:2Þ

The operator T has a complete set of eigenfunctions and real eigenvalues �l,

and so we can solve by expanding ,0
k in terms of these. This allows us to

invert (8.3.2), substitute the solution for ,k into the expression (8.2.5) for the

conductivity, and find an expression of the form


�	 ¼
X
l

�ðlÞ�	
1� i!�l

; ð8:3:3Þ

where the �ðlÞ�	 are numbers that depend on the band structure, the direction of
H, and the form of the scattering, but are independent of the magnitude of H.

If we choose axes so that when H ¼ 0 the conductivity tensor is diagonal it
happens that the diagonal �ðlÞ�� are real while the off-diagonal �

ðlÞ
�	 are pure

imaginary. One can then make simplifications of the form


�� ¼
X
l

�ðlÞ��
1þ !2�2l

; 
�	
ð�6¼	Þ

¼
X
l

i!�l�
ðlÞ
�	

1þ !2�2l
: ð8:3:4Þ

An added complication that has to be considered is that in an experiment the

current is constrained by the boundaries of the sample to lie in a certain

direction. The total electric field acting on the sample must then be in such

a direction that p �E conforms with the sample geometry. There are thus

electric fields set up in the sample whose direction is not within the control

of the experimenter, and it is these that must be measured when a given

current is flowing. One thus measures the resistivity tensor, o, which is the
inverse of the conductivity tensor.

The diagonal elements of p are functions of !2, and are thus unchanged
when the magnetic field is reversed. The same is true for the diagonal ele-

ments of o. One defines the magnetoresistance ���� as the increase in ��� as a
function of the magnitude and orientation of H. This quantity is propor-

tional to !2 at low fields. When H is in the �-direction then ���ð!Þ � ���ð0Þ is
said to be the longitudinal magnetoresistance, while the transverse magne-

toresistance is measured with H� ¼ 0. The fact that the magnitude of H

occurs only in the combination !�l gives rise to the approximation known

as Kohler’s rule. One argues that if Qðk; k 0) were increased in the same

proportion as H the products !�l would be unchanged, and the magneto-

resistance would remain the same proportion of the zero-field resistance.
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Thus one should be able to find some function F such that for a wide range of

impurity concentration

���� ¼ ���ð0ÞF
H

���ð0Þ
� �

:

In practice deviations occur from this rule, as it is not possible to alter the

scattering without altering various other factors such as the electron veloci-

ties.

The off-diagonal elements of p are odd functions of !, and thus are

changed in sign when the magnetic field is reversed. The off-diagonal

elements of o, on the other hand, are neither odd nor even in !. In the

particular case where H is perpendicular to j the presence of these terms

constitutes the Hall effect. Let us now change to a coordinate system in

which H is in the z-direction and j in the y-direction, and expand �xy in

powers of Hz, so that

�xyð!Þ ¼ �xyð0Þ þ RHz þ SH2
z þ � � � :

In this expression R is known as the Hall coefficient, while the term in H2
z is

responsible for the so-called transverse-even voltage, which does not change

sign when the magnetic field is reversed. One sometimes calls S the trans-

verse-even coefficient for low fields.

Some interesting effects occur at high fields, where from (8.3.4) it appears

at first glance that all elements of p become small. This will be the case unless
one of the �l should be equal to zero, in which case the diagonal elements of p
will tend to a constant value �ð0Þ�� . To see when this situation will arise we look
back to the definitions of T and W in (8.3.2), (8.3.1), and (8.2.4). The pre-

sence of a term equivalent to H	 @=@k in W (and hence in T) gives the

obvious answer that T acting on a constant always vanishes. However, if

we are to expand ,ð0Þ in eigenfunctions of T we do not expect to find any

constant vector as a component of ,ð0Þ, since by symmetry there is no pre-
ferred direction on an orbit of the type � in Fig. 4.6.5. However, when we

look at the open orbits �, we see that it would be possible for ,ð0Þ to be a
different constant on each part of the orbit without violating any symmetry

requirements. Physically we could say that the magnetic field is incapable of

reversing the velocity of the electrons on these orbits, and so they contribute

an anomalously large amount to the conductivity in high magnetic fields. The

transverse magnetoconductivity at high fields can thus give information

about the topology of the Fermi surface. We also note that symmetry does
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not exclude constant components of ,0
k in the direction of H, as shown in

Fig. 8.3.1, from contributing to the current. This means that when H is in the

z-direction, 
zz will again tend to a constant at large magnetic fields.

We note, incidentally, that the free-electron metal with an isotropic scatter-

ing probability is a pathological case and is of little use as a model in which to

understand magnetoresistance. This arises from the fact that ,ð0Þ is composed
of only two eigenfunctions of T in this case, and they both share the same

eigenvalue �, which we can identify with the relaxation time defined as in

Section 8.2. Then, because the conductivity is of the form

p ¼ 
0

1

1þ !2�2
�!�

1þ !2�2 0

!�

1þ !2�2
1

1þ !2�2 0

0 0 1

0BBBBB@

1CCCCCA;
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Figure 8.3.1 The component of the vector mean free path in the direction of the
applied magnetic field contributes a term to the conductivity tensor that always
causes the longitudinal magnetoresistance to saturate.



the resistivity tensor is

o ¼ 
�10
1 !� 0

�!� 1 0

0 0 1

0B@
1CA

and shows no magnetoresistance. One must thus at least generalize to the case

of two parabolic bands to find a nonvanishing magnetoresistance.

8.4 Inelastic scattering and the temperature dependence of resistivity

The theory of the electrical conductivity of metals presented in Section 8.2

was based on the assumption that only elastic scattering occurred between

Bloch states. At temperatures different from zero this assumption will not be

valid, since then the electron–phonon interaction will cause electrons to be

scattered between Bloch states with the emission or absorption of phonons.

The matrix elements that appear in the expression for the scattering prob-

ability will be those of the electron–phonon interaction, and are functions of

the occupation of the phonon states as well as of the Bloch states. We shall

write the scattering probability between states to first order as

Pð1; 2Þ ¼ 2�
0
jh1jHe�pj2ij2�ðE1 � E2Þ ð8:4:1Þ

where now j1i and j2i are descriptions of all the nk and all the nq of particular

many-body states, and E1 and E2 the corresponding energies. In lowest order

He�p ¼
X
kk 0
Mk 0kc

y
k 0ckðaq þ ay�qÞ

with q ¼ k
0 � k, suitably reduced to lie within the first Brillouin zone. This

interaction changes the state of the metal by scattering the electron from k to

k
0 and either absorbing a phonon of wavenumber q or emitting one of

wavenumber �q. The corresponding Born approximation for the scattering

probability is found on substitution in (8.4.1) to be

Pðk;k 0Þ ¼ 2�
0
jMkk 0 j2hcykck 0c

y
k 0cka

y
qaqi�ðEk 0 � Ek � 0!qÞ

¼ 2�
0
jMkk 0 j2hnkð1� nk 0 Þnqi�ðEk 0 � Ek � 0!qÞ
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when a phonon is absorbed and

Pðk;k 0Þ ¼ 2�
0
jMkk 0 j2hnkð1� nk 0 Þð1þ n�qÞi�ðEk 0 � Ek þ 0!�qÞ

when a phonon is emitted. The collision term in the Boltzmann equation for

the electrons (8.1.5) will then be of the form

@fk
@t

� �
collisions

¼ �
X
k 0

2�

0
jMkk 0 j2f fkð1� fk 0 Þ½ fq�ðEk 0 � Ek � 0!qÞ

þ ð1þ f�qÞ�ðEk 0 � Ek þ 0!�qÞ� � fk 0 ð1� fkÞ
	 ½ f�q�ðEk 0 � Ek þ 0!�qÞ þ ð1þ fqÞ�ðEk 0 � Ek � 0!qÞ�g:

This very complicated expression can be simplified by a number of steps, but

still remains difficult to interpret even within the framework of the free-

electron model. One customarily assumes the phonon distribution to be in

equilibrium so that fq may be replaced by the Bose–Einstein distribution f
0
q .

A numerical solution of the Boltzmann equation with H ¼ 0 then shows that
the mean free path ,, defined as before, has a ‘‘hump’’ in it at the Fermi
surface (Fig. 8.4.1). This reflects the fact that it is no longer possible to

eliminate the chemical potential 	 from the Boltzmann equation.

We shall leave the details of such a calculation to the more specialized

texts, and simply examine the qualitative nature of the scattering and the
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Figure 8.4.1 The inelastic nature of the scattering of electrons by phonons causes the
mean free path to be a few per cent greater within the thermal thickness of the Fermi
surface than elsewhere.



electrical resistance it causes. Firstly we note that an electron in state k is not

scattered onto a surface of constant energy Ek 0 ¼ Ek, but onto one of

two surfaces slightly displaced in energy from it, so that Ek 0 ¼ Ek � 0!q

(Fig. 8.4.2). If we were to make the approximation that the scattering is elastic,

we should misrepresent the effect of the Exclusion Principle, in that some

phonon emission processes are forbidden because of the low energy of the

final electron state. However, only electrons within about kT of the Fermi

surface can be scattered, and they would have to lose more than kT in energy

to be scattered into a regionwhere fk 0 was close to unity. Since we do not expect

to findmany phonons present in equilibriumwith energymore than kT , we can

argue that the approximation only introduces a small error. Secondly we recall

that the scattering matrix element will be proportional to the change in density

in the sound wave, i.e., to qyq, where yq is the amplitude. For a harmonic

oscillator the average potential energy is half the total, and so

1
2 ðnq þ 1

2Þ0!q � 1
2m!

2
qy
2
q;

or

qyq / q
�
nq

!q

�1=2
/ ðqnqÞ1=2

for long waves, for which !q / q. Thus at low temperatures, when long waves
are most important, we can make the approximation

Qðk; k 0Þ / qf 0q �ðEk � Ek 0 Þ
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Figure 8.4.2. Scattering of an electron by absorption or emission of a phonon takes
the electron onto one of the two surfaces defined by the energy-conservation relation
Ek 0 ¼ Ek � 0!q.



where

q ¼ jk 0 � kj:

In calculating ,k from the Boltzmann equation we should then writeX
k 0
q f 0q �ðEk � Ek 0 Þð,k � ,k 0 Þ / vk:

The principal contribution to the difference between ,k and ,k 0 will be

a change in direction, and one may then argue that the contribution of

,k � ,k 0 to the sum will be about the same as ,kð1� cos �kk 0 Þ, where � is the
angle between ,k and ,k 0 . For low temperatures it will only be small � that

will be important, and then

1� cos �kk 0 ’ 1
2 �

2
kk 0

/ q2:

Equation (8.2.1) is thus of the form

,k

X
k 0
q3f 0q �ðEk � Ek 0 Þ / vk:

The delta-function in energy restricts the sum to a surface in k-space.

Changing the sum to an integral we find

,k

ð
q3f 0q q dq / vk:

Since f 0q is a function of 0!q=kT , which for small q is proportional to q=T , we

find the integral over q to be proportional to T5; then �, and hence the

conductivity, is proportional to T�5. At high temperatures, on the other

hand, the Bose–Einstein function f 0q may be approximated by kT=0!q. The

detailed shape of the scattering probability is then unimportant, as the tem-

perature only enters the Boltzmann equation through the function f 0q . If f
0
q is

proportional to the temperature then � must vary as T�1. The resistivity of a
pure metal should thus be proportional to T5 at low temperatures and to T at

high temperatures. This prediction appears to be verified experimentally

for the simple metals, but not for transition metals such as nickel, palladium,

platinum, rhenium, and osmium. In these elements electron–electron
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scattering appears to play a major role in limiting the current and in leading

to a resistivity that varies as T2 rather than T5.

When both impurities and phonons are present the total probability of

scattering from a Bloch state will be approximately the sum of the two

scattering probabilities taken separately. This is so because the inelastic scat-

tering by phonons will connect the state k with final states k
0 which are

different from those entered by elastic scattering. The two processes must

be considered incoherent, and one adds the scattering probabilities rather

than the scattering amplitudes. This leads to Matthiessen’s rule, which

expresses the idea that the electrical resistivity can be considered as a sum

of two independent parts, one of which is a function of the purity of the metal

and the other a function of temperature characteristic of the pure metal; i.e.,

� ¼ �i þ �0ðTÞ:

The addition of further impurities to a metal is then predicted to displace the

curve of �ðTÞ and not to alter its shape (Fig 8.4.3).
In practice deviations of a few percent occur from this rule as a conse-

quence of a variety of effects. Adding impurities, for example, may change

the phonon spectrum, the electron–phonon interaction, or even the shape of

the Fermi surface, while raising the temperature introduces the ‘‘hump’’ of

Fig. 8.4.1 in �, which, in turn, changes the resistance.
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Figure 8.4.3 Matthiessen’s rule predicts that addition of impurities to a metal has the
effect of increasing the resistivity � by an amount that does not depend on the
temperature.



8.5 Thermal conductivity in metals

One recognizes a metal not only by its large electrical conductivity but also

by its large thermal conductivity. This indicates that the electrons must play

an important role in the transport of heat – a fact which is at first surprising

when one remembers the small heat capacity of the electron gas. The impor-

tance of the electrons lies in their long mean free paths and in the high

velocities with which they travel, which more than compensate for their

small heat capacity when compared with the phonon system.

Just as the electric current density was calculated from the expression

j ¼ e

�

X
k

vk fk; ð8:5:1Þ

so one can write the energy current density u
0 as

u
0 ¼ ��1

X
k

Ekvk fk:

This, however, is not the same thing as the heat current density u of the

electrons, as can be seen by picturing the arrival at one end of a piece of

metal of an electron of zero energy. As the only unoccupied k-states would be

those with energy close to EF , all the thermally excited electrons would have
to donate a small amount of their thermal energy to the new arrival, with the

net result that the electron gas would be cooled; a zero-energy electron thus

carries a large amount of coldness! We consequently have to measure Ek

relative to some carefully chosen reference energy. This is the same problem

that we encountered in Section 3.3. There we saw that the appropriate zero of

energy is the chemical potential 	; adding an electron of energy 	 to the

metal does not change the temperature of the system. This can be stated in

thermodynamic terms by noting that

@F
@N
¼ 	;

with F the Helmholtz energy. We accordingly write the heat current density

due to the electrons as

u ¼ ��1
X

k

ðEk � 	Þvk fk: ð8:5:2Þ
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The flow of heat resulting from the presence of any combination of fields

and temperature gradients may now be calculated from the linearized

Boltzmann equation (8.1.5). The thermal conductivity, for example, may

be found by putting H and E equal to zero to obtain the equation�
@f 1k
@t

�
collisions

¼ vk �rT
�
@f 0k
@T

�
: ð8:5:3Þ

Strictly speaking, the thermal conductivity tensor i is defined by the equation

u ¼ �i �rT ð8:5:4Þ

under the condition that j rather than E be equal to zero. This only adds a

very small correction, however (Problem 8.5), and so we shall neglect it here.

We then proceed in analogy with the discussion of electrical conductivity

given in Section 8.2. This time we define a vector mean free path by putting

f 1k ¼ ðEk � 	Þ
rT
T

�,k

@f 0k
@E : ð8:5:5Þ

Then since

@f 0k
@T
¼ � E � 	

T

� �
@f 0

@E ;

we find that when we consider only elastic scattering all the arguments used

in Section 8.2 apply and we end up with the identical equation for �k. Since

from Eqs. (8.5.2) and (8.5.5) the heat current density is

u ¼ ��1
X

k

ðEk � 	Þ2vk

rT
T

�,k

@f 0k
@E ; ð8:5:6Þ

then from Eq. (8.5.4)

i ¼ � 1

�T

X
k

vk,kðEk � 	Þ2
@f 0k
@E : ð8:5:7Þ

The fact that for elastic scattering it is identically the same ,k that occurs in

Eq. (8.5.7) as occurred in the Eq. (8.2.5) that defined the electrical conduc-

tivity leads us to the remarkable Wiedemann–Franz law. We recall from
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Section 2.1 that a summation over allowed values of k can be replaced by an

integration over k-space, so that for any well behaved function AðkÞ

X
k

AðkÞ ¼ 2�

ð2�Þ3
ðð
AðkÞ dE dSk

0vk

; ð8:5:8Þ

the first factor of 2 arising from the sum over spin directions, and dSk

representing an element of area of a surface in k-space of constant energy

E. If the functions vk and ,k do not have any unusual kinks at the Fermi

surface, then when Eq. (8.5.7) is changed into a double integral in the manner

of Eq. (8.5.8) the result may be factorized to obtain

i ¼ � 1

4�3T

ð
vk,k

0vk

dSk

ð
ðE � 	Þ2 @f

0

@E dE: ð8:5:9Þ

This is possible because the presence of the term df 0=@E has the consequence
that the integrand is only appreciable within the thickness kT of the Fermi

surface. Since for a typical metal at room temperature kT=EF has a mag-

nitude of 10�2 or less, then vk and ,k can to a good approximation be

considered independent of energy when the integration over E is performed.
Similar arguments applied to Eq. (8.2.5) yield

p ¼ � e2

4�3

ð
vk,k

0vk

dSk

ð
@f 0

@E dE: ð8:5:10Þ

The function �@f 0=@E has the shape shown schematically in Fig. 8.5.1(a),
while �ðE � 	Þ2@f 0=@E is the double-humped curve of Fig. 8.5.1(b). Both

functions may be integrated by extending the limits to �1, and one finds
the results 1 and (�kTÞ2=3, respectively. Comparison of Eqs. (8.5.9) and

(8.5.10) then yields the Wiedemann–Franz law, which states that

i ¼ LTp ð8:5:11Þ

where L is known as the Lorenz number, and in our simple calculation is

equal to

L0 ¼
�2k2

3e2
; ð8:5:12Þ
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which has the value 2:45	 10�8 V2K�2. We deduce from this result that i is
directly proportional to T at low enough temperatures, since the electrical

conductivity then tends to a constant in the absence of superconductivity.

The Wiedemann–Franz law is obeyed to within a few percent by most good

metals at most temperatures. Deviations occur whenever the mean free path

becomes a function of energy, as may be seen by a glance back at Fig. 8.5.1.

The electrical conductivity contains the factor �@f 0=@E, and thus reflects the
mean free path at the Fermi energy 	. The thermal conductivity, on the other

hand, contains the factor shown in Fig. 8.5.1(b), and thus measures ,k at

energies slightly below and slightly above 	. If ,k had a dip in it at the energy

E ¼ 	, as indicated in Fig. 8.5.1(c), then the calculation of p would sample a
lower value of j,kj than would the calculation of i, and the Lorenz number L
would show a positive deviation from the value L0 that we previously

derived. We should expect deviations in particular in alloys that exhibit the
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Figure 8.5.1 (a) The expression for the electrical conductivity contains the factor
@f 0=@E, and thus samples the electron distribution in the immediate vicinity of the
Fermi surface. (b) The thermal conductivity of a metal, on the other hand, involves
the double-humped function (Ek � 	Þ2@f 0=@E, andmeasures, immediately below and
above the Fermi energy. (c) If the mean free path varies appreciably over the energy
range from 	� kT to 	þ kT then the Lorenz number deviates from its usual value.



Kondo effect discussed in Chapter 11, as well as in any situation where

inelastic scattering can occur. Because an electron loses or gains energy 0
!q in scattering by phonons, one generally observes deviations of L from L0
as the temperature is increased from zero, and the electron–phonon interac-

tion gradually takes over from the impurity potentials as the dominant scat-

tering mechanism. At temperatures much greater than the Debye

temperature it will be the case that kT � 0!q for all phonons, and it again

becomes a good approximation to consider the scattering as elastic. Then the

Lorenz number returns to its ideal value, L0.

8.6 Thermoelectric effects

In the preceding section we calculated the heat current density u that results

in a metal when a temperature gradient exists. It is a simple matter to extend

this calculation to find the heat current density caused by the application of

an electric field alone. Substitution of Eq. (8.2.3) in Eq. (8.5.2) yields the

result

u ¼ � e
�

X
k

ðEk � 	Þvk

@f 0

@E ,k �E: ð8:6:1Þ

The existence of this heat current is known as the Peltier effect. The Peltier

coefficient & is defined as the ratio of the heat current to the electric current

induced in a sample by a weak electric field in the absence of temperature

gradients.

Let us write Eq. (8.6.1) in the form

u ¼ r �E ð8:6:2Þ

and evaluate the components of the tensor r by changing the sum over

k-states into a double integral in the manner of Eq. (8.5.8). We find

r ¼ � e

4�3

ð
ðE � 	Þ @f

0

@E dE
ð

vk,k

0vk

dSk: ð8:6:3Þ

We then immediately see that r is a very small quantity, for if we make the

assumption that the integral over dSk is independent of energy then the whole

expression vanishes, as (E � 	Þð@f 0=@EÞ is an odd function of E � 	. This is
illustrated schematically in Fig. 8.6.1, which shows the electron distribution
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shifted in k-space by the action of the electric field. By symmetry the net

electric and thermal currents are carried by those electrons between the

points marked A and B. Because all these electrons are moving with approxi-

mately the Fermi velocity they all contribute a similar amount to the electric

current. This is not the situation with the heat current, however, for those

electrons between A and C have energies less than 	, and carry a current of

coldness that almost cancels the positive heat current of the electrons between

C and B. We thus have to take into account the energy dependence of vk and

,k, and so we make a Taylor expansion to first order of the integral over dSk

in Eq. (8.6.3). We write

ð
vk,k

0vk

dSk ’
ð

vk,k

0vk

dSk

� �
E¼	
þ ðE � 	Þ d

dE
ð

vk,k

0vk

dSk

� �
E¼	

and substitute this in Eq. (8.6.3). The energy integral that survives is identical

to that in Eq. (8.5.9), and so we find

r ¼ e

4�3
ð�kTÞ2
3

d

dE
ð

vk,k

0vk

dSk

� �
E¼	

: ð8:6:4Þ
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Figure 8.6.1 Although all the electrons in the region between A and B carry an
electric current of approximately the same magnitude in the same direction, the
heat current carried by those between A and C is almost exactly cancelled by
those between C and B.



The fact that Eq. (8.5.10) can be written in the formð
vk,k

0vk

dSk ¼
4�3

e2
p

is sometimes made use of to put Eq. (8.6.4) in the form

r ¼ ð�kTÞ
2

3e

@p
@	
: ð8:6:5Þ

The derivative @p=@	 is taken to mean the rate of change of conductivity with
Fermi energy when it is assumed that the scattering and band structure

remain constant. It is very important to realize that @p=@	 cannot be

found simply by adding more electrons to the metal and measuring the

change in resistance; as we saw in Section 6.4, certain kinks in the band

structure and in the scattering are linked to the position of the Fermi energy,

and would be altered by the addition of extra electrons.

Since u ¼ r �E and E ¼ p�1 � j, we can use Eq. (8.6.5) to write the Peltier

coefficient (defined by u ¼ & � j) in the form

& ¼ L0eT
2

	

@ ln p
@ ln	

; ð8:6:6Þ

with L0 the ideal Lorenz number given in Eq. (8.5.12). For a material with

a scalar conductivity (as, for example, a cubic crystal) the dimensionless

quantity

� ¼ @ ln 

@ ln	

ð8:6:7Þ

is a useful measure of the Peltier effect. It is generally of the order of magni-

tude of unity (Problem 8.7) but is extremely sensitive to the type of scattering.

Alloys exhibiting the Kondo effect, for instance, have anomalously large

Peltier coefficients as a consequence of the strong energy dependence of the

scattering due to magnetic impurities.

In the same way that we calculated the heat current caused by an applied

electric field we can investigate the electric current that results from the

presence of a temperature gradient. On substituting Eq. (8.5.5) into Eq.

(8.5.1) we find

j ¼ e

�T

X
k

ðEk � 	Þvk

@f 0

@E ,k �rT : ð8:6:8Þ
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In an isolated piece of metal charge will move to one end of the sample until

an electric field E is built up that is just sufficient to induce an equal and

opposite current that cancels that given by Eq. (8.6.8). The presence of

this field constitutes the Seebeck effect; the ratio of E to rT is known as

the absolute thermoelectric power or thermopower of the metal. If we write

Eq. (8.6.8) in the form

j ¼ �t �rT ð8:6:9Þ

then the thermopower S is equal to p�1 �t.
We fortunately do not need to spend much time analyzing the Seebeck

effect, for the thermopower S is related to the Peltier coefficient & in a very

simple way. Comparison of t [as defined by Eqs. (8.6.8) and (8.6.9)] with r
[as defined by Eqs. (8.6.1) and (8.6.2)] yields the result

r ¼ Tt
or more generally

& ¼ T ~SS ð8:6:10Þ

with ~SS the transpose of S. A relationship of this kind was first derived by

Lord Kelvin by arguments that are still appealing, but alas, no longer

respectable. It is now thought of as an example of one of the Onsager rela-

tions that form the basis of the macroscopic theory of irreversible processes.

From Eqs. (8.6.6) and (8.6.10) one can write

S ¼ L0eT
	

@ ln p
@ ln	

� �
:

For a cubic metal this becomes

S ¼ L0eT
	

�: ð8:6:11Þ

As 	 is generally a few electron volts and � is of the order of magnitude

of unity one finds that thermopowers in metals at room temperature have

magnitudes of a few microvolts per kelvin. In semimetals such as bismuth,

where 	 is small, the thermopower is correspondingly larger. The pro-

portionality of S to the absolute temperature suggested by Eq. (8.6.11) is

dependent on � being independent of T . Because impurity scattering and

phonon scattering may lead to completely different expressions for � it is

not uncommon for even the sign of S to change as the temperature of the
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sample is changed. Thus dilute AuMn alloys have thermopowers that at the

lowest temperatures are positive (i.e., a negative value of �, the electronic

charge e being considered negative in Eq. (8.6.11)), but which become nega-

tive as the temperature is raised above a few kelvin.

Before leaving the topic of thermoelectric effects we should briefly consider

an effect that occurs when phonon Umklapp processes are rare. One mechan-

ism we have considered by which an electron can be scattered is the electron–

phonon interaction, a phonon being created that carries off some of the

momentum of the electron. We have implicitly been assuming that the

momentum carried by this phonon is rapidly destroyed, either by a phonon

Umklapp process or by scattering by lattice imperfections and impurities. In

mathematical terms we have been uncoupling the Boltzmann equation for the

phonons (Eq. (8.1.2)) from that for the electrons (Eq. (8.1.3)) by assuming

the phonon relaxation time �ph to be very short. If this assumption is not

valid then we must include in our computation of the heat current density the

contribution of the perturbed phonon distribution. This added contribution

to the Peltier coefficient (and hence also to the thermopower) is said to be due

to phonon drag, the phonons being thought of as swept along by their inter-

action with the electrons. Such effects are negligible at very low temperatures

(when there are few phonons available for ‘‘dragging’’) and at high tempera-

tures (when phonon Umklapp processes ‘‘anchor’’ the phonon distribution)

and thus cause a ‘‘hump’’ in the thermopower of the form shown in Fig. 8.6.2

at temperatures in the neighborhood of �=4.
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Figure 8.6.2 In very pure specimens the phenomenon of phonon drag may contribute
appreciably to the thermopower at temperatures well below the Debye temperature.



