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Preface

The present manuscript represents an attempt to write a modern mono-
graph on quantum mechanics that can be useful both to expert readers,
i.e. graduate students, lecturers, research workers, and to educated read-
ers who need to be introduced to quantum theory and its foundations. For
this purpose, part I covers the basic material which is necessary to under-
stand the transition from classical to wave mechanics: the key experiments
in the development of wave mechanics; classical dynamics with empha-
sis on canonical transformations and the Hamilton—Jacobi equation; the
Cauchy problem for the wave equation, the Helmholtz equation and the
eikonal approximation; physical arguments leading to the Schrédinger
equation and the basic properties of the wave function; quantum dynam-
ics in one-dimensional problems and the Schrodinger equation in a central
potential; introduction to spin and perturbation theory; and scattering
theory. We have tried to describe in detail how one arrives at some ideas
or some mathematical results, and what has been gained by introducing
a certain concept.

Indeed, the choice of a first chapter devoted to the experimental foun-
dations of quantum theory, despite being physics-oriented, selects a set
of readers who already know the basic properties of classical mechan-
ics and classical electrodynamics. Thus, undergraduate students should
study chapter 1 more than once. Moreover, the choice of topics in chap-
ter 1 serves as a motivation, in our opinion, for studying the material
described in chapters 2 and 3, so that the transition to wave mechanics is
as smooth and ‘natural’ as possible. A broad range of topics are presented
in chapter 7, devoted to perturbation theory. Within this framework, after
some elementary examples, we have described the nature of perturbative
series, with a brief outline of the various cases of physical interest: regu-
lar perturbation theory, asymptotic perturbation theory and summabil-
ity methods, spectral concentration and singular perturbations. Chapter

xiii
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8 starts along the advanced lines of the end of chapter 7, and describes a
lot of important material concerning scattering from potentials.

Advanced readers can begin from chapter 9, but we still recommend
that they first study part I, which contains material useful in later inves-
tigations. The Weyl quantization is presented in chapter 9, jointly with
the postulates of the currently accepted form of quantum mechanics. The
Weyl programme provides not only a geometric framework for a rigor-
ous formulation of canonical quantization, but also powerful tools for the
analysis of problems of current interest in quantum mechanics. We have
therefore tried to present such a topic, which is still omitted in many
textbooks, in a self-contained form. In the chapters devoted to harmonic
oscillators and angular momentum operators the emphasis is on algebraic
and group-theoretical methods. The same can be said about chapter 12,
devoted to algebraic methods for the analysis of Schrédinger operators.
The formalism of the density matrix is developed in detail in chapter 13,
which also studies some very important topics such as quantum entangle-
ment, hidden-variable theories and Bell inequalities; how to transfer the
polarization state of a photon to another photon thanks to the projection
postulate, the production of statistical mixtures and phase in quantum
mechanics.

Part III is devoted to a number of selected topics that reflect the au-
thors’ taste and are aimed at advanced research workers: statistical me-
chanics and black-body radiation; Lagrangian and phase-space formula-
tions of quantum mechanics; the no-interaction theorem and the need for
a quantum theory of fields.

The chapters are completed by a number of useful problems, although
the main purpose of the book remains the presentation of a conceptual
framework for a better understanding of quantum mechanics. Other im-
portant topics have not been included and might, by themselves, be the
object of a separate monograph, e.g. supersymmetric quantum mechan-
ics, quaternionic quantum mechanics and deformation quantization. But
we are aware that the present version already covers much more material
than the one that can be presented in a two-semester course. The ma-
terial in chapters 9-16 can be used by students reading for a master or
Ph.D. degree.

Our monograph contains much material which, although not new by it-
self, is presented in a way that makes the presentation rather original with
respect to currently available textbooks, e.g. part I is devoted to and built
around wave mechanics only; Hamiltonian methods and the Hamilton—
Jacobi equation in chapter 2; introduction of the symbol of differential op-
erators and eikonal approximation for the scalar wave equation in chapter
3; a systematic use of the symbol in the presentation of the Schrodinger
equation in chapter 4; the Pauli equation with time-dependent magnetic



Preface XV

fields in chapter 6; the richness of examples in chapters 7 and 8; Weyl
quantization in chapter 9; algebraic methods for eigenvalue problems in
chapter 12; the Wigner theorem and geometrical phases in chapter 13;
and a geometrical proof of the no-interaction theorem in chapter 16.

So far we have defended, concisely, our reasons for writing yet another
book on quantum mechanics. The last word is now with the readers.
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From classical to wave mechanics







1

Experimental foundations
of quantum theory

This chapter begins with a brief outline of some of the key motivations
for considering a quantum theory: the early attempts to determine the
spectral distribution of energy density of black bodies; stability of atoms
and molecules; specific heats of solids; interference and diffraction of
light beams; polarization of photons. The experimental foundations of
wave mechanics are then presented in detail, but in a logical order quite
different from its historical development: photo-emission of electrons by
metallic surfaces, X- and v-ray scattering from gases, liquids and solids,
interference experiments, atomic spectra and the Bohr hypotheses, the
experiment of Franck and Hertz, the Bragg experiment, diffraction of
electrons by a crystal of nickel (Davisson and Germer), and measure-
ments of position and velocity of an electron.

1.1 The need for a quantum theory

In the second half of the nineteenth century it seemed that the laws
of classical mechanics, developed by the genius of Newton, Lagrange,
Hamilton, Jacobi and Poincaré, the Maxwell theory of electromagnetic
phenomena and the laws of classical statistical mechanics could account
for all known physical phenomena. Still, it became gradually clear, after
several decades of experimental and theoretical work, that one has to for-
mulate a new kind of mechanics, which reduces to classical mechanics in a
suitable limit, and makes it possible to obtain a consistent description of
phenomena that cannot be understood within the classical framework. It
is now appropriate to present a brief outline of this new class of phenom-
ena, the systematic investigation of which is the object of the following
sections and of chapters 4 and 14.

