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Preface

The aim of this book is to make the quantum theory of condensed matter
accessible. To this end we have tried to produce a text that does not demand
extensive prior knowledge of either condensed matter physics or quantum
mechanics. Our hope is that both students and professional scientists will find
it a user-friendly guide to some of the beautiful but subtle concepts that form
the underpinning of the theory of the condensed state of matter.

The barriers to understanding these concepts are high, and so we do not try
to vault them in a single leap. Instead we take a gentler path on which to
reach our goal. We first introduce some of the topics from a semiclassical
viewpoint before turning to the quantum-mechanical methods. When we
encounter a new and unfamiliar problem to solve, we look for analogies
with systems already studied. Often we are able to draw from our storehouse
of techniques a familiar tool with which to cultivate the new terrain. We deal
with BCS superconductivity in Chapter 7, for example, by adapting the
canonical transformation that we used in studying liquid helium in
Chapter 3. To find the energy of neutral collective excitations in the frac-
tional quantum Hall effect in Chapter 10, we call on the approach used for
the electron gas in the random phase approximation in Chapter 2. In study-
ing heavy fermions in Chapter 11, we use the same technique that we found
successful in treating the electron—phonon interaction in Chapter 6.

Experienced readers may recognize parts of this book. It is, in fact, an
enlarged and updated version of an earlier text, A Quantum Approach to
the Solid State. We have tried to preserve the tone of the previous book by
emphasizing the overall structure of the subject rather than its details. We
avoid the use of many of the formal methods of quantum field theory, and
substitute a liberal amount of intuition in our effort to reach the goal of
physical understanding with minimal mathematical complexity. For this we
pay the penalty of losing some of the rigor that more complete analytical
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X Preface

treatments can yield. The methods used to demonstrate results are typically
simple and direct. They are expedient substitutes for the more thorough
approaches to be found in some of the bulkier and more specialized texts
cited in the Bibliography.

Some of the problems at the ends of the chapters are sufficiently challenging
that it took the authors a longer time to solve them than it did to create them.
Instructors using the text may therefore find it a time-saver to see our versions
of the solutions. These are available by sending to solutions@cambridge.org
an e-mail containing plausible evidence that the correspondent is in fact a
busy instructor rather than a corner-cutting student pressed for time on a
homework assignment.

The earlier version of this text owed much to Harold Hosack and Philip
Nielsen for suggested improvements. The new version profits greatly from the
comments of Harsh Mathur, Michael D. Johnson, Sankar Das Sarma, and
Allan MacDonald. Any mistakes that remain are, of course, ours alone. We
were probably not paying enough attention when our colleagues pointed
them out to us.

Philip Taylor  Cleveland, Ohio
Olle Heinonen Minneapolis, Minnesota



Chapter 1

Semiclassical introduction

1.1 Elementary excitations

The most fundamental question that one might be expected to answer is
“why are there solids?”” That is, if we were given a large number of atoms
of copper, why should they form themselves into the regular array that we
know as a crystal of metallic copper? Why should they not form an irregular
structure like glass, or a superfluid liquid like helium?

We are ill-equipped to answer these questions in any other than a quali-
tative way, for they demand the solution of the many-body problem in one of
its most difficult forms. We should have to consider the interactions between
large numbers of identical copper nuclei — identical, that is, if we were for-
tunate enough to have an isotopically pure specimen — and even larger num-
bers of electrons. We should be able to omit neither the spins of the electrons
nor the electric quadrupole moments of the nuclei. Provided we treated the
problem with the methods of relativistic quantum mechanics, we could hope
that the solution we obtained would be a good picture of the physical reality,
and that we should then be able to predict all the properties of copper.

But, of course, such a task is impossible. Methods have not yet been
developed that can find even the lowest-lying exact energy level of such a
complex system. The best that we can do at present is to guess at the form the
states will take, and then to try and calculate their energy. Thus, for instance,
we might suppose that the copper atoms would either form a face-centered or
body-centered cubic crystal. We should then estimate the relative energies of
these two arrangements, taking into account all the interactions we could. If
we found that the face-centered cubic structure had the lower energy we
might be encouraged to go on and calculate the change in energy due to
various small displacements of the atoms. But even though we found that
all the small displacements that we tried only increased the energy of the
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system, that would still be no guarantee that we had found the lowest energy
state. Fortunately we have tools, such as X-ray diffraction, with which we can
satisfy ourselves that copper does indeed form a face-centered cubic crystal,
so that calculations such as this do no more than test our assumptions and our
mathematics. Accordingly, the philosophy of the quantum theory of con-
densed matter is often to accept the crystal structure as one of the given
quantities of any problem. We then consider the wavefunctions of electrons
in this structure, and the dynamics of the atoms as they undergo small dis-
placements from it.

Unfortunately, we cannot always take this attitude towards the electronic
structure of the crystal. Because we have fewer direct ways of investigating
the electron wavefunction than we had for locating the nuclei, we must some-
times spend time questioning whether we have developed the most useful
picture of the system. Before 1957, for example, people were unsuccessful
in accounting for the properties of superconductors because they were start-
ing from a ground state that was qualitatively different from what it is now
thought to be. Occasionally, however, a new technique is introduced by
means of which the symmetry of electronic states can be probed. An example
is shown on the cover of this book. There the effect on the electronic structure
of an impurity atom at the surface of a high-temperature superconductor is
shown. The clover-leaf symmetry of the superconducting state is clearly seen
in the scanning-tunneling-microscope image.

The interest of the experimentalist, however, is generally not directed
towards the energy of the ground state of a substance, but more towards
its response to the various stimuli that may be applied. One may measure its
specific heat, for example, or its absorption of sound or microwaves. Such
experiments generally involve raising the crystal from one of its low-lying
states to an excited state of higher energy. It is thus the task of the theorist
not only to make a reasonable guess at the ground state, but also to estimate
the energies of excited states that are connected to the ground state in a
simple way. Because the ground state may be of little further interest once
its form has been postulated, it is convenient to forget about it altogether and
to regard the process of raising the system to a higher state as one of creating
something where nothing was before. The simplest such processes are known
as the creation of elementary excitations of the system.

The usefulness of the concept of elementary excitations arises from a
simple property that most many-body systems have in common. Suppose
that there are two excited states, and that these have energies above the
ground state of & and &,, respectively. Then it is frequently the case that
there will also be one particular excited state whose energy, &5, is not far



1.1 Elementary excitations 3

removed from (£ 4+ &,). We should then say that in the state of energy £; all
the excitations that were present in the other two states are now present
together. The difference AE between &3 and (£; + &,) would be ascribed to
an interaction between them (Fig. 1.1.1). If the states of energy &£ and &,
could not themselves be considered as collections of other excitations of
lower energy then we say that these states represent elementary excitations
of the system. As long as the interaction energy remains small we can with
reasonable accuracy consider most of the excited states of a solid as collec-
tions of elementary excitations. This is clearly a very useful simplification of
our original picture in which we just had a spectrum of energy levels which
had no particular relationship to one another.

At this point it is useful to consider a division of the possible types of
elementary excitations into two classes, known as quasiparticle excitations
and collective excitations. The distinction between these is best illustrated
by some simple examples. We know that if we have a gas of noninteracting
particles, we can raise the energy of one of these particles without affecting
the others at all. Thus if the gas were originally in its ground state we could
describe this process as creating an elementary excitation. If we were now to
raise the energy of another particle, the energies of the excitations would
clearly add up to give the energy of the doubly excited system above its
ground state. We should call these particle excitations. If now we include
some interactions between the particles of the gas, we should expect these
particle excitations to decay, since now the excited particle would scatter off
the unexcited ones, and its energy and momentum would gradually be lost.
However, if the particles obeyed the Pauli Exclusion Principle, and the energy
of the excitation was very low, there would be very few empty states into
which the particle could be scattered. We should expect the excitation to
have a sufficiently long lifetime for the description in terms of particles to

__iAEE
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&, &, &; & +8&,
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Figure 1.1.1. When two elementary excitations of energies £ and &, are present
together the combined excitation has an energy & that is close to & + &,.
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be a useful one. The energies of such excitations will differ from those for
noninteracting particles because of the interactions. It is excitations such as
these that we call quasiparticles.

A simple example of the other class of excitation is that of a sound wave in
a solid. Because the interatomic forces in a solid are so strong, there is little
profit in considering the motion of an atom in a crystal in terms of particle
motion. Any momentum we might give to one atom is so quickly transmitted
to its neighbors that after a very short time it would be difficult to tell which
atom we had initially displaced. But we do know that a sound wave in the
solid will exist for a much longer time before it is attenuated, and is therefore
a much more useful picture of an excitation in the material. Since a
sound wave is specified by giving the coordinates not of just one atom but
of every atom in the solid, we call this a collective motion. The amplitude of
such motion is quantized, a quantum unit of traveling sound wave being
known as a phonon. A phonon is thus an example of a collective excitation
in a solid.

We shall now consider semiclassically a few of the more important excita-
tions that may occur in a solid. We shall postpone the more satisfying
quantum-mechanical derivations until a later chapter. By that time the
familiarity with the concepts that a semiclassical treatment gives may reduce
somewhat the opacity of the quantum-mechanical procedures.

1.2 Phonons

The simplest example of collective motion that we can consider is that of a
linear chain of equal masses connected by springs, as illustrated in Fig. 1.2.1.
The vibrational modes of this system provide some insight into the atomic
motion of a crystal lattice.

If the masses M are connected by springs of force constant K, and we call the
displacement of the nth mass from its equilibrium position y,, the equations

M P o

Figure 1.2.1. This chain of equal masses and springs supports collective motion in
the form of traveling waves.
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of motion of the system are

d’y,
dr?

M :K[(yn+l _yn)_(yn _yn—l)]

=K(yn+l _2yn +yn—l)' (121)

These equations are easily solved for any boundary conditions if we remem-
ber the recursion formula for cylindrical Bessel functions,

al,

W= 0]

from which

d’J,
ar

[ wp2(1) = 2J,(1) + 7, 5(0)].

The problem we considered in Section 1.1 was to find the motion of the
masses if we displaced just one of them (n = 0, say) and then released it.
The appropriate solution is then

yn(t) = J2n(wmt)

where w?, = 4K/M. This sort of behavior is illustrated in Fig. 1.2.2. The
displacement of the zeroth mass, being given by Jy(w,,?), is seen to exhibit
oscillations which decay rapidly. After just a few oscillations y,(z) behaves as
V2 cos (w,,7). This shows that particle-like behavior, in which velocities are
constant, has no relation to the motion of a component of such a system.

Jul2)

n

Figure 1.2.2. These Bessel functions are solutions of the equations of motion of the
chain of masses and springs.
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And this is quite apart from the fact that in a crystal whose atoms are
vibrating we are not fortunate enough to know the boundary conditions of
the problem. This direct approach is thus not very useful.

We find it more convenient to look for the normal modes of vibration of
the system. We make the assumption that we can write

¥y, ei(a)t-‘rkna)’ (122)

where w is some function of the wavenumber k, and « is the spacing between
masses. This satisfies the equations of motion if

that is, if
w = o, sin (ska).

The solution (1.2.2) represents traveling waves of frequency « and wave-
number (defined for our purposes by 2m/A, where A is the wavelength)
equal to k. The group velocity v is given by dw/dk, the gradient of the
curve shown in Fig. 1.2.3. We note that as » approaches its maximum
value, w,,, the group velocity falls to zero. This explains why the Bessel
function solution decayed to an oscillation of frequency w,, after a short
time, if we realize that the original equation for y,(#) can be considered as
a superposition of waves of all wavenumbers. The waves of low frequency,
having a large group velocity, travel quickly away from the zeroth site, leav-
ing only the highest-frequency oscillations, whose group velocity is zero.

- — — - e ——— e — — — ——

k

Figure 1.2.3. The dispersion curve for the chain of masses and springs.
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It is formally straightforward enough to find the normal modes of vibra-
tion for systems more complicated than our linear chain of masses. The
extension to three dimensions leads us to consider the polarization of the
lattice waves, that is, the angle between k, which is now a vector, and the
direction of displacement of the atoms. We can also introduce forces between
atoms other than nearest neighbors. This makes the algebra of finding w(k)
more involved, but there are no difficulties of principle. Introduction of two
or more different kinds of atom having different masses splits the graph of
o(k) into two or more branches, but as long as the restoring forces are all
proportional to the displacement, then solutions like Eq. (1.2.2) can be
found.

A phonon is the quantum-mechanical analog of the lattice wave described
by Eq. (1.2.2). A single phonon of angular frequency w carries energy /iw. A
classical lattice wave of large amplitude corresponds to the quantum situa-
tion in which there are many phonons present in one mode. We shall see later
that a collection of phonons bears some similarity to a gas of particles. When
two particles collide we know that the total momentum is conserved in the
collision. If we allow two phonons to interact we shall find that the total
wavenumber is conserved in a certain sense. For this reason phonons are
sometimes called quasiparticles, although we shall avoid this terminology
here, keeping the distinction between collective and particle-like behavior.

1.3 Solitons

The chain of masses connected by Hookean springs that we considered in the
previous section was a particularly easy problem to solve because the equa-
tions of motion (1.2.1) were linear in the displacements y,. A real solid, on
the other hand, consists of atoms or ions having hard, mutually repulsive
cores. The equations of motion will now contain nonlinear (i.e., anharmonic)
terms. How do these affect the type of excitation we may find?

If the amplitudes of the phonons are small then the effects of the anhar-
monic terms will be weak, and the problem can be treated as a system of
interacting phonons. If the atomic displacements are large, on the other
hand, then there arises a whole new family of elementary excitations
known as solitary waves or solitons. In these excitations a localized wave
of compression can travel through a solid, displacing the atoms momentarily
but then leaving them as stationary as they were before the wave arrived.

The term soliton suggests by its word ending that it is a purely quantum-
mechanical concept, but this is not the case. Solitary waves in classical
systems had been observed as long ago as 1834, but it was only when their
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interactions were studied that it was found that in some cases two solitary
waves could collide and then emerge from their collision with their shapes
unchanged. This particle-like behavior led to the new terminology, which is
now widely applied to solitary waves of all kinds.

We can begin to understand the relation between phonons in a harmonic
solid and solitary waves in an anharmonic solid with the aid of an exactly
soluble model due to Toda. We start by considering the simplest possible
model that can support a soliton, namely a one-dimensional array of hard
rods, as illustrated in Fig. 1.3.1. If we strike the rod at the left-hand end of the
array, it will move and strike its neighbor, which in turn will strike another
block. A solitary wave of compression will travel the length of the array
leaving all but the final block at rest. The speed of this soliton will be deter-
mined entirely by the strength of the initial impact, and can take on any
positive value. The wave is always localized to a single rod, in complete
contrast to a sound wave in a harmonic solid, which is always completely
delocalized.

Toda’s achievement was to find a model that interpolated between these
two systems. He suggested a chain in which the potential energy of inter-
action between adjacent masses was of the form

V(r) = ar +g e (1.3.1)

In the limit where » — 0 but where the product ab is equal to a finite constant
¢ we regain the harmonic potential,

1
V(r)= g + 3 o’

In the opposite limit, where » — oo but ab = ¢, we find the hard-rod poten-
tial for which V—- oo if r <0Oand V — 0 if r > 0.

t=5At

Figure 1.3.1. Through a series of elastic collisions, a solitary wave of compression
propagates from left to right.



1.3 Solitons 9

We construct a chain of equilibrium spacing d by having the potential
2, V(R, — R,_; — d) act between masses located at R, and R,_;. In the nota-
tion where the displacement from equilibrium is y, = R,, — nd, the equations
of motion are

2
a0 _ _a<e—b<y,,+l—yn) _ e—bo’,,—y”fl))
dr '

If we now put y, — y,_; = r, then we have

d2rn br br, b
=a _e_ n+1 + 2e_ 'n __ e_ rn—])'
dr? (

One simple solution of this set of equations is the traveling wave for which
—br ) 2
e """ — 1 = sinh” u sech”(un £ Br) (1.3.2)

with 8 = \/ab/M sinh u, and u a number that determines both the amplitude
of the wave and its spatial extent. Because the function sech’(un =+ Br)
becomes small unless its argument is small, we see that the width of the
solitary wave is around d/u. The speed v of the wave is Bd/u, which on
substitution of the expression for B becomes

ab <sinh ,u)
v=d,— .
M Iz

For large-amplitude solitons the hard-rod feature of the potential dominates,
and this speed becomes very large. For small-amplitude waves, on the other
hand, sinh u/u — 1, and we recover the speed of sound, d.\/ab/M, of the
harmonic chain.

The example of the Toda chain illustrates a number of points. It shows
how the inclusion of nonlinearities may completely alter the qualitative
nature of the elementary excitations of a system. The complete solution of
the classical problem involves Jacobian elliptic functions, which shows
how complicated even the simplest nonlinear model system can be.
Finally, it also presents a formidable challenge to obtain solutions of the
quantum-mechanical version of this model for a chain of more than a few
particles.
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1.4 Magnons

In a ferromagnet at a temperature below the Curie point, the magnetic
moments associated with each lattice site / are lined up so that they all point
in more or less the same direction. We call this the z-direction. In a simple model
of the mechanism that leads to ferromagnetism, the torque acting on one of
these moments is determined by the orientation of its nearest neighbors. Then
the moment is subjected to an effective magnetic field, H;, given by

H; =4 Z Wy
7

where A is a constant, p, is the moment at the site Z’, and the sum proceeds
only over nearest neighbors. The torque acting on the moment at is p;, x H;
and this must be equal to the rate of change of angular momentum. Since the
magnetic moment of an atom is proportional to its angular momentum we have

dp
d’ocp,xH,_AZu,xu,, (1.4.1)
As in the problem of the chain of masses and springs we look for a wave-like
solution of these equations which will represent collective behavior. With the
assumption that deviations of the p, from the z-direction are small we write

w=p, + llJ_ei(w[Jrk'l),

where p, points in the z-direction and where we have used the useful trick of
writing the components in the x—y plane as a complex number, p, + ip,. That
is, if p | is in the x-direction, then ip, is in the y-direction. On substitution in
(1.4.1) we have, neglecting terms in ui,

iop, o x g Y (@ = 1),
a

Here the 1” are the vectors joining the site I to its nearest neighbors. In a
crystal with inversion symmetry the summation simplifies to

-2 " sin’(3k-1").

Iz

This equation tells us that p, rotates in the x—y plane with frequency

woc|p,| Y sin’(Ak-1"), (1.4.2)
T
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the phase difference between atoms separated by a distance r being just k - r.
This sort of situation is shown in Fig. 1.4.1, which indicates the direction in
which p points as one moves in the direction of k along a line of atoms.
Because the magnetic moment involved is usually due to the spin of the
electron, these waves are known as spin waves. The quantum unit of such a
wave is known as a magnon.

The most important difference to note between phonons and magnons
concerns the behavior of w(k) for small k (Fig. 1.4.2). For phonons we
found that the group velocity, dw/dk, tended to a constant as k tended to
zero, this constant being of course the velocity of sound. For magnons,

\T—:* v\;;sﬁ r_fl th__/J

Figure 1.4.1. The k-vector of this spin wave points to the left.

k
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Figure 1.4.2. The dispersion curve for magnons is parabolic in shape for small wave
numbers.
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however, the group velocity tends to zero as k becomes small. This is of great
importance in discussing the heat capacity and conductivity of solids at low
temperatures.

In our simplified model we had to make some approximations in order to
derive Eq. (1.4.2). This means that the spin waves we have postulated would
eventually decay, even though our assumption about the effective field had
been correct. In quantum-mechanical language we say that a crystal with two
magnon excitations present is not an exact eigenstate of the system, and that
magnon interactions are present even in our very simple model. This is not to
say that a lattice containing phonons is an exact eigenstate of any physical
system, for, of course, there are many factors we left out of consideration that
limit the lifetime of such excitations in real crystals. Nevertheless, the fact
that, in contrast to the phonon system, we cannot devise any useful model of
a ferromagnet that can be solved exactly indicates how very difficult a pro-
blem magnetism is.

1.5 Plasmons

The model that we used to derive the classical analog of phonons was a
system in which there were forces between nearest neighbors only. If we
had included second and third nearest neighbors we might have found that
the dispersion curve (the graph of w against k) had a few extra maxima or
minima, but w would still be proportional to k for small values of k. That is,
the velocity of sound would still be well defined. However, if we wanted to
consider a three-dimensional crystal in which the atoms carried an electric
charge ¢ we would find some difficulties (Problem 1.3). Although the
Coulomb force of electrostatic repulsion decays as r~2, the number of neigh-
bors at a distance of around r from an atom increases as r*, and the equation
for w has to be treated very carefully. The result one finds for longitudinally
polarized waves is that as k tends to zero @ now tends to a constant value €2,,,
known as the ion plasma frequency and given by

47 p, ¢
2 0
where e is the charge and M the mass of the particles, and p, the number of
particles per unit volume of the crystal. We thus conclude that a Coulomb
lattice does not support longitudinal sound waves in the usual sense, since 2,
is no longer proportional to the wavenumber k.
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This raises an interesting question about the collective excitations in
metals. We think of a metal as composed of a lattice of positively charged
ions embedded in a sea of nearly free conduction electrons. The ions interact
by means of their mutual Coulomb repulsion, and so we might expect that
the lattice would oscillate at the ion plasma frequency, 2,. Of course, we
know from everyday experience that metals do carry longitudinal sound
waves having a well defined velocity, and so the effective interaction between
ions must be short-range in nature. It is clear then that the conduction
electrons must play some part in this.

This leads to the concept of screening. We must suppose that in a sound
wave in a metal the local variations in charge density due to the motion of the
positively charged ions are cancelled out, or screened, by the motion of the
conduction electrons. This influx of negative charge reduces the restoring
force on the ions, and so the frequency of the oscillation is drastically
reduced. That is to say, the ions and the electrons move in phase, and we
should be able to calculate the velocity of sound by considering the motion of
electrically neutral atoms interacting through short-range forces.

But if there is a mode of motion of the metallic lattice in which the elec-
trons and ions move in phase, there should also be a mode in which they
move out of phase. This is in fact the case, and it is these modes that are the
true plasma oscillations of the system, since they do give rise to variations in
charge density in the crystal. Their frequency, as we shall now show, is given
for long wavelengths by Eq. (1.5.1), where now the ionic mass, M, is replaced
by the electron mass, m. (In fact m should really be interpreted as the reduced
mass of the electron in the center-of-mass coordinate system of an electron
and an ion; however, since the mass of the ion is so many times greater than
that of the electron this refinement is not necessary.)

We shall look for plasma oscillations by supposing that the density of
electrons varies in a wave-like way, so that

p(r) = py + p, COS gx. (1.5.2)

This density must be considered as an average over a distance that is large
compared with the distance between an electron and its near neighbors, but
small compared with ¢~'. When the electrons are considered as point parti-
cles the density is really a set of delta-functions, but we take a local average of
these to obtain p(r). The electrostatic potential ¢(r) will then be of the same
form,

d(r) = dy + ¢, cos gx, (1.5.3)
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and will be related to the density of electrons p(r) and of ions p;,,(r) by
Poisson’s equation,

V() = —4me[p(r) + pion(D)]- (1.5.4)

If we take p;,, to be equal to p, we have on substitution of (1.5.2) and (1.5.3)
in (1.5.4)

q2¢q = dmep,.
The potential energy density is then

1 1 47‘[6
> epp = 3 e 7 cos? gx.

The average kinetic energy density, %m,ovz, is also altered by the presence of
the plasma wave. The amplitude of the oscillation is p,/pyq and so an elec-
tron moving with the plasma suffers a velocity change of (0,/00¢) sin gx with
p, the time derivative of p,. We must also take into account the heating of the
plasma caused by adiabatic compression; since the fractional increase in
density is (p,/p9) cos gx this effect will add to the velocity an amount of
the order of (vyp,/py) cosgx. If we substitute these expressions into the
classical Hamiltonian and take the spatial average we find an expression of

the form
- 14wepl 1 00 \? avp, \°
ey gl (2) ()]
4 ¢ T4\ g Po

2
_ m .2 > (4t ppe 22 2
g (T i)

with o a constant of order unity. This is the Hamiltonian for a classical
oscillator of frequency

w, (a) +ozvq)l/2

where w, 1s the electron plasma frequency, (4mppe 2 im)l2.

The important point to note about this approximate result is that w, is a
very high frequency for electrons in metals, of the order of 10'® Hz, which
corresponds to a quantum energy /w, of several electron volts. Quanta of

94
such oscillations are known as plasmons, and cannot be created thermally,
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since most metals melt at a thermal energy of the order of 0.1eV. Thus the
plasma oscillations represent degrees of freedom of the electron gas that are
“frozen out.” This accounts for the paradoxical result that the interaction
between electrons is so strong that it may sometimes be ignored. One may
contrast this situation with that of an atom in the solid considered in Section
1.2. There it was found that any attempt to give momentum to a single atom
just resulted in the creation of a large number of collective excitations of low
energy. An electron in the electron gas, on the other hand, retains its particle-
like behavior much longer as it may not have the energy necessary to create a
single plasmon.

1.6 Electron quasiparticles

Most of the phenomena we have considered so far have been collective
motions. Our method of solving the equations of motion was to define a
collective coordinate, y;, which was a sum over the whole lattice of some
factor times the particle coordinates, y;. If we had had an infinite number of
particles, then the coordinates of any one particle would only have played an
infinitesimal role in the description of the motion. We now turn to the con-
sideration of excitations in which the motion of one particle plays a finite
role.

In Section 1.1 we have already briefly considered the problem of an assem-
bly of particles that obey the Pauli Exclusion Principle. A gas of electrons is
an example of such a system. As long as the electrons do not interact then the
problem of classifying the energy levels is trivial. The momentum p of each of
the electrons is separately conserved, and each has an energy £ = p*/2m. The
spin of each electron may point either up or down, and no two electrons may
have the same momentum p and spin s. If there are N electrons, the ground
state of the whole system is that in which the N individual electron states of
lowest energy are occupied and all others are empty. If the most energetic
electron has momentum p, then all states for which [p| < |py| will be occu-
pied. The spherical surface in momentum space defined by |p| = pr is known
as the Fermi surface (Fig. 1.6.1). The total energy of the system is then

2

gr= Y 2

s,|pl<pr

the sum being over states contained within the Fermi surface. We can write

this another way by defining an occupation number, 7, ;, which is zero when
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P:

Py

Figure 1.6.1. The Fermi sphere in momentum space contains all electron states with
energy less than pfp/Zm.

the state with momentum p and spin s is empty and equal to 1 when it is
occupied. Then

The usefulness of the concept of a quasiparticle rests on the fact that one may
still discuss the occupancy of a state even when there are interactions between
the particles. Although in the presence of interactions r, ; will no longer have
to take on one of the two values 0 or 1, we can attach a meaning to it. We
might, for instance, suppose that in with the electrons there is a positron at
rest, and that it annihilates with one of the electrons. The total momentum of
the gamma rays that would be emitted by the annihilating particles would be
equal to their total momentum before annihilation. We could now ask what
the probability is that this momentum be equal to p. Since for the noninter-
acting system this probability is proportional to ) n,, this provides an
interpretation for n, ; in the interacting system.

In the noninteracting system we had a clear view of what constituted a
particle excitation. The form of ny,  differed from that of the ground state in
that one value of p less than pr was unoccupied, and one greater than pr was
occupied (Fig. 1.6.2). We then consider the excited system as composed of
the ground state plus an excitation comprising a particle and a “‘hole,” the
particle-hole pair having a well defined energy above that of the ground
state. If we introduce interactions between the particles, and in particular if

p.s>
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n

(a)

(b)

Figure 1.6.2. The excited state (b) is formed from the ground state (a) by the creation
of a particle-hole pair.

we introduce the troublesome Coulomb interaction, it is hard to see whether
the concept of a particle—hole excitation survives. It is, in fact, not only hard
to see but also hard to calculate. One approach is to consider the effect of
switching on the interactions between particles when the noninteracting sys-
tem contains a particle-hole pair of energy £. If the lifetime t of the excita-
tion is large compared with 7/€, then it will still be useful to retain a similar
picture of the excitations. Since now the interactions will have modified their
energies, we refer to “‘quasielectrons’ and ‘‘quasiholes.”

1.7 The electron—phonon interaction

In Section 1.5 we discussed sound waves in a metal, and came to the con-
clusion that in these excitations the ions and electrons moved in phase. The
long-range potential of the positively charged ions was thus screened, and the
phonon frequency reduced from the ion plasma frequency 2, to some much
smaller value. The way in which this occurs is illustrated in Fig. 1.7.1. We
first imagine a vibration existing in the unscreened lattice of ions. We then
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F(ions + electrons)

), T e ~ = ~

F(ions)

F

Figure 1.7.1. The deep potential due to the displacement of the ions by a phonon is
screened by the flow of electrons.

suppose that the electron gas flows into the regions of compression and
restores the electrical neutrality of the system on a macroscopic scale.
There 1s, however, a difference between the motion of the ions and the
electrons in that we assume the ions to be localized entities, while the
electrons are described by wavefunctions that, in this case, will be small
distortions of plane waves. When we increase the local density of electrons
we must provide extra kinetic energy to take account of the Exclusion
Principle. We might take the intuitive step of introducing the concept of a
Fermi energy that is a function of position. We could then argue that the
local kinetic energy density of the electron gas should be roughly equal to
that of a uniform gas of free electrons, which happens to be %8Fp0. The
sound wave in a metal is thus seen in this model as an interchange of kinetic
energy between the ions and the electrons. We can calculate an order of
magnitude for the velocity of sound by writing the classical Hamiltonian
for the system in a similar approach to that of Section 1.5. The kinetic
energy of the ions will be M(,(')q)2/2,ooq2 when a wave of wavenumber q
passes through a lattice of ions of mass M and average number density p,.
The total kinetic energy of the electrons is only changed to second order in
pq/Po» and so contributes an energy density of the order of £rpy(pq/ 00)°.
Then

~

Ong(lz
M b

- \2 2

where « is a constant of order unity. The frequency of the oscillator that this
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Vr)

r

Figure 1.7.2. In a careful calculation the kinetic energy of the electrons is found to
prevent a complete screening of the potential due to the displaced ions. The residual
potential is shown as a dashed line.

Hamiltonian describes is

(XEF

M

which shows that the velocity of sound, v,, can be written as

m
Vg ~ Vg =

M

where vy is the velocity of an electron with energy £ and m/M is the mass
ratio of electron to ion.

In a more careful treatment one would argue that the electron gas would
not completely screen the electric field of the ions. Instead the electrons
would flow until the sum of the electric potential energy and the kinetic
energy of the electrons (the dotted line in Fig. 1.7.1) became uniform.
There would then be a residual electric field (the dashed line in Fig. 1.7.2)
tending to restore the ions to their equilibrium positions. It is the action of
this residual electric field on the electrons that gives rise to the electron—
phonon interaction which we shall study in Chapter 6.

1.8 The quantum Hall effect

We close this chapter with a first glimpse of a truly remarkable phenom-
enon. In the quantum Hall effect a current of electrons flowing along a sur-
face gives rise to an electric field that is so precisely determined that it has
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become the basis for the legal standard of electrical resistance. This result is
reproducible to better than one part in 10°, even when one changes the
material from which an experimental sample is made or alters the nature
of the surface in which the current flows.

In the elementary theory of the Hall effect one argues that when electrons
travel down a wire with average drift velocity v, at right angles to an applied
magnetic field Hy then they experience an average Lorentz force e(v;/c) x H
(Fig. 1.8.1). In order for the electrons to be undeflected in their motion this
force must be counterbalanced by the Hall field Ey, which arises from accu-
mulations of charge on the surface of the wire. In the absence of applied
electric fields we can then write

E+YxH=0, (1.8.1)
C

and since the current density j, is given by pyevy, we have
E. = py J (1.8.2)

with the Hall resistivity py equal to H/pgec. The product pye can be inter-
preted as giving the density of charge carriers in a metal and also the sign of
their effective charge (which may be positive or negative as a result of the
effects of the lattice potential, as discussed in Chapter 4).

A special situation arises if the electrons are confined to a two-dimensional
surface held perpendicular to the magnetic field. A semiclassical electron in
the center of the sample will then travel in a circular orbit with the cyclotron
frequency w, = eH /mc. The x-component of this circular motion is reminis-
cent of a harmonic oscillator, and so it is no surprise to find that its energy

®H,

Ya

|

EH

Figure 1.8.1. The Hall field Ey cancels the effect of the Lorentz force due to the
applied magnetic field H,.
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levels are quantized, with £ = (n + %)ha)c. These are known as Landau levels.
Because its motion is circular, it does not contribute to any net current
flowing through the sample, and so the question arises as to the origin of
any such current.

The answer lies with the electrons at the edge of the sample. They cannot
complete their little circles, as they keep bumping into a wall, bouncing off it,
and then curving around to bump into it again (Fig. 1.8.2). In this way they
can make their way down the length of the sample, and carry an electric
current, the current of electrons at the top of the figure being to the right and
the current at the bottom being to the left. To have a net current to the right,
we must have more electrons at the top of the figure than at the bottom. The
Fermi level must thus be higher there, and this translates into a higher
electrical potential, and thus a Hall-effect voltage.

Suppose now that we gradually increase the density p, of electrons in the
sample while keeping the Hall voltage constant. The number of circular
orbits and edge states will increase proportionately, and the Hall resistance
will decrease smoothly as 1/py. This simple picture, however, is spoiled if
there are impurities in the system. Then there will exist bound impurity states
whose energies will lie between the Landau levels. Because these states carry
no current, the Hall resistance will stop decreasing, and will remain constant
until enough electrons have been added to raise the Fermi energy to lie in the
next-highest Landau level.

This existence of plateaus in the Hall resistance as a function of number of
electrons is known as the integral quantum Hall effect. In very pure samples
plateaus can also be found when simple fractions (like 1/3 or 2/5) of the states
in a Landau level are occupied. This occurs for a different reason, and is

NN NS NS NS

Figure 1.8.2. Only the “‘skipping orbits’ at the edges can carry a current along the
sample.
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known as the fractional quantum Hall effect. The detailed origin of both these
effects will be explored in Chapter 10.

1.1

1.2

1.3

Problems

The energy levels &, of a diatomic molecule are characterized by an
angular momentum quantum number / and a vibrational one n. Assume
a Hamiltonian of the form

i, P ] 2
H _%+%+Z K(d — d,)
where d is the interatomic separation and Kmdg > h*>. Calculate
Ei1o—Epp and &y — &y (the energies of the two kinds of elementary
excitation), and also the difference between the sum of these quantities
and &)} —&y. This difference represents the energy of interaction
between the two excitations.

The Mdssbauer Effect Suppose that an atom of >’Fe emits a y-ray of
frequency w, in the x-direction while it is moving in the same direction
with velocity v. Then by the Doppler effect a stationary observer will see
radiation of frequency approximately equal to wy(1 + v/c). The spec-
trum of radiation emitted by a hot gas of iron atoms will thus be
broadened by the thermal motion. Now suppose the iron atom to be
bound in a solid, so that the x-component of its position is given by

X = Z a, sin(w,! + ¢,),
q

where the phonon frequencies, w,, are much smaller than w,, and the
phases, ¢,, are random. Derive an expression for the Fourier spectrum
of the radiation intensity seen by a stationary observer, taking into
account the frequency modulation caused by the motion of the atom.

[The fact that when the a, are small a large proportion of the radia-
tion has the unperturbed frequency, w,, is the basis of the Mdssbauer
effect. The emitted y-ray may be resonantly absorbed by another iron
atom in a process that is the converse of that described above.]

Phonons in a Coulomb Lattice If a particle at I carrying charge Ze
is displaced a distance y,, the change in electric field experienced at



Problems 23

distances r from [ that are large compared with y, is the field due to an
electric dipole of moment p, = Zey,, and is given by

E,(r) = |73y - 0r — py).

If the lattice is vibrating in a single longitudinal mode of wavenumber q
then one may evaluate its frequency w, by calculating the total field
>, E;. For vanishingly small q the sum over lattice sites may be
replaced by an integral [why?]. Evaluate w(¢ — 0) by (i) performing
the integration over spherical polar coordinates ¢, 6, and r, in that
order, and (ii) performing the integral in cylindrical polar coordinates
¢, r, and z, restricting the integration to points for which r < R, where R
is some large distance. State in physical terms why these two results
differ.