Problems

8.1 When a certain type of impurity is added to a free-electron gas of Fermi

energy EF it is found that jTkk 0 j2 is approximately constant, so that

Qðk; k 0Þ ’ constant	 �ðEk � Ek 0 Þ:

How does the electrical conductivity, 
, of this system vary with EF?
[Hint: In Eq. (8.2.4) the summation over k

0 may be replaced by an

integral over k 0-space. That isX
k

! �

8�3

ð
dk:

Also ð
dk!

ð
dS

j@E=@kj
ð
dE;

where dS is an element of a surface of constant energy.]

8.2 With another type of impurity one finds that the scattering probability of

Problem 8.1 is modified to the form

Qðk;k 0Þ ¼ �ðk� k
0Þ�ðEk � Ek 0 Þ;

where

�ðk� k
0Þ ¼ constant if jk� k

0j � t
0 if jk� k

0j > t

�
and t kF , the Fermi radius. How does 
 vary with EF now?

8.3 The probability of an electron being scattered from k to k
0 with the emis-

sion of a phonon q of energy 0!q is proportional to fkð1� fk 0) ð1þ fqÞ,
while the probability of the reverse process occurring, in which an

electron scatters from k
0 to k with the absorption of a phonon is propor-

tional to fk 0 ð1� fkÞfq. Are these expressions equal in equilibrium?

8.4 A monovalent simple cubic metal has the lattice potential

2Vðcos gxþ cos gyþ cos gzÞ;
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and a magnetoresistance which is found to saturate for all directions of

the applied magnetic field B. The effect of a small strain on this metal,

however, is to cause the magnetoresistance no longer to saturate for

certain directions of B. Estimate V, explaining your reasoning carefully.

8.5 Express the exact thermal conductivity i 0 (defined as the solution of

Eq. (8.5.4) when j ¼ 0) in terms of p, S, and the approximate value i
given by Eq. (8.5.4) when E ¼ 0:

8.6 Is it meaningful to discuss ‘‘the limiting value of S=T for pure silver as

T ! 0,’’ where S is the thermopower? If not, why not?

8.7 Calculate the thermopowers of the metals defined in Problems 8.1 and

8.2.

8.8 An alternative approach to the kinetic theory mentioned in Section 8.2

argues that each electron receives an extra velocity of eE�=m by the time

it has a collision, and thus has an average drift velocity over a long time

of eE�=2m. How can this apparent contradiction be resolved?

8.9 The room-temperature resistivity of Cu is about 2.0m� cm. Use a

simple free-electron gas model to find a relaxation time � that gives

you this resistivity at the right density of conduction electrons. Next,

calculate the resistance of a thin Cu film by applying an electric field in

the plane of the film. Use the Fuchs–Sondheimer boundary conditions to

obtain a solution for the Boltzmann equation from which you can cal-

culate the total current. What is the apparent resistivity of the film at

thickness d ¼ 0:1�, d ¼ 0:5�, d ¼ �, and d ¼ 5� (with � the mean free
path) for specularity coefficients S ¼ 0, S ¼ 0:2, and S ¼ 0:8?
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Chapter 9

Mesoscopic physics

9.1 Conductance quantization in quantum point contacts

In Chapter 8 we discussed the Boltzmann equation and the approach to

describing transport properties, such as electrical conductivity, that it pro-

vides. In general, this approach works very well for most common metals and

semiconductors, but there are cases where it fundamentally fails. This hap-

pens, for example, when the wave nature of the electron manifests itself and

has to be included in the description of the scattering. In this case, interfer-

ence may occur, which can affect the electrical conduction. We recall that the

Boltzmann equation describes the electron states only through a dispersion

relation of the Bloch states of an underlying perfect crystal lattice, a prob-

ability function, and a scattering function that gives the probability per unit

time of scattering from one state to another. All these quantities are real,

and do not contain any phase information about the electron states.

Consequently, no wave-like phenomena can be described. The question

then arises as to when the phase information is important. This really boils

down to a question of length scales. We have earlier talked about the mean

free path of an electron, which is roughly the distance it travels between

scattering events. A simple example is given by scattering off static impurities

that have no internal degrees of freedom. In this case the electron scattering is

elastic, since an electron must have the same energy before and after a scat-

tering event. Furthermore, in the presence of impurity scattering the phase of

an electron wavefunction after a scattering event is uniquely determined by

the phase before the scattering event. The wavefunction will in general suffer

a phase shift as a consequence of the scattering, but this phase shift is not

random and can be calculated for any wavefunction given the impurity

potential. In view of this, we will now be more careful and specifically talk

about the elastic mean free path ‘e as (roughly) the distance an
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electron travels between elastic scattering events. Note that the elastic mean

free path is only weakly temperature dependent (through the temperature

dependence of the Fermi distribution of the electrons).

Inelastic scattering, on the other hand, randomizes the phase of the elec-

tron wavefunction. A good example is provided by electron–phonon scatter-

ing. Consider such an event within the framework of perturbation theory in

the electron–phonon interaction. In the scattering process, an initial electron

Bloch state and phonon couple through some interaction. For a while, there

will then be some complicated intermediate state made up of a multitude of

electron Bloch states and phonon modes. Eventually the system settles into a

direct product of another electron Bloch state and phonons consistent with

energy and crystal momentum conservation. The electron in the intermediate

state can have any energy for a time consistent with the Uncertainty

Principle, but the time that the electron spends in intermediate states is not

well specified. When the final electron Bloch state emerges, its phase is then

unrelated to the initial phase of the electron wavefunction. Thus inelastic

scattering inherently makes the phase before and after the scattering event

incoherent. In the presence of scattering that breaks the phase coherence, it is

useful to introduce a phase breaking length ‘�. We can think of this as the

distance an electron will travel while maintaining phase coherence.

Since inelastic scattering is typically much more strongly temperature

dependent than elastic scattering (again, think of electron–phonon scatter-

ing), one can change the phase breaking length by varying the temperature. If

we make the phase breaking length comparable to, or even smaller than, the

system size, we enter an area where new phenomena, due to manifestations

of the wave nature of the electron states, can occur. This is the area of

mesoscopic physics. ‘‘Meso’’ means something like ‘‘in the middle’’ or ‘‘inter-

mediate,’’ and mesoscopic systems are larger than microscopic systems,

which are of the order of maybe a Bohr radius and where we only have a

few particles. Macroscopic systems contain perhaps 1023 particles and are

very much larger than ‘e and ‘�.

For a specific example, which will serve as a useful and illustrative model

for making the transition from macro to meso, we consider a conductor of

length L, widthW , and thickness d. We start by taking L,W , and d all much

greater than both ‘e and ‘�. This system is depicted in Fig. 9.1.1. In a

standard experiment, to which we will return several times, we inject a cur-

rent into the system by connecting it to a potential difference across two

terminals, e.g., 1 and 6. We then measure the resistance by noting the voltage

drop along some section of the system at a fixed net current through the

system. Let us assume that we inject a current into terminal 1, and draw
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the current out at terminal 6. We can then measure the voltage across two

other terminals, such as 4 and 5. It is a property of a macroscopic system that

the resistance we measure across probes 4 and 5 is the same regardless of

whether we inject the current into probes 1, 2 or 3. In fact, the measured

resistance is the same between any two probes separated by the same distance

along the flow of the current. This is precisely due to the lack of phase

coherence of the electron states. When we measure the voltage between,

say, probes 4 and 5, we are measuring the lowest cost in energy to remove

an electron from probe 5 and inject it at probe 4. This energy is due to the

difference in electrochemical potential between the probes. When we remove

an electron from probe 5, its phase is completely random because of the small

‘�, and we have no way of figuring out whence (i.e., from which probe) the

electron came. Similarly, an electron injected at probe 4 rapidly loses its

phase and so is indistinguishable from other electrons at the electrochemical

potential at that probe.

Now we take our model system into the mesoscopic regime. We do this by

shrinking d and W until both are less than the phase breaking length ‘�. As

these lengths shrink, the energy states for motion along these directions will

become discrete, with the separations between allowed energy eigenvalues

growing as W�2 and d�2, respectively. For example, if we consider periodic

boundary conditions, the electron energies can be written as

Eðkx; n; lÞ ¼
02k2

x

2me
þ 2�202n2

W2me
þ 2�202l2

d2me
;
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Figure 9.1.1. A system of length L, width W , and thickness d, with attached
terminals numbered as shown.



where n and l are integers. We can then separate the energy values according

to which sub-band n and l they belong. For the moment we assume that d is

small enough that only the lowest sub-band l ¼ 0 is occupied, and that only a

small number of sub-bands n 6¼ 0 are occupied. In real mesoscopic systems, d

can be of the order of one nanometer, with W ranging from perhaps a few

nanometers to a few hundred nanometers. We also for now restrict our

system to having only two external terminals, a source (S) and a drain (D),

at which current is injected and drawn out, respectively, as in Fig. 9.1.2.

These kinds of system are rather easy to fabricate at the interface (known

as a heterojunction) between two different semiconductors such as GaAs and

GaAlAs grown by molecular beam epitaxy. Electrons (which are supplied by

donors implanted some distance away from the heterojunction) are confined

to move in the plane of the heterojunction. The source and drain can be made

by doping heavily with donors in some small regions. The conducting chan-

nel connecting the source and the drain can be controlled by evaporating

small metallic gates in the region between them, as shown schematically in

Fig. 9.1.3. By applying a negative potential, or gate voltage VG, to the gates,
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Figure 9.1.2. Schematic of a simple two-terminal device. An electron injected in one
terminal has a probability R of being reflected and a probability T of being trans-
mitted through the device to the other terminal.

G

G
S D

Figure 9.1.3. Schematic top view of a two-terminal device with gate electrodes.



the channel between source and drain through which the conduction elec-

trons must pass can be made as narrow as we please. Heterojunctions can be

grown cleanly enough to make the elastic mean free path of the order of or

larger than the dimensions of the device. By cooling down to liquid-helium

temperatures, the same can be achieved for the phase breaking length.

By measuring the voltage VSD between source and drain as a function of

the gate voltage VG at fixed current ISD, one can plot the conductance g in

units of e2=h as a function of VG. In the extreme limit where L� ‘e, the so-

called ballistic limit in which electrons traverse the entire device without

scattering elastically (or inelastically), one finds a remarkable result. The

conductance shows a clear staircase-like behavior with steps at g ¼Me2=h,
with M an even integer. As the device is made longer and longer, the steps

become noisier and noisier until they can no longer be discerned, even though

each noisy curve is reproducible if the gate voltage is ramped up and down.

This kind of behavior is sketched in Fig. 9.1.4.

Our first aim here is to understand the electrical conductance of this sys-

tem. To this end, we first have to describe the electron states, and then how

we drive a current through the system. Landauer pioneered mesoscopic phy-

sics with his insight that conduction should fundamentally be regarded as a

scattering process in which we describe the electron states locally in our

mesoscopic system and consider separately the means by which current is

driven by an applied electrochemical potential difference. So what does this

mean? Let us start with the electron states. We formally separate the meso-

scopic part of the system, which we term the device and is the block of

nominal length L, width W , and height d, from the terminals that are used

to connect the device to the sources of electrochemical potential. Inside the

device, the electron states maintain their phase coherence, since L� ‘�. The
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Figure 9.1.4. Conductance g (in units of e2=hÞ vs. gate voltage VG for a two-terminal
ballistic device. At low temperatures (bold curve) the electrons pass through the
device without any scattering, resulting in quantized conductance. At higher tem-
peratures, the electrons scatter inelastically from phonons in the device, smearing out
the quantization of the conductance (light curve).



two terminals of the system, S and D, are connected to very large reservoirs

kept at thermodynamic equilibrium at electrochemical potentials �þ��

and �, respectively. These potentials are well defined deep in the reservoirs

(far away from the actual device). The reservoirs inject electrons with energies

up to the respective electrochemical potentials into the device through the

terminals, and electrons flowing through the device exit it into the terminals

and thereby enter the reservoirs. Dissipative processes within these reservoirs

quickly thermalize electrons and randomize their phases, so that electrons

entering the device from the reservoirs have random phases. Consequently,

interference terms between different electron states average to zero and can be

ignored. The natural way to describe the electrons that enter and leave the

device is by using a basis of scattering states. In the scattering theory that we

learn in basic quantum mechanics, we have well defined (asymptotic) incom-

ing and outgoing electron states, which are connected by a scattering matrix,

or S-matrix. The matrix elements s�� of the S-matrix give the probability

amplitude that an incoming electron in state � is scattered into the outgoing

state �. Here, we have incoming states into the device from the reservoirs

through the terminals, and these states can be scattered into outgoing states

from the device into the terminals and the reservoirs by some potential in the

device. The assertion that different states do not interfere with one another

simplifies the discussion quite substantially, since we then do not have to

work with complex transmission amplitudes (the elements of the S-matrix

itself), but only the real probabilities of scattering from an incoming state to

an outgoing one. The incoming and outgoing states are confined by some

potential VðyÞ (we can neglect the dependence on z since we are only con-

sidering the lowest sub-band of motion along z). For now, we are only

considering a confining potential without any additional more complicated

scattering inside the device itself. In the presence of the confining potential,

the incoming and outgoing parts of the electron states can then locally be

written as

 n;kðx; yÞ ¼ e	ikxhnðyÞ; ð9:1:1Þ

where n is the sub-band index, and hnðyÞ is the transverse part of the wave-

function of the sub-band, or channel, n. This is a description of the electron

states in the terminals – we do not attempt to describe the states in the device

itself. The corresponding energy eigenvalue is

En;k ¼
02k2

2m
þ En:
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Note that this is perfectly general, and given a good model for Vð yÞ, we

can determine En. These states are solutions of the Schrödinger equation in

the terminals, but are not appropriate scattering states. Those can be con-

structed by making linear combinations of the states given in Eq. (9.1.1). A

state ðs;mÞ incoming from the source into the device in channel m with unit

amplitude is

eiksmxhs;mðyÞ

where we now also attach an index s to the sub-band wavefunction (for ease

of notation we do not include the wavevector index). This will allow for

generalization later, when the incoming sub-bands from different terminals

are not necessarily the same. The probability that this state is scattered into

an outgoing state ðd; nÞ in the drain is then Tds;nm, and the probability that the

state is reflected into an outgoing state e�iksmxhs;mðyÞ in the source is Rss;mm.

The scattering is elastic, so all states connected by Tds;nm and Rss;mm have the

same energy eigenvalues. Note that in the absence of an external magnetic

field there must exist an outgoing state in the same terminal with the same

energy but opposite wavenumber.

We adopt the standard convention of positive incoming velocities, and at

the same time change our convention about the sign of the charge on the

electron. From now on, we shall make explicit the negative nature of this

charge by writing it as �e, with e a positive quantity. The incoming current

is;m carried by the state ðs;mÞ into the device is then

is;m ¼ �evs;mðkÞ ¼ � e
0
@Es;mðkÞ
@k

����
k¼ksm

:

This incoming state is scattered into states that are outgoing in the terminals

and carry the current out of the device. Current conservation must be strictly

obeyed, so the outgoing currents in all terminals add up to the incoming

current. The transmitted outgoing current in state ðd; nÞ is then evsmTds;nm,

and the outgoing reflected current in state ðs;m 0Þ is evsmRss;m 0m.

Suppose now that we have applied an electrochemical potential difference

�� between the source and the drain, so that source and drain are at elec-

trochemical potentials �þ�� and �, respectively. With fs;mðEkÞ denoting

the occupation numbers of the incoming states, the incoming current in the

source is

Is ¼ �e
X
km

fs;mðEkÞvs;m:
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Similarly, the incoming current from the drain is

Id ¼ �e
X
kn

fd;nðEkÞvd;n:

We can find the total current between source and drain by examining

the current flowing near the source. Here, the total current consists of the

difference between the net incoming current from the source (incoming

from source minus current reflected into the source) and the part of the

current from the drain that is transmitted to the source. The total

current is then obtained by summing over all channels in source and

drain:

I ¼ �e
X
km

fs;mðEkÞvs;m
�
1 �

X
m 0
Rss;m 0m

�
þ e

X
kn

fd;nðEkÞvd;n
X
m 0
Tsd;m 0n:

Current conservation dictates that incoming current minus reflected current

equals transmitted current,

1 �
X
m 0
Rss;m 0m ¼

X
m 0
Tds;m 0m;

so we can write the total current as

I ¼ �e
X
km

fs;mðEkÞvs;m
X
m 0
Tds;m 0m þ e

X
kn

fd;nðEkÞvd;n
X
m 0
Tsd;m 0n: ð9:1:2Þ

We first change the sums over wavevectors to integrals. When we do that, we

have to insert the density of states in k-space, which in one dimension is

just a constant, 1=2�. We then change the integration variable to energy and

insert a factor of dk=dE due to this change. Since the velocity is propor-

tional to dE=dk, we see that the density-of-states factor precisely cancels

with the velocity in the integrals. This happens only because we can in meso-

scopic physics consider separate, effectively one-dimensional, conducting

channels. Because of this cancellation, all that is left in Eq. (9.1.2) are

occupation numbers and transmission and reflection probabilities. All

the specifics of the device, such as length and width, have disappeared.

That makes the Landauer approach particularly powerful, simple, and

beautiful.
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The total current in the device is then

I ¼ � e
h

ð
dE

X
m

fs;mðEÞ
X
m 0
Tds;m 0m þ e

h

ð
dE

X
n

fd;nðEÞ
X
m 0
Tsd;m 0n: ð9:1:3Þ

We now make the assumption that the driving force (in this case the electro-

chemical potential difference) is sufficiently small that in calculating the

current we need only consider the leading term, which is proportional to ��.

We can then ignore the energy dependence of the transmission probabilities

and evaluate them at the electrochemical potential �. It is then convenient

to define total transmission probabilities Tsm and Tdn for each channel by

summing out the scattered channels. Thus

Tsm �
X
m 0
Tds;m 0m

Tdn �
X
m 0
Tsd;m 0n;

ð9:1:4Þ

where it is understood that the sums are evaluated at the electrochemical

potential �. Using Eq. (9.1.4) we then obtain for the total current

I ¼ � e
h

X
m

ð
dE½ fs;mðEÞTsm � fd;mðEÞTdm
:

In the absence of an external magnetic field, the system is invariant under

time reversal. This imposes constraints on the S-matrix, with the consequence

that Tsm ¼ Tdm � Tm. This simplifies the expression for the total current,

which now becomes

I ¼ � e
h

X
m

Tm

ð
dE½ fs;mðEÞ � fd;mðEÞ


¼ � e
h

X
m

Tm

ð�þ��

�

dE ¼ � e
h

X
m

Tm��:

This is a remarkable and simple result: the total current is just the driving

force times the transmission probability at the electrochemical potential times

a universal constant. As we have discussed earlier, the voltage measured

between source and drain is just the electrochemical potential difference,

divided by the electron charge. The measured resistance is then

Rsd ¼ ���=ðeIÞ ¼ h

2e2
P
m Tm

;
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where the additional factor of 2 comes from the two degenerate spin direc-

tions. For the case of a ballistic channel, Tm � 1, so we obtain

Rsd ¼
h

e2M
; ð9:1:5Þ

where M is the total number of channels (including spin degeneracy) con-

nected by source and drain to the device. Equation (9.1.5) predicts a quan-

tized conductance, just as is observed in measurements on quantum point

contacts. The quantum of conductance is e2=h, and the quantum number is

M, the number of current-carrying channels in the system. For the conduc-

tance to be quantized, the channel has to be smaller than ‘e so that electrons

traverse the device ballistically and Tm ¼ 1. If the channel becomes longer

than ‘e, or some scatterer is introduced into the channel, the transmission

probabilities will in general be less than unity, and the conductance is no

longer quantized. The steps start to degrade and become noisy, but the I–V

curves are retraced if the gate voltage is swept up and down. If, on the other

hand, the channel is made larger than ‘�, there will be random inelastic

scattering in the channel. The conductance will similarly not be quantized,

but in this case there will be thermal noise on the I–V curve which will not be

repeatable if the gate voltage is cycled.

One may wonder how it is that a ballistic device has a finite conductance.

First of all, even though there is no scattering in the device itself, there must

be inelastic scattering in the reservoirs in order for the electrons to therma-

lize. Each channel has a finite conductance due to this contact resistance, and

a mesoscopic device with a finite number of channels cannot have infinite

conductance. As the number of channels grows, so does the total conduc-

tance and we recover the perfect conductor (with infinite conductance) in the

limit of an infinite number of channels.

9.2 Multi-terminal devices: the Landauer–Büttiker formalism

We hinted in the previous section at the fact that resistance in a mesoscopic

device in general depends on which terminals are used as source and drain,

and which terminals are used as voltage probes. In order to demonstrate this,

we need to generalize the Landauer formula to multi-terminal devices. This

generalization was developed by Markus Büttiker, and is a fundamental

cornerstone of mesoscopic physics. A simple introductory example is given

by a four-probe measurement, as depicted in Fig. 9.2.1. In such a measure-

ment, the current flows between source and drain, and the electrochemical
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potential difference between terminals 1 and 2 is measured. An ideal volt-

meter has infinite internal resistance, and so the proper boundary condition

to be imposed on terminals 1 and 2 is that the net current in (or out) of such

terminals should be zero. On the other hand, there must be some well defined

electrochemical potential associated with each of the probes 1 and 2 in order

for a measurement of the electrochemical potential difference to make sense.

Furthermore, electrons injected from one terminal into the system have in

general finite probabilities of ending up at any of the other terminals. For

example, electrons injected from the source may end up going into terminal 2.

Since terminal 2 is also connected to a reservoir, just like the source and the

drain, it too injects electrons into the system. The net current in or out of this

terminal depends on the balance between incoming and outgoing currents.

We can adjust this balance by changing the electrochemical potential of the

reservoir to which this terminal is attached. In the end, we must then ensure

that the electrochemical potentials at terminals 1 and 2 are self-consistently

adjusted to yield zero net currents at these terminals.

Let us now formally state this for a general multi-terminal system with

terminals 1; 2; 3; . . . ;N. The terminals are in contact with reservoirs at well

defined electrochemical potentials �i, with i ¼ 1; 2; . . . ;N. Carriers are

injected from the reservoir in all states with energies up to �i into terminal

i. Electrons injected from the terminals have random phases and do not

interfere with one another. An electron injected in state ði;mÞ (channel m

in terminal i) has a probability Tji;nm of being scattered to outgoing state ð j; nÞ
(channel n in terminal j), and a probability Rii;m 0m of being reflected into an

outgoing state ði;m 0Þ. In looking solely for the linear response, we can ignore

the energy dependence of the scattering and reflection probabilities and eval-

uate them at a common energy �0. We take this to be the lowest of the
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electrochemical potentials �i, i ¼ 1; 2; . . . ;N. Then all states in the device

with energies less than �0 are occupied and do not contribute to a net current

in the device (why?). Terminal i then injects a current

Ii;injected ¼
XMi

m¼1

� e
h
ð�i � �0Þ;

where Mi is the total number of occupied channels at terminal i. The net

current at terminal i is the difference between this injected current and the

sum of the reflected current at the terminal and the current scattered into this

terminal from other terminals. This net current is

Ii ¼ � e
h

�
ðMi � RiiÞ�i �

X
jð6¼iÞ

Tij�j

�
: ð9:2:1Þ

Here we have again used the definition Tij ¼
P
mm 0 Tij;m 0m for the total trans-

mission probability and have defined Rii ¼
P
mm 0 Rii;m 0m for the reflection

probability, even though this risks confusion with the resistance Rij. Since

the reference potential �0 is common to all reservoirs, it cancels out in

Eq. (9.2.1). Current conservation dictates that the injected current in terminal

i equal the reflected current and the total transmitted current to other term-

inals. In other words,

Mi ¼ Rii þ
X
jð6¼iÞ

Tij: ð9:2:2Þ

If we insert this into Eq. (9.2.1) we can write the net current Ii as

Ii ¼ � e
h

X
jð6¼iÞ

Tijð�i � �jÞ: ð9:2:3Þ

Equations (9.2.2) and (9.2.3) express current conservation at a terminal and a

relation between total current and driving forces. These are the mesoscopic

versions of Kirchhoff ’s Laws.

Time reversal symmetry imposes constraints on the scattering matrix that

connects incoming and outgoing states. In the absence of magnetic fields, we

can reverse the directions of all incoming and outgoing states, and because of

time reversal symmetry we must then have Tij ¼ Tji. In the presence of a

magnetic field, we can reverse the direction of all velocities if we also reverse

the sign of the flux � penetrating the system, so in the more general case of an
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applied magnetic field, we have Tijð�Þ ¼ Tjið��Þ. This symmetry leads to a

reciprocity theorem that relates resistances when the current and voltage

probes are interchanged.

Armed with Eqs. (9.2.1) and (9.2.3) we can now go ahead and calculate the

resistance Rij;kl due to a chemical potential difference �k � �l between two

terminals k and l when a current I flows from source (terminal i) to drain

(terminal j). This amounts to solving the system of linear equations

Eq. (9.2.1) for the electrochemical potentials �k and �l under the conditions

that Im ¼ 0 for m 6¼ i; j, Ii ¼ �Ij � I , and �i ¼ �0 þ��, �j ¼ �0. Once we

have those, the resistance Rij;kl is obtained by just using Ohm’s law. The voltage

V between the terminals k and l is the electrochemical potential difference

between the two terminals, divided by �e, and so V ¼ ���=e, and

Rij;kl ¼ V=I . The currents are proportional to the applied electrochemical

potential difference, so it will cancel from the expression for the resistance. In

the end, the resistance will be h=e2 (which is a unit of resistance) times some

combination of the transmission probabilities (which are dimensionless). We

first work this out explicitly for the three-terminal case, and then sketch an

approach for a generalN-terminal case. So let us assume that we have a three-

terminal device, with terminal 1 the source and terminal 3 the drain, and we are

measuring a voltage between terminals 1 and 2. Thus, I1 ¼ �I3 ¼ I , and I2 ¼ 0.

We will calculate the resistance R13;12 due to the voltage between probes 2 and 1

with a current flowing from probe 1 to probe 3. Equations (9.2.1) then become

I ¼ � 2e

h
½ðM1 � R11Þ�1 � T12�2 � T13�3


0 ¼ � 2e

h
½ðM2 � R22Þ�2 � T21�1 � T23�3


�I ¼ � 2e

h
½ðM3 � R33Þ�3 � T31�1 � T32�2
;

ð9:2:4Þ

where the factor of 2 comes from summing over spin channels. Using

Eq. (9.2.2), we can solve for �3 from the second line in Eq. (9.2.4) to obtain

�3 ¼
T21 þ T23

T23

�2 �
T21

T23

�1:

We insert this into the third line of Eq. (9.2.4), and after collecting some

factors we obtain

�I ¼ � 2e

hT23

Dð�2 � �1Þ;
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where we have defined D ¼ T31T21 þ T31T23 þ T32T21. Then

R13;12 ¼ ��1 � �2

eI
¼ h

2e2
T23

D
:

Note that we could also have inserted the expression for �3 into the first line

of Eq. (9.2.4) and obtained the same result. That is a consequence of having

fewer independent chemical potentials than we have equations to solve.