(i) In his attempt to derive the law for the spectral distribution of energy
density of a body which is able to absorb all the radiant energy falling

3



4 Ezxperimental foundations of quantum theory

upon it, Planck was led to assume that the walls of such a body consist
of harmonic oscillators, which exchange energy with the electromagnetic
field inside the body only via integer multiples of a fundamental quan-
tity €9. At this stage, to be consistent with another law that had been
derived in a thermodynamical way and was hence of universal validity,
the quantity €p turned out to be proportional to the frequency of the
radiation field, g = hv, and a new constant of nature, s, with dimension
[energy] [time] and since then called the Planck constant, was introduced
for the first time. These problems are part of the general theory of heat
radiation (Planck 1991), and we have chosen to present them in some
detail in chapter 14, which is devoted to the transition from classical to
quantum statistical mechanics.

(ii) The crisis of classical physics, however, became even more evident
when attempts were made to account for the stability of atoms and
molecules. For example, if an atomic system, initially in an equilibrium
state, is perturbed for a short time, it begins oscillating, and such os-
cillations are eventually transmitted to the electromagnetic field in its
neighbourhood, so that the frequencies of the composite system can be
observed by means of a spectrograph. In classical physics, independent
of the precise form of the forces ruling the equilibrium stage, one would
expect to be able to include the various frequencies in a scheme where
some fundamental frequencies occur jointly with their harmonics. In con-
trast, the Ritz combination principle (see section 1.6) is found to hold,
according to which all frequencies can be expressed as differences between
some spectroscopic terms, the number of which is much smaller than the
number of observed frequencies (Duck and Sudarshan 2000).

(iii) If one tries to overcome the above difficulties by postulating that the
observed frequencies correspond to internal degrees of freedom of atomic
systems, whereas the unknown laws of atomic forces forbid the occurrence
of higher order harmonics (Dirac 1958), it becomes impossible to account
for the experimental values of specific heats of solids at low temperatures
(cf. section 14.8).

(iv) Interference and diffraction patterns of light can only be accounted for
using a wave-like theory. This property is ‘dual’ to a particle-like picture,
which is instead essential to understanding the emission of electrons by
metallic surfaces that are hit by electromagnetic radiation (section 1.3)
and the scattering of light by free electrons (section 1.4).

(v) It had already been a non-trivial achievement of Einstein to show that
the energy of the electromagnetic field consists of elementary quantities
W = hv, and it was as if these quanta of energy were localized in space



1.1 The need for a quantum theory )

(Einstein 1905). In a subsequent paper, Einstein analysed a gas com-
posed of several molecules that was able to emit or absorb radiation, and
proved that, in such processes, linear momentum should be exchanged
among the molecules, to avoid affecting the Maxwell distribution of ve-
locities (Einstein 1917). This ensures, in turn, that statistical equilibrium
is reached. Remarkably, the exchange of linear momentum cannot be ob-
tained, unless one postulates that, if spontaneous emission occurs, this
happens along a well-defined direction with corresponding vector i, so
that the linear momentum reads as

w hv

ﬁ:—ﬁ:—u:
C C

. (1.1.1)

> >

In contrast, if a molecule were able to emit radiation along all possible
directions, as predicted by classical electromagnetic theory, the Maxwell
distribution of velocities would be violated. There was, therefore, strong
evidence that spontaneous emission is directional. Under certain circum-
stances, electromagnetic radiation behaves as if it were made of elemen-
tary quantities of energy W = hv, with speed ¢ and linear momentum
P as in Eq. (1.1.1). One then deals with the concept of energy quanta of
the electromagnetic field, later called photons (Lewis 1926).

(vi) It is instructive, following Dirac (1958), to anticipate the description
of polarized photons in the quantum theory we are going to develop. It
is well known from experiments that the polarization of light is deeply
intertwined with its corpuscular properties, and one comes to the conclu-
sion that photons are, themselves, polarized. For example, a light beam
with linear polarization should be viewed as consisting of photons each
of which is linearly polarized in the same direction. Similarly, a light
beam with circular polarization consists of photons that are all circularly
polarized. One is thus led to say that each photon is in a given polar-
ization state. The problem arises of how to apply this new concept to
the spectral resolution of light into its polarized components, and to the
recombination of such components. For this purpose, let us consider a
light beam that passes through a tourmaline crystal, assuming that only
linearly polarized light, perpendicular to the optical axis of the crystal,
is found to emerge. According to classical electrodynamics, if the beam
is polarized perpendicularly to the optical axis O, it will pass through
the crystal while remaining unaffected; if its polarization is parallel to
O, the light beam is instead unable to pass through the crystal; lastly, if
the polarization direction of the beam forms an angle o with O, only a
fraction sin? v passes through the crystal.

Let us assume, for simplicity, that the incoming beam consists of one
photon only, and that one can detect what comes out on the other side



6 Experimental foundations of quantum theory

of the crystal. We will learn that, according to quantum mechanics, in a
number of experiments the whole photon is detected on the other side of
the crystal, with energy equal to that of the incoming photon, whereas,
in other circumstances, no photon is eventually detected. When a photon
is detected, its polarization turns out to be perpendicular to the optical
axis, but under no circumstances whatsoever shall we find, on the other
side of the crystal, only a fraction of the incoming photon. However, on
repeating the experiment a sufficiently large number of times, a photon
will eventually be detected for a number of times equal to a fraction
sin? v of the total number of experiments. In other words, the photon is
found to have a probability sin v of passing through the tourmaline, and
a probability cos? « of being, instead, absorbed by the tourmaline. A deep
property, which will be the object of several sections from now on, is then
found to emerge: when a series of experiments are performed, one can only
predict a set of possible results with the corresponding probabilities.