1.4 Phonon Interactions The velocity of sound in a solid depends, among
other things, on the density. Since a sound wave is itself a density
fluctuation we expect two sound waves to interact. In the situation
shown in Fig. P1.1 a phonon of angular frequency o’ and wavenumber
q’ is incident upon a region of an otherwise homogeneous solid contain-
ing a line of density fluctuations due to another phonon of wavenumber
q. By treating this as a moving diffraction grating obtain an expression
for the wavenumber q” and frequency w” of the diffracted wave.

=11

Figure P1.1. When two phonons are present simultaneously one of them may form
an effective diffraction grating to scatter the other.
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1.7
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In a long chain, atoms of mass M interact through nearest-neighbor
forces, and the potential energy is V' =) g(y, — y,_1)*, where g is a
constant and y, is the displacement from equilibrium of the nth atom. A
solitary wave travels down this chain with speed v. How does v vary
with the amplitude of this wave?

Assume that the density of allowed states in momentum space for an
electron is uniform, and that the only effect of an applied magnetic
field H is to add to the energy of a particular momentum state the
amount +ugH, according to whether the electron spin is up or down
(the only two possibilities). Derive an expression in terms of up and the
Fermi energy & for the magnetic field H that must be applied to
increase the kinetic energy of an electron gas at 0 K by 5 x 1078 of its
original value.

In a certain model of ferromagnetism the energy of a free-electron gas
has added to it an interaction term

Eim = KNP + N,

where N, and N, are the total numbers of up- and down-spin
electrons, respectively. By investigating the total energy of this system
as a function of Ny — N for constant N(= N, + N,) decide for what
range of K the magnetized state (in which N, # N) will be (a) stable;
(b) metastable; (c) unstable. Express your results for K in terms of N
and £p, the Fermi energy in the absence of interactions.

In a classical antiferromagnet there are two oppositely magnetized sub-
lattices, each of which is subject to a field

H,=-4 Z Wy,
T

the sum proceeding over sites I’ that are nearest neighbors to Z. Find
the form of the spin-wave spectrum in a simple cubic crystal,
and describe pictorially the motion of the spins at low and high
frequencies.

In problem 1.6, you were asked to find the magnetic field that would
increase the kinetic energy by a fraction 5 x 107%. Now redo this
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problem for the case where the rotal energy is decreased by a fraction
5x107%.

1.10 Calculate the energy of the soliton described by Eq. (1.3.2) in an infinite
Toda chain. [Alternatively, as an easier problem just estimate this
energy in the limits of small and large ju.]



Chapter 2

Second quantization and the electron gas

2.1 A single electron

We have taken a brief look from a semiclassical point of view at some of the
kinds of behavior exhibited by many-particle systems, and have then used
intuition to guess at how quantum mechanics might modify the properties we
found. It is now time to adopt a more formal approach to these problems,
and to see whether we can derive the previous results by solving the
Schrédinger equation for the quantum-mechanical problem.

For a single electron we have the time-independent Schrédinger equation

Hy(r) = EY(r), (2.1.1)
where
H= p_2 + V(r)
2m

and p is interpreted as the operator —iiV. This equation has physically mean-
ingful solutions for an infinite number of energies £, (@ = 1,2, 3,...). The
eigenfunctions u,(r), for which

Hua(r) = gaua(r)v
form a complete set, meaning that any other function we are likely to need

can be expanded in terms of them. The u,(r) for different o are orthogonal,
meaning that

Ju’};(r)ua,(r) dr=0; (¢#a), (2.1.2)

where dr is an abbreviation for dx dy dz, u* is the complex conjugate of u,

26
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and the integration is over all space. If the wavefunctions u,(r) are normal-
ized then the integral is equal to unity for « = o’.

It is convenient to adopt what is known as the Dirac notation to describe
integrals of this kind. Because wavefunctions like u,(r) have to be continuous,
we can think of the integral in Eq. (2.1.2) as being equal to the limit of a sum
like

AQ DY (g (ry), (2.1.3)

where we have divided all space into a large number of cells centered on the
points r;, and each of which encloses a volume equal to the vanishingly small
quantity AQ. If we look on u,(r) as being the column vector (i.e., the vertical
array of numbers)

ua’(rl)

ua’(r2)

and u¥(r) as the row vector

(ui(ry), ui(ry), ...,

then the sum in expression (2.1.3) is just the matrix product of u¥(r) and
u,(r). We adopt the notation of writing the row vector u¥(r) as (x| and of
writing the column vector u,(r) as |a’). Then we write the integral of
Eq. (2.1.2) as (a|a’). For normalized wavefunctions Eq. (2.1.2) then becomes

(o) =8 (2.1.4)

aa’

where 8, is the Kronecker delta symbol, which is unity when o = o” and
zero otherwise.

An example of such a set of functions u,(r) are the plane waves that are a
solution of (2.1.1) when the potential ¥'(r) = 0. Then if ¥(r) o ¢,

”o_, K
34 2m 4 2m v

We can avoid the difficulty of normalizing such plane waves (which extend

over all space) by only considering the wavefunction within a cubical box of
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volume Q = L*, having corners at the points (£L/2, +L/2, +£L/2). Then we
can take

Uy (r) = Q72T

We then impose periodic boundary conditions, by stipulating that the form of
the wavefunction over any side of the box must be identical to its form over
the opposite side. That is,

L L
Uy —E,y,z =u, +§,y,z , etc.

This means that k, can no longer be any vector, but is restricted to a discrete
set of values such that

ket (LOO) _ ik, - (0.LO) _ ik, -(0.0.L) _ 1

Hence

K — 2wm, 27m, 2mm.
* L L L

where m,, m,, and m. are integers. Equation (2.1.4) is then obeyed. These
allowed values of k, form a simple cubic lattice in k-space, the density of
allowed points being §/(27)°, which is independent of k. Summations over «
can then be interpreted as summations over allowed values of k.

We can expand a function ¢(r) in terms of the u,(r) by writing

$(r) =Y Cty(r) (2.1.5)

and forming the integral
[z @0 ar

an integral that we would write in the notation of Eq. (2.1.4) as (a'|¢). On
substituting from Eq. (2.1.5) we have

(@'lg) =Y Culele) =) Cpbpe=Con
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so that

¢r) =Y u,(r)alg),

o

which in the Dirac notation becomes

6) =) la)(elp).

This allows us to consider the first part of the right-hand side of this equation
as an operator that is identically equal to one;

Z o) (o] = 1. (2.1.6)

The combination |a) (/| is the product of a column vector with a row vector;
it is not a number but is an operator. When it acts on a wavefunction |¢) it
gives the combination |«){«|¢), which is just the number {(«|¢) multiplying the
wavefunction |a).

This notation can be extended by treating an integral like

J uk()V(r)u, (r)dr (2.1.7)

in the same way that we handled Eq. (2.1.2). If we replace this integral by the
sum

AQ Z wH(r)V (r)ug (r;)

we find that we are considering V' (r) as the diagonal matrix

V(r) 0 0
0 Vi, 0

The matrix product that gives expression (2.1.7) would then be written as

(o] V]ee').
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We then make use of the identity (2.1.6) to write

V(r) = (Z |a’><a’|>V(Z |a”><a”|)

= (o' [V]a") eV e"l. (2.1.8)

al,a

The operator |a')(a”| gives zero when it operates on any of the states |a)
except that for which « = «”, and then it gives the state |a’). We can thus
interpret |a)(a”| as removing an electron from the state described by the
wavefunction u,(r) and putting it into the state described by u,(r). In more
dramatic language the operator annihilates an electron in the state |o”) and
creates one in the state |a’). We can write this symbolically another way by
introducing the rather difficult concept of the wavefunction |0) that denotes an
empty box! That is, we define a column vector |0) that is normalized, so that

(010) =1, (2.1.9)
but which is orthogonal to all the one-particle wavefunctions u,(r), so that
(@|0)y =0

for all a. We call it the vacuum state and are careful not to confuse it with the
number zero. This state |0) cannot be described by a wavefunction in the
same sense as the u,(r), in that we do not expect to be able to ask the same
questions about probability densities that we might ask about an electron in
the state |a). It is instead just a useful device that allows us to insert Eq. (2.1.9)
into Eq. (2.1.8) and write

o’} ("] = loe’)(010) ("]
= (la")(OD(10){e"]).

We now define the combination |0)(a”| as the operator ¢, that annihilates
any electron it finds in the state |a”), and the conjugate combination
la’)(0] as the creation operator ¢, for the state |'). Then

loY | = cl ey,

and

V=Y (@' [Vie")elcon

oo
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Similarly for the kinetic energy operator

P 2 ¥
— = E (o |playel e,
2m  2m et

One might at this stage ask what use it serves to write the Hamiltonian for
an electron in this form. As long as there is only one electron present then this
way of representing operators is just a needless complication. It is when we
have a large number of identical particles present that this language comes
into its own.

2.2 Occupation numbers

Let us consider a collection of N identical free particles that do not interact.
The Hamiltonian for this system is just the sum of the Hamiltonians for the
individual particles,

1
H:Z_:Hi:%;pi

We could form eigenfunctions of H simply by multiplying together the eigen-
functions of the individual H;. If

Hiu(r;) = Euy(r;)

and
N
' = 1_[ ui(r;) = uy(rus(ry) - - - uy(ry)
i=1

then
N
HD' = (Z gi)cp’.
i=1

The wavefunction ®" however is not adequate as a physical solution of the
Schrédinger equation because of its lack of symmetry. We know that if we
interchange any two of the coordinates, then the wavefunction ® must either
remain unchanged or else be changed by this operation to —®. That is, &
must either be symmetric in the coordinates of the particles, which we then
call bosons, or else be antisymmetric, in which case we refer to the particles as
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fermions. Electrons in particular are known to be fermions, and so ® must be
expressed as an antisymmetrized combination of the ®’. We can achieve this
by forming a determinant of the various u,(r;) and writing

up(r)  w(ry) oo wu(ry)
©— 1 uy(ry)
UM

up(ry) coup(ry)

This form of the wavefunction (known as a Slater determinant) is very
cumbersome to handle, even in this simple case where the particles do not
interact. When interactions are present & will no longer be an eigenfunction
of H, but since the various ® form a complete set any N-electron wavefunc-
tion W can be expanded in terms of N-electron Slater determinants. We could
then write

V= Z Clay -+ ay)P(a; - ay)

apeay

where the «; label the various states u,; that occur in the determinant. If we
knew the complex constants C(«; ...ay) then the wavefunction would be
completely specified; it would, however, be grossly inconvenient in making
calculations, each ® alone being a sum of N! terms.

The shorthand we use for describing the @ is known as the occupation
number representation, and cuts out all the redundant information contained
in ®. We know first of all that there are N particles, and that all the coordi-
nates r; come into the wavefunction on an equal footing. We also know that
® is antisymmetrized, and so we do not need to write this explicitly every
time we consider ®. All we need specify are the states u, that are occupied.
We define an occupation number, n,, that is equal to 1 if the state appears in
the determinant describing ®, and equal to 0 if it does not. Thus we specify
the two-particle state

1
q)a,,B(rl’ ry) = 75

Uy (1)) 1y (ry)

uﬂ(rl) uﬂ(rz)

by writing

Ny =ng= I; all other n = 0.



2.2 Occupation numbers 33

We adopt the notation
[1,1,0,0,...)
to signify the wavefunction in which

n, =1; nﬁzl; ny=0; ng =0, etc.
Clearly we can specify a ® for any number of particles by means of this
notation. We might further abbreviate by writing ® as |{n,}), where {n,} is
understood to be the set of occupation numbers n,, ng, etc.

Now we know that for any two distinct ® describing states containing the
same number of particles

Jd>ﬁ¢u,drl dr,---dry =0. (2.2.1)

We must also consider the ® to be orthogonal when they specify different
numbers of particles, since this integral is a product of the integrals over the
various r;, and if @ is a wavefunction for only N — 1 particles then it has zero
component in the space defined by ry. (Note that we do not show this result
by taking an integral of the form (2.2.1) when the ® have different numbers
of particles present, say N and N — 1. Rather we must convert the & for
N — 1 particles to a function in N-particle space by multiplying by some
function of ry. This function is of course zero, since there is no Nth particle!)
We denote this orthogonality by writing

{({n,}{n, ) =0

for the cases where the sets {n,} and {n,} are not identical. For normalized
wavefunctions

<{n/L}|{nu,}> =1

The many-particle wavefunctions that we describe with the notation |{n,})
are a generalization of the single-particle wavefunctions |a) of Section 2.1.
The |{n,}) form a complete set not just in one-particle space, as did the |a),
but also in the space known as Fock space, which can contain any number of
particles. Corresponding to Eq. (2.1.6), which only referred to one-particle
space, will be the relation

> ) =1,
{n,}
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The sum here is over all possibilities for the set of numbers {n,}. If V' is an
operator containing the coordinates of any number of particles we can write
the identity

V

D W VD () (2.2.2)

{n,}ny, 0}

If we further abbreviate ({n,}|V|[{n,}) by V', this becomes

V=) Valinddn .

{n,}{n,}

Our next task is to interpret the many-particle operators |{n,})({n,}| in terms
of the annihilation and creation operators that were introduced at the end of
Section 2.1.

2.3 Second quantization for fermions

The notation |{n,})({n, }| that we adopted in the last section was an abbre-
viation for

Ing,ny, .. (n, 0, ... (2.3.1)

In the case where our identical particles are fermions the individual occupa-
tion numbers, 7;, can only take on the values 0 and 1. Because each wave-
function |n;, n,,...) symbolizes a determinant of the wavefunctions u; for
which n; = 1, we must be sure that we always take the various u; in the
same order. If we took them in a different order we would be doing the
equivalent of interchanging some columns of the determinant defining &,
and we might end up with —® instead.

The simplest operator of the form (2.3.1) is one in which just one of the n/
is different from #;. That is, we consider

|ny, 1y, ..., 1

p=0,...)(n1,n2,...,n =1,...|. (2.3.2)

»
This clearly has something in common with the annihilation operator of
Section 2.1, since it acts only on a wavefunction that has the pth one-particle
state occupied, and gives a wavefunction with the pth state empty. If we
want an operator that acts on any wavefunction for which n, = 1, we should
have to sum expression (2.3.2) over all the possibilities for the other n;.
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This would give

Z |n1,...,np=O,...)(n1,...,np:1,...|.
{n;}(i#p)

Finally, we need to keep track of the sign of the new wavefunction that this
operator gives, as mentioned above. This can be achieved by defining a
number

and multiplying the operator by (—1)"». We define the result of this as the
annihilation operator for the fermion system.

= > (=DM, =0, 0= 1, (2.3.3)
{n}(i#p)

Now consider the effect of ¢, upon a wavefunction in which the pth state is
empty. Since

we have

If the pth state is occupied, however, there will be one term in the summation
that will not be orthogonal to the wavefunction, and

N
cplnl,nz,...,npz1,...):(—1) Flnl,nz,...,nsz,...).

To operate twice with ¢, would be to try and destroy two particles from the
same state, and so

as may also be seen from the definition of ¢,.
The creation operator is the operator conjugate to c,. It is defined by

= (=D%..n,=1,..0(..n,=0,..1,
{n}(i#p)
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and has the effect of introducing a particle into the formerly empty pth state.
L, =0,..0 =(=D"..n,=1,..)

—1,..)=0.

Any more complicated operator of the form |{n,})({n, }| can be expressed
in terms of the various ¢, and cIT,, for we can always write

Hn, 1) {ny 3 = Hny 1) (nyd i ) Qo 3 ) (g 3,

choosing |{n,~}) to differ from |{n,}) in only one occupation number, and so
on. Thus we could write

|...n,=0,n,=0,..)...n,=1,n,=1,...]

i q P q
{n}(i#p.q)
= Z |...n,=0,n,=0)(...n,=0,n,=1,...]
{n}(i#p.q)
l...n,=0,n,=1,..0(..n,=1,n,=1,...]
= (=Y (=), (2.3.4)

Alternatively we might have inserted a term

into the operator. Then we would have found it to be equal to
(—D)Vre, (=DM, (2.3.5)
Now ¢, destroys the particle in the pth state, and so the value of N, depends
on whether we evaluate it before or after operating with ¢, if we assume
g > p. We then find that
(—=DNic, = ¢, (=D (2.3.6)

N,, on the other hand, does not depend on n,. We thus find, combining Egs.
(2.3.4), (2.3.5), and (2.3.6),

g+, =0 (p#q). (2.3.7)
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We say that ¢, and ¢, anticommute, and abbreviate Eq. (2.3.7) by writing
{ey e} =0 (p#9). (2.3.8)

By similar arguments it can also be shown that
ey ={cf.c =0 @#0q. (2.3.9)

The combination c;,cp, in which ¢, first operates followed by ¢, is particu-
larly important. It is easy to see that it has eigenvalue zero when it operates
on a state for which n, is zero, and has eigenvalue unity when it operates on a
state that has n, = 1. We can consequently identify the operator cTcp as the

P
number operator,

.o
CpCp =Ny,

Now if we first operate with c; upon a state with n, = 0, we obtain the state

with n, = 1. Thus when the combination ¢,c, operates upon a wavefunction
in which the pth state is empty it gives unity. Similarly we know that

+

cpCploon, =1,...) =0
since cIT, cannot create another particle in an already occupied state. We are

thus led to the conclusion that

from which
(:;cl7 + cpc; =1.
Thus in the notation of Eq. (2.3.8) we have
{c;, ¢} =1.
In summary the commutation relations for ¢, are

{ep, ey =1cpoc} =0

{epchy =8, (2.3.10)



38 Second quantization and the electron gas

We are now in a position to use Eq. (2.2.2) to write any operator in terms
of annihilation and creation operators. Let us first consider a single-particle
operator, such as an ordinary potential, V' (r). This will enter the many-body
Hamiltonian in the form

N

> V)

i=1

since it acts equally on all the particles. We then find that the only matrix
elements, given by

(nVI{n,}) = JCD*((X] )V )P . af)dr - dry,  (2.3.11)

that do not vanish are those in which not more than one of the «; is different
from «;. Then the integral reduces to

J wf(r)V(ru; (r)dr.

In the occupation number representation we should write this as

Vie=(ny,....,n, =1,n, =0,...[Vin,...,n, =0,n,, =1,...).

i i i i

Then from Eq. (2.2.2)

V= > Valoong=1ng=0,. ).n,=0n,=1..]

() (o))

— i
= E Viirco, Co!-
a0

We could do the same with the kinetic energy part, T, of the Hamiltonian,
and write the Hamiltonian as a sum of 7" and V. It is usually most convenient
to choose a set of functions u, such that 7 only has diagonal matrix elements.
The plane wave representation of Section 2.1 satisfies this criterion, so that if
we choose

u,(r) = Q12T (2.3.12)
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as the states out of which to build our determinants ®, we shall have

B o _hz - h2k2
Tkk/ =Q lje ik r(%v2)elk rdl‘:ﬁakk/’

and
Vi = Q7! Jei(k/_k)"V(r) dr.

The Hamiltonian then becomes
H= Z Excien + Z Vig che
K K.k’

where we have written &, for Ty,. Note that the annihilation and creation
operators always appear in pairs; a potential cannot remove a particle from a
state without putting it back in some other state.

As long as there are no interactions between the particles — that is, as long
as the Hamiltonian can be split up into a sum of parts each of which refers to
only one particle — there is little profit in rephrasing the problem in this
notation, which is, for irrelevant reasons, known as second quantization.
When, however, we introduce interactions between particles this formalism
provides the only workable approach. Consider, for example, an interaction
between particles that is expressible as a simple potential. That is, we add to
the single-particle Hamiltonian terms of the form

V=Y V- i)
ij
(the factor of % prevents us from counting interactions twice). Then

{n WV I{n, 1)

— Z % J‘D*(Oll ceay)V(r — rj)CID(a{ c-ap)dry - -dry.
ij

As in the case of Eq. (2.3.11), this integral may be simplified. The determi-
nants are sums of products of the functions u,, and so the integral is a sum of
terms of the form

| S B R L AR RIS L
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This can be separated into a product of integrals over one coordinate,
[ wrteug ey, [y ey |- (23.13)

with the exception of the integration over dr; and dr;, which cannot be
separated, and gives a term of the form

Vs = | D@V, = 1), 1)y, (23.14)

Because the u(r) are orthogonal, the integrals (2.3.13) vanish unless
a=a',b=>b', etc. We are thus left with the fact that V' can only alter the
occupation of the states «, 8, y and §. Thus ' may be expressed as

V=3 Z Vaﬂy(;cz,c;cyca. (2.3.15)
a,B,y.0

It is not obvious that we have the correct numerical factor and the correct
order of the operators ¢, and ¢, in this expression. Because these operators
anticommute, incorrect ordering would describe the interaction (—V). We
can check the validity of the expression by considering the simplest case,
where V' = 1. Then the contribution of V' to the Hamiltonian is

DY 1=Iinw -1, (2.3.16)
i#]

with N the total number of particles present. From (2.3.14) we have
Vagys = Sus Opy
and so from Eq. (2.3.15)
V :% Z clczcﬂca
o.fp
:% Z CL(CO[C; — 8ap)Cp
o.p
=3 (V=N

in agreement with Eq. (2.3.16).
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The matrix elements of V' take on a particularly simple form when the u(r)
are the plane waves defined in (2.3.12). Then

. " . " I
Vk,k/,k”,kw == 972 Jel(k 7k) " €l(k -k )‘rz V(rl - 1'2) drl (ll'z
_ sz J e%i(k’”kark”fk')-(r1+r2) e%i(k”’fkfk“rk’)-(rlfrz)
x V(r; —ry)dr; dr,.

If we change to relative coordinates by writingr =r; —r, and R = %(rl +1;)
we have

_ Iy ///_ //_ A . l< ///_ _ " A .
Vi xr ke = € 2Je’(k ktk™—k) RdRJeZ’(k O TV () dre

The integral over dR vanishes unless k” — k +k” — k' = 0, in which case it
gives 2, so that

Vk,k/,kﬁ,km = 8k+k/,k”’+k”Q_l Jel(k -k ).r V(l‘) dl'.

The §-function is no more than an expression of the conservation of momen-
tum in a scattering process, since for a plane wave p = /k. The integral over
dr is the Fourier transform of the interparticle potential; we shall call it
Vi—x». Then

1 2 : \PA)
V = 5 Vk’—k”ckck’Ck”Ck-i-k’—k”-
k,k/,k”

We can make it clearer that momentum is being transferred by defining
k' —k” = q and renaming the other variables. This gives

— 1 2 : oot
V =3 chk_qck’+qcklck.
kk'.q

It is often useful to interpret this product of operators pictorially. Particles
in the states k and k’ are destroyed, while particles in the states k — q and
k' + q are created. This can be seen as a scattering of one particle by the
other — a process in which an amount of momentum equal to /q is transferred
(Fig. 2.3.1).
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k
k—q

Figure 2.3.1. This diagram shows electrons in states k and k’ being scattered into
states k — q and k' 4+ q, and represents the product of operators c.'(_qclrﬂck/ck.

2.4 The electron gas and the Hartree—Fock approximation

Our principal motivation in studying the theory of systems of interacting
fermions is the hope that we might in this way better understand the
behavior of the conduction electrons in a metal. Accordingly the first
system to which we apply this formalism is that of unit volume of a gas
of N spinless electrons, interacting by means of the Coulomb electrostatic
repulsion. Then

2
Vi, — rj) =_°

r; — 1/ ’

and

>
V= Q! J G gr
||

) 2 proo T - )
= e J er do %% sin g
Q) 0

dre’ r" i d
= — ingrdr.
Qq )y

This integral does not converge, owing to the long range of the Coulomb
potential, and so one uses the trick of supposing that the potential does not
vary merely as r~!, but as r'e™® and then takes the limit as « tends to zero.
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One finds
47re? o
_ ~ —av/g g
Vy= o il_I)I}) Jo e sinydy
_ 4re?
=g

provided ¢ # 0. The divergence of V, for ¢ = 0 is a difficulty that we might
have anticipated had we looked more closely at the physics of the situation
we are considering. Because the electrons are described by traveling waves the
box may be considered as a conductor carrying a charge Ne, and it is an
elementary result of electrostatics that charge always resides at the outer
surface of a conductor.

It is now clear that our model of a metal as a mere gas of electrons was too
simplified to be useful. We must take into account the presence of the posi-
tively charged ions that maintain the overall electrical neutrality of the metal.
This, however, makes the problem a very difficult one indeed. Even for a
single electron it is not trivial to solve the Schrddinger equation for a periodic
lattice potential, as we shall see in Chapter 4, and so it is necessary to keep as
simple a model as possible. This is achieved by replacing the lattice of posi-
tively charged ions by a fixed uniform distribution of positive charge, and
investigating the interaction of the electrons in the presence of this back-
ground charge. This simplified model of a metal is sometimes known as
jellium. The positive charge background adds to the Hamiltonian an extra
one-particle potential term ¥+ which, as we saw in the previous section, can
be written

vt = Z V:c'{(_qck.
k.q

As this charge density is uniform, the Fourier transform V; of the potential
due to it vanishes unless ¢ = 0. Thus

VE=> "Vim =NV§
k

and no scattering is caused by this term, which is just a constant. Now if we
look back to our transcription of the electron interaction potential in second-
quantized form, we see that the troublesome coefficient V), also occurs in
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terms that cause no scattering. The part of H containing V, was

) E VOCka’Ck’ck =3 E VOCk(Cka’ — Skk/ )k

Kk’

= % Z Vol — my Syyr)
Kk’

=1L NN -1V,

which is again a constant. It is then reasonable to suppose that we can choose
the density of the positive charge background in such a way that these terms
cancel. We write

LN(N=1)Vy+NVy + Wy =0,

where the energy W of interaction of the positive charge with itself has been
included in the sum of divergent terms that must cancel. The details of this
cancellation are left as an exercise, and it suffices for us to know that the
divergence can be removed. We shall assume that this has been done in what
follows, and always omit the term for ¢ = 0. The Hamiltonian then becomes

27e?
H = Z é‘kckck+k; o Cl gl gk i (2.4.1)

where once again we have written &, for A’k>/2m. We are interested in
finding the eigenfunctions of this Hamiltonian and the corresponding eigen-
values. Such a task proves to be immensely difficult, as many of the techni-
ques that are used for single-particle problems fail in this instance. We shall
not go too deeply into the complicated procedures that can be developed to
get around these difficulties, but instead shall just examine some simple
approximation methods.

A zero-order solution can be arrived at by neglecting the interaction term
altogether. Then

Hy = Za‘fkc,tck = Z Exny.
k k

We can easily construct eigenfunctions of the operator ny. First let us start
with the state |0) in which there are no particles at all. This is just the vacuum
state defined in Section 2.1. For all k

nk|0> — 0.



2.4 The electron gas and the Hartree—Fock approximation 45

We can next create one particle in the state k' by operating upon the vacuum
state with cf(/,

k') = cf.10).
Then
m k') = cioel10)
= Cli((skk’ - Ci/ck)|0>

from the commutation relations. But we know that ¢, operating upon the
vacuum state gives zero, since there is no particle there to destroy, and so

I’lk|k/) == 8kk/ |k/>

We can go on to build up a wavefunction |®) containing N particles by
repeatedly operating upon the vacuum state with different c}:,, so that

N o
) = (1‘[ cli,.)|0>.
i=1

We can similarly show that

Then

Thus |®) is an eigenfunction of the Hamiltonian with eigenvalue ) _; &y . The
solution of this kind having the lowest energy is clearly that in which the
wavenumbers k; represent the N single-particle states for which the indivi-
dual energies &, are the lowest. Since

K

&
ki 2m

’



46 Second quantization and the electron gas

this is no more than our picture of a Fermi surface in momentum space. If
there are N states for which k| < k, then all such states are filled to give the
ground state of a gas of noninteracting fermions. This picture is sometimes
known as a Sommerfeld gas (Fig. 2.4.1).

Now that we have found the eigenfunctions of H, we can calculate an
approximation to the energy of the interacting system. The exact energy
we know to be (W|H|¥), where W is the exact wavefunction. If we assume
¥ and & to be not too dissimilar we can calculate an approximate energy,
Eur, by forming (®|H|®). Using Eq. (2.4.1) we find

Epr = (PIHy + V|P)

kkq

where we call the energy of the noninteracting system &.

Now the effect of the potential is to take particles out of the states k and k'
and put them into the states k — q and k' + q. If these states are different
from the original ones, then the wavefunction formed in this way will be
orthogonal to @, and the matrix element will be zero. This means that the
only terms that do not vanish will be those that do not change the occupation
numbers of |®). Then either

k'=k'+q and k=k—q

n=10

Figure 2.4.1. The Fermi surface of the Sommerfeld gas separates k-states for which
ny = 1 from those for which n, = 0.
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or else
k'=k—q and k=k'+q.

The first possibility implies that ¢ = 0, and we have agreed to omit this term,
which does not correspond to any scattering at all (Fig. 2.4.2(a)). This leaves
us with the second possibility, Fig. 2.4.2(b), known as exchange scattering, in
which the particle that was in the state k is scattered into the state k', and vice
versa. The correction this gives to & is known as the exchange energy. We
find

2JT€2 +f
Epr =&+ Z (@] kK Ci i x| P)
K.k’
e
=&+ )| D). 242
) kaj mk o e (242)
This we can write as
21e’
Emr=E&— ), ————
k,k" occupied Qlk - k/|
k k
1
I
I
i
i
|‘
kJ ll kJ
(a)
k k'
I
|
|
|
i
|
k' k
]

Figure 2.4.2. In the Hartree—Fock approximation only direct scattering (a) and
exchange scattering (b) between identical states can occur.
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where now the summation is over states k and k' that are both occupied. This
method of treating the electron gas is a special case of an approach known as
the Hartree—Fock approximation, and is the simplest way in which we can
take the interactions into account. Even this approach can become very
complicated, however, if in addition to the interactions there is some addi-
tional one-particle potential applied to the system.

The interesting point to note is that in this approximation the energy is
reduced below that of the Sommerfeld gas, &,. It is not paradoxical that the
repulsive interaction should decrease the energy of the system, for we must
not forget that we have also effectively added a uniform background of
positive charge when we eliminated the interaction V,_,. The reduction in
energy comes from the fact that the particles are kept apart by the antisym-
metrization of the wavefunction, and so are acted upon more by the positive
charge background than by their neighbors.

So far we have considered only a system of spinless particles. In fact we
know that the electron has a spin angular momentum of %h, which means
that a single electron can occupy a state k in two ways, either with spin up or
with spin down. We denote this by naming the states k1 and k|. This
modifies the energy we find for the Sommerfeld gas, since now the Fermi
wavenumber & is determined by the condition that there be only %N values
of k for which |[k| < k. The inclusion of the spin of the electron in our model
must necessarily introduce a number of other complications, for the spin will
be accompanied by a magnetic moment, and the electrons will interact by
virtue of their magnetic fields. However, we ignore these effects, retaining
only the Coulomb interaction, and ask how the Hartree—Fock energy is
modified by the inclusion of spin.

The first point we note is that since k4 and k| denote separate states all
anticommutators for states of opposite spin vanish. Thus for example

{eps cfy} = 0.

Next we see that since the Coulomb interaction does not contain the spin
coordinates it cannot cause an exchange of particles with opposite spin. The
integration over r;, for example, in Eq. (2.3.14) demands that the spin of state
ug be the same as that of u,,. The Hamiltonian thus becomes

=Y el + ] P
H= gkckscks + 3 chk—q,sck/+q,s’Ck’,s’ck,s
Kk,s k.k',q,s,s’

and only terms of the form nyyny, and ny | ny will come into the expression
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for the exchange energy. We again find

2e’
Er=6- 2 Gk

but now the summation proceeds only over states k and k' that are occupied
and that have the same spin. This reduces the amount by which the Hartree—
Fock energy £y is less than &,. One may express this by saying that now the
antisymmetrization only keeps apart the electrons having parallel spins. We
can guess that in the exact solution to the problem a// the electrons will try to
keep apart from one another regardless of their spins; they will reduce the
potential energy of the system by doing so. We say that their motions will be
correlated, and that the difference between the exact energy and Eyp is the
correlation energy.

One might now be tempted to ask how the energy of a single electron is
altered by the interaction. A little reflection shows this question to be mean-
ingless, since the energy of interaction of two particles cannot be associated
with either one, and it makes no sense to share out the interaction energy
between the particles in some arbitrary way. One can only talk about the
total energy of the system. However, as long as we are within the Hartree—
Fock approximation we can ask how the total energy changes when we
change the approximate wavefunction ®. In particular we might ask how
Epr changes when we remove an electron. If we consider (®|ny|®P) as the
number (n,) (as opposed to the operator n, = c;,cp), then to take away an
electron in the pth state is to reduce (n,) by 1. The energy change is conse-
quently d£/9(np,). From Eq. (2.4.2) this gives for the example where we
neglected spin

Eyr 0 2me?
= Exlm) = > = )
a(mny) a<np>{2k: KTk §Q|k—k|2 Kk
4re®
=& -y — _n). 243

We might then put this electron back into another state p’. The work
required to take the electron from p to p’ would then be

_ agHF _ BEHF

AW .
ony)  dmy)

If the states were separated by a very small momentum difference, so that
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p’ = p + & we should have

9 aa”>
AW =6 —| —— ). 244
. <a<n,,> @44

Because of the spherical symmetry in momentum space of the interactions
and of the function (n,), we know that the derivative with respect to p (by
which we mean the gradient in p-space) must be in the direction of p, so that
only the component, §,, of & that is parallel to p enters Eq. (2.4.4). In the limit
that §, — 0 we have

AW dW_i(&EHF>

—- — =
s, dp  dp \ 9(n,)

which from (2.4.3) is

2

daw 9, 9 4me
av _ _ . (2.4.5)
dp — p op zk: Qlk —pP? "

This is of interest because it tells us the energy of the lowest-lying group of
excitations of the system within the Hartree—Fock approximation. When we
took an electron below the Fermi surface of the noninteracting system and
put it in a higher energy state, we said that we had created a particle-hole
pair, which was an elementary excitation. In the limiting case that we had
taken an electron from a vanishingly small distance /2 below the Fermi
surface, and put it in a state §/2 above the surface, the excitation would
have had energy & x (3€/dp),_,,, corresponding to the first term in (2.4.5).
In the Hartree—Fock approximation the elementary excitation has the energy
8 x (dW /dp),_,,, which includes the second term in (2.4.5). However, inspec-
tion of (2.4.5) shows that as p — py, dW /dp becomes infinite. This has con-
sequences that are at variance with the experimentally determined properties
of the electron gas as found in metals, and is a first indication that the
Hartree-Fock approximation may be inadequate where Coulomb forces
are involved.

2.5 Perturbation theory

The only system whose wavefunctions we have studied has been the gas of
noninteracting fermions described by the Hamiltonian

Hy =Y Exm
k
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In the Hartree—Fock approximation we merely took the wavefunctions |®)
of the noninteracting system, and worked out the expectation value in the
state |®) of a Hamiltonian containing interactions. While we could look
upon this as a variational approach — we guess that the wavefunction
might be like |®) and we work out the energy it would give — we could
also consider it as the first term in a perturbation expansion. Let us now
quickly look at the methods of perturbation theory, and see how they apply
to many-body systems.
We start by stating a solution of a simple problem,

Holp) = Eolg), (2.5.1)
and consider the solutions of
(Ho + MY) = ElY). (2.5.2)
From the perturbed Eq. (2.5.2) we have that
(DI(Ho + MIY) = (9IEIY)
and so if we normalize |) with the condition
(Ply) =1,
then because (¢|H, = (¢p|Ey we have
£~ & = @IV (2.5.3)
To proceed further we need to define what we mean by a function of an

operator. From (2.5.1), for instance, we can find by operating with H, on
both sides that

HoHol¢) = Hile) = EGl9).
and in general that
(Ho)'l9) = (£)"19).
Thus if we interpret f(H,) as a power series expansion in H, we should have

J(Ho)lp) =1(£o)l9)- (2.54)
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We generalize this definition to include functions like 7'/ that have no
power series expansions. In particular, the operator function (z — H,) ™' is
the operator whose eigenfunctions are |¢) and whose corresponding eigen-
values are (z — &), provided z # &,.