The fact that the �i are overdetermined poses computational difficulties in

the general case. Normally we would solve a set of linear equations like

Eq. (9.2.3) by inverting a matrix, in this case the matrix

T̂Tij �
e

h
½ðMi � RiiÞ�ij � Tij


(where it is understood that Tii ¼ 0). However, only the N � 1 electrochemi-

cal potential differences can be independent, and not the N electrochemical

potentials at all reservoirs, and so the system of linear equations is singular,

and the matrix cannot be inverted. The approach we take to get around this

difficulty is first to note the obvious fact that setting all electrochemical

potentials equal will yield a solution with all currents equal to zero. What

is less obvious is that there may also be other sets of electrochemical poten-

tials that yield zero currents. These are said to form the nullspace of the

matrix T̂Tij. Formally, the nullspace of an N �N singular matrix A consists

of all N-dimensional vectors x such that A �x ¼ 0. Now these are most

certainly not the solutions that we are interested in – in fact they are the

problem rather than the solution! Technically, we need to separate out the

‘‘nullspace’’ from the domain of the linear mapping defined by the matrix T̂Tij;

that is, we need to weed out all the sets of electrochemical differences that

yield all zero currents from those that yield the finite currents Ii that we have

specified. A general and very powerful way of doing this (which can also be

efficiently implemented on computers) is provided by a technique known as

the singular value decomposition of the matrix T̂Tij. This involves writing T̂Tij as

a product of three matrices, one of which is diagonal and has only positive or

zero elements (these are the singular values). The nontrivial solutions for the

�i in terms of the currents can then, after some lengthy manipulations, be

expressed in terms of another diagonal matrix that also has only positive or

zero elements. Having thus formally obtained the electrochemical potentials

as functions of the currents, one can calculate the resistance. While we have

omitted some of the details in this description, we can nevertheless note that

the general procedure has been as follows:
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1. The current at the source is I and the current at the drain is �I .
2. The currents at all other terminals are set to zero.

3. We write down the linear equation (9.2.1) using these boundary conditions.

4. We solve this equation for the nontrivial electrochemical potentials by using

singular value decomposition.

5. With electrochemical potentials obtained as functions of the applied current, we

calculate the resistance between voltage probes.

The main point here is that the final expression for the resistance will involve

transmission probabilities from all terminals i; j; k; and l in a combination that

depends on which probes are source and drain, and which are voltage probes.

This has the implication that the resistance will now depend on how the

measurement is conducted and not just on a material parameter (resistivity)

and geometry. As a consequence of the phase coherence in the mesoscopic

system, an electron carries with it phase information from its traversal of the

system, and the probability that an electron will reach one terminal depends

on where it was injected.

The multi-terminal Landauer–Büttiker formula has become the standard

approach for analyzing mesoscopic transport in areas ranging from quantum

point contacts to the quantum Hall effect and spin-dependent tunneling

transport. The basic physics underlying weak localization can also be under-

stood from the point of view of the Landauer–Büttiker formalism, although

in this case it does not easily lead to quantitative predictions. It is very

intuitive, simple, and powerful. It also satisfies symmetries that lead to

some specific predictions referred to as reciprocities, which have been verified

experimentally. We will discuss some other consequences when we introduce

a magnetic field in Chapter 10.

9.3 Noise in two-terminal systems

Any signal we ever measure has to be detected against a background of noise.

Usually in practical applications, such as telecommunications, noise is a

nuisance and we try to suppress it as much as possible. If the signal-to-

noise ratio is low – it does not matter how large the actual signal amplitude

is – the signal may be drowned in noise. But noise also contains information

about the physical processes occurring in a system. Different processes have

different kinds of noise, and by carefully analyzing the noise we can gather

useful information. Here we look at some of the noise sources in a meso-

scopic system and their characteristics. For simplicity, we here consider only

two-terminal systems.
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Noise is most conveniently analyzed in terms of its spectral density Sð!Þ,
which is the Fourier transform of the current–current correlation function,

Sð!Þ ¼ 2

ð1
�1
dt ei!th�Iðtþ t0;TÞ�Iðt0;TÞi:

Here �Iðt;TÞ is the time-dependent fluctuation in the current for a given

applied voltage V at a given temperature T . In a two-terminal electric system

there are two common noise sources. The first one is the thermal noise, or

Johnson noise, of a device of conductance G ¼ 1=R at temperature T . It is

due to thermal fluctuations, and can be derived using the fluctuation-dissipa-

tion theorem. For low frequencies (low, that is, compared with any charac-

teristic frequency of the system, and such that 0!� kTÞ, the Johnson noise

has no frequency dependence, and is said to be white. The spectral density is

given by

S ¼ 4kTG:

The other common noise source is shot noise, which occurs when the current

is made up of individual particles. When the transits of the particles through

the device are uncorrelated in time, these processes are described as Poisson

processes, and their characteristic noise is known as Poisson noise. The

Poisson noise is also white for low frequencies, with a spectral density that

is proportional to the current:

SPoisson ¼ 2eI :

Shot noise is a large contributor to noise in transistors, but in mesoscopic

systems correlations can suppress it quite dramatically, giving it a spectral

density much below that of Poisson noise. In the Landauer–Büttiker form-

alism, the current is due to transmission of electrons occupying scattering

states. The Pauli principle forbids multiple occupancy of these states, which

in two-terminal systems necessarily correlates the arrival of electrons to the

source from a single scattering state.

Let us now look at this more quantitatively. At finite temperatures, the

Landauer two-terminal formula is

I ¼ e
h

ð1
0

dE½ fsðEÞ � fdðEÞ
TnðEÞ;
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where fsðEÞ and fdðEÞ are the Fermi distribution functions of states injected

from the source and drain, respectively, and are given by

fsðEÞ ¼
1

1 þ eðE���eVÞ=kT

fdðEÞ ¼
1

1 þ eðE��Þ=kT :

It is not a difficult exercise to evaluate the spectral density by inserting a

current operator and using the relation between incoming and outgoing

currents given by the Landauer formalism. With the linear response assump-

tion (so that the transmission probabilities are taken to be independent of

energy and evaluated at the common chemical potential) the result is

S ¼ 2
e2

h

X
n

½2T2
n kT þ Tnð1 � TnÞeV cothðeV=2kTÞ
: ð9:3:1Þ

This expression contains several interesting results. In the limit eV=kT ! 0 it

reduces to the Johnson noise, and it is reassuring that we recover the central

result of the fluctuation-dissipation theorem from the Landauer–Büttiker

formalism. The second term is the shot noise. This one has some peculiar

characteristics in a mesoscopic system. In the limit of zero temperature, the

shot noise part of Eq. (9.3.1) becomes

SshotðT ! 0Þ ¼ 2eV
e2

h

X
n

Tnð1 � TnÞ:

States for which Tn ¼ 1 or Tn ¼ 0 do not contribute to the shot noise. Shot

noise represents fluctuations due to the uncorrelated arrivals of electrons. If

Tn ¼ 1, that transmission channel is ‘‘wide open,’’ fully transmitting a steady

stream of electrons without any fluctuations, which are suppressed by the

Pauli Exclusion Principle. Similarly, if Tn ¼ 0 there is no shot noise simply

because there are no electrons at all arriving in that channel. The maximum

noise that a single channel can contribute apparently occurs for Tn ¼ 0:5,

when the channel is half-way between closed and open, and there is max-

imum room for fluctuations.

This characteristic of the noise can be verified experimentally. Consider a

two-terminal quantum point contact and its conductance as a function of

gate voltage. Suppose the initial gate voltage is such that the conductance is

quantized. There is then an integer number of channels for which Tn ¼ 1
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while for all others Tn ¼ 0, and so the shot noise is zero. As the gate voltage is

changed, the conductance moves towards a transition region where the con-

ductance changes value. This happens when a new channel is opened or the

highest-lying channel (in energy) is being pinched off. As this happens, the

corresponding transmission probability goes from zero to unity (or vice

versa), and the shot noise increases and goes through a maximum. As the

conductance levels off on a new plateau, the shot noise vanishes. The effect of

small, nonzero temperatures is just to round off the shot noise curve.

The shot noise in quantum point contacts has been measured, and the

predictions described above have been verified, again demonstrating the sim-

plicity and power of the Landauer–Büttiker formalism.

9.4 Weak localization

In general, the conductance of a metallic system increases monotonically as

the temperature is reduced, but there are cases in which the conductance

exhibits a maximum and then decreases as the temperature is reduced further.

One such example is the Kondo effect, which will be the subject of Chapter

11. This phenomenon is the consequence of interactions between a local spin

and the spins of conduction electrons. Systems that exhibit the Kondo effect

are invariant under time reversal, and the conductance maximum is caused

by the onset of strong interactions between conduction electrons and the

local spin. There are, however, other systems that exhibit a maximum in

the conductance but for which, in contrast to Kondo systems, the conduc-

tance maximum is closely related to issues of time reversal symmetry. One

such example occurs when the conduction electrons in manganese are elasti-

cally scattered by impurities. As the temperature is decreased below a few

kelvin the conductance decreases. Furthermore, at temperatures well below

this conductance maximum the system exhibits negative magnetoresistance,

which is to say that if an external magnetic field is applied the conductance

increases. This indicates that the cause of the conductance maximum some-

how depends on time reversal symmetry, and is destroyed if that symmetry is

broken. Further evidence of this is given by the fact that if some small

amount of gold is added, the magnetoresistance is initially positive as the

external field is applied. Gold is a heavy element and has strong spin–orbit

scattering, which destroys time reversal invariance by a subtle effect called the

Aharonov–Casher effect.

This phenomenon of decreasing conductance, or increasing resistance, at

low temperatures in the presence of time reversal symmetry is another man-

ifestation of the long-range phase coherence of the electron wavefunctions. In
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this case, the coherence leads to interference effects in which an electron

interferes destructively with itself. In order for this to be possible at all, the

phase breaking length must be long enough that the electrons diffuse through

elastic scattering while maintaining their phase coherence for some reason-

able distance. That is why the temperature has to be low in order for the

effect, which is called weak localization, to be observable.

In principle, all the physics of weak localization is contained within the

Landauer–Büttiker formalism. In this case, the transmission probabilities Tn
must show some strong behavior for certain channels for which the inter-

ference effects must somehow reduce Tn. Note that while the Landauer–

Büttiker formalism assumes that different electrons have no phase relations

and so do not interfere with each other, it certainly leaves open the possibility

that each electron state can interfere with itself on its path from one terminal

to another. However, in the case of weak localization the Landauer–Büttiker

formalism does not easily lend itself to practical calculations. In fact, in order

to deal correctly with the problem, one has to use rather sophisticated many-

body perturbation techniques. Instead, we will here give some more intuitive

arguments for what lies behind weak localization.

We consider an electron as it traverses a mesoscopic system from source to

drain. In this case, there is a rather high density of impurities, so the electron

scatters frequently. As a consequence, the electron performs a random walk

through the system. In many respects this is similar to the case for ‘‘normal’’

electron transport in which there is no phase coherence. The motion of a

random walker can, at times long compared with a typical time between

collisions, be described as a classical diffusion problem. According to the

Einstein relation, the diffusion constant D0 is proportional to the mobility,

and hence to the conductance. In three dimensions, the probability that a

particle has moved a net distance r in a time t is given by

P3ðr; tÞ ¼
exp ð�r2=4D0 tÞ

ð4�D0 tÞ3=2
:

From this equation, we can find the probability amplitude that the particle

returns to its original position. In general, there may be many different paths

that take the electron back to the origin during some infinitesimal time

interval dt at some time t. Let us for simplicity consider two such paths

with probability amplitudes  1ðr ¼ 0; tÞ and  2ðr ¼ 0; tÞ. To find the

probability we have to take the squared modulus of the sum of the prob-

ability amplitudes, j 1ðr ¼ 0; tÞj2 þ j 2ðr ¼ 0; tÞj2 þ  *1ðr ¼ 0; tÞ 2ðr ¼ 0; tÞþ
 1ðr ¼ 0; tÞ *2ðr ¼ 0; tÞ. In ‘‘normal’’ macroscopic systems, the electron

9.4 Weak localization 333



suffers inelastic collisions which randomize the phase along each path.

Consequently, there is no phase relation between probability amplitudes

 1ðr ¼ 0; tÞ and  2ðr ¼ 0; tÞ, and the interference terms vanish as we add up

contributions from all possible paths. In mesoscopic systems, the phase is

preserved for all paths shorter than ‘�, since then the electron returns to the

origin within the phase breaking time �� ¼ ‘�=vF . Most of those paths, how-

ever, also have random relative phases and the interference terms vanish.

However, there is now one class of paths for which the interference terms

do not vanish. These are paths that are related by time reversal. In the

absence of a magnetic field such paths have probability amplitudes that are

precisely complex conjugates of each other,  1ðr ¼ 0; tÞ ¼  *2ðr ¼ 0; tÞ, and

these paths interfere constructively. This means that the particle has an

enhanced probability of returning to the origin, compared with incoherent

classical diffusion. As a consequence, the probability that the particle has

moved some net distance in a time t is reduced. This reduces the diffusion

constant, and, according to the Einstein relation, reduces the conductivity.

We can make the argument more quantitative by considering an electron

wavepacket at the Fermi surface. In order for the wavepacket to be able to

interfere it must have a spatial extent �x of the order of its wavelength,

�x � �F . In a time �t, the wavepacket thus sweeps out a volume

�� � �d�1
F vF�t, where d is the spatial dimensionality of the system. This

wavepacket can interfere with itself provided it returns to the origin at

some time t. The probability for this to happen is

Pðr ¼ 0; tÞ � ��

ð4�D0 tÞd=2
¼ �d�1

F vF�t

ð4�D0 tÞd=2
:

Each such event decreases the effective diffusion. We now need to sum over

all such events. These can occur only at times less than the phase breaking

time ��, since for longer times the phases of the two time-reversed paths have

been randomized and will no longer interfere. We must also insert some

minimum time �0 below which there are on average no collisions, denying

the electron any chance of returning. This lower limit is of the order of the

elastic scattering time �e ¼ ‘e=vF . In three dimensions we put d ¼ 3 to findð��
�e

dtP3ðr ¼ 0; tÞ � 2�2
FvF ½ð�eÞ�1=2 � ð��Þ�1=2


ð4�D0Þ3=2
: ð9:4:1Þ

This probability that an electron can return to the origin with some memory

of its original phase will be of roughly the same magnitude as the fractional
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reduction in conductance ��=� caused by the interference of the time-

reversed paths. If we substitute the Drude formula D0 ¼ vF‘e=d we find

the fractional increase in the resistivity to be

��=� � ½1 � ð�e=��Þ1=2
=ðkF‘eÞ2: ð9:4:2Þ

By including the temperature dependence of the elastic relaxation time

(which yields the temperature dependence of the elastic mean free path)

and the phase breaking time we also get an estimate of the overall tempera-

ture dependence of the increase in resistivity.

In two dimensions, the result is more striking, since the denominator in the

expression for P2ðr ¼ 0; tÞ decays only as t�1 rather than as t�3=2. An integra-

tion analogous to that in Eq. (9.4.1) gives the fractional increase in resistivity

to be

��=� � 1

kF‘e
ln

�
��
�e

�
; ð9:4:3Þ

which can be quite significant if the ratio of phase breaking time to elastic

relaxation time is large. In two dimensions, the probability of a random

walker returning to the origin is much larger than in three dimensions,

which leads to a dramatic enhancement in the resistivity.

Note that weak localization depends sensitively on the phase relation

between time-reversed paths. If this relation is altered, the weak localization

is in general suppressed. One way to achieve this is to apply an external

magnetic field. This adds a so-called Aharonov–Bohm phase to the path of

an electron. For closed paths, this phase is equal to the 2� times the number

of flux quanta enclosed by the path, and the sign is given by the sense of

circulation of the path. If the Aharonov–Bohm phase added to one path is

��, then the time reversed path gets an added phase ���, and the inter-

ference term between these two paths now has an overall phase factor. Since

different pairs of time-reversed paths will have different, and, on average

random, phase factors, the net effect of the magnetic field is to wipe out

rapidly the weak localization as the contributions to the increase in resistance

from different pairs of paths are added together. Hence, the resistance of a

system in the weak localization regime is observed to decrease (‘‘negative

magnetoresistance’’) as an external magnetic field is applied.

There are also other phenomena associated with phase coherence. One

such is the existence of the so-called universal conductance fluctuations. If

the conductance of a mesoscopic system is measured as a function of some
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external control parameter, for example a magnetic field or impurity config-

uration, there are seen to be fluctuations in the conductance. The specific

fluctuations are sample-dependent and reversible as the external control

parameter is swept up and down, but the magnitude is universal and is of

the order of the conductancequantum e2=h. The root cause of the fluctuations is

interference between different paths between two points in the sample. As the

control parameter is varied, the precise interference patterns change but do

not disappear, in contrast to weak localization. The universal conductance

fluctuations are, however, suppressed in magnitude by processes that destroy

time-reversal invariance. In fact, one can use universal conductance fluctua-

tions to detect the motion of single impurities in a sample, as this will lead to

observable changes in the conductance fluctuation pattern.

9.5 Coulomb blockade

We close this chapter by briefly discussing a phenomenon known as Coulomb

blockade. Although it does not per se depend on wavefunction coherence, it is

intimately related to small (nano-scale) devices, and so one can make the case

that it is a mesoscopic effect. It is a quantum phenomenon in that, while it

does not depend directly on 0, it does rely for its existence on the quantized

nature of electric charge. It reflects the fact that the capacitance of mesoscale

devices can be so small that the addition of a single electron may cause an

appreciable rise in voltage.

We consider a small metallic dot, like a tiny pancake, connected to two

leads. We here explicitly take the connections to the leads to be weak. This

means that there are energy barriers that separate the leads from the dot, and

through which the electrons have to tunnel in order to get on and off the dot.

This allows us, to a reasonable approximation, to consider the electron states

on the dots as separate from the electron states in the leads. As a conse-

quence, it is permissible to ask how many electrons are on the dot at any

given time. If the leads had been strongly coupled to the dot, then electron

eigenstates could simultaneously live both on the dot and in the leads, and we

would not have the restriction that only an integer number of electrons could

reside on the dot. Also, the resistances at the junctions with the dot have to be

large enough that essentially only one electron at a time can tunnel on or off.

The condition for this is that the junction resistances be large compared with

the resistance quantum RQ ¼ h=e2. The tunneling rates are then low enough

that only one electron at a time tunnels. Note also that it is important that

we consider the dot to be metallic, so that there is a fairly large number of

electrons on the dot, and the available states form a continuum. Technically,
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we can then consider the operator for the number of electrons to be a classi-

cal variable, just as we did in the liquid-helium problem when we replaced the

number operator a
y
0a0 for the condensate with the simple number N0.

Experimentally, the dots can also be made out of semiconductors, in which

case one may have a very small number of electrons – of the order of ten or so

– on the dots. In that case, the discrete spectrum of eigenstates on the dots

has to be considered more carefully, and there may be interesting and com-

plicated correlation effects between the electrons.

We now imagine that we connect the leads to some source of potential

difference V , and we monitor the current that flows from one lead, through

the dot, and into the other lead. What we find is that for most values of V the

current is totally negligible, while for some discrete set of voltages the con-

ductance through the dot is rather high, resulting in a conductance vs. bias

voltage curve that looks rather like a series of evenly spaced delta-functions.

It turns out that it is rather easy to come up with a qualitative picture that is

even quantitatively rather accurate. We model the dot and the junctions

according to Fig. 9.5.1, in which C1 and C2, and V1 and V2 are the capaci-

tances and voltages across each junction, respectively. The total voltage

applied by the voltage supply is V ¼ V1 þ V2, and the charge on each junc-

tion is Q1 ¼ n1e ¼ C1V1 and Q2 ¼ n2e ¼ C2V2, with n1 and n2 the number of

electrons that have tunneled onto the island through junction 1, and the

number of electrons that have tunneled off the island through junction 2,

respectively. Because the tunneling rates across each junction may differ, Q1

and Q2 are not necessarily equal. The difference is the net charge Q on the

island,

Q ¼ Q2 �Q1 ¼ �ne;
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Figure 9.5.1. Equivalent electrostatic circuit of an island connected to a voltage
source through two tunneling junctions.



with n ¼ n1 � n2 an integer. The island itself has a capacitance Ctot ¼
C1 þ C2, obtained by grounding the external voltage sources and connecting

a probe voltage source directly to the island.

The electrostatic energy of the system (junctions, island, and voltage source)

consists of electrostatic energy Es stored in the junctions, minus the work W

done by the voltage source in moving charges across the junction. As an

electron tunnels off the island through junction 2, there is a change in voltage

across junction 1. Charge then flows to junction 1 from the voltage source,

and the voltage source does work. Similarly, if an electron tunnels onto the

island through junction 1, the voltage across junction 2 changes and charge

flows from junction 2 to the voltage source. Coulomb blockade occurs if

there is some minimum voltage V that has to be supplied in order to have

an electron tunnel onto or off the island. If V is less than this threshold, no

current can flow through the island.

In order to look at this quantitatively, we first note that we can write

V1 ¼
C1V1 þ C2ðV � V2Þ

Ctot

¼ C2V þ ne
Ctot

ð9:5:1Þ

V2 ¼
C2V2 þ C1ðV � V1Þ

Ctot

¼ C1V � ne
Ctot

: ð9:5:2Þ

These two equations give us the voltage across one junction as an electron

tunnels through the other junction. The electrostatic energy stored in the

junctions is

Es ¼
C1V

2
1 þ C2V

2
2

2
¼ C1C2ðV1 þ V2Þ2 þ ðC1V1 � C2V2Þ2

2Ctot

¼ C1C2V
2 þQ2

2Ctot

:

If an electron of charge �e tunnels out of junction 2, then the chargeQ on the

island increases by þe. According to Eq. (9.5.1), the voltage V1 then changes

by �e=Ctot. To compensate, a charge �eC1=Ctot flows from the voltage

source. If we now consider n2 electrons tunneling off the island through

junction 2, the work done by the voltage source is then �n2eVC1=Ctot.

Next, we apply the same reasoning to electrons tunneling onto the island

through junction 1. The result is that for n1 electrons tunneling onto the

island, the voltage source does an amount of work equal to �n1eVC2=Ctot.

For a system with a charge Q ¼ �ne ¼ �n2eþ n1e on the island, the total

energy is then

Eðn1; n2Þ ¼ Es �Ws ¼
1

2Ctot

½C1C2V
2 þQ2
 þ eV

Ctot

½C1n2 þ C2n1
:
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We can now look at the cost in energy for having an electron tunnel onto or

off an initially neutral island (Q ¼ 0). If we change n2 by þ1 or �1, the energy

changes by

E	
2 ¼ e

Ctot

�
e

2
	 VC1

�
:

Similarly, if we change n1 by þ1 or �1, the change in energy is

E	
1 ¼ e

Ctot

�
e

2
� VC2

�
:

Because the first term in each of these expressions is inherently positive, the

energy change is also positive when V is small, and the process of electron

transfer will not occur. It will not be until we reach a threshold voltage of

V ¼ e2=2C1 and V ¼ e2=2C2, respectively, that a reduction in energy will

accompany the transfer. In other words, until the threshold voltage has

been reached, the charge on the island cannot change, which means that

no current flows through the system. This prevention of conduction by the

requirement that the charging energy be negative is called Coulomb block-

ade. We note that for symmetric barriers, for which C1 ¼ C2, the threshold

voltage for an initially neutral island is V ¼ e=Ctot.

Quantum dots can in principle be made into single-electron transistors, and

logical circuits can be constructed with single-electron transistors as building

blocks. However, for this to be practically useful, one has to ensure that the

charging energy e2=2C � kT , where T is the temperature. For a dot of size

20 � 20 nm2, which can be fabricated by electron beam lithography, the

capacitance is of the order of 10�17 F, and then the phenomenon will be

observable only at temperatures less than about 10K. However, dots or

atomic clusters of size 1 nm or less would have capacitances of the order of

or less than 10�19 F, in which case the charging energy is of the order

of electron volts. This opens up the possibility of very compact integrated

circuits and computers.

Problems

9.1 It was stated at the end of the paragraph following Eq. (9.1.1) that ‘‘in

the absence of an external magnetic field there must exist an outgoing

state in the same terminal with the same energy but opposite wave-

number.’’ Why is this?
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9.2 Calculate the conductance of a ballistic quantum point contact in a

semiclassical two-dimensional electron gas. Assume that a barrier parti-

tions the electron gas with Fermi energies �s and �d on each side of the

barrier, respectively, with a corresponding difference �n in densities, as in

Fig. P9.1. A constriction of width w lets electrons cross from one side to

the other. First calculate the net flux through the constriction. This is due

to the excess density �n at the source incident with speed vF on the

constriction, and averaged over angle � of incidence. This will give you

the current I through the constriction as a function of �n. The chemical

potential difference is �� ¼ eV , with V the source-to-drain voltage. In

the expression for the conductance, �n=�� can be taken to be the density

of states of the two-dimensional electron gas.

9.3 A model of a smooth quantum point contact is the saddle-point poten-

tial,

Vðx; yÞ ¼ V0 � 1
2m!

2
xx

2 þ 1
2m!

2
yy

2;

where the curvature of the potential is expressed in terms of the frequen-

cies !x and !y. This potential is separable, and one can solve for the

transmission probabilities. With the reduced variable

�n ¼ 2

� E � ðnþ 1
2Þ0!y � V0

0!x

�
;

where n denotes the transverse channels, the transmission probabilities

are

Tnm ¼ �nm
1

1 þ e���n :

Plot Tnn as a function of ðE � V0Þ=ð0!xÞ for different values of !y=!x
ranging from <1 to >1 for the three lowest channels n ¼ 0; 1; 2. Set up

the expression for the total conductance, given these transmission prob-

abilities. Under what conditions (at zero temperature) would you say
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that the conductance is quantized? [Hint: Calculate the maximum and

minimum slope of the conductance vs. Fermi energy. How wide and flat

are the plateau regions of the conductance? What would you require of

!x and !y in order to say that the conductance is well quantized?] (This

problem was posed by M. Büttiker.)

9.4 Derive the set of equations for a four-terminal system that correspond to

those given for a three-terminal system in Eqs. (9.2.4).

9.5 A tunneling device with transmission probabilities Tn � 1 of resistance

100� is to be connected in series with a 25� resistor. The system, con-

sisting of tunneling device and resistor, will operate at room temperature.

Assume that the noise spectrum is white for any bandwidth under con-

sideration. Under what conditions will the noise power of the system be

dominated by Johnson and shot noise, respectively? [Hint: start with

Eq. (9.3.1) and obtain an expression for the noise in the limit of Tn � 1

for the tunneling device. You must also add the Johnson noise from the

resistor.]