As we will see in the rest of the chapter, the interpretation provided
by quantum mechanics requires that a photon with oblique polarization
can be viewed as being in part in a polarization state parallel to O, and
in part in a polarization state perpendicular to O. In other words, a state
of oblique polarization results from a ‘superposition’ of polarizations that
are perpendicular and parallel to O. It is hence possible to decompose
any polarization state into two mutually orthogonal polarization states,
i.e. to express it as a superposition of such states.

Moreover, when we perform an observation, we can tell whether the
photon is polarized in a direction parallel or perpendicular to O, because
the measurement process makes the photon be in one of these two po-
larization states. Such a theoretical description requires a sudden change
from a linear superposition of polarization states (prior to measurement)
to a state where the polarization of the photon is either parallel or per-
pendicular to O (after the measurement).

Our brief outline has described many new problems that the general
reader is not expected to know already. Now that his intellectual curiosity
has been stimulated, we can begin a thorough investigation of all such
topics. The journey is not an easy one, but the effort to understand what
leads to a quantum theory will hopefully engender a better understanding
of the physical world.

1.2 Our path towards quantum theory

Unlike the historical development outlined in the previous section, our
path towards quantum theory, with emphasis on wave mechanics, will
rely on the following properties.
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(i) The photoelectric effect, Compton effect and interference phenom-
ena provide clear experimental evidence for the existence of photons.
‘Corpuscular’ and ‘wave’ behaviour require that we use both ‘attributes’,
therefore we need a relation between wave concepts and corpuscular con-
cepts. This is provided for photons by the Einstein identification (see
appendix 1.A)

(F-di—wdt) = %(ﬁ-di’—po dz). (1.2.1a)

More precisely, light has a corpuscular nature that becomes evident tha-
nks to the photoelectric and Compton effects, but also a wave-like nature
as is shown by interference experiments. Although photons are massless,
one can associate to them a linear momentum p = hE, and their energy
equals hw = hv.

(ii) The form of the emission and absorption spectra, and the Bohr hy-
potheses (section 1.6). Experimental evidence of the existence of energy
levels (section 1.7).

(iii) The wave-like behaviour of massive particles postulated by de Broglie
(1923) and found in the experiment of Davisson and Germer (1927, diffrac-
tion of electrons by a crystal of nickel). For such particles one can perform
the de Broglie identification

(5 d7 — po dzo) = h(k - d7 — wdt). (1.2.1b)

It is then possible to estimate when the corpuscular or wave-like aspects
of particles are relevant in some physical processes.

1.3 Photoelectric effect

In the analysis of black-body radiation one met, for the first time, the
hypothesis of quanta: whenever matter emits or absorbs radiation, it does
so in a sequence of elementary acts, in each of which an amount of energy
¢ is emitted or absorbed proportional to the frequency v of the radiation:
€ = hv, where h is the universal constant known as Planck’s constant. We
are now going to see how the ideas developed along similar lines make
it possible to obtain a satisfactory understanding of the photoelectric
effect.

The photoelectric effect was discovered by Hertz and Hallwachs in 1887.
The effect consists of the emission of electrons from the surface of a solid
when electromagnetic radiation is incident upon it (Hughes and DuBridge
1932, DuBridge 1933, Holton 2000). The three empirical laws of such
an effect are as follows (see figures 1.1 and 1.2; the Millikan experiment
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¥y

Fig. 1.1. The circuit used in the Millikan experiment. The energy with which
the electron leaves the surface is measured by the product of its charge with
the potential difference against which it is just able to drive itself before being
brought to rest. Millikan was careful enough to use only light for which the illu-
minated electrode was photoelectrically sensitive, but for which the surrounding
walls were not photosensitive.

Vv Vv

0

Fig. 1.2. Variation of the photoelectric current with voltage, for given values of
the intensity.
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quoted therein should not be confused with the measuremt of the electron
charge, also due to Millikan).

(i) The electrons are emitted only if the frequency of the incoming radia-
tion is greater than a certain value vy, which is a peculiar property of the
metal used in the experiment, and is called the photoelectric threshold.

(ii) The velocities of the electrons emitted by the surface range from 0
to a maximum value of vyax. The kinetic energy corresponding to vmax
depends linearly on the frequency v: Tinax = k(v — 1), k > 0. Tinax does
not depend on the intensity of the incoming radiation.

(iii) For a given value of the frequency v of the incoming radiation, the
number of electrons emitted per cm? per second is proportional to the
intensity.

These properties cannot be understood if one assumes that classical
electromagnetic theory rules the phenomenon. In particular, if one as-
sumes that the energy is uniformly distributed over the metallic surface,
it is unclear how the emission of electrons can occur when the intensity
of the radiation is extremely low (which would require a long time before
the electron would receive enough energy to escape from the metal). The
experiments of Lawrence and Beans showed that the time lag between the
incidence of radiation on a surface and the appearance of (photo)electrons
is less than 1079 s.

However, the peculiar emission of electrons is naturally accounted for,
if Planck’s hypothesis is accepted. More precisely, one has to assume that
the energy of radiation is quantized not only when emission or absorption
occur, but can also travel in space in the form of elementary quanta
of radiation with energy hv. Correspondingly, the photoelectric effect
should be thought of as a collision process between the incoming quanta of
radiation and the electrons belonging to the atoms of the metallic surface.
According to this quantum scheme, the atom upon which the photon falls
receives, all at once, the energy hr. As a result of this process, an electron
can be emitted only if the energy hv is greater than the work function
W():

hv > Wy. (1.3.1)

The first experimental law, (i), is therefore understood, provided one
identifies the photoelectric threshold with %:

_"
=20

If the inequality (1.3.1) is satisfied, the electron can leave the metallic
plate with an energy which, at the very best, is W = hv — Wy, which

v (1.3.2)
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implies
Wnax = h(v — vp). (1.3.3)

This agrees completely with the second law, (ii). Lastly, upon varying the
intensity of the incoming radiation, the number of quanta falling upon the
surface in a given time interval changes, but from the above formulae it
is clear that the energy of the quanta, and hence of the electrons emitted,
is not affected by the intensity.