There are various ways in which we can write the solution of (2.5.2) using
the expression for the perturbed energy (2.5.3). We could write

1Y) = 1) + (Eg — Ho) ' (1 — [¥) @D V1Y), (2.5.5)

which is the starting point of Rayleigh—Schrodinger perturbation theory.
Another possibility is

1Y) = 1¢) + (€ — Ho) ' (1 — o))V |¥), (2.5.6)

which is the starting point for Brillouin—Wigner perturbation theory. These
equations can be verified by operating upon them with (£, —H,) and
(€ — H,), respectively. Because the right-hand sides still contain the unknown
|), one iterates these by using the equation itself to substitute for |/). Thus if
we write

(&= Ho)™'(1 = 19)(@]) = Gy
then the Brillouin—Wigner formula becomes
V) = |#) + G Vi) + G VG V) + -

The Rayleigh—Schrodinger expansion, for example, allows us to write the
energy, to second order in V, as

£ =&+ (BIVI) + (BIV(Ey — Ho) ' (1 = 10) (g V|$).

This sort of expression is evaluated by remembering that
D gyl =1
p’

when the |¢,) form a complete set. Then for the energy of the state [yr,)
corresponding to the unperturbed state |¢,) of energy £, one finds

E=E,+(BIVIo)+ Y (D VIe)E, —E) b VIgy).  (25.7)
p'(p'#p)
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Again, this expression is valid only to second order in V. The term p’ = p is
excluded from the summation by the projection operator, 1 — |¢,)(¢,|. This
removes one term for which the energy denominator would vanish.

We can interpret the final term in expression (2.5.7) in the following way.
First the interaction V' causes the system to make a transition from the state
|¢,) to the state |¢,). This process does not conserve energy, and so the
system can only remain in the intermediate state a time of the order of
h/(€, —&,), which is all that the Uncertainty Principle allows. It must
then make a transition back to the original state, again by means of the
perturbation V. The higher-order expansions become very complicated, espe-
cially in the Rayleigh—Schrédinger formula, where |) occurs twice. In fact, it
turns out that the Brillouin—Wigner expression is less well suited to many-
body systems than the Rayleigh—Schrodinger one from the point of view of
convergence. Although there are a number of elegant methods that mitigate
the awkwardness of keeping track of the terms in the Rayleigh—Schrodinger
expansion the approach remains a difficult one, and we shall for the most
part leave this approach to the more specialized texts.

In the case of the electron gas in particular, one runs into difficulty even in
the second-order expansion for the energy, as this turns out to diverge. We
noticed the danger signals flying in the first-order term, which was the
Hartree—Fock approximation. There we found in Eq. (2.4.5) that although
the energy W required to add another electron to the system was finite, its
derivative, dW /dp, was infinite. This was due to the fact that for the
Coulomb interaction V, g2, and reflects the long-range nature of the
Coulomb force. If we try to take this to second order in perturbation theory
by using (2.5.7) we find that the total energy itself diverges logarithmically.
To see this we note from Eq. (2.5.7) that the contribution to the energy that is
of second order in V' takes on the form

ED = DRIV IPHE, — Ep) @yl VD),
piF)

where @, and @ are the initial and intermediate wavefunctions describing
the N independent electrons. Now

_1 E NN .
V =3 Vqu_qu/+qu/Ck
kk'.q

and so @ differs from @, in having electrons removed from states k and k'’
and put back in states k' + q and k — q. Now the second time that V' appears
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in £? it must transform ® g back into @,. If we now write

f
Z Cp—q p’+q’cp’cp

p.p’.q’

then there are only two possible ways in which this can happen. These are
illustrated in Fig. 2.5.1. We must either havep=k’'+qand p'=k —q as in
Fig. 2.5.1(a) or else p=k —q and p' =k’ +q as in Fig. 2.5.1(b). In the
former case the operators ¢, and ¢, annihilate the electrons that were scat-
tered into states k — q and k' + q, respectively, and electrons are created in
states k —q+q’ and k' + q — q'. In order for the net result of all this to be
the original state ®, we must either have q =q  orelse k' +q —q' = k. We
call the first possibility a ““direct” term and the second an ‘“‘exchange” term.
We shall investigate only the contribution to £ of the direct term, as this
turns out to be the more important one. If we follow up the alternative

k—q+q’

P
P
=

|
|
|
|
|
k'+q ‘\\‘\\\

kK'+q—q

@

k—q—q'
k—q

oy

k'+q
K+q+q

®

Figure 2.5.1. The two possible second-order scattering processes.

]
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possibility for the choice of p and p’, we find that this also leads to a direct
term and an exchange scattering term of the same magnitude as before. The
total contribution of direct terms to £ is thus

&2
dlrect =2 Z( > (@ |Ck’cLCk qk'+q

k.k',q

1
X
Ex+ & — &g — Eiigq

P .
Ck—qCk " +qCk Ck| D) -

We may use the fact that & = /i°k*/2m to simplify the energy denominator
and then commute the c-operators into pairs that form number operators.
We then have

@ _m Z 2<(Do¢| (I = me_ (1 = myy Jmeny, D). (2.5.8)

direct _2_}52 q —q-(q+k’ —Kk)

k.k',q

and we now take ®, to be the noninteracting ground state. If we include the
spin of the electron we should have to multiply this result by a factor of 4,
since both states k and k’ can have spin either up or down.

The difficulty with expression (2.5.8) lies in the terms for which ¢ is small.
The factor of (1 — ny_¢)ny then restricts the summation over k to a thin layer
of states of thickness ¢ on one side of the Fermi surface, as indicated in Fig.
2.5.2. The summation over k' is similarly restricted to a layer on the opposite
side. The two summations thus contribute a factor of order ¢*. The volume
element for the summation over q will be 471(12 dg, and V is proportional to

Figure 2.5.2. The product (1 —ny_q)n vanishes everywhere outside the shaded
volume.
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¢ 2. The net result is that 551213ect contains a factor | g~ " dg, which diverges
logarithmically.

We might also have guessed that perturbation theory could not be applied
in any straightforward way from our semiclassical approach to the electron
gas. There we found that a form of collective motion — the plasma oscillation
— played an important role in the dynamics of the system. It is clear that we
could not arrive at a description of collective motion by just taking a couple
of terms of a perturbation expansion starting with a scheme of independent
particles. As it turns out, rather sophisticated methods have been devised
whereby one can sum an infinite number of terms selected from the perturba-
tion expansion, and arrive at a picture of collective behavior. We, however,
shall first take a simpler approach. We know that plasma oscillations repre-
sent density fluctuations, and so we shall deliberately search for a solution of
the Schrodinger equation that describes these.

2.6 The density operator

So far we have used the occupation number representation to define opera-
tors that create particles in various states, u,. When these are plane wave
states the probability of finding the particle is constant at all points in space.
We now ask whether it is possible to define operators that will create or
destroy particles at one particular point in space.

For the plane wave states contained in a cubical box of volume 2, we
found in Section 2.1 that the allowed values of k were given by

K= 2m, 27wm, 27m,
L L L)

where the m were integers. We now first show the important relation

Y T =6 (2.6.1)
k

where §(r) is the three-dimensional Dirac delta-function, which is zero for
r # 0 and for which [, f(r) 8(r)dr = f(0) when r = 0 is within . To see this
we first substitute for k to find

; > 2wim X 2mim N4 2wim.z
E : ik-r 2 : X 2 : ) § : z
m ¢ o exp( L ) exp< L >m exp( L )

M, =—00 m,=—00 . =—00
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Now

M + l)nx]

i ox 2mwimx _ st |: L
P L - . ( X )
sin

m=—M

so that

M _ .
J Z eXp(mex)f(x) dx = J£ w f(g) dc.
T T

ey 7} L sin ¢

As M — oo the term sin[(2M + 1)¢] begins to oscillate so rapidly that only
the region near { =0 gives any contribution to the integral. Then we can
replace sin ¢ by ¢ and f(L¢/m) by f(0) so that the integral becomes

Srof =M G - o)

M¢=—o00 M;

Thus
| 03 erar= oo
k

which proves (2.6.1).
This relation suggests that we define an operator ¥ (r) by

Y=Y e el (2.6.2)
k

This operator, not to be confused with a one-particle wavefunction, is known
as a fermion field operator. Its conjugate is

Y = 'Y Mg (2.6.3)
k
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Then

W, '@y =7y T g, )

k.k’
_ Qfl eik-(rfr’)
2
— S(r—1). (2.6.4)

The fact that the field operators have these anticommutation relations shows
that they are the operators we are looking for. If ¥/(r) does indeed annihilate a
particle at r we should expect that

01y (x)¥(r)|0) = 0

and

Oly(@yx))0) = 8 — 1),

for y(r) will always give zero when operating on the vacuum state |0) unless
we first operate with ¥'(r). This is compatible with (2.6.4).

The operators that we expressed in terms of the ¢ and ¢, may equally well
be expressed in terms of the wi(r) and ¥(r). For instance,

WﬂEJW@waﬂM
and
Vr) = [0/ 00 @OV ) i

as may be verified by substitution from the definitions (2.6.2) and (2.6.3) and
use of (2.6.1).

In particular, we can use the field operators to represent the density of
particles, o(r), at the point r. The density is defined as the sum over particle
coordinates, r;,

pr) =Y 8(r—r),

1
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and in terms of the field operators this becomes

p(r) = jwr/) 5(r — )y dr’
= Y (Oy(). (2.6.5)

The Fourier transform of the particle density is

Pq = Q! Je_iq'rp(r) dr

. .,/ -
-Q 2Je zq-rE :ez(k k)-rclv(ck,dr
k. k’

_ ol i
=Q E CkCx’ 8k’—k,q
K.k’

-1
=Q Z clckﬂ.
k

Because p(r) = p'(r) it follows that pji = p_q-

As an example of the usefulness of the density operator, we show how the
Hamiltonian for the electron gas can be expressed in terms of the number and
density operators. From Eq. (2.4.1) we have

27 rog
H = ngnk + Z Q—qz ck—qck/—}—qck/ck'
k

k.k'.q
Now
N o NN .
Ck—qCk'+q%k'k = Ck—qCKk"+qCkCk’
k.k'.q k.k'.q
_ N AT .
= E Cqu(‘sk,k%q - Ck¢k’+q)¢k’
k.k'.q

SEDICCAED 31 0 LA Srawy
K'.q q k K’
=-y (Z nk’) + Q7Y pypg-
q q

Kk’
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But since ),/ m = N, the total number of particles, we have

H = Z Eny + Z (92 —N).

Note that the summation over q cannot be performed for each component of
the interaction separately, as these would not converge.

2.7 The random phase approximation and screening

Let us suppose that there is an operator B' that creates an excitation of a
many-body system. If the ground-state wavefunction is |¥) then we should
have

HIW) = W)
and
HB W) = (&, + &) B |W),

since the excited state of the system, B%|\I/), is also an eigenfunction of H,
having an energy that is greater than the ground state by an amount &, the
excitation energy. Thus

HB' W) — B'H|W) = £,BT|w).
If in particular
HB' — B"H = £,B

then we can say that B creates an excitation of energy &, irrespective of which
eigenstate of H it operates on (provided B'|W) £ 0). We abbreviate this con-
dition by

[H, B = &,B'

where [H, BT] is known as the commutator of H and B', in distinction to the
anticommutator, in which the minus sign is replaced by a plus.
Let us now examine the case where

B' = Cp+q P’
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and see under what conditions this would create an excitation in the electron
gas. In this case

_ § i 1 i i
H = gkaCk + ) Vquk_q/Ck/+q/Ck/Ck,
k kk'.q

and it takes but a tedious half-hour to show that
[H, "1T)+qcp] = (Eprq — Ep)chcp
V !
q
+ Z N [(chra-aCp = CpraCpra )Py
q/

+ Q204 (Chiqriatp — ChiaCpq)]- (2.7.1)

We recall that for the noninteracting system the operator clt +qCp Creates a
particle-hole pair when it operates on the ground state of a system in which
the pth state is occupied and the (p + q)th state is empty. We do not know
what the ground state of the interacting system is, but we can see under what
conditions the operator clT, +qCp Will create an excitation in it. Let us consider
this operator when |q| is much greater than the Fermi radius, k5 (Fig. 2.7.1).
Then for any occupied p we can choose q such that £, — &, is as large as we
like. Then we can ignore the second term in (2.7.1), and to a good approx-
imation the commutator of H and c:; +qCp 18 @ number times this operator
itself. This means that where large momentum transfers between particles are
concerned, we are justified in considering quasiparticle excitations of the
system. But now let us look at the case where q is small. Then the argument
that the first term will dominate is no longer valid, indicating that the quasi-

particle picture may not be appropriate where small momentum transfers are

ptq

Figure 2.7.1. For large q the change in kinetic energy on scattering from p to p + q is
generally large compared with the matrix element of the potential for this process.
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concerned. Accordingly we go on to ask whether pji, the creation operator for
a density fluctuation, might not be the one we are after.

We can form the commutator of ,o;; with the Hamiltonian simply by sum-
ming (2.7.1) over all p. The interaction terms cancel exactly, since

b v = X b =
Cpra-aCp = 2 CpraCprar = $2Pg—q/:
P P

which leaves us with
[H, 'OtTl] =Q! Z (Eptq — SP)CI!Jqup'
p

Although this does not appear to be proportional to ,oJ[],

that it will not have a similar effect when acting on the wavefunction of the
interacting system. Accordingly we optimistically persevere, and once again
take the commutator with the Hamiltonian H. If [H, pZ] is effectively equiva-
lent to ha)p; then we should have

we cannot be sure

[H, [H. o] = (i)’ o).

In fact, our tenacity will be rewarded. We find

[H.[H. oyl = Q' |:H’ Z(€p+q - Sp)Cchp}
P

= Z (Epiq — EIH, C;+qcp]
P

. V ’
—1 N X q
=9 Z (Epa = Ep) CprgGp T+ Z (Eprqg = Ep) BN
3 p.q’
T T -‘- -’- o+
X [(Cpiq-q:Cp — CpraCpra)Par + Py (CprqriqCp — Cprglp—q)))
This simplifies when we remember that

2.2 2

8 2 hp h 2
5p+q:%(P+‘I) ; 5p:%; 5p+q_5p:%(2P'Q+Q)-
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This means that

i i
Z (Eprq = Ep)(Cpiq-q:Cp — CpiqCpra)
)

> 5
~ 2m Z 2p-q+4q )Clt+qfq’cp
p
w? ,
—5- 2 120" —d)-a+q leb sqeqrprs
p/

where we have written p’ for p + q’. This reduces to

” o °q'-q -
m ; 29 " qCpiqqCp = m Fa

_q”
so that

. };-IZ 2
(hw)pf = [%(ZP q+ qz)] ChiqCp/
P

V., hzq . q/
q v
+ Z 7 m (pq’—qloq/ - ,O_q//O_q_q/)Q. (272)
q/

Now the zero Fourier component of the density, py, plays a very different
role from all the other components. It is just the average density of particles
in the system. Consider, for instance, a box of electrons of average density p,,
the box being of length L (Fig. 2.7.2). The first nonzero Fourier component

— ! o

Figure 2.7.2. When ¢ = 27/L the operator p, measures a quantity approximately
equal to the difference in the number of particles in the two halves of the container.
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of p will be approximately equal to the difference between the number of
particles in the left- and right-hand sides of the box, since it is just

Q! J o(r) exp (21%) dr.

When the number of particles present is large the difference between numbers
in the two halves will be very small compared with the total number, and so
po Will be the most important term in the summation over q’ in (2.7.2).
Because the term with q" = 0 is omitted, it is only when q" = #£q that such
a term will appear. The neglect of all terms for which q" # 4q is known as the
random phase approximation, or RPA. This, combined with neglect of the
summation over p, which is small when q is small, leaves us with

4’ hPq?
22 m

(hw)’ph = (PoPy + Pipo):

and since all the p, commute (Problem 2.7) we have

2
4dme” p,
w =—2"10
m

which gives just the classical plasma frequency, w,.

We thus see that the relevant excitations of low wavenumber are not par-
ticle—hole pairs, but collective motions of the electron gas. Bohm and Pines
argue that we should consider the electrons as interacting through a matrix
element V, that is equal to 471e2/52q2 only when ¢ is greater than some
characteristic value ¢,.. Below ¢, the interactions contribute only to the
plasma oscillations and can be left out of the particle interaction terms in
the Hamiltonian. We expect ¢. | to be of the order of the average interparticle
distance, since plasma waves can only exist when their wavelength is greater
than this value. Thus we put V=0 for ¢ < g.. This means that the inter-
action potential in configuration space, which is the Fourier transform of V,
will be

2

. dme
V(r) = Nt —

This gives a function rather like the Yukawa potential,

(ez/r) eXp (_qc"‘)v
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which is an example of a screened Coulomb potential. An electron at a point
tends to repel all the others from its vicinity, which effectively gives a region
of net positive charge surrounding each electron. This partially cancels (or
screens) the mutual repulsion of the electrons at large distances.

We can understand the concept of screening within the framework of
perturbation theory by considering the effect of a weak sinusoidal potential
applied to the electron gas. The total Hamiltonian would then be

H=Hy+V+U,

with 7 the Coulomb interaction of the electrons, and U the externally
applied potential, being given by

U= 2Uqcosq-r,

which in the notation of second quantization is

Z(cp+ql CpF Ch_qCp)- (2.7.3)

Perturbation theory can then be used to express the wavefunction and energy
as a power series in (U + V'), which we can then rearrange in the form of a
power series in U. In the Rayleigh—Schrédinger expansion for the wavefunc-
tion, for example, we have

(W) = @) + (§ — Ho) (1 — @@ + V)| D) +
=[|D) + (£ — Ho) ™' (1 — [@}(@DV|D) + -]
+(Eg — Ho) (1 = [@NPNU|D) + (£ — Hy) !
x (1= |OUPNV(Ey — Ho) ™' (1 — |2} (@) U| D) +
+ [terms of order U*] + - - -
We investigate the response of the system to weak applied fields by examining

those terms that are linear in U. We notice that we could write the sum of
these contributions in the form

(& — Ho) ™ (1 — | DN Upgr| D)
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if we were to define an effective potential U,y by the equation

Ut = U+ V(Ey — Ho) (1 — [®}(@U
+ UEy —Hy) ' (1 — | DRV +---. (2.7.4)

Let us now substitute for V/, the Coulomb interaction, and for U, and sim-
plify U by considering only the first part of the summand in expression
(2.7.3). Then the second term on the right-hand side of Eq. (2.7.4), for
example, becomes

LY Ve girgaead€ —Ho) (1= [@NP) D Uychigty (275
k.k'.q’ p

This component of U is thus a sum of terms that annihilate the electrons in
states p, k, and k', and create them again in states p+q,k’ +q’, and k — q'.
Such complicated processes could be represented by diagrams like Fig. 2.7.3,
and are not easily interpreted in physical terms.

There are, however, some terms from this sum that contribute in a special
way to Ugy, and whose effect has a simple interpretation. Let us look, for
example, at the term in which q=q’ and p+q=k. Then we can join
together the two parts of Fig. 2.7.3 and represent the scattering in the
form shown in Fig. 2.7.4. We note the interesting fact that the net result of

pta

k’ k’+q’

Figure 2.7.3. In this diagram an electron is scattered by the externally applied poten-
tial U, and then two other electrons interact through their Coulomb repulsion V.
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> P+q p

k'+q

Figure 2.7.4. In this special case of the preceding diagram the same electron parti-
cipates in both scattering processes.

these interactions is that an electron is scattered from k' to k' +q. The
physical interpretation of this is that the externally applied potential U causes
a density fluctuation in the electron gas, and it is this density fluctuation that
scatters the electron originally in the state k’. The contribution to expression
(2.7.5) from these processes is

-1
3 Z Varp(1 = 11y )(E — Epig) Z UquTc’Jquk”
P K

the energy denominator (£, — 5p+q)_1 coming from the effect of U on the
state ®. There is also a set of terms for which ¢ = —q " and p + q = k', which
contribute an equal amount again. To these must then be added a set of
terms from the third component of the right-hand side of expression (2.7.4) in
which V acts first, followed by U. From these we select the terms shown in
Fig. 2.7.5, which contribute an amount

D Va1 = 1) (Epiq = €)' D Uty
b K

We identify the sums over k and k” as just being equal to U itself, and so our
approximation for Eq. (2.7.4) becomes

n —n
Ueff: U+ Vq(zgp—i_qi_gp>U+
p p+q P

If we make similar approximations for the terms of higher order in this series
we shall have contributions of the form shown in Fig. 2.7.6, which can be
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p+4q p l p+gq
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1
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- ! ork +
k'ork k+a 4

Figure 2.7.5. Here an electron is first scattered by another electron and then by the
applied potential U.

P+q
P+q P

x__———

k+q

kn k“ + q

Figure 2.7.6. In this diagram an electron scattered by the externally applied potential
passes its extra momentum to another electron through a chain of Coulomb inter-
actions.

given a simpler aspect if we think of the scattering of the electron from p + q
to p as the creation of a particle-hole pair, and represent the hole of wave-
number p +q by an arrow pointing backwards. Figure 2.7.6 can then be
redrawn as in Fig. 2.7.7. All these complicated diagrams will have the net
effect of scattering just one electron and increasing its wavenumber by an
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pta

k" ku + q

Figure 2.7.7. This redrawing of Fig. 2.7.6. depicts the absence of an electron in a
given k-state as a line pointing backwards.

amount q. They in fact form a geometric series, which allows us to write

~ 11 "p+q — "p 2 Mprq — 1y ?
Ua>[1+V( = )+l o) + U
p p+q p ) p-+ p

q

where

n —n
Q=1-V Y % (2.7.6)
p “ptq p

Defined in this way, €(q) plays the role of a dielectric constant in that it is the
factor by which the applied field, which may be likened to the electric dis-
placement D, exceeds the actual field E within the electron gas. Because a
conductor like the electron gas cannot support a steady uniform electric field
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we expect €(q) to become infinite as ¢ — 0. This does indeed occur, since V
varies as ¢~ while the summation over p remains finite.

Because any potential can be analyzed into its Fourier components, this
theory gives us an approximate result for the modification by the electron gas
of a potential of any shape. If, for example, we put a charged impurity into
the electron gas the potential U would be —Ze?/r. This is the sum of Fourier
components —4wZe*/ qu, each of which would be screened in our linear
approximation by the dielectric constant €(q). The result would be a screened
potential of Fourier transform

—4nZ6*/Qq°
I — (47e2/Qq?) Y [(myyq — 1)/ Eprg — EI
Y

Ugr(q) =~

This expression remains finite as ¢ — 0, and thus represents a potential that
again has some similarity to the Yukawa potential.

Improvements on this theory are fairly arduous, even in the linear approx-
imation. The most obvious correction would be to include exchange scatter-
ing in our analysis by considering processes of the type shown in Fig. 2.7.8 in
addition to those of Fig. 2.7.4. In higher orders, however, these processes do
not reduce to simple products that can be summed as geometric series, and
their investigation lies beyond the scope of this book.

k'+q
p+4q

Figure 2.7.8. Exchange processes such as this one, in which the final k-state of one
electron is identical to the initial state of another electron, are neglected in deriving
Eq. (2.7.6).
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2.8 Spin waves in the electron gas

An interesting application of the random phase approximation occurs in the
theory of metallic ferromagnets. We saw in Section 2.4 that in the Hartree—
Fock approximation the exchange energy is negative. It is illustrated in
Problem 2.3 that at low electron densities this exchange energy becomes
large enough in comparison to the kinetic energy that a magnetized phase,
in which all the electron spins are pointing in the same direction, appears the
most stable. While we are aware of the failings of the Hartree—Fock approx-
imation and should not accept its predictions unquestioningly, we are led to
the conclusion that in a metal such as nickel it is the presence of some effective
electron interaction that gives rise to ferromagnetism. We cannot accept
an alternative model of the type we assumed in Section 1.4, in which each
spin is localized at a lattice site, because measurements show there to be a
nonintegral number of spins per atom in this metal. We thus assume a
Hamiltonian of the form

_ 2 : i
H = Ekck’sck’s
k,s

1 Z v i
q’Ck—q’,sck/-i-q’,S’Ck,,s’ck,s’
k.k',q’,s,s’

+

|

which is identical to our previous form for the Hamiltonian of the electron
gas except that we shall take V to be an effective interaction, and not
necessarily the pure Coulomb interaction. We make the assumption that
the ground state of this system is magnetized, so that N, the total number
of electrons with spin down, is greater than N;.

We now look for collective excitations of this system that can be inter-
preted as spin waves. We first consider the commutator of the Hamiltonian
with the operator

I
By = CpiqrCpy- (2.8.1)

This differs from the operator considered in the previous section in that it
reverses the spin of the electron on which it acts, and can thus change the
magnetization of the electron gas. We find

+
[H, Bl] = (Eprq — EP)BI’ + § : Vq’(CI)+q—q’Tck+q’,sckqscp¢
q’.K,s

+ C;'HITc;rﬁ—q’,scp—qwck,s)- (2.8.2)
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(a)

(b)

Figure 2.8.1. Of these scattering processes we retain only those in which one of the
final electron states is the same as one of the initial ones.

The summation is thus over interactions of the form shown in Fig. 2.8.1.

We now make the random phase approximation by retaining only those
processes in which one electron leaves in a state identical to one of the
original states. We thus select from Fig. 2.8.1(a) only those processes for
which k 4+q’, s = p| or for which k, s = p +q — q' 1. With a similar selection
from the processes of Fig. 2.8.1(b) we find that Eq. (2.8.2) becomes

[H, Biﬁ] = (Epq — SP)BI’ + Z VlOtg_qy — np—q’+qT)BI)
v
+ (yqr — 1)) Bh_y ], (2.8.3)
where
By = CpqriatCpat-

This can be characterized as a random phase approximation because it
retains only those terms involving the number operators, and it is the sum
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of the number operators that gives the zeroth Fourier component of the
density.

The fact that the right-hand side of Eq. (2.8.3) involves terms in BT
shows that B does not create eigenstates of H when acting on the ground
state. It does, however suggest that we once again form a linear combination
of these operators by writing

Zo‘p P

where the o, are constants. If this operator does indeed create spin waves of
energy /iwy we shall find

Z oM, B'i;] = hag Z O‘pBL
P

p

We substitute in this relation from Eq. (2.8.3) and equate the coefficients of
BlT, to find

(hwg = Eprq + Epay = Z VolUtg—qry = Mp—griqp)%
q/

+ (Mprqrqrt = Mprqr))%piq ]

At this point we simplify the problem by assuming that V4, can be taken as a
positive constant . We can then write

(hwg — Eprq+ Ep = VN, + VN oty =V > (y gy — My )ty
p/

where we have written p’ for p 4+ q’. This can be solved by noting that the
right-hand side is independent of p. We can thus multiply both sides of this
equation by a factor

"p+qr — Tpy
hg — Eprq + & — VN, + VN,

sum over p, and find

1% pHat pl -1
Xp: howg = Eprq+Ep+ V(N — N))
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This equation determines wq. For small q, which is the regime in which the
random phase approximation is best justified, we can expand the left-hand
side binomially to find

1 hwg — &€y q + €
- _ 1— q p+q P
NT _ N¢ Xp:(”wn npi)|: V(NT _ N¢)

+(hwq—5p+q+5p)2_m] .
V(N, —N,)

If £, is just the free-electron energy, i?p?/2m, and we retain only terms of
order q° or greater, then this reduces to

Myrgr = 1y \[ 72 e’
fiw. — g KN 20 N (N, MO N . Y
“a Zp:( Ao | B R Rl 7y vy

2.2
"0 oy p) (258.4)
m

where « is a constant of order unity and independent of V, while g is
inversely proportional to V. These constants are most simply evaluated by
considering the ground state of the system to consist of two filled Fermi
spheres in momentum space — a large one for the down-spin electrons and
a small one for the up-spin electrons. The form of the magnetic excitation
spectrum is then as shown in Fig. 2.8.2, and consists of two branches. The
spin waves have an energy /o, that increases as q2 for small ¢, and they
represent the collective motion of the system. There are, however, also the
quasiparticle excitations of energy around V(N — N;) that are represented
by the diagonal terms in Eq. (2.8.3).

This calculation presents a very much oversimplified picture of magnons in
a metal, and should not be taken too seriously. It has the disadvantage, for
instance, that states of the system in which spin waves are excited are eigen-
states of Sy, the total spin in the up direction, but not of S, the square of the
total spin angular momentum. The model suffices to show, however, the
possibility of the existence of a type of magnon quite dissimilar to that
introduced in the localized model of Section 1.4. It is also interesting to
note that there are some materials, such as palladium, in which the inter-
actions are not quite strong enough to lead to ferromagnetism, but are
strong enough to allow spin fluctuations to be transmitted an appreciable
distance before decaying. Such critically damped spin waves are known as
paramagnons.
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q

Figure 2.8.2. The spectrum of elementary excitations of the ferromagnetic electron
gas. The lower branch shows the magnons while the upper band represents quasi-
particle excitations.

Problems

2.1 Using the definitions of ¢, and CZ; given, verify that
L . NP U % SN S R
{cp, cp,} = Spp,, {cp, cp,} = {cp, cp,} =0.

2.2 Verify the statement that dW /dp as defined by Eq. (2.4.5) becomes
infinite as p — pp, the radius of the Fermi surface.

2.3 In the Hartree—Fock approximation the energy of the electron gas is
composed of kinetic and exchange energies. In a certain set of units the
kinetic energy per electron is 2.21 rydbergs and the exchange energy
—0.916 rydbergs when the gas is at unit density and zero temperature,
and the up- and down-spin levels are equally populated. Estimate the
density at which a magnetic phase, in which all spins are pointing up,
becomes the more stable one.

2.4 The operators o and y; are defined in terms of electron annihilation
and creation operators by the relations

_ T _ T
Yko = UkCkp — UkC_kys Ykl = UkCkp T UpC_xys

where c]T(T, for instance, creates an electron of wavenumber k with spin
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2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

Second quantization and the electron gas

up, and u, and vy are real constants such that uj + vi = 1. What are the
various anticommutation relations of the y and 32

Verify that
[Z ., H} =0
K

for the electron gas.
Verify Eq. (2.7.1).
Verify that [y, o] = 0.

Calculate the contribution to U, as defined in Eq. (2.7.4) of the
exchange scattering processes shown in Fig. 2.7.8.

The theory of the dielectric constant of the electron gas can be general-
ized to include the responses to applied fields that vary with time. If a
potential U(r)e ™" is applied then scattering of an electron occurs by
absorption of a photon of energy /iw, and the energy denominator of
Eq. (2.7.6) is modified to give

Show that for vanishingly small ¢ the dielectric constant itself vanishes
when o is the plasma frequency w,.

Evaluate the constants « and 8 of Eq. (2.8.4).

If the sum of coefficients « 4+ § in Eq. (2.8.4) becomes negative, then the
magnetic system will be unstable. Use your answer to Problem 2.10 to
find the minimum value that V(N, — N,)/Ep must have to ensure that
the magnet is stable. (Here £ is the Fermi energy of the unmagnetized
system.) Does your result agree qualitatively with the semiclassical
argument that N| — N, should be equal to the difference between the
integrated densities of states N'(Er;) — N (Epy)?

Sketch a contour map of €(g, w) as determined from the expression
given in Problem 2.9. That is, estimate the sign and magnitude of
€(q, w) for various ¢ and w, and plot lines of constant ¢ in the ¢—w plane.
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2.13 Consider a system consisting of a large number N of spinless interacting
fermions in a large one-dimensional box of length L. There are periodic
boundary conditions. The particles interact via a delta-function poten-
tial, and so the Hamiltonian is

27 Toor
H= Z Ak“cie,, + (V/2L) Z Ch—gChr+qCr Ck
k k.k’.q

with A4 and V constants. The sums proceed over all permitted values of
k, k', and ¢. That is, the terms with ¢ = 0 are not excluded from the
sum.

(a) Calculate the energy of the ground state of the noninteracting
system.

(b) Calculate the energy of the ground state of the interacting system in
the Hartree—Fock approximation.

(c) State in physical terms why the answer you obtained to part (b)
must be an exact solution of the problem.



Chapter 3

Boson systems

3.1 Second quantization for bosons

In the formalism that we developed for dealing with fermions the number
operator, n,, played an important role, as we found that the Hamiltonian for
the noninteracting system could be expressed in terms of it to give

HO = Z Sknk.
k

Now we turn to the consideration of systems in which we can allow more
than one particle to occupy the same state. This time we shall need to define a
number operator that has not only the eigenvalues 0 and 1, but all the
nonnegative integers. The wavefunctions ® that describe the noninteracting
system will no longer be determinants of one-particle states, but will be
symmetrized products of them, such that ® remains unaltered by the inter-
change of any two particles.

In analogy with the fermion case we define annihilation and creation
operators for boson systems

ay =Y Jnylny, ..., = 1), )y, (3.1.1)
{n;}
and
aj, = Z \/n_p|nl, ce Ml o)y (= 1), (3.1.2)

{n;}

The summation is understood to be over all possible sets of numbers #;,
including n,, with the sole condition that n, > 0. These operators reduce or
increase by one the number of particles in the pth state. The factor of /i, is

78
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included so that the combination a;ap will correspond to the number opera-

tor and have eigenvalues n,. We do, in fact, find that with these definitions

aha, = myl.omy )y,

so that
On the other hand,
and so

We write this as
[ap, a;] =1,

which says that the commutator of a, and a; is equal to unity. We can further
show that

[af

s a;,] =la,,a,]=0

71—
[a[,, ap’] = 8y

These results are in terms of commutators rather than anticommutators
because of the fact that we form the same wavefunction irrespective of the
order in which we create the particles.

We can then write the Hamiltonian for a noninteracting system of bosons
in the form

Hy = Z Exaray, = Z Exhy-
k K

An important difference between the fermion and boson systems that we
consider is that while for the Fermi systems the total number of particles,
N, is constant in time, this is not generally so for true Bose systems, where N
may be determined by thermodynamic considerations; for example, the total
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number of phonons present in a solid may be increased by raising the tem-
perature of the system. On the other hand, there are also systems such as
atoms of *He for which N is conserved but which behave as pseudobosons in
that their behavior is approximately described by boson commutation rela-
tions. This distinction will be made clearer in Section 3.3.

3.2 The harmonic oscillator

The simplest example of a system of noninteracting bosons is provided by the

case of the three-dimensional harmonic oscillator, where a particle of mass m

is imagined to be in a potential %mwzrz. The Hamiltonian is

3
15 2
H = — [ p; mwx;)],
2 2y 197 (Y]
where the three components of momentum and position obey the commuta-
tion relations
[x;, pj] = i 5.

We then define

[ _ f [ .
a; = T (mwx; + ip;); SR T (mwx; = ip;), (3.2.1)

and are not in the least surprised to find that

la;, aj’] = 51’]

and that

H = Z Lha(ala; + a;al)
= (n+Hho,

where n; = ajai.

In Section 3.1 we started our discussion of boson systems with the assump-
tion that there was a number operator whose eigenvalues were the positive
integers and zero, and deduced the commutation relations for the ¢ and a'.
What we could have done in this section is to proceed in the reverse direction,
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starting with the commutation relations and hence deducing that the eigen-
values of n; are the natural numbers. Our solution to the harmonic oscillator
problem is then complete. The eigenfunctions are constructed from the
ground state by creating excitations with the ajf,

3
1®) = 4 [](a)"10).
i=1

the energy eigenvalues of these states being simply ), (n; + %)ha). (Here A4 is
some normalizing constant.)

As an exercise in using boson annihilation and creation operators we shall
now consider a simple example — the anharmonic oscillator in one dimension.
To the oscillator Hamiltonian,

Ho =~ [ + (mox)),

2m
we add a perturbation
V= Bx.
Since
[ .
xX=,/—1(@ +a), (3.2.2)
2mw
then
5o\32
px’ = ﬂ(—) (@ +a)’
2mw
and

1 5O\
H:hw(aTa+—>+,8(—) (aT+a)3.
2 2mw

We try to find the energy levels of the anharmonic oscillator by using per-
turbation theory. For the unperturbed state |®), which we can write as |n)
(since it is characterized solely by its energy (n + %)ha)), the perturbed energy
to second order in V' will be

E= <n+%)ha)+ n|Vn) + (n|V Vin). (3.2.3)

_
gn _HO
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In this particular case the first-order energy change, (n|V'|n), will be zero,
since V' is a product of an odd number of annihilation or creation operators,
and cannot recreate the same state when it operates upon |n). In second
order, however, we shall find terms like

i\’ 1 .
B (%> (nla'aa ———— d'ad’|n), (3.2.4)

which will give a contribution. From the definitions (3.1.1) and (3.1.2) we
have

dlad’ln) =+ 1D)Pn+ 1),
so that
&, — HO)_lafaafln) = [nhw — (n + Dho] ' + D)**n + 1).