9.6 Fill in the missing steps that lead from Eq. (9.4.1) to Eq. (9.4.2).
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Chapter 10

The quantum Hall effect

10.1 Quantized resistance and dissipationless transport

The Hall effect has long been a standard tool used to characterize conductors

and semiconductors. When a current is flowing in a system along one direc-

tion, which we here take to be the y-axis, and a magnetic field H is applied in

a direction perpendicular to the current, e.g., along the z-axis, there will be an

induced electrostatic field along the x-axis. The magnitude of the field E is

such that it precisely cancels the Lorentz force on the charges that make up

the current. For free electrons, an elementary calculation of the type indi-

cated in Section 1.8 yields the Hall resistivity �H ¼ �H=�0ec, and apparently

provides a measure of the charge density of the electrons. For Bloch elec-

trons, as we saw in Section 8.3, the picture is more complicated, but �H is still

predicted to be a smoothly varying function of H and of the carrier density.

In some circumstances, however, the semiclassical treatment of transport

turns out to be inadequate, as some remarkable new effects appear.

In a two-dimensional system subjected to strong magnetic fields at low

temperatures, the response is dramatically different in two respects. First,

the Hall resistivity stops varying continuously, and becomes intermittently

stuck at quantized values �H ¼ �h=je2 for a finite range of control parameter,

e.g., external magnetic field or electron density. In the integer quantum Hall

effect, j is an integer, j ¼ 1; 2; . . . ; and in the fractional quantum Hall effect,

j is a rational number j ¼ q=p, with p and q relative primes and p odd.

(In addition, there exists a fractional quantum Hall state at � ¼ 5=2 and

possibly other related states. The physics of these is, however, very different

from that of the ‘‘standard’’ odd-denominator fractional quantum Hall states

and will not be discussed here.) Second, at the plateaus in �H at which it

attains these quantized values, the current flows without dissipation. In other

words, the longitudinal part of the resistivity tensor is zero. The resistivity
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and conductivity are both tensor quantities, and it happens that the lon-

gitudinal conductivity also vanishes at these plateaus. This may sound a little

strange, but is a simple consequence of the dissipationless transport in two

dimensions in crossed electric and magnetic fields.

As we shall see, these two observations, a quantized Hall resistance and

dissipationless transport, can be understood if the system is incompressible

(that is, it has an energy gap separating the ground state from the lowest

excited state) and if there is disorder, which produces a range of localized

states. Our first task will be to ask what causes the incompressibility and

energy gap. In the integer quantum Hall effect, the energy gap (which is

responsible for the incompressibility) is a single-particle kinetic energy gap

due to the motion of single particles in an external field. It is not necessary to

introduce electron–electron interactions in order to explain the integer quan-

tum Hall effect. In the fractional quantum Hall effect, on the other hand, the

energy gap and the ensuing incompressibility are entirely due to electron–

electron interactions. This, and the absence of any small parameter in the

problem that would permit a perturbation expansion, makes it a very difficult

system to study theoretically.

The presence of disorder is necessary in order to explain the plateaus in the

quantized Hall resistivity. Disorder gives us a range of energies within which

states are localized, and as the Fermi energy sweeps through these states the

Hall resistivity exhibits a plateau. In the integer quantum Hall effect, the

disorder dominates over the electron–electron interactions. In the fractional

effect the strengths are reversed. The fractional effect occurs only in samples

that are very clean, and which consequently have a very high electron mobi-

lity. There is, of course, no sharp division between the integer and the frac-

tional quantum Hall effect, and there is no magical amount of disorder at

which the fractional quantum Hall effect is destroyed. Which plateaus, and

thus which fractional or integer quantum Hall states, will be observed

depends on how much disorder there is in the system and what the tempera-

ture is. If we start by imagining a very clean system in the limit of zero

temperature, the Hall resistivity vs. control parameter will exhibit a series

of plateaus corresponding to all fractional and integer Hall states, but the

extent of each plateau becomes very small. As we start to add impurities to

the system, the fractional quantum Hall states with the smallest energy

gaps are destroyed, since the perturbations introduced by the disorder

become larger than the smallest energy gaps. The corresponding plateaus

disappear and neighboring plateaus grow in size. At sufficient disorder, all

fractional quantum Hall plateaus have vanished and we are left with only

the plateaus of the integer quantum Hall states. Similarly, increasing the
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temperature will destroy the quantum Hall effect, as it is, strictly speaking, a

zero-temperature phenomenon. By this we mean that the quantization of the

Hall conductance and vanishing of the longitudinal resistance are exact only

in the limit of low temperatures. As the temperature is raised, the weakest

fractional quantum Hall states will start to disappear. As the temperature is

increased further, the integer quantum Hall states will eventually suffer the

same fate.

10.2 Two-dimensional electron gas and the integer quantum Hall effect

We start by considering a two-dimensional gas of N noninteracting electrons

in an external magnetic field and with no disorder. Let the area in the xy-

plane be A and the magnetic field be B ¼ B ẑz. The Hamiltonian of this system

is simply

H0 ¼ 1

2m*

XN
j¼1

�
pj þ

e

c
AðrjÞ

�2
;

where AðrjÞ is the vector potential at the position rj of electron j, the charge

on the electron is now taken to be �e, and m* is the band mass of the

electron, e.g., m* � 0:07me in GaAs. The first thing we have to do is to fix

a gauge for the vector potential, and there are two common choices for this

depending on which symmetry we want to emphasize. The first choice is the

so-called Landau gauge, A ¼ Bxŷy. This gauge is translationally invariant

along the y-axis and so the single-particle eigenstates can be taken to be

eigenstates of py. This choice of gauge is convenient for rectangular geo-

metries with the current flowing along the y-axis. The other choice is the

symmetric gauge A ¼ 1
2Bðxŷy � yx̂xÞ ¼ 1

2Br/̂/. As the last equality shows, this

gauge is rotationally invariant about the z-axis, and the single-particle eigen-

states can be taken to be eigenstates of the z-component of angular momen-

tum. This choice of gauge is convenient for circular geometries (quantum

dots) and is the gauge in which the Laughlin wavefunction for fractional

quantum Hall states is most easily represented.

For now, we use only the Landau gauge, and with this choice the

Hamiltonian H0 becomes

H0 ¼ 1

2m*

X
j

�
� 02

@2

@x2j
� 02

@2

@y2j
þ 2

0
i

e

c
Bxj

@

@yj
þ e2

c2
B2x2j

�
: ð10:2:1Þ
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In the absence of potentials that break the translational invariance along the

y-axis, we can write the single-particle states as

 knðx; yÞ ¼ �knðxÞeiky: ð10:2:2Þ

We apply periodic boundary conditions along a length Ly on the y-axis. The

admissible values of k are then given by k ¼ 2	ik=Ly, with ik ¼ 0;�1;�2; . . .
By applying the Hamiltonian (10.2.1) to the wavefunction (10.2.2) we obtain

the single-particle Schrödinger equation�
� 02

2m*

d2

dx2
þ 1

2
m*!2cðx � xkÞ2

�
�knðxÞ ¼ Ekn�knðxÞ; ð10:2:3Þ

where !c ¼ eB=ðm*cÞ is the cyclotron frequency, and xk ¼ �ð0c=eBÞk, which
we write as �‘2Bk, with ‘B the magnetic length,

ffiffiffiffiffiffiffiffiffiffiffiffiffi
0c=eB

p
. This is the character-

istic length scale for the problem, and is about 10 nm for magnetic fields of 5

to 10 T. Equation (10.2.3) is, for each allowed value of k, the equation for a

harmonic oscillator centered at the position x ¼ xk, and so the energy eigen-

values are

Enk ¼ ðn þ 1
2Þ0!c n ¼ 0; 1; 2; . . . ð10:2:4Þ

Surprisingly, the energy eigenvalues do not depend on the momentum 0k
along the y-axis, but only on the index n, the so-called Landau level index,

and all states with the same quantum number n form a Landau level. This

means that there is a huge degeneracy in energy. The center points of the

states are xki ¼ �‘2Bki, and the centers of two neighboring states along the x-

axis are separated by a distance �x ¼ 2	‘2B=Ly. If the system has a width Lx

we can fit Lx=�x states in one Landau level across this width. Each Landau

level thus contains Lx=�x ¼ LxLy=ð2	‘2BÞ states, which is the degeneracy of

each Landau level. Another way to think of this is that each state occupies an

area 2	‘2B, and the degeneracy is just the total area A ¼ LxLy divided by the

area per state.

The degeneracy, or the area per state in units of 2	‘2B, leads us to define a

very useful quantity, the filling factor �, which is a conveniently scaled mea-

sure of the density of the system. The filling factor is defined as � ¼ 2	‘2B�,

with � now the number of electrons per unit area. Thus, when � ¼ 1, all the

states in the lowest Landau level n ¼ 0 that lie within the area A are filled.

Another way to look at the filling factor, which is especially useful when we

deal with the fractional quantum Hall effect, is that it is a measure of the
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number of electrons per flux quantum. For this system the flux quantum is

�0 ¼ hc=e. It is double the flux quantum �0 ¼ hc=2e introduced in Section

7.9 because we are now dealing with single electrons rather than electron

pairs. The total flux piercing the system is � ¼ BA ¼ �0BAe=ðhcÞ ¼
�0A=ð2	‘2BÞ, so the number of flux quanta N�0

is A=ð2	‘2BÞ. Thus the number
of electrons per flux quantum is �A=N�0

¼ 2	‘2B� ¼ �.

With the single-particle energy spectrum given by Eq. (10.2.4), the density

of states for the system of noninteracting particles consists of a series of

�-functions of weight A=ð2	‘2BÞ at the energies ðn þ 1
2Þ0!c, as depicted in

Fig. 10.2.1. If we plot the ground state energy E0ð�Þ of the N independent

electrons as a function of filling factor � we obtain a piecewise linear plot with

slope ðn þ 1
2Þ0!c and with discontinuities of magnitude 0!c in the slope at

integer filling factors, as shown in Fig. 10.2.2. As we add more electrons to a

system, we occupy states in the lowest Landau level n 0 that still has vacant
states available. These states are all degenerate and each extra electron adds

346 The quantum Hall effect

Figure 10.2.1. The density of states of a noninteracting two-dimensional electron gas
in a magnetic field.

Figure 10.2.2. Ground-state energy E vs. filling factor � for a noninteracting two-
dimensional electron gas in a magnetic field. As the nth Landau level is being filled,
the energy increases by ðn þ 1

2Þ0!c per particle. When the nth Landau level is precisely
filled, adding a new electron will require ðn þ 3

2Þ0!c, causing the slope of the curve to
change discontinuously.



an energy ðn 0 þ 1
2Þ0!c. When the last available state in this Landau level has

been filled, the next electron will need an energy ðn 0 þ 1þ 1
2Þ0!c, and so the

slope increases discontinuously by 0!c. Since the ground-state energy has

angles at integral �, this implies that the zero-temperature chemical potential,


 ¼
�
@E0
@N

�
B

;

has discontinuities at integer filling factors, as shown in Fig. 10.2.3. Finally,

we use the fact that the isothermal compressibility � is related to the chemical

potential 
 through

��1 ¼ �2
d


d�
;

with the derivative taken at constant (here T ¼ 0) temperature. At the integer

filling factors, the slope of 
 vs. � approaches infinity, and so the compres-

sibility vanishes there. The compressibility measures the energy cost of

‘‘squeezing’’ the system infinitesimally. The compression is created by excit-

ing particles from just below the Fermi energy to just above the Fermi energy

in order to make a long-wavelength density perturbation. For a compressible

system, this costs only an infinitesimal energy. However, when the system is

said to be incompressible, compressing the system infinitesimally requires a

finite energy. This is what happens at integer filling factors: one set of Landau

levels is completely filled, and particles can only be excited by crossing the

energy gap 0!c to the next Landau level.

Let us now turn to the response of the system to a transverse electric field.

In the absence of any external potential (including disorder), we can easily

calculate the current carried by each single-particle state. The operator that
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describes the current is

J ¼ � e

m*

�
p þ e

c
A

�
for an electron of charge�e. This operator can be thought of as being propor-

tional to a derivative of the Hamiltonian with respect to the vector potential.

This is a very useful observation, and we turn it into a formal device by

introducing a fictitious vector potential a ¼ �ðq�0=LyÞŷy ¼ �½qhc=ðeLyÞ�ŷy.
Here q is a dimensionless parameter, �0 is the flux quantum hc=e, and we

have applied this fictitious vector potential along the y-axis in order to relate

it most easily to Jy. We note that r � a ¼ 0, so a does not correspond to any

physical magnetic field through the system. However, if we imagine making

the system a loop in the yz-plane by tying together the ends along

the y-direction, qhc=e could be due to a real magnetic field piercing

the center of the loop with q flux quanta.

With this extra vector potential, the Hamiltonian is

HðqÞ ¼ 1

2m*

�
p þ e

c
A � q

e

c

�0

Ly

ŷy

�2

:

Here we have explicitly indicated the parametric dependence on q. The cur-

rent operator can then be written

Jyðr; qÞ ¼ � e

m*

�
p þ e

c
A � qh

Ly

ŷy

�
� ŷy ¼ eLy

h

@HðqÞ
@q

: ð10:2:5Þ

We now make an interesting observation. According to Eq. (10.2.5) we can

evaluate the current in any state by forming the expectation value of the

derivative of the Hamiltonian with respect to a fictitious vector potential in

that state. If a state carries any current, this derivative must obviously be

nonzero, and the eigenvalue spectrum must also depend on this fictitious

vector potential. But this added vector potential is ‘‘pure gauge,’’ which is

to say that it does not correspond to any physical magnetic field and can be

completely removed by a gauge transformation. Therefore, it should have no

effect whatsoever on the spectrum of the system. The solution to this paradox

lies in the fact that the vector potential a adds a phase to the electron wave-

function. This is the so-called Aharonov–Bohm phase �AB ¼ �e=0c
Ð
a � dr.

In the present case we integrate along the y-direction and obtain �AB ¼ 2	q.

The phase of a single-particle electron wavefunction thus advances by 2	q as
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it travels around the circumference Ly in the y-direction. This is precisely

what happens if there is a flux � ¼ �q�0 piercing the center of the ring. In

addition to this Aharonov–Bohm phase, the phase of the wavefunction also

advances by kLy, where k is the wavenumber along the y-direction. If q is an

integer, q ¼ 0;�1;�2; . . . ; nothing new is added and the standard wavenum-

bers ki ¼ 2	i=Ly with i ¼ 0;�1;�2; . . . satisfy the condition that the wave-

functions be single-valued. But if q is not an integer, the phase added to the

wavefunction due to a as we go around the ring is not an integer times 2	.

The wavenumbers ki would then make the wavefunction multiple-valued. In

order to avoid this, we have to adjust the wavenumbers so that kiLy carries

an extra phase that precisely cancels the phase due to the vector potential a,

and the allowed wavenumbers are now ki ¼ 2	ði � qÞ=Ly. In other words, the

presence of the vector potential a changes the boundary conditions, unless a

corresponds to an integer number of flux quanta piercing the system. Note

that this effect hinges on the phase coherence of the wavefunction extending

around the ring. If the localization length is much smaller than the circum-

ference, the wavefunction will not run the risk of being multiple-valued. For

example, the wavefunction can be localized at some position y0 and decay

exponentially with a decay length ‘ � Ly away from y ¼ y0. The same wave-

function is then single-valued as we go around the ring no matter what q is

(except for some exponentially small corrections that we can ignore). The

spectrum of HðqÞ then has no dependence on q and the wavefunctions cannot

carry any current, which must obviously be the situation if the wavefunctions

are localized. This is the case for disordered insulators.

We now apply this kind of argument specifically to a two-dimensional

electron gas on a ‘‘ribbon’’ of width Lx along the x-axis and having a cir-

cumference Ly along the y-axis. We apply a field E ¼ Exx̂x across the width of

the ribbon and then calculate the Hall resistivity of the system. We use our

trick from the previous paragraph of adding a fraction q of a flux quantum

piercing the system to calculate the current density. The single-particle

Schrödinger equation in the Landau gauge and in the absence of disorder

is then

HðqÞ �ðx; yÞ ¼
	

1

2m*

�
p þ e

c
B

�
x � q�0

BLy

�
ŷy

�2
þ eExx



 �ðx; yÞ

¼ E� �ðx; yÞ; ð10:2:6Þ

where � represents an enumeration of the eigenstates. It shows what happens

as we slowly add a fraction q of a flux quantum through the system – the
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electrons ‘‘march’’ to the right, moving their center points from xki ¼ �ki‘
2
B ¼

�ð2	i=LyÞ‘2B to xki þ q�0=BLy. As we complete the addition of one unit of

flux quantum through the system, the set of center points becomes mapped

back onto itself. If there were no electric field present, the single-particle

eigenstates for different values of q would all be equivalent, there would be

no dependence of the spectrum of H on q, and thus no current. But the

presence of the electric field changes this. There will now be a dependence

of the spectrum of eigenvalues on q. We make this explicit by inserting single-

particle states �kn;qðxÞeiky into Eq. (10.2.6) and completing the squares:

HðqÞ�kn;qðxÞeiky ¼
	

1

2m*
p2x þ 1

2
m*!2c

�
x þ

�
xk � q�0

BLy

þ vd
!c

��2
� 1

2
m*v2d � 0kvd þ e

Ex

B

q�0

Ly



�kn;qðxÞeiky;

where vd is the classical drift velocity vd ¼ cE=B. The electric field introduces

a dependence of the single-particle energies on wavenumber k, and hence on

the center point xk. This means that as we now add a fraction q of a flux

quantum, the energy of the system changes. By virtue of the relation between

single-particle energies and currents, the states carry currents in the presence

of the electric field. Since the total energy of the system changes as we insert

some flux, this apparently means that we must do work on the system in

order to insert flux. Clearly, the work that we do in this process must be

related to how the electron single-particle states march to the right and

increase their energies. Imagine that we slowly insert precisely one flux quan-

tum into the system. The single-particle states and their energies are all the

same before and after inserting the flux quantum. But in the process, all

occupied states moved one step over to the right, so that at the end of the

process, we have transferred precisely one electron per occupied Landau level

across the width Lx of the system. The cost in energy of this process is clearly

�E ¼ neV ¼ neExLx, where n is the number of occupied Landau levels.

We can work this out in more detail. Let the resistivity tensor of the system

be q. If there is no dissipation, then the diagonal components of the resistivity

tensor must vanish, and only the off-diagonal components are nonzero. Now

we consider the electric field in the y-direction rather than the x-direction,

and use Faraday’s law to write

1

c

d�

dt
¼ 1

c

ð
dS � dB

dt
¼
ð
C

d< � Ey ¼
ð
C

d‘�yx jx;
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where C is a contour enclosing the flux quantum and jx is the current density,

equal to Jx=Ly, in the x-direction. If we now integrate this equation from

t ¼ �1 to t ¼ 1, we can relate the change in flux �� to a transfer of charge

along the x-axis:

1

c
�� ¼ �yx

ð
C

d‘

ð
dt jx ¼ �yx

ð
dt Jx: ð10:2:7Þ

Now choose�� ¼ �0. Then the net charge transferred (
Ð
dt Jx) is �ne, where

n is the number of occupied Landau levels. Thus

1

c
�0 ¼ ��yxne;

so, using �0 ¼ hc=e, we obtain

�yx ¼ � h

ne2
: ð10:2:8Þ

While we have indeed derived a quantized Hall resistance for an ideal

ribbon-like system using a rather sophisticated gauge-invariance argument,

we could for the simple system above have taken a much simpler approach.

We could have calculated the current carried by each single-particle state,

summed up the result to get the total current, calculated the energy difference

between the left-most and right-most occupied states, and we would have

arrived at the same result. So why did we go through all this effort to calcu-

late something we could have derived using very elementary techniques? The

reason is that real systems are not ideal, but are composed of interacting

electrons in the presence of disorder. The simple methods cannot be used in

those cases. The gauge-invariance argument, on the other hand, is very

powerful, and is independent of the details of the system. It allows us to

turn now to a ‘‘real’’ system with disorder.

First, we summarize the main ingredients of the gauge-invariance argument

that we use in this case: (a) only states that are extended through the system

respond to the flux inserted; (b) there is a mobility gap, i.e., there is a finite

energy gap separating the bands of current-carrying states from each other,

so that the system remains dissipationless and the diagonal part of the resis-

tivity tensor vanishes; and (c) if we add precisely one flux quantum, the

eigenstates of the system before and after the flux quantum is inserted are

equivalent. Therefore, if there is a change in energy as we slowly add one flux

quantum, this change must be due to a different occupation of single-particle

states within the same Landau level. It cannot be due to exciting electrons to

higher Landau levels, since such processes must overcome the cyclotron
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energy and cannot occur adiabatically. It must be due to transferring n

electrons from one side of the system to the other.

The remaining issues are how to relate n to the number of filled Landau

levels, and the origin of the mobility gap. For the ideal noninteracting system

in the absence of an external electric field, the density of states consists of a

series of delta-functions at the energies E ¼ ðn þ 1
2Þ0!c, each of which has a

weight A=ð2	‘2BÞ. As we add electrons to the system, the chemical potential

will always be at one of these energies, except when an integer number of

Landau levels are completely filled. Hence, there are almost always extended

states just above and below the Fermi energy, without any energy gap separ-

ating them. As we add impurities to the system, extended states will start to

mix due to scattering off the impurities. This both introduces dissipation (due

to a finite probability of an incident electron being back-scattered) and also

broadens each Landau level into a band. We will here assume that the band-

width is smaller than the cyclotron energy so that each broadened Landau

level is separated from the neighboring ones (see Fig. 10.2.4). It is generally

then assumed that at the center of each broadened Landau level, there

remains a small number of extended states that can carry current, while

the states on each side of the center of the Landau level are localized. This

is a crucial assumption. According to the localization theory of noninteract-

ing particles, all electrons in two dimensions in the presence of any disorder

should be localized, which seems contrary to the assumption we just made.

What makes the difference is the presence of the magnetic field. There is

strong theoretical and experimental evidence that the localization length of

the localized states diverges as the center of the Landau level is approached.

In a more pragmatic vein, we can also argue that it is an experimental fact

that these systems do carry current, and so there must be some extended

states present.
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As most of the states in the original Landau levels become localized and

shifted in energy away from the center of the Landau level, this gives us the

mobility gap that we need – an energy range through which we can sweep the

Fermi energy while an energy gap separates the occupied extended states

from the unoccupied ones. While the Fermi energy lies in a band of localized

states, the transport is dissipationless, since dissipation is due to scattering

between current-carrying occupied and unoccupied states at the Fermi

energy. Here, all occupied current-carrying states are well below the Fermi

energy and cannot scatter to unoccupied states without a finite increase in

energy.

Next, let us for simplicity assume that all localized states are in a region

�Lx=2þ �x < x < Lx=2� �x and that the extended states occupy the regions

jxj > Lx=2� �x. As we now adiabatically insert a flux quantum through the

system, the extended states in both regions march one step to the right. But

that means that we must have effectively transferred one electron for each

Landau level with its extended states below the Fermi energy across the

region of localized states and across the width of the system – since all states

in the localized region are initially occupied, there is no empty state to move

into from the extended-state region at �Lx=2 < x < �Lx=2þ �x unless the

net effect is to transfer one electron across the band of localized states for

each such Landau level. Therefore, for this example, the integer n in the

gauge argument above is equal to the number of filled Landau levels even

in the presence of (moderate) disorder. We should, however, point out that

while this argument can still be strengthened a little bit, there is no general

proof that n must be equal to the number of filled Landau levels, or, for that

matter, nonzero. For example, in a strip of finite width, all the energy levels

are discrete, and it is therefore impossible to move a charge adiabatically

across the system without adding any energy during this process. Only in the

limit of very wide strips do the energy levels form a continuum and make it

possible to move charges adiabatically. Another approach to quantization

will be presented in the next section, in which the current response to changes

in the chemical potential is studied using the Landauer–Büttiker formalism.

That approach has the advantage of being closer to real experiments in which

the current response is measured in systems that are real, disordered, and of

finite size.

10.3 Edge states

In the previous section, we implicitly attached a special significance to the

edges in the physics of the quantized Hall conductance. For the ideal system
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with an electric field, we transferred one electron per Landau level from

current-carrying edge states on one side of the system to current-carrying

edge states on the other side. Furthermore, while there is an excitation gap in

the bulk of the system, the edge states provided gapless excitations. It turns

out that because of the strong magnetic field, there will always be gapless

excitations of current-carrying states flowing along the perimeter of the sys-

tem. In this section, we examine these edge states more closely. We will find

that there is a very natural interpretation of the quantized Hall resistance

using these edge states in a Landauer–Büttiker formalism.

We start by first giving a simple argument, due to Allan MacDonald, which

demonstrates that in a bounded system, there must always be gapless excita-

tions at the boundaries of the system. Consider a finite system with a density

�* at which the bulk is incompressible with a filling factor �*. The chemical

potential 
 then lies in the bulk excitation gap, i.e., we have to pay the price

of the energy gap in order to add particles to the bulk of the system. We now

imagine that we increase the chemical potential by an infinitesimal amount

�
. In the bulk, the current density cannot change since �
 is infinitesimal

and cannot overcome the mobility gap in the bulk. It follows that if there is a

change in the current density as a response to �
, this change must be at the

edges of the system. Charge conservation also requires that if there is a

resulting change in the current along the edge, this change must be uniform

along the edge. We can relate the change in current �I to the change in orbital

magnetization density through

�I ¼ c

A
�M; ð10:3:1Þ

with A the total area of the system. This relation is nothing but the equation

for the magnetic moment of a current loop. But we can write �M in terms of

�
 using a Maxwell relation:

�M ¼ @M

@


����
B

�
 ¼ @N

@B

����



�
: ð10:3:2Þ

By combining Eqs. (10.3.1) and (10.3.2) we arrive at

�I

�

¼ c

@�

@B

����



: ð10:3:3Þ

When the filling factor is locked at a particular value �* then changing the

magnetic field at fixed 
 necessarily changes the density, since
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@�*=@B ¼ ð@=@BÞð�*=2	‘2BÞ ¼ �*e=2	0c. Then Eq. (10.3.3) shows that there is

a corresponding current response to a change in the chemical potential. We

conclude that: (a) there must be gapless excitations in the system (since there

were states into which we could put more particles at an infinitesimal cost in

energy); and (b) these excitations must be located at the edges of the system.

Since all real systems are finite and inhomogeneous, the low-energy proper-

ties probed by experiments such as transport measurements must be deter-

mined by the gapless edge excitations.

Next, we discuss in more detail the origin of these gapless edge states. First

of all, we may quite generally assume that there is some confining potential

VextðrÞ that keeps the electrons in the system. This potential is caused by

electron–ion interactions and electron–electron interactions, but for simpli-

city we assume that we have noninteracting electrons confined by a potential

VextðxÞ. In the center of the system the potential is flat, and we can here set

VextðxÞ ¼ 0, but as we approach the edges of the system, the potential bends

upwards, providing a well that confines the electrons to the interior of the

system. The nonzero gradient of the confining potential also causes the states

near the edges to carry a finite current. From our earlier discussion about

gauge invariance we related the derivative of the Hamiltonian with respect to

a fictitious flux to the current operator:

@H
@q

/ jy:

We now take the expectation value of this relation in one of the eigenstates of

H. The result is

@Enk

@k
¼ � 0Ly

e
ink;

where ink is the net current carried by the state jnki. This equation just relates
the group velocity (@E=@k) to the current carried. In the interior, where the

confining potential is flat, the eigenvalues are constant with respect to k and

these states carry no net current. Near the edges, where the confining poten-

tial slopes upward, the eigenvalues change with k, giving rise to a finite

velocity of the eigenstates, and hence a finite current carried by each state.