In the experimental apparatus (see figure 1.1), ultraviolet or X-rays fall
upon a clean metal cathode, and an electrode collects the electrons that
are emitted with kinetic energy T = hv — Wy. If 1} is the potential for
which the current vanishes, one has (see figure 1.3)

hv W,
Vo= 2 10, (1.3.4)
e e

=
>O

3L

2L

1L

0 1 1 1 1 1 1 1 1 1

30 f 50 70 90 110 v

v Frequencies (1013 Hz)

Fig. 1.3. Results of the Millikan experiment for the retarding potential Vj ex-
pressed as a function of frequency (Millikan 1916, © the American Physical
Society). A linear relation is found between Vj and v, and the slope of the corre-
sponding line is numerically equal to % The intercept of such a line on the v axis
is the lowest frequency at which the metal in question can be photoelectrically
active.
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The plot of Vj(v) is a straight line that intersects the v-axis when v = vy.
The slope of the experimental curve makes it possible to measure Planck’s
constant (for this purpose, Millikan used monochromatic light). The value
of the ratio 2 is 4.14 x 1071% V s, with h = 6.6 x 10727 erg s.

Einstein made a highly non-trivial step, by postulating the existence
of elementary quanta of radiation which travel in space. This was far
more than what Planck had originally demanded in his attempt to un-
derstand black-body radiation. Note also that, strictly, Einstein was not
aiming to ‘explain’ the photoelectric effect. When he wrote his funda-
mental papers (Einstein 1905, 1917), the task of theoretical physicists was
not quite that of having to understand a well-established phenomenology,
since the Millikan measurements were made 10 years after the first Ein-
stein paper. Rather, Einstein developed some far-reaching ideas which,
in particular, can be applied to account for all known aspects of the
photoelectric effect. Indeed, in Einstein (1905), the author writes as
follows.

... The wave theory of light, which operates with continuous spatial
functions, has worked well in the representation of purely optical phe-
nomena and will probably never be replaced by another theory. It should
be kept in mind, however, that the optical observations refer to time av-
erages rather than instantaneous values. In spite of the complete exper-
imental confirmation of the theory as applied to diffraction, reflection,
refraction, dispersion, etc., it is still conceivable that the theory of light
which operates with continuous spatial functions may lead to contradic-
tions with experience when it is applied to the phenomena of emission
and transformation of light.

It seems to me that the observations associated with blackbody radiation,
fluorescence, the production of cathode rays by ultraviolet light, and other
related phenomena connected with the emission or transformation of light
are more readily understood if one assumes that the energy of light is
discontinuously distributed in space. In accordance with the assumption
to be considered here, the energy of a light ray spreading out from a point
source is not continuously distributed over an increasing space but consists
of a finite number of energy quanta which are localized at points in space,
which move without dividing, and which can only be produced and absorbed
as complete units.

1.4 Compton effect

Classically, a monochromatic plane wave of electromagnetic nature car-

ries momentum according to the relation p = % Since F is quantized, one
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Lead collimating Crystal
slits u—

X-ray \\\\\ Q
Source \\\\ Detector

Scatterer \

Incident beam

Fig. 1.4 Experimental setup for the Compton experiment.

is naturally led to ask whether the momentum is carried in the form of
quanta with absolute value h—c’“ The Compton effect (Compton 1923a,b)
provides clear experimental evidence in favour of this conclusion, and
supports the existence of photons. For this purpose, the scattering of
monochromatic X- and v-rays from gases, liquids and solids is stud-
ied in the laboratory (see figure 1.4). Under normal circumstances, the
X-rays pass through a material of low atomic weight (e.g. coal). A spec-
trograph made out of crystal collects and analyses the rays scattered in
a given direction. One then finds, jointly with the radiation scattered
by means of the process we are going to describe, yet another radi-
ation which is scattered without any change of its wavelength. There
exist two nearby lines: one of them has the same wavelength A as the
incoming radiation, whereas the other line has a wavelength A > \.
The line for which the wavelength remains unaffected can be accounted
for by thinking that the incoming photon also meets the ‘deeper un-
derlying’ electrons of the scattering material. For such processes, the
mass of the whole atom is involved, which reduces the value of the shift
A — X significantly, so that it becomes virtually unobservable. We are now
going to consider the scattering process involving the external electron
only.

Let us assume that the incoming radiation consists of photons having
frequency v. Let me be the rest mass of the electron, ¥ its velocity after
collision with the photon and let v/ be the frequency of the scattered
photon. The conservation laws that make it possible to obtain a theoret-
ical description of the phenomenon are the conservation of energy and
momentum, and the description has to be considered within a relativistic
setting. We denote by [ the unit vector along the direction of the incom-
ing photon, and by # the unit vector along the direction of emission of
the scattered photon (see figure 1.5).
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Fig. 1.5. A photon with linear momentum pj collides with an electron at rest
and is scattered with momentum pj, while the electron recoils with momentum

Da.

The energy conservation reads, in our problem, as

Mec?