Thus the expression (3.2.4) is equal to

3 2 22
_'32< s ) }’l(l’l+1) :—l’l(l’l+1)2 h’B

2mw fiw St

The energy to second order will be the sum of a handful of terms similar to
this, and is easily enough evaluated. Note that had we been using wavefunc-
tions ®,(x) instead of the occupation-number representation |n) we would
have had to calculate the energy shift by forming integrals of the form

J O* (X)X, ,(x) dx,

which would have required knowledge of the properties of integrals of
Hermite polynomials. Note also that in this particular case the perturbation
series must eventually diverge, because the potential Sx° becomes indefinitely
large and negative for large negative x. This does not detract from the useful-
ness of the theory for small x.

3.3 Quantum statistics at finite temperatures

In the last section we saw that the excited energy levels of a harmonic oscil-
lator could be regarded as an assembly of noninteracting bosons. It is clear
that for such systems the total number of bosons present is not constant,
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since exciting the oscillator to a higher level is equivalent to increasing the
number of bosons present. While we were considering the electron gas we
always had a Hamiltonian that conserved the total number of particles, so
that we were then able to write the equation

[H, > nk] = 0.

k

This was because any term in H that contained annihilation operators always
contained an equal number of creation operators. In the boson case this was
not so, as it is easily verified that

(@' +a), a'a] #0,

and so the interactions in the anharmonic oscillator change the total number
of particles. This leads us to the consideration of systems at temperatures
different from zero, for if the system of noninteracting bosons is at zero
temperature, then there are no bosons present, and we have nothing left to
study. At a finite temperature the system will not be in its ground state, but
will have a wavefunction in which the various k-states are occupied according
to the rules of statistical mechanics. This contrasts with the system of non-
interacting fermions, where at zero temperature

|®) = |1,1,...1,0,0,...).

If the density of fermions is reasonably large, as in the case of electrons in a
metal, the average energy per particle is large compared with thermal ener-
gies. Thermal excitation is then only of secondary importance in determining
the total energy of the system. In the case of bosons, however, the thermal
energy is of primary interest, and so we now turn briefly to a consideration of
the form we expect |®) to take at a finite temperature 7.

A fundamental result of statistical mechanics is that the probability of
a system being in a state |i) of energy &; is proportional to e % where
B=1/kT and k is Boltzmann’s constant. Thus the average value of a
quantity A4 that has values A; in the states |i) is given by

Z Al-e_ﬂg’
A=i

—pE
Z e
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This can be expressed as

Tr(Ae 1)

A= e (3.3.1)

where the operation of taking the trace is defined by

Tr(de ™) =3 (jlde ).
J

We show this by using the identity operator (2.1.6) to write

Tr(4e™™) =Y (jlAlivile ™)
ij
ij
= Z Aie_ﬂgi.
i

Fortunately, a trace is always independent of the choice of basis functions,
and so here we have chosen the most convenient set, |j), the eigenfunctions
of the Hamiltonian.

When the Hamiltonian refers to a system of interacting bosons whose total
number N is not conserved, the operation of taking the trace must include
summing over all possible values of N, as these are all valid states of the
system. But while it is the case that for true bosons N may not be constant,
there are some systems in which the total number of particles is conserved,
and whose commutation relations are very similar to those for bosons. We
shall see in the theory of superconductivity that an assembly of bound pairs
of electrons has some similarity to a Bose gas. If we define the operator that
creates an electron in the state k1 and one in the state —k| by

Pt ot
bk = Cch—ki
then we can show that
(D b]’«] = S (1 — gy — ”—k¢)~
Note that it is the commutator, and not the anticommutator, that vanishes

when k # k’. When k = k’, the commutator is not the same as when the b
are boson operators, and so in the case of superconductivity it is necessary to
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use these special commutation relations for electron pairs. An even better
example in which it is suitable to approximate the operators for composite
particles by boson operators is the case of liquid “He. The isotope of helium
of atomic mass 4 is composed of an even number of fermions, has no net spin
or magnetic moment, and — what is most important — is very tightly bound,
so that the wavefunctions are well localized. This means that operators for
atoms at different locations will commute. If it is valid to treat helium atoms
as noninteracting bosons, then we should expect that at zero temperature all
the atoms are in the state k = 0, and we should have

|®) =|N,0,0,...).

At finite temperatures we should expect to use Eq. (3.3.1) to predict the
various properties of the system. There is, however, a difficulty involved in
this in that we must choose a zero of energy for the single-particle states. That
is, the Hamiltonian,

H= E gknk + Hinteractionw
k

could equally well be written as

H= Z (Ex — Wny + Hinteractions = H — N,
k

as we have no obvious way of deciding the absolute energy of a single-particle
state. This was not a problem when N was not conserved, for then we knew
exactly the energy & required to create a phonon or a magnon, and we could
take u as being zero. The approach we take, which corresponds to the con-
cept of the grand canonical ensemble in statistical mechanics, is to choose u in
such a way that Eq. (3.3.1) predicts the correct result, N, for the average
value of the operator N when the trace includes a summation over all
possible N. That is, we choose u such that

Tr Ne—BH-Nw)
Nt = s

The energy u is known as the chemical potential.
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We are now in a position to calculate explicitly various temperature-
dependent properties of a system of independent bosons or fermions. For
n,, the average number of bosons in the pth single-particle state, for example,
we find

¥, ,—BH=Nu)
_ Trayase

i —zTe T )
B0t gt

Tr a,e
TreBH-Nw)

We are allowed to permute cyclically the product of which we are taking the
trace because the exponential makes the sum converge. Now

e*ﬁ(HfNM) a; — a; efﬂ(HfNu) ef,B(Epfu)’

since a; increases N by one, and alters the eigenvalues of H by an amount &,.
Thus

 Trayale AN HE 10
= Tr e—BH-Nm)
Tr(l + a;ap)e—ﬂ(H—Nﬂ)e—ﬂ(g,,—ﬂ)
= Tr e—BH—N)

— e_ﬁ(gp_ﬂ)(l + ﬁp)’

from which

_ 1

For fermions the anticommutator leads to a positive sign, giving

1

ﬁp(fermions) = m . (333)

These functions 7, give the average value taken by the operator n,.
The form of the boson distribution function, (3.3.2), has an interesting
consequence for a system of independent particles in which the total number

N is conserved, as in the case of *He. We have

_ 1
N= ; i = Z ePE—1 _ 17

P
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We know that u < 0, because if it were not then some 7, would be negative,
which would be nonsense. Thus

1
ESY ot (3.3.4)
p

Because we know (from Section 2.1) that the density of states in wave-
number space is §2/87° we can change the sum to an integral and write

Q™ 45k dk
N < ny +—3 5.2 .
873 Jot exp (BA°k™/2m) — 1

We consider #;, for k& = 0 separately, since this term is not defined in (3.3.4).
The integral is well behaved, and gives a number which we shall call Ny(T).
As T tends to zero, Ny(T), which represents an upper bound to the number
of particles in excited states, becomes indefinitely small, as illustrated in
Fig. 3.3.1. When Ny(T) < N it follows from the inequality that all the rest
of the particles must be in the state for which k = 0. Thus there is a tem-
perature 7., defined by Ny(7T,) = N, below which the zero-energy state is
occupied by a macroscopic number of particles. This phenomenon is
known as the Bose—FEinstein condensation, and is remarkable in being a
phase transition that occurs in the absence of interparticle forces.

We might expect the introduction of forces between particles to destroy
the transition to a condensed phase, but this is not the case. Bose—Einstein

No(T)

no(7)

I
|
l
|
I
T, T
Figure 3.3.1. This curve represents the greatest possible number of particles that can
be in excited states. When it falls below N, the actual number of particles present, we

know that a macroscopic number of particles, 7y,(7), must be in the state for which
k=0.
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condensation is observed in a wide variety of systems, including not only “He
but also spin-polarized atomic hydrogen and gases of alkali atoms like >’ Na,
which consist of an even number of fermions. We must now develop the
formalism with which to attack this problem.

3.4 Bogoliubov’s theory of helium

As early as 1946 Bogoliubov developed a theory of a system of interacting
bosons of the number-conserving kind by making use of the fact that ny may
be very large. He was able in this way to provide an insight into how a weak
interaction may totally change the nature of the excitation spectrum of a
system and also increased our understanding of the phenomenon of super-
fluidity.

We treat liquid “He as a system of interacting bosons. The Hamiltonian
will look just like that for the spinless electron gas, except that we shall have
to replace every ¢ and ¢ by an a or an a', and, of course, the form of the
interaction will be different. We have

1
H= Z Exaray + 3 Z an]t_qa;r(urqak/ak.
K kk'.q

The single-particle energies £, will be just
NS
& ==,

2M

with M being the mass of the helium atom, and V, the Fourier transform of a
short-range potential.

We can immediately arrive at an expression for the energy of this system at
zero temperature by employing the same procedure that we used in deriving
the Hartree—Fock approximation for the electron gas. That is, we write

where @ is the wavefunction in the absence of interactions. Because all N
particles are in the state having k£ = 0 we simply find

Eu = NEG + 1 Vo(@labayaoay| @)
= NE + NN — 1)V,
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We recall from the definition (2.3.14) that ¥V, is inversely proportional to the
volume Q. If we restore this factor by writing V, = V;/Q and approximate
N —1 by N we find

21,1
Ey = N&EY+ Nzgo .
Note that there are no exchange terms present in this approximation, as only
one state is occupied.

We can now predict from the dependence of the energy on the volume that
this system will support longitudinal sound waves of small wavenumber. For
a classical fluid the velocity of sound is given by

where R is the bulk modulus, —(dP/92),, and p is the mass density. If we
interpret the pressure P as —(0€y/02)y we find that

q FEy
v 902 NV,
- o YMQ

Thus for a system of unit volume we expect there to be boson excitations for
small k having energies 7wy such that

e NV K
k M

Bogoliubov’s method shows how these excitations arise as a modification of
the single-particle excitation spectrum.

In looking for the ground-state solution of this problem we invoke the fact
that in the noninteracting system all the particles are in the state for which
k = 0. We make the assumption that even in the interacting system there is
still a macroscopic number of particles in the zero-momentum state. The num-
ber still in the zero-momentum state is the expectation value of agao, which
we write as Ny. Because we expect N, to be large we treat it as a number
rather than an operator, and similarly take aoaz) to be equal to N,. In fact, the
operator abag operating on a wavefunction with N, particles in the k =0
state would give /(Ny + 1)(N, + 2) times the state with Ny + 2 particles, but
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since 2 <« N,, we ignore this difference. We next rewrite the Hamiltonian
dropping all terms that are of order less than N,. Provided V is equal to
V_q this leaves us

H= Y Eapa +INGVo+NoVy Y afay + Ny Y Vieapay
k k k’

+3N Z Valaga_q +a'ya}).
q

where the sums exclude the zero term. We then put

N0+Za;r(ak =N NoVi=m: Ex+m=n,
K

and make the assumption that N — Ny < N, (an assumption that is of
dubious validity for real liquid helium). We then only make errors in terms
of order (N — Ny)/N, if we write

H = %Nz VO 4+ Z thaLak +%Z nk(aka_k + aLaT_k). (341)
k k

While the first term is a constant, and the second is an old friend, the third
term is an awkward one. In perturbation theory it leads to divergences, the
pictorial representations of which are aptly known as “dangerous diagrams.”
The major advance we have made, however, is to reduce our original
Hamiltonian, which contained interactions represented by a product of
four operators, to a quadratic form, in which only products of two operators
are present. It is then in principle always possible to diagonalize the
Hamiltonian.

The trick that Bogoliubov used to get rid of the off-diagonal terms a,a_;
and aja’, was to define a new set of operators. He wrote

a;, = (cosh 6 )ay, — (sinh6,)a’

where the 6, are left arbitrary for the time being. One can show that the «
obey the same commutation relations as the «,

[, 0‘;((’] = Okk'-
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Now suppose we had a Hamiltonian
H= Z lay oo
K

This would pose no difficulties; the energies would just be ), nc/iwy. Our
approach now is to write out ey in terms of the «’s and see if we can choose
wx and G in such a way as to make it equal to the kth component of our
approximate Hamiltonian, (3.4.1). Substituting, we have

alay = [(cosh 6 )aj — (sinh 6 )a_J[(cosh 6, )a, — (sinh 6, )a’ ]
= (cosh® 6, )afa, + (sinh? 6 )a_a’, — (cosh 6, sinh 6,)
X (af(aT_k + a_yay).

Then, if Wk = W_x and 6]( = 9,](,

Z hoaoy, = Z hay (cosh 26, )aja, + Z fiw, sinh? 6,
k k k

-1 Z fioo (sinh 26, )(aya_y + aga_y).
K

This is identical to (3.4.1) except for a constant if we choose w and 6 such that
wycosh 26, = Q,;  hwy sinh 26, = —n,.
Then
Pai = 19—}
and

hoy = [(Ex + Ny Vk)2 — (N Vk)z]l/z-

Thus Bogoliubov’s transformation from the a’s to the «’s has diagonalized
the Hamiltonian. Within the approximation that N, is large compared with
everything else in sight we can say that the excitations of the system above its
ground state are equivalent to Bose particles of energy fiwy.

The interesting thing about these excitations is the way the energy varies
with k for small k. We can write

ha}k =1/ 5]2( + 28](N() Vk’
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and since for small enough k we shall have that Sﬁ, which varies as k4, will be
small compared with & NV}, we shall find

INV,
Wik ~ Wkk.

That is, the excitations will look more like phonons than like free particles,
and will have the dispersion law predicted from the elementary arguments
used at the beginning of this section. When k becomes large, so that
Ex > Ny Vi, then the excitations will once again be like particles. The detailed
shape of the graph of w against k will depend upon the form of V. If we
choose a form of V) like Fig. 3.4.1 then we should find that w behaves as in
Fig. 3.4.2, starting off with a finite gradient, but then dipping down again to a
minimum at some value of k.

This is the form of the dispersion relation for liquid *He that is found
experimentally, and is in accord with the superfluid properties of this sub-
stance at low temperatures. We consider a heavy particle of mass M, pro-
jected into a container of liquid helium at zero temperature, and investigate
the mechanism by which the particle is slowed down. Since its energy &£, is
p?/2M,, a heavy particle has a lot of momentum but not much energy, as
shown in Fig. 3.4.3. If the particle is slowed down by the helium it will only
give up a small amount of energy even though it loses a considerable amount of
momentum. Now if the helium is in its ground state, then all the excitations
available in Fig. 3.4.2 require a lot of energy for each bit of momentum they
provide. The massive particle is not capable of providing this energy, and hence
cannot cause an excitation and will experience no viscous force. It is only when

Vi

k

Figure 3.4.1. One possible form that the effective interaction between helium atoms
might take.
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W

k

Figure 3.4.2. An interaction of the form shown in Fig. 3.4.1 would lead to a disper-
sion curve with a minimum as shown here.

&y

Figure 3.4.3. For a given momentum p a heavy particle has very little energy.

the particle has such a large momentum, p,, that its velocity is equal to the
gradient of the dotted line in Fig. 3.4.2 that excitations will be caused.

In fact liquid *He at low temperatures is found to have superfluid proper-
ties for motions below a certain critical velocity, but the magnitude of this
velocity is only about 1cms™!, rather than the 10*cms™ predicted by this
theory. The discrepancy is accounted for by low-energy excitations in the
form of vortex rings not included in the Bogoliubov theory.

3.5 Phonons in one dimension

In the case of the Bogoliubov theory of helium we started with a system
containing a fixed number of Bose particles. It was the fact that the total
number of particles had to be conserved that obliged the k = 0 state to
contain a macroscopic number of particles, and which, in turn, gave the
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system its remarkable properties. We now turn back to the situation that we
encountered with the harmonic oscillator, where we start with a Hamiltonian
and transform it in such a way that the excitations appear as the creation of
an integral number of bosons. We return to a linear chain of interacting
atoms as the first such system to consider.

Once again we let the displacements of the atoms from their equilibrium
positions, /, be y;, and abbreviate the notation y;,y,,... by writing
Y1> Va2, . ... Then the Hamiltonian will be

H= Z + Vi, a2

We expand V in a Maclaurin series to get

V3, va, ...) = V(0, 0""”2”[3% V(yl,yz,,...)]

I —

zm,[ o]
2' a 8y Ni=y=-=0

L

83
YiVudir |: (yl?y2”"'):|
Z 8 8y 8}/1// =Yy =0

l]/ 1"

+ higher terms. (3.5.1)

The first term on the right-hand side may be eliminated by suitable choice
of the zero of energy, and all the terms in the summation forming the second
term must be zero by virtue of the definition of y =0 as the equilibrium
positions of the atoms. Thus the first set of terms we need to consider are
the set

Z Yivi

/NG 8y[8y]/

We could write this double summation in matrix notation. If we abbreviate
& V' /9y,;0y;r by Vy then we can represent the double sum as

Vi Vi -+ N
Oy --) Vai V2



3.5 Phonons in one dimension 95

Now we can always diagonalize a finite matrix like V.. That is, we can find
some matrix 7 such that 7V7T ! is diagonal. If T has elements T, this means

VI =3 TV (T Dy = V84, (3.5.2)
Ll

where the V, are a set of numbers defined by 7" and V. Then

ZylVll’J’l’: Z YT Dy Ty Virrl T g Ty v
Nk L
a.q9'

= Z yl(T_l)quq 5(](] T ’l’yl/ (353)
Ll'q,q’

= Z YeVqVg
q
where
Vg = 21: )’z(T_l)lq
and
J7q = 21: qu)’l-

Because y; is a physical observable it must be its own conjugate, and y; = yj.
If we can choose T such that (T *l)hj = T wwe should have that y, = yf], and
we could write the potential energy as 5 Z yqu V.

What we have done here is really no more COIanICdted than the elementary
approach of Section 1.2 — we have changed from the particle coordinates y; to
the collective coordinates y,. We can similarly define collective momenta, p,,

using the inverse transformation:
pq = Z qupl‘
I

This follows from the fact that

=i = Yy, o

w, ; By
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['hus on multiplication by T we have
., 0 Z
—lh —_— = Z p .
ay, - gt

The kinetic energy remains diagonal in the new coordinates, since

2M sz 2M qu(T )/qpq(T )lq

l,.q.q9'
>x< —1\% T
QMqu a(T")igPy

Lq.q'

1 T
=37 2 Pl
q

Thus if we ignore all terms in the Hamiltonian that are of order y3 or higher
(this is known as the harmonic approximation) we can write

1 1 .
_ + 2
H= 2 : (2Mpqpq+§quyqu)’
q

where M wi = V,. Because p, = —ihd/dy, the commutation relations for the
collective coordinates are similar to those for particles, and we have

[yq,pq,] = ih(Sqq,

We then see that by defining operators

1
a, = /2Mh (quyq+lpq) (3.5.4)
P = L Moyt —i 3.5.5
aq_ W( wqu_lpq)’ ( o )
q

which are a simple generalization of (3.2.1), we can write

H=Y ho,(afa, +1). (3.5.6)
q
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Thus to know all about the excitation spectrum of the linear chain we simply
need to know the transformation matrix 7.

The matrix we need is, of course, the one that will make the y, the collective
coordinates for phonons. We thus need to have T, proportional to ¢ and so
we write

Yg= N2y ey py=NT2 Yy, (3.5.7)
/ /

where N is the total number of atoms in the chain. In order to avoid diffi-
culties with the ends of the chain we adopt the device of introducing periodic
boundary conditions, as was done in Section 2.1 for the electron wavefunc-
tions. That is, we specify that

YitNa = V1>

with ¢ once again the distance between atoms, so that the ends of the chain
are effectively joined. This restricts the possible values of ¢, since from expres-
sion (3.5.7) we must have

elql — ezq(l+Na)

if the y, are to be uniquely defined. We then have

_27'm
q_Na’

where 7 is an integer. It then follows that
Vg =Vares  Pqg = Py+g

where g = 27/a, which shows that there are only N distinct collective co-
ordinates. The inverse transformations are found to be

=Ny ey p=NT Y e, (3.5.8)
q q

where the summations proceed over all N distinct values of ¢. We note that

yz =y_, and sz = p_g» SO that since w, = w_, we can, by making use of
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expressions (3.5.4) and (3.5.5), write

h
Vg = Mo, (a_, +a,) (3.5.9)
Mhw, .
Py =1 > (a; —a_y,). (3.5.10)

These relations allow us to write any operator in terms of phonon annihila-
tion and creation operators.
The frequencies w, that appear in the Hamiltonian (3.5.6) are given by

and

Vq - Z quVll/(T_l)[/q
Ll

. . I
= ZV_l E e“’l V/,,e_lq/ .
Ll

As V) is, by the translational invariance of the system, a function only of
(I =1"), we have

Ve=>_¢e"v,,
L

where we have written L for / — [’

This result for the frequencies is identical to that which we obtained by
classical methods in Section 1.2. For the particular case where there were
interactions only between nearest neighbors we had

V= Z %K(y[ _y/+a)2 = Z ]<(yl2 _y/y/—i-a)’
/ /

so that
Vy =2K if =1
=—K if I=1"%a

=0 otherwise.
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Then
V,=2K — K (e + e~"%)
= 4K sin®> = 14
and
w, = \/g sin %
as before.

3.6 Phonons in three dimensions

The theory of phonons in three-dimensional crystals is not very much more
difficult in principle than the one-dimensional theory. The basic results that
we found merely become decorated with a wealth of subscripts and super-
scripts. We first consider the simplest type of crystal, known as a Bravais
lattice, in which the vector distance I between any two atoms can always be
written in the form

l = nlll + nzlz + n3l3.

Here the n are integers and the I; are the basis vectors of the lattice. It is con-
venient to define a set of vectors g such that ¢ = 1 for all Z. These form the
reciprocal lattice. We can calculate the useful property that sums of the form
> ¢"1"! vanish unless q is equal to some g, in which case the sum is equal to N,
the total number of atoms. Thus we can define a function A(q) by the equation

DT =N 5, = NAQ).
l g

The Hamiltonian of a lattice of atoms interacting via simple potentials can
be written in analogy with Eq. (3.5.1) as

HZ )’

ik
5 Z ) ’V,’{/+— N iV 4 GB6D
i LTk

where pj and yj represent the ith Cartesian component of the momentum and
displacement, respectively, of the atom whose equilibrium position is Z. The

tensor quantities V;{,, Vl’{];, etc., are the derivatives of the potential energy
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with respect to the displacements as before. In the harmonic approximation
only the first two terms are retained. The Hamiltonian can then be written in
matrix notation as

1 N R S
H=) s @i.p.p)| o |+5 ) 0590 Ve Vi Vi ||
oM 2
’ ri L vir v2 v \oi
(3.6.2)

X XX Xy Xz X
Pr V'V, €7 W

Collective coordinates may be defined as in the one-dimensional problem.
We put

ya _ N—l/zz e—z’q-ly;‘; pa _ N2 Z eiq-lplz"
1 1

From these definitions one can see that
yq+g = Yq’ pq+g = an

for any reciprocal lattice vector g, and so we only need to consider N non-
equivalent values of q. It is usually most convenient to consider those for
which |q| is smallest, in which case we say that we take q as being in the first
Brillouin zone. (We note also that since there are only 3N degrees of freedom
in the problem it would be an embarrassment to have defined more than N
coordinates y,.) With this restriction on q the inverse transformations are

yf _ N2 Z eiq-ly:'l, P = N2 Z e—iq-lp:'l’
q q

and may be substituted into (3.6.2) to give
Py
H= s il D i
q v
1 Vit v Y\ ([
SRR Rl | B

v e )\
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where
i _ iq-@-1') /4
Vq = E e Vll,.
l/

The Hamiltonian has thus been separated into a sum of N independent terms
governing the motions having different wavenumbers q. To complete the
solution we now just have to diagonalize the matrix V(;j . This can be achieved
merely by rotating the coordinate system. The matrix V§ will have three
mutually perpendicular eigenvectors which we can write as the unit vectors
S1, $7, and sz, with eigenvalues Vl, V(f , and Vj . Then in the coordinate system
defined by the s

H = Z { PPy + ; Vsy;*y;} (3.6.3)
The three directions s that describe the eigenvectors of Véj are the directions
of polarization of the phonons, and are functions of q. If it happens that one
of the s is parallel to q we say that there can be longitudinally polarized
phonons in the crystal. Since the s are mutually perpendicular it follows
that there can also be transversely polarized phonons of the same wavenum-
ber; for these s-q = 0. It is usually only when q is directed along some
symmetry direction of the lattice that this will occur. However, if q and s
are approximately parallel it is still useful to retain the terminology of long-
itudinal and transverse polarizations.

The frequencies of the phonons described by expression (3.6.3) are given by

Vd
a)qs = M .

We can write the Hamiltonian in the concise language of second quantization
by defining annihilation and creation operators

1 . T
aqs e (quSYq + lpq) * Sq
/2M hw
| * (3.6.4)
dly = ——— (Maogy, — i) -5y

®o /2M hawgg

Then

H= Z hqu(aflsaqs + %).

q.s
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3.7 Acoustic and optical modes

In solving the dynamics of the Bravais lattice we diagonalized the
Hamiltonian in two stages. First we transformed from the y, to the y, and
thereby reduced the double summation over Z and I’ to a single summation
over q. We then rotated the coordinate system for each q so as to eliminate
terms off the diagonal of the matrix Véj . This completed the separation of the
Hamiltonian into terms governing the motion in the 3V independent modes
of vibration.

Not all lattices, however, are of the simple Bravais type, and this leads to a
further stage that must be included in the task of diagonalization of the
Hamiltonian. In a lattice with a basis the vectors I no longer define the
equilibrium positions of atoms, but rather the positions of identical groups
of atoms. The equilibrium position of an atom is then given by the vector
1+ b, wherel is a vector of the Bravais lattice, and b is a vector describing the
position of the atom within the group (Fig.3.7.1). There may be several
different types of atom within the group, each having a different mass M,,.
The harmonic Hamiltonian then takes on the rather complicated form

H= Z (in)” + Z 3 IV V-

Lb,i 2M, Lbl' b i, j

One can look upon a lattice with a basis as a set of interlocked Bravais
lattices, and this suggests that we define collective coordinates for each

bs

. 9

Figure 3.7.1. In a lattice with a basis the vectors  now define the position of some
reference point of a group of atoms, while the vectors b define the positions of
individual atoms of this group relative to the reference point.
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sublattice separately. We write for each of the n;, possible values of b
=N J’zbe_iq'l
2
and

iq-(-1")
qbb’ = Z ¢ Vlbl b

which reduces the Hamiltonian to

i it
H = Z 2M ququ+ Z zy‘l"Vq]bb’y(Jlb"
q.b.i qbb’ij

It is not enough now just to rotate the coordinate system to complete the
diagonalization of H; we also need to form some linear combination of the
yflb that will remove terms of the form Vg, when b # b’. We then find that
for each q there are 3n;, distinct modes of vibration. The polarization direc-
tions of these modes are in general ill-defined since the n;, atoms that form the
basis group may be moving in quite different directions. It is only the collec-
tive coordinate formed by the linear combination of the yab that has a specific
direction in which it vibrates.

The 3n, different modes that one finds in this way form the various
branches of the phonon spectrum of the crystal. The lowest frequencies of
vibration will be found in the three modes in which all the atoms within the
basis move more or less in phase. For vanishingly small values of q these can
be identified as the three modes of ordinary sound, for which w is propor-
tional to |q|. For this reason these three are said to form the acoustic branch
of the phonon spectrum. In the other modes the atoms within the basis move
to some extent out of phase, and w tends to a nonzero value as |q| tends to
zero. (There is some parallel here with plasma oscillations, in which the ions
and electrons also move out of phase.) Because the frequencies of these
phonons may be high enough to be excited by infrared radiation, they are
said to lie in the optical branch of the phonon spectrum (Fig. 3.7.2).

An understanding of the way in which the phonon spectrum splits into
acoustic and optical branches is helped by considering the problem of the
linear chain when alternate atoms have different masses. This is solved clas-
sically in many texts on solid state physics. An instructive variation of this
system, to be solved quantum mechanically, is given in Problem 3.4.
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optical

q10

Figure 3.7.2. There are two atoms in the basis of the diamond lattice, and so this
structure has a phonon dispersion curve with acoustic and optical branches.

3.8 Densities of states and the Debye model

We have found that in the harmonic approximation the lattice may be con-
sidered as a gas of independent phonons of energies /iw,, where now the
subscript q is intended to specify the wavenumber and polarization of a
phonon as well as the branch of the spectrum in which it lies in the case of
a lattice with a basis. It is useful to define a function D(w) to be the density of
phonon states — that is, the number of states per unit frequency range near a
given frequency. We write

D) =" 8w - w,). (3.8.1)

q

from which it is seen that f::z D(w) dw is the number of phonon states with
frequencies between w; and w;.

This function is important in the interpretation of many experiments.
There are, for instance, many processes that could occur in crystals but are
forbidden because they do not conserve energy. Some of these nevertheless
take place if it is possible to correct the energy imbalance by absorbing or
emitting a phonon in the process. The probability of these phonon-assisted
processes occurring will be proportional to D(w) among other things. As
another example we might consider the specific heat of the phonon gas,
which we could calculate by finding the variation with temperature of the
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average expectation value of the Hamiltonian. According to Section 3.3 we
should have

Tr Z hwy(ng + %)e_’gH
q

£ TrHe P _
" TrefH Tre—FH
Z fiwy Tr(ng + %)eiﬁH
_ 41 _ ~ 1
= Tro = 2l +3),
q

where

_ 1
"7 oxp (hwg /kT) — 1

Note that u, the chemical potential, is zero in this case because the number of
phonons is not conserved. Then

_dE 1 (hwy)* exp (ho, //eT))
€= dT ~— kT2 ; ([exp(hwq/leT) — 1P

D(w) dew. (3.8.2)

R ro (iw)? exp (hw/ kT)
kT2 )y [exp (haw/kT) — 1)

Thus the function D(w) is all that we require to calculate the specific heat of a
harmonic crystal.

Unfortunately, it is a tedious job to calculate D(w) for even the simplest
crystal structure and set of force constants. One would like, however, to have
some model for D(w) in order to interpret experiments. A popular and con-
venient model is the one first proposed by Debye in 1912, in which D(w) is
proportional to w® below a certain cutoff frequency, wp, above which it is
zero (Fig. 3.8.1). The foundation for this model comes from consideration of
the form of @, when ¢~ " is much greater than the lattice spacing. Then w is
proportional to |q| in the acoustic branch of the spectrum, so that the density
of states in frequency is proportional to the density of states as a function of
|q|. By arguments similar to those we used in considering electron states
(Section 2.1), one can show that the density of states is uniform in g-space.
Thus one knows that the exact D(w) certainly varies as w” in the limit of
small w. The Debye model is an extrapolation of this behavior to all w up
to wp.
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D)

1
] w

Figure 3.8.1. In the Debye model the phonon density of states D(w), which may be a
very intricate shape, is approximated by part of a parabola.

It is convenient to express the cutoff parameter in temperature units rather
than frequency units. This is achieved by defining

ﬁa)D = Ie@,

where © is known as the Debye temperature. The cutoff frequency is
expected to correspond to a wavelength of the order of the lattice spacing,
a, and so one has the useful approximate relation for the Debye model

%Nqa(@
kT — T °

The constant of proportionality of D(w) to w? is fixed by stipulating that the
total number of modes must be equal to 3V, where N is the number of atoms
in the crystal. Thus if D(w) = Aw” one has

AJ wzda)=3N,
0

so that

k 3
D(w) = 9N(@> o (0 < wp). (3.8.3)
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Substitution of Eq. (3.8.3) into the specific heat formula (3.8.2) gives the well
known Debye result

T 3 0/t 4 x
C, = 9N/e(—) J Ty,
©) Jo (ex=1

from which C, is found to vary as T° at very low temperatures.

In some physical problems in which the phonon spectrum only enters in a
minor way, it is occasionally desirable to have an even simpler approximation
for D(w). In these cases one may use the FEinstein model, in which it is
assumed that a displaced atom experiences a restoring force caused equally
by every other atom in the crystal, rather than by the near neighbors alone.
Then all vibrations have the same frequency, and

D(w) = 3N 8(w — wp). (3.8.4)

Because this model neglects all the vibrational modes of low frequency, its
use is appropriate only for describing the optical modes of vibration.

3.9 Phonon interactions

While the picture of a lattice as a gas of independent phonons may be an
excellent approximation with which to calculate the specific heat, there are
many physical properties that it completely fails to explain. We know, for
instance, that sound waves are attenuated in passing through a crystal, which
shows that phonons have a finite lifetime. We also know that if we heat a
substance then its elastic constants will change, or it may even undergo a
martensitic transformation and change its crystal structure. The fact that the
elastic constants change implies that the frequencies of the long-wavelength
phonons also change. This means that w, must be a function not only of q,
but also of all the occupation numbers of the other phonon states. To explain
these phenomena we must return to the lattice Hamiltonian (3.6.1), and
rescue the higher-order terms that we previously neglected.
The term of third order in the displacements was

E ylyl yl” 11’1”’

ll NARNN
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where for simplicity we consider a Bravais lattice, so that there is no summa-
tion over b. We can substitute for the y; with the y, and write

. ! ! . N " .e .
Z el - —l)elq U] Vllk _ Vllk

ll/l// - q/q//
T
to obtain
1 i ’ " L. .
= q+q'+q")-1 i J .k ijk
M= 3IN3/2 ¢ VoVaYar Vi
' 1.q.9'.q".i.j.k
1 -
:W Z y:]yi]’yq//V(;j/q//A(q+q/_i_q//)‘
: q,q/q//
i j.k
From (3.6.4)

. i .
i ¥ i
Ya = ZS DMy (@ g + g5

where s' is the ith Cartesian component of the unit polarization vector s, and
SO

1 h 2 1/2 i 1j 1k
— —1/2i 1j rk
Hy = NI <2 ) E (Wqs@qrs: gy s'ss

’ "o .
q.9'.q i, j.k
558"

l“k o . s
X Vg Aq+q' + q”)(a’_qs + aqs)(aiq,s, + aq,s,)(a‘_q,,s,, + aqis). (3.9.1)

The third-order term in the Hamiltonian thus appears as a sum of products
of three annihilation or creation operators, and can be interpreted as repre-
senting interactions between phonons. As in the case of electron—electron
interactions we can draw diagrams to represent the various components of
(3.9.1), although the form of these will be different in that the number of
phonons is not conserved. In the case of electron interactions the diagrams
always depicted the mutual scattering of two electrons, as there were always
an equal number of annihilation and creation operators in each term in the
Hamiltonian. The interactions represented by expression (3.9.1), however,
are of the four types shown in Fig.3.9.1. Some terms will be products of
three creation operators, and will be represented by Fig.3.9.1(a). It is, of
course, impossible to conserve energy in processes such as these, and so
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Figure 3.9.1. The anharmonic term in the Hamiltonian that is of third order in the
atomic displacements gives rise to processes involving three phonons. These are the
four possible types of three-phonon interactions.

the three phonons created in this way would have to be very short-lived. They
might be quickly annihilated by a process such as that shown in Fig. 3.9.1(d),
which represents a product of three annihilation operators. The processes of
Figs. 3.9.1(b) and 3.9.1(c) are more like scattering events, except that one of
the phonons is created or destroyed in the process. Such interactions may
conserve energy if the wavenumbers and polarizations are appropriate, and
would then represent real transitions.