Along one edge the current flows in the positive y-direction, and along the

other edge, the current flows in the negative y-direction, since the gradient of

VextðxÞ has opposite signs at the two edges. The eigenvalues change because

of the relation xk ¼ �‘2Bk between the center points xk of the states and the
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wavenumber k. For example, in the limit of a very slowly rising potential

‘B
0!c

dVextðxÞ
dx

� 1;

and the eigenvalues are approximately Enk � ðn þ 1
2Þ0!c þ VextðxkÞ, so

dEnk=dk � ‘2BdVextðxkÞ=dx. We briefly described these current-carrying edge

states in terms of semiclassical skipping orbits in Section 1.8.

The theorem we discussed at the beginning of this section stated that the

current-carrying states must be located at the edges. This lateral localization

is due to the strong external magnetic field. For a confining potential VextðxÞ
that preserves translational invariance along the y-axis, the single-particle

eigenstates can be labeled by the y-momentum k and can be constructed

from basis states that are a product of eiky and a function of x � xk. All

these basis states are localized in the x-direction about xk on a scale given

by ‘B. In the presence of the potential at the edge, linear combinations of

these will form new energy eigenstates, which will also be localized in the x-

direction. The strong magnetic field also prevents mixing of edge states at

opposite edges, provided the separation between the edges is large compared

with the magnetic length ‘B. Consider the effect of a local potential Vðx; yÞ on
two well separated edge states j1i and j2i. In perturbation theory, the mixing
of the edge states depends on the matrix element h1jVj2i, which falls off

roughly as exp ð�d2=‘2BÞ, where d is the separation between the edges.

In the language of the Landauer–Büttiker formalism, the lack of mixing

between current-carrying edge states at opposite edges makes the transmis-

sion probabilities for edge states unity. To be more precise, it can be shown

that the matrix element for back-scattering across a system in the presence of

disorder is of order exp ð�Lx=�Þ, where � is a disorder-dependent length

characterizing the extent of the edge state in the direction across the system.

The suppression of back-scattering makes the Landauer–Büttiker formalism

particularly well suited for systems in the integer quantum Hall regime, and

also provides these systems with a very convenient framework for interpre-

tation. Consider first a system with the Fermi energy midway between the

centers of two Landau levels. In discussing bulk systems we argued that this

places the Fermi energy in the mobility gap of the bulk states, so that in the

bulk there are no current-carrying states at the Fermi energy. On the edge,

however, there will be current-carrying states at the Fermi energy. We now

connect the system to a source and a drain and apply an infinitesimal elec-

trochemical potential energy difference between them. The current-carrying

edge states injected at one terminal i cannot back-scatter but flow along their
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respective edges until they encounter the next terminal j along the edge with

transmission probability Tji ¼ 1 and all other transmission probabilities zero.

It is then a matter of simple algebra to conclude that: (a) the resistance

between source and drain is h=e2N, withN the number of filled Landau levels;

(b) the resistance between any two terminals along the same edge is zero; and

(c) the resistance between any two terminals on opposite edges is h=e2N.

As we increase the Fermi energy, it will eventually approach the center of

the next Landau level. There are now extended states all across the system

that are mixed by impurity scattering. Back-scattering is therefore no longer

prohibited, and the longitudinal resistance between terminals along the same

edge attains a finite, nonzero value. At the same time, we are beginning to

add edge states belonging to a new Landau level, and the Hall resistance and

resistance between source and drain decreases. As soon as the Fermi energy

has swept past this new Landau level, the bulk states are in a new mobility

gap, there is no back-scattering, and the longitudinal resistance vanishes. At

the same time, we have populated the edge states originating from this new

Landau level, and the Hall resistance attains a new quantized value

h=e2ðN þ 1Þ.
As with all transport phenomena, the simple linear theory of the integer

quantum Hall effect fails at sufficiently large currents. The transport at a

quantized plateau then ceases to be dissipationless, while the Hall resistance

may or may not change appreciably from its quantized value. This can

happen through a variety of mechanisms. When one increases the electro-

chemical potential difference �
 between source and drain it is observed that

at some value of �
 the longitudinal resistance starts to increase dramati-

cally, and eventually becomes Ohmic, and thus linear in �
. One loss

mechanism involves coupling to phonons. As soon as the drift velocity

exceeds the sound velocity, electrons can emit phonons, and dissipation

occurs even in a system with no other source of disorder.

10.4 The fractional quantum Hall effect

As we stated earlier, the fractional quantum Hall effect is observed at very

large magnetic fields in very clean systems. Here, the energy gap is caused by

electron–electron interactions. In order to observe resistance plateaus of finite

width, there must be some degree of disorder present in order to provide a

mobility gap, but too much disorder has the contrary effect of quenching this

necessary energy gap. The first theoretical evidence for an energy gap caused

by electron–electron interactions came from numerical diagonalizations of
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small systems, which showed a downward dip in the ground state energy per

particle near � ¼ 1
3. As the magnetic fields considered are of the order of 10 T,

it is a good first approximation to assume that the cyclotron energy is

much larger than any other energy scale. This means that we can restrict

the basis states for electrons in the bulk of the two-dimensional sample to

only the lowest Landau level. Hence, in the absence of external potentials, all

single-particle states are completely degenerate. The problem becomes one of

finding the ground state and elementary excitations of this system in

which many electrons of equal unperturbed energy interact through a

Coulomb potential that is screened only by the static dielectric constant of

the material.

Almost all our understanding of the fractional quantum Hall effect comes

from a bold variational trial wavefunction first proposed by Laughlin in

1983. He demonstrated that this wavefunction is incompressible at filling

factors � ¼ 1=p ¼ 1=ð2m þ 1Þ with m an integer and that the quasiparticles

at these fillings have fractional charge � e=p ¼ � e=ð2m þ 1Þ. Subsequent
theoretical advances based on Laughlin’s suggestion helped to establish

why his wavefunction gives a good description of the ground state. This

work showed that there is a low-energy branch of collective modes called

magneto-rotons (named in analogy with rotons in liquid helium), and estab-

lished that there is a hidden, so-called off-diagonal long-range order in the

Laughlin ground state. This latter insight led to the development of effective

field theories in which this order parameter and long-wavelength deviations

from it are the central quantities. Subsequent pioneering work by Jain, also

based on the Laughlin wavefunction and the off-diagonal long-range order it

contains, showed that the fractional quantum Hall effect can be described as

an integer quantum Hall effect of composite particles consisting of electrons

bound to an even number of flux quanta. These entities are called composite

fermions. Finally, it was pointed out that the spin degree of freedom in GaAs

systems is very important, and leads to a new class of excitations with spin

textures. This is at first counter-intuitive, since one is inclined to assume that

in strong magnetic fields, the spin degree of freedom is frozen out. However,

in GaAs, atomic and band-structure properties conspire to drive the effective

Landé g-factor close to zero, rendering the spin contribution to the energy

per electron much smaller than any other energy.

We will for now ignore the spin degree of freedom and consider N spin-

polarized electrons in a magnetic field strong enough that we need only

consider single-particle basis states in the lowest Landau level. It is conveni-

ent to work in the symmetric gauge, in which A ¼ 1
2 ðB � rÞ, since then the

system is rotationally invariant about the z-axis, and the z-component of
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total angular momentum, Lz, commutes with the Hamiltonian. Our task is

then to find the best choice for the ground state of the degenerate system of

electrons in eigenstates of Lz when the Coulomb interaction is turned on. It is

conventional (even though it is not a little confusing!) to use the complex

notation zj � xj � iyj for the coordinates of the jth electron. In the lowest

Landau level, the single-particle basis functions in the symmetric gauge are

then written as

�mðzjÞ ¼ 1

ð2	‘2B2mm!Þ1=2
�
zj
‘B

�m

e�jzj j2=4‘2B :

The probability densities of these states form circles about the origin with the

peak density occurring at r ’ ‘B
ffiffiffiffiffiffiffi
2m

p
. One can verify that �mðzjÞ is an eigen-

state of Lz with eigenvalue 0m.
The set of all N-particle Slater determinants composed of the lowest-

Landau-level single-particle wavefunctions forms a basis in which we can

expand the N-particle wavefunctions. For the special case of � ¼ 1, we can

write down the wavefunction by inspection. It is, except for a trivial normal-

ization factor,

�1 ¼
Y
i<j

ðzi � zjÞ
Y
k

exp

�
� 1

4‘2B
jzkj2

�
: ð10:4:1Þ

This clearly satisfies the requirement imposed by the Pauli principle that the

wavefunction vanish as zi ! zj for any pair i; j. The fact that it vanishes

linearly with the separation of the particles stems from its nature as a

Slater determinant of N wavefunctions. As we saw in Chapter 2, this also

has the effect of lowering the repulsive Coulomb energy. If we now turn to a

fractional quantum Hall state at � ¼ 1=p ¼ 1=ð2m þ 1Þ, we must impose the
following conditions on a candidate for the ground-state wavefunction: (a)

the wavefunction must be odd under interchange of the positions of

two electrons; (b) it must contain a factor expð�Pi jzij2=4‘2BÞ; and (c) the

wavefunction must be an analytic function that is an eigenstate of the total

angular momentum. The second of these comes from the fact that all

single-particle lowest-Landau-level wavefunctions contain the factor

exp ð�jzj2=4‘2BÞ, and so must any Slater determinant constructed from

them. The wavefunction must be analytic because it can be expanded in

Slater determinants of lowest-Landau-level single-particle wavefunctions,

each of which is a polynomial in the zi. The simplest possible wavefunctions
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that satisfy these requirements are

�p ¼
Y
i<j

ðzi � zjÞp
Y
k

exp

�
� 1

4‘2B
jzkj2

�
;

with p an odd integer. These wavefunctions are of the same form as (10.4.1),

except for the fact that the wavefunction now vanishes as an odd power p

with the separation of two particles. This gives the particles even higher

impetus to stay apart and avoid the Coulomb repulsion. They are also eigen-

functions of the z-component of total angular momentum, with eigenvalue
1
2 0NðN � 1Þp.
This wavefunction is not easy to visualize, or even to make use of in

calculating the energy of the system analytically or numerically. Instead,

we shall avail ourselves of a neat trick to study the particle density described

by these wavefunctions. The probability distribution of the electrons in �p is

j�pj2 ¼
Y
i<j

jzi � zjj2p
Y
k

exp

�
� 1

2‘2B
jzkj2

�

¼ exp

�
2p
X
i<j

ln jzi � zjj �
1

2‘2B

X
jzij2

�
¼ e�Hp;

where we have defined

Hp ¼ �2p
X
i<j

ln jzi � zjj þ
1

2‘2B

X
jzij2:

The fictitious Hamiltonian Hp actually describes a real, albeit classical, sys-

tem. Consider a two-dimensional plasma, consisting of charges �q at posi-

tions ri in the plane, interacting with one another and with a neutralizing

positive background charge density of density �. The total interaction

between the particles is given by

Vp ¼ �q2
X
i>j

ln rij; ð10:4:2Þ

with rij the distance between the charges. The logarithmic interaction comes

from the fact that the charges are infinitely long rods. The interaction energy

with the neutralizing background charge density can be shown to be

Vbackground ¼ 	

2
�q2

X
i

r2i : ð10:4:3Þ
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The system described by Eqs. (10.4.2) and (10.4.3) is called a one-component

classical two-dimensional plasma. In order to minimize its energy, the parti-

cles will spread out uniformly to reach the density � of the neutralizing

background charge. In comparing Hp and Eqs. (10.4.2) and (10.4.3), it is

clear that the probability density of �p corresponds to that of a classical one-

component two-dimensional plasma with density �p ¼ 1=ð2	‘2BpÞ and charges
q2 ¼ 2p. We can therefore infer that the wavefunction �p corresponds to a

state with uniform electron charge density �p ¼ 1=ð2	‘2BpÞ. This is the electron
density at the fractional quantum Hall fillings � ¼ 1=p. Detailed calculations

of the electron–electron correlation functions have verified that �p describes

a translationally invariant liquid, and not a solid. This is significant, because

another contender for a fractional quantum Hall state is the so-called Wigner

crystal, in which the electrons arrange themselves on a regular lattice in order

to minimize the Coulomb repulsion. The Wigner crystal is, as the name

implies, a crystal and not a liquid. However, numerical calculations have

shown that the Laughlin wavefunction �p has the lower energy for filling

factors � greater than about 1
7.

Numerical calculations have also verified that the Laughlin wavefunction is

remarkably accurate. This was done by calculating numerically the ground-

state energy by exact diagonalization and comparing that with the energy

expectation value of the Laughlin wavefunction, and by also calculating the

overlap of the numerically obtained ground state with the Laughlin state.

The reason for this accuracy (in spite of the apparent simplicity of wavefunc-

tion) is very deep and is intimately connected with the extra powers with

which the wavefunction vanishes as two electrons are brought together.

10.5 Quasiparticle excitations from the Laughlin state

The elementary excitations from the Laughlin state have the remarkable

property that they have fractional charge. At first, this may seem really

bizarre, and may lead one to suspect that quarks are somehow involved.

This is of course not the case. The fractionally charged elementary excitations

are not single particles in the sense that they can exist alone, but are displace-

ments of the electron charge density such that the total local deficit or excess

of charge adds up to a fraction of an electron charge. The local charge

density is made up of a complicated correlated motion of the real electrons

in the system, and in order to create a quasihole, we need to create a local

charge deficit. Let us first consider how a filled Landau level (� ¼ 1) responds

to a flux tube carrying a total flux � inserted adiabatically through the center

of the system. In the symmetric gauge, the single-particle wavefunctions in
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the lowest Landau level are

�mðzÞ ¼
�

z

‘B

�m

exp

�
� jzj2
4‘2B

�
;

where z is again equal to x � iy and not the out-of-plane Cartesian coordinate,

andwe have omitted an uninteresting normalization constant. The extra flux�

adds an Aharonov–Bohm phase of � ¼ 2	�=�0 to each single-particle state

as we encircle the origin. In order to preserve single-valuedness of the wave-

functions, we must then add a compensating phase, and the single-particle

state now becomes

�m;�ðzÞ ¼
�

z

‘B

�mþ�
exp

�
� jzj2
4‘2B

�
:

If the flux � is precisely one unit of flux quantum, � ¼ �0, the mth single-

particle wavefunction becomes the ðm þ 1Þth single-particle wavefunction.

This is precisely analogous to our discussion earlier in the Landau gauge.

If we started with a full Landau level with uniform charge density, then by

inserting one unit of flux quantum we have expelled precisely one electron

from the center of the system by pushing all electron charge uniformly out to

the edges.

We use these ideas to create a charge deficit – a quasihole – in the Laughlin

state. Since the change in the single-particle wavefunctions depends on funda-

mental principles such as gauge invariance andminimal coupling, the Laughlin

wavefunction must respond in a very similar way by shifting zmi ! zmþ1
i if the

center of the system is pierced by a flux quantum. The result will be some

deficit of charge. Laughlin used this observation to propose the following

Ansatz wavefunction for a quasihole at the position z0:

�þ
p ¼

Y
i

ðzi � z0Þ
Y
i<j

ðzi � zjÞp
Y
j

exp

�
� jzjj2
4‘2B

�
:

One can verify that this wavefunction has a component of angular momentum

in the directionof the appliedmagnetic field equal to 0½12NðN � 1Þp þ N�. There
is now an extra zero at zi ¼ z0 for each electron, so that all electrons are

pushed away from this point, at which there is then a local deficit of charge

relative to the ground state. We can calculate this charge deficit by using the

plasma analogy again. Then

j�þ
p j2 ¼ e�Hþ

p ;
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with

Hþ
p ¼ �2p

�
1

p

X
i

ln jzi � z0j þ
X
i<j

ln jzi � zjj
�

þ
X
i

jzij2
2‘2B

:

Again with the identification 2p ! e2 we see that Hþ
p corresponds to a clas-

sical two-dimensional one-component plasma with an extra repulsive phan-

tom charge e* that is fixed at z ¼ z0, and which is smaller in magnitude by a

factor of 1=p than the other charges. Since this charge is repulsive, the plasma

will respond by depleting charge �e=p from around z ¼ z0. This charge is

expelled to the edges of the system. Another way to understand that �þ
p must

have electrons depleted from z ¼ z0 is the fact that we have inserted into the

wavefunction a factor that vanishes as any electron approaches z ¼ z0. There

must therefore be a charge deficiency near z ¼ z0. Since there is a deficiency of

�e=p near z ¼ z0, this means that there is a net extra charge of þe=p relative

to the ground state �p near z ¼ z0, so this must be a quasihole.

The quasiparticle, which has charge �e=p, can be constructed in an analo-

gous manner. Instead of adding a flux tube at z ¼ z0 with extra flux, which

pushes electrons away from the flux tube, we add a flux tube that depletes the

flux at z ¼ z0 by one flux quantum. Technically, this is a little more compli-

cated than creating the quasihole. We need to construct an operation that

locally removes one flux quantum at z ¼ z0, thereby decreasing the z-compo-

nent of total angular momentum by 0N by moving all single-particle states in

one step towards z0, which we can without loss of generality take to be the

origin. We can then phrase the task at hand in the following way: given the

Laughlin function �p, how can we construct an operator that transforms all

the polynomial factors zm to zm�1? A candidate for this operator is

Sy
m �

YN
i

�
2‘2B

@

@zi
� z*0

�
;

where it is understood that this operator acts only on the polynomial part of

�p, leaving the exponential factor intact. Note that the single-particle state

with zero angular momentum about z0 is lifted to the next Landau level by

this operator. Since we demand that our states have no components in

Landau levels other than the lowest one, we interpret this as an annihilation.

The same line of argument as for the quasihole can then be used to show that

��
p ¼ Sy

m�p
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corresponds to an excess charge �e=p near z ¼ z0 in an otherwise uniform

state. The extra charge is removed from the edges and moved to z ¼ z0 by

‘‘contracting’’ all single particle states towards z ¼ z0.

The elementary excitations in the Laughlin state are not only fractionally

charged – they also can be thought of as having fractional statistics. A good

way to start to clarify this concept is to consider regular particles – bosons or

fermions – in three dimensions, where the spin-statistics theorem tells us that

these are the only two classes of particles allowed. The bosons are described

by a wavefunction that is symmetric as two particles exchange positions, and

fermions are described by one that is antisymmetric under this exchange. It is

useful to cast this in terms of an ‘‘exchange phase.’’ We imagine a many-body

system in three dimensions consisting of identical bosons or fermions, and

keep all but two of the particles fixed at their positions. We then move one of

the remaining two adiabatically in a counterclockwise rotation of 	 about the

other, and perform a translation that puts one particle at the original position

of the other, and vice versa. The net result is then to have interchanged the

positions of two particles. During the operation, the phase of the wavefunc-

tion changes. This change in phase depends directly only on the positions of

the two particles that we move. At the end of the operation, the change in

phase is an even integer times 	 if the particles are bosons, and an odd integer

times 	 if the particles are fermions. These are the only possibilities in three

dimensions. In two dimensions, on the other hand, particles can be chosen to

be fermions or bosons or anything in between (with respect to the statistics of

the particles), so long as the change in statistics, the change in exchange phase,

is compensated for by including some interaction between the particles.

Let us now try to apply this kind of reasoning to two quasiholes in a �p

Laughlin state. First, we have to construct a viable candidate for a two-

quasihole wavefunction. We might think that something like

g�þ2
p�þ2
p ¼

Y
i

ðzi � uÞðzj � wÞ
Y
i<j

ðzi � zjÞp
Y
i

exp

�
� jzij2
2‘2B

�
; ð10:5:1Þ

where u and w are the positions of the quasiholes of charge e=p, might do the

trick. However, this wavefunction has a serious deficiency. Imagine moving

one quasihole in a circle about the other, keeping all other charges

(including the other quasihole) fixed. Since we are moving a charge e=p

around a flux tube (the location of the other quasihole) carrying a unit flux

quantum, the many-body wavefunction must pick up an Aharonov–Bohm

phase of 2	=p. However, the wavefunction given in Eq. (10.5.1) clearly picks

up a phase that is only an integer times 2	, and so we must add something to
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the wavefunction to fix this difficulty. In order for the wavefunction to pick

up the correct phase, it must be a function only of the difference of the

coordinates of the quasiholes. This is also more generally required by the

fact that the system must be translationally invariant. In addition, we must

require that the wavefunction remain in the lowest Landau level. A trial

wavefunction that satisfies these conditions is

�2þ
p ¼ ðu � wÞ1=p

Y
i; j

ðzi � uÞðzj � wÞ
Y
i<j

ðzi � zjÞp

�
Y
k

exp

�
� jzkj2

4‘2B

�
exp

�
� 1

4p‘2B
ðjuj2 þ jwj2Þ

�
: ð10:5:2Þ

By using the by now familiar plasma analogy we can see that this wavefunc-

tion indeed corresponds to a uniform plasma interacting with two positive

phantom charges e=p located at u and w, respectively, plus a term corre-

sponding to the interaction between the two phantom charges themselves.

We are now in a position to examine the exchange phase and the statistics

of the quasiholes. We note that the factor ðu � wÞ1=p in Eq. (10.5.2) makes the
wavefunction �2þ

p multi-valued in the parameters u and w, and so we are

prepared to believe that something odd can happen to the phase of the

wavefunction. Indeed, if we now perform the exchange operation on the

two quasiholes at u and w, we find that the phase of the wavefunction

changes by 	=p. Not only is the charge of the quasiholes a fraction set by

the denominator in the filling factor, so is the exchange phase! The possibility

of exchange phases and therefore particle statistics other than 	 and 2	 is

unique to two dimensions, and has led to use of the term anyons to describe

particles of arbitrary exchange phase and statistics.

Just as the quasiholes obey fractional statistics, so too do the quasiparti-

cles. The same arguments about translational invariance, Aharonov–Bohm

phase, and analyticity can be applied to a two-quasiparticle wavefunction,

but the algebra is a little more involved.

There is another way, due to Arovas and coworkers, to arrive at the

exchange phase. Imagine that we start with a Laughlin state �p, and we

then add a quasihole of charge e* ¼ e=p at fixed external magnetic field.

This means that we cannot easily write down the wavefunction for this

state, since the quasiholes or quasiparticles we constructed previously

involved adding or subtracting flux quanta, which necessarily changes the

total external magnetic field. Next, we drag the quasihole around some closed

contour C enclosing an area A. This gives an Aharonov–Bohm phase change
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� to the total wavefunction, with

� ¼ � e*

0c

þ
C
A � d< ¼ �2	 e*

e

�

�0

;

where � is the total flux enclosed by the contour. Since there are p flux

quanta per electron, we also have � ¼ �2	pNenc, where Nenc ¼ ��A=e is

the number of electrons enclosed by the contour. So the Aharonov–Bohm

phase counts the charge enclosed by the contour. Next, we add another

quasihole of charge e* inside the contour, still keeping the total magnetic

field fixed. As we now drag our first quasihole around the contour C, there is
a net charge of �eNenc þ e*, so the phase change of the wavefunction is now

� 0 ¼ �2	½Nenc � 1=p�. That is, there is a phase contribution of �2	=p due to
the one quasiparticle encircling the other quasiparticle inside the contour.

Since the exchange phase of two quasiholes is half of this, we conclude that

the exchange phase is of magnitude 	=p. The same argument can also be

made for quasiparticles.

To show that the Hall resistivity is quantized in a Laughlin state, we can

apply a gauge argument similar to the one we used in the integer quantumHall

effect. The difference is that we have to apply p flux quanta in order for the

ground state to return to itself, if we consider a fractional quantumHall state at

� ¼ 1=p on a ribbon. This gives a Hall resistivity of �ph=e2 (cf. Eq. (10.2.8)).

Perhaps we can feel intuitively that we must have �H ¼ �h=ð�e2Þ for the

fractional quantum Hall effect, too. One factor of e in the denominator

comes from the minimal coupling to the vector potential, and a factor

of e� comes from the charge of the quasiparticles. The finite width of the

plateaus comes again from disorder, which creates bands of localized states

(in this case, quasiparticles and quasiholes, which are created as the filling

factor is moved away slightly from 1=p), in which we can pin the Fermi

energy. The transport is dissipationless because of the excitation gap for

extended states.

We have now seen that the Laughlin wavefunction gives a very good

description of the ground state and its elementary excitations at filling factors

� ¼ 1=p, with p an odd integer. What about other quantum Hall fractions,

such as � ¼ 2=5? One can attempt to construct sequences of Laughlin states

to describe these. For example, we can imagine that we start with the � ¼ 1=3

state. We then further increase the external magnetic field. This will move the

system to a lower filling, which we can attempt to describe as a Laughlin state

with a relatively high density of quasiholes. Eventually, these holes may

condense into a Laughlin state of quasiholes. However, the technical details
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of this sort of description rapidly become intractable. In addition, the energy

gaps predicted by a simple application of this approach do not bear a very

great resemblance to those deduced from experimental observations of the

relative prominence of the various plateaus. It turns out that there is a much

more convenient and simple description, based on composite fermions, which

not only correctly describes the sequence of energy gaps of the ground states,

but also the elementary and collective excitations above these. We discuss

composite fermions in the last section of this chapter.

10.6 Collective excitations above the Laughlin state

Suppose we move the overall filling factor slightly off a Laughlin filling factor

� ¼ 1=p, for example by increasing or decreasing the strength of the external

magnetic field. It is energetically favorable for the system to respond by

creating quasiholes or quasiparticles, while keeping most of the electron

density fixed at � ¼ 1=p. These excitation energies, Eþ and E�, consequently
give us the change in slope of the ground state energy at a filling factor

� ¼ 1=p. Equivalently, the lowest-energy way to add or remove electrons

from the system is to have the density excess or deficit break into quasipar-

ticles or quasiholes, leaving most of the system unchanged at � ¼ 1=p. The

quasiholes and quasiparticles are charged excitations. We can also consider

neutral excitations, which occur when the particle number and magnetic field

are kept fixed. We can construct these from quasiholes and quasiparticles as

long as we maintain charge neutrality by creating only quasihole–quasi-

particle pairs. We can imagine that we create such a pair, and then move

the localized quasihole and quasiparticle far apart. The situation is now

reminiscent of the one we encountered in Section 2.7, when we considered

the effect of creating an electron–hole pair in the three-dimensional electron

gas. There we found that the operator cypþqcp created a satisfactory excitation

when q was large, but that when q was small we needed to form the linear

combination of the operators cypþqcp that created density fluctuations. The

same circumstances arise in considering excitations above the Laughlin

ground state. If we consider excitation energy as a function of wavevector

k, this quasihole–quasiparticle pair corresponds to the excitation energy at

large wavevectors, k‘B � 1. The limit k‘B ! 0, on the other hand, gives the

energy of a very long-wavelength density fluctuation, which must be made up

of a linear combination of many quasihole–quasiparticle pairs. Since the

system is incompressible, there must also be an energy gap at k‘B ! 0. We

have already noted that at filling factors � smaller than about 1=7, the ground

state of the system is a Wigner crystal. This means that as we lower the filling

10.6 Collective excitations above the Laughlin state 367



factor down towards 1=7, the electron liquid of the Laughlin state must

somehow freeze and transform into a crystal structure with a length scale

of about ‘B. The analogy we make now is with the Peierls transition discussed

in Section 6.3, where a phonon mode was softened until its frequency van-

ished, whereupon a permanent distortion occurred. We may expect a similar

phenomenon here, and look for an excitation mode at k � 1=‘B to become

increasingly soft as the filling factor is reduced, and for its excitation energy

to reach zero. When this happens, the translationally invariant liquid is no

longer the ground state.