2
Vi e
Moreover, taking into account that the momentum of the electron van-

ishes before the scattering takes place, the conservation of momentum
leads to

mec? + hv = + h'. (1.4.1)

by d /
hwp_ _med | (1.4.20)

c /1 %; c
If Eq. (1.4.2a) is projected onto the z- and y-axes it yields the equations
(see figure 1.5)

h hv'
% = %cos@—%pcoscb, (1.4.2b)

/

hTV sinf = psin ¢, (1.4.2¢)
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which, jointly with Eq. (1.4.1), are three equations from which one may
evaluate ¢, the frequency v/ of the scattered X-ray, and the momentum
p of the electron as functions of the scattering angle 6. Here attention
is focused on the formula for wavelength shift. First, setting 8 = 7, one
finds from Eq. (1.4.2a) that

m2B32c: B2 h2? hv hv'

(1_52)2 2 + 2 —2?700s9, (1.4.3)

where 6 is the angle formed by the unit vectors [ and . Moreover, Eq.
(1.4.1) leads to

2 I\ 2
m hv  hv
Tt = (m + - 02) . (1.4.4)
Thus, on using the identity
B2 o & m
— = — —_— 1.4.5
O T ) (149
the comparison of Egs. (1.4.3) and (1.4.4) yields
h o ho'\2
—mgCQ + 62 (me + 072 - 62)
K22 h2y? hv hv'
= —_——2—— 0. 1.4.6
c2 c2 c ¢ °° ( )

A number of cancellations are now found to occur, which significantly
simplifies the final result, i.e.

v—v = (1 —cosb). (1.4.7)

However, the main object of interest is the formula for A’ — A\, which is
obtained from Eq. (1.4.7) and the well-known relation between frequency
and wavelength: v/c =1/, /¢ = 1/)\. Hence one finds

, h
AN =)A= mec(l — cosf), (1.4.8)
where
h = 0.0024 nm. (1.4.9)
MeC
Interestingly, the wavelength shift is maximal when cosf = —1, and it

vanishes when cosf = 1. In the actual experiments, the scattered pho-
tons are detected if in turn, they meet an atom that is able to absorb
them (provided that such an atom can emit, by means of the photoelec-
tric effect, an electron, the passage of which is visible on a photographic
plate).
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We can thus conclude that photons behave exactly as if they were
particles with energy hrv and momentum % According to relativity the-
ory, developed by Einstein and Poincaré, the equation p = % is a peculiar
property of massless particles. Thus, we can say that photons behave like
massless particles.

The frequency shift is a peculiar property of a quantum theory which
relies on the existence of photons, because in the classical electromagnetic
theory no frequency shift would occur. To appreciate this, let us consider
the classical description of the phenomenon. On denoting the position
vector in R? by 7, with Cartesian coordinates (z,y, z), and by k the wave
vector with corresponding components (k,,ky, k), the electric field of
the incoming plane wave of frequency v = 5~ may be written in the form

—

E = E, cos(E - wt), (1.4.10)

where the vector Eo has components (on,Eoy,E0z> independent of

(z,y,z,t). Strictly, one has then to build a wave packet from these el-
ementary solutions of the Maxwell equations, but Eq. (1.4.10) is all we
need to obtain the classical result. The electric field which varies in space
and time according to Eq. (1.4.10) generates a magnetic field that also
varies in space and time in a similar way. This is clearly seen from one of
the vacuum Maxwell equations, i.e. (we do not present the check of the
Maxwell equations for the divergences of E and g, but the reader can
easily perform it)

_ 10B
lE+ —— = 1.4.11
curl & + — 5 0, ( )
which can be integrated to find
B= —c/curlﬁ dt. (1.4.12)

Now the standard definition of the curl operator, jointly with Eq. (1.4.10),
implies that

(curl E)I = 8;;; - 615;” :(k‘ony - k‘yEoz) Sin(E-F— wt), (1.4.13)
(curl E)y = 88233 - 3;;2 :(k:mEoz - k’zEmC) sin(lg ST — wt), (1.4.14)
(curl E)Z = %Exy — 8;;90 :(kyEOw — kxEOy> sin(E- 7 — wt). (1.4.15)

The coefficients of the sin function on the right-hand sides of Egs.
(1.4.13)—(1.4.15) are easily seen to be minus the components along the
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X,Y, Z axes, respectively, of the vector product kA EO, and hence one
finds

curl £ = ~k A By sin(k -7~ wt). (1.4.16)
By virtue of Egs. (1.4.12) and (1.4.16) one finds
B = Bycos(k- 7 —wt), (1.4.17)
where we have defined
By = ngA Ep. (1.4.18)
The force acting on the electron of charge e is, therefore,
F= me d <E + lv A B>
( o+ v/\BO) cos(E-F—wt), (1.4.19)

where, by virtue of Eq. (1.4.18), one finds
(17/\ EO) = ’UyBoz — UzBOy
c
=2 {vy (ke Eo, — kyEo, ) - v. (k. Eo, — k:xEo)}

_ :[km(g. £o) - B, (- E)] (1.4.20)

Analogous equations hold for the other components of ¥ A Eg so that,
eventually,

U A EO = S[E(ﬁgo) —Eo(ﬁ%)], (1421)

which implies (see Egs. (1.4.10) and (1.4.19))
d 1~/ = S/,
m i = {E + = [k:(v : E) - E(U : k)] } , (1.4.22)

d
dt

The magnetic forces are negligible compared with the electric forces, so
that the acceleration of the electron reduces to % = = F. By virtue of
its oscillatory motion, the electron begins to radiate a field which, at a

distance R, has components with magnitude (Jackson 1975)

with
— 7 = 1. (1.4.23)

|E'| = |B| = ceRrsmgb, (1.4.24)
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where c is the velocity of light and ¢ is the angle between the scattered
beam and the line along which the electron oscillates. Substituting for
the acceleration, one finds

e?E sin ¢

E“/:B‘/:
B =18 = =

(1.4.25)

1.4.1 Thomson scattering

To sum up, in a classical model, the atomic electrons vibrate with the
same frequency as the incident radiation. These oscillating electrons, in
turn, radiate electromagnetic waves of the same frequency, leading to the
so-called Thomson scattering. This is a non-relativistic scattering process,
which describes X-ray scattering from electrons and ~-ray scattering from
protons. For a particle of charge ¢ and mass m, the total Thompson
scattering cross-section (recall that the cross-section describes basically
the probability of the scattering process) reads as (Jackson 1975)

8 2\?
o1 = ?< g ) . (1.4.26)

mc2

For electrons, or = 0.665 x 1072* c¢m?. The associated characteristic
length is

2
4 —282% 107 em (1.4.27)

mc2

and is called the classical electron radius.