The fact that the term A(q+q’ +q") appears in the expression for H;
implies a condition that is equivalent to the conservation of momentum
in particle interactions. Because this function vanishes unless the vector
q+q +q" is zero or a reciprocal lattice vector, g, the total wavenumber
must be conserved, modulo g. Thus in Fig.3.9.1(a) the sum of the wave-
numbers of the three created phonons must either vanish, in which case we
call the interaction a normal process, or N-process, or else the total wave-
number is equal to a nonzero reciprocal lattice vector, in which case we call
the interaction an Umklapp process, or U-process.

The distinction between N-processes and U-processes is to some extent
artificial, in that whether a scattering is designated as N or U depends on
the definition of the range of allowed values of q. It remains a useful concept,
however, in discussing phonon interactions by virtue of the fact that there is a
well defined distinction between N- and U-processes within the framework of
the Debye model. This is of importance in the theory of thermal conductivity
as a consequence of a theorem first proved by Peierls. He pointed out that
the heat current density is calculated from the group velocity dw/dq of the
phonons as

ow,
J=q' E hqu< aqs)nqs.
q.s q

In the Debye model wys = vlq|, where the velocity of sound, v, is independent
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of q or s, so that

J=q! Z hvzqnqs.
q.s

This quantity is conserved when H; contains only terms describing N-
processes, and so the energy current should remain constant in time. This
indicates that thermal resistivity — the ability of a solid to support a steady
temperature gradient — must be due to U-processes or impurities in this
model.

Now that we have expressed the third-order anharmonic part, H;, of the
Hamiltonian in terms of the a4 and afl, it is straightforward in principle to use
perturbation theory to find the change in energy of the system caused by
phonon interactions. If the unperturbed lattice is in the eigenstate |{r;}), then
first-order perturbation theory gives an energy shift of

({n}H51{n}),

which clearly vanishes because of the fact that each term in H; is a product of
an odd number of annihilation or creation operators. Just as in the anhar-
monic oscillator of Section 3.2, the perturbation cannot recreate the same
state |{n;}) that it operates upon. We must then go to second order in per-
turbation theory, allowing the possibility of H; causing transitions into vir-
tual intermediate states |{n;}). The qualitative result of including phonon
interactions in the Hamiltonian is to give the energy a set of terms that
will not be linear in the occupation numbers, nq. As in the case of the inter-
acting electron system, it is meaningless to talk about the energy of one
particular phonon in an interacting system. But we can ask how the energy
of the whole system changes when we remove one phonon from the unper-
turbed state, and to evaluate this we need to form 9€/dng. The result we find
will contain a term /iwg arising from the differentiation of the unperturbed
energy, and also a set of terms arising from differentiation of products like
ngshq's'- The energy required to introduce an extra phonon into the qth mode
is thus a function of the occupation numbers of the other modes. For a
crystal in equilibrium these occupation numbers are functions of the tem-
perature, as dictated by the Bose—Einstein distribution formula for their
average value 7g. In particular the energy required to introduce phonons
of long wavelength, as in a measurement of the elastic constants of the
material, will depend on the temperature. The inclusion of phonon interac-
tions is thus necessary for the calculation of all properties at temperatures
near the Debye temperature, and in particular for the thermal expansion and
thermal conductivity.
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3.10 Magnetic moments and spin

The classical idea of a magnetic substance is that of an assembly of atoms
containing circulating electrons. By using the laws of electromagnetism
one may show that the average magnetic field h due to a single circulating
electron of mass m and charge e is of the form associated with a magnetic
dipole, i.e.,

_3(p-or— r2u
S

h

at large distances r from the atom. Here the magnetic dipole moment, p, is
given by

u:irxv, (3.10.1)
2c
averaged over a period of the particle’s orbital motion. The magnetization M
of a macroscopic sample of unit volume is then given by

MZZM’
i

where the sum proceeds over all contributing electrons. While the definition
(3.10.1) is quite adequate for the calculation of magnetic moments of classical
systems, it is not sufficiently general to be useful in the framework of quan-
tum mechanics. We can, however, derive an expression for p in terms of the
Hamiltonian of the electron which may then be interpreted as defining the
magnetic moment operator of a quantum-mechanical system.

To achieve this we consider the motion of the electron from the point of
view of formal classical mechanics. In the presence of an externally applied
magnetic field H an electron experiences the Lorentz force,

e
F=-vxH,
¢
so that in a potential V(r) the equation of motion is

my = —vv+gva. (3.10.2)

(Note that we are considering effects on a microscopic scale here, and do not
make any distinction between the magnetic induction B and the magnetic
field H. If the atom we are considering is located within a sample of magnetic
material we should say that H is the sum of an applied field H, and the dipole
fields h; of the other atoms. It is only when one is considering the average
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field in a macroscopic body that it is useful to make the distinction between B
and H.) Now Lagrange’s equation states that

d (ory _ac

dr \av) o’
and in order for this to be equivalent to Eq. (3.10.2) it is sufficient to write the
Lagrangian

1
[I:—mvz—V—I—EV-A,
2 c

where A is a vector potential defined by H = V x A. The momentum p is then
defined by

oL
p=""=myv+°A, (3.10.3)
ov c
and the classical Hamiltonian is
oL 1

If one then differentiates the Hamiltonian with respect to the applied mag-
netic field, keeping p and r constant, one finds

oH 9 1 ,
;
=2 (a),,
e 04;
==t (),

For a uniform field, H, it is convenient to write

A:%H X T, (3.10.5)
which is consistent with the definition of A. Then

%__EZUM__i
oH ~ 2c H T 2¢

i
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By comparison with (3.10.1) we then have

oH

—SH (3.10.6)

u =
It is this expression that is taken as a definition of the quantum-mechanical
operator that represents the magnetic moment of a system. If in particular a
system is in an eigenstate of energy &£; then its magnetic moment is —d&;/oH.
If it is a member of an ensemble of systems at temperature 7T then by
Eq. (3.3.1) its average magnetic moment is

_ Trl(aH/aH)e 7]
=" Tr[e—FH]

OF
- _<ﬁ>ﬁ’ (3.10.7)

where the Helmholtz energy, F, is given by

F == 'In[Tr(e "))

To illustrate this we might consider the magnetic moment due to a single
spinless electron. In the absence of a magnetic field the Hamiltonian is

H 1 2 1%
= + .

As is seen from substituting for v from Eq. (3.10.3) in (3.10.4), the presence of
a magnetic field modifies the Hamiltonian to

2
Mot (p _¢ A) T V() (3.10.8)
2m c

which is equivalent to adding to H, a perturbation

e [N}
=—|-A"—p-A—-A-p).
e 2mc(c P p)

Use of the relation (3.10.5) then gives

2

le_irxp.H_F ¢

2
2mc 8mc2 (H > r)°”
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We then find that when H is taken in the z-direction

_ 87-(_ e rx p) H
I’LZ_ pZ 4mcz

_ot 2, .2
= 5 (x> 4+ 7). (3.10.9)

This shows that in the limit of small applied fields the magnetic moment
due to a spinless nonrelativistic electron is proportional to its orbital
angular momentum, L. = r x p, with a constant of proportionality equal to
e/2mec.

In solids the form of the potential V/(r) that acts on an electron bound to a
particular atom is frequently so lacking in symmetry that the eigenstates have
no net orbital angular momentum. That is to say, the states of the electron
are formed out of mixtures of equal amounts of the two degenerate wave-
functions corresponding to orbital angular momenta L. and —L. The only
magnetic moment observed is then due to second-order effects such as the
second term in expression (3.10.9), which, being intrinsically negative, leads
to diamagnetic effects in which the induced moment is in the opposite direc-
tion to H. One says that the strong magnetic moment one would expect from
the first term in expression (3.10.9) is quenched.

Having thus considered and disposed of the orbital angular momentum as
an important source of magnetic effects in solids we now restore to the
electron its spin, and ask how this property modifies our picture. As spin
has been shown to be a consequence of the relativistic nature of the electron
we might take as our starting point the Dirac equation, which describes the
relativistic motion of an electron or positron by means of a wavefunction
having four components. In the nonrelativistic limit the electron and positron
parts of this equation may be separated by means of the Foldy—Wouthuysen
transformation to give an equation for the two-component wavefunction
describing the electron alone. The fact that the electron wavefunction does
have two components is consistent with the electron possessing a degree of
freedom corresponding to a spin angular momentum s of %h that can point
either up or down.

The most important terms from our point of view that are contained in this
reduction of the Dirac equation are given by the Hamiltonian

1 e 2 1 4 e
= — —_—— — o . v
H m (p p A) —8m302 p + V(r) o S X A
1 e i )
+ Sl S- [VV(I) X (p —E A):| + 2 v, (3.10.10)
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This differs from expression (3.10.8) in having a term in p*, which is a rela-
tivistic correction to the kinetic energy, and in having two terms involving
the spin angular momentum s. In this section we consider only the first of the
terms containing s. Since V x A = H the presence of this term in the
Hamiltonian shows the electron to have a magnetic moment of es/mc due
to its spin. The ratio of the magnetic moment of a substance to its angular
momentum is a quantity that can be determined by experiment, and is
found to be close to a value of e/mc in many ferromagnetic substances.
This indicates that it is the spin of the electron rather than its orbital motion,
which from (3.10.9) would have led to a value of e/2mc for this ratio, that is
principally responsible for magnetic properties in these materials.

The operator s, being an angular momentum, has the same com-
mutation properties as the orbital angular momentum L. Because of the
definition

L=rxp
and the relation
[r, p] = if
it follows that
[Ly,L,))=ihL,; [L,,L]=ihL; [L., L,]=ihL,,
or, more concisely,
L x L =iAL.
We then also have the relation
s x s = ifs. (3.10.11)

It is useful to define two new operators, st and s~, known as spin raising and
lowering operators, by writing

st =5, + isy; S =8, — s, (3.10.12)

We then find that

[s.,s 1 =hs"; [s.,5 = —hs". (3.10.13)
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It then follows that if the state |1) is an eigenfunction of s, having eigenvalue
%h’, then s~ | 1) is the eigenfunction ||) of 5. having eigenvalue —%h.

SZ(S_|T>) = (S_Sz - hS_)M‘)
= ks — B
= —%h(As’ilT))

The naming of s* may be similarly justified by showing that it transforms ||
into |1). As these are the only two possible states for a spin-% particle we have

The spin raising and lowering operators remind us rather strongly of boson
creation and annihilation operators. We recall that the number operator for a
boson state can have an eigenvalue equal to any one of the infinite spectrum
of natural numbers (Fig. 3.10.1(b)). The operator s., which has eigenvalues
:I:%h (Fig.3.10.1(a)) could be considered as operating within the “ladder” of
the boson system if we could somehow disconnect the bottom two rungs
from the rest of the spectrum. The procedure that enables one to make the
correspondence between the spin system and the boson system is known as
the Holstein—Primakoff transformation. We define boson operators ¢ and «
as usual so that

[a, aT] =1; aa= n,

n=3

n=2

b et
sz=%f’l n=0

(@ (®)

Figure 3.10.1. In the Holstein—Primakoff transformation a direct correspondence is
achieved between the two possible states of a particle of spin %h and the n = 0 and
n = 1 states of a harmonic oscillator.
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and make the identification
st =01 -n"a; s =hd'(1—n)"> (3.10.14)

Substitution of these expressions in (3.10.11), (3.10.12), and (3.10.13) shows
that these relations satisfy the commutation relations for spin operators, and
that

s. = hi(k = n). (3.10.15)

This form for s, seems to suggest that it can have all the eigenvalues %h, — %h,
- %h, etc. While this is so one can also see that the operator s, which trans-
forms the state with s, = +1/ to that with s, = — 1/, is not capable of further
lowering the spin, as the factor (1 — n)'/? then gives zero. There is in effect a
barrier separating the lowest two levels of the boson system from the other
states. This correspondence paves the way for the description of a ferromag-
net in terms of a gas of interacting bosons. We shall in particular consider a
model of a ferromagnetic insulator. This is distinguished from the ferromag-
netic conductor considered in Section 2.8 by the fact that the spins are
considered as bound to a particular lattice site in the manner of the classical
model of Section 1.4.

3.11 Magnons

In a ferromagnet an atom carrying a magnetic moment is not free to orient
itself at random, but is influenced by the moments carried by other atoms in
the crystal. The simplest model of such a situation is due to Weiss, who
assumed that there was an effective magnetic field H,, acting on each atom
proportional to the macroscopic magnetization of the whole crystal. This
model is very similar in concept to the Einstein model of lattice dynamics
introduced at the end of Section 3.8, where it was assumed that the restoring
force on a displaced atom was due equally to every other atom in the crystal.
The term mean field model is now used generically to refer to theories such as
the Weiss or Einstein models in which a sum of different forces is approxi-
mated by an overall average. Because a mean field theory ignores the dom-
inance of interactions between neighboring atoms, there are no low-
frequency phonons in the Einstein model of lattice dynamics. As a consequence
the lattice specific heat is incorrectly predicted to vary exponentially at low
temperatures. In a similar way the Weiss model of ferromagnetism does not
support the existence of magnons of low frequency, and the magnetization of
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a ferromagnet of spinning electrons is also incorrectly predicted to vary
exponentially at low temperatures. What is needed to rectify this situation
is a theory based on a model in which the interaction between near neighbors
is emphasized.

The simplest such model of a ferromagnet is one in which neighboring
spins interact only through the z-component of their magnetic moments. A
lattice of IV fixed electrons (fixed so that we can neglect kinetic and potential
energies) would then have the Hamiltonian

H==) sz(t>[|mo| +> J,,/sz(w],
l v

where o, = eH./mc, the I and I are lattice sites, and the Jy are functions
only of I —1’'. This is known as the Ising model, and is of great interest to
those who study the statistical mechanics of phase transitions. It is of less
interest to us, however, as it is no more able to support magnons than was the
Weiss model. We could say in classical terms that because the x- and y-
components of magnetic moment are ignored, the tilting of one moment
does not induce its neighbor to change its orientation. It is thus necessary
to introduce interactions between the x- and y-components of spin, leading us
to the Heisenberg model, for which

H=-> s |:m0+Z J,,,s(z’)]. (3.11.1)
-

1

We rewrite this in terms of boson operators by making use of the Holstein—
Primakoff transformation. From Egs. (3.10.12), (3.10.14), and (3.10.15) we
find

s@) -sl’) = 5,03, ") + 5,5, ") + 5.Ds.A)
=1[TOs @) + 5 Os @] + 5.0s.1)
=120 = ) Paai (1= m)' " + (1 = ) (1= ) Py
+ 1 = )& —np). (3.11.2)

At very low temperatures the magnetization of the specimen, which will be
directed in the z-direction, will be close to its saturation value of (Ne/mc)%h.
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That is, the total z-component of spin will be close to %N A. In terms of the
boson number operators, #;, we have from (3.10.15) that

> s W=iNr=)" nh,
l

l

showing that the expectation value of the 7, will all be small compared with
unity at low temperatures. We take this as justification for neglecting terms of
order ° in expression (3.11.2). Replacing (1 — ;)" 2 by unity in this way we
find that
N~ 182 i i 1
s@) -s@) =51 \qay + qay +5—m —ny ).
As we are looking for spin waves, now is clearly the time to transform from

local to collective coordinates. The magnon creation and annihilation opera-
tors are defined by

+ —1/2 iq-1 1. -1/2 —iq -1
aqg=N / E e ag=N / E e,
1 1
from which

i —1/2 —iq-l 1. —1/2 iq-1
aq=N E e aq; =N E e’ ay.
q q

The sum over q is restricted as for the case of phonons to N distinct allowed
values, such as are contained within the first Brillouin zone defined in Section
3.6. We then find that

s@) -sl’) ~ % Z [aqaz,e"(“"*‘l"’/) + a:;aq/efi(q-lfq’.l’)
a.q'
)
If we define
Jq = Z S gy
7

we have for the Heisenberg Hamiltonian (3.11.1)

H = ha, Z (azaq — %) + %h2 Z [(JO — Jq)azaq + (JO — J_q)aqaz - %Jo].
q q
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For a Bravais lattice it will be true that Jg=J

_q»> glVing us

H = 50+Zha)q abag,

where &, is a constant and

(Uq = W + h(JO —_ Jq)
Within the approximations we have made we can thus consider the magnet
as a system of independent bosons. Because

Jo—Jy =2 Jysin’[1q-@ 1]
T

the magnon frequency w will always increase as q2 for small values of ¢, in
agreement with the classical approach of Section 1.4.

This simple theory is adequate to account for a number of the low-
temperature properties of ferromagnets, when only a few magnons are
excited. The total magnetization, M., for instance, is given by

Mzzmcz (z)_—( Nh— Zn,h) mc( N — an), (3.11.3)

l

showing that each magnon carries a magnetic moment of (efi/mc). The Bohr
magneton up is defined as ef/2mc, and so we can write the deviation from
saturation of the magnetization as

— M. =2upg an.
q

Because the magnons behave as bosons the average number present in any
mode will be given by (3.3.2), from which

3 1
Xq: iy = Xq: exp (o AT 1 (3.11.4)

At low temperatures only magnons of low energy will be present, and so in
a cubic crystal in the absence of an applied field w, may be approximated
by ag’, where « is a constant. Writing the summation over q as an integral in
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g-space we find

S O(J q dg
" a exp (ahq?/RT) — 1"

Changing the variable of integration from ¢ to x = ahq2 /kT gives the low-
temperature relation

My — M, « T, (3.11.5)

which is a result well verified experimentally. Mean field theories predict
either a linear or exponential variation, according to whether a classical or
quantized picture of the magnetic moment is used.

As the temperature is increased and the magnetization begins to deviate
from its saturation value, the approximation of replacing (1 — ;)"/? by 1 will
become less valid. If we expand this expression binomially, writing

1/2 2
(1—”1)/ =1—l”t—%”l -

we can interpret the exact Hamiltonian as describing a magnon system with
interactions. We could then use perturbation theory to calculate a better
estimate of how the magnetization should vary with temperature at low 7.
However, we know that there exists a Curie temperature, T, at which the
magnetization vanishes. It will thus be a fruitless task to pursue the perturba-
tion approach too far in this direction, as convergence will become very slow
as soon as T becomes comparable to T¢. There are also complications that
arise from the upper limit wy,x to the frequencies w, over which one sums in
Eq. (3.11.4). This introduces terms of the form e "m/*T which are not
expressible as any sort of power series in 7T', and makes comparison with
experiment very difficult.

As a final note on magnons it should be mentioned that more complicated
magnetic structures than the ferromagnet also have elementary excitations in
the form of spin waves. Simple, helical, and canted antiferromagnetism and
ferrimagnetism are examples of phenomena that arise when various inter-
actions occur between localized spins in various crystal structures. All these
exhibit magnon excitations of one form or another, and show a variety of
forms of w(q).
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3.1

3.2

33

34

3.5

Boson systems

Problems

Verify that for the Bogoliubov operators defined in Section 3.4

"
o, o] = -

Calculate the excitation spectrum of a gas of charged bosons interacting
through the Coulomb potential.

An alternative approach to the Bogoliubov theory of interacting bosons
first expresses the Hamiltonian (3.4.1) in terms of « and «'. One then
argues that the ground-state energy is found by evaluating (¢p|H|¢),
where |¢) is the vacuum state such that ay|¢) = 0 for all k. Show that
minimization of this ground-state energy with respect to the 6, leads to
the same results as the approach given in the text.

Optical and Acoustic Modes The problem of the chain of masses and
springs is modified by the introduction of extra springs connecting every
second particle. Then, with / = na,

1
H = Z[zMPH- Ky, — J’1+a)}

all n

+ Z Koy = Yig2a)-

evenn

Find the phonon frequencies for this system. [Hint: First make the
transformations:

W= 3 ey @ =3 ey

neven nodd

A particle is bound in a one-dimensional potential, '(x), which can be
approximated for small x by

V = %ma)zxz —ax’.

Show how the mean position of the particle, [ ¥*xy dx, changes with
the energy of the eigenstates when « is small. [Hint: Use perturbation
theory on the harmonic oscillator states by writing x° and x in terms of
a" and a.] This illustrates the fact that the thermal expansion of a crystal
is due to anharmonic terms in the potential energy.
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3.8

3.9

3.10

3.11

Problems 123

Magnon—phonon Interactions If we allow the spins in the Heisenberg
Hamiltonian (3.11.1) to be displaced by the presence of phonons in
the lattice, then we must allow the constants J; to be functions of
the displacements y, and y,. At low temperatures these displacements
will be small and one can put

(YY) = Ju(0,0) +y, - Ky — yp - Ky

Rewrite the total Hamiltonian in terms of magnon and phonon anni-

hilation and creation operators, a(™&"",  gMmagnom - gphonon -y
CZT (phonon)
4 :

b

Show that the Hamiltonian for magnon—phonon interactions derived in
Problem 3.6 exhibits conservation of the total number of magnons, in
that

when a:; and a, are magnon operators.

The result of Problem 3.7 is no more than an expression of the
conservation of total angular momentum in the z-direction. Noncon-
servation of total magnon number can occur when there is interaction
between the electron spin and the spin of the nucleus at a particular site.
Express in terms of magnon operators the Hamiltonian of a Heisenberg
ferromagnet interacting with a nuclear spin of %h at one particular
site.

Evaluate the expectation value of n, = aiak in the ground state |¢) of
the Bogoliubov picture of helium. [Hint: Express n, in terms of the
a-operators and then make use of the fact that oy |¢p) = 0 for all k.]

Express the ground-state |¢) of the Bogoliubov picture of helium in
terms of the operators g and the vacuum state |0).

Prove the statement preceding Eq. (3.6.3) which says that the matrix Véj
has three mutually perpendicular eigenvectors.
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3.12 Consider a large number N of spinless interacting bosons of mass 72 in a
large one-dimensional box of length L. There are periodic boundary
conditions. The particles interact via a delta-function potential, and so
the Hamiltonian is

i T i
H = Z Akzakak -+ (V/Q.L) Z ak_qakurqak,ak
k k.k'.q

with 4 and V constants. The sums proceed over all permitted values of
k, k', and ¢. That is, the terms with ¢ = 0 are not excluded from the
sum.

(a) Calculate the energy of the ground state of the noninteracting
system.

(b) Calculate the energy of the ground state of the interacting system in
the Hartree approximation.

(c) Estimate the speed of low-frequency sound waves in this system.



Chapter 4

One-clectron theory

4.1 Bloch electrons

The only model of a metal that we have considered so far has been the gas of
interacting electrons. A real metal, of course, contains ions as well as elec-
trons, and we should really include the ionic potentials in the Hamiltonian,
rather than the uniform background of positive charge that we used to
approximate them. The difficulty of the many-electron problem is such, how-
ever, that the loss of translational invariance caused by adding an ionic
potential V'(r) to the Hamiltonian proves disastrous. Even in the Hartree—
Fock approximation, for example, it becomes impossible to write the energy
in a closed form. When there was no ionic potential we could write the
wavefunction of the noninteracting system as

@) = [ cilo), (4.1.1)

k| <kp

where the operators c}; created electrons in plane-wave states. But if there is

an additional potential applied to the system we might find the energy to be
lower in the state ® if we replaced the ¢} by operators ¢}, that create electrons
in states that are not plane waves. The definition of the Hartree—Fock
approximation in this general case is then taken to be that ® must be a
Slater determinant and must make the expectation value of the
Hamiltonian a minimum. It becomes very laborious to work out what states
the cl; should create to fulfill this condition.

We are saved from what seems to be an impossible task by three fortunate
features of the problem. The first of these is the fact that we can initially
ignore the thermal motion of the lattice, and study the motion of the elec-
trons in the potential of a stationary array of ions. This is known as the
adiabatic or Born—Oppenheimer approximation. Its justification appears when

125
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we apply the motion of the ions as a perturbation, and calculate the effects of
the gas of phonons interacting with the electrons. This is discussed in detail
in Chapter 6. There we find the corrections to the electron energies to be
comparatively small, and of importance only in special circumstances like
superconductivity.

The second useful fact is that the electrons in the core of an atom are so
tightly bound that they are not significantly perturbed by the motion of
electrons at the Fermi energy. The effects of the core electrons on the proper-
ties of a solid are limited to their repulsion of other electrons through elec-
trostatic forces, and to the effective repulsion that arises from the demands of
the Exclusion Principle that no two electrons of the same spin occupy the
same location. The consequences of the requirement that the wavefunctions
of the higher-energy electrons be orthogonal to those of the core states will be
discussed in Section 4.4.

The third happy feature of the problem is the most important. It is the fact
that the properties of a system of interacting electrons in a static lattice
potential can be found by solving a set of related one-electron Schrédinger
equations. The formalism by means of which this equivalence can be proved
is known as density functional theory, and is the topic of Chapter 5. For now
we assume this result, and turn our attention to the solution of the
Schrodinger equation for a single electron moving in the potential V(r) due
to a periodic crystal lattice. That is, we need to solve the equation

hz
=5~ VAU + VOY(r) = EY(). (4.1.2)

where the lattice potential has the property that, for all lattice vectors [,
V(r)=V(+1).

If the potential were zero, the wavefunctions would be of the form dis-
cussed in Section 2.1,

¢k — Q—l/2elk-r’
with energies given by

21,2
gk:h—k.
2m

If we now slowly switch on the lattice potential the wavefunctions are per-
turbed to a new form

U = QP ()™ (4.1.3)
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Because the lattice potential is periodic, this modification of the wavefunction
is also periodic, and so

u(r) = uy (r +1).

The fact that the wavefunctions can be written in the form (4.1.3) is known
as Bloch’s theorem, and can be proved as follows. Let us consider any solu-
tion ¢ of the Schrédinger equation

H@)y(r) = EY(r).
On relocating the origin of r we find
H(r +Dy(r +1) = Ey(r +1).
But since V'(r +1) = V(r) it follows that
HmOY(r +1) = EY(r +1).

Thus any linear combination of the (r +1) for different I gives a valid
eigenstate of energy £. Let us in particular choose the combination

Y@ =) Ylr+De ™!
l

— ez’k-r 1//(1‘ + l)e—lk'(r+l)'
>

Because the sum is over all Z it must be a periodic function of r with the
period of the lattice, and can be identified with the function u(r) of
Eq. (4.1.3). If we now impose the cyclic boundary conditions that we used
in Section 2.1 for free electrons, and demand that

Yi(r) = Yy (r + L)

for three different large lattice vectors L, we shall clearly have the condition
that all the components of k must be real.

An electron having a wavefunction of the form (4.1.3), where u(r) is
periodic in the lattice, is known as a Bloch electron. In terms of u(r) the
Schrodinger equation (4.1.2) becomes

2
|:_ 2h_m (V + ik)* + V(r)] e (r) = Exig(r), 4.1.4)
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which we write as
Hyuy (r) = Exuy(r).

The reciprocal lattice vectors, g, defined in Section 3.6, have the property
that ®! = 1 for all g and Z. It follows that any function that may be written
in the form ), age"g'r is periodic with the periodicity of the lattice. The
converse may also be shown to be true for any well behaved periodic func-
tion, which allows us to expand V(r) and u,(r) in Fourier series of the plane
waves ¢®'". We can thus write

VI =Y Ve® " )= uke®",
g

g

where
Vy= Q! J e BTy (r)dr; uy(k) = Q! J e 8 Ty (r) dr.

If we substitute these expressions into (4.1.4) and equate the various Fourier
components we find the infinite set of equations

hZ
% (g + k)zug(k) + Z Vg’ug—g’(k) = gkug(k)’
g/

which can in principle be solved for & and uy(k). The graph of &y against k is
known as the band structure, for reasons that will soon be apparent. It is
interesting to note that it is only certain Fourier components of the atomic
potentials that contribute to these equations which determine the &,. If the
lattice potential is supposed to be due to a superposition of atomic potentials
V,(r), so that

V=Y V-,
l
one can write the Fourier transform of V(r) as

Vig)= Q™' J eV () dr

Cat(5 o) [ e
l
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Thus the Fourier transform of the lattice potential is expressed in terms of the
Fourier transform, V,(q), of the atomic potential V,(r). However, because
the sum over I vanishes unless q is equal to a reciprocal lattice vector, g, the
energies of the Bloch electrons depend only on these particular terms in V' (q).
This is illustrated in Fig.4.1.1.

If one were to take a free electron and slowly switch on the lattice potential,
the wavefunction would be gradually transformed from a plane wave to a
Bloch wave of the form (4.1.3). In general the value of k is then well defined,
since it does not change from its original value, and the plane wave merely
becomes modulated by the function u(r). It is, however, possible to write the

V) r

)

V(q) \\q

Figure 4.1.1. V(q) is the Fourier transform of the potential V' (r) due to a single atom.
When one sums the contributions of all the atoms in the lattice the only parts of V(q)
that do not vanish occur when q is equal to a reciprocal lattice vector g.
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Bloch wavefunction in the form
Y0 = Q7 [ () T

Because both u(r) and e® " are periodic, so is their product. This means that
the wavefunction can be considered as obeying the Bloch condition (4.1.3)
not just for one value of k, but for any value such as k — g. This is not the
same thing as the equivalence that was found in Section 3.6 of the coordinate
Yq 1O Yqig> for here we are dealing with a set of wavefunctions that are all
different although they happen to obey the Bloch equation with the same k.
The function u,(r)e® " is not the same as uy1g(r). The difference arises from
the fact that the phonon problem has only a limited number of degrees of
freedom, while the Schrodinger equation has an infinity of solutions. The
Bloch theorem allows these solutions to be classified either according to the
original value of k before the potential was switched on, or else according to
the value of k after some reciprocal lattice vector has been added to it. The
first Brillouin zone was defined in Section 3.6 as the volume in k-space con-
taining all those points for which |k| < |k +g| for all g. It is sometimes
convenient to classify Bloch states by specifying the value of k reduced to
lie in the first Brillouin zone. To define the state completely it is then also
necessary to define a band index which is related to the value of g necessary to
achieve this reduction. In general the band index is defined as the number of
different values of g (including zero) for which |k| > |k + g|. This is illustrated
in Fig. 4.1.2 for a hexagonal lattice in two dimensions. The point ¢ cannot be

"

\C

L

Figure 4.1.2. In this two-dimensional hexagonal lattice the point a lies in the first
Brillouin zone. The point b lies in the second Brillouin zone while the point ¢ lies in
the third zone.



4.1 Bloch electrons 131

brought closer to the origin I' by addition of any nonzero reciprocal lattice
vector. It thus has band index 1, and is said to be in the first Brillouin zone.
The point b can be brought closer to I'" only by addition of the vector g that
takes it to b'. It thus has band index 2 and is in the second Brillouin zone.
Point c is in the third Brillouin zone, since it may be reduced either to ¢’ or ¢”,
and so on. One thus has two alternative schemes for depicting the band
structure &,. The first scheme, in which k is allowed to take on any value
consistent with the boundary conditions, is known as the extended zone
scheme. In the second, the band structure is written in the form 55("), where
n i1s the band index, and now k is the reduced wavenumber, restricted to lie
within the first Brillouin zone. This is known as the reduced zone scheme. The
usefulness of the reduced zone scheme is a consequence of the most impor-
tant property of Bloch electrons, namely that surfaces of discontinuity in
general exist in & in the extended zone scheme at all the boundaries between
Brillouin zones. In the reduced zone scheme, however, 5}(") is always a con-
tinuous function of k.

This may be made plausible by the following argument. When k does not
lie on a Brillouin zone boundary, so that there is no nonzero g for which
k| = |k + g|, then v is certainly different from its complex conjugate .
Now a complex wavefunction always carries a current, since then ¥ Vi, —
Y V¥k cannot vanish, and so the application of an electric field to the system
will change the energy of the electron even if the field is vanishingly small.
This energy change comes about by the mixing of v with states of neighbor-
ing wavenumber whose energies are arbitrarily close to &. If k lies on a zone
boundary, however, ¥, may be real and still satisfy the Bloch condition.
There is then no current carried by these states, and so there are not neces-
sarily states whose energies are arbitrarily close to £ both from above and
below. One may then find ranges of energy over which there are no states.
One may define a density of states in energy D(E) by the relation

DE) =) &€~ &

k

where the sum proceeds over all values of k in the extended zone scheme. For
an infinite crystal this spectrum of delta-functions becomes a continuum, and
can be plotted to give a curve that might, for example, be of the form shown
in Fig.4.1.3. The states for which k is in the first Brillouin zone contribute to
the shaded part of D(£), while states in the second and higher Brillouin zones
give the rest. The fact that there are bands of energy for which D(£) vanishes
justifies the naming of £(k) as the band structure of the crystal.
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D(g)

&

Figure 4.1.3. In this model all the states in the valence band (shown shaded) are
occupied, while all those in the conduction band are empty. This system would be an
insulator, since a finite amount of energy would be required to create a current-
carrying elementary excitation.

4.2 Metals, insulators, and semiconductors

If a crystal is composed of N atoms then each Brillouin zone contains N
allowed values of k. As an electron has two spin eigenstates each zone may
then contain 2N electrons, which is equivalent to saying that there are two
states per zone per atom in a Bravais lattice. In some elements it happens that
the number of electrons that each atom possesses is just sufficient to populate
all the states below one of the gaps in D(£). This has a very important
effect on a number of the properties of these elements, and especially on
the electrical properties. At zero temperature all the states below one of the
band gaps are filled, while all the states above it are empty. One thus is
required to provide an energy equal to the width, 2A, of the band gap if
one is to excite an electron from the lower band (known as the valence band)
to the upper one (known as the conduction band). Thus the crystal will not
absorb electromagnetic radiation of frequency w if iw < 2A. In particular the
crystal will not absorb energy from a weak electric field of zero frequency —
that is, it is an insulator. In a metal, on the other hand (in which term we
include such good conductors as ReO; or Ru0,), the number of electrons is
such that at zero temperature there are occupied and unoccupied states
differing in energy by an arbitrarily small amount. The energy of the most
energetic electron (the Fermi energy, £p, which is the chemical potential
at zero temperature) does not coincide with a gap in the density of states.
The crystal can then absorb radiation of low frequency, which makes it a
conductor.
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The Fermi surface of a metal of Bloch electrons is defined as the locus of
values of k for which £(k) = £r. Whereas for free electrons this surface was a
sphere of radius 4~ (2mé&y)"/?, for Bloch electrons it is distorted to a greater
or lesser extent from spherical shape, particularly by the effects of the dis-
continuities in £(k). Because the discontinuities of £(k) occur only at the zone
boundaries, the Fermi surface remains continuous in the reduced zone
scheme. If, however, there are states with different band indices contributing
to the Fermi surface then the surface will consist of two or more sheets. In
experiments on metals in magnetic fields one can sometimes separately dis-
tinguish the effects of the various parts of the Fermi surface.

We started our discussion of Bloch electrons by considering the effects of
the lattice potential as a perturbation of the free-electron wavefunction. We
might, however, have approached the problem from the opposite extreme,
and looked at Bloch states as perturbations of atomic orbitals. A useful
picture of this viewpoint is given in Fig. 4.2.1(a), which shows the degenerate
energy levels of a crystal of widely spaced atoms broadening into bands as the
lattice spacing a is reduced from some initial large value. In the case of a
simple monovalent metal like sodium or potassium, with only one electron in
its outer shell, the lower band shown in Fig.4.2.1(b) would always be only
half-filled, since there are two possible spin states for each value of k. The

a

Figure 4.2.1. Atomic energy levels found when the interatomic spacing a is
large broaden into bands when « is reduced (a). Monovalent atoms have half-filled
bands (b). Divalent atoms have filled valence bands at large a but become
conductors when «a is small and the bands overlap (c).
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electrical conductivity would then be high, provided a were sufficiently small
to allow passage from one atom to another.

For a crystal of divalent atoms like magnesium, the lower band will be
filled, as in Fig.4.2.1(c). For large a the crystal would be an insulator, as by
symmetry the occupied states would carry zero net total current. That mag-
nesium is a metal must be a consequence of ¢ being small enough that two
bands overlap, allowing each to be partially filled. Magnesium does indeed
crystallize in the hexagonal close-packed structure, and is a good metal.
Carbon, on the other hand, can crystallize into the much more open diamond
structure. Being tetravalent it then has a filled valence band, and is an excel-
lent electrical insulator, with a band gap of over 5eV.

Silicon and germanium also crystallize in the diamond structure, but have
much smaller band gaps, of the order of 1.1eV for Si and 0.67¢V for Ge.
This makes them semiconductors, as it is possible at room temperature to
excite a few electrons from the valence band into the conduction band.
Thermal energies at room temperature are only about 0.03eV, giving a
probability of thermal excitation of only about e~ 22, which is 107, in
germanium. Intrinsic semiconductors, like pure Ge and Si, thus have quite
low conductivities.