It turns out that there is in fact a minimum in the excitation energy of the

Laughlin state as a function of wavevector at about k � 1=‘B. This minimum

is very well described by a theory analogous to the theory that produced the

so-called roton minimum in liquid 4He shown in Fig. 3.4.2, and the excita-

tions at this minimum are therefore appropriately called magneto-rotons.

The core of the theory is a calculation of the energy expectation value of a

variational Ansatz, or trial, wavefunction for an excited state corresponding

to a density wave of wavevector q. The obvious choice is

�q ¼ N�1=2�qj�0i;

where �q is the Fourier transform of the density operator and j�0i the ground
state whose energy is E0. The factor of N

�1=2, with N the particle number, has

been inserted for convenience. The norm of this state, which is required to

evaluate the expectation energy, is

sðqÞ ¼ N�1h�0j�y
q�qj�0i;

which is also known as the static structure factor of the ground state j�0i.
This quantity can be measured directly by, for example, neutron scattering.

The expectation value of the excitation energy of the state �q is then

�ðqÞ ¼ h�qjH � E0j�qi
sðqÞ ¼ N�1h�0j�y

q H; �q
� �j�0i

sðqÞ ¼ f ðqÞ
sðqÞ ;

where f ðqÞ is called the oscillator strength. It is a measure of how much of the

phase space available to excitations is filled by the mode under consideration.

For the case of liquid helium, it is easy to derive the result

f ðqÞ ¼ 02q2

2m
;
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since the potential energy and the density operators commutewith one another,

while the kinetic energy and the density operators do not. This leads to the

so-called Feynman–Bijl formula for the liquid He excitation energy:

�ðqÞ ¼ 02q2

2msðqÞ :

This equation says that the excitations are essentially free particle excitations

renormalized by the structure factor sðqÞ due to correlations between particles.
One can construct a very similar theory for collective excitations in the

fractional quantum Hall effect. One complication, which makes the algebra

too lengthy to reproduce here, is that we need to project all actions of

operators on wavefunctions onto the lowest Landau level. At the end of

the day, one arrives at an equation very similar to the Feynman–Bijl formula,

except that the oscillator strength and the structure factor have to be replaced

by quantities projected onto the lowest Landau level, �ff ðqÞ and �ssðqÞ. The
corresponding equation for the collective mode excitation energy is then

�ðqÞ ¼
�ff ðqÞ
�ssðqÞ :

One important difference between liquid helium and the fractional quantum

Hall effect is that the latter has an excitation gap at q ! 0, while, as we saw

in Fig. 3.4.2, the former does not. This implies that limq!0�ðqÞ is finite. One
can show that �ff ðq ! 0Þ � jqj4, which means that we must have �ssðq ! 0Þ �
jqj4 in order to have a finite gap at q ! 0. Detailed calculation shows that

this is indeed the case for any liquid ground state in the lowest Landau level,

not just the Laughlin functions. For finite q the excitation energies �ðqÞ
for Laughlin states can be found by numerically evaluating the projected

structure factor for the Laughlin wavefunction. The result is in very good

agreement with direct numerical diagonalizations for the lowest-lying excited

mode, and with experimental observations.

This approach to finding the magneto-roton collective modes is called a

single-mode approximation, because it assumes that there is a single excita-

tion mode for each q. The reason that this theory works for liquid helium lies

in the fact that the symmetry of the wavefunction for bosons only allows for

low-lying collective density modes. But this is not the case for a system of

fermions, for which there can in principle be a continuum of single-particle

excitations and, for the case of the quantum Hall effect, intra-Landau level

excitations. This is where the existence of a gap comes in and saves the day.
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The excitation gap in the fractional quantum Hall effect quenches out single-

particle-like excitations and leaves only the low-lying collective modes.

10.7 Spins

So far, we have limited our discussion to a fully spin-polarized system. This

seems reasonable, since in the strong magnetic fields used in experiments on

quantum Hall systems one might expect the Zeeman spin splitting g
BB,

where g is the effective Landé factor and 
B the Bohr magneton, to be

large enough that the high-energy spin direction would be energetically inac-

cessible. However, two factors conspire to make the Zeeman splitting very

low in GaAs, which is the material from which many quantum Hall devices

are constructed. First of all, spin–orbit coupling in the GaAs conduction

band effectively lowers the Landé factor to g � 0:44. Second, the low effective

mass, m* � 0:067me, further reduces the ratio of spin-splitting energy to

cyclotron energy to about 0.02, compared with its value of unity for free

electrons. For magnetic fields of about 1–10 T, the Coulomb energy scale of

the electron–electron interactions in GaAs is e2=ð�‘BÞ, with the static dielec-

tric constant � being about 12.4, and is of the same order as the cyclotron

energy. As a first approximation, one should then set the Zeeman energy to

zero, rather than infinity, since it is two orders of magnitude smaller than the

other energy scales. As a consequence, the spin degree of freedom is governed

by the electron–electron interactions, rather than by the Zeeman energy. This

dramatically changes the nature of the low-energy bulk single-particle excita-

tions near filling factors � ¼ 1=p, with p odd, from single-particle spin-flips to

charge-spin textures. In these objects, loosely called skyrmions, the spin den-

sity varies smoothly over a distance of several magnetic lengths, so that the

system can locally take advantage of the exchange energy by having spins

roughly parallel over distances of the order of a magnetic length. The mag-

netization has a finite winding number n, which is to say that if we encircle a

skyrmion along some closed path, the magnetization direction will change by

2	n, where n is an integer. The kind of spin texture excitations that make up

skyrmions have been known to exist in other models of magnets, but what is

remarkable about the skyrmions in the quantum Hall effect is that they carry

charge, and the charge is equal to ne=p, with 1=p being the filling factor �.

This coupling between charge and spin is a direct consequence of the fact

that these are two-dimensional systems in the presence of a strong external

magnetic field. Let us suppose that the (bulk) filling factor is initially unity.

If there is a region in space where the spin is slowly varying spatially,

that changes the effective magnetic field Beff ðrÞ ¼ Bẑz þ 4	MðrÞ, where MðrÞ
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is the magnetization density due to the varying spin density. But that would

result in a concomitant change in local effective filling factor away

from unity. The system desperately wants to maintain a filling factor of

unity, so it responds by locally transferring some charge into the region of

varying spin density to maintain an effective filling factor of unity. The net

effect is a local accumulation (or deficit) in charge relative to the ground

state.

We can make this argument more formal in the following way. Let us

assume that the spin density varies slowly on the scale of ‘B for a quantum

Hall system at bulk filling factor � ¼ 1=p. The spin Sj of electron j sees an

effective exchange field bðrÞ due to the spin density of the other electrons.

This exchange field just expresses the fact that the electrons gain exchange

energy by keeping their spins parallel. Formally, it is defined as the change

in exchange-correlation energy as we change the direction of one electron’s

spin, while keeping the others fixed. In a mean-field approximation, we

do not distinguish between the exchange fields of different electrons, but

take the field at r to be a suitable average over the exchange fields in

some neighborhood about r. A model Hamiltonian expressing this coupling

would be

Heff ¼ �
XN
j

bðrÞ � Sj:

Imagine that we move a single electron adiabatically around a closed path C
in real space, keeping all other electrons (and their spins) fixed. The electron

will keep its spin aligned with the exchange field as we move it along C and

trace out some path ! in spin-space. This path is the path drawn by a unit

vector on the unit sphere as the vector moves through the same angles ð�; �Þ
as the spin along C. This means that the electron wavefunction will acquire an
extra phase, a so-called Berry’s phase, which is analogous to the Aharonov–

Bohm phase that a charge acquires as it moves through a region with a finite

vector potential. The Berry’s phase is 	=2, where 	 is the solid angle sub-

tended by the path !. This is illustrated in Fig. 10.7.1.

We must not forget that the electron also acquires an Aharonov–Bohm

phase, since it is charged and moves through a region with a finite vector

potential. There are thus two contributions to the added phase, the Berry’s

phase, and the Aharonov–Bohm phase. The electron cannot tell where the

contributions to the phase come from, and we might as well replace the

Berry’s phase by adding some extra flux �� in the region enclosed by C,
such that the Aharonov–Bohm phase due to this flux equals the Berry’s
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phase. This means that

�� ¼ 	

4	
�0;

where �0 is the flux quantum. But adding extra flux in the region enclosed by

C will add extra charge, for we remember that the quasiholes and quasipar-

ticles were generated by adding flux at the positions of the elementary excita-

tions. A simple application of the flux argument from Section 10.5 shows that

the extra charge induced is

�Q ¼ �e�
��

�0

¼ �e�
	

4	
;

if the bulk Hall conductivity �xy ¼ ��e2=h.
We can construct simple trial functions for skyrmions of charge �e for the

case of � ¼ 1. It is convenient to work in the symmetric gauge, and to consider

the wavefunction of a skyrmion centered at the origin. The basic idea is to

start with a filled, spin-polarized Landau level, which we write as

j�0i ¼ 
mc
y
mj0i, where j0i is the vacuum state, and cym creates an up-spin

electron of z-component of orbital angular momentum 0m in the lowest

Landau level. To construct a skyrmion hole we first remove the spin-up

electron in the m ¼ 0 state by use of the operator c0, and then replace part

of the amplitude of the other spin-up states with a component with spin down

and with a value of m reduced to m � 1. We do this by operating with a

product of terms of the form ðvm þ umb
y
mcmþ1Þ where by

m creates a down-spin

electron of angular momentum 0m. The term ðv0 þ u0b
y
0c1Þ, for example,

replaces part of the spin-up electron amplitude in the m ¼ 1 state by a con-

tribution with spin down in the m ¼ 0 state. It thus has the double effect of

increasing the amount of spin-down component in the wavefunction and

bringing closer to the origin some of the charge. This reduces somewhat the
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charge deficit near the origin due to the initial destruction of the spin-up

electron with m ¼ 0. The resulting wavefunction will then be

j �i ¼
Y1
m¼0

½umby
m þ vmc

y
mþ1� j0i: ð10:7:1Þ

In a similar way we can create a skyrmion particle by first adding a down-

spin electron in the m ¼ 0 state by use of the operator b
y
0, and then operating

with terms like ðvm � umb
y
mþ1cmÞ. This has the effect of replacing part of

the amplitude of the spin-up states with a component with spin down

and with a value of m increased to m þ 1. It yields the skyrmion particle

wavefunction

j þi ¼
Y1
m¼0

½�umb
y
mþ1 þ vmc

y
m�by

0j0i: ð10:7:2Þ

In this case some of the charge is repelled from the origin by the increase in

m, which reduces the increase of charge near the origin due to the initial

creation of a spin-down electron with m ¼ 0. The set of numbers um and vm
are to be determined by a minimization of the energy in a procedure similar

to the one we used in the BCS theory of superconductivity in Section 7.3,

subject to the normalizing constraint that jumj2 þ jvmj2 ¼ 1. The signs of um
and vm are chosen to make j þi and j �i orthogonal. The spin texture of a

skyrmion is illustrated in Fig. 10.7.2.

What we now want to do is to demonstrate that j þi and j �i are approx-
imate energy eigenstates when we make the right choices of um and vm with

u0 6¼ 0 and um decaying as m increases so that the original spin-polarized

Landau level is restored far away from the skyrmion. We must also verify

that the energies of these states are lower than the single-electron quasi-

electron or quasihole energies. It is a good exercise to verify that the spin
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densities of j þi and j �i point downwards at the origin and upwards as

m ! 1, and that the projection of the spin polarization on the xy-plane

rotates by �2	 along any path encircling the origin.

We start with the Coulomb Hamiltonian for the lowest Landau level, but

include the Zeeman energy. We have

H ¼ 1

2

X
m1;m2
m3;m4

Vm1m2m3m4
: ½by

m1
bm2

þ cym1
cm2

� �m1m2
�½by

m3
bm4

þ cym3
cm4

� �m3m4
� :

� g
BB
X
m

½cymcm � by
mbm�:

Here Vm1m2m3m4
are the matrix elements of the Coulomb interaction between

angular-momentum single-particle states,

Vm1m2m3m4
¼
ð
d2r1d

2r2�*m1
ðr1Þ�*m2

ðr2Þ
e2

�jr1 � r2j
�m3

ðr2Þ�m4
ðr1Þ;

and : . . .½ � : indicates normal ordering, which keeps all the creation

operators to the left of the annihilation operators. We have not included a

uniform positive background charge density, since that is not important

here.

Next, we proceed with the Hartree–Fock reduction of the terms with four

electron creation and annihilation operators. When we were studying the

uniform electron gas in Section 2.4, our procedure was to group together

pairs of electron creation and annihilation operators to make number opera-

tors, which we then replaced with their expectation values. In the present

case, our wavefunction is no longer a simple Slater determinant, but is of the

form given by Eqs. (10.7.1) and (10.7.2). Thus we must allow for the fact that

not only terms like hby
mbmi and hcymcmi but also those like hby

mcm�1i will

contribute. (If we had been considering skyrmions with winding numbers

larger than unity, there could also in principle be other combinations, such

as hby
mcm�ni with n > 1.)

The minimization of the expectation value of H proceeds in a manner very

close to that used in the BCS theory to arrive at Eq. (7.3.12), which related

the coefficient xk to the gap parameter � through the relation

xk ¼ � Ek

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
k þ �2

k

q ;
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but with �k self-consistently dependent on the interaction V and on xk itself.

For the skyrmion problem we have the very similar results

um ¼ Usk
� ðmÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
m þ jUsk

� ðmÞj2
q ;

vm ¼ Emffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
m þ jUsk

� ðmÞj2
q ;

ð10:7:3Þ

but with rather more complicated definitions of the components. Here

Em ¼ 1
2 fEbðmÞ � EcðmÞ þ ½ðEbðmÞ � EcðmÞÞ2 þ 4jUsk

� ðmÞj2�1=2g; ð10:7:4Þ

and, with a standing for either b or c,

EaðmÞ ¼ sag
BB þ UHðmÞ þ Uex
a ðmÞ; ð10:7:5Þ

with sa ¼ 1 for a ¼ b, and sa ¼ �1 for a ¼ c. The interaction-energy terms U

are

UHðmÞ ¼
X
m1

Vmm1mm1
½hby

m1
bm1

i þ hcym1
cm1

i � 1�

Uex
a ðmÞ ¼

X
m1

Vmm1m1m
hay

m1
am1

i

Usk
� ðmÞ ¼

X
m1

Vm;m1;m1�1;m�1hby
m1
cm1�1i;

ð10:7:6Þ

with UHðmÞ the direct (Hartree) term, UexðmÞ the exchange (Fock) term, and
Usk

� ðmÞ the skyrmion-specific terms that describe a spin-flip together with a

change in angular momentum. The order parameters, i.e., the expectation

values that contribute to the energy, are given by the relations

hby
mbmi ¼ jumj2;

hcymcmi ¼ jvm!1j2;
hby

mcm�1i ¼ u*mvm:

ð10:7:7Þ

The self-consistent equations (10.7.3) to (10.7.7) must be solved numeri-

cally. The result is that for any value of g, the hole-skyrmion and the particle-

skyrmion have lower energies than the simple quasihole or quasiparticle, in
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which a regular hole or an electron with opposite spin is introduced at the

origin in the spin-polarized lowest Landau level. The energy differences are

largest for g ! 0 and vanish as g becomes very large. Physically, what hap-

pens when the Zeeman energy is increased by increasing g is that the region of

the skyrmion in which the spin is varying shrinks in size, since it will cost

increasingly more energy not to align the spin density with the external field.

In the limit of zero size, the skyrmions become identical to quasihole and

quasiparticle excitations.

The fact that skyrmions have lower energy than quasiparticle and quasi-

hole excitations near � ¼ 1 has experimental consequences. If skyrmions did

not exist, or had higher energies than quasiparticles and quasiholes, the

ground state would remain spin-polarized as the filling factor is reduced

below unity. Electrons would simply be removed from the lowest Landau

level (or new, empty states added) and the remaining ones would all be spin-

polarized. Also, as the filling factor is increased above unity, the spin polar-

ization would decrease at the rate at which new spin-reversed electrons are

added, assuming still that the spin splitting of Landau levels is smaller than

the cyclotron energy. However, it is experimentally observed that the ground-

state polarization is rapidly destroyed when the filling factor is either

increased or decreased away from unity. The reason for this is that it is

cheaper for the system to add skyrmion particles or skyrmion holes than

quasiparticles or quasiholes. The net spin of skyrmions, obtained by integrat-

ing the spin density, is about 70=2, compared with the 0=2 found for quasi-

particles and quasiholes. This means that considerable spin is added with

each skyrmion, and there is a resulting rapid destruction of the ground-

state polarization.

10.8 Composite fermions

We have so far, within the context of Laughlin’s wavefunction, only dis-

cussed the ‘primary’ fractional quantum Hall states with filling factors

� ¼ 1=p, with p odd. In Section 10.5 we indicated that one may try to con-

struct Laughlin-type wavefunctions for quasiparticles or quasiholes, which

could conceivably form a strongly correlated liquid on top of the underlying

basic fractional quantum Hall state. Then this correlated ‘‘Laughlin liquid’’

of quasiparticles or quasiholes would admit fractionally charged excitations,

which in turn could condense and form a new correlated state, and so on. The

problem with this picture, apart from its rapidly increasing and open-ended

complexity, is that it does not adequately explain the sequence of energy gaps

observed in fractional quantum Hall states. One would expect qualitatively
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that the stability of states, as reflected in the magnitude of the energy gaps,

should rapidly decrease as one climbs to higher levels in this hierarchical

picture. This is generally not the case. For example, the states � ¼ 1=3 and

� ¼ 2=5 are in general more stable than the � ¼ 1=5 state. Also, the quasi-

particles and quasiholes in one hierarchical level have a finite size, and one

would rapidly reach a situation in which the number of quasiparticles or

quasiholes needed to condense at one level to form a new one would be so

great that these elementary excitations would overlap substantially, in which

case the notion of elementary quasiparticles and quasiholes ceases to be

meaningful. Finally, the Laughlin wavefunction provides no connection

between the integer quantum Hall states and the fractional ones, treating

the two as fundamentally very different.

Let us go back and consider the sequence of fractions at which the frac-

tional quantum Hall effect is observed. We can group the sequences in the

following manner:

� ¼ n

2n þ 1
¼ 1

3
;
2

5
;
3

7
;
4

9
; . . .

� ¼ n

2n � 1
¼ 2

3
;
3

5
;
4

7
;
5

9
; . . .

� ¼ n

4n þ 1
¼ 1

5
;
2

9
;
3

13
; . . .

� ¼ n

4n � 1
¼ 2

7
;
3

11
; . . .

� ¼ 1� n

4n þ 1
¼ 4

5
;
7

9
; . . .

By inspection, we see that we can in general write these fractions as

� ¼ n

2pn � 1
; ð10:8:1Þ

and

� ¼ 1� n

2pn � 1
: ð10:8:2Þ

For given p and n, the fractions in Eqs. (10.8.1) and (10.8.2) are related by an

electron–hole symmetry that is exact if we ignore the presence of any other

than the lowest Landau level. In a real system, the energy gap – the cyclotron

energy – separating different Landau levels is finite, with the consequence
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that the real wavefunction will have some admixture of higher Landau levels.

However, this admixture is small enough that the electron–hole symmetry is

almost exactly preserved.

The composite fermion picture, originated by Jainendra Jain, provides a

simple and natural picture within which these sequences can be viewed. It

also attempts to tie together the physics of the integer and fractional quan-

tum Hall effects. In addition, it provides a powerful computational method

with which to study general fractional quantum Hall ground states, as well as

their quasiparticle and collective excitations. While the origins of the com-

posite fermion picture are empirical, numerical calculations within this pic-

ture have consistently proven to be remarkably accurate when compared with

other, more direct, schemes as well as with experiments, and have provided

strong support for this approach. The basic principle is to replace the

strongly interacting electrons by some other particles, which are chosen to

be weakly interacting. That is, we try to construct some composite particle

such that the fractional quantum Hall ground states are well described by a

gas of such noninteracting particles. This is reminiscent of Fermi liquid

theory, in which a system of rather strongly interacting electrons can be

described as a weakly interacting system of quasiparticles. In Fermi liquid

theory the interaction between electrons leads to quasiparticles of different

effective mass and with a modified energy dispersion relation. Similarly, we

would here like to find new particles such that the strong interactions of the

true electrons have been transformed into kinetic energy of these new parti-

cles. The question then is to identify the kind of particle that would be a good

candidate for a similar description of fractional quantum Hall states. Jain

observed that we can write the Laughlin wavefunction for, say, n ¼ 1=3, in

the following way:

�3 ¼
Y
i<j

ðzi � zjÞ3
Y
k

exp

�
� jzkj2

4‘2B

�

¼
Y
i<j

ðzi � zjÞ2
Y
i<j

ðzi � zjÞ
Y
k

exp

�
� jzkj2

4‘2B

�
:

That is, we can think of the Laughlin wavefunction for the � ¼ 1=3 state as

obtained by starting with the filled Landau level of � ¼ 1 and multiplying

that unique wavefunction by the factors
Q

i<j ðzi � zjÞ2. But, according to our
earlier discussion, this factor has the same effect as attaching two flux quanta

to each electron (as seen by the other electrons). So the � ¼ 1=3 wavefunction

can be thought of as a filled � ¼ 1 Landau level for particles that consist of
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electrons with two flux quanta attached to each electron. According to the

statistics that we worked out earlier for the two-quasiparticle wavefunctions,

each flux quantum that we attach to each electron will add a phase of 	 to the

exchange phase of the electron. So if we add two flux quanta to each electron,

the composite particles consisting of an electron plus two flux quanta must be

fermions. These are the composite fermions. For a general fractional quan-

tum Hall state � ¼ n=ð2np � 1Þ, we form the appropriate composite fermions

by attaching 2p flux quanta to each electron.

We can now write down a general recipe for constructing composite

fermion states. Start with a fractional quantum Hall state at some filling

factor � ¼ n=ð2np � 1Þ. Then form composite fermions by letting each

electron in this state gobble up 2p flux quanta of the total magnetic flux

penetrating the system. The effective magnetic field B* experienced by the

composite fermions is then the field that is left over, and is given by

B* ¼ B � 2p�0�;

where � is the density of the electrons in the fractional quantum Hall state.

Note that B* can actually be negative, in which case the effective field acting

on the composite fermions would point in the direction opposite to that

acting on the electrons. The original filling factor of the electrons was

� ¼ ��0

B
;

and the filling factor �* of the composite fermions is similarly given by

�* ¼ ��0

jB*j :

Combining these two equations we can relate � and �*:

� ¼ �*

2p�*� 1
;

where we choose the minus sign in the denominator if B* is antiparallel to B.

In this way, we can quickly construct the equivalent composite fermion

states of all fractional quantum Hall states. For example, as we already

mentioned, � ¼ 1=3 maps to �* ¼ 1 when p ¼ 1. The next fraction in this

sequence, � ¼ 2=5, maps to �* ¼ 2. The particle–hole conjugate � ¼ 2=3 of

� ¼ 1=3 maps to �* ¼ �1. Similarly, the Laughlin state at � ¼ 1=5 maps to

�* ¼ 1 by attaching four flux quanta to each electron so that p ¼ 2, and so on.
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Approximate wavefunctions for fractional filling factor ground states and

elementary excited states can then be generated by inverting this mapping.

One then starts with a composite fermion ground state or elementary excited

state at an integer filling factor �* and maps this onto a fractional filling

factor by applying factors of
Q

i<jðzi � zjÞp and by finally projecting the

resulting wavefunctions onto the lowest Landau level.

As we have already stated, it turns out that the wavefunctions constructed

in this way are excellent approximations to exact wavefunctions, provided we

are careful and project them onto the lowest Landau level. Some of the

reasons for this are that the composite fermion wavefunctions are all

uniquely determined, by which we mean that there is no variational freedom

left to tinker with the composite fermion wavefunction once the mapping has

been done. This can then also be extended to composite fermion excited

states, which can be mapped to excitations in fractional quantum Hall states.

So long as the composite fermion mapping provides a unique one-to-one

correspondence between the states, the composite fermion prescription is

remarkably accurate.

Another reason for its success lies in how the motions of the electrons are

correlated in fractional quantum Hall states. According to Laughlin’s wave-

function, the electrons like to attach extra powers in the relative coordinates

of electrons so that the wavefunction vanishes as quickly as possible when

two particles are brought together. This corresponds to attaching vortices, or

flux quanta, to the electrons. It is a good approximation to assume that these

flux quanta are rigidly bound to the electrons and that the electrons only

experience a residual average field. The effective interactions between com-

posite fermions are then given by the difference between the average residual

field and the actual field experienced by the composite fermions. The actual

field consists of the real applied field minus the field of the flux quanta at the

locations of the composite fermions. As one can easily imagine, this actual

field is rather complicated and has all kinds of unpleasant singularities stem-

ming from the singular nature of the flux quanta attached to the electrons.

Nature is kind to us in that these interactions are rather weak.

Problems

10.1 Consider a square sample with edges at x ¼ �a; y ¼ �a. Electrodes are

attached to the left and right edges to make the electrostatic potential

� ¼ �V at x ¼ �a and � ¼ V at x ¼ a. Assume that �xx ¼ �yy is very

small, but nonzero, and that �xy ¼ ��yx is constant. A steady-state

current I flows through the sample.
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(a) By using the continuity equation and Maxwell’s equation show that

@Ex=@x þ @Ey=@y ¼ 0.

(b) Show that the current flows in through one corner and out of the

diagonally opposite one.

(c) Show that the Hall voltage is equal to the source-to-drain voltage.

(This problem is due to Rendell and Girvin.)

10.2 A complete solution to Problem 10.1 in the limit where �xx and �yy are

vanishingly small is found by solving Laplace’s equation, r2� ¼ 0. The

electrostatic potential is found to be of the form

� ¼
X1
n¼0

bn½cosðknxÞ sinhðknyÞ þ cosðknyÞ sinhðknxÞ�;

where kn ¼ ð2n þ 1Þ	=2a. Solve for bn and hence find Eyðx ¼ 0; y ¼ 0Þ
and Eyðx ¼ 0; y ¼ aÞ.