1.5 Interference experiments

The wave-like nature of light is proved by the interference phenomena it
gives rise to. It is hence legitimate to ask the question: how can we accept
the existence of interference phenomena, if we think of light as consisting
of photons? There are, indeed, various devices that can produce interfer-
ence fringes. For example, a source S of monochromatic light illuminates
an opaque screen where two thin slits, close to each other, have been
produced. In passing through the slits, light is diffracted. On a plate L
located a distance from the slits, interference fringes are observed in the
area where overlapping occurs of the diffraction patterns produced from
the slits A and B, i.e. where light is simultaneously received from A and
B (see figure 1.6).

Another device is the Fresnel biprism (Born and Wolf 1959): the mono-
chromatic light emitted from S is incident on two coupled prisms P
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Fig. 1.6 Diffraction pattern from a double slit.

and Ps; light rays are deviated from P; and P> as if they were emitted
from two (virtual) coherent sources S” and S”. As in the previous device,
interference fringes are observed where light emitted both from P; and
Py is collected (see figure 1.7).

Fig. 1.7 Diffraction from a biprism.
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L

Fig. 1.8. Interference fringes with electrons, when they are deviated by an elec-
tric field.

Interestingly, the Fresnel biprism makes it possible to produce inter-
ference fringes with electrons. The source S is replaced by an electron
gun and the biprism is replaced by a metallic panel where a slit has been
produced. At the centre of the slit, a wire of silver-plated quartz is main-
tained at a potential slightly greater than the potential of the screen. The
electrons are deviated by the electric field of the slit, and they reach the
screen as if they were coming from two different sources (see figure 1.8).
For simplicity, we can consider the Fresnel biprism and talk about pho-
tons, but of course this discussion can be repeated in precisely the same
way for electrons.

How can one interpret the interference experiment in terms of photons?
It is clear that bright fringes result from the arrival of several photons,
whereas no photons arrive where dark fringes are observed. It therefore
seems that the various photons interact with each other so as to give
rise, on plate L, to an irregular distribution of photons, and hence bright
as well as dark fringes are observed. If this is the case, what is going to
happen if we reduce the intensity of the light emitted by .S until only one
photon at a time travels from the source S to the plate L? The answer is
that we have then to increase the exposure time of the plate L, but even-
tually we will find the same interference fringes as discussed previously.
Thus, the interpretation based upon the interaction among photons is
incorrect: photons do not interfere with each other, but the only possible
conclusion is that the interference involves the single photon, just as in
the case of the superposition for polarization. However, according to a
particle picture, a photon (or an electron) starting from S and arriving
at L, either passes through A or passes through B. We shall say that, if it
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passes through A, it is in the state ¥4 (the concept of state will be fully
defined in chapter 9), whereas if it passes through B it is in the state ¥ p.
But if this were the correct description of the possible options, we would
be unable to account for the interference fringes. Indeed, if the photon is
in the state 14 this means, according to what we said above, that slit B
can be neglected (it is as if it had been closed down). Under such condi-
tions, it should be possible for the photon to arrive at all points on plate
L of the diffraction pattern produced from A, and hence also at those
points where dark fringes occur. The same holds, with A replaced by B,
if we say that the photon is in the state ¢p. This means that a third op-
tion should be admissible, inconceivable from the classical viewpoint, and
different from 14 and ¥ . We shall then say that photons are in a state
Y¢, different from both 14 and ¥, but ¥¢ should ‘be related’, somehow,
with both ¥4 and ¥ . In other words, it is incorrect to say that photons
pass through A or through B, but it is as if each of them were passing, at
the same time, through both A and B. This conclusion is suggested by
the wave-like interpretation of the interference phenomenon: if only slit
A is open, there exists a wave A(z,y, z,t) in between the screen and L,
whereas, if only slit B is open, there exists a wave B(z,v, z,t) in between
the screen and L. If now both slits are opened up, the wave involved is
neither A(7,t) nor B(7,t), but C(7,t) = A(,t) + B(7,t).

But then, if the photon is passing ‘partly through A and partly through
B’, what should we expect if we place two photomultipliers Fy and F5 in
front of A and B, respectively, and a photon is emitted from S (see
figure 1.9)?7 Should we expect that F; and Fb register, at the same
time, the passage of the photon? If this were the case, we would have
achieved, in the laboratory, the ‘division’ of a photon! What happens,
however, is that only one of the two photomultipliers registers the pas-
sage of the photon, and upon repeating the experiment several times
one finds that, on average, half of the events can be ascribed to F} and
half of the events can be ascribed to F5. Does this mean that the exis-
tence of the state ¢ is an incorrect assumption? Note, however, that
the presence of photomultipliers has made it impossible to observe the
interference fringes, since the photons are completely absorbed by such
devices.

At this stage, one might think that, with the help of a more sophis-
ticated experiment, one could still detect which path has been followed
by photons, while maintaining the ability to observe interference fringes.
For this purpose, one might think of placing a mirror S; behind slit A,
and another mirror Sy behind slit B (see figure 1.10). Such mirrors can
be freely moved by hypothesis, so that, by observing their recoil, one
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Fig. 1.9 Double-slit experiment with a photon.