A much larger conductivity, and hence more technological usefulness, can
be obtained by adding impurities to produce an extrinsic semiconductor.
Adding small amounts of a pentavalent element such as arsenic to silicon
increases the number of electrons available for conduction. This doping with
donor atoms moves the chemical potential up from its previous position in
the middle of the energy gap, and into the conduction band. The material is
now known as n-type silicon. The converse process of doping with trivalent
acceptor atoms produces p-type silicon, whose chemical potential lies in the
valence band.

The union of p-type and n-type material to form a p—n junction enables a
wealth of useful phenomena to occur. In a photovoltaic cell, electrons fed
into the valence band of p-type material may be elevated into the conduction
band by a photon of sunlight. They then emerge from the n-type material at a
higher potential and can do useful work before being returned to the lower
potential of the p-type material. In a light-emitting diode, or LED, the
reverse process occurs. Electrons at a high enough potential to be fed into
the conduction band of the n-type material can move to the p-type side and
then fall into the valence band, emitting a photon of light as they do so. From
more complex arrangements of p-type and n-type semiconductors and
metals, that ubiquitous foundation of our technological society — the tran-
sistor — can be constructed.
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4.3 Nearly free electrons

There are now powerful computer codes that can produce credible forms for
E(k) for any given periodic potential. In materials in which there are several
atoms in each unit cell these band structures may be exceedingly complex,
and so it is useful to start by looking at some much simpler situations. In this
way we can appreciate some of the concepts that play important roles in
determining material properties. The simplest approximation one can make
is to neglect the lattice potential altogether, except in as much as to allow the
existence of infinitesimal discontinuities in £(k) at the zone boundaries. The
Fermi surface one obtains then consists of portions of the free-electron
sphere reduced to lie in the first Brillouin zone. This is known as the
remapped free-electron model. An example of this construction in two dimen-
sions is shown in Fig. 4.3.1 for a hexagonal reciprocal lattice. The circle of the
extended zone scheme is reduced to a central portion, 4, derived from the
second Brillouin zone and a group of small regions, B, derived from the third
Brillouin zone. The occupied electron states are always on the concave side of
the boundaries, and so the surface 4 is seen to contain unoccupied states. It is
consequently known as a “hole surface.” The portions B, on the other hand,
contain electrons. We note that the use here of the term “hole” is quite

pd

Figure 4.3.1. The circle represents the free-electron Fermi surface in the extended
zone scheme. In the remapped representation of the reduced zone scheme it forms a
central “hole” surface and a group of small electron surfaces.
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distinct from that of Chapter 2, where a hole was simply the absence of an
electron from a state below the Fermi energy. In the context of band struc-
tures, a hole is also an unoccupied state, but one that has an additional
property: the energy of the state decreases as one moves away from the
interior of the constant-energy surface, as is the case for the surface A4 in
Fig. 4.3.1. A hole state in band-structure parlance may have an energy either
below or above the Fermi energy. We shall see some examples of hole states
in later sections of this chapter.

The way in which the remapped free-electron Fermi surface is derived from
the Fermi surface in the extended zone scheme is seen most easily when the
first Brillouin zone of Fig.4.3.1 is repeated periodically to form the scheme
shown in Fig.4.3.2. In this repeated zone scheme one sees that the various
parts of the Fermi surface are formed in the first Brillouin zone when a free-
electron sphere is drawn around each point in the reciprocal lattice.

The simplest approximation that can be made that includes the effect of the
lattice potential is known as the model of nearly free electrons. Here one
assumes that only a certain small number of different plane waves combine
to form the Bloch wave . The relative coefficients of these plane waves
are then varied to minimize | ¥} Hyy dr, and this gives an approximation for
£(k) and the wavefunction in the first Brillouin zone. The form of £(k) in the
second zone is found by minimizing the integral by varying wavefunctions
restricted to be orthogonal to those in the first zone, and so on. In practice

Figure 4.3.2. This picture shows the model of Fig. 4.3.1 in the repeated zone scheme,
and is formed by periodically repeating the first Brillouin zone of the reduced zone
scheme.
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the labor involved can be greatly reduced if one chooses to include in vy only
those plane waves that one thinks will enter with large coefficients. Thus if a
point k in the extended zone scheme is much nearer to one zone boundary
than any other, then one might approximate ¥, by a mixture of ¢** and
KT where g, is that reciprocal lattice vector that makes [k| close to
Ik + g|. Physically this is equivalent to saying that the plane wave ¢*" will
only have mixed with it other plane waves whose energies are close to its own.
Thus, if we write

Y= Q7 Plug)e™ T+ (k)e ™ E) ] (4.3.1)

and
V=) Vee®”
g

with the zero of potential energy defined to make V|, vanish, then

2
J YFHY dr = o [huok® + 1fuy (k — 8))"] + uhuy Vy, + fug V.

The normalization condition is
J v dr = whuy + ufu; = 1.

We now minimize the energy by varying the wavefunction. According to
Lagrange’s method of undetermined multipliers we can take account of the
normalization condition by writing

5“ Y*HYdr — A J w*wdr] = 0.

But now we can immediately identify the multiplier A with the energy &, for
this is the only way we can ensure that just multiplying ¥ by a constant will
leave the term in brackets unchanged. On differentiating partially with
respect to uf and u* and putting A = £ we find
'S
W HO + Vglul = gl/lo
Pk —g)

2m ul =+ V_gluO = &,tl.
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For these equations to be consistent the determinant of the coefficients must
vanish, and so

K’
2m & Vgl .
Pk-g) .|
V_gl T_E
and thus
17K Bk — e )
el i +h (k—g))
2|1 2m 2m
Pk—g) PR\
:t\/( (2mg1) _ 2m) AV, Vot (4.3.2)

The two possible signs of the square root correspond to the nonuniqueness of
the wave vector k that characterizes the Bloch state. That is to say, this
expression tells us the energy of the electron in the first and second energy
bands. If k is chosen to lie in the first Brillouin zone then the negative square
root will give the energy of the state that is formed from the wavefunction
¢™ " when the lattice potential is turned on slowly. The positive square root
will refer to the state formed from ¢/* 78T and which was originally in the
second Brillouin zone.

It is interesting to note that this formula (4.3.2) for the energy of a Bloch
state is identical to the one we should obtain from the use to second order of
the Brillouin—Wigner perturbation theory described in Section 2.5. This result
is peculiar to the two-plane-wave assumption of expression (4.3.1), and
should not be looked upon as indicating that an approach using perturbation
theory is necessarily equivalent to a variational approach.

The general expression of the model of nearly free electrons is found when
any finite sum of plane waves is chosen as the trial wavefunction. Then if

g
minimization of the energy leads to the series of equations

hz
> { [5 — 5 (k+ g)z]agg, — Vg,_g}ug(k) = 0.

g
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For these to be consistent the determinant of the coefficients of the u,(k) must
vanish, and so

K 5
‘[5 —5- (K +g) ]5gg, — Vy_g| = 0. (4.3.3)

This polynomial in £ has as many solutions as there are plane waves in the
expansion of vy, and reduces to expression (4.3.2) when that number is only
two.

We can observe some of the effects of the lattice potential in the simplest
three-dimensional model, which is known as “‘sandwichium.” Here the lattice
potential is just 2} cos gx, and so the loci of the points |k| = |k + g| are just
the planes defined by k, = +(n/2)g. The two-plane-wave version of the
nearly-free-electron model then gives expression (4.3.2) for the energy,
which in the neighborhood of k, = % g becomes

K 1| Bk Pk, —2)
S:%(k§+k§)+—{ x M= g)

2| 2m 2m
201 o2 127272
i\/[h (k;m 8) —hzﬂ +4V2], 4.3.4)

which we write as

2
=2 (13 + D) + &, (k).
2m

The form of £,(k,) is shown in Fig.4.3.3 for two different values of V. The
sign of the square root has been chosen so that £ — /i*k2/2m as V — 0,
which means that we are using the extended zone scheme. One sees that it
is only when k. is in the vicinity of % g that &£, deviates appreciably from its
free-electron value, and that a discontinuity in &, does indeed occur when
k, = % g. The magnitude of this discontinuity is 2V

The shapes of the surfaces of constant energy are shown in Fig.4.3.4,
where their intersections with the plane k£, = 0 are plotted. For low energies
the surfaces are close to spherical; then as k, approaches the zone boundary
E(k,) starts to fall below the free-electron value, and the magnitude of
k, becomes correspondingly greater for a given energy. One says that the
constant-energy surfaces are “pulled out” towards the zone boundary. The
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small ¥

large V

o

X

Figure 4.3.3. The variation of energy with k, in the sandwichium model is shown by
the solid line for the case where V is small compared with hzgz/Sm. As V is
increased, the discontinuity at the zone boundary becomes larger, as illustrated by
the dashed curve.

Figure 4.3.4. The variation of energy with the x—y component of wavenumber in the
sandwichium model is shown in this picture, in which the lines of constant energy are
drawn in the plane in which k. = 0.
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lowest-energy surface to meet the zone boundary is, in fact, pulled out to a
conical point at the place where it does so. We can verify this by writing

k=(3g— K.k, k)

and expanding the square root in (4.3.4). For the negative root we find

2 2 2 2 22
:h—(lg) —V+h—(k2+k2) h K[h 1]

2m \ 2 2m | dmV
22 12€

=&, —V+—(k2+k2)—h—<—g—1) (4.3.5)
2m V

where we have used the abbreviation

7”1\

Thus when
E=E, -V

the energy surfaces are given by

2&
2, 12 2
ky + kZ ~ (7g — 1>Kx.

This equation defines a cone whose axis is in the x-direction.
When the energy is greater than &£, + V" one also finds energy states in the
second band. Then the positive square root is chosen in Eq. (4.3.4) and

o, WG (28,
ExE+ Vo (k+ih)+ %<7+1)

The constant-energy surfaces are thus approximately spheroidal in this
region of k-space. If it were not for the factor of (2£,/V) + 1 that multiplies
the term in «> the surfaces would be spherical, and the free-electron band
structure that one finds near k = 0 would merely be repeated at the bottom of
the second band. It is possible to exploit this similarity by considering the
electron energy to be given by the free-electron relationship, with the excep-
tion that the inverse of the electron mass must now be considered a tensor.
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Thus we can write
ExE+V+Ik-M "k,

with the understanding that the origin of k is taken to be the point (% 2,0,0)

and that
1 [2€,

- 1

M= 0 2o
m

1

0 0 —

m

The inverse-effective-mass tensor in this problem is thus anisotropic in that
the energy increases more rapidly as a function of k, than of k, or k.. If the
lattice potential is weak enough, then (M _l)xx may be many times larger than
(M_l)yy. In this case one says that it is a light electron for motion in the
x-direction.

It is also possible to interpret the band structure in the first band in these
terms by writing Eq. (4.3.5) in the form

ExE—V+1inrk-M k.

In this case (M _l)xx is negative while (M _l)w is still positive. The electron is
said to exhibit hole-like behavior for motion in the x-direction. If there were
also a periodic potential 2V cos gy then there would also be the possibility of
(M _l)yy being negative for some points in k-space [Problem 4.5], and for a
three-dimensional crystal the states at the corners of the first Brillouin zone
will be completely hole-like.

The particular constant-energy surface that represents the boundary
between filled and empty states in a metal is again known as the Fermi
surface. The shape of the Fermi surface depends on the crystal structure,
the lattice potential, and the electron density, and is different for every
metal. For some, such as sodium or potassium, the lattice potential is
weak and the Fermi surface deviates little from a sphere. For others, and
in particular the polyvalent metals, the Fermi surface is far from
spherical, and may be formed from regions in several different Brillouin
zones.
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4.4 Core states and the pseudopotential

In using the nearly-free-electron approximation we have confined our interest
for the most part to the first few Brillouin zones. We have tacitly assumed
that the conduction-electron states can be found by solving the Schrodinger
equation for electrons moving in a weak potential that is composed of the
Coulomb attraction of the nuclei screened by the presence of the electrons in
the filled atomic shells.

This picture is not justifiable on two counts. Firstly, we must remember
that the Exclusion Principle demands that the wavefunctions of the conduc-
tion electrons be orthogonal to those of the electrons in the filled atomic
shells, or core states as we shall call them. Secondly, we can calculate that
for real solids the lattice potential is too strong for the nearly-free-electron
approach to be valid when only a few plane waves are used. That is to say,
the lowest Fourier components V, of the lattice potential are not small
compared with /’g?/8n for the smallest reciprocal lattice vectors.
However, while either one of these considerations alone would prevent us
from using the nearly-free-electron approximation, it happens that taken
together they present a tractable situation. Because we are now going to
take account of the Bloch states of the core electrons, the determinant
(4.3.3) must now be much larger than the 2 x 2 form that we have just
been using. If we wish to apply this method to potassium, for instance, we
must calculate that with an atomic number of 19 this metal has enough
electrons to fill 9% Brillouin zones. This means that a large number of
Fourier components of the lattice potential must be included if we are to
find energy discontinuities at all the relevant zone boundaries. But if the
conduction states and the Fermi surface are to be located in higher
Brillouin zones than the first few, then their k-vectors in the extended zone
scheme must be very large. This means that if they are to be scattered by the
lattice to a state of approximately equal energy, then it will be mostly large
reciprocal lattice vectors that will describe the difference in wavenumbers of
the two states. Consequently it will be the Fourier components V, of the
lattice potential corresponding to large g that will describe the energy dis-
continuities at the zone boundaries. Because these components are much
smaller than those corresponding to small g, the validity of the nearly-
free-electron approximation is restored as a means of calculating the band
structure of the conduction bands.

The use of plane-wave expansions of all the electron states in solids has,
however, one big disadvantage. We have not so far made use of the fact that
the core states are very highly localized around the nuclei of the atoms. If the
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core level in the free atom is tightly bound, then its kinetic energy starts to
become negative at a short distance from the nucleus, and the wavefunction
decays rapidly outside this distance. When many of these atoms are brought
together to form a solid, the wavefunctions of the core states of different
atoms do not overlap appreciably, and the tendency of the degenerate core
states to broaden into a band is very small. This suggests that it would be
more appropriate to expand the iy, not in terms of plane waves, but in terms
of the atomic wavefunctions, ¢;(r). Because we know that Bloch’s theorem
must still be obeyed, we first form linear combinations of normalized atomic
wavefunctions centered on different atoms by writing

S =N My -, (4.4.1)
l

We then expand v, in terms of these, and write

Vi) =Y (k)i (r).

i

This formalism 1s known as the Linear Combination of Atomic Orbitals, or
LCAO, method.

For an exact solution we should include not only the bound atomic states,
but also states of positive energy, so that we have a complete set in which to
expand . In practice, however, this method is still useful when only a few
atomic states are assumed to contribute. We take matrix elements of the
Hamiltonian between the states ¢¥(r) and write a secular equation analogous
to Eq. (4.3.3) of the form

|D| =0

where
Dy = | # 00 -

We note that the nonorthogonality of the ¢¥ must be taken into account.
The LCAO method is widely used for practical computations, as are varia-
tions of it in which y is expanded in eigenstates of other spherically sym-
metric potentials. Our goal in this section, however, is not to provide detailed
instructions for performing these calculations. It is rather to point out the
physical significance of the presence of the core states in reducing the effective
lattice potential. To this end we make the most drastic simplification possible,
which is known as the method of tight binding, and assume that only the
diagonal elements contribute to this determinant. The energy is then given
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simply by the expectation value of H in the state ¢%(r). Now
Hok(r) =N~ " M THe(r — 1),
[

and it is convenient to consider the lattice potential ¥/ (r) that acts on ¢,(r — 1)
as the sum of two separate terms — the potential due to an atom located at
and that due to all the other atoms. We thus write

2

= V4V, (r=1)+ W(r—1)
2m

where V,(r) is the atomic potential and W(r) is the difference between the
lattice potential and the atomic potential (Fig.4.4.1). We expect W(r) to be
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Figure 4.4.1. In the method of tight binding the periodic lattice potential ¥ (r) is
considered to be the sum of an atomic potential V,(r) and a correction W(r) that is
small in the neighborhood of the origin. The potential W (r) is then treated as a
perturbation acting on the known atomic wavefunctions.
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small when [r| is less than half the interatomic distance. If we define the
energy of the atomic state ¢;(r) as &;, then

Hei(r) = N~2 3" E + W —Dlgir — 1)
l
= &GO+ N2 MW —Dgi(r - D),
l
so that
| drarar =, | ot ar

+ N7 R J 5 — 1YW (r —l)g,(r — 1) dr.
Ly

If we assume that the ¢;(r —I) overlap appreciably only when they are
centered on adjacent atoms, the double summation reduces to a sum over
pairs of neighboring atoms. With the further approximation that this overlap
is small we find the ¢¥ to be normalized, and so

£—&+ j 50 W () py(r) dr
+30m [gir- s
L

where L are the different lattice vectors connecting nearest neighbors. As the
integrals are just constants, one finds for a Bravais lattice a result of the form

E=E+W > cosk-L. (4.4.2)
L

The tight-binding method is suitable only when the overlap between atomic
wavefunctions is small, and this is appropriate only for states whose energies
are well below the Fermi energy. Metals whose energy bands are composed of
low-lying core states, which may be approximated by tight-binding wave-
functions, well separated from conduction states, which may be described
in the nearly-free-electron approach, are known as simple metals. For these it
is possible to reformulate the nearly-free-electron description of the conduc-
tion states by using as basis functions plane waves that have been modified so
as to be automatically orthogonal to the tight-binding states of the core
electrons. This is known as the method of orthogonalized plane waves (the
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OPW method). One first defines a set of OPW functions which are formed
from plane waves by subtracting their projections on the Bloch waves of the
occupied core states. In the tight-binding approximation for the core states

Popw(r) = Q' [e"‘" DA J IZ*(r)e"'”dr],

or, in a briefer notation,

|BEpw) = 1K) — Y %) (@t IK).

We note that the ¢¥ were defined in the repeated zone scheme, since by (4.4.1)

k k+
¢ = cg

k)l

while the wavenumber k in the term eik", 1s allowed to take on all values, and

is thus considered to be in the extended zone scheme. One then again takes
matrix elements of H — & between the various OPW functions and sets

D] =0

where
k+ k+g’
Dyy = (dopwIH — Eldopw)-

The most noticeable difference between this equation and Eq. (4.3.3), in
which matrix elements were taken between pure plane waves, is in the off-
diagonal elements. Because the OPWs are not mutually orthogonal, we now
find terms involving the energy as well as terms involving the tight-binding
Bloch energies, £X. When g # g’

Dyy = Vg + ) (€ = E)k +gld) ($ k + 2.

Because £ > £, the summation over core states has a tendency to be positive,
while Vg, which is just the Fourier transform of the lattice potential, tends
to be negative. The off-diagonal elements of D, and hence the energy dis-
continuities at the zone boundaries, are thus smaller than we should expect
from using the model based on plane waves.

We can see this another way by explicitly separating the core functions
from the sum of OPWs that form the complete wavefunction. Let us

first abbreviate the operator that projects out the core Bloch states by the
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symbol Py. Thus

Po=) Ig6) (gt

and
lpopey) = (1 — POk 4 g).

The exact wavefunction is a sum of OPWs, and so

W) = ug” " (k)(1 = Pk +g),

g
which we write as
[Yy) = (1- Pk)le)

where

=ty (KK + g).
g

Then
(H =8 = (H—=E1 = PYlxx) =0 (4.4.3)

and we may look upon the problem not as one of finding the states |y ) that
are eigenfunctions of H — &, but as one of finding the states |y) that are
eigenfunctions of (H — &£)(1 — Py). Now H is composed of kinetic energy T’
and potential V, so that x, must be an eigenfunction of

(T+V-=-1-P)=T—-E+V(1—-P)—(T—-EPy.
Thus (4.4.3) can be written
(T + U)lx) = €lx),
where the operator
Uy=V({1—=P)—(T—-E)Py (4.4.4)

is known as a pseudopotential operator. We can argue that we expect it to
have only a small effect on the pseudo-wavefunction x, by noting two points.
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Firstly we expect V(1 — Py) to have small matrix elements, since it is just
what is left of V' after all the core states have been projected out of it. The
strongest part of }J will be found in the regions near the atomic nuclei, and so
the core states, which are concentrated in the same regions, will be suitable
functions in which to expand V. The combination 7' — £, on the other hand,
is not so drastically affected by the operation 1 — P,. On the contrary, it
becomes reasonable to assume that (7 — £)Py, has only a small effect, for
there will be little overlap between yx, and the core states if x; is indeed just
acombination of a few plane waves of small wavenumber. It thus is self-
consistent to assume that the pseudopotential is weak and that x, is a
smoothly varying function. One should remember, however, that although
Uy may be small it remains an operator rather than a simple potential, and
has a dependence on energy that must sometimes be treated carefully.

Yet another way of looking at the pseudopotential is obtained by defining
a new Hamiltonian H' formed by adding (£ —H)P, to the original
Hamiltonian. Then

H' =H+ (- H)Py
=H+ ) (€= EDIPE) (gl

The extra terms added to H have artificially raised the energies of the core
states to be equal to &, as can be seen by letting ' act on the ¢X. Now since
the lowest energy levels of H' are degenerate, we can state that any linear
combination of ¥, and the ¢¥ are eigenstates of H', and we are at liberty to
choose that combination y, that is most smoothly varying, and hence which
can be best approximated by the fewest plane waves. This expresses the fact
that the pseudo-wavefunction y, is not uniquely defined by (4.4.3), which
only says that the part of yx, that is orthogonal to the core states must be
equal to .

When pseudopotentials are used in numerical calculations, their character
as operators makes itself felt. One must then deal with a nonlocal form of the
pseudopotential in which the interaction between an electron and a nucleus
depends on their coordinates separately, and not only on their relative co-
ordinates. Fortunately, the pseudopotential can usually be split into factors,
each of which depends on only one separate coordinate. This greatly reduces
the memory requirements for computer calculations. Pseudopotentials
have been developed in which the normalization of the pseudo-wavefunction
|xk) has been relaxed in favor of making the pseudopotential as soft as
possible. While this leads to a slight complication in calculating the electron
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charge density, the advantage of these so-called ultrasoft pseudopotentials is
that many fewer plane waves are required in expansions of the electron
valence states.

In summary, then, pseudopotential theory serves to show that the band
structure of simple metals may be much closer to that of the remapped free-
electron model than one would be led to believe by considering the strength
of the lattice potential alone.

4.5 Exact calculations, relativistic effects, and the structure factor

Although pseudopotential theory provides a useful short cut for the calcula-
tion of band structures and Fermi surfaces of simple metals, there remain
many cases for which it is difficult to implement. In transition metals, for
example, the electron states of interest are formed from atomic s-states and
d-states, and thus mix core-like and free-electron-like behavior. To account
correctly for the magnetic properties of transition metals, care has to be
taken to include adequately the interactions between bands formed from
3d and 4s states and deeper-lying bands formed from atomic 3s and 3p states.
For these cases a variety of ways of solving the Schrédinger equation have
been derived, and these are discussed in great detail in the many books now
available that are devoted solely to band structure calculations. Here we shall
outline just one such method which follows fairly naturally from Eq. (2.5.6),
the starting point of Brillouin—Wigner perturbation theory.
Equation (2.5.6) may be written in the form

1Y) = alg) + (€ —Ho) ' V1Y),

where a is a constant whose value is determined by the condition that the
presence of the term a|¢) ensure that |y) reduces to the unperturbed state |¢)
as V tends to zero. For the present problem we take H, to be the kinetic
energy of a single electron and V' the lattice potential, so that for the Bloch

state |yy)

) = alk) + (€ — Ho) " Vi)

h2k/2 L )
— k) +Z(5——) K1V 1.

But since v is a Bloch state and V(r) is a periodic function, the matrix
element (k'|V|yy) must vanish unless, for some reciprocal lattice vector g,
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we find that k" = k + g. This follows from the direct substitution

K'|V]¥) J e * T ()™ iy (r) dr

_ J FNK Dy e (6 — 1) dr

1 . / . /
= D e J KT (P (r) dr
l

=0 unlessk—k'=g.

Thus
K (k
[Yy) = alk) +Z[ ( +g) } k +g)(k +g|V|Yy).

Let us define an operator G (€) by writing

2 29-1
G =) [S—M} k+g)(k +g.

2m
g

That is, G(€) is just the operator (£ — H,)™' restricted to act only on states
that are of the Bloch form with wavenumber k. Then

Vi) = alk) + Gu(E)V [Yy).

We can verify by making use of the normalization condition (k|yy) =1
that in this case the constant ¢ can be put equal to zero (Problem 4.15), so
that

1Y) = G (E)V 1Y) 4.5.1)
It then follows that if one defines a quantity A by
A = (Y VY — (Gl VGV, (4.5.2)

then from (4.5.1) we find that A vanishes when v is a solution of the
Schrédinger equation. That is, since

Viva) = (€ = Ho)l¥a)
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we are in effect writing

A = (Yl VIv) — (dl(€ — Ho)( )(5 — Ho)l¥)

£—H,
= (V€ — H)|¥)-

But now we not only know that A vanishes, but also that we may determine
Y by a variational approach that minimizes A.
In terms of integrals in r-space, expression (4.5.2) may be written

= [ vioronma
— J J YE@V(E)G(r — )V () (r')drdr’ (4.5.3)

where
I k . :
G(r—r1') = Z [ (k+ g) ] ikte)-(r—r)

An advantage claimed for this method is that Gy(r — r’) depends only &, k,
r —r’ and the positions of the reciprocal lattice sites g, and may thus be
computed once and for all for any particular crystal structure. One may
then use this function in conjunction with whatever lattice potential V(r) is
appropriate to the material under consideration. This approach is known as
the Korringa—Kohn—Rostoker (KKR) or Green’s-function method.

One effective approach of this type is known as the Linear Muffin-Tin
Orbital method, or LMTO method. If we look back to Eq. (4.5.1) we may
be reminded of equations used to describe the scattering of a particle by a
single spherically-symmetric scatterer. Particle-scattering theory describes the
perturbed wavefunction ¥ in terms of phase shifts for the various angular-
momentum components of the scattering. This suggests that the operator Gy
(€) could be recast in a basis of spherical-harmonic components that are
solutions of the Schrodinger equation for a single spherically-symmetric
potential. It is convenient to choose a potential that approximates the actual
effective potential of the atom, but which vanishes outside a certain radius
(hence the term “muffin-tin’’!). This reduces the computational effort needed,
and makes possible the calculation of band structures in crystals having bases
of hundreds of atoms per unit cell.



4.5 Exact calculations, relativistic effects, and the structure factor 153

Before leaving the topic of the calculation of band structures, we should
glance briefly at the question of when it is valid to ignore relativistic effects.
The Fermi energies of metals, by which we generally mean the energy differ-
ence between the lowest and highest filled conduction state, are of the order
of a few electron volts. As this figure is smaller than the rest-mass energy by a
factor of about 107>, it might at first be thought that we could always neglect
such effects. However, one must remember that the potential wells near the
nuclei of heavy atoms are very deep, and that only a small change in energy
may sometimes cause qualitative differences in band structure in semiconduc-
tors in which the band gaps are small.

Accordingly, we turn to the Dirac equation, which describes the motion of
a relativistic electron in terms of a four-component wavefunction. Because
the Dirac Hamiltonian, like the Schrodinger Hamiltonian, has the periodicity
of the lattice, each component of the wavefunction obeys Bloch’s theorem,
and one may associate a wavenumber k with each state. It is thus formally
possible to recast the OPW method in terms of the orthogonalization of four-
component plane waves to the four-component tight-binding core states, a
procedure that was first carried through for thallium. However, because the
relativistic effects usually contribute only a small amount to the total energy
of a Bloch electron, it is often possible to treat them as a perturbation of the
nonrelativistic band structure. In Section 3.10 we noted that the Dirac equa-
tion could be reduced by means of the Foldy—Wouthuysen transformation to
an equation of the form

Hy = E

where now v is a two-component wavefunction describing an electron with
spin 1, and H, in the absence of a magnetic field, is given by

2 4

_r __P
H= 2m + V() 8m3 2
2
+ s-[VV(r) x p] + ViV

2m2c2 8m?2¢?

The third term in this expression simply reflects the relativistic increase in
mass of the electron, and is known as the mass—velocity term. The next term
contains the spin angular momentum s of the electron, and is the spin—orbit
coupling term. It may be qualitatively understood as the energy of alignment
of the intrinsic magnetic moment of the electron in the magnetic field caused
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by its own orbital motion. The fifth term is known as the Darwin term, and
can be thought of as a correction due to the finite radius of the electron.

If these three correction terms are to be treated as perturbations to the
Schrodinger Hamiltonian, then it is necessary to calculate not only the ener-
gies of the Bloch states in the various bands, but also their wavefunctions,
which involves considerably more labor. Some calculations have con-
sequently been made using the tight-binding approximation to describe the
wavefunctions. Because the relativistic terms are important only in the vici-
nity of the atomic nuclei, the tight-binding model provides a wavefunction
whose shape is a very good approximation to that of the true Bloch state in
the region that is important. However, the amplitude of the wavefunction
and consequently the size and k-dependence of these effects may be less
accurately predicted.

Since the Darwin, mass—velocity, and spin—orbit terms give energy shifts of
comparable magnitude, they must all be considered in semiconductors such
as PbTe in which such small perturbations may qualitatively change the band
structure. Because their effect is strongest close to the atomic nuclei, the
Darwin and mass—velocity terms tend to lower the energies of s-states relative
to p- and d-states. Some of the differences in properties between copper,
silver, and gold arise in this way. In the hexagonal metals it is the spin—
orbit term which, because of its lack of symmetry, most often causes obser-
vable effects. The detailed study of the effect of the spin—orbit term on
band structure is a difficult topic which requires some knowledge of group
theory, but the nature of the effects can be seen from the following simple
examples.

Let us consider first the zone boundary at k, = g in the sandwichium
model used in Section 4.3 and in Problems 4.1 and 4.2. If we were to use
the nearly-free-clectron approximation with only the two plane waves o
and ¢*~2% we should find no discontinuity in the energy at k, = g. This
would be a consequence of the vanishing of the matrix element

Vg o J e cos gx B2 g,

If, however, we were to use the three plane waves ¢, ¢/®~8* and ¢
then we should find a discontinuity in the energy at k, = g (Problem 4.9). In
physical terms we could say that the electron is scattered by the lattice first
from k, to k, — g, and then from k, — g to k, — 2g. Accordingly the discon-
tinuity in energy is proportional to V2, rather than to V as was the case at the

zone boundary at k, =1g.

i(k—2g)x
b
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In contrast to this we now consider a square lattice of side a in which there
are two identical atoms per unit cell, one at (@, 1a) and one at (—Sa, —1a),
as shown in Fig.4.5.1(a). The first Brillouin zone is then a square of side
2m/a, while the second Brillouin zone is contained by a square of side
24/27/a, as shown in Fig.4.5.1(b). Once again we find that certain Fourier
components of the potential vanish, so that, for example, V', =0 when
g = (0, 2m/a) or (27/a, 0). More generally one may suppose the lattice potential
to be composed of atomic potentials ¥, centered on the various sites, so that

V=Y V,xr—1-b), (4.5.4)
Lb
[
®
(@)
()

Figure 4.5.1. In this two-dimensional model the unit cell in r-space (a) is a square of
side ¢ containing two atoms at the points j:(%a, %a). The first Brillouin zone (b) is
then a square of side 27/a.
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where the I describe the positions of the centers of the unit cells and the b
describe the positions of the atoms within the cell, so that in this case

b, = (%a,}‘a); b, = (—}‘a, —%a).

Then

1 —ig-r
ngﬁje £V (r)dr

N . :
=5 Z e ieh J e ® Y (r)dr.
b

The summation

Sy = Z e 8b

b

is known as the structure factor, and in this case vanishes when
2
g.tg, =Cn+1) —

for all integral n.

The vanishing of the structure factor, and hence of V,, for g = (0, 27r/a)
and (27/a, 0) means that there is no discontinuity in energy to first order in
the lattice potential at the boundaries of the first Brillouin zone. But this is
not all. In this model we should find that to all orders in the lattice potential,
there is no discontinuity at these zone boundaries. This fact becomes obvious
if we merely tilt our heads on one side and notice that, in fact, we are really
just considering a square Bravais lattice of side a/+/2 (Fig.4.5.2) whose first
Brillouin zone is bounded by the same square of side 2+/27/a that was the
boundary of the second Brillouin zone in our first way of looking at the
model. We note the distinction between the vanishing of the structure factor,
which is a property only of the crystal structure, and the vanishing of V5, in
sandwichium, which was an accident of our choice of potential.

This possibility that the energy discontinuity may vanish identically at
some Brillouin zone boundaries is not confined to such artificial models as
the present one. In such common structures as hexagonal close-packed,
in which more than a dozen elements crystallize, and in the diamond and
graphite structures, this very phenomenon occurs. This makes it reasonable
to define a new set of zones that are separated by planes on which energy
discontinuities do occur. These are known as Jones zones. The construction
by which one defines which Jones zone a particular state is in is the following.
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Figure 4.5.2. The model of which a unit cell was shown in Fig. 4.5.1(a) is here seen to
be merely a square lattice of side 27'/2a. This explains why no energy discontinuities
were found at the boundaries of the first Brillouin zone shown in Fig. 4.5.1(b).

A straight line is drawn from the origin of k-space to the point k in the
extended zone scheme. If this line passes through » discontinuities in energy,
then k is in the (n + 1)th Jones zone.

The relevance of spin—orbit coupling to these considerations lies in the fact
that the lack of symmetry in this term in the Hamiltonian can cause the
reappearance of energy discontinuities within the Jones zones of some crystal
structures. The hexagonal close-packed structure is a particularly important
example of a structure in which such effects have been observed. Although
this particular lattice is rather complicated to investigate here, we can under-
stand the way in which the energy gaps are restored by the spin—orbit inter-
action by considering a modification of the square lattice shown in Fig. 4.5.1.
We retain the square cell of side g, but this time we place the two identical
atoms at ($a,3a) and (—a, —ja), as shown in Fig.4.5.3. The structure
factor will now be

ag.. agy
Sg = 2.¢0s ( 6 T),
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Figure 4.5.3. In this modification of the model shown in Fig. 4.5.1(a) the atoms are
now placed at the points :I:(%a, %a).

Figure 4.5.4. Although the Brillouin zone for the lattice shown in Fig.4.5.3 is a
square, no discontinuities in energy occur at the dashed lines when a nonrelativistic
Hamiltonian is used.

which will still vanish for g = (0, 27/a) but no longer for g = (27/a, 0). In
first order the energy discontinuities will then occur at the solid lines of
Fig.4.5.4. Let us now suppose that we use the nearly-free-electron approxi-
mation to find the wavefunctions that result from considering the Fourier
component V, of the lattice potential for g = (277/a, 0). We then could write
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the wavefunctions in the form
llfk — Q—l/2[uoeik-r + ulei(k-r—an/a)]

with ug and u; a pair of real coefficients which we could determine explicitly
in terms of k, if we so wished. We might now look for a second-order dis-
continuity along the lines k, = 7/a (the dashed lines in Fig. 4.5.4) by seeing
whether the lattice potential can mix the states of wavenumbers k and k + g
with g = (0, —27/a). We thus form

W= j VgV Y dr

= ! J(uo + ulezm’”/a)ezmy/” V(r)(uy + ule_zmx/“) dr.

A substitution of the form (4.5.4) then serves to show that W vanishes
because of the form of the structure factor; there are terms in 3 and in u?
which vanish because Sy = 0 for g = (0, 2/a) and two terms in uyu; which
cancel because the value of S, when g = (27/a, —27/a) is the negative of its
value when g = (—2r/a, —2n/a). If, however, we add to V(r) the spin—orbit
term we shall find a different result. Then

1

W=——
2m?2c2

s | VElTV0) x plycar.

The terms in uj and «] still vanish, but the cross term leaves a contribution
from the different values p takes when acting on the two plane-wave compo-
nents of ¥. One finds

. huoul
O 2m2e2Q

S- J PTGy« (27/a, 0) dr.