10.3 Consider a noninteracting two-dimensional electron gas in a strong

magnetic field B ¼ Bẑz and in the presence of a uniform electric field

E ¼ Ex̂x. Far from the edges of the system, there is a short-ranged elastic

scatterer. Impose periodic boundary conditions along the y-direction.

Show that far away from the scatterer, the only effect it has on extended

states is to give rise to a phase shift �nðkÞ, with the states enumerated

according to their Landau level index and asymptotic wavenumber.

Compare the allowed values of k with and without a scatterer using

the phase shift �nðkÞ. What has happened to the number of extended

states if the phase shift decreases by 2	M, where M is an integer, as we

go through all the allowed states k for a given n? The total number of

states must be the same with and without the scatterer, so what has

happened to the rest of the states? Show that the phase shift is related to

the transit time for a scattering state to traverse the system from one end

to the other. What happens to this transit time for states that experience

a nonzero phase shift?

10.4 Consider the two lowest Landau levels n ¼ 0 and n ¼ 1 in a non-

interacting system with an applied electric field E ¼ Ex̂x. Ignore edge

effects. Now suppose that the electrons can interact with acoustic pho-

nons having a dispersion relation 0!ðqÞ ¼ 0vsjqj, with q the wavevector

of a phonon and vs the speed of sound. What conditions must the

electric field satisfy in order to make phonon emission by the electrons
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energetically permissible? The transition rate for phonon emission can

be approximated using Fermi’s Golden Rule. Assume that the electron-

phonon interaction potential has the form VðqÞ / ffiffiffi
q

p
and write down

an expression for the transition rate. Estimate how large the electric

field would have to be for phonon emission to be of consequence.

10.5 Skyrmion solutions were first discovered as solutions to models of clas-

sical magnetic systems, so-called nonlinear sigma models. In a dimen-

sionless form, the magnetic field corresponding to these skyrmions can

be written

BðrÞ ¼ ð4�x;�4�y; r2 � 4�2Þ
r2 þ 4�2

:

Here r2 ¼ x2 þ y2 and � is a parameter having the dimension of a length

that sets the scale of the size of the skyrmion. Consider the exchange

Hamiltonian H0 ¼ �BðrÞ � sðrÞ. Substitute for sx and sy using spin low-

ering and raising operators, and use the complex coordinate z ¼ x þ iy

to rewrite the exchange Hamiltonian in terms of spin operators. Show

that this Hamiltonian must have eigenstates of the form of the skyrmion

states (10.7.1) and (10.7.2). [Hint: Use the fact that z and z* act as

angular momentum raising and lowering operators.]
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Chapter 11

The Kondo effect and heavy fermions

11.1 Metals and magnetic impurities

We argued in Section 8.4 that, at temperatures much lower than the Debye

temperature, the resistivity of a metal should be given by an expression of the

form

�ðTÞ ¼ �0 þ AT5:

Here the T5 behavior comes from electron–phonon scattering, while the

impurities in the metal give rise to the constant term �0. This assumed that

the scattering caused by the impurities was elastic. If the scattering is inelas-

tic, then a variety of interesting phenomena may occur. In this chapter, we

discuss some of the processes that can occur when a metal is doped with

magnetic impurities, whose spin states introduce extra degrees of freedom

into the scattering problem. Interaction between the spins of the conduction

electrons and those of the impurities then provides a mechanism for inelastic

scattering of the conduction electrons.

The magnetic impurities that one can find in a metal fall into three classes.

There are the transition metals, such as manganese and iron, the rare earths,

such as cerium, and the actinides, of which the most important is uranium.

The magnetic character of these classes of elements originates in the fact they

have partially filled inner shells. For the transition metals it is the 3d shell, for

the rare earths the 4f shell, and for the actinides the 5f shell that remains only

partially filled, even though the outer valence states (4s, 5s, and 6s, respec-

tively) also contain electrons. This circumstance arises because the centrifugal

force experienced by an electron in a state of higher orbital angular momen-

tum, like a 3d state in a transition metal, for example, causes its wavefunction

to vanish at the nucleus, and so it resides in a region where the Coulomb

potential of the nucleus is partially screened. Although the wavefunction of
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the 4s state extends much further from the nucleus than that of the more

localized 3d state, it suffers no centrifugal force. Its wavefunction has a

nonvanishing amplitude at the nucleus, where the potential is unscreened,

and its energy is correspondingly lowered below that of the 3d state. In

addition, the antisymmetry of the several-electron wavefunction lowers the

mutual Coulomb interaction of electrons with parallel spin, resulting in one

of Hund’s rules, which stipulates that, other things being equal, electron spins

in atoms prefer parallel alignment.

In Section 4.4 we studied band structure by using the method of tight

binding. There we saw that when we assembled a periodic array of atoms

to form a crystal, the width of the resulting energy bands was proportional to

an integral involving the overlap of atomic wavefunctions on adjacent sites.

The electrons in the partially filled d shells of the transition metals have

strongly localized orbitals, and this results in rather flat energy bands. The

4s conduction band, on the other hand, arises from the considerable overlap

of wavefunctions on neighboring atoms, and consequently spans an energy

range that includes the energies of 3d states. In the electronic density of states

one then sees a tall narrow d band superimposed on the low flat s band, as in

Fig. 11.1.1. The actual electron Bloch states are mixtures of s- and d-like

components, particularly in the region of overlap.

In this chapter, we begin by exploring the properties of a metal containing

a dilute concentration of magnetic impurities, and then look at the conse-

quences of increasing the impurity concentration. In addition to the inelastic

scattering that the impurity sites provide for the conduction electrons, there

are two different and competing phenomena that appear as the impurity

concentration is increased. One is the conduction-electron-mediated inter-

action between different magnetic impurities. This is the so-called RKKY (or

Ruderman–Kittel–Kasuya–Yosida) interaction, and occurs because a mag-

netic moment on one impurity site polarizes the conduction electrons, which

propagate the polarization to another impurity site, in a manner somewhat
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analogous to the phonon-mediated electron–electron interaction responsible

for BCS superconductivity. The important facts for us are that the interaction

strength falls off as the cube of the separation distance between impurities,

and that the interaction tends to order systems magnetically. One complica-

tion (which fortunately is not important to us here) is that the sign of the

interaction, which determines whether it tends to order moments ferro-

magnetically or antiferromagnetically, oscillates with distance. The second

relevant phenomenon is a result of the increasing overlap of the wavefunc-

tions of electrons bound to adjacent impurity sites as the concentration is

increased. This overlap leads to the formation of something akin to Bloch

states, which then occupy impurity bands.

The low-concentration limit of a metal in which the conduction electrons

interact with impurity atoms, each of which has two localized electron spin

states, up and down, is known as the Kondo limit. Here, the impurities are

far enough apart that the RKKY interaction can be neglected, as can the

overlap between different impurity states. The impurities can then be treated

as independent, and we can study these systems by considering a single

magnetic impurity in a nonmagnetic metal. In the opposite limit of high

concentration, we really have a crystal consisting of both species of atoms

(host plus impurity) with conduction bands formed from electrons of both

species, and strong RKKY interactions. As we may expect, such systems can

display very complicated magnetic and transport behavior, and are described

in terms of the theory of heavy fermions. It turns out that some of the

important ingredients in the physics of heavy fermions stem from the prop-

erties of a single impurity in a sea of conduction electrons, and so we start our

examination in the dilute, or Kondo, limit.

11.2 The resistance minimum and the Kondo effect

While the resistivity of many pure metals does appear to vary as T5 at low

temperatures, adding a small amount of magnetic impurities can yield a very

different behavior. When small amounts of iron, chromium, manganese,

molybdenum, rhenium, or osmium are added to copper, silver, gold, magne-

sium, or zinc, for example, the resistivity generally exhibits a minimum. The

temperature Tmin at which this occurs is usually quite low, and does not

appear to be related to the Fermi temperature TF ¼ EF=k or to the Debye

temperature �, and seems to vary with impurity concentration c roughly as

c1=5, while the depth of the minimum, �ð0Þ � �ðTminÞ, is proportional to c.

Since �ð0Þ itself is proportional to c, the relative depth of the minimum is

roughly independent of c, and usually of the order of one tenth of �ð0Þ.
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The explanation for this effect was provided by Kondo in 1964. He realized

that when magnetic impurities are present the conduction electrons may

suffer a change of spin as they scatter, and that higher orders of perturbation

theory than the first have to be treated very carefully, since the commutation

relations of not only the annihilation and creation operators of the conduc-

tion electrons but also of the spin raising and lowering operators have to be

taken into account. In other words, the Exclusion Principle must be used in

calculating any scattering process that passes through an intermediate state

when the internal degrees of freedom of the scatterer are involved. To show

this, we follow Kondo’s calculation, which starts with the part of the per-

turbing potential containing the magnetic interaction, s � S, where s is the spin
of the conduction electron, and S the spin of the localized electron in the d or

f shell of the impurity. While the localized spin can have a total spin different

from 1=2, we here for simplicity consider localized spin-1/2 states. We impli-

citly use a high-temperature theory in that we assume that the spins of the

localized and conduction electrons are uncorrelated and independently have

equal probability of initially being either up or down. While this will directly

reveal the onset of the resistance minimum as the temperature is lowered, it

will fail as the temperature is decreased further, since at the lowest tempera-

tures conduction and localized spins form bound singlet pairs.

Following the notation of Section 3.10 we define spin raising and lowering

operators sþ, s�, Sþ, and S� for the Bloch and localized electrons, respec-

tively, and find

s � S ¼ 1
2 sþS� þ s�Sþ� �þ szSz:

In the notation of second quantization for the Bloch states we can then write

the perturbation as

H1 ¼
X

k;k 0; �;� 0
ðVkk 0=02Þ cyk 0� 0ck � h� 0j ½12 ðsþS� þ s�SþÞ þ szSz� j�i:

In this expression � and � 0 refer to the spin states of the Bloch electrons and

Vkk 0 is the matrix element between Bloch conduction-band states of the

spatial part VðrÞ of the perturbing spin-dependent interaction due to an

impurity at the origin,

Vkk 0 ¼
ð
 *kðrÞVðrÞ k 0 dr:
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Because VðrÞ extends over only about one unit cell, while the wavefunction

extends over the whole crystal, this quantity is of order N�1, with N the

number of unit cells in the crystal. The only nonvanishing matrix element

of sþ is h" jsþj #i ¼ 0, and for s� only h# js�j "i ¼ 0 survives, while sz has

elements h" jszj "i ¼ 0=2 and h# jszj #i ¼ �0=2. Thus

H1 ¼
1

20

X
k;k 0

Vkk 0 ½cyk 0"ck#S
� þ c

y
k 0#ck"S

þ þ ðcyk 0"ck" � c
y
k 0#ck#ÞSz�: ð11:2:1Þ

Diagrams illustrating the type of scattering caused by each of these terms

would then be of the form shown in Fig. 11.2.1. The scattering probability is

proportional to the square of the modulus of the elements of the T-matrix for

this perturbation, as indicated in Section 4.7. In the Born approximation the

T-matrix is replaced by H1 itself and then the scattering probability is found

from terms with precisely two annihilation operators and two creation opera-

tors, and turns out to be composed of terms of the form

Qðk;k 0Þnk#ð1� nk 0"Þ

corresponding to the process of Fig. 11.2.1(a) and other terms corresponding

to the other processes. The scattering is still elastic, since we are not assuming

the energy of the impurity to depend on its spin direction after the Bloch

electron has scattered and departed. The various occupation numbers nk can

then be averaged to give the fk that enter the Boltzmann equation as in

Section 8.2, and one finds the resistivity still to be independent of the tem-

perature.

The interesting effects occur when we consider the second-order terms in

the T-matrix. Let us for simplicity look at those processes in which the net

result is that an electron in the state k " is scattered into the state k 0 ". While

11.2 The resistance minimum and the Kondo effect 387

Figure 11.2.1. In the Born approximation a magnetic impurity can scatter an elec-
tron in these four different ways.



in first order only the process shown in Fig. 11.2.1(c) contributes to this, there

are other possibilities in second order. We recall that

T ¼ H1 þH1

1

E �H0

T � H1 þH1

1

E �H0

H1

to second order. Of the sixteen types of second-order term that we find when

we substitute expression (11.2.1) into this, we examine only those two invol-

ving products of S� with Sþ. These are sums of the form

�
1

20

�2 X
k1k2k3k4

Vk1k2
Vk3k4

c
y
k1"ck2#S

� 1

E � H0

c
y
k3#ck4"S

þ ð11:2:2Þ

and

�
1

20

�2 X
k1k2k3k4

Vk1k2
Vk3k4

c
y
k3#ck4"S

þ 1

E �H0

c
y
k1"ck2#S

�: ð11:2:3Þ

For these to have the net effect only of scattering k " into k
0 " we must

always have k2 ¼ k3, k4 ¼ k, and k1 ¼ k
0. In terms of diagrams we can

picture these processes as in Fig. 11.2.2. The diagram (a) represents expres-

sion (11.2.2), in which an electron is first scattered from k " to the virtual

state k2 #, and then finally to the state k 0 ". In diagram (b), however, the first

thing that happens is the creation of an electron–hole pair. That is, an elec-

tron already in state k2 # is scattered into k
0 ". The incoming electron in state

k " then drops down into this vacancy in a process that we can depict as the

annihilation of an electron–hole pair. The energy of the intermediate state

differs from that of the initial state by Ek 0 � Ek2
, which is just the negative of

the energy difference, Ek2
� Ek, of the process of Fig. 11.2.2(a). We can thus
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Figure 11.2.2. These two second-order processes both contribute to the scattering
amplitude for a conduction electron. Because of the change of spin, the occupancy
nk2 of the intermediate state does not cancel from the total scattering amplitude.



add the contributions of expressions (11.2.2) and (11.2.3) and use the anti-

commutation relations of the c’s and cy’s to find�
1

20

�2 X
k2

Vk 0k2Vk2k
c
y
k 0"ck"

1

Ek � Ek2

½ð1� nk2#ÞS�Sþ þ nk2#S
þS��:

ð11:2:4Þ

If Sþ and S� were not operators but simply numbers they would commute,

and the terms in nk2 would cancel. We would then be back in the situation of

having the type of scattering that leads to a temperature-independent resis-

tivity. However, as we may verify from the definitions in Eqs. (3.10.12),

S�Sþ � SþS� ¼ �20Sz:

There is thus a contribution to the scattering matrix that is proportional to

c
y
k 0"ck"Sz

X
k2

Vk 0k2Vk2k

hnk2#i
Ek � Ek2

: ð11:2:5Þ

The presence of the term in nk2 has the consequence that the scattering

probability becomes strongly temperature-dependent. When we form jTkk 0 j2
we shall find contributions of the form

PK ðk"; k 0"Þ / hnk"ð1� nk 0"Þigðk 0; kÞ

where gðk 0; kÞ is the sum over k2 in expression (11.2.5), and the subscript K

refers to the contribution responsible for the Kondo effect. Because the

thermal average of the expectation value of nk2# is given by the Fermi–Dirac

function, we see that gðk 0;kÞ depends on the temperature.

The total probability Pðk";k 0"Þ of a scattering event occurring in which

the net effect is that an electron is transferred from k" to k
0" can be written

as

Pðk"; k 0"Þ ¼ fk"ð1� fk 0"ÞQðk";k 0"Þ:

Here Qðk"; k 0"Þ is composed of two parts. One is independent of the

temperature and is due to first-order processes plus those contributions

from higher-order processes that do not involve the occupation numbers of

the intermediate states. The second part contains contributions from the

occupation numbers of the intermediate states, and in second order has

the temperature dependence of gðk;k 0Þ. The qualitative nature of this
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temperature dependence may be seen by making a few approximations. We

first assume that the matrix elements Vk 0k2 and Vk2k
vary slowly over the

range of energies over which we have to integrate k2, so that we can replace

each of them by a constant V0. We then change from a sum over k2 to an

integration over energies E2 by introducing the density of states DðEÞ, and
then approximate this by its value when Ek2

is equal to the chemical potential

�. We specialize to the value of gðk; k 0Þ when Ek is also equal to � to find

gðk; k 0Þ � V2
0Dð�Þ

ðW
�W

f ðÊEÞdÊE
ÊE

;

where W is an energy characteristic of the width of the band. After inserting

the form of the Fermi–Dirac function f and defining x � ÊE=2kT we have

gðk;k 0Þ � �V2
0Dð�Þ

ðW=2kT

0

tanhx

x
dx:

The integral is one we have met before in deriving Eq. (7.5.10) for the critical

temperature of a BCS superconductor, and so we find the result

gðk;k 0Þ � �V2
0Dð�Þ ln ð1:14W=kTÞ:

The low-temperature resistivity then takes the form

�ðTÞ ¼ �0 þ �1
�
T

�

�5

� �2 ln
�
kT

W

�
: ð11:2:6Þ

The resistance has its minimum when the derivative d�=dT vanishes. Thus

5�1
T4
min

�5
� �2
Tmin

¼ 0

and

T5
min ¼

�2�
5

5�1
:

For low impurity concentrations, the scattering events on different impurities

are independent and their contributions add incoherently. The sum over

scattering events on all impurities is then proportional to the concentration

c of impurities, so we have thus shown that

Tmin / c1=5:
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The fact that Eq. (11.2.6) erroneously predicts an infinite resistance as T

approaches zero is a consequence of the inadequacy of considering only

second-order terms in the T-matrix, and of our implicit high-temperature

assumption that the energy of the local spin is independent of its orientation.

At lower temperatures the local spins form bound collective states with the

conduction-band electrons. In order to flip the local spin, this binding must

be broken by the thermal energy of excited conduction electrons. As the

temperature is reduced this becomes more and more unlikely, and the local

spin becomes ‘‘frozen out.’’ In fact, the singularity we discovered signals this

formation of a bound state.

11.3 Low-temperature limit of the Kondo problem

It is clear that perturbation theory, especially when limited to second-order

calculations, is not going to be useful if we want to learn the nature of the

low-temperature behavior of a system in the Kondo limit. Instead, we will try

to use our intuition to guess a reasonable variational wavefunction that

describes a collective bound state, and see whether we can make this state

have a lower energy than a state with an independent localized spin and a

Fermi sea. We start with an impurity atom embedded in a host metal. In

the low-concentration limit, we can ignore interactions between impurities,

and so for simplicity consider a single local spin-12 state coupled antiferro-

magnetically to the sea of conduction electrons. We would like to construct

some kind of trial wavefunction that describes the formation of a bound state

of conduction electrons and the local moment. One natural possibility for the

case of antiferromagnetic coupling would be to have excitations above the

Fermi surface combine with the local moment to form a spin singlet, which

would be an antisymmetric combination of spin-up and spin-down states of

the local spin and states above the Fermi surface. Another possibility would

be to form spin singlets of states below the Fermi surface – holes – and local

spins. Simple variational wavefunctions that describe these possibilities were

first written down by Yosida. We will here follow Mahan’s treatment of the

problem.

The trial wavefunctions we consider are of two types. The first is

j�ai ¼
X
jkj>kF

ak½	ycyk# � 
ycyk"� jFi:

Here, 	y and 
y create up- and down-spin states of the local spin, jFi is the
filled Fermi sea, and the ak are coefficients that we will have to determine. We
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see that this state is a spin singlet: it is an antisymmetric combination of a

local up-spin plus a delocalized down-spin above the Fermi surface with

a local down-spin and a delocalized up-spin that is also above the Fermi

surface. The second type of state is formed with annihilation operators for

conduction electrons below the Fermi surface, and is written as

j�bi ¼
X
jkj<kF

bk½	yck" þ 
yck#� jFi:

This state combines local spins with holes. It too is an antisymmetric combi-

nation of antiparallel local spin and electron spin, and thus a spin singlet, but

now the electrons are below the Fermi surface. The two states j�ai and j�bi
are orthogonal to one another, since they contain different numbers of elec-

trons.

Next we have to evaluate the expectation value of the Kondo Hamiltonian

in the states j�ai and j�bi, and minimize these expressions with respect to

the coefficients ak and bk. Note that the states are not normalized, so we

have to divide the expectation values by the respective norms, which also

depend on ak and bk, and minimize these entire expressions. This is a rather

lengthy operation, and so we instead take a short cut by making another

approximation. The states j�ai and j�bi are the simplest spin-singlet states

we can think of that consist of electrons above the Fermi sea, or holes

below it, combined with local spins. However, when the interaction term in

the Kondo Hamiltonian acts on either of these states, other, more compli-

cated terms are created. Let us look at this in some detail. The interaction

term is

H1 ¼ � J

0

X
k;p

fðcyk"cp" � c
y
k#cp#ÞSz þ c

y
k"cp#S

� þ c
y
k#cp"S

þg:

Here we have taken the coupling J to be independent of momentum transfer

and to be negative, which means that we are considering antiferromagnetic

coupling. We then let this interaction act on our state j�ai.

H1j�ai ¼ � J

0

X
p;q

f½cyp"cq" � cyp#cq#�Sz þ cyp"cq#S
� þ cyp#cq"S

þg

�
X
jkj>kF

ak½	ycyk# � 
ycyk"� jFi:
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The simplest terms in this expression are the ones for which q ¼ k, and are

� J

0

X
p;k

akf½cyp"ck" � c
y
p#ck#�Sz½	ycyk# � 
ycyk"� jFi

þ c
y
p"ck#S

�½	ycyk# � 
ycyk"� jFi þ c
y
p#ck"S

þ½	ycyk# � 
ycyk"� jFig:

The operators Sz, S
� and Sþ all act only on the local spin, and Sz	

y ¼ 0	y=2,
Sz


y ¼ �0
y=2, S�	y ¼ 0
y, S�
y ¼ 0, Sþ	y ¼ 0, and Sþ
y ¼ 0	y, so we

obtain

� J
X
p;k

ak

�
1

2
½cyp"ck" � c

y
p#ck#�½	ycyk# þ
ycyk"� þ c

y
p"ck#


y
c
y
k# � c

y
p#ck"	

y
c
y
k"

�
jFi:

Since jkj > kF , the operator combination ck"c
y
k" gives unity when it acts on

the filled Fermi sphere, and the presence of the operator cyp requires jpj > kF .

Applying the same argument to the other terms, and collecting up the surviv-

ing components, we see that we are left with something similar to what we

started with, namely singlet states made up of conduction electrons and local-

moment electrons. This is good news, as we would like �a to be an eigenstate

ofH1, and the terms we have just examined satisfy that wish. The bad news is

that there are also many other terms bearing less resemblance to j�ai. For
example, terms with p; q 6¼ k will lead to expressions like

c
y
p"cq#


y
c
y
k#jFi:

This is a term which, in addition to the electron at momentum 0k above the

Fermi surface, has a particle–hole pair consisting of an electron with momen-

tum 0p above the Fermi surface and a hole of momentum 0q below the Fermi

surface. This is inconvenient, since it will lead to some cumbersome algebra

when we vary ak to find a minimum in energy. Our Ansatz state started out

just with electrons above the Fermi sea, but the action of the Hamiltonian on

this state generates various kinds of other electrons and holes. Another way

to say this is that we would like to keep our state in a restricted part of the

Hilbert space consisting only of electron-plus-local-moment singlets, but act-

ing with the Hamiltonian on this state takes us to a bigger part of the Hilbert

space. We avoid this difficulty with a simple remedy: we insist on staying in

our restricted Hilbert space by throwing out all the parts ofHj�ai that do not

consist of terms of the form ð	ycyk# � 
ycyk"ÞjFi. Technically, we can do this
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by using the projection operatorX
jkj>kF

½	ycyk# � 
ycyk"�jFihF j
X
jkj>kF

½	ck# � 
ck"�:

The eigenvalue equation we wish to solve is

ðH0 þH1 � E0 � �EaÞj�ai ¼ 0:

Here E0 is the ground-state energy of the unperturbed Hamiltonian,

H0 ¼
P

k;� Ekc
y
k;�ck;�, and �Ea is the shift in energy due to the perturbation

H1. We wish to determine ak such that this shift is as negative as possible. Let

us first look at the simplest terms:

ðH0 � E0 � �EaÞj�ai ¼ ðH0 � E0 � �EaÞ
X
jkj>kF

ak½	ycyk# � 
ycyk"�jFi

¼
X
jkj>kF

ak½Ek � �Ea�½	ycyk# � 
ycyk"�jFi:

This term does not contain any parts outside our restricted Hilbert space and

so we need not worry about projections, and the contribution to the equation

for ak is X
jkj>kF

ak½Ek � �Ea�:

We have to do a little more work for the terms generated byH1j�ai. First, we
look at the piece of H1 that involves Sz. This isX

p;q

Sz½cyp"cq" � c
y
p#cq#�

X
jkj>kF

ak½	ycyk# � 
ycyk"�jFi

¼ 0
2

X
p;q

½cyp"cq" � c
y
p#cq#�

X
jkj>kF

ak½	ycyk# þ 
ycyk"�jFi;
ð11:3:1Þ

where we have used Sz	
y ¼ 0	y=2, and Sz


y ¼ �0
y=2. Let us look at the

term in 	y in Eq. (11.3.1). Terms that survive the projection and give nonzero

contribution must contain only one electron excitation above the filled Fermi

sea jFi. This means that the product of three electron operators in (11.3.1)

must reduce to one by having the other two form a simple number operator.