Fig. 1.10 Double-slit experiment supplemented by mirrors.
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could (in principle) understand whether the photon passed through A or,
instead, through slit B. Still, once again, the result of the experiment is
negative: if one manages to observe the recoil of a mirror, no interference
fringes are detected. The wave-like interpretation of the failure is as fol-
lows: the recoil of the mirror affects the optical path of one of the rays,
to the extent that interference fringes are destroyed. In summary, we can
make some key statements.

(i) Interference fringes are also observed by sending only one photon at a
time. Thus, the single photon is found ‘to interfere with itself’.

(ii) It is incorrect to say that the single photon passes through slit A or
through slit B. There exists instead a third option, represented by a state
Yo, and deeply intertwined with both ¥4 and ¥p.

(iii) A measurement which shows whether the photon passed through A
or through B perturbs the state of the photon to such an extent that
no interference fringes are detected. Thus, either we know which slit the
photon passed through, or we observe interference fringes. We cannot
achieve both goals: the two possibilities are incompatible.

1.6 Atomic spectra and the Bohr hypotheses

The frequencies that can be emitted by material bodies form their emis-
sion spectrum, whereas the frequencies that can be absorbed form their
absorption spectrum. For simplicity, we consider gases and vapours.

A device to obtain the emission and absorption spectra works as follows
(see figure 1.11). Some white light falls upon a balloon containing gas or
a vapour; a spectrograph, e.g. a prism Pi, splits the light transmitted
from the gas into monochromatic components, which are collected on a
plate L1. On L; one can see a continuous spectrum of light transmitted
from the gas, interrupted by dark lines corresponding to the absorption
frequencies of the gas. These dark lines form the absorption spectrum. To
instead obtain the emission spectrum, one has to transmit some energy
to the gas, which will eventually emit such energy in the form of electro-
magnetic radiation. This can be achieved in various ways: by heating the
material, by an electrical discharge, or by sending light into the material
as we outlined previously. By referring to this latter case for simplicity, if
we want to analyse the emitted light, we shall perform our observations
in a direction orthogonal to that of the incoming light (to avoid being
disturbed by such light). A second prism P, is inserted to decompose
the radiation emitted from the gas, and this is collected on plate Lo. On
Lo one can see, on a dark background, some bright lines corresponding
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Fig. 1.11. Experimental setup used to obtain the emission and absorption
spectra.

to the frequencies emitted from the gas. These lines form the emission
spectrum.

First, the observations show that the emission and absorption spectra
are quite different: the emission spectrum contains far more lines than
the absorption spectrum, and one can find, within it, all lines of the ab-
sorption spectrum. Moreover, if the incoming radiation has a spectrum of
frequencies v greater than a certain value v1, it is also possible to observe,
in the emission spectrum, lines corresponding to frequencies smaller than
v1. To account for the emission and absorption spectra, Bohr made some
assumptions (Bohr 1913) that, as in the case of Einstein’s hypothesis,
disagree with classical physics, which was indeed unable to account for
the properties of the spectra. The basic idea was that privileged orbits
for atoms exist that are stable. If the electrons in the atom lie on one of
these orbits, they do not radiate. Such orbits are discrete, and hence the
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corresponding energy levels are discrete as well. The full set of hypotheses
are as follows (Bohr 1913, Herzberg 1944).

(I) An atom can only have a discrete set of energies starting from a
minimal energy: Fy < Fy < --- < E,, < ---. These energy levels describe
only the bound states of an atom, i.e. states that correspond to bounded
classical orbits in phase space. The minimal energy state of an atomic
system is called the ground state.

(IT) When an atomic system is in one of the above discrete energy levels
it does not radiate. The emission (respectively, absorption) of radiation
is associated with the transition of the electron from one orbit to another
of lower (respectively, higher) energy.

(ITI) The allowed orbits are those for which the integral of p dg along the
orbit is an integer multiple of the Planck constant.

We are now going to derive some consequences of the first two assump-
tions, whereas the third one will be applied in section 1.8.

(i) The spectra should be formed by lines for which the frequencies are
given by

E,-E
Vn,m = |"hm| (1.6.1)

with all possible values of F,, and E,,. Each material, however, also has
to exhibit a continuous spectrum, which corresponds to transitions from
a bound state to ionization states (also called ‘continuum states’, because
Bohr’s hypothesis of discrete energies does not hold for them).

(ii) Bohr’s assumptions are compatible with Einstein’s hypothesis. In-
deed, if an atom radiates energy in the form of discrete quanta, when the
atom emits (or absorbs) a photon of frequency v, its energy changes by
an amount hv.

(iii) It is then clear why the emission spectra are richer than the absorp-
tion spectra. Indeed, at room temperature, the vast majority of atoms
are in the ground state, and hence, in absorption, only the frequencies

En_El
h

are observed, which correspond to transitions from the ground state F1 to
the generic level E,,. Over a very short time period (of the order of 1078
or 1079 s), radiation is re-emitted in one or more transitions to lower
levels, until the ground state is reached. Thus, during the emission stage,
the whole spectrum given by the previous formula may be observed.

(1.6.2)

Vin =
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(iv) From what we have said it follows that all frequencies of the emission
spectrum are obtained by taking differences of the frequencies of the
absorption spectrum:

|Un—vm| = |(En—E1)/h—(Em—E1)/h| = |[(En—Em)/h| = Vnm. (1.6.3)

This property, which was already well known to spectroscopists prior to
Bohr’s work, was known as the Ritz combination principle. More precisely,
for a complex atom the lines of the spectrum can be classified into series,
each of them being of the form

1 1 1

Y= R <m2 n2> , (1.6.4)
where n and m are integers, with m fixed and R being the Rydberg con-
stant. From this experimental discovery one finds that, on the one hand,
the frequency v = { is a ‘more natural’ parameter than the wavelength
A for indexing the lines of the spectrum and, on the other hand, the spec-
trum is a set of differences of frequencies (or spectral terms), i.e. there
exists a set I of frequencies such that the spectrum is the set of differences

Vij = Vi —Vj (165)

of arbitrary pairs of elements of I. Thus, one can combine two frequencies
v;; and vji to obtain a third one, i.e.