The integral is proportional to S, for g = (27/a, —2m/a), which does not
vanish. The degenerate states v, and ¥y, are thus mixed by the spin—
orbit interaction, and energy discontinuities reappear at the Brillouin zone
boundaries. Although these splittings are usually small they are still sufficient
to alter the topology of the Fermi surface, and thus cause effects which are
readily observable.
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4.6 Dynamics of Bloch electrons

In what we have considered so far, the wavenumber k has been little more
than a label for the Bloch states. Experiments, however, are concerned with
such measurable properties as the electric current carried by a system of
electrons in the presence of applied fields. We accordingly now turn to a
consideration of the velocity of Bloch electrons and the modification of this
quantity by applied electric and magnetic fields.

The velocity of an electron in the absence of a magnetic field is propor-
tional to the expectation value of its momentum

1
v=— J V*py dr
m
ih
=—— J YEVrdr. (4.6.1)
m
We can relate this to the band structure by returning to the Schrdédinger
equation written in the form (4.1.4)
Hkuk(l‘) = Ekuk(l‘) (4.62)

where

h2
Hy = —— (V + ik)* + V(r).
2m

We differentiate (4.6.2) with respect to k (that is, we take the gradient in
k-space) to find

0

(o = €0 g l0) = | o (o= 0t

ih . &y
= [% (V+ik)+ W] i (1).
But since

K-
wk = el rMk(r)’

then from (4.6.1)

== | w0t - 80 5 @
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The integral vanishes because of the Hermitian nature of Hy, as can be seen
by integrating by parts, leaving the result

Ve = - =k (4.6.3)

This result appears more familiar if we define a frequency w, by writing
Ex = hwy. Then vy, = dwy /0k, which is the usual result for the group velocity
of a wave of angular frequency wy in a dispersive medium.

We now know the total electric current carried by the conduction electrons
if we know which k-states are occupied. The current density due to a single
electron in the state k will be evy /€2, so that the total current density is

=) mew. (4.6.4)
k

In this independent-particle model the occupation number n, takes on only
the values 0 or 1.

In equilibrium j, which is of course a macroscopic quantity, vanishes, and if
we are to set up a current flow we must first apply an electric field by, for
example, adding to the Hamiltonian a potential —¢E -r. There are now two
paths open to us in investigating the effect of the electric field — the time-
dependent approach and the time-independent approach. At first it seems
that one should treat the applied field as a perturbation and look for the
eigenstates of the perturbed system. Because the Hamiltonian is constant in
time there appears no reason to use time-dependent methods. Unfortunately,
however, this approach is a very difficult one, the chief difficulty arising from
the fact that no matter how small E is, the potential —¢E - r cannot be treated
as a perturbation in an infinite system because r then becomes indefinitely
large. A similar difficulty arises when one applies a magnetic field, the vector
potential then becoming large at large distances. We shall consequently leave
the question of the eigenstates of Bloch electrons in applied fields and turn to
the time-dependent approach.

A wave packet traveling with velocity vy in a uniform force field ¢E might
be expected to increase its energy at the rate ¢E - vi. On the other hand, if this
change in energy reflects a change in the wavenumber of the Bloch states
forming the wave packet, we could write

a6y 9, dk_, dk
dt ~ dk dr % dr
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from (4.6.3). For these two pictures to be equivalent we must have

h % = ¢E. (4.6.5)
This result is not quite correct, as it is really only the kinetic energy that we
should expect to increase at the rate ¢E - vy, and the potential energy of the
Bloch state will also be changing if k is changing. To see this more clearly we
can consider the time-dependent Schrédinger equation for an electron initi-
ally in a Bloch state of wavenumber k. Then

Wy (r, 1) = P (r)e "

.
=" "y (r)e

—i€t/h
satisfies the Schrodinger equation in the absence of the applied field. If we
now add the potential —eE - r to the Bloch Hamiltonian H,, then at 1 =0

W
ih ' =(Hy—eE-n¥
ot
= (& —eE 1)V, (4.6.6)

But if the only change in Wy is to be a change in k at the rate given by (4.6.5)
we should find at 1 =0

Cow,T(0W\ (0% dk
" ot _lh[( o1 )k+(ak>[ dt

. 9
= & Wy + ieE - e’k"<ir + £> uy (1)

- <5k Bt + ek () ”k(r)> v, 4.6.7)
ok

When the third term in (4.6.7) is neglected, this expression becomes identical
to (4.6.6) and one may say that the wavenumber of a Bloch electron is
changed by the field at just the same rate as that of a free electron. We
note, however, that the rate of change of the velocity of the electron bears
no similarity to that of the free particle, in that as k approaches a zone
boundary the velocity may fall to zero. This would be the case in sandwi-
chium for k = (k,, 0, 0), as shown in Fig. 4.6.1. The discontinuity in slope of
vy at the zone boundary draws attention to the fact that we do not expect a
weak steady field to be able to provide the energy to enable the electron to
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Figure 4.6.1. When the energy (a) varies in the k, direction in sandwichium in the
usual way, the velocity (b) in this direction falls to zero at the zone boundaries.

move from the first to the second Brillouin zone. That is, we cannot interpret
(4.6.5) in the extended zone scheme, but must look more closely at the Bloch
states for which k lies directly on the zone boundary.

In the two-plane-wave approximation for sandwichium, for example,

(1) = (k) + 1 (K)e™ ",

and as k approaches (% g,0,0) we choose for g the reciprocal lattice vector
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(—g, 0, 0). It may be verified by solving the equations of Section 4.3 for u, and
u; that when k lies on the zone boundary, then u, = —u; for the solution of
lowest energy when V' > 0, so that

(1) = 2712(1 — 7).

When k approaches (— %g, 0, 0), on the other hand, we choose g = (+g, 0, 0).
Again we find that also on this zone boundary u;, = —u,, and

U_yp(r) =272(1 — &%)
= —¢u, ().

We now note that these two wavefunctions are identical, in that when we
multiply by ¢* (with the appropriate k) we find just the same wavefunction
Yk, apart from an unimportant constant factor. Thus the action of the
electric field is to cause the wavenumber of the electron to change at a
constant rate until the zone boundary is reached, at which point the
wavenumber is ambiguous. The electron may then be considered to have
wavenumber k — g, and so the whole process may be repeated, with k
increasing until the same zone boundary is again reached. Alternatively
we may use the repeated zone scheme, and say that k is changing steadily
with time, although the electron always remains in the first band. This is
illustrated in Fig.4.6.2(a) which shows the variation of the various com-
ponents of u,(r) with k. In Fig. 4.6.2(b) the electron velocity vy in the first
band is plotted in the repeated zone scheme. The fact that it is a periodic
function of k shows that the electron would exhibit oscillatory motion in a
crystal so perfect that no scattering occurred. In the region near the zone
boundary v, becomes more negative with increasing k as a consequence of
the hole-like behavior characterized by the negative curvature of the function
Exlky).
The term in (4.6.7) that we neglected was of the form

) 0
icE - K In v, (r).

It is only when this term is small that the approximation (4.6.5) is valid, and
this will only be the case when 1, (r) is a slowly varying function of k. Now if
the lattice potential is very weak then the Bloch wave is very similar to a
plane wave over most of the Brillouin zone. At the zone boundary, however,
uy and u; will always be of equal magnitude irrespective of the strength of the
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Figure 4.6.2. As the electron is accelerated by a weak electric field, its wave number
k. changes uniformly with time and the amplitudes (a) of the various plane wave
components of u(r), the periodic part of the Bloch wave function, also change.
Because the electron remains in the first Brillouin zone, the velocity (b) then changes
periodically and not in the way shown in Fig.4.6.1.

lattice potential. Thus the derivative 0 (Inu)/dk is greatest when the lattice
potential is weak, and it is then that the picture of the electron moving in a
single band breaks down. This extra term that appears in (4.6.7) must be
subtracted from the Hamiltonian if the electron is to remain in one band.
This term is a function of u,(r), and is thus periodic with the period of the
lattice. We may estimate its magnitude very simply by a glance at Fig. 4.6.3
which shows the band structure near the zone boundary. Since u(k) is of
order unity at the zone boundary, and has become very small by the time it
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- 2AK

Figure 4.6.3. When the lattice potential is weak one may estimate with the aid of this
diagram the range Ak of k -values over which the energy departs significantly from
its free-electron value.

has reached a distance Ak away, where

o€
V ~—.Ak
ok
we may write
w 1 Wk
ok Ak mV’

and the extra term is of order eEAR*k/mV. When this term is of the order of
the lattice potential it may cancel the lattice potential and allow the electron
to make a transition to another band. The condition for this not to occur is
then

i’k

E — V.
e mV<<

Since the Fermi energy & is roughly /%k%/2m and k is of the order of 1/a,
where a is the lattice spacing, we may write

2

|4
eEa < g—F

The condition for (4.6.5) to be valid is thus that the energy gained by the
electron in being accelerated through one lattice spacing should be small
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compared with V2 /€. When this condition is not obeyed Zener breakdown is
said to occur. While it is difficult to reach such high fields in homogeneous
materials, the junction between n- and p-type semiconductors naturally con-
tains a steep potential gradient which permits observation of these effects and
as a result of which a variety of device applications are possible.

In the case of an applied magnetic field we might suppose that the Lorentz
force would tend to change k in the same way as the force of the electric field,
so that

dk e

This in fact turns out to be true within limitations similar to those imposed in
the case of the electric field, although the demonstration of this result is a
little more involved. Let us first choose the gauge so that the vector potential
is

A=IHxr), (4.6.9)
and write the Hamiltonian (as in Eq. (3.10.8)) as

H=Limv’ + V(r)

1 e 2
— <p—— A) + V(r),

~2m c
where V(r) is now the lattice potential. Then

dv
h =
= Imv, vV] +[v, V(1)]

[v. H]

— i < v x H+[v, V()] (4.6.10)
mc

as may be verified by substituting (p — eA/c) for v and using the explicit form
(4.6.9) for A.

If we had performed a similar manipulation in the case where an electric
field was applied we should have found

il @ =ik @ +[v, V(r)],
dt m
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and since we were able to identify approximately ¢E with 7 dk/dt we could
then have written

[v, V(r)]:ih[———— . (4.6.11)
m

This relation describes the rate of change of velocity of a Bloch electron
whose wavenumber is changing, but which is remaining in a single band. It
does not discuss the agency that causes k to change, but merely states the
consequent change in velocity. It is thus more general than the case of an
applied electric field, and can be used in combination with (4.6.10) when a
magnetic field is applied, the commutator [A(r), V' (r)] vanishing. Substitution
of (4.6.11) in (4.6.10) then gives the expected result, (4.6.8).

While the electric field caused the wavenumber k to move in a straight line
with uniform velocity in the repeated zone scheme, the effect of the magnetic
field is more complicated. Equation (4.6.8) states that dk/dt is always per-
pendicular to both the electron velocity and the magnetic field. But since the
velocity is proportional to d€/dk the energy of the electron must remain
constant, and k moves along an orbit in k-space which is defined by the
two conditions that both the energy and the component of k in the direction
of the magnetic field remain constant.

As an illustration we consider the possible orbits of an electron in sandwi-
chium when the magnetic field is applied in the z-direction. For states of low
energy the constant-energy surfaces are approximately spherical, and their
intersections with the planes of constant k. are nearly circular. The electrons
thus follow closed orbits in k-space with an angular frequency, w, close to the
cyclotron frequency, wy, of a classical free electron, which is given by eH /mc.
Such an orbit is labeled « in Fig. 4.6.4. In real space the path of such a
classical electron would be a helix with its axis in the z-direction. For an
electron of slightly higher energy the orbit passes closer to the zone bound-
ary, and the electron velocity is reduced below the free-electron value. A
circuit of the orbit labeled 8 in Fig.4.6.4 thus takes a longer time than a
circuit of «, and one says that the cyclotron frequency of the orbit B is less
than w,, and would be the same as for a free particle of charge ¢ and mass
greater than m in the same magnetic field. One sometimes defines a cyclotron
mass m* in this way for a particular orbit by means of the relation

ma

m*
w

The cyclotron mass, which is a function of the electron velocity at all points
on an orbit, must be distinguished from the inverse effective mass defined in
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Figure 4.6.4. In a magnetic field in the z-direction an electron of low energy in
sandwichium will travel the almost circular orbit « in k-space, while one of slightly
larger energy will follow the distorted orbit 8. At still higher energies the electron
may either follow the second-zone orbit § or the periodic open orbit y that lies in the
first Brillouin zone.

/"\/\/‘\_/"\

Y

Figure 4.6.5. This diagram shows Fig. 4.6.4 replotted in the repeated zone scheme.
The periodic open orbits y carry a current that does not average to zero over a
period of the motion.

Section 4.3 which characterized the band structure in the neighborhood of a
single point in k-space.

If the electron energy is greater than & — V' and k. is sufficiently small
there will be some orbits, such as y in Fig. 4.6.4, that meet the zone boundary.
The path of the electron in k-space is then a periodic open orbit in the repeated
zone scheme, as shown in Fig. 4.6.5. Such orbits are particularly important in
determining the conductivities of metals in magnetic fields in that the electron
velocity does not average to zero over a period of the orbit. For energies
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greater than &, + V' there will also be orbits in the second band, such as those
labeled § in Fig. 4.6.4. In the repeated zone scheme these appear as the small
closed orbits in Fig.4.6.5. Because the velocity may be close to its free-elec-
tron value (in the extended zone scheme) over much of these orbits while their
perimeter is much smaller, the time taken to complete an orbit may be very
small. The cyclotron mass is then stated to be correspondingly small.

The range of validity of Eq. (4.6.8) may be deduced in a similar way to our
estimate in the case of an electric field, and we find that

e a
;va- a—klnuk(r)

must be small compared with the lattice potential. When we write

ou

i’k hk  eH
ak

PR /l} —
mV’ m’  mc

~

Wy

we find the condition to be

2

V
h —_—.
wy K gp

When this is violated magnetic breakdown is said to occur. The electron then
has a finite probability of making a transition from a y-orbit to a §-orbit in
Fig. 4.6.4, and the conductivity may be qualitatively affected.

4.7 Scattering by impurities

We have now seen how the application of an electric field causes the wave-
number of a Bloch electron to change, and hence how the electric current
grows with time in a perfect periodic lattice. We know, however, that for
moderate electric fields the current rapidly becomes constant and obeys
Ohm’s law in all normal metals. The current does not grow and then oscillate
in the way that our simple dynamics predict, because the electron is scattered
by some departure of the lattice from perfect periodicity. The two most
important mechanisms that limit the magnitude the current attains in a
particular field are scattering by lattice vibrations and scattering by impuri-
ties. The topic of the interaction of Bloch electrons with phonons is a major
part of the theory of solids, and Chapter 6 is devoted to a discussion of such
processes. The theory of alloys, in which the problem is to calculate the
properties of partially disordered systems, is also a topic of some importance.
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For the present, however, we shall just consider the problem of a single
impurity center in an otherwise periodic lattice. This avoids the statistical
problems of the theory of alloys, but still allows us to formulate an expres-
sion for the probability per unit time that an electron is scattered from one
Bloch state to another. We shall then have all the ingredients we need for the
formulation of a simple theory of the conductivity of metals.

The customary approach to the scattering theory of a free particle involves
the expansion of the wavefunction in spherical harmonics and the discussion
of such quantities as phase shifts and cross sections. This approach is not so
useful for Bloch electrons because of the reduced symmetry of the problem
when the lattice potential is present. Instead we consider an electron initially
in some Bloch state, ¢, and then apply the perturbing potential, U. The
wavefunction will then be transformed into some new function, v,,. We
interpret the scattering probability between the two Bloch states, ¢, and ¢y,
as being proportional to the amount of ¢y contained in . That is, we form the
integral (¢ |Y) to measure the amplitude that tells us how much of the state
that was originally ¢y has been transformed to ¢, . The square of the modulus
of this quantity will then be proportional to the probability Q(k, k') that in
unit time an electron is scattered between these states, i.e.,

Ok, k') o [y ).

We may use the starting point of perturbation theory to rewrite this expres-
sion in a more useful form. We first write

Hod)k — gk(pk
and
(Hy + Uy, = ExVxs

and note that the perturbed and unperturbed energies will be very close to
each other provided no bound states are formed, since the impurity causing
U only perturbs a negligible portion of our large volume Q2. We next note
that these Schrodinger equations are satisfied by

V) = l) + (Ex — Hy + i) Uty (4.7.1)
when n — 0. Then because (¢y'|¢y) vanishes we find
Ok, k') o (/€ — Ho + im) " Ul )P
=[(E — &) + 01 e (U1
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Because the scatterer has no internal degrees of freedom in this model the
energy of the electron must be conserved, and only elastic scattering can take
place. This is expressed by the term in brackets. Since

[(E—EN+7T! = l A arctan (gk — gk/)
n déy n
and arctan [(£x — &x’)/n] becomes a step function as n — 0, we can interpret
the derivative of the step function as a §-function. The constant of propor-
tionality can be found from time-dependent perturbation theory, which in
lowest order gives the result

2
Ok, k') ~ N— [{Px | U|y) | 3(5k Ex)- 4.7.2)

In order for our result to reduce to this when the potential is weak so that
may be replaced by ¢, we must choose the same constant of proportionality,
and write

2
Ok k') = = 1@ U PEEx — &), (4.73)

The approximation (4.7.2) is known as the Born approximatiom, and may
be thought of as neglecting multiple scattering by the impurity. The exact
formula (4.7.3) might be rewritten by repeatedly substituting for v from
(4.7.1). We should then have a series of terms in which U appeared once,
twice, three times, and so on. These could be interpreted as single, double,
triple, and higher-order scattering by the impurity (Fig.4.7.1).

It is sometimes useful to ask what the potential 7" would be that, if the
Born approximation were exact, would give the scattering predicted by
(4.7.3) for the potential U. That is, we ask for the operator T such that

(D1 Ul) = (D | T'|y)-

This operator is known as the transition matrix (or sometimes just as the
T-matrix), and does not in general have the form of a simple potential. It can
be seen from (4.7.1) that

T=U+UE—-H,+in™'T
Also

[E—Ho+in] ' T=[E-H+in U,
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(a) (b)

Figure 4.7.1. The Born approximation is a result of first-order perturbation theory,
and can be diagrammaticaliy represented as a single scattering event (a). The T-
matrix includes multiple scattering (b).

as may be seen by operating on both sides with [€ — H + in]. Thus
T=U+UE-H+in'U.

Since the potential U is real, the only difference between 7" and its Hermitian
conjugate Tt will be that the term in will be replaced by —in. We could thus
have equally well used T'f in calculating Q(k, k”). But since by the definition
of the Hermitian conjugate

(| T1)* = (Dl TF )

we see that the scattering probability must be the same in either direction,
and

0k, k") = Ok, k). (4.7.4)

We could also argue this from the starting point of the principle of micro-
reversibility, which states that the transition probability will be unaffected by
time reversal. The time reversal of the state ¢, will be ¢_,, and so

Ok, k') = O(—k', —k). (4.7.5)

However, ¢_, = ¢%, as can be seen from the Schrédinger equation in the
form (4.1.4), and we do not expect a real transition probability to depend on
our convention as to complex numbers. We thus deduce (4.7.4) to be a
consequence of (4.7.5).

We also note that the perturbation of the electron wavefunctions changes
the density of electrons, and hence of electric charge, in the vicinity of an
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impurity in a metal. If the impurity represents an added electric charge the
change in electron density will screen the field of the impurity. One can thus
equate the excess charge of the impurity with the excess charge of the elec-
trons that are in the process of being scattered. The formulation of this
concept is rather complicated for Bloch electrons, but reduces to a simple
form for free electrons, where it is known as the Friedel sum rule. It is a useful
condition that all models of impurity potentials must approximately satisfy.

4.8 Quasicrystals and glasses

Our study of band structure so far has been built on the concept of the Bloch
waves that we have proved to exist in perfectly periodic structures. In the real
world, however, nothing is perfectly periodic, and so we should ask ourselves
what the consequences are of deviations from perfect periodicity. In Chapter 6
we shall look at the effect of the weak deviations from perfect order that are
introduced by phonons. There we shall see that this type of motion in a three-
dimensional crystal does not destroy the long-range order. That is to say,
when X-rays or neutrons are scattered by a thermally vibrating three-dimen-
sional lattice there will still be sharp Bragg peaks, although in one or two
dimensions this would not be the case. We now look at some other systems
that lack perfect order, and examine whether the concept of band gaps will
survive. The first of these is a remarkable family of structures known as
quasicrystals. These are a form of not-quite-crystalline solid that was discov-
ered experimentally as recently as 1984, although similar structures had been
studied as mathematical constructs much earlier.

An example of a quasicrystal in two dimensions is given in Fig.4.8.1. It
clearly depicts an ordered array, but closer inspection shows it not to be a
Bravais lattice. The telltale sign is the fact that it has a five-fold rotational
symmetry. This is forbidden for Bravais lattices in two dimensions, as one
cannot completely cover a plane using pentagonal tiles. One can, however,
tile a plane using two types of diamond-shaped Penrose tile, one of which has
an acute angle of /5, the other tile having an angle of 27/5 (Fig. 4.8.2). In
three dimensions the task becomes much harder to accomplish, and nearly
impossible to illustrate. Nevertheless, experiment shows that if a molten
mixture of aluminum and manganese in an atomic ratio of 4:1 is cooled
ultrarapidly (~ 1 megakelvin/second!) then small pieces of solid are produced
that give diffraction patterns having the five-fold symmetry characteristic of
an icosahedron. These materials are thus clearly not crystalline (this is
deduced from the five-fold symmetry) but do have long-range order (deduced
from the existence of sharp Bragg peaks).
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Figure 4.8.1. A quasicrystal in two dimensions.

N

N

Figure 4.8.2. Two types of tile can cover a plane with quasicrystalline symmetry.
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Figure 4.8.3. A Fibonacci chain is built from atoms separated by either long or short
spacers placed in a special order.

We can gain some insight into the nature of quasicrystals by looking at the
one-dimensional chain of atoms shown in Fig.4.8.3. The spacing between
atoms is either long (L) or short (S), with L/S an irrational number. If the
arrangement of L and S spacings were random, then the chain would have no
long-range order, and would give rise to no sharp Bragg diffraction peaks.
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But it is not random. It is a Fibonacci chain, built according to the following
prescription. We start with a single spacing S, and then repeatedly apply the
operation that each S is turned into L and each L is turned into the pair LS.
In thisway S - L - LS — LSL — LSLLS — LSLLSLSL and so on. (An
important special case occurs when L/S = 2 cos(r/5) = %(1 ++/5), a number
known as the golden mean.) Although this sequence does not at first sight
appear to have any long-range order, one can, with the aid of some ingenious
arguments, calculate the Fourier transform of the atomic density exactly. One
finds that there are large, sharp, Bragg peaks at various wavenumbers. The
chain is clearly not periodic in the sense of a Bravais lattice, but it does have
some sort of long-range order. Evidently there are some hidden repeat lengths
that are disguised by local deviations from periodicity. An invisible hand is
placing the L and S segments in just such a way as to retain the Bragg peaks.
We find a clue to what is happening by looking at a strip cut from a true
Bravais lattice in a higher dimension. In Fig.4.8.4 we see a square lattice
across which two parallel lines have been drawn with a slope equal to the
reciprocal of the golden mean and passing through the opposite corners of
one unit cell. We then project all the lattice points included in this strip onto
the lower line to form a one-dimensional array. This array turns out to be
precisely the special-case Fibonacci chain. We have thus made a connection

Figure 4.8.4. The Fibonacci chain also appears as a projection of a regular square
lattice.
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between a quasiperiodic array in one dimension and a Bravais lattice in a
higher dimension. This idea may be extended to show that five-fold rota-
tional symmetry may be found in spaces of six or more dimensions. In
particular, icosahedral symmetry may be found in a cubic lattice in six dimen-
sions. An icosahedron has 20 identical faces, each of which is an equilateral
triangle. Five of these faces meet at each of the 12 vertices, and so there are
six five-fold symmetry axes. This symmetry is clearly seen experimentally in
single grains of some quasicrystals which form beautiful structures resem-
bling five-petaled flowers. It is truly remarkable that this obscure crystallo-
graphic niche is actually occupied by real materials.

In one dimension, the existence of sharp Bragg peaks will always lead to
gaps in the electronic density of states, but in three dimensions this is not
assured. Thus the density of states for electrons in the potential due to a
Fibonacci chain of atoms will always have band gaps. These chains would
then be good insulators if there were two electrons per atom. In three dimen-
sions the long-range order characteristic of quasicrystals will not necessarily
cause gaps in the density of states, so that even if the number of electrons
were two per atom, the material might still be a metallic conductor.

As we moved from considering crystalline lattices to the less-ordered qua-
sicrystals, we have found that the continued existence of long-range order
was the factor that made plausible the sustained presence of band gaps. If we
move further in this direction we find amorphous or glassy solids, in which
no long-range order remains. The structure factor revealed by X-ray scatter-
ing shows no sharp peaks, but only broad maxima. Surely these materials
should not have band gaps in their electronic density of states? Surprisingly,
band gaps persist in amorphous materials. In silicon, the effective band gap is
even greater in amorphous material than it is in a crystal.

It was onlyin 1966 that a demonstration was given of how band gaps could be
proved to persist in one simple model of an amorphous solid. In this model the
potential has the muffin-tin form, in which identical spherically symmetric
attractive potential wells are separated by regions of constant potential V.
No two wells overlap or have their centers closer together than a distance we
define as 2A. We consider the real wavefunction ¢ describing an eigenstate
of energy £ < V. In units in which 7 = 2m = 1, the Schrédinger equation is

Vi = (V = E. (4.8.1)

If we multiply by ¥ and integrate over the volume of the container we find

J{(V — W + (YY)’ dt =0, (4.8.2)
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provided ¢ is equal to zero over the surface of the box. Let us define a cell as
the region closer to one particular well than to any other (this is sometimes
known as a Voronoy polyhedron). Then we can certainly find a cell such that

J (V=& + (V) ) dr <0 48.3)
cell

when the integrations are confined to the volume of the cell. Because both
parts of the integrand are positive at distances greater than A from the center
of the well the integral will furthermore be negative when the integration is
restricted to a sphere of radius A. If S is the surface of this sphere it then
follows that

J YV -dS < 0. (4.8.4)
S

Taking spherical polar coordinates with the center of this well as the origin,
we expand v in spherical harmonics, writing

V=" Ym0 AR (4.8.5)

I,m

and substitute in the inequality to obtain

d
> o AR(OF = < 0. (4.8.6)

I,m

If this inequality holds for the sum of terms, it must also be true for at least
one term of the sum, and so an / must exist for which

d
- (R}, <O. (4.8.7)

If there are bands of energy for which no / can be found such that this
inequality is satisfied, then the existence of gaps in the density of states is
proved.

The presence of band gaps in the electronic structure is central to many of
the most important properties of solids. It is thus satisfying that we can
calculate band structures and band gaps in a variety of structures provided
that the one-electron model is a satisfactory approximation. Our next step
must be a more careful look at this assumption, and an exploration of the
elegant analysis with which it can be justified.
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Problems

In sandwichium metal the lattice potential is 2} cos gx. Investigate, in
the nearly-free-electron model, the electron velocity in the neighbor-
hood of the point (g/2, 0, 0) in reciprocal space.

Investigate qualitatively the density of states of the sandwichium
defined in Problem 4.1 in the regions near £ = /i’g*/8m + V, and sketch
the overall density of states.

Another type of sandwichium has a lattice potential

Vr) = 3 Vad(x — na).

n=—

Investigate its band structure in the nearly-free-electron model, using
two plane waves.

Apply the nearly-free-electron approach using four plane waves to the
band structure of a two-dimensional crystal whose lattice potential is

V(r) = 2V[cos gx 4 cos gy].

Under what conditions will this crystal be an insulator if there are two
electrons per “atom”? (An “atom” is assumed to occupy one unit cell of
dimensions 27/g x 2m/g.)

What are the possible forms of the inverse-effective-mass tensor in the
model of Problem 4.4 at the point (}g,1g) in k-space?

In the Kronig—Penney model a one-dimensional electron moves in a
potential

V(ix)=— i Vad(x — na).

n=—00

Contrast the exact solution for the width of the lowest band with that
given by the method of tight binding when V' is very large. Assume
overlap only of nearest neighbors in the tight-binding approach.
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One-electron theory

Examine the inverse effective mass of the states at the bottom of the
third band of the model in Problem 4.6, again assuming }’ to be large.
Solve this problem in the following ways.

(1) Exactly.

(2) In the two-plane-wave NFE approximation.

(3) In the OPW method, treating the first band as core states in the
tight-binding approximation. [Use two OPW’s, and neglect the k-
dependence of £X —i.e., take £ as the energy of the “atomic” bound
state.]

Evaluate the Korringa—Kohn-Rostoker Gy (r — r’) for the sandwichium
of Problem 4.1. [Hint: fC cosec zf (z) dz may be a helpful integral to
consider.]

Calculate an approximate value for the energy discontinuity and effec-
tive inverse masses in the neighborhood of k = (g, 0, 0) in sandwichium
by using the nearly-free-electron approximation with three plane waves.

Draw the Jones zone for a square lattice of side a with four identical
atoms in each cell at the points +(a/8, —a/8) and +(3a/8, 3a/8).

In the limit of vanishingly small size of an orbit the cylotron mass m*
and the inverse-effective-mass tensor (M 71),7 are related. What is this
relationship between m*, (M ~1), and the direction & of the applied
magnetic field? [It is helpful to consider the area A of an orbit, and
its variation with energy, d.A/d€.]

A magnetic field is applied in the z-direction to sandwichium. How,
qualitatively, does m™ vary for orbits with k., =0 as £ — &, — 1?

A Bloch electron in sandwichium is scattered from (ky, k,, k.) to
(—=ky, k,, k.) by the potential U exp [—(gr/4)2]. Investigate qualitatively
how the transition probability for this process varies with k.. [Use the
Born approximation for O(k, k') and the two-plane-wave approxima-
tion for ¢y and ¢y . Sketch the variation of Q as k, varies from 0 to % g

When the Coulomb interaction is included in the Hamiltonian of
an insulator it becomes possible for an electron in the conduction
band and a hole in the valence band to form a bound state together;
this elementary excitation of the crystal is known as an exciton. In the
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simple model of an insulator in which the lattice potential is
2V (cosgx 4 cos gy + cos gz) such a state can be formed if we allow an
interaction ¢*/e|r, — ;| to exist between the electron and hole states at
the corner of the first Brillouin zone. Investigate the possible energies of
such an excitation by solving a Schrédinger equation analogous to that
describing a hydrogen atom, but in which the proton and electron are
replaced by an electron and a hole having the appropriate effective
masses.

Verify that the constant a of Section 4.5 vanishes, as claimed in the
sentence preceding Eq. (4.5.1).

In the model illustrated in Fig. 4.5.3 it was shown that spin—orbit
coupling introduces energy discontinuities at the zone boundaries
shown as dashed lines in Fig. 4.5.4. Does (a) the mass—velocity term
or (b) the Darwin term cause a similar effect?



Chapter 5

Density functional theory

5.1 The Hohenberg—Kohn theorem

In Chapter 2 we explored some of the consequences of electron—electron
interactions, albeit in some simple perturbative approaches and within the
random phase approximation. There we found that the problem of treating
these interactions is exceedingly difficult, even in the case where there is no
external one-particle potential applied to the system. We have also explored
some of the properties of noninteracting electrons in an external potential, in
this case the periodic lattice potential. This led to the concepts of electron
bands and band structure, subjects of fundamental importance in under-
standing the physics of metals, insulators, and semiconductors. Of course,
in the real world, electrons in matter are subjected both to electron—electron
interactions and to external potentials. How to include systematically and
correctly the electron—electron interactions in calculations of real systems is
truly a formidable problem.

Why that is so is easily demonstrated. Suppose that we want to solve the
problem of N electrons interacting in some external potential. The N-electron
wavefunction can be expanded in Slater determinants of some suitable single-
particle basis such as plane waves. We can describe the Slater determinants
by occupation numbers in our second-quantized notation. Suppose further-
more that we have a basis of a total of N, plane wave states at our disposal.
Here N, must be large enough that all reasonable “wiggles” of the many-
body wavefunction can be included. The size of our Hilbert space and
hence the size of the Hamiltonian matrix to be diagonalized can then be
found by using combinatorics: the size of the Hilbert space is given by the
number of ways that we can put N “balls” in N, “boxes,” with only one ball
per box. This number is a binomial factor, N;!/N!(N;, — N)!, which has the
unfortunate property that it grows factorially. Careful use of symmetry may

182
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help us reduce the size of the Hamiltonian by a factor of ten or so, and the
increasing power of computers allows us to consider ever-larger systems, but
it remains stubbornly the case that current state-of-the-art exact numerical
diagonalizations have difficulty handling more than a few tens of electrons.
Also, even though the computer power at our disposal grows exponentially
with time, the size of the Hilbert space of our N-electron problem
grows much faster than exponentially with N. We may therefore, some-
what pessimistically, conclude that we may never have enough computer
resources available to solve a problem with a macroscopic number of
electrons.

This draws attention to the urgent need for some alternative way to include
electron—electron interactions in our calculations. Virtually the only way to
do so in realistic calculations is provided by density functional theory (DFT).
Since its formulation in the mid 1960s and early 1970s, DFT has been used
extensively in condensed matter physics in almost all band-structure and
electronic structure calculations. It has also been widely adopted in the quan-
tum chemistry community, and has led to a computational revolution in that
area. Density functional theory was conceived by Walter Kohn, who also led
many of the successive developments in this field.

What makes density functional theory so powerful to use is a deceptively
simple-looking theorem, the Hohenberg—Kohn theorem, which has profound
implications. This theorem allows for the systematic formulation of a many-
body problem — interacting electrons in an external potential — in terms of the
electron density as the basic variable. It is worth spending a moment to
reflect on this. Consider the Schrodinger equation for N interacting
electrons. This is a differential equation for a complex quantity, the
Schrédinger wavefunction, which in three dimensions is a function of 3N
variables. This large number makes it impractical to solve even for just the
ground-state wavefunction, which will generally be insufficient, as we
also need information about the excited states. Finally, the physical quanti-
ties in which we are interested have to be extracted from the wavefunctions
that we have laboriously obtained. This in itself may be technically very
difficult. It is clear that if we can instead work with just the electron density
as the basic variable, this will lead to an enormous simplification, since
the density of a three-dimensional system is a scalar field of only three vari-
ables. What is truly remarkable is, as we shall see, that all physical properties
of the system can in principle be determined with knowledge only of the
ground-state density! That is precisely the statement of the Hohenberg—
Kohn theorem, as we now prove for systems with nondegenerate ground
states.
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Let

H=T+V +V

be the nonrelativistic, time-independent Hamiltonian of a system of N
electrons. Here, T is the kinetic energy, V., is an external potential which
couples to the density (an example being that from the nuclei in a solid), and
V' is the two-body electron—electron interaction (usually the Coulomb inter-
action). In second-quantized notation we write

272
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The Hohenberg—Kohn theorem then states that the expectation value O of
any operator O is a unique functional O[ny(r)] of the ground-state density
ny(r), by which we mean that the value of O depends on the value of ny(r) at
all points r.

What does this imply? Well, we already know that if we could solve the
Schrédinger equation for the Hamiltonian H and find all the many-body
eigenstates W, we could then calculate the expectation value of any operator.
The Hamiltonian therefore determines the expectation value of any operator,
and, in particular, the Hamiltonian determines the ground-state density, since
this is just the ground-state expectation value of the density operator. We can
be even more specific: since the kinetic energy operator 7" and the interaction
V' are universal, meaning that they are the same for all nonrelativistic inter-
acting N-electron systems, it is really only the external potential V., that
characterizes the Hamiltonian, and thus the eigenstates and the ground-state
density. This is straightforward. What the Hohenberg—Kohn theorem states
is that this mapping from external potential to ground-state density is inver-
tible. Given any density n(r), which is specified to be the ground-state density
for some N-electron system, the Hamiltonian of that system is then uniquely
determined, and so then are all the eigenstates and the expectation value
of any operator. So with knowledge of only the ground-state density of an
N-electron system, we can (in principle, at least) determine everything about
that system, including excited states, excitation energies, transport properties,
etc.