This can happen if p ¼ q or if q ¼ k. For the former case, we haveX
p

½cyp"cp" � c
y
p#cp#�

X
jkj>kF

ak	
y
c
y
k#jFi;
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and
P

p½cyp"cp" � c
y
p#cp#� just counts the difference between the number of up-

and down-spins after we have applied c
y
k# to the filled Fermi sea, and is thus

equal to �1. We then obtain for the terms in 	
y
in Eq. (11.3.1)

� 0
2

X
jkj>kF

ak	
y
c
y
k#jFi �

0
2

X
p;jkj>kF

ak	
y
c
y
p#jFi: ð11:3:2Þ

The terms in 
y in Eq. (11.3.1) are

�Sz½cyp"cq" � c
y
p#cq#�

X
jkj>kF

ak

y
c
y
k"jFi ¼

0
2
½cyp"cq" � c

y
p#cq#�

X
jkj>kF

ak

y
c
y
k"jFi:

Again we must demand that either p ¼ q or q ¼ k, and we are left with only

0
2

X
jkj>kF

ak

y
c
y
p"jFi þ

0
2

X
p;jkj>kF

ak

y
c
y
p"jFi: ð11:3:3Þ

Continuing with the terms generated by the operators S� and Sþ, we find

that X
p;q

c
y
p"cq#S

� X
jkj>kF

ak	
y
c
y
k#jFi �

X
p;q

c
y
p#cq"S

þ X
jkj>kF

ak

y
c
y
k"jFi

reduces to

0
y
X

p;jkj>kF
akc

y
p"jFi � 0	y

X
p;jkj>kF

akc
y
p#jFi: ð11:3:4Þ

We now combine expressions (11.3.2), (11.3.3), and (11.3.4). In (11.3.2) and

(11.3.3) there are single summations over k, while all the other terms

are double summations over p and k. We drop the single summations,

since they will be smaller by a factor of order N than the double ones. The

result is

3J

2

X
jkj>kF

ak
X
jpj>kF

½	ycyp# � 
ycyp"�jFi:

The eigenvalue equation for �Ea then becomes

ak Ek � �Ea

� �þ 3J

2

X
jpj>kF

ap ¼ 0:
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We avoid having to solve for the eigenvectors ak by the trick of dividing by

Ek � �Ea and summing over jkj > kF . The sum of the ak then cancels to leave

us with

1 ¼ � 3J

2

X
jkj>kF

1

Ek � �Ea

:

We change from a sum over k to an integration in which the energy ÊE
measured relative to the Fermi energy runs from zero to a value W related

to the bandwidth, and approximate the density of states by its value D at the

Fermi surface. We then have

1 ¼ � 3JD

2

ðW
0

dÊE
ÊE � �Ea

¼ 3JD

2
ln





 �Ea

W � �Ea





:
Remembering that J is negative, we then find the solution with �Ea < 0 to be

�Ea ¼ � W

e2=ð3jJjDÞ � 1
: ð11:3:5Þ

This expression reminds us of the condensation energy of a BCS supercon-

ductor given in Eq. (7.4.2), which was proportional to e�2=VD, with V the

attractive electron–electron interaction. When jJjD is small, �Ea is similarly

proportional to e�2=ð3jJjDÞ, showing that the coupling constant jJj in this case

enters nonperturbatively into the problem. The function e�2=ð3jJjDÞ cannot be
expanded in a power series in jJj, and is said to have an essential singularity

at jJj ¼ 0. For bands more than half-filled, the state j�ai, which consists of

bound spin-singlet pairs of conduction electrons and local spins, has a lower

energy than E0, and is a better candidate for the ground state. The state j�bi
may also be examined by means of a similar approach, the main difference in

the analysis being that jkj < kF . One finds that the state j�bi should be the

ground state for bands that are less than half full.

The definition of the Kondo temperature TK is

kTK � W exp

�
� 1

2DjJj
�
:

This energy is similar to the small-jJj limit of our expression (11.3.5) for the

energy reduction ��Ea, except for the factor of
1
2 instead of 2

3 in the exponent.

This difference comes from the fact that those who originally defined it did so

in terms of a triplet state, which is obtained if the coupling J is ferromagnetic
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(J > 0), rather than the singlet state that we have considered. We again notice

an analogy with the BCS theory of superconductivity, in which we find a

similar expression for the critical temperature Tc. This is not an accident.

Both TK and Tc define temperatures below which perturbation theory fails.

In the BCS case, Tc signals the onset of the formation of bound Cooper

pairs and a new ground state with an energy gap. The Kondo effect is a little

more subtle. Here TK defines a temperature at which the energy contributions

from second-order perturbation theory become important. This happens

when the local spin on a single impurity starts to become frozen out at an

energy set by the Kondo coupling J and the density of states at the Fermi

energy.

In summary, we have seen that the internal dynamics of the local spins

interacting with the sea of conduction electrons become important at low

temperatures. The net effect of this interaction is very much like a resonant

state appearing at temperatures �TK . In fact, Wilkins has noted that the

Kondo effect is very well described by a density-of-states expression that adds

a resonant state at the Fermi energy for each impurity with a local moment.

He writes this expression as

DK ðEÞ ¼ DðEÞ þ c




�

ðE � EF Þ2 þ �2
¼ DðEÞ þ �DðEÞ; ð11:3:6Þ

where � ¼ 1:6 kTK . This expression adds a Lorentzian peak of weight unity

at the Fermi energy for each impurity atom with a local moment. From this

expression one can calculate, for example, the change in specific heat and the

change in electrical resistance. All the many-body physics has then resulted in

a simple change in the density of states at the Fermi surface consisting of the

addition of a resonant state for each impurity. At high temperatures, the

sharp resonances are unimportant in the presence of thermal smearing at

the Fermi surface. As the temperature is decreased, the sharp resonances

become more important in the scattering of the conduction electrons. At

still lower temperatures, there is insufficient energy to flip the local spins,

which become frozen in fixed orientations.

11.4 Heavy fermions

We treated the Kondo problem by first considering the effects of a single

impurity, and then simply multiplying the expected effect by the number of

impurities present. We were thus assuming that the magnetic impurities were

sufficiently dilutely dispersed in the metallic host material that we did not
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have to consider interactions between them. The starting point for the theory

of heavy fermions, in contrast, is a regular lattice, typically consisting of a

basis of a rare earth or actinide and a metal. Examples are UPt3 and CeAl3.

In this type of compound, it is possible for the electrons to form Bloch states,

and display metallic behavior in the sense that the resistance diminishes to

quite a small value as the temperature approaches absolute zero. This is quite

distinct from the effects of the dilute magnetic impurities in the Kondo

problem, which lead to a minimum in the resistance. On the other hand,

the magnetic elements experience RKKY interactions, which can lead to

the formation of nontrivial magnetic ground states. In addition, some of

the heavy-fermion materials, UPt3 being an example, have superconducting

ground states that are not the usual BCS type of superconductor. In view of

this rich diversity of interesting properties, it is perhaps useful to start by

pointing out what heavy-fermion materials do have in common, and why the

fermions are said to be ‘‘heavy.’’ Let us first consider the electrical resistivity.

In typical transition metals, this has a temperature dependence given by

�ðTÞ ¼ �ð0Þ þ AT2 at low temperatures, where A is proportional to the effec-

tive mass of the electrons. In metallic heavy-fermion systems at sufficiently

low temperatures, the resistivity still has this simple behavior, but the con-

stant A can be as much as seven orders of magnitude larger than for transi-

tion metals! Similarly, the specific heat of normal metals at low temperatures

is of the form CðTÞ ¼ �T þ BT3, where �T is the electronic contribution,

and the term in T3 is due to phonons. For heavy fermions, the electronic

contribution �T is perhaps two to three orders of magnitude greater than in

normal metals, and is so large that the phonon contribution can often be

ignored. Finally, there is the magnetic susceptibility �, which for heavy fer-

mions at low temperatures is enhanced by several orders of magnitude over

that of conventional metals. All these quantities, A, �, and �, are propor-

tional to the effective mass m* of the electrons for conventional metals. Their

enhanced values lead us to the interpretation that we are indeed dealing with

‘‘heavy fermions.’’ That the concept of a large effective mass is useful for

these compounds is demonstrated by theWilson ratio, R. This is the ratio of

the zero-temperature limit of the magnetic susceptibility (in units of the

moment per atom, g2JJðJ þ 1Þ�2
B) to the zero-temperature derivative of the

specific heat (in units of 
2k2), and is

R ¼ �ð0Þ=g2JJðJ þ 1Þ�2
B

�ð0Þ=
2k2 :

The fact that the Wilson ratio is approximately unity for all the nonmagnetic
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heavy fermions suggests that, whatever the mechanism responsible for the

anomalous behavior, there is a consistent pattern that can be interpreted in

terms of a large effective mass. We take this argument back one further step

by recalling that the electronic density of states is itself proportional to the

effective mass in the case of a single band, and decide that our task should be

to examine the likely magnitude of DðEF Þ in these systems.

Our starting point will be the Anderson Hamiltonian, which is constructed

from the following ingredients. First, there is a sea of conduction electrons

formed from the conduction-band states of the host material (Al, Pt, or Zn,

for example) and from the s and p electrons of a dopant such as U or Ce.

These delocalized conduction electrons will in general have some dispersion

relation Ek;n for Bloch states labeled by a wavevector k in the first Brillouin

zone and a band index n. This is a distracting complication, and so we assume

that the bands are of free-electron form. Secondly, there are the localized d or

f states of the dopant atoms. To be specific we assume that we are dealing

with f electrons, and name their dispersion relation Ef ðk; nÞ. However, since d

and f electrons are very closely bound to the core of the dopant atoms, these

states do not overlap significantly. The band formed by them is consequently

very flat, and their energies can be taken to be a constant, Ef (not to be

confused with the Fermi energy EF ). The next ingredient is one that leads

to strong correlations. It is the on-site repulsion term. This is due to the

localized nature of the d and f orbitals. If there are several d or f states filled

on the same atom (which is possible because of their relatively high spin

degeneracy), the Coulomb interaction between them contributes strongly to

the energy. This interaction can then be written

U
X
i;�;� 0

ni;�ni;� 0;

where the summation runs over all dopant sites i, and � is an enumeration of

the degenerate multiplet of local states. The on-site repulsion is given by U.

This kind of localized Coulomb repulsion is sometimes called a Hubbard

term, because it is a central piece in another model of strongly correlated

electrons, the Hubbard Hamiltonian. Lastly, there is an interaction between

the delocalized conduction electrons and the local states. The idea here is that

a conduction electron with a certain spin can hop onto a local site, or vice

versa. This is in contrast to the Kondo Hamiltonian, where local states and

conduction electrons could exchange spin, but were not allowed to transform

into one another. We take this local interaction to be a very short-ranged

potential centered at the sites i of the dopants.
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Putting it all together, we then have the periodic Anderson model,

HA ¼
X
k;�

Ekc
y
k;�ck;� þ Ef

X
i;�

f yi;� fi;� þU
X
i;� 0;�

f yi;� fi;� f
y
i;� 0fi;� 0

þ
X
k;i;�

Vðcyk;� fi;� þ f yi;�ck;�Þ: ð11:4:1Þ

Here fi;� annihilates an f electron of quantum number � at site i. In the last

term, which is the hybridization term, we have effectively taken the inter-

action V to be a delta-function in real space, making the Fourier transform

independent of k. This is a reasonable approximation provided the range of

the interaction is much shorter than the Fermi wavelength. We have also

taken the confusing step of writing the hybridization term as coupling the

local states with conduction electrons labeled by a quantum number � rather

than by a simple spin �. The reason for this is that � usually denotes an

enumeration of the symmetries of the degenerate local states, which

depend on angular momentum, spin, and spin–orbit coupling. The conduc-

tion electron states have to be decomposed into the same symmetries by

combining the Bloch states into angular momentum states. This is a tedious

element of general practical calculations, and we here acknowledge that it

may be necessary by using the notation � instead of �. Fortunately, for local

states having only spin-up and spin-down degeneracies, no decomposition is

required, and the coupling to the conduction electrons is just through the spin

channels �.

Equation (11.4.1) is a very rich Hamiltonian, which is capable of describing

a variety of physical situations, depending on the values of U and V, and of

the degeneracy of the local states. In particular, this Hamiltonian contains

the Kondo Hamiltonian. By this we mean that by making a clever transfor-

mation, one can show that there are Kondo-like interactions included in the

periodic Anderson model. This procedure is called the Schrieffer–Wolff trans-

formation. One starts with the single-impurity Anderson Hamiltonian, in

which there is just one impurity site with its degenerate d or f orbitals.

One then seeks a canonical transformation that eliminates the hybridization

terms between the conduction electrons and the impurity states. This is very

similar in spirit to the canonical transformation we applied when studying the

Fröhlich and Nakajima Hamiltonians in Sections 6.5 and 6.6. There we

eliminated the term linear in electron–phonon coupling, while in the present

case we eliminate the terms linear in the coupling between the conduction

electrons and the impurity states.
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We start by considering the single-impurity Hamiltonian

H ¼ H0 þH1 ð11:4:2Þ
where

H0 ¼
X
k;�

Ekc
y
k;�ck;� þ Ef

X
�

f y� f� þUn"n#

and

H1 ¼
X
k;�

Vkðcyk;� f� þ f y�ck;�Þ:

For simplicity we are considering only spin-up spin-down degeneracy, but are

allowing the hybridization term Vk to depend on k. Were it not for the

Hubbard term, Un"n#, the whole Hamiltonian H could easily be diagona-

lized, since it would then be just a quadratic form in annihilation and creation

operators. We might thus be tempted to perform the diagonalization and

then treat the Hubbard term as a perturbation. However, we have seen in

Chapter 2 that the strength of the Coulomb interaction makes this a difficult

task. Instead, we follow the procedure of Section 6.5, and look for a unitary

transformation to eliminate the interaction terms Vk to first order. Just as in

Eq. (6.5.3), we seek a unitary operator s that will transform H into a new

Hamiltonian H0 ¼ e�sHes from which first-order terms in H1 have been

eliminated. For this to happen, we again require

H1 þ ½H0; s� ¼ 0;

which then to second order in Vk leaves us with

H0 ¼ H0 þ 1
2 ½H1; s�:

From our experience with the electron–phonon interaction, where the elim-

ination of the first-order terms led to the appearance of an effective electron–

electron interaction term, we are prepared for some interesting consequences

in the present case.

To proceed, we try an operator s of the form

s ¼
X
k;�

ak�Vkð f y�ck� � c
y
k� f�Þ; ð11:4:3Þ

with the coefficients ak;� to be determined. With this form of s, we find that

½H0; s� ¼
X
k;�

ak�VkðEf �EkÞð f y�ck� þ c
y
k� f�ÞþU

X
k;�

ak�Vkðcyk� f� þ f y�ck�Þn��:
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This poses a little problem, since the presence of four operators in the last

term means that this expression cannot be equated with �H1, which contains

only two. We solve this by making the mean-field approximation of replacing

n�� by its expectation value hn��i. The solution for the coefficients is then

ak� ¼ ðEk � Ef �Uhn��iÞ�1:

Because hn��i can only take on the values 0 or 1, we can rewrite this solution as

ak� ¼
1� n��
Ek � Ef

þ n��
Ek � Ef �U

: ð11:4:4Þ

Note that we have quietly removed the angular brackets from hn��i and

restored it to the status of being an operator. This is important in the next

step we take, which is to calculate the effective interaction term in our trans-

formed Hamiltonian H0. It is

1

2
½H1; s� ¼ � 1

2

X
k;k 0�;� 0

½ak�Vkð f y�ck�� c
y
k� f�Þ;Vk 0 ðcyk 0� 0 f� 0 þ f y� 0ck 0� 0 Þ�: ð11:4:5Þ

The presence of the operator n�� in the expression for ak� means that we are

commuting a product of four operators with a product of two operators.

Two operators disappear in the process, and this leaves us with a product of

four operators, the most important of which are of the form f y�ck�c
y
k 0�� f��

and their Hermitian conjugates. These terms have the form of an interaction

between a conduction electron and a local state, in which the spins of both are

reversed and in which the conduction electron is scattered: this is precisely

the form of the Kondo interaction. In addition to these terms, the unitary

transformation also yields other terms not included in the Kondo

Hamiltonian. The Anderson Hamiltonian is therefore richer in the sense that

it contains more physics. This also makes it more difficult to solve. While the

Kondo problem can be solved exactly using so-calledBethe Ansatz techniques,

no exact solutions are known to the Anderson Hamiltonian.

Given the fact that the single-impurity Anderson Hamiltonian contains a

Kondo-like term, it was to be expected that in the dilute limit, where one

can consider just a single dopant atom, there would appear in the

Anderson Hamiltonian a Kondo resonance at the Fermi energy. What is

more surprising is that spectroscopic measurements find such a resonance in

heavy-fermionmaterials such asCeAl3, in spite of the fact that theCe atoms are

not at all dilute in the Al host. The reason for this is that the measurements are

typically performed at temperatures too high for the coherence expected for a

regular lattice of Ce and Al atoms to develop. As in the Kondo model, the
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appearance of this resonance depends nonperturbatively on an effective

coupling constant.

One approach to studying the single-impurity Anderson Hamiltonian is

very similar to the way in which we analyzed the low-temperature behavior

of the Kondo Hamiltonian. One builds up approximate eigenstates by includ-

ing several collective states. Each collective state consists of one or more

electron–hole pair excitations from the Fermi sea, plus possible combinations

of occupations of the local states. Because more states with greater com-

plexities are included than in the low-temperature treatment of the Kondo

problem, the algebra is more complicated, and so we do not present the

details here. The picture that emerges, and which is fairly typical of heavy

fermions, is that the density of states contains a number of interesting fea-

tures. The first of these is a sharp Kondo-like peak at the Fermi energy,

which is expected because the Kondo physics is contained in the Anderson

Hamiltonian. In addition, there are two broader peaks, one below the Fermi

surface at Ef , and the other above the Fermi surface at approximately

Ef þU. The Kondo peak is very sharp with a small spectral weight, while

the spectral weights of the broader peaks depend on the degeneracy of the

local state. Experimental measurements of the density of states by means of

spectroscopies that probe both the filled states below the Fermi surface and

the empty states above it confirm the accuracy of this generic picture.

Problems

11.1 Calculate the energy �Eb of the state j�bi for spin-12 antiferromagnetic

coupling. Follow the steps of the calculation of �Ea, but note the dif-

ference that the state j�bi involves electron states below the Fermi

surface, which will change some signs and the limits of the final integral

over energies. Show that j�bi has a lower energy than j�ai if the con-

duction band is less than half full.

11.2 A commonly encountered Kondo system consists of Fe impurities in

Cu. Assume a concentration of 1% and antiferromagnetic coupling of

the order of 1 eV. Estimate the Kondo temperature (you will need to

guess the density of states and conduction band width for Cu). How

large a change in the specific heat (cf. Eq. (11.3.6)) would you expect

due to the presence of the Fe impurities at low temperatures?

11.3 In a traditional BCS s-wave superconductor, electrons at the Fermi sur-

face with opposite momenta and spin are bound in singlets. Suppose
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that such a superconductor, which in its normal state has a conduction

band that is more than half-filled, is now doped with magnetic impurities

with spin-1/2 local moments. Form an expression for the ratio of the

Kondo temperature TK to the BCS critical temperature Tc. How do you

think this system will behave as it is cooled down if Tc > TK? What if

Tc < TK?

11.4 In our attempt to diagonalize the Hamiltonian (11.4.2) we defined in

Eq. (11.4.3) an operator s in terms of coefficients ak�. These coefficients

were assumed to be numbers and not operators, and so they commuted

with H. However, in Eq. (11.4.4) we rather inconsistently gave them the

character of operators, and this led to the Kondo interaction when we

formed ½H1; s�. What would we have found if we had assumed from the

start that ak� was linear in n�?

11.5 What is the coefficient of the Kondo operator f y�ck�c
y
k 0�� f�� found from

the commutator ½H1; s� in Eq. (11.4.5)?

11.6 The Kondo effect is the result of the scattering impurity having an

internal degree of freedom, namely its spin. Something similar happens

when electrons are scattered from a moving impurity, the internal

degree of freedom in this case being the vibrational motion of the

impurity. For the purposes of this exercise we consider a substitutional

impurity of mass closely equal to that of the host material, so that its

motion can be described in terms of phonon operators. The electron

scattering matrix element VK, with K ¼ k
0 � k, is phase shifted to

VKe
iK�y by the displacement y of the impurity. To first order in y the

scattering perturbation is then VKð1þ iK �Pq yqN
�1=2Þ. Show that in

second order, processes like those shown in Fig. P11.1 do not exactly

cancel each other because of the energy of the virtual phonons involved.

(This makes an observable contribution to the Peltier coefficient in dilute

alloys at low temperatures, and is known as the Nielsen–Taylor effect.)
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cyclotron frequency, 168, 345
cyclotron mass, 168, 221

dangerous diagrams, 90
Darwin term, 154
Debye model, 105
Debye temperature, 106
density functional theory, 183

time-dependent, 200
density of states

electron, 131
phonon, 104

density operator, 59
dielectric constant, 69, 76
dimerization, 218
Dirac equation, 114, 153
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Dirac notation, 27
Drude formula, 335

edge states, 353, 355
effective mass, 141, 180
Einstein model, 107, 117
elastic mean free path, 315
electrical conductivity (see conductivity, electrical)
electron pairs, 84, 225, 236
electron–phonon interaction, 17, 210–231, 299
electronic specific heat, 221, 251
elementary excitations, 1
energy current, 304
energy gap, 233, 243
ensemble density functional theory, 206
equation of continuity, 256, 286
exchange-correlation energy functional, 189
exchange-correlation hole, 194
exchange-correlation kernel, 205
exchange-correlation potential, 190
exchange energy, 47, 223
exchange hole, 194
exchange phase, 364
exchange scattering, 47
excitation

collective, 3
elementary, 1
quasiparticle, 3

exciton, 180
Exclusion Principle, 3, 15, 18, 143, 288, 301
extended zone scheme, 131

Fermi–Dirac distribution (see fermion, distribution
function)

Fermi energy, 132
fermion, 32

distribution function, 86
field operator, 57

Fermi surface, 15, 133
ferrimagnetism, 121
ferromagnetism, 10, 71, 117
Feynman–Bijl formula, 369
Fibonacci chain, 176
filling factor, 345
flux quantization, 265
Fock space, 33
Foldy–Wouthuysen transformation, 114, 153
fractional statistics, 364
Friedel sum rule, 174
Fröhlich Hamiltonian, 210
frozen phonon calculation, 197
Fuchs–Sondheimer theory, 294
functional, 184

derivative, 203

generalized gradient approximation, 198
Ginzburg–Landau equations, 271, 277
golden mean, 176
grand canonical ensemble, 85
Green’s-function method, 152
ground state, superconducting, 243
group velocity, 6, 109, 161

Hall coefficient, 297
Hall effect, 20, 297
Hall field, 20
harmonic approximation, 96
harmonic oscillator, 80
Hartree–Fock approximation, 48, 71, 75, 125
heat–current density, 304
heavy fermion, 385, 398
Heisenberg model, 118
Helmholtz energy, 113, 275, 282
heterojunction, 318
Hohenberg–Kohn theorem, 182, 184
hole-like behavior, 142
hole state, 16, 68
hole surface, 135
Holstein–Primakoff transformation, 116, 118
Hubbard term, 399
Hund’s rules, 384

incompressibility, 343
inelastic scattering, 299
insulator, 132
intermediate state of superconductor, 272
inverse-effective-mass tensor, 141, 168, 180
Ising model, 118
isotope effect, 235, 251

Jahn–Teller effect, 279
jellium, 43
Johnson noise, 330
Jones zone, 156, 180
Josephson effect, 265, 270

Kohler’s rule, 296
Kohn anomaly, 215
Kohn–Sham formulation, 187
Kohn–Sham orbitals, 190
Korringa–Kohn–Rostoker method, 152
Kondo effect, 385
Kondo limit, 385
Kondo temperature, 396
Kronecker delta, 27

Lagrangian, 112
Landau gauge, 344
Landau level, 345
Landauer–Büttiker formalism, 324, 356
lattice vibration (see phonon)
Laughlin wavefunction, 358
linear chain, 4, 7, 94
Liouville equation, 286
liquid helium, 88
local density approximation, 191
local spin density approximation, 197
London equation, 255
longitudinally polarized phonon, 101
Lorentz force, 111, 167
Lorenz number, 306

magnetic breakdown, 170
magnetic length, 345
magnetic moments, 113
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magnetoresistance, 296, 314
magneto-roton, 368
magnon, 10, 117 (see also spin wave)
magnon interactions, 121
magnon–phonon interactions, 123
mass enhancement, 221
mass–velocity term, 153, 181
Matthiessen’s rule, 303
mean field, 117
mean free path, 292
Meissner effect, 233, 254, 271
mesoscopic system, 316
metallic ferromagnets, 71
mixed state, 235, 274
mobility gap, 351
Mössbauer effect, 22
Mott insulator, 280
muffin tin potential, 152

Nakajima Hamiltonian, 226
nearly-free-electron approximation, 136
Nielsen–Taylor effect, 404
N-process, 109
number operator

for bosons, 79
for fermions, 37

occupation number representation, 32
Onsager relations, 311
optical mode, 103, 122
OPW (see orthogonalized plane wave)
OPW method, 150
orbit, 168

periodic open, 169
orthogonalized plane wave, 146, 153

Padé approximants, 191
paramagnon, 74
Pauli Exclusion Principle (see Exclusion Principle)
Pauli spin susceptibility, 221
Peierls transition, 218
Peltier effect, 308
penetration depth, 233, 255, 258
Penrose tile, 174
Perdew–Burke–Ernzerhof theory, 200
Perdew–Zunger parametrization, 192
periodic Anderson model, 400
periodic boundary conditions, 28, 97, 267
periodic open orbit, 169
perturbation theory, 51
phase breaking length, 316
phase breaking time, 334
phase shift, 152
phonon, 7, 93–110
phonon drag, 312
phonon interactions, 23, 107
plasma frequency

electron, 14, 64
ion, 12

plasma oscillation, 11, 64
plasmon, 12, 14
polarization

electron density, 187
phonon, 7, 101

polaron, 219
Poisson noise, 330
positron, 16
probable occupation number, 285
pseudoboson, 80
pseudogap region, 280
pseudopotential, 148

quantized flux, 269, 346
quantum Hall effect, 19, 342
quasicrystal, 174
quasihole, 361
quasiparticle, 3, 17, 363
quenching, 114

random phase approximation, 60, 64
Rayleigh–Schrödinger perturbation theory, 52
reciprocal lattice, 99
reduced zone scheme, 131
reflection probability, 322
relativistic effect, 153
relaxation time, 292

anisotropic, 252
remapped free-electron model, 135, 150
repeated zone scheme, 136
reservoir, 320
resistance minimum, 385
resistance quantum, 336
resistivity (see conductivity)
rigid-ion approximation, 210
RKKY interaction, 384
Runge–Gross theorem, 201

sandwichium, 139
scattering by impurities, 170
scattering matrix, 320
Schrieffer–Wolff transformation, 400
Schrödinger equation, 26
screening, 13, 65
second quantization, 34, 39, 78
Seebeck effect, 311
self-consistent Kohn–Sham scheme, 190
shot noise, 330
simple metal, 146
single-mode approximation, 369
singular value decomposition, 328
skymion, 370
Slater determinant, 32
soliton, 7, 218
Sommerfeld gas, 46
sound velocity in metals, 19, 229
specific heat

due to phonons, 104
electronic, 221, 251

spin, 48, 114
spin-orbit coupling, 153, 157
spin raising and lowering operators, 115
spin wave, 11, 71 (see also magnon)
strong-coupling superconductor, 243
structure factor, 156
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superconductivity, 232–284
superfluid, 92
symmetric gauge, 344

thermal conductivity, 304
thermoelectric effects, 308
thermoelectric power, absolute, 311
thermopower, 311
tight-binding approximation, 144
T-matrix, 172
Toda chain, 8
trace of operator, 84
transition matrix, 172
transition metals, 150, 302
transition temperature of superconductor, 247
transmission probability, 322
transverse-even voltage, 297
transversely polarized phonon, 101
tunneling, 258–265
type I superconductor, 233, 275
type II superconductor, 233, 275

ultrasonic attenuation, 252
Umklapp scattering, 109

uncertainty principle, 53, 213, 271
U-process (see Umklapp scattering)
universal conductance fluctuation, 335

vacuum state, 30
valence band, 132
vector mean free path, 293
Voronoy polyhedron, 178
vortex rings, 93
v-representability, 207

weak-coupling superconductor, 243
weak localization, 332
Wiedemann–Franz law, 306
Wigner crystal, 191
Wilson ratio, 398
winding number, 370

Yukawa potential, 64, 70

Zener breakdown, 167
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