Vik, = Vij + Vjk. (1.6.6)

Such a corollary is the precise statement of the Ritz combination principle:
the spectrum is endowed with a composition law, according to which the
sum of the frequencies v;; and v, is again a frequency of the spectrum
only when [ = j. Their combination is then expressed by Eq. (1.6.6).

(v) From the knowledge of the absorption spectrum one can derive the
energies F,, because, once the constant h is known, the absorption spec-
trum makes it possible to determine Fy — E1, F3— F1,..., E, — FE1 and so
on, up to E — F1. Moreover, if one sets to zero the energy correspond-
ing to the ionization threshold, i.e. to the limit level E.,, one obtains
E; = —hv, where v is the limit frequency of the spectrum (for frequen-
cies greater than v one obtains a continuous spectrum and the atom is
ionized).

(vi) Spectroscopists had been able to group together the lines of a (emis-
sion) spectrum, in such a way that the frequencies, or, more precisely, the
wave numbers % = % corresponding to the lines of a spectrum could be

expressed as differences between ‘spectroscopic terms’ (Balmer 1885):

1_v_ T(n) — T(m), (1.6.7)
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where n and m are positive integers. Each series is picked out by a partic-
ular value of n, and by all values of m greater than n. Thus, for example,
the first series (which is the absorption series) corresponds to the wave
numbers

1

3= T(1)—T(m), m>1. (1.6.8)
Now according to Bohr the spectroscopic terms T'(n) are nothing but the
energy levels divided by he:

T(n) = — -2 (1.6.9)

and the various series correspond to transitions which share the same
final level.

Property (iii) makes it possible to determine the energy levels of a
system. It is indeed possible to perform the analysis for the hydrogen
atom and hydrogen-like atoms, i.e. those systems where only one electron
is affected by the field of a nucleus of charge Ze, where Z is the atomic
number.

1.7 The experiment of Franck and Hertz

The experiment of Franck and Hertz, performed for the first time in 1914
(Franck and Hertz 1914), was intended to test directly the fundamental
postulate of Bohr, according to which an atom can only have a discrete

series of energy levels Eg, F1, Fo, ..., corresponding to the frequencies
v; = —%, with7 =0,1,2,.... The phenomenon under investigation is the

collision of an electron with a monatomic substance. The atoms of such
a substance are, to a large extent, in the ground state Fjy. If an electron
with a given kinetic energy collides with such an atom, which can be taken
to be at rest both before the collision (by virtue of the small magnitude
of its velocity, due to thermal agitation) and after this process (by virtue
of its large mass), the collision is necessarily elastic if T' < Ej — Ey, where
FE is the energy of the closest excited state. Thus, the atom remains in
its ground state, and the conservation of energy implies that the electron
is scattered in an arbitrary direction with the same kinetic energy, T". In
contrast, if T' > Fy — Ey, inelastic collisions may occur that excite the
atom to a level with energy E7, while the electron is scattered with kinetic
energy

T =T — (Ey — Ey). (1.7.1)

The experiment is performed using a glass tube filled with monatomic
vapour. On one side of the tube there is a metal filament F', which is
heated by an auxiliary electric current. Electrons are emitted from F' via
the thermionic effect. On the other side of the tube there is a grid G
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and a plate P. On taking the average potential of the filament as zero,
one ‘inserts’ in between F' and P an electromotive force V — ¢ and a
weak electromotive force £ in between G and P. A galvanometer, which
is inserted in the circuit of P, makes it possible to measure the current at
P and to study its variation as V is increased. Such a current is due to the
electrons which, emitted from the filament, are attracted towards the grid,
where they arrive with a kinetic energy T' = eV, unless inelastic collisions
occur. The electrons pass through the holes of the grid (overcoming the
presence of the ‘counterfield’) and a large number of them reach the plate
(despite the collisions occurring in between G and P). This occurs because
the kinetic energy of the electrons is much larger than e.

Since, for eV < Ej — Ey, only elastic collisions may occur in between F'
and G, we have to expect that the higher the kinetic energy of the elec-
trons, the larger the number of electrons reaching the plate will be. The
experiment indeed shows that, for V increasing between 0 and the first
excitation potential @, the current detected at the plate increases
continuously (see figure 1.12). However, as soon as V' takes on larger val-
ues, inelastic collisions may occur in the neighbourhood of the grid, and if
the density of the vapour is sufficiently high, a large number of electrons
lose almost all of their kinetic energy in such collisions. Hence they are no
longer able to reach the plate, because they do not have enough energy to
overcome the ‘counterfield’ between the grid and the plate. This leads to
a substantial reduction of the current registered at P. One now repeats
the process: a further increase of the potential enhances the current at
P provided that V remains smaller than the second excitation potential,
@, and so on. It is thus clear that one is measuring the excitation
potentials, and the experimental data are in good agreement with the
theoretical model.

It should be stressed that, when V increases so as to become larger than
integer multiples of @, the electron may undergo multiple collisions
instead of a single inelastic collision. One then finds that the current at
P starts decreasing for energies slightly larger than (E; — Ey),2(F; —
Eo),3(E1 — Eo), ...

1.8 Wave-like behaviour and the Bragg experiment

In the light of a number of experimental results, one is led to formulate
some key assumptions:

(i) The existence of photons (Einstein 1905, 1917; sections 1.3 and 1.4);

(ii) Bohr’s assumption on the selection of classical orbits (Bohr 1913);
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Fig. 1.12. Variation of the current I detected at the plate as the potential V'
is increased in the experiment of Franck and Hertz. For V increasing between 0
and the first excitation potential, the current I increases continuously. The sub-
sequent decrease results from inelastic collisions occurring in the neighbo