The proof of this theorem is simple. We first show that two potentials, Vi,
and V', that differ by more than a trivial constant (a constant is unimpor-
tant since we can always shift the reference point of the potential energy),
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necessarily lead to different ground states ¥, and ¥;. The Schrédinger equa-
tions for ¥, and for ¥, are

(T + V + Vext)\po = (‘:Oqjo (511)
(T +V + Vi)V = EgV, (5.1.2)

where &£, and & are the respective ground-state energies. We prove the first
part of the theorem by contradiction. Suppose now that ¥, and ¥ are the
same. We then subtract Eq. (5.1.1) from Eq. (5.1.2) to obtain

(Vext - Ve/xt)lp() = (50 - g(/))\p()

But £, and & are just real numbers, so this means that the two potentials Vy,
and V', can differ at most by a constant, in contradiction to our hypothesis.
We have thus shown that if Vi # Vi then W, # ¥,

At this point we pause to note the relation between ny(r), Vo (r), and
(Vo Vext| Vo). We recall that

N
;anﬁmman)Zpu—mwmhm“)mhmﬁn,

which allows us to write

(qj0| Vextl\lj0>

N
= | Wi,y .. Z Ve (1) Wo(ry, 1y, .. ) dry, dry, .. dry
7

N
= [ WhE ) Y 8, — 1) Ve(r,) Wo(ry 1y, . ) dry dry, . dry, dr,
i

= nO(r) Vext(r) dr.

Now we can prove that if Vi, # V¢ (so that consequently W, # W), then we
must also have ny(r) # ny(r). Again, we prove this assertion by contradiction.
Assume that ny(r) = ny(r), and that H and H’ are the two Hamiltonians
corresponding to Vg and V¢, respectively. According to the Rayleigh—
Ritz variational principle, we have

Eo = (WolHIW,) < (¥l H|Wp),
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and
VGIHIG) = (VI + Vi = Via ¥4} = & + [0V e = Vi@
so that
Ey <&+ Jné(r)[Vext(r) — Vig(D)]dr. (5.1.3)

An analogous argument, obtained by interchanging primed and unprimed
quantities, yields

%<%+PNW%®—%MMW (5.1.4)

Adding Egs. (5.1.3) and (5.1.4), and using our assumption that ry(r) = ny(r)
then leads to the expression

50+56 <(€0+(€6,

which appears unlikely. We have thus established that two different, nonde-
generate ground states necessarily lead to different ground-state densities. It
follows that two identical ground-state densities must stem from identical
external potentials, and with that our proof of the Hohenberg—Kohn theo-
rem is complete.

There is also an important variational principle associated with the
Hohenberg-Kohn theorem. Since the expectation value of any operator O
of a system is a unique functional of the ground-state density ny(r), this
certainly applies to the ground-state energy. We write this functional as

Eln] = (Wo[n]IT + Vs + VIW[n]), (5.1.5)

where V., is the specific external potential of a system with ground-state
density ng(r) and ground-state energy &£,. For the case where the density 7(r)
equals the ground-state density 7(r) corresponding to the external potential
Vx> the functional £[n] then takes on the value &;. Since the ground-state
energy is uniquely determined by #y(r), the Rayleigh—Ritz principle estab-
lishes that

Ey < &n]  for n # ny,.
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We shall find that this is a very useful property. The ground-state energy can
be found by varying the density to minimize the energy, provided we know
the form of the functional £[#x], or at least have a good approximation for it.
In fact, we can write the ground-state energy functional as

En] = Fugln] + J Ve (On(r) dr, (5.1.6)

where Fyg[n] = (V[n]|T + V|V[n]) is a unique functional. By that we mean
that Fyg[n] is the same functional of the density n(r) for all interacting N-
electron systems. We thus need to determine it only once, and can then apply
it to all systems.

We have here discussed the Hohenberg—Kohn theorem only for nonde-
generate ground states. The theorem can also be extended to include the
case of degenerate ground states, which is formally very important. There
are also many other extensions that are important for practical calculations,
such as extensions to polarized systems, and to systems at finite temperatures.
For example, we might consider a spin-polarized system with a fixed quanti-
zation axis, which we take to be the z-axis. The system may then have a net
magnetization along this axis. In this case, we can define up- and down-spin
densities ny and n, or, equivalently, total density n and polarization &, with

n:nT+nl
”T+n¢

A Hohenberg-Kohn theorem can then be formulated in terms of n, and n,
(or in terms of n and &). It turns out that calculations formulated in this way
are usually much more accurate than calculations cast in terms of density
alone, even if the system itself has no net polarization.

5.2 The Kohn—-Sham formulation

While the Hohenberg—Kohn theorem rigorously establishes that we may use
the density, and the density alone, as a variable to find the ground-state
energy of an N-electron problem, it does not provide us with any useful
computational scheme. This is provided by the Kohn-Sham formalism.
The idea here is to use a noninteracting “‘reference,” or auxiliary, system,
and to look for an external potential V; such that the noninteracting system
has the same ground-state density as the real, interacting system. Once we
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have obtained this density, we can use it in the energy functional Eq. (5.1.5),
or in some approximation of it. The ground-state of a noninteracting system
of N electrons is given by a Slater determinant of the N lowest-lying single-
particle states. Since we can much more readily solve for these, the Kohn—
Sham scheme provides us with a route to practical calculations. But there is
no free lunch — the price we pay in the Kohn—-Sham scheme is that the
equations have to be solved self-consistently. The effective potential V, will
turn out to depend on the electron density. In practical calculations, one then
typically starts by assuming an initial density. This gives an input potential
V', which can then be used to solve for the single-particle states. From these a
new density is obtained, which gives a new V. The equations are then solved
again, and this process is repeated until self-consistency is obtained, i.e., until
the input and output density in one iteration are sufficiently close to one
another. Much effort has been spent over the years to come up with efficient
schemes for such self-consistent calculations.

Let us then start by considering a noninteracting N-electron system in an
external potential V. The Hamiltonian H, of this system is given by

H,=T+V,

We then apply the Hohenberg—Kohn theorem to this system. Accordingly,
there exists a unique energy functional

Enl = Tn+ J V. (r)n(r) dr. (5.2.1)

We note here that Ty[n] is the kinetic energy functional of a system of N
noninteracting electrons, and is consequently a different functional from the
T[n] that forms part of Fyk[#n] in Eq. (5.1.6).

The ground-state density of this system is easily obtained. It is simply

N
n(r) = o), (5.2.2)
i=1

where we have occupied the N single-particle states, or orbitals, that satisfy
the Schrodinger-like equation

2
[% Vi Vs(r)]¢i(r) =), £ =&, (5.2.3)



5.2 The Kohn—Sham formulation 189

and have the N lowest eigenvalues £;. But we are really interested in a system
of N interacting electrons in an external potential V,,,, so the question we
would like to answer is the following: can we determine the form that V (the
external potential of the noninteracting system) must take in order for the
noninteracting system to have the same ground-state density as the interact-
ing system in the external potential V,,,? The strategy we use is to solve for
the density using the auxiliary noninteracting system, and then insert this
density (which by construction is the same as that for the interacting system)
into an approximate expression for the total energy of the interacting system.

The first step in this process is to rewrite the energy functional &[n] of the
interacting system, which was given in Eq. (5.1.5), as

2 /
et = 1+ {700 - 700+ 0 = . [ 22 arar

Ir—r/'|
2 /
+% JJ n|5r)_n(rr/|) drdr’ + Jn(r) Vet (r) dr
2 /
=T +% ” % drdr’ + Jn(r) V. () dr + E[n]. (5.2.4)

Here we have added and subtracted both the kinetic energy functional 7[n]
of a noninteracting system and the direct, or Hartree, term in the electrostatic
energy. We have then defined the sum of the terms in braces to be the
exchange-correlation energy functional &, [n]. From Eq. (5.1.6), this func-
tional is

2 /
€. [n] = Fyln] —% ” % drdr’ — T,[n]. (5.2.5)

We have thus swept all our ignorance about electron interactions beyond the
Hartree term under the rug that we call £,.[n]. What we gain in writing &[n] in
this way is that we can eventually focus on developing reasonable approx-
imations for £,[n].

According to the Hohenberg—Kohn theorem, the density » that minimizes
the functional &£[x] is the ground-state density. Thus by taking the variation
of Eq. (5.2.4) with respect to the particle density we obtain

dr’ + Vi (r) + vy [n(r)] = 0, (5.2.6)

8EM] 8T n] 5[ n()
sn(r)  8n(r) te J r —r/|
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where we have formally defined the exchange-correlation potential as

_ 8&[n]
= on(r)

Uxe[n(r)]

We now use the auxiliary noninteracting system and its Schrédinger equa-
tion, from which we can similarly show that

8T [n]
dn(r)

+ V() = 0.

By comparing this result with Eq. (5.2.6) we see that this effective potential
V,(r) must satisfy

n(r’)
Ir —r/|

V(r) = Vo (r) + & J dr’ + v (r). (5.2.7)

We are now in a position to implement the self-consistent Kohn—Sham
scheme. We first choose an initial trial form of the function n(r) and sub-
stitute into Eq. (5.2.7) to find a trial form of ;. We then solve Eq. (5.2.3) for
the single-particle wavefunctions ¢;(r), and use Eq. (5.2.2) to find the next
iteration for n(r). When this procedure has been repeated a sufficient number
of times that no further changes occur, then a solution for n(r) has been
found that not only satisfies the Schrodinger equation for the reference non-
interacting electrons, but also is the correct density for the interacting system.

We close this section by highlighting a few points about the Kohn—Sham
formalism. First of all, it is formally exact, supposing that we can find the
exact exchange-correlation potential v,.(r). Second, we have cast the solution
of the interacting N-electron problem in terms of noninteracting electrons in
an external potential V(r). This is of great practical importance. The ground-
state wavefunction of the noninteracting system is just a Slater determinant
of the N orbitals, the so-called Kohn—Sham orbitals, with the lowest eigen-
values &,. It is relatively easy to solve for these single-particle orbitals even
for as many as a few hundred electrons. The Kohn—Sham equations formally
look very much like self-consistent Hartree equations, the only difference
being the presence of the exchange-correlation potential. This makes them
much simpler to solve than the Hartree—Fock equations, in which the poten-
tial is orbital-dependent. In the Kohn—Sham and Hartree equations, the
effective potential is the same for every orbital.
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5.3 The local density approximation

Before we can actually implement the Kohn—Sham formalism, we have to
devise some workable approximation for the exchange-correlation potential
v,.(r). The first such approximation to be suggested was the Local Density
Approximation, or LDA. The idea behind the LDA is very simple; it just
ignores the nonlocal aspects of the functional dependence of v,.. The true
form of v,.(r) will depend not only on the local density n(r) but also on n at
all other points r’, and this functional dependence is in general not known.
This difficulty is avoided with the assumption that v,. depends only on the
local density n(r), and that £, [n] can thus be written as

gxc[n] = J €xc [I’l] l’l(l‘) dr,

where €,.[n] is the exchange-correlation energy per particle of a homogeneous
system of density n. In the LDA, we assume that the density of our (in-
homogeneous) system varies very slowly, so that the exchange-correlation
energy is locally that of a homogeneous system at the local density.

For practical calculations, we must then determine what €,.[#] is. Although
no general form is known exactly, the low-density and high-density limits can
be calculated analytically. Usually, the density is expressed in terms of the
dimensionless parameter r,, which is the radius of the sphere that can be
assigned to each electron (so that the volumes of all these spheres add up
to the total volume of the system), measured in units of the Bohr radius a;.
That is,

ry = (4rnay/3)~173.

In the low-density limit (r, >> 1), the electrostatic potential energy dominates,
and the electrons condense into what is known as a Wigner crystal, the
energy of which can be calculated. While the density of the Wigner crystal
is not strictly uniform, we can still use the energy per electron of this system
to develop an estimate for €[n] at low densities. In the high-density limit
(ry < 1), the kinetic energy dominates, and the random-phase approximation
becomes exact. Unfortunately, real metals have r; of the order of unity.
Usually, one then uses one of several interpolation schemes that join the
low- and high-density limits of €,.. The most commonly used approximations
combine numerical calculations with Padé approximants, which are ratios of
polynomials, for the interpolations. In local spin density functional calcula-
tions, the exchange-correlation energy is frequently separated into exchange



192 Density functional theory

and correlation parts. The exchange part is in this context just the exchange
energy that we discussed in Chapter 2, and the correlation energy is every-
thing else. These two quantities are then calculated at zero and unit polariza-
tions (¢ = 0 and & = 1). The exchange energy is straightforward to calculate,
and the result is

3 /97\'? &
eAn,é:O):—E(—)

4 redy’
and
e(ng=1)=2"% (n,£=0).

A popular approximation for the correlation energy €. is based on Monte
Carlo calculations by Ceperley and Alder for certain values of r, for £ =0
and & = 1. These are then parametrized. In one example, Perdew and Zunger
use a Padé approximant in r!/? for r, > 1:

y(é)

G(f(na §=0, 1) = 1+ 131(%')\/7; + ﬁ2(‘§)rs ’

with

¥(0) = —0.1423¢* /ay,  B,(0) = 1.0529, B,(0) = 0.3334

5.3.1
y(1) = —0.0843¢% /ay,  By(1) = 13981, By(1) = 0.2611. 3D

This form is then joined smoothly to the high-density form of €, (for r, < 1),
which is

€(n.&=0,1) = A®)Inr, + BE + C@r,Inr, + DE)r,. (5.3.2)

For & = 0, the result is matched to the classical random-phase approximation
result by Gell-Mann and Brueckner, and for & =1 there exists a scaling
relation (also obtained from the random-phase approximation), which states
that

éc(rs’ &= 1) = %Ec(rs/24/3a §= O) (533)

Finally, by requiring that the correlation energy and the resulting correlation
potential, v.(n, & =0, 1) = (d/dn)(ne.(n, & =0, 1)) be continuous at r, =1,
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the parameters A(&), B(§), C(&¢), and D(&) can be fixed. The result (with all
parameters given in units of ¢®/ag) is

A(0)=0.0311, B(0)=-0.048, C(0)=0.0020, D(0)= —0.0166

A(1) = 0.01555, B(1) = —0.0269, C(1) = 0.0007, D(1) = —0.0048.
(5.3.4)

It then remains to interpolate exchange and correlation energies to arbi-
trary polarizations. For the exchange energy alone, one can show that there is
an exact expression for the exchange energy of a homogeneous system at
arbitrary polarizations. This expression is usually written

€(n.§) =€ E=0)+[e(n,§=1)—€.(n&=0)]/(&), (5.3.5)

where the dimensionless function f(£) is

1+ +1 -9 -2

/&= 20215 — 1)

(5.3.6)

This function has the value zero at £ = 0 and unity at £ = 1. In the LDA, one
then just replaces n and & in Eq. (5.3.5) by their local values n(r) and &(r). The
correlation energy is again a little trickier. There exists no exact interpolation
to arbitrary polarization, even for the homogeneous system, as there does for
the exchange energy. In licu of better approximations, the first thing that
comes to mind is to use the same scaling relation for the correlation energy as
for the exchange energy, and write

€.(n(r), §(r)) = €.(n(r), §(r) = 0) + [e(n(r), §(r) = 1) — €.(n(r), &) = 0)] f (§(r)),

with the same scaling function f(&) as for the exchange energy, Eq. (5.3.6).
This turns out to be surprisingly accurate: the error given by this for the
Perdew—Zunger parametrization of the exchange and correlation energies is
at most 3.5% when compared with values calculated by more laborious
numerical schemes.

The first real calculation using DFT was by Lang and Kohn, who found
the work functions of simple metals in the LDA. Before their calculation, this
had been a difficult problem. The Hartree approximation typically gave at
least the right sign, but wrong values, while “improvements” using Hartree—
Fock theory often would yield the wrong sign, meaning that according
to Hartree—Fock theory, metals were not stable! The calculations by Lang
and Kohn not only showed metals to be stable, but gave very good
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quantitative agreement with experiments. These calculations thus showed the
importance of the correlation energy. The exchange energy is typically attrac-
tive, but too large to give good results for metals without further corrections.
The inclusion of correlation energy compensates for the large exchange
energy.

It may seem surprising that the LDA gives such good results for work
functions. After all, the calculation of work functions involves metal surfaces.
While the LDA is based on the assumption of a slowly varying electron
density, the density near metal surfaces varies very rapidly, and so metal
surfaces should perhaps not be within the region of applicability of the
LDA. Other cases in point are also given by DFT-LDA calculations of
atomic systems, in which the density again varies rapidly on atomic length
scales. Yet, the LDA yields very good results (of the order of one to ten
percent error depending on the quantity). Why is that?

First of all, the LDA is by construction the exchange-correlation energy of
a physical system (an infinite homogeneous system). As such, it then satisfies
many of the relations, the so-called sum rules, that are required of the
exchange-correlation energy and potential. There is also another reason
that has a deep and physical origin, and for which we need to know a little
about something called the exchange hole. Consider an electron system inter-
acting through Hartree and exchange terms alone. While the Hartree term is
blind to the spin of electrons, the exchange term is not. This term, which is
really a manifestation of the Pauli Exclusion Principle, acts to keep electrons
of like spins apart. As a consequence, if we put an up-spin electron at the
origin, there will be a deficit of other up-spin electrons in a neighborhood
around the origin. One can actually write down a precise expression for this
deficit, which, if integrated out, adds up to precisely one electron. We can
therefore think of each up-spin (or down-spin) electron as it is moving
through the system as being surrounded by a little bubble of deficit of up-
spin (or down-spin) electrons. This ““bubble,” which moves with the electron,
is the exchange hole. Now, if we go beyond Hartree and Fock terms, and add
electron correlations, there is still a deficit of up-spin (or down-spin) charge
around the electron. The correlation effects counteract the exchange term
locally to some extent, but the net deficit is still precisely one electron. This
net deficit is, quite naturally, called the exchange-correlation hole. If we
consider an electron at a point r, we can write the exchange-correlation
hole density at r” as p,.(r, r’), and one can rigorously show that

1
e = 3 JJ n(r) V(r —r')p(r,r')drdr’.
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For translationally invariant interactions, py(r,r") = py(Ir —r1'|). The
exchange-correlation energy is consequently determined by the form of this
spherically symmetric exchange-correlation hole. The LDA amounts to using
a particular approximation for the exchange-correlation hole, and this
approximation is successful in representing the form of the true exchange-
correlation hole. Part of this is due to the fortunate fact that errors from
exchange and correlation terms in the LDA cancel each other to some degree.

5.4 Electronic structure calculations

Density functional theory is the approach that is now almost universally used
in performing electronic structure calculations in condensed matter physics,
and the same is fast becoming the case in quantum chemistry. While many of
the earlier calculations used the Kohn—Sham scheme, there is now also a
large body of work, in particular for large systems, in which the approach
is to focus on minimizing the DFT-LDA expression for the ground-state
energy directly. There are in common use two different kinds of DFT
ground-state calculation. One is the so-called all-electron calculation, in
which the Coulomb potentials of the fully ionized atoms, i.e., of the bare
nuclei, are used for the external potential. All the electrons are then added to
the system and are considered in the calculations. This approach, however, is
frequently not practical for large systems consisting of hundreds of atoms, as
there are then many thousands of electrons.

This difficulty was resolved in the previous chapter for the case of non-
interacting electrons when we introduced the concept of the pseudopotential
in Section 4.4. There we argued that the bare Coulomb potential is very
strong, and thus tightly binds the core electrons, which consequently have
little effect on the properties of the system. We developed an analysis in which
the comparatively weak pseudopotential Uy given in Eq. (4.4.4) acted on a
comparatively smooth pseudo-wavefunction x,. We can proceed to apply a
similar technique within DFT, but at a cost of further loss of rigor, since
there is in this case no Hohenberg—Kohn theorem that formally allows us to
cast the problem in terms of only the ground-state density. This difficulty
stems from the fact that pseudopotentials are operators, and hence are non-
local. That is, a pseudopotential from an ion at position r acting on a valence
electron at r’ depends on r and r’ separately, and not just on the difference
r —r’. A DFT can be constructed for pseudopotentials, but the basic variable
here is the so-called single-particle density—density matrix y(r,r’), which
introduces another layer of complexity. For reasons of computational con-
venience, many users of pseudopotential methods within DFT typically
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ignore the inconsistency posed by the nonlocality of Uy. A powerful justifica-
tion is that pseudopotential calculations frequently give results that are as
accurate as any all-electron calculations. This may well be due to the fact
that it is in the end necessary to resort to approximations for the exchange-
correlation energy and potential, and these approximations are probably
responsible for most of the errors in the calculations.

Density functional theory, as we have described it here, is a theory for the
ground state of an interacting electron system, although there do exist exten-
sions to thermodynamic equilibria and to excited states. While it is formally
exact and can in principle be used to determine the expectation value of any
observable of the system, practical calculations focus on the exact formula-
tion for the ground-state energy and electron density, and are constructed to
give good approximations for these quantities. It is therefore not surprising
that quantities extracted directly from the ground-state energy and electron
density tend to be more accurate than quantities found by methods for which
there exists no formal justification. But even if we restrict ourselves to only
the former class, we can, with a little ingenuity, calculate a host of quantities.

First of all, we have the total energy. By calculating this for a variety of
different possible unit cells for a solid, one can predict the crystalline struc-
ture at various macroscopic densities. Calculated values for the total energy
at different lattice parameters for each lattice structure for a given material
can then be fitted to an approximate equation of state, from which the bulk
modulus can be calculated. By analyzing these equations of state, predictions
can be made about phase transitions as a function of pressure. In fact, a high-
pressure phase (a so-called B-tin phase) of silicon was first predicted from
total-energy DFT calculations, and later found experimentally. Most com-
mon semiconductors, such as Si, Ge, GaAs, GaP, InP, InAs, and InSb, have
been studied extensively in total-energy calculations of this sort. Unit cell
volumes and bond distances can be determined directly from the structure
having the minimum energy, with an accuracy of a few percent for the unit
cell volumes, and up to about one third of one percent (less than 0.01 A) for
bond distances. Total energies (for nonmagnetic crystals) are also well pre-
dicted, with energies accurate to within ten percent of experimental values.
The bulk modulus is found as a second derivative of the energy with respect
to volume, and is correspondingly less accurately predicted, with errors typi-
cally being some tens of percent.

Surfaces have also been the subject of many calculations. For example, the
Lang—Kohn calculations mentioned earlier were the first DFT calculations
of simple surface properties. Compared with exact calculations of surface
exchange-correlation energies for jellium systems, the LDA performs
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acceptably well, with errors of the order of two percent. Surface reconstruc-
tions, in particular of semiconductors, have been particularly extensively
studied. In these calculations, a perfect bulk crystal is terminated at a parti-
cular plane surface, and then the atoms are allowed to move to establish new
positions of lower energy. Since the atoms at or near the surface have fewer
near neighbors than those in the bulk, they experience a net force. As these
atoms move to new equilibrium positions, the symmetry of their arrangement
at the surface is typically altered from the bulk symmetry. Perhaps the most
celebrated example is the reconstruction of Si atoms on a (111) surface, the
so-called 7 x 7 reconstruction.

Phonon energies can be determined from ““frozen phonon” calculations, in
which the lattice is given a static deformation corresponding to a phonon of a
particular branch of a chosen wavevector q and polarization s, and the total
energy is calculated and compared with the ground-state energy. These ““fro-
zen phonon” calculations use the Born—Oppenheimer approximation, which
is based on the fact that electrons are very much lighter than the ions, and so
move much faster. The electrons can thus adjust very quickly to a change in
the ionic positions and at every instant form the ground state of the system
defined by whatever positions the ions are occupying at that time. These
calculations are easiest for special phonon wavevectors q at high symmetry
points in the Brillouin zone, and give results that are typically accurate to
within a few percent.

For atoms and simple molecules, the LDA (or alternatively the Local Spin
Density Approximation, LSDA) gives good results for geometrical quanti-
ties, such as bond lengths, and for electron densities, vibrational frequencies,
and energy differences such as ionization potentials. These results are often
an improvement over results obtained using the Hartree-Fock approxima-
tion. We remember also that the Hartree—Fock approximation is difficult and
time-consuming to use in practical calculations, since the effective potential is
orbital-dependent. For open-shell atoms the LSDA tends to overestimate the
ground-state energy in comparison with the best experimental values, and
with the Hartree—Fock approximation. Another important quantity for
molecules is the bond dissociation energy, or the atomization energy. This
is the energy required to break bonds and dissociate a simple molecule into its
atomic constituents. The LDA typically does rather poorly for this quantity,
overestimating it with errors around 20%, and sometimes over 100%.

The band structures of solids are usually calculated by interpreting the
Kohn-Sham eigenvalues & , for Bloch states of wavevector k in band n as
being the band energies. Although there is no formal justification for this
interpretation, it usually works remarkably accurately. However, if one tries
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to calculate the band gap of insulators and semiconductors by taking the
difference between the highest occupied LDA Kohn—Sham eigenvalue and
the lowest unoccupied one, the result typically underestimates the real band
gap by as much as 50%. The error has two distinct sources. One is the LDA
approximation, which introduces errors due to the inexact nature of the LDA
exchange-correlation potential. The other is of a more subtle kind. One can
rigorously show that the exchange-correlation potential must have disconti-
nuities in its functional derivative at integer particle numbers. In order to
evaluate the band gap of an N-electron system, one must include this dis-
continuity at N. The necessity of doing this adds such complexity to the
calculations that this correction is often neglected, sometimes with unfortu-
nate consequences. It is known that for some systems, such as Si, omission of
the discontinuity in the derivative of the exchange-correlation potential is
responsible for over 80% of the error in the calculated band gap.

5.5 The Generalized Gradient Approximation

As we have mentioned, the local density approximation (or its extension to
spin-polarized systems) has been the most commonly used approximation for
the exchange-correlation energy. It is simple to implement in calculations, it
gives very reasonable results, and it has the appeal of actually being the
exchange-correlation energy of something real (an infinite homogeneous
electron gas) and thus satisfies sum rules and other constraints. It is,
however, tempting to regard the LDA as only the lowest-order term in an
expansion of the exchange-correlation energy in powers of the first- and
higher-order gradients of the density.

For a homogeneous electron gas, there is really only one intrinsic length
scale, and that is k', which is proportional to n~/3. For the expansion to be
justified the length scale of variation of the density must thus be large com-
pared with kz'. We can then formally expand the exchange-correlation
energy in density variations about the constant density of the homogeneous
gas by writing

Exeln] = [ [200(1) + g2 ()(V) + gy (m)(Vn)
+ g43(n) (V7 n)(Vn)* + gaq(m)(Vn)* + - - ]dr. (5.5.1)

This form satisfies some constraints on rotational invariance, and the first
term in this expression, gy (7(r)), constitutes the LDA. As terms of higher
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order bring in more powers of Vr, the coeflicients that accompany them must
bring in an equal number of powers of (kpyn)~' if the dimensions of the
expression are to be preserved. Because kp o n'/? we conclude that
Eq. (5.5.1) is an expansion in powers of |Vn|/n*/>.

Early attempts to incorporate the corrections in Eq. (5.5.1) were focused
almost exclusively on the term g,,(n(r)), mainly because it has the attractive
property of being quadratic in Vn. As a result, any variation in the energy
produces a linear response that can be calculated more or less straightfor-
wardly. However, the results obtained were discouraging in that they did not
improve on the LDA. In fact, the converse was often true, and inclusion of
gradient corrections gave worse results than use of just the LDA. Blindly
expanding the exchange-correlation energy in gradients of the density leads
to functionals that violate some sum rules that the LDA has to satisfy. For
example, such expansions often lead to an incorrect behavior for the long-
wavelength contributions to the exchange-correlation energy, and diverge or
increase sharply as k — 0, whereas the long-wavelength contributions to the
true exchange-correlation energy vanish as k — 0. The incorrect behavior of
this expansion is particularly easy to see for finite systems, such as atoms and
molecules. For such systems, the density vanishes exponentially at distances
far from the nuclei, and this makes |Va|/n*? diverge.

Further analysis of the gradient expansion shows that the resulting
exchange-correlation hole is not negative definite. The question then arises
of whether one can construct a gradient expansion that avoids these short-
comings, so that the resulting exchange-correlation hole satisfies the most
important sum rules. Such analyses and “‘fixes” have been performed, most
notably by Perdew and co-workers. The resulting gradient corrections with
exchange-correlation hole constraints restored are referred to as Generalized
Gradient Approximations (GGAs). Carefully constructed GGAs also satisfy
other physical limits, such as giving the correct exchange-correlation energy
in the homogeneous electron gas limit (Vn(r) — 0), coordinate scaling rela-
tions, global bounds on the exchange-correlation energy, and correctly giving
the lowest-order term g,,(n(r)) in the expansion Eq. (5.5.1). The exchange-
correlation energy in the GGA is thus written as

ESGA — Jf(nT, ny,Vny, Vo )dr, (5.5.2)

where the function f is a universal function of the spin-up and spin-down
densities and their gradients. There exist several versions of the GGA, all of
which are parametrized somewhat differently.
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The great strength of the GGA lies in the dramatic improvement it gives
over the LDA in calculating such properties as bond dissociation energies,
which the LDA may overestimate by as much as 100%, while the GGA gives
errors typically of the order of ten percent or less. The GGA also gives a great
improvement over the LDA for bulk moduli of solids, with an error of
around ten percent, compared with around 20% for the LDA (or LSDA).
With modern GGA exchange-correlation potentials, atomic and molecular
quantities can now be calculated with chemical accuracy. Before the GGA,
this was only possible using so-called configuration-interaction schemes, in
which the true many-body wavefunction is expanded in some small set of
Slater determinants composed of suitable atomic basis functions. This is an
extremely arduous and computationally intensive approach. Density func-
tional theory with the GGA, on the other hand, is essentially no more com-
plicated than Hartree or LDA calculations. The exchange-correlation
potential is only slightly more complicated than in the LDA, and (more
importantly) it is still a multiplicative potential, leading to simple, effective
single-particle equations. The combined advantages of simple equations and
high accuracy have resulted in a revolution in quantum chemistry.

We close this section with a cautionary note. While mean errors, averaged
over many compounds, atoms, or molecules, tend to be improved in the
GGA compared with the LDA, this is no guarantee that the GGA will be
better for some specific calculation. For example, while the LDA on average
gives poorer results for the bulk modulus, it has been found better for GaAs
than some GGA calculations. New forms for the functions used in Eq. (5.5.2)
are continually being suggested, each of which has its own advantages. The
so-called PBE (Perdew—Burke—Ernzerhof) GGA is one of those constructed
to satisfy the constraints and limits mentioned earlier. There are other GGAs
not constructed this way, but obtained by brute-force fitting to a large data
set. While such GGAs may give excellent results for quantities included in the
fitting procedure, they can yield large errors for other quantities. Because
these kinds of fitting procedure tend not to satisfy physical constraints and
limits and often violate, for example, the uniform electron gas limit, their use
is limited to specialized applications.

5.6 More acronyms: TDDFT, CDFT, and EDFT

We finish our discussion of density functional theory with a brief tour of some
later developments. We start with time-dependent density functional theory
(TDDFT), which extends the reach of stationary density functional theory in
a very powerful way. Not only are strongly time-dependent phenomena
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accessible to computations, but TDDFT also provides a natural way to
calculate the excitation energies of a system.

We have previously seen how the Hohenberg—Kohn theorem establishes a
one-to-one correspondence between external potentials and electron densities
for time-independent systems. It is natural to ask under what circumstances
something similar holds true for systems in which the external potential
depends on time, so that V., = V.u(r,?). The answer is given by the
Runge-Gross theorem, which we will here only state and not prove. This
theorem establishes a one-to-one correspondence between density #n(r, £) and
its governing time-dependent external potential u(r, ¢), but there is a catch:
the correspondence can be established only for a specified initial many-body
state ¥, and consequently the functional relationships between density and
potential implicitly depend on ¥,. However, this will not cause any problem
if ¥, is a nondegenerate ground state. To state the theorem, we begin with a
system initially in an eigenstate ¥, of the usual homogeneous N-electron
Hamiltonian,

HO = T+ Vint'

At some time ¢, we turn on a time-dependent, scalar potential

N
Vext(t) = Z Uext(ri’ Z)'

Here the only requirements we put on ve(r, #) are that it be finite and Taylor-
expandable about 7,. We do not require ¥, to be an eigenstate of Vi (zy). The
theorem then states that the densities n(r, #) and »n'(r, t) that evolve from
a common initial state ¥, under the influence of two potentials v(r, )
and vy (r, t) are different provided that the potentials differ by more than
a purely time-dependent but spatially uniform function, so that

Uext(r’ l) 7é 'Uéxt(r’ t) + C(t)-

The proof of the theorem proceeds by first demonstrating that the current
densities resulting from the application of ve(r, 1) and vé(r, f) necessarily
must differ, given the property of Taylor-expandability of the potentials.
Once this is established, one can then use the continuity equation to show
that the densities n(r, f) and n'(r, /) must also differ. Therefore, the density
determines the potential, and so the Hamiltonian, and thus the expectation
value of any operator, is uniquely determined by the time-dependent density.
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However, we must bear in mind that all these relationships implicitly depend
on the choice of initial state .

Once the Runge—Gross theorem is established, one can then continue and
derive Kohn—Sham equations, just as for the time-independent case, by con-
sidering a noninteracting system with the same density as the interacting one.
Formally, the equations look just as one would expect for the time-dependent
Kohn-Sham orbitals ¢(r, 7):

do.(r, I
" w,g(; H_ [—;—mV2+Us[”](r» [):|(pj(l‘, 1.

Here, the effective potential v,(r, 7) is given by
Q}S(l', l) = ch(ra l) + Uext(rv Z) + ’UH(rv Z)v

with the exchange-correlation and Hartree potentials now being time-
dependent.

Once the time-dependent formalism is established, one can derive formally
exact expressions for the density—density response functions, which
describe how the density of the system changes in response to an external
potential that couples to the density. As an example we consider the
linear response function obtained by expanding the density response to
first order in the applied potential. We suppose an external potential of the
form

vext(rv Z) = UO(r) + Ul(r’ Z)@(l - ZO)»

where 6(x) is the Heaviside step function, which vanishes for x < 0 and is
unity for x > 0. This form of external potential is allowed by the Runge—
Gross theorem. For ¢ < 1, the external potential is vy(r), which we take to be
the potential of the ion cores of the system, and the system is in its ground
state corresponding to vy(r) with density ny(r). At a time ¢, an additional,
time-dependent perturbation v;(r, f) is applied. According to the Runge—
Gross theorem, the time-dependent density n(r, f) is then a functional of
the external potential (since we had fixed the state of the system prior to
turning on the time-dependent perturbation). We can then expand the density
in a Taylor series about r(r):

n(r, t) = ny(r) +ny(r, 1)+ - - -
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The first-order response of the density is by definition linear in v(r, ¢), and
thus can be written

ny(r, 1) = J x(e,x' (e, ¢ dr de.

The response function x(r, £;r’, ¢t') is the amount by which the density n(r, 7)
varies when a change in external potential is applied that is localized in both
time and space, and of the form 8(r — r")8(z — t'). It can be expressed as a
functional derivative, but of a type more complicated than those encountered
in Section 5.2, and written as

X(r, t; l‘/, Z/, no) = Sn[vext](rs t) ,

Svext(r/’ t/)

where we have made the dependence of x on the initial density n, explicit.
The formal definition of the functional derivative 8F[n(r)]/én(x") of the scalar
functional F[n(r)] with respect to the scalar function n(r’) is a function of r
and r’, and is defined as

SFIO] _ . FUi(r) + ed(r = x')] = Fln(r))

Sn(r’) >0 €

We note that the dimensions of functional derivatives are not what they at
first appear to be, since € has the dimensions of n multiplied by a volume. The
functional derivative 8n[vey](r, 1)/ 8vey(r’, t') thus has dimensions of (number
density)/(energy x volume x time).

Similarly, we can consider the response of the noninteracting auxiliary
system to the external potential v, (r, f), which yields its response function

_ Snfu](r, 1)

=" 5.6.1
6Uext(r/a t/) ( )

x5 tx' 1)

It is possible to show that when this response function is Fourier transformed
with respect to the time difference (# — ') and is